CN103489360B - physical heart simulator - Google Patents
physical heart simulator Download PDFInfo
- Publication number
- CN103489360B CN103489360B CN201310228157.5A CN201310228157A CN103489360B CN 103489360 B CN103489360 B CN 103489360B CN 201310228157 A CN201310228157 A CN 201310228157A CN 103489360 B CN103489360 B CN 103489360B
- Authority
- CN
- China
- Prior art keywords
- potential
- physical model
- simulated
- human heart
- heart
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/285—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for injections, endoscopy, bronchoscopy, sigmoidscopy, insertion of contraceptive devices or enemas
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/288—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for artificial respiration or heart massage
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
- G09B23/30—Anatomical models
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Educational Technology (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pulmonology (AREA)
- Radiology & Medical Imaging (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Instructional Devices (AREA)
Abstract
本发明提供一种设备,该设备包括实体模型腔,所述实体模型腔模拟人类受检者的真实体腔,其中限定实体模型腔的壁包括组织等效材料(TEM)。电极阵列嵌入所述壁。该设备还包括可编程信号发生器,该可编程信号发生器连接至电极并被配置成向电极阵列施加变化的电势,以便在所述壁的表面上模拟所述真实体腔中发生的电生理电势。
The present invention provides an apparatus comprising a mock-up cavity simulating a real body cavity of a human subject, wherein the walls defining the mock-up cavity comprise tissue equivalent material (TEM). An array of electrodes is embedded in the wall. The device also includes a programmable signal generator connected to the electrodes and configured to apply varying electrical potentials to the electrode array to simulate electrophysiological potentials occurring in the real body cavity on the surface of the wall .
Description
技术领域technical field
本发明一般涉及侵入式医疗手术,并且具体地涉及对侵入式电生理手术的模拟。The present invention relates generally to invasive medical procedures, and in particular to the simulation of invasive electrophysiological procedures.
背景技术Background technique
通常存在与任何医疗手术相关的学习曲线,并且根据手术的不同,该学习曲线在一些情况下可能相对“陡峭”。即使在学习曲线不陡峭的情况下,通常也需要花费大量的时间来学习和完善手术。如果能够模拟手术,则可缩短所述时间。There is generally a learning curve associated with any medical procedure, and depending on the procedure, this learning curve can be relatively "steep" in some cases. Even where the learning curve is not steep, it often takes a significant amount of time to learn and perfect the procedure. This time can be shortened if the surgery can be simulated.
发明内容Contents of the invention
本发明的实施例提供了一种设备,所述设备包括:An embodiment of the present invention provides a device, the device includes:
实体模型腔,该实体模型腔模拟人类受检者的真实体腔,其中限定所述实体模型腔的壁包括组织等效材料(TEM);a mock-up cavity simulating a real body cavity of a human subject, wherein the walls defining the mock-up cavity comprise tissue equivalent material (TEM);
嵌入所述壁的电极阵列;以及an array of electrodes embedded in the wall; and
可编程信号发生器,该可编程信号发生器连接至电极并被配置成向电极阵列施加变化的电势,以便在所述壁的表面上模拟所述真实体腔中发生的电生理电势。A programmable signal generator connected to the electrodes and configured to apply a varying electrical potential to the electrode array to simulate electrophysiological potentials occurring in the actual body cavity on the surface of the wall.
通常,实体模型腔被包括在实体模型人类心脏中,并且所模拟的电生理电势可复制发生在人类心脏中的窦性电势。Typically, a mock-up cavity is included in a mock-up human heart, and the simulated electrophysiological potentials replicate sinus potentials that occur in a human heart.
作为另外一种选择,所模拟的电生理电势可复制发生在人类心脏中的心律失常电势。Alternatively, the simulated electrophysiological potentials replicate the arrhythmic potentials that occur in the human heart.
在所公开的实施例中,该设备包括心跳发生器,所述心跳发生器被配置成使所述实体模型人类心脏跳动。In a disclosed embodiment, the apparatus includes a heartbeat generator configured to cause the mock-up human heart to beat.
在进一步公开的实施例中,该设备包括系统探针,所述系统探针被配置成插入所述实体模型人类心脏中并测量人类心脏活动的特征。所述系统探针可包括探针电极,该探针电极被配置成感测在所述壁的所述表面上模拟的所述电生理电势。所述系统探针可包括力传感器,该力传感器被配置成感测由所述实体模型人类心脏的表面施加在所述传感器上的力。所述系统探针可包括传感器,该传感器被配置成感测所述实体模型人类心脏表面的温度。In a further disclosed embodiment, the apparatus includes a system probe configured to be inserted into said mock-up human heart and measure a characteristic of human heart activity. The system probe may include a probe electrode configured to sense the electrophysiological potential simulated on the surface of the wall. The system probe may include a force sensor configured to sense a force exerted on the sensor by a surface of the mock-up human heart. The system probe may include a sensor configured to sense a temperature of a surface of the mock-up human heart.
在可供选择的实施例中,实体模型人类心脏位于实体模型人类患者内。所述实体模型人类患者可包括表面电极,该表面电极被配置成感测响应于所模拟的电生理电势的表面电势。通常,所述表面电势模拟人类患者的皮肤上的心电图(ECG)信号。所述可供选择的实施例可包括呼吸发生器,该呼吸发生器被配置成模拟所述实体模型人类患者中的呼吸。In an alternative embodiment, a mock-up human heart is located within a mock-up human patient. The mock-up human patient may include surface electrodes configured to sense surface potentials responsive to the simulated electrophysiological potentials. Typically, the surface potential mimics an electrocardiogram (ECG) signal on the skin of a human patient. The alternative embodiment may include a breath generator configured to simulate breathing in the mock-up human patient.
根据本发明的实施例,还提供了一种方法,该方法包括:According to an embodiment of the present invention, a method is also provided, the method comprising:
用实体模型腔来模拟人类受检者的真实体腔,其中限定所述实体模型腔的壁包括组织等效材料(TEM);simulating an actual body cavity of a human subject with a mockup cavity, wherein walls defining the mockup cavity comprise tissue equivalent material (TEM);
将电极阵列嵌入所述壁;embedding an array of electrodes into said wall;
将可编程信号发生器连接至电极;以及connecting a programmable signal generator to the electrodes; and
可编程信号发生器被配置成向电极阵列施加变化的电势,以便在所述壁的表面上模拟所述真实体腔中发生的电生理电势。A programmable signal generator is configured to apply varying electrical potentials to the electrode array to simulate electrophysiological potentials occurring in the real body cavity on the surface of the wall.
