AT1157U1 - METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT - Google Patents

METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT Download PDF

Info

Publication number
AT1157U1
AT1157U1 AT0068495U AT68495U AT1157U1 AT 1157 U1 AT1157 U1 AT 1157U1 AT 0068495 U AT0068495 U AT 0068495U AT 68495 U AT68495 U AT 68495U AT 1157 U1 AT1157 U1 AT 1157U1
Authority
AT
Austria
Prior art keywords
light
coolant
gas bubbles
measurement
probe
Prior art date
Application number
AT0068495U
Other languages
German (de)
Inventor
Ernst Dipl Ing Dr Winklhofer
Harald Arnulf Dipl Ing Philipp
Horst Tschetsch
Original Assignee
Avl Verbrennungskraft Messtech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl Verbrennungskraft Messtech filed Critical Avl Verbrennungskraft Messtech
Priority to AT0068495U priority Critical patent/AT1157U1/en
Publication of AT1157U1 publication Critical patent/AT1157U1/en
Priority to DE19651485A priority patent/DE19651485C2/en
Priority to US08/764,128 priority patent/US5864392A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/20Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using particles entrained by a fluid stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

AT 001 157 UlAT 001 157 ul

Die Erfindung betrifft ein Verfahren zur optischen Messung von Gasblasen in der Kühlflüssigkeit einer Brennkraftmaschine, wobei über zumindest einen Emitter Licht in die Kühlflüssigkeit gestrahlt und der auf Grund der Gasblasen auf-tretende Streulichtanteil bzw. die Intensitätsänderung einer in die Kühlflüssigkeit emittierten Lichtstrahlung durch einen Sensor gemessen wird, sowie eine Einrichtung zur Durchführung dieses Verfahrens.The invention relates to a method for the optical measurement of gas bubbles in the cooling liquid of an internal combustion engine, light being radiated into the cooling liquid via at least one emitter and the scattered light component occurring due to the gas bubbles or the change in intensity of light radiation emitted into the cooling liquid being measured by a sensor as well as a facility for carrying out this method.

Die Größe, Anzahl und Geschwindigkeit von Dampfblasen im Kühlmittel einer Brennkraftmaschine hat einen wesentlichen Einfluß auf die Kühlleistung des Kühlkreislaufes.The size, number and speed of vapor bubbles in the coolant of an internal combustion engine have a significant influence on the cooling capacity of the cooling circuit.

Es sind verschiedene Einrichtungen und Verfahren zur optischen Detektion von Gasblasen in Flüssigkeiten bekannt. Die EP 0 289 833 A2 beschreibt ein Verfahren und eine Einrichtung, bei der über eine Lichtquelle Licht radial in das Innere eines Rohres gestrahlt wird. Die Achse des Lichtsensors ist zur Achse des eingestrahlten Lichtes um einen Winkel geneigt angeordnet, sodaß der Lichtsensor nur in Anwesenheit von Luftblasen Streulicht registriert. Eine ähnliche Einrichtung ist weiters auch aus der GB 2 248 927 A bekannt. Diese bekannten Einrichtungen eignen sich allerdings nur zur reinen Registrierung von Blasen und nicht zur Geschwindigkeitsmessung der Blasen.Various devices and methods for the optical detection of gas bubbles in liquids are known. EP 0 289 833 A2 describes a method and a device in which light is radiated radially into the interior of a tube via a light source. The axis of the light sensor is arranged at an angle to the axis of the incident light, so that the light sensor registers scattered light only in the presence of air bubbles. A similar device is also known from GB 2 248 927 A. However, these known devices are only suitable for the pure registration of bubbles and not for measuring the speed of the bubbles.

Aufgabe der vorliegenden Erfindung ist es, eine Meßeinrichtung und ein Meßverfahren zur Messung der Geschwindigkeit von Gasblasen in Kühlflüssigkeiten bereitzustellen.The object of the present invention is to provide a measuring device and a measuring method for measuring the velocity of gas bubbles in cooling liquids.