通过对以下结合附图的实施例的详细说明,将更全面地理解本发明:Through the detailed description of the following embodiments in conjunction with the accompanying drawings, the present invention will be more fully understood:
附图说明Description of drawings
图1为示出的根据本发明实施例的模拟系统的示意图;1 is a schematic diagram of a simulation system shown according to an embodiment of the present invention;
图2为根据本发明实施例的实体模型心脏和联接到实体模型心脏的元件的示意性剖面图;2 is a schematic cross-sectional view of a mock-up heart and elements coupled to the mock-up heart according to an embodiment of the present invention;
图3为根据本发明实施例的模拟侵入式医疗手术期间所执行的步骤的流程图;以及3 is a flowchart of steps performed during a simulated invasive medical procedure according to an embodiment of the invention; and
图4为根据本发明备选实施例的模拟侵入式医疗手术期间所执行的步骤的流程图。4 is a flowchart of steps performed during a simulated invasive medical procedure according to an alternative embodiment of the present invention.
具体实施方式detailed description
综述review
本发明的实施例提供了允许操作员(通常是医疗专业人员)使用实体模型腔来模拟对人类受检者的体腔所执行的侵入式医疗手术的设备和方法。实体模型腔具有由组织等效材料(TEM)形成的壁并且所述实体模型腔通常是将执行模拟手术的人类心脏或其它内脏器官的实体模型的一部分。Embodiments of the present invention provide apparatus and methods that allow an operator, typically a medical professional, to use a mock-up cavity to simulate invasive medical procedures performed on a body cavity of a human subject. A mock-up cavity has walls formed from a tissue equivalent material (TEM) and is typically part of a mock-up of a human heart or other internal organ in which a simulated procedure will be performed.
电极阵列嵌入所述实体模型腔的壁,并且可编程信号发生器连接至电极。发生器被配置成向电极施加变化的电势,以便在所述壁的表面上模拟所述真实体腔中发生的电生理(EP)电势。An array of electrodes is embedded in the walls of the cavity of the mockup, and a programmable signal generator is connected to the electrodes. The generator is configured to apply a varying electrical potential to the electrodes to simulate electrophysiological (EP) potentials occurring in the real body cavity on the surface of the wall.
就实体模型心脏而言,EP电势可被配置成复制心脏跳动的正常窦性状况(窦性时空模式)。作为另外一种选择,EP电势可被配置成复制来自多个心律失常时空模式中的其中一个模式的电势。通常,被发生器用来产生不同电势的数据存储在设备的存储器中,并且一旦操作员已选定待模拟的状况,诸如正常窦性状况,就向发生器提供该数据。In the case of a mock-up heart, the EP potentials can be configured to replicate the normal sinus conditions (sinus spatiotemporal patterns) of heart beating. Alternatively, the EP potentials may be configured to replicate potentials from one of a plurality of spatiotemporal patterns of arrhythmia. Typically, the data used by the generator to generate the different potentials is stored in the device's memory and is provided to the generator once the operator has selected a condition to be simulated, such as a normal sinus condition.
实体模型腔通常安装在实体模型患者中,并且操作员插入EP系统探针,使其穿过实体模型患者进入实体模型腔中,所述EP系统探针包括位于其远端处的元件诸如感测电极和位置传感器。当感测电极与腔的壁接触时,感测电极对壁上所产生的电势进行检测,并向设备的处理单元提供电势和位置信号。处理单元通常可被包括在导管跟踪系统中,诸如由BiosenseWebster Inc.(Diamond Bar,CA)提供的CARTO系统中。通常,操作员移动感测电极以使其与壁上的多个不同位置接触,从而记录在每个位置处的电势。处理单元可使用所记录的电势来准备腔的模拟电生理图。The mock-up cavity is typically installed in the mock-up patient, and the operator inserts the EP system probe, which includes elements such as sensing devices at its distal end, through the mock-up patient and into the mock-up cavity. electrodes and position sensors. When the sensing electrodes are in contact with the walls of the cavity, the sensing electrodes detect the electrical potential generated on the walls and provide electrical potential and position signals to the processing unit of the device. The processing unit may typically be included in a catheter tracking system, such as the CARTO system offered by Biosense Webster Inc. (Diamond Bar, CA). Typically, the operator moves the sensing electrode into contact with a number of different locations on the wall, recording the electrical potential at each location. The processing unit may use the recorded potentials to prepare a simulated electrophysiological map of the cavity.
在一些实施例中,通常是实体模型患者中包括实体模型心脏的实施例中,心跳发生器和/或呼吸发生器可被配置成使实体模型心脏跳动并且/或者使实体模型患者呼吸。In some embodiments, typically those in which a mockup patient includes a mockup heart, the heartbeat generator and/or the breath generator may be configured to beat the mockup heart and/or cause the mockup patient to breathe.
具体实施方式detailed description
现在参见图1,该图为示出的根据本发明实施例的模拟系统20的示意图。系统20允许系统操作人员22,通常为医疗专业人员诸如医师,执行侵入式医疗手术的模拟。在真实医疗手术中,操作员将导管探针插入患者的腔内,通常是器官诸如心脏的腔内,并通过操纵位于探针近端处的控制器来引导探针的远端。Referring now to FIG. 1 , there is shown a schematic diagram of a simulation system 20 according to an embodiment of the present invention. System 20 allows a system operator 22, typically a medical professional such as a physician, to perform a simulation of an invasive medical procedure. In a real medical procedure, an operator inserts a catheter stylet into a lumen of a patient, usually an organ such as the heart, and guides the distal end of the stylet by manipulating a controller located at the stylet's proximal end.
在模拟系统20中,电生理(EP)系统探针24被插入实体模型患者26中,该实体模型患者26代替真实手术的真实患者。EP系统探针24在构造和操作上基本上类似于真实手术中所使用的探针,该真实手术中所使用的探针在本文中被称为手术探针。然而,与手术探针不同,EP系统探针24不需要像手术探针一样满足严格的安全标准,并且通常是可重复使用的。因此,EP系统探针24通常包括与手术探针相同的功能性元件中的至少一些,诸如功性能远端跟踪元件和位于远端处的功能性电势测量的电极。In the simulation system 20, an electrophysiological (EP) system probe 24 is inserted into a mock-up patient 26, which takes the place of a real patient in an actual procedure. The EP system probe 24 is substantially similar in construction and operation to probes used in real surgery, referred to herein as surgical probes. However, unlike surgical probes, EP system probes 24 are not required to meet the same stringent safety standards as surgical probes, and are generally reusable. Thus, the EP system probe 24 typically includes at least some of the same functional elements as a surgical probe, such as functional distal tracking elements and functional potentiometric electrodes located at the distal end.