Erfindungsgemäß wird dies dadurch erreicht, daß der Streulichtanteil bzw. die Intensitätsänderung in zumindest zwei räumlich benachbarten Bereichen gemessen wird und daß die Blasengeschwindigkeit aus der Wegzeitdifferenz der Meßsignale ermittelt wird. Dazu ist vorgesehen, daß zumindest zwei Lichtleiter zur Messung der Streulichtsignale räumlich distanziert über zumindest eine Sonde in den Kühlwasserkanal einmünden.According to the invention, this is achieved in that the scattered light component or the change in intensity is measured in at least two spatially adjacent areas and in that the bubble velocity is determined from the path-time difference of the measurement signals. For this purpose, it is provided that at least two light guides for measuring the scattered light signals open into the cooling water channel in a spatially distant manner via at least one probe.

Eine bevorzugte Ausbildung der Erfindung sieht vor, daß die zumindest zwei Lichtleiter zur Messung der Streulicht-bzw. Intensitätsänderungssignale in einer einzigen Sonde angeordnet sind.A preferred embodiment of the invention provides that the at least two light guides for measuring the scattered light or. Intensity change signals are arranged in a single probe.

Gemäß einer erfindungsgemäßen Ausführung wird dabei das Licht über zumindest eine in den Kühlwasserkanal einge- 2 AT 001 157 Ul führte Sonde emittiert. Emissionssonde und Meßsonde können dabei verschieden oder identisch sein.According to an embodiment of the invention, the light is emitted via at least one probe guided into the cooling water channel. Emission probe and measuring probe can be different or identical.

Wird das Licht über eine externe Lichtquelle in einer Meßsonde zugeführt, so kann vorgesehen sein, daß Lichtemission und Messung über einen monophilen Lichtleiter erfolgt, wobei im Lichtleiter ein Strahlteiler angeordnet ist. Die Zuführung des Lichtes und die Abführung des gemessenen Streulichtes erfolgt dabei über ein und denselben Lichtleiter.If the light is supplied via an external light source in a measuring probe, it can be provided that light emission and measurement take place via a monophilic light guide, a beam splitter being arranged in the light guide. The light is supplied and the measured scattered light is removed via one and the same light guide.

Weiters kann vorgesehen sein, daß statt einer monophilen Faser und eines Strahlteilers ein zweiarmiger Lichtleiter verwendet wird.It can also be provided that a two-armed light guide is used instead of a monophilic fiber and a beam splitter.

In einer besonders vorteilhaften Ausführung der Erfindung ist vorgesehen, daß der Streulichtanteil einer Hintergrundstrahlung im Infrarotbereich gemessen wird. Die Hintergrundstrahlung im Infrarotbereich wird dabei von den Motorbetriebstemperatur aufweisenden Wänden des Kühlflüssigkeitskanales gebildet. Dies ermöglicht es, auf eine externe Lichtquelle zu verzichten und statt dessen die Wärmestrahlung der Brennkraftmaschine zu verwenden.In a particularly advantageous embodiment of the invention it is provided that the scattered light component of a background radiation is measured in the infrared range. The background radiation in the infrared range is formed by the walls of the coolant channel having the engine operating temperature. This makes it possible to dispense with an external light source and instead to use the heat radiation from the internal combustion engine.

Die Erfindung wird anhand der Figuren näher erläutert .The invention is explained in more detail with reference to the figures.

Es zeigen schematisch Fig. 1 eine erfindungsgemäße Einrichtung mit einer in einen Kühlflüssigkeitskanal eingeführten Meßlicht- und einer Sensorsonde, Fig. 2 bis 5 weitere Ausführungsvarianten der Erfindung mit einer kombinierten Meßlicht- und Sensorsonde, Fig. 6 eine Ansicht auf eine Sonde gemäß der Linie VI-VI in Fig. 5.1 schematically shows a device according to the invention with a measuring light and sensor probe inserted into a coolant channel, FIGS. 2 to 5 further embodiment variants of the invention with a combined measuring light and sensor probe, FIG. 6 shows a view of a probe along line VI -VI in Fig. 5.