在可供选择的实施例中,EP系统探针24可被配置成具有可能存在于手术探针中的其它功能性元件,诸如功能性力传感器55和功能性温度传感器58。在进一步可供选择的实施例中,系统20可被配置成模拟存在于手术探针中的元件的效果。这种元件可包括但不限于消融电极,即,被配置成传送射频能量的电极。通常使用在下文更详细描述的相应的软件组件来实施这些元件所需的模拟。In alternative embodiments, the EP system probe 24 may be configured with other functional elements that may be present in a surgical probe, such as a functional force sensor 55 and a functional temperature sensor 58 . In a further alternative embodiment, system 20 may be configured to simulate the effects of elements present in a surgical probe. Such elements may include, but are not limited to, ablation electrodes, ie, electrodes configured to deliver radio frequency energy. The simulation required for these elements is typically implemented using corresponding software components described in more detail below.
本文以举例的方式假定实体模型患者26具有箱形形状。然而,实体模型患者可具有任何方便的形状,包括更类似于人的形状。在操作员22必须执行真实手术之前,系统20通常被用于对手术探针的运用方面进行教导。作为另外一种选择或除此之外,系统20可被操作员用于检查真实手术的结果,以及用于研究和开发目的。It is assumed herein by way of example that the mockup patient 26 has a box shape. However, the mockup patient may have any convenient shape, including a more human-like shape. The system 20 is typically used to teach the use of surgical probes before the operator 22 has to perform the actual surgery. Alternatively or in addition, the system 20 may be used by an operator to review the results of real surgery, as well as for research and development purposes.
在下文所描述的实施例中,假定系统探针24用于模拟将手术探针插入真实患者的心脏的一个或多个腔中。在真实的手术中,由手术探针感测信号。系统20模拟由于真实心脏的电生理动作而发生在真实腔壁上的信号,并且由系统探针来感测这些模拟信号。作为另外一种选择,系统20可以必要的变更用于模拟心脏中或其它身体器官中其它的治疗和/或诊断过程。In the embodiments described below, it is assumed that the system probe 24 is used to simulate insertion of a surgical probe into one or more chambers of a real patient's heart. In a real surgery, the signal is sensed by a surgical probe. System 20 simulates the signals that would occur on real chamber walls due to the electrophysiological action of a real heart, and these simulated signals are sensed by the system probes. Alternatively, system 20 may be used mutatis mutandis to simulate other therapeutic and/or diagnostic procedures in the heart or in other body organs.
在真实手术期间,操作员22通常使用不止一种手术探针,这些不同手术探针中的每一种都具有不同的结构,诸如特有的形状或者不同数量或类型的电极。在本文所描述的模拟中,操作员还可使用多于一种的系统探针24。为清楚起见,必要时以及使用不止一种系统探针时,可通过在标识符24后加上字母来区分不同的系统探针,使得在对使用两种系统探针的手术进行模拟时,操作员可使用系统探针24A和系统探针24B。During real surgery, operator 22 typically uses more than one surgical probe, each of these different surgical probes having a different configuration, such as a unique shape or a different number or type of electrodes. The operator may also use more than one type of system probe 24 in the simulations described herein. For clarity, when necessary and when more than one system probe is used, the different system probes can be distinguished by adding a letter after the identifier 24, so that when simulating a procedure using two system probes, the operating The staff can use system probe 24A and system probe 24B.
在一些实施例中,通过使用一个系统探针24,即,物理系统探针,以及一个或多个模拟或虚拟探针来对涉及不止一种手术探针的手术进行模拟。与物理系统探针不同,模拟探针不具有被插入实体模型患者26中的物理组件。下文描述了使用两个物理系统探针24A、24B,或者一个物理系统探针24和一个模拟探针的例子。In some embodiments, a procedure involving more than one surgical probe is simulated by using one system probe 24, ie, the physical system probe, and one or more simulated or virtual probes. Unlike the physical system probe, the mock probe has no physical components that are inserted into the mock-up patient 26 . Examples of using two physical system probes 24A, 24B, or one physical system probe 24 and one simulation probe are described below.
系统20的运行受系统控制器28控制,该系统控制器28包括处理单元30,该处理单元30与用来存储系统20运行所需软件的存储器32通信。控制器28通常为包括通用计算机处理器的工业标准个人计算机。然而,在一些实施例中,可使用专门设计的硬件和软件,诸如专用集成电路(ASIC)和/或现场可编程门阵列(FPGA))来执行控制器以及包括在控制器中的模块(下文所描述的)的至少一些功能。系统控制器28和系统20的元件之间的通信,其包括控制器和元件之间的信号,可通过物理缆线诸如导电缆线或光缆和/或通过无线方式实现。为清楚起见,系统20的与通信相关的物理元件未在图1中示出。The operation of the system 20 is controlled by a system controller 28 which includes a processing unit 30 in communication with a memory 32 for storing software required for the system 20 to operate. Controller 28 is typically an industry standard personal computer including a general purpose computer processor. However, in some embodiments, the controller, and the modules included in the controller (hereinafter described) at least some of the features. Communication between the system controller 28 and the elements of the system 20, including signals between the controller and the elements, may be accomplished through physical cables such as conductive or fiber optic cables and/or by wireless means. For clarity, the communication-related physical elements of system 20 are not shown in FIG. 1 .
可将存储器32中的软件通过例如网络以电子形式下载到控制器。作为另外一种选择或除此之外,软件可通过非临时性有形介质诸如光学、磁性或电子存储介质提供。The software in memory 32 may be downloaded electronically to the controller, eg over a network. Alternatively or in addition, the software may be provided on non-transitory tangible media such as optical, magnetic or electronic storage media.
控制器28包括操作系统20的多个模块。每个模块都可通过硬件、存储在存储器32中的软件、或者硬件与软件的组合来实施,如上所述控制器28中的模块为:Controller 28 includes various modules of operating system 20 . Each module can be implemented by hardware, software stored in the memory 32, or a combination of hardware and software, as described above, the modules in the controller 28 are:
●可编程信号发生器31,该可编程信号发生器31向实体模型心脏48中的电极33的阵列提供信号。下文参照图2对信号发生器31、电极33和实体模型心脏48连同与系统20相关的其它元件进行更详细地描述。• A programmable signal generator 31 that provides signals to the array of electrodes 33 in the mock-up heart 48 . Signal generator 31 , electrodes 33 and mockup heart 48 , along with other elements associated with system 20 , are described in more detail below with reference to FIG. 2 .
●心跳发生器37,该心跳发生器37产生信号或通过机械联接件(诸如液压或机械连接)为实体模型患者中的机械振动器56提供物理输出,从而使实体模型心脏48跳动。• A heartbeat generator 37 that generates a signal or provides a physical output to a mechanical vibrator 56 in the mockup patient through a mechanical linkage such as a hydraulic or mechanical connection, thereby causing the mockup heart 48 to beat.
●呼吸发生器39,该呼吸发生器39产生信号或通过机械联接件提供物理输出,从而使实体模型患者中的实体模型肺41呼吸。• A breath generator 39 that generates a signal or provides a physical output through a mechanical linkage to cause the mock-up lungs 41 in the mock-up patient to breathe.
●力模块57,该力模块57联接到力传感器55,以确定由传感器所测量的力值。• A force module 57 coupled to the force sensor 55 to determine the force value measured by the sensor.
●温度模块59,处理单元30使用该温度模块59来估计模拟期间的温度。估计出的温度与手术探针中温度传感器将感测到的那些温度对应。• A temperature module 59, which is used by the processing unit 30 to estimate the temperature during the simulation. The estimated temperatures correspond to those temperatures that would be sensed by the temperature sensors in the surgical probe.
系统20还包括电生理(EP)控制系统29,该电生理(EP)控制系统29用于从系统探针24和实体模型患者26接收信号,并提供可在系统20中实施的其它功能。可通过由BiosenseWebster Inc.(Diamond Bar,CA)提供的CARTO系统来实施和操作EP系统29,所述由Biosense Webster Inc.(Diamond Bar,CA)提供的CARTO系统如果需要的话可进行修改。作为另外一种选择,可通过系统控制器28来操作EP控制系统29。为简明起见,在本文的描述中假定EP系统29由系统控制器28操作。System 20 also includes an electrophysiological (EP) control system 29 for receiving signals from system probes 24 and mockup patient 26 and providing other functions that may be implemented in system 20 . The EP system 29 can be implemented and operated by the CARTO system offered by Biosense Webster Inc. (Diamond Bar, CA), which can be modified if necessary. Alternatively, the EP control system 29 may be operated by the system controller 28 . For simplicity, it is assumed in the description herein that EP system 29 is operated by system controller 28 .
EP控制系统29包括多个模块,所述多个模块可由硬件、软件、或硬件和软件的组合来实施。系统29中的模块为:The EP control system 29 includes a number of modules that may be implemented by hardware, software, or a combination of hardware and software. The modules in System 29 are:
●心内心电图(ECG)信号接收器43,该心内心电图(ECG)信号接收器43从位于系统探针24的远端38处的一个或多个电极45接收信号。• An intracardiac electrogram (ECG) signal receiver 43 that receives signals from one or more electrodes 45 located at the distal end 38 of the system probe 24 .
●体表ECG信号接收器49,该体表ECG信号接收器49从实体模型患者26表面上的一个或多个“皮肤”电极51接收信号。如下文更详细地描述,电极51上的信号来源于通过实体模型患者26的实体模型躯干54传输的电流,该电流响应于电极33上的电势产生。实体模型躯干54由TEM构成,并被实施以具有与真实人类躯干类似的电性能。• A body surface ECG signal receiver 49 that receives signals from one or more "skin" electrodes 51 on the surface of the mockup patient 26 . As described in more detail below, the signal on electrode 51 is derived from an electrical current transmitted through mockup torso 54 of mockup patient 26 , which is generated in response to an electrical potential on electrode 33 . The mock-up torso 54 is constructed of TEM and implemented to have electrical properties similar to a real human torso.
●消融模块53,该消融模块53允许操作员22将与所模拟的消融相关的模拟参数输入到系统20中,并产生所模拟消融的模拟输出。可由操作员设定的模拟输入参数包括例如射频功率水平和施加射频功率的时间。可由模块产生的模拟输出包括例如已经经受模拟消融的组织的温度。下文结合图4描述了消融模块53的其它功能。• An ablation module 53 that allows the operator 22 to input simulation parameters related to the simulated ablation into the system 20 and to generate a simulated output of the simulated ablation. Analog input parameters that can be set by the operator include, for example, radio frequency power level and time of application of radio frequency power. Analog outputs that may be generated by the module include, for example, the temperature of tissue that has been subjected to simulated ablation. Other functions of the ablation module 53 are described below in conjunction with FIG. 4 .
●远端跟踪模块52C,下文结合系统20的其它元件描述了该远端跟踪模块52C,该远端跟踪模块52C允许操作员22跟踪远端38的位置和取向。• The remote tracking module 52C, described below in connection with other elements of the system 20, allows the operator 22 to track the position and orientation of the distal end 38.
系统控制器28操控图形用户界面(GUI)34,该图形用户界面34在显示器44上将系统生成的结果呈现给操作员22。GUI34还能够使操作员在设置模拟场景时对各种选项进行选择。通常,操作员使用指向装置36,诸如触摸板或鼠标来与控制器28和GUI34交互。System controller 28 operates a graphical user interface (GUI) 34 that presents system-generated results to operator 22 on display 44 . The GUI 34 also enables the operator to select from various options when setting up the simulation scene. Typically, the operator interacts with the controller 28 and GUI 34 using a pointing device 36 , such as a touchpad or mouse.
在实体模型患者26内,操作员22能够通过握住并操控系统探针的近端40来操作系统探针24的远端38。通常,将由诸如玻璃纤维或聚苯乙烯颗粒之类的材料支撑的弹性管42置于实体模型患者26内,以模拟真实患者的静脉或动脉。管42用作系统探针的支撑件和导向装置,而不会不当地妨碍探针向前或向后运动。通常,操作员使用手柄44握住系统探针,正如其通常在真实医疗手术期间握住手术探针一样。操作员的操控通常还包括其他运动,例如近端的横向和旋转运动,以相应地操纵远端。Within the mockup patient 26, the operator 22 is able to manipulate the distal end 38 of the system probe 24 by grasping and manipulating the proximal end 40 of the system probe. Typically, an elastic tube 42 supported by a material such as fiberglass or polystyrene pellets is placed within mock-up patient 26 to simulate a real patient's veins or arteries. Tube 42 serves as a support and guide for the system probe without unduly obstructing the forward or rearward movement of the probe. Typically, the operator uses the handle 44 to hold the system probe, just as he would normally hold a surgical probe during a real medical procedure. Operator manipulation often also includes other movements, such as lateral and rotational movements of the proximal end to correspondingly manipulate the distal end.
对近端的操控包括经由连接至管42的位于实体模型患者中的孔46将系统探针插入位于实体模型患者的远侧区域中的实体模型心脏48中。(操控还包括经由同一个孔移除系统探针。)Manipulation of the proximal end includes insertion of a system probe into a mock-up heart 48 in the distal region of the mock-up patient via a hole 46 in the mock-up patient connected to tube 42 . (Manipulation also includes removal of the system probe via the same hole.)