Bei der in Figur 1 gezeigten Ausführungsvariante mündet die Meßeinrichtung 2, bestehend aus einem Emitter 2a, einem Sensor 2b und 2b', in den Kühlwasserkanal 1, wobei Emitter 2a und Sensoren 2b, 2b' durch räumlich getrennte Sonden 9a, 9b, 9b' gebildet sind. Der in den Kühlwasserkanal 1 gestrahlte Lichtkegel ist mit 3 bezeichnet. Die Sensoren 2b, 2b' sind so angeordnet, daß sich der Meßkegel 4, 4' mit dem Strahlkegel 3 überlappt und das durch Gasblasen 5 verursachte Streulicht empfängt. Der Streulichtanteil ist ein Maß für die Größe und Anzahl der Gasblasen.In the embodiment shown in Figure 1, the measuring device 2, consisting of an emitter 2a, a sensor 2b and 2b ', opens into the cooling water channel 1, emitter 2a and sensors 2b, 2b' being formed by spatially separate probes 9a, 9b, 9b ' are. The light cone radiated into the cooling water channel 1 is denoted by 3. The sensors 2b, 2b 'are arranged such that the measuring cone 4, 4' overlaps the beam cone 3 and receives the scattered light caused by gas bubbles 5. The amount of scattered light is a measure of the size and number of gas bubbles.

Zur Messung der Blasengeschwindigkeit wird die Wegzeitdifferenz von bestimmten Blasen 5 oder Blasengruppen gemessen. Dazu werden zumindest zwei in einem Abstand 15 voneinander entfernte Lichtleiter 7, 7' bzw. 10, 10' verwendet, wo- 3 AT 001 157 Ul bei die Lichtleiter gemäß Fig. l in separaten Sonden 9b, 9b' angeordnet, bzw. wie in Fig. 5 gezeigt, in einer Sonde 9 integriert sein können. Aus der Zeitverzögerung der Streulichtsignale aus dem ersten Lichtleiter 10 und dem zweiten Lichtleiter 10' und dem Abstand 15 wird die Geschwindigkeit der Blasen bestimmt.To measure the bubble velocity, the travel time difference of certain bubbles 5 or bubble groups is measured. For this purpose, at least two light guides 7, 7 'or 10, 10' spaced 15 apart from each other are used, of which the light guides according to FIG. 1 are arranged in separate probes 9b, 9b ', or as in FIG 5, can be integrated in a probe 9. The speed of the bubbles is determined from the time delay of the scattered light signals from the first light guide 10 and the second light guide 10 'and the distance 15.

Gegebenenfalls kann auf eine externe Lichtquelle auch verzichtet werden, wenn der Sensor 2b als Infrarotsensor aus-gebildet ist und als Emitter die Kanalwände la der Kühlwasserkanäle 1 dienen, also als Strahlungsquelle die Abwärme des Motors verwendet wird. Als Meßsignal kann dabei die Intensitätsänderung der Hintergrundstrahlung oder die durch die Blasen verursachten Streulichtanteile der Infrarotstrahlung herangezogen werden.If necessary, an external light source can also be dispensed with if the sensor 2b is designed as an infrared sensor and the channel walls la of the cooling water channels 1 serve as emitters, ie the waste heat from the motor is used as the radiation source. The change in intensity of the background radiation or the scattered light components of the infrared radiation caused by the bubbles can be used as the measurement signal.

Wie in Fig. 2 gezeichnet^ können die Lichtleiter^ und 7 des Emitters und des Sensors in einer einzigen Sonde 9 und dabei die Achsen des Strahlkegels 3 und des Meßkegels 4 etwa parallel zueinander angeordnet sein. Zur Messung der Geschwindigkeit sind zwei in Strömungsrichtung distanziert voneinander angeordnete Sonden 9 erforderlich.As shown in Fig. 2 ^ the light guide ^ and 7 of the emitter and the sensor in a single probe 9 and thereby the axes of the beam cone 3 and the measuring cone 4 can be arranged approximately parallel to each other. To measure the speed, two probes 9, spaced apart from one another in the flow direction, are required.

Eine weitere Vereinfachung der Meßeinrichtung 2 ist in Fig. 3 gezeigt. Die Sonde 9 weist dabei einen einzigen Lichtleiter auf, der beispielsweise eine monophile Faser 10 sein kann. Über einen Strahlteiler 11 wird Licht einerseits von einer Lichtquelle 12 in den Lichtleiter 10 geleitet, andererseits Meßlicht aus dem Lichtleiter 10 einem Fotosensor 13, beispielsweise Fotodioden oder Fotomultiplier, zugeführt.A further simplification of the measuring device 2 is shown in FIG. 3. The probe 9 has a single light guide, which can be a monophilic fiber 10, for example. Via a beam splitter 11, light is guided on the one hand from a light source 12 into the light guide 10, and on the other hand measurement light from the light guide 10 is fed to a photo sensor 13, for example photo diodes or photo multipliers.