为实施该模拟,系统控制器28采用来自对象跟踪系统52的跟踪信号来跟踪远端38的位置。至少在实体模型心脏48内进行跟踪,通常还可在心脏外进行部分跟踪。在真实手术期间,例如通过磁性跟踪系统诸如上文提到的CARTO系统中所实施的来跟踪手术探针的远端。尽管本发明的实施例可以必要的变更使用这种跟踪系统,但是不必通过通常用于侵入式手术的系统来跟踪远端38。本领域的普通技术人员将熟悉用于跟踪远端38的其他系统,诸如超声系统,并假定所有这些系统及其相关跟踪装置均包含在本发明的范围内。To implement the simulation, system controller 28 uses tracking signals from object tracking system 52 to track the location of distal end 38 . Tracking is performed at least within the mock-up heart 48, and often also partially outside the heart. During a real surgery, the distal end of the surgical probe is tracked, for example, by a magnetic tracking system such as implemented in the CARTO system mentioned above. Although embodiments of the present invention may use such a tracking system mutatis mutandis, it is not necessary to track distal end 38 with systems typically used in invasive procedures. Those of ordinary skill in the art will be familiar with other systems for tracking the distal end 38, such as ultrasound systems, and all such systems and their associated tracking devices are assumed to be within the scope of the present invention.
本文以举例的方式,假定相对于一组由实体模型患者26的边缘限定的xyz正交轴对远端38的位置进行跟踪。同样以举例的方式,假定跟踪系统52包括安装在远端38中的线圈52A、与线圈相互作用的磁性传输器52B、以及远端跟踪模块52C,该远端跟踪模块52C对发射器进行操作并从线圈接收信号以确定远端的位置和取向。By way of example herein, it is assumed that the position of distal end 38 is tracked relative to a set of orthogonal xyz axes defined by the edges of mockup patient 26 . Also by way of example, assume that tracking system 52 includes a coil 52A mounted in distal end 38, a magnetic transmitter 52B interacting with the coil, and a remote tracking module 52C that operates the transmitter and Signals are received from the coil to determine the position and orientation of the distal end.
图2为根据本发明实施例的实体模型心脏48和联接到实体模型心脏的元件的示意性剖面图。实体模型心脏48通常包括由心脏组织等效材料(TEM)80构成的普通心脏的全尺寸柔性模型。因此,由TEM80构成的模型例如包括实体模型右心房82、实体模型右心室84、实体模型左心房86、和实体模型左心室88,并且这些实体模型腔具有相应的表面92、94、96、和98。为清楚起见,仅TEM80的一些部分在图2中是阴影的,所述一些部分包括实体模型右心房、实体模型右心室、实体模型左心房、实体模型左心室、和具有表面99的实体模型隔膜97的壁的部分。根据需要,TEM80由电绝缘体81支撑。2 is a schematic cross-sectional view of a mock-up heart 48 and components coupled to the mock-up heart, according to an embodiment of the present invention. Mock-up heart 48 generally comprises a full-scale flexible model of a normal heart constructed of cardiac tissue equivalent material (TEM) 80 . Thus, the model formed by TEM 80 includes, for example, a mockup right atrium 82, a mockup right ventricle 84, a mockup left atrium 86, and a mockup left ventricle 88, and these mockup cavities have corresponding surfaces 92, 94, 96, and 98. For clarity, only some portions of TEM 80 including mock-up right atrium, mock-up right ventricle, mock-up left atrium, mock-up left ventricle, and mock-up diaphragm with surface 99 are shaded in FIG. 97 sections of the wall. TEM 80 is supported by electrical insulator 81 as required.
选择材料80以使其具有与心内膜大致类似的电导率和热特性,但是如下文所描述的,材料80的电功能性是改性的。改性被实施使得从可编程信号发生器31传输的信号形成实体模型心脏表面上的电势,所述电势与出现在真实心脏的相应表面上的电生理(EP)电势对应。为简明起见,本文的描述中将其上形成EP电势的表面称为表面100,并且包括但不限于表面92、94、96、98、和99。本领域普通技术人员将使描述适于除了表面92、94、96、98、和99之外的表面100。Material 80 is selected to have substantially similar electrical conductivity and thermal properties to the endocardium, but the electrical functionality of material 80 is modified as described below. The modification is carried out such that the signal transmitted from the programmable signal generator 31 forms an electrical potential on the surface of the mock-up heart corresponding to the electrophysiological (EP) potential present on the corresponding surface of a real heart. For simplicity, the description herein refers to the surface on which the EP potential is formed as surface 100 , and includes, but is not limited to, surfaces 92 , 94 , 96 , 98 , and 99 . Those of ordinary skill in the art will adapt the description to surface 100 in addition to surfaces 92 , 94 , 96 , 98 , and 99 .
为模拟真实心脏的电生理电势,TEM80的区段具有嵌入材料中的电极33的阵列。通常,电极被嵌入,使得其不从表面100突出,终止于表面下方。然而,在一些实施例中,电极可与表面齐平地终止,并且在一些实施例中,电极可略微从表面突出。电极33穿过绝缘体81并由绝缘体81固定就位,所述绝缘体81使电极彼此绝缘。To simulate the electrophysiological potential of a real heart, sections of TEM 80 have an array of electrodes 33 embedded in the material. Typically, the electrodes are embedded such that they do not protrude from the surface 100, terminating below the surface. However, in some embodiments, the electrodes may terminate flush with the surface, and in some embodiments, the electrodes may protrude slightly from the surface. The electrodes 33 pass through and are held in place by an insulator 81 which insulates the electrodes from each other.
在一些实施例中,一个或多个力传感器83和/或一个或多个温度传感器85嵌入TEM80。控制器28可使用传感器来提供对传感器嵌入区域的力和温度的测量。可由控制器使用这种测量结果来和由位于远端38中的力传感器55和温度传感器58提供的力和温度的测量结果进行比较。In some embodiments, one or more force sensors 83 and/or one or more temperature sensors 85 are embedded in TEM 80 . The controller 28 may use the sensors to provide force and temperature measurements of the sensor embedding area. Such measurements may be used by the controller to compare to force and temperature measurements provided by force sensor 55 and temperature sensor 58 located in distal end 38 .
经由将发生器连接至每个电极的相应电线102,电极33从可编程信号发生器31接收信号,所述信号与将在实体模型腔表面上产生的电势对应。为清楚起见,在图2中,每个电极33都示为在一端处具有实心圆的直线,实心圆对应于连接特定电线102和特定电极33的点。The electrodes 33 receive signals from the programmable signal generator 31 via respective wires 102 connecting the generator to each electrode, corresponding to the potentials to be generated on the cavity surface of the mockup. For clarity, in FIG. 2 each electrode 33 is shown as a straight line with a solid circle at one end, which corresponds to the point at which a particular wire 102 and a particular electrode 33 are connected.
通常,实体模型心脏48的至少一些实体模型腔至少部分地填充有导电液体,诸如常规盐水溶液。导电液体有利于模拟表面100上的EP电势。为尽可能准确地模拟EP电势,可执行初始校正程序,从而改变由发生器31产生的信号,并测量表面100上所产生的电势直到实现所需的EP电势为止。Typically, at least some of the mock-up cavities of mock-up heart 48 are at least partially filled with a conductive liquid, such as conventional saline solution. Conductive liquids are useful for simulating the EP potential on the surface 100 . To simulate the EP potential as accurately as possible, an initial calibration procedure can be performed whereby the signal generated by the generator 31 is varied and the resulting potential on the surface 100 is measured until the desired EP potential is achieved.
在一些实施例中,实施心跳发生器37以使实体模型心脏48跳动。以举例的方式,发生器37将流体104、液体或气体可逆地传送到弹性球囊102,并且发生器使用流体来使球囊充气或放气。球囊的充气和放气对实体模型心脏进行压缩或者允许其膨胀。球囊102连同流体104用作实体模型心脏的机械振动器56。作为另外一种选择,发生器可将流体104可逆地传送到实体模型心脏48的一个或多个腔,从而使实体模型心脏跳动。在这种情况下,腔和流体104包括所述机械振动器。在一些实施例中,流体104包括上文提到的有利于模拟EP电势的导电液体。作为再另外一种选择,发生器37可使用机电、液压、或其它合适的启动系统来使实体模型心脏跳动,以用于产生重复的跳动运动,这对于本领域的技术人员而言将是显而易见的。In some embodiments, heartbeat generator 37 is implemented to cause mock-up heart 48 to beat. By way of example, generator 37 reversibly delivers fluid 104 , liquid or gas, to elastic balloon 102 and the generator uses the fluid to inflate or deflate the balloon. Inflation and deflation of the balloon compresses the mock-up heart or allows it to expand. The balloon 102, along with the fluid 104, serves as the mechanical vibrator 56 of the mock-up heart. Alternatively, the generator may reversibly deliver fluid 104 to one or more chambers of mock-up heart 48, thereby causing the mock-up heart to beat. In this case, the cavity and fluid 104 comprise the mechanical vibrator. In some embodiments, fluid 104 includes the above-mentioned conductive liquids that facilitate modeling EP potentials. Alternatively, the generator 37 may use electromechanical, hydraulic, or other suitable actuation systems to beat the mock-up heart for generating repetitive beating motions, as will be apparent to those skilled in the art of.
在一些实施例中,实施呼吸发生器39以启动实体模型肺41进行呼吸,因此使实体模型心脏48以环状呼吸路径移动。可将实体模型肺41实施成与球囊102大致类似的弹性球囊,并且可如上所述使用流体使球囊放气和充气。作为另外一种选择,发生器39可实施以使用上文提到的系统来使实体模型肺呼吸,以用于产生重复运动。In some embodiments, the breath generator 39 is implemented to activate the mock-up lungs 41 to breathe, thus causing the mock-up heart 48 to move in a circular breathing path. Mock-up lung 41 may be implemented as an elastic balloon substantially similar to balloon 102, and the balloon may be deflated and inflated using a fluid as described above. Alternatively, the generator 39 may be implemented to breathe mock-up lungs using the systems mentioned above for generating repetitive motion.
在模拟期间,并且一旦操作员22已将远端38插入实体模型心脏48中,则电极45感测表面100上的电势,并将所感测到的电势传送到导管信号接收器43。接收器43连同PU30对表面电势进行处理,并可将处理结果呈现在显示器44上。通常用图片和/或以文本格式呈现结果。例如,所感测到的电势相对于时间的图可呈现在显示器44上。During the simulation, and once the operator 22 has inserted the distal end 38 into the mock-up heart 48 , the electrodes 45 sense the electrical potential on the surface 100 and transmit the sensed electrical potential to the catheter signal receiver 43 . The receiver 43 processes the surface potential together with the PU 30 and can present the processing result on the display 44 . Results are usually presented in pictures and/or in text format. For example, a graph of sensed potential versus time may be presented on display 44 .
同样在模拟期间,电极51(为清楚起见,仅有一个电极51示于图2中)感测响应于表面100上所产生的EP电势而产生的“皮肤”电势。皮肤电势传输到ECG接收器49,并且通常可在处理之后以与来自表面100的电势类似的格式呈现在显示器44上。Also during the simulation, electrodes 51 (only one electrode 51 is shown in FIG. 2 for clarity) sensed a "skin" potential developed in response to the EP potential developed on surface 100 . The skin potential is transmitted to the ECG receiver 49 and may typically be presented on the display 44 after processing in a format similar to the potential from the surface 100 .
图3为根据本发明实施例的模拟侵入式医疗手术期间所执行的步骤的流程图150。假定被模拟的手术用于准备心脏的电生理图。在预编程步骤152中,与将被施加于电极33的电极对应的各组数据存储在存储器32中。通常,所述各组数据在上文提到的校正过程中产生。FIG. 3 is a flowchart 150 of steps performed during a simulated invasive medical procedure in accordance with an embodiment of the present invention. It is assumed that the simulated procedure is used to prepare an electrophysiological map of the heart. In a preprogramming step 152 , sets of data corresponding to the electrodes to be applied to the electrodes 33 are stored in the memory 32 . Typically, said sets of data are generated during the above-mentioned calibration process.
通常,每组存储数据都与已知心脏状况的电生理电势对应。对于每种状况而言,为每个电极33存储通常至少一次完整心跳的时间周期的电势相对于时间的一组对应关系。因此,数据的“窦性组”对应于电势以及在心脏的窦性节律期间施加在电极33上的电势的施加时间。数据的“房室结折返性心动过速(AVNRT)组”对应于在心脏的AVNRT心律失常期间施加在电极33上的电势。可为其存储电势相对于时间关系的其它心律失常包括但不限于房性心动过速、心房颤动、心房扑动、室性心动过速、心室扑动、心室颤动、房室折返性心动过速(AVRT)、和沃尔夫-帕金森-白(WPW)综合征。Typically, each set of stored data corresponds to an electrophysiological potential of a known cardiac condition. For each condition, a set of correspondences of potential versus time is stored for each electrode 33, typically for a time period of at least one complete heartbeat. Thus, the "sinus set" of data corresponds to the electrical potentials and application times of the electrical potentials applied to electrodes 33 during sinus rhythm of the heart. The "Atrioventricular Nodal Reentry Tachycardia (AVNRT) group" of data corresponds to the potentials applied to electrodes 33 during an AVNRT arrhythmia of the heart. Other cardiac arrhythmias for which potential versus time relationships can be stored include, but are not limited to, atrial tachycardia, atrial fibrillation, atrial flutter, ventricular tachycardia, ventricular flutter, ventricular fibrillation, atrioventricular reentrant tachycardia (AVRT), and Wolf-Parkinson-White (WPW) syndrome.