Zur Abgrenzung des Meßbereiches kann an der Mündung der Sonde 9 in den Kühlwasserkanal 1 eine Front linse 14 angebracht sein, wie in Fig. 4 angedeutet ist.To delimit the measuring range, a front lens 14 can be attached to the mouth of the probe 9 in the cooling water channel 1, as indicated in Fig. 4.

Anstelle einer monophilen Faser 10 und eines Strahl-teilers 11 ist auch die Verwendung eines zweiarmigen Lichtleiters denkbar.Instead of a monophilic fiber 10 and a beam splitter 11, the use of a two-armed light guide is also conceivable.

In einem praktischen Ausführungsbeispiel können - wie in Fig.. 6 ersichtlich ist - beispielsweise vier Fasern in einem 4-Kanalsensor vorgesehen sein, wobei die Signalauswertung zur Bestimmung der Zeitverzögerung über eine Kreuzkorrelation erfolgt. 4In a practical exemplary embodiment, as can be seen in FIG. 6, four fibers can be provided in a 4-channel sensor, for example, the signal evaluation for determining the time delay taking place via a cross correlation. 4th

Claims (8)

AT 001 157 Ul SCHUTZANSPRÜCHE 1. Verfahren zur optischen Messung von Gasblasen in der Kühlflüssigkeit einer Brennkraftmaschine, wobei über zumindest einen Emitter Licht in die Kühlflüssigkeit gestrahlt und der auf Grund der Gasblasen auftretende Streulichtanteil bzw. die Intensitätsänderung einer in die Kühlflüssigkeit emittierten Lichtstrahlung durch einen Sensor gemessen wird, dadurch gekennzeichnet, daß der Streulichtanteil bzw. die Intensitätsänderung in zumindest zwei räumlich benachbarten Bereichen gemessen wird und daß die Blasengeschwindigkeit aus der Wegzeit-differenz der Meßsignale ermittelt wird.AT 001 157 Ul PROTECTION CLAIMS 1. Method for the optical measurement of gas bubbles in the coolant of an internal combustion engine, wherein light is radiated into the coolant via at least one emitter and the scattered light component occurring due to the gas bubbles or the change in intensity of light radiation emitted into the coolant by a sensor is measured, characterized in that the scattered light component or the change in intensity is measured in at least two spatially adjacent areas and that the bubble velocity is determined from the path-time difference of the measurement signals. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Streulichtanteil einer Hintergrundstrahlung im Infrarotbereich gemessen wird.2. The method according to claim 1, characterized in that the scattered light component of a background radiation is measured in the infrared range. 3. Einrichtung zur optischen Messung von Gasblasen in der Kühlflüssigkeit einer Brennkraftmaschine mit zumindest einem Emitter und zumindest einem mit einer Auswerteeinheit verbundenen optischen Sensor, zur Verwendung des Verfahrens nach Anspruch 1 oder 2, dadurch gekennzeichnet, zumindest zwei Lichtleiter (7, 7'; 10, 10') zur Messung der Streulichtsignale räumlich distanziert über zumindest eine Sonde (9te*, 9b' ; 9) in den Kühlwasserka nal (1) einmünden.3. Device for the optical measurement of gas bubbles in the cooling liquid of an internal combustion engine with at least one emitter and at least one optical sensor connected to an evaluation unit, for using the method according to claim 1 or 2, characterized in that at least two light guides (7, 7 '; 10 , 10 ') for measuring the scattered light signals spatially distant via at least one probe (9te *, 9b'; 9) open into the cooling water channel (1). 4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die zumindest zwei Lichtleiter (10, 10') zur Messung der Streulicht- bzw. Intensitätsänderungssignale in einer einzigen Sonde (9) angeordnet sind.4. Device according to claim 3, characterized in that the at least two light guides (10, 10 ') for measuring the scattered light or intensity change signals are arranged in a single probe (9). 5. Einrichtung nach einem der Anspruch 3 oder 4 dadurch gekennzeichnet, daß die Lichtemission über zumindest eine in den Kühlwasserkanal (1) eingeführte Sonde (9a; 9) erfolgt.5. Device according to one of claims 3 or 4, characterized in that the light emission takes place via at least one probe (9a; 9) inserted into the cooling water channel (1). 6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß Lichtemission und Messung über einen monophilen Lichtleiter (10) erfolgt, wobei im Lichtleiter (10) ein Strahlteiler (11) angeordnet ist. 5 AT 001 157 Ul6. Device according to claim 5, characterized in that light emission and measurement takes place via a monophilic light guide (10), a beam splitter (11) being arranged in the light guide (10). 5 AT 001 157 ul 7. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß Lichtemission und Messung über einen zweiarmigen Lichtleiter erfolgen.7. Device according to claim 5, characterized in that light emission and measurement take place via a two-armed light guide. 8. Einrichtung nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, daß der Lichtemitter ein vorzugsweise durch die Wand des Kühlflüssigkeitskanales gebildeter Infrarotstrahler ist. 68. Device according to one of claims 3 or 4, characterized in that the light emitter is an infrared radiator preferably formed by the wall of the coolant channel. 6
AT0068495U 1995-12-15 1995-12-15 METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT AT1157U1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT0068495U AT1157U1 (en) 1995-12-15 1995-12-15 METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT
DE19651485A DE19651485C2 (en) 1995-12-15 1996-12-11 Method for the optical measurement of gas bubbles in the cooling liquid of an internal combustion engine and a device for carrying out the method
US08/764,128 US5864392A (en) 1995-12-15 1996-12-12 Method for optically detecting gas bubbles moving in a coolant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0068495U AT1157U1 (en) 1995-12-15 1995-12-15 METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT

Publications (1)

Publication Number Publication Date
AT1157U1 true AT1157U1 (en) 1996-11-25

Family

ID=3497092

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0068495U AT1157U1 (en) 1995-12-15 1995-12-15 METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT

Country Status (3)

Country Link
US (1) US5864392A (en)
AT (1) AT1157U1 (en)
DE (1) DE19651485C2 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8176296B2 (en) 2000-10-26 2012-05-08 Cypress Semiconductor Corporation Programmable microcontroller architecture
US6724220B1 (en) 2000-10-26 2004-04-20 Cyress Semiconductor Corporation Programmable microcontroller architecture (mixed analog/digital)
US8160864B1 (en) 2000-10-26 2012-04-17 Cypress Semiconductor Corporation In-circuit emulator and pod synchronized boot
US8149048B1 (en) 2000-10-26 2012-04-03 Cypress Semiconductor Corporation Apparatus and method for programmable power management in a programmable analog circuit block
US8103496B1 (en) 2000-10-26 2012-01-24 Cypress Semicondutor Corporation Breakpoint control in an in-circuit emulation system
US7765095B1 (en) 2000-10-26 2010-07-27 Cypress Semiconductor Corporation Conditional branching in an in-circuit emulation system
US7406674B1 (en) 2001-10-24 2008-07-29 Cypress Semiconductor Corporation Method and apparatus for generating microcontroller configuration information
US8078970B1 (en) 2001-11-09 2011-12-13 Cypress Semiconductor Corporation Graphical user interface with user-selectable list-box
US8042093B1 (en) 2001-11-15 2011-10-18 Cypress Semiconductor Corporation System providing automatic source code generation for personalization and parameterization of user modules
US6971004B1 (en) 2001-11-19 2005-11-29 Cypress Semiconductor Corp. System and method of dynamically reconfiguring a programmable integrated circuit
US7774190B1 (en) 2001-11-19 2010-08-10 Cypress Semiconductor Corporation Sleep and stall in an in-circuit emulation system
US7844437B1 (en) 2001-11-19 2010-11-30 Cypress Semiconductor Corporation System and method for performing next placements and pruning of disallowed placements for programming an integrated circuit
US8069405B1 (en) 2001-11-19 2011-11-29 Cypress Semiconductor Corporation User interface for efficiently browsing an electronic document using data-driven tabs
US7770113B1 (en) 2001-11-19 2010-08-03 Cypress Semiconductor Corporation System and method for dynamically generating a configuration datasheet
US8103497B1 (en) 2002-03-28 2012-01-24 Cypress Semiconductor Corporation External interface for event architecture
US7308608B1 (en) 2002-05-01 2007-12-11 Cypress Semiconductor Corporation Reconfigurable testing system and method
US7761845B1 (en) 2002-09-09 2010-07-20 Cypress Semiconductor Corporation Method for parameterizing a user module
EP1599506B1 (en) * 2003-03-05 2008-04-30 Basell Poliolefine Italia S.r.l. Control method in a polymerization process
US7295049B1 (en) 2004-03-25 2007-11-13 Cypress Semiconductor Corporation Method and circuit for rapid alignment of signals
US8286125B2 (en) 2004-08-13 2012-10-09 Cypress Semiconductor Corporation Model for a hardware device-independent method of defining embedded firmware for programmable systems
US8069436B2 (en) 2004-08-13 2011-11-29 Cypress Semiconductor Corporation Providing hardware independence to automate code generation of processing device firmware
US7332976B1 (en) 2005-02-04 2008-02-19 Cypress Semiconductor Corporation Poly-phase frequency synthesis oscillator
US7400183B1 (en) 2005-05-05 2008-07-15 Cypress Semiconductor Corporation Voltage controlled oscillator delay cell and method
GB2426579B (en) * 2005-05-28 2008-01-16 Schlumberger Holdings Devices and methods for quantification of liquids in gas-condensate wells
US8089461B2 (en) * 2005-06-23 2012-01-03 Cypress Semiconductor Corporation Touch wake for electronic devices
US7307485B1 (en) 2005-11-14 2007-12-11 Cypress Semiconductor Corporation Capacitance sensor using relaxation oscillators