此外,与已经为特定患者在先记录的电势对应的一组或多组数据可存储在存储器32中。Additionally, one or more sets of data corresponding to potentials that have been previously recorded for a particular patient may be stored in memory 32 .
在模拟建立步骤154中,操作员22选择将由系统20模拟的心脏状况。此外,操作员通常会选择将在模拟期间应用的心跳速率和呼吸速率。通常由向操作员展示可能的心脏状况的显示器44来执行所述选择,所述心脏状况与在步骤152中存储的各组数据对应。操作员可使用指向装置36来选择待模拟的状况,以及心跳和呼吸速率。In a simulation build step 154 , operator 22 selects a cardiac condition to be simulated by system 20 . Additionally, the operator typically selects the heart rate and respiration rate that will be applied during the simulation. The selection is typically performed by a display 44 showing the operator possible heart conditions corresponding to the sets of data stored in step 152 . The operator can use the pointing device 36 to select the conditions to be simulated, as well as the heartbeat and breathing rates.
处理器30向可编程信号发生器31提供来自选定状况的数据,可编程信号发生器31使用数据连同选定的心跳速率来产生用于电极33组的周期性变化的电势。此外,处理器30启动心跳发生器37和呼吸发生器39,从而使机械振动器56启动实体模型心脏48跳动、并启动实体模型肺41呼吸。The processor 30 provides the data from the selected conditions to the programmable signal generator 31 which uses the data along with the selected heart rate to generate a periodically varying potential for the set of electrodes 33 . In addition, the processor 30 activates the heartbeat generator 37 and the breath generator 39 such that the mechanical vibrator 56 activates the mock-up heart 48 to beat and the mock-up lungs 41 to breathe.
在一些实施例中,为模拟真实心脏上的EP电势不完全重复,并且真实患者的心跳和呼吸通常也不可完全重复的实际情况,处理器30可向EP电势、心率、和/或呼吸增加一个或多个噪声系数。为EP电势增加的噪声系数使电极33上的每个电势的值都从一个周期向另一个周期在预设范围内发生变化。处理器可施加类似的噪声系数,以在相应的预设范围内改变心跳和呼吸的振幅和频率。In some embodiments, processor 30 may add a or multiple noise figures. The added noise figure for the EP potentials causes the value of each potential on electrode 33 to vary within a predetermined range from cycle to cycle. The processor can apply a similar noise figure to vary the amplitude and frequency of heartbeat and respiration within corresponding preset ranges.
在电极33上产生的电势形成皮肤电极51上的ECG电势。接收器49处理来自电极51的ECG电势并向操作员22呈现结果,通常为显示器44上的图,从而向操作员表明实体模型患者26是“活的”。The potential developed on electrode 33 forms the ECG potential on skin electrode 51 . Receiver 49 processes the ECG potentials from electrodes 51 and presents the results, typically a graph on display 44, to operator 22, indicating to the operator that mock-up patient 26 is "alive".
在插入探针步骤156中,操作员插入EP系统探针24穿过孔46进入实体模型患者26中。在系统探针处于实体模型患者内期间,导管信号接收器43对电极45上所感测到的电势进行处理,并且通常用数字和/或用图在显示器44上呈现处理结果。此外,跟踪装置52跟踪系统探针的远端,并在显示器上呈现远端的位置。In an insert probe step 156 , the operator inserts the EP system probe 24 through the hole 46 and into the mockup patient 26 . During the time the system probe is within the mock-up patient, the potentials sensed on the electrodes 45 are processed by the catheter signal receiver 43 and the results of the processing are typically presented numerically and/or graphically on the display 44 . In addition, the tracking device 52 tracks the distal end of the system probe and presents the location of the distal end on the display.
在研究步骤158中,操作员继续插入系统探针,直到其与心脏壁的表面100的区域接触为止。操作员可由均展示在显示器44上的远端的位置以及电极45测量到的EP电势来验证所述接触。一旦已接触到表面100的特定区域,则处理器在操作员的引导下对由该区域产生的EP电势相对于时间的值进行采样。处理器记录EP电势的采样值。In an investigation step 158, the operator continues to insert the system probe until it makes contact with a region of the surface 100 of the heart wall. The operator can verify the contact by the position of the distal end and the EP potential measured by the electrodes 45 , both shown on the display 44 . Once a particular region of the surface 100 has been contacted, the processor, at the direction of the operator, samples the value of the EP potential generated by that region versus time. The processor records the sampled value of the EP potential.
操作员移动探针的远端以与表面100的不同区域接触,并且处理器对该区域的EP电势进行采样和记录。操作员继续将远端移动至表面100的不同区域的这个过程,并记录该区域的EP电势,直到已测量了足够数量的不同区域,以使得处理器能够产生模拟终止点处的实体模型心脏的电生理图。The operator moves the distal end of the probe to make contact with different regions of the surface 100, and the processor samples and records the EP potential of that region. The operator continues this process of moving the distal end to different regions of the surface 100, and recording the EP potential for that region, until a sufficient number of different regions have been measured to enable the processor to generate a solid model heart at the termination point of the simulation. Electrophysiological diagram.
流程图150描述了被系统20用来模拟准备心脏电生理图的步骤。系统20可用于模拟其它的侵入式手术,并且下文结合图4描述了对一个这种手术的模拟。Flowchart 150 describes the steps used by system 20 to simulate the preparation of a cardiac electrophysiological map. System 20 may be used to simulate other invasive procedures, and a simulation of one such procedure is described below in conjunction with FIG. 4 .