US8085067B1 (en) 2005-12-21 2011-12-27 Cypress Semiconductor Corporation Differential-to-single ended signal converter circuit and method
US7312616B2 (en) 2006-01-20 2007-12-25 Cypress Semiconductor Corporation Successive approximate capacitance measurement circuit
US20070176903A1 (en) * 2006-01-31 2007-08-02 Dahlin Jeffrey J Capacitive touch sensor button activation
US8067948B2 (en) 2006-03-27 2011-11-29 Cypress Semiconductor Corporation Input/output multiplexer bus
US8144125B2 (en) 2006-03-30 2012-03-27 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US7721609B2 (en) 2006-03-31 2010-05-25 Cypress Semiconductor Corporation Method and apparatus for sensing the force with which a button is pressed
US8040142B1 (en) 2006-03-31 2011-10-18 Cypress Semiconductor Corporation Touch detection techniques for capacitive touch sense systems
US8089472B2 (en) 2006-05-26 2012-01-03 Cypress Semiconductor Corporation Bidirectional slider with delete function
US8537121B2 (en) * 2006-05-26 2013-09-17 Cypress Semiconductor Corporation Multi-function slider in touchpad
US8040321B2 (en) 2006-07-10 2011-10-18 Cypress Semiconductor Corporation Touch-sensor with shared capacitive sensors
US7253643B1 (en) 2006-07-19 2007-08-07 Cypress Semiconductor Corporation Uninterrupted radial capacitive sense interface
US9507465B2 (en) * 2006-07-25 2016-11-29 Cypress Semiconductor Corporation Technique for increasing the sensitivity of capacitive sensor arrays
US9766738B1 (en) 2006-08-23 2017-09-19 Cypress Semiconductor Corporation Position and usage based prioritization for capacitance sense interface
US8547114B2 (en) 2006-11-14 2013-10-01 Cypress Semiconductor Corporation Capacitance to code converter with sigma-delta modulator
US8089288B1 (en) 2006-11-16 2012-01-03 Cypress Semiconductor Corporation Charge accumulation capacitance sensor with linear transfer characteristic
US8058937B2 (en) 2007-01-30 2011-11-15 Cypress Semiconductor Corporation Setting a discharge rate and a charge rate of a relaxation oscillator circuit
US9564902B2 (en) 2007-04-17 2017-02-07 Cypress Semiconductor Corporation Dynamically configurable and re-configurable data path
US7737724B2 (en) 2007-04-17 2010-06-15 Cypress Semiconductor Corporation Universal digital block interconnection and channel routing
US8040266B2 (en) 2007-04-17 2011-10-18 Cypress Semiconductor Corporation Programmable sigma-delta analog-to-digital converter
US8516025B2 (en) 2007-04-17 2013-08-20 Cypress Semiconductor Corporation Clock driven dynamic datapath chaining
US8130025B2 (en) 2007-04-17 2012-03-06 Cypress Semiconductor Corporation Numerical band gap
US8092083B2 (en) 2007-04-17 2012-01-10 Cypress Semiconductor Corporation Temperature sensor with digital bandgap
US8026739B2 (en) 2007-04-17 2011-09-27 Cypress Semiconductor Corporation System level interconnect with programmable switching
US8065653B1 (en) 2007-04-25 2011-11-22 Cypress Semiconductor Corporation Configuration of programmable IC design elements
US8266575B1 (en) 2007-04-25 2012-09-11 Cypress Semiconductor Corporation Systems and methods for dynamically reconfiguring a programmable system on a chip
US9720805B1 (en) 2007-04-25 2017-08-01 Cypress Semiconductor Corporation System and method for controlling a target device
US8144126B2 (en) 2007-05-07 2012-03-27 Cypress Semiconductor Corporation Reducing sleep current in a capacitance sensing system
US9500686B1 (en) 2007-06-29 2016-11-22 Cypress Semiconductor Corporation Capacitance measurement system and methods
WO2009006556A1 (en) 2007-07-03 2009-01-08 Cypress Semiconductor Corporation Normalizing capacitive sensor array signals
US8169238B1 (en) 2007-07-03 2012-05-01 Cypress Semiconductor Corporation Capacitance to frequency converter
US8089289B1 (en) 2007-07-03 2012-01-03 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8570053B1 (en) 2007-07-03 2013-10-29 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8049569B1 (en) 2007-09-05 2011-11-01 Cypress Semiconductor Corporation Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes
DE102007043199A1 (en) * 2007-09-11 2009-03-12 Gühring Ohg Test device for a minimum quantity lubrication system and method for testing a minimum quantity lubrication system
US8525798B2 (en) 2008-01-28 2013-09-03 Cypress Semiconductor Corporation Touch sensing
US8487912B1 (en) 2008-02-01 2013-07-16 Cypress Semiconductor Corporation Capacitive sense touch device with hysteresis threshold
US8358142B2 (en) 2008-02-27 2013-01-22 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US8319505B1 (en) 2008-10-24 2012-11-27 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US9104273B1 (en) 2008-02-29 2015-08-11 Cypress Semiconductor Corporation Multi-touch sensing method
US8321174B1 (en) 2008-09-26 2012-11-27 Cypress Semiconductor Corporation System and method to measure capacitance of capacitive sensor array
US8487639B1 (en) 2008-11-21 2013-07-16 Cypress Semiconductor Corporation Receive demodulator for capacitive sensing
US8866500B2 (en) 2009-03-26 2014-10-21 Cypress Semiconductor Corporation Multi-functional capacitance sensing circuit with a current conveyor
US9448964B2 (en) 2009-05-04 2016-09-20 Cypress Semiconductor Corporation Autonomous control in a programmable system
US8723827B2 (en) 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
US9268441B2 (en) 2011-04-05 2016-02-23 Parade Technologies, Ltd. Active integrator for a capacitive sense array
DE102013113904A1 (en) * 2013-12-12 2015-06-18 Pfeiffer Vacuum Gmbh pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2011733A1 (en) * 1969-03-13 1970-10-15
GB1373813A (en) * 1971-04-23 1974-11-13 Lucas Industries Ltd Apparatus for detecting the presence of a bubble in a flowing liquid
US5033858A (en) * 1990-02-26 1991-07-23 Westinghouse Electric Corp. Detection of contaminants in a liquid stream
GB2248927A (en) * 1990-10-17 1992-04-22 Danby Medical Ltd Device for detecting air in fluid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867033A (en) * 1973-06-04 1975-02-18 Us Air Force Multi-component flow probe
SE431030C (en) * 1982-06-11 1986-10-20 Gedevelop Ab SET AND DEVICE FOR DETERMINING THE FLOW SPEED OF A MOLD GLASS BASE
AU565787B2 (en) * 1981-03-31 1987-10-01 Commonwealth Scientific And Industrial Research Organisation Optical fibre probes
US4856895A (en) * 1984-01-24 1989-08-15 Beloit Corporation Method and apparatus for headbox jet velocity measurement
DE3579124D1 (en) * 1984-12-04 1990-09-13 Dow Chemical Co FIBER OPTICAL PROBE AND METHOD FOR DETERMINING THE SIZE AND / OR CONCENTRATION OF SUBSTANCES IN A SUSPENSION.
US4659218A (en) * 1985-05-23 1987-04-21 Canadian Patents & Development Corporation Multi-probe system for measuring bubble characteristics gas hold-up, liquid hold-up and solid hold-up in a three-phase fluidized bed
US4662749A (en) * 1985-11-08 1987-05-05 Massachusetts Institute Of Technology Fiber optic probe and system for particle size and velocity measurement
US4859864A (en) * 1987-05-07 1989-08-22 Becton, Dickinson And Company Sensor and method for detecting the presence of air bubbles in liquid
US4978863A (en) * 1988-09-06 1990-12-18 The Dow Chemical Company Method and apparatus for fiber optic backscattered light measurement to determine flow rates of multi-phase streams
FR2667689B1 (en) * 1990-10-04 1994-08-05 Saint Gobain Isover MEASUREMENT OF THE FLOW OF A FILLET OF MOLTEN MATERIAL.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2011733A1 (en) * 1969-03-13 1970-10-15
GB1373813A (en) * 1971-04-23 1974-11-13 Lucas Industries Ltd Apparatus for detecting the presence of a bubble in a flowing liquid
US5033858A (en) * 1990-02-26 1991-07-23 Westinghouse Electric Corp. Detection of contaminants in a liquid stream
GB2248927A (en) * 1990-10-17 1992-04-22 Danby Medical Ltd Device for detecting air in fluid