图4为根据本发明备选实施例的模拟侵入式医疗手术期间所执行的步骤的流程图200。在这种情况下,假定被模拟的手术包括对心脏组织的消融以校正具有AVNRT的心脏。用于这种真实手术的手术探针通常包括力传感器、温度传感器、以及一个或多个电极,可使用所述一个或多个电极将射频能量施加于心内膜组织以便对组织进行消融。对于本文所描述的模拟而言,是模拟消融,而不是在TEM80上真实地执行消融。本领域的普通技术人员将使描述以必要的变更适于其中TEM80被真实地消融的情况。FIG. 4 is a flowchart 200 of steps performed during a simulated invasive medical procedure according to an alternative embodiment of the present invention. In this case, it is assumed that the simulated procedure involves ablation of cardiac tissue to correct the heart with AVNRT. Surgical probes used in such real procedures typically include force sensors, temperature sensors, and one or more electrodes with which radiofrequency energy can be applied to endocardial tissue to ablate the tissue. For the simulations described herein, the ablation was simulated, not actually performed on the TEM80. One of ordinary skill in the art will adapt the description mutatis mutandis to the case where the TEM 80 is actually ablated.
在本文所描述的模拟中,假定系统探针24包括力传感器55并可包括温度传感器58。此外,假定使用处理单元30和消融模块53的系统20通过温度模块59来模拟系统探针中存在温度传感器,并且还通过消融模块53来模拟消融效果。(在由系统20进行真实消融的情况下,假定系统探针24包括温度传感器58,从而允许处理单元测量远端38的真实温度。)In the simulations described herein, it is assumed that system probe 24 includes force sensor 55 and may include temperature sensor 58 . Furthermore, it is assumed that the system 20 using the processing unit 30 and the ablation module 53 simulates the presence of a temperature sensor in the system probe through the temperature module 59 and also simulates the ablation effect through the ablation module 53 . (In the case of real ablation by the system 20, it is assumed that the system probe 24 includes a temperature sensor 58, allowing the processing unit to measure the real temperature of the distal end 38.)
第一步骤202与预编程步骤152基本上相同,其中与将施加于电极33的电势对应的各组数据存储在存储器32中。假定各组数据包括与窦性节律对应的组、与AVNRT心律失常对应的组、与AVNRT心律失常消融期间的不同阶段对应的组。The first step 202 is substantially the same as the preprogramming step 152 , in that sets of data corresponding to the potentials to be applied to the electrodes 33 are stored in the memory 32 . It is assumed that each set of data includes a set corresponding to sinus rhythm, a set corresponding to AVNRT arrhythmia, and a set corresponding to different stages during AVNRT arrhythmia ablation.
模拟步骤204与模拟步骤154大致类似。在步骤204中,假定操作员选定AVNRT心律失常。Simulation step 204 is substantially similar to simulation step 154 . In step 204, it is assumed that the operator selects AVNRT arrhythmia.
在探针定位步骤206中,操作员将系统探针24插入实体模型患者26中。使用由跟踪装置52确定的系统探针远端的位置,操作员相对于表面100的期望区域定位远端。操作员能够使用来源于跟踪装置的输出以及由电极45测量的EP电势来确认远端的正确定位。此外,操作员从显示器44读取由位于远端的力传感器施加的力,并将该力调节到期望值。如果传感器59位于系统探针中,则操作员可使用该传感器59估计表面100的温度。In a probe positioning step 206 , the operator inserts the system probe 24 into the mockup patient 26 . Using the position of the distal end of the system probe as determined by the tracking device 52 , the operator positions the distal end relative to a desired area of the surface 100 . The operator can use the output from the tracking device and the EP potential measured by the electrodes 45 to confirm the correct positioning of the distal end. In addition, the operator reads the force applied by the distally located force sensor from the display 44 and adjusts the force to a desired value. If the sensor 59 is located in the system probe, the operator can use the sensor 59 to estimate the temperature of the surface 100 .
在消融模拟步骤208中,操作员模拟执行消融。操作员使用消融模块53设定消融参数,诸如将使用的模拟功率水平。操作员操作系统探针24以模拟向组织施加消融,并且处理器30对施加模拟消融的时间进行测量。使用施加消融的时间、在消融期间施加的力、以及已存储在存储器32中的可编程参数,处理器使用温度模块59来估计正在经受模拟消融的组织的温度。操作员能够查看显示器44上的温度,并通过温度来评估模拟消融的进展。In an ablation simulation step 208, the operator simulates performing an ablation. The operator uses the ablation module 53 to set ablation parameters, such as the simulated power level to be used. The operator operates the probe 24 to simulate application of ablation to the tissue, and the processor 30 measures the time for applying the simulated ablation. Using the time the ablation was applied, the force applied during the ablation, and the programmable parameters that have been stored in the memory 32, the processor uses the temperature module 59 to estimate the temperature of the tissue that is undergoing the simulated ablation. The operator can view the temperature on the display 44 and use the temperature to assess the progress of the simulated ablation.
真实消融手术通常包括分阶段顺序执行的多次消融。在每个阶段之后,在心脏的真实表面上产生的EP电势通常发生改变。如上文对步骤202所阐述的,不同阶段的各组EP电势存储在存储器32中。Real ablation procedures typically include multiple ablations performed sequentially in stages. After each stage, the generated EP potential on the real surface of the heart generally changes. As explained above for step 202 , the sets of EP potentials for different phases are stored in memory 32 .
在步骤208中,处理器对已执行的模拟消融进行监测。根据已到达的消融阶段,处理器30选择适当的将被可编程信号发生器31使用的一组EP电势来产生电极33上的周期性变化的电势。In step 208, the processor monitors the simulated ablation that has been performed. Depending on the ablation stage reached, the processor 30 selects an appropriate set of EP potentials to be used by the programmable signal generator 31 to generate periodically varying potentials on the electrodes 33 .
在任选的监测步骤210中,操作员可决定检查所执行的至多任何指定阶段的模拟消融是成功的。在这种情况下,操作员可暂时中止总体模拟消融手术,并且操控系统探针的远端使得电极45与表面100的一个或多个期望区域接触。在步骤208中,由于在每个消融阶段之后,处理器30都在电极33上实施周期性变化的电势,因此在每个消融阶段之后出现的EP电势都在显示器44上对操作员可见。In an optional monitoring step 210, the operator may decide to check that up to any specified stage of the simulated ablation performed was successful. In such a case, the operator may temporarily suspend the overall simulated ablation procedure and manipulate the distal end of the system probe so that electrode 45 is in contact with one or more desired regions of surface 100 . In step 208 , the EP potential that occurs after each ablation phase is visible to the operator on display 44 as processor 30 implements a periodically varying potential on electrode 33 after each ablation phase.
在真实消融手术期间,通常需要尽可能快地得出手术结论,使得在真实消融手术的不同阶段之后监测EP电势可能是困难的或是不可能的。然而,在模拟消融手术中,不存在对这种快速得出手术结论的需要,并且在模拟手术的不同阶段之后监测EP电势的能力提高了系统20的有用性。During a real ablation procedure, it is often desirable to draw a surgical conclusion as quickly as possible, so that monitoring the EP potential after different stages of a real ablation procedure may be difficult