Also Published As

Publication number Publication date
DE19651485C2 (en) 2001-05-31
DE19651485A1 (en) 1997-06-19
US5864392A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
AT1157U1 (en) METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT
US4352558A (en) Apparatus for measuring particle characteristics
DE68904489T2 (en) DEVICE FOR THE OPTICAL CONTROL OF THE INTERNAL PROFILE OF A TUBE OR A HOLE.
EP0793090B1 (en) Measuring system with probe carrier transparent for excitation and measurement beam
EP0593413B1 (en) Optoelectronic measuring arrangement
DE2818674C3 (en) Device for measuring properties of optical fibers
DE3340479C2 (en) Method of measuring the flow rate of water flowing in a water tank
EP0470982B1 (en) Reflection fluorimeter
DE10222797C5 (en) distance determination
EP0466851A1 (en) Device for determining the composition of fluids, in particular the constituents of exhaust gases of internal combustion engines
AT1103U1 (en) OPTOELECTRICAL MEASURING DEVICE FOR DETECTING COMBUSTION IN THE COMBUSTION CHAMBER
DE102006021487B3 (en) Particle amount determination method for use in particle stream, involves using evaluation unit that provides pulses for control signals used in regulating flow rate and particle size of particles stream by reducing radiation intensity
DE4228388A1 (en) Device for determining particle sizes and / or particle size distributions
DE69629139T2 (en) Color measuring device for a display screen
DE102010049673A1 (en) Device i.e. camera-Doppler-Sensor, for three-dimensional determination of velocity of light-scattering particles in fluid flow, has detection unit whose individual elements determine lateral positions of particles from images of particles
EP1039289A2 (en) Process and device to determine speed and size of particles
DE102008019756B4 (en) Method for simultaneously measuring velocity and state parameter fields in a fluid flow
EP0795745B1 (en) Radiation measuring apparatus, in particular for measuring the luminescence
EP0380046A2 (en) Method for testing counters, in particular electricity, water or gas meters, and device for carrying out this method
DE19834583C1 (en) Method of optical measurement of distance coordinate of moving particle in transparent medium
DE10118323A1 (en) Device for checking the fluid level of fluid contained in transparent containers that move past the sensing device, which has a light beam that is diffracted by passage through a fluid
DE19924259A1 (en) Apparatus for determining the liquid level in a container comprises an optical imaging system with a variable light path length or focal length
DE1547332A1 (en) Method and device for measuring and registering the absorption of electromagnetic radiation
DE2829736C2 (en) Calibration device for recording the calibration curve of a photoelectric aerosol analyzer
EP0199312A2 (en) Method and apparatus for determining skin fricton or viscosity of a liquid on a model or other object in contact with the flowing liquid

Legal Events

Date Code Title Description
MM9K Lapse due to non-payment of renewal fee
OSZAR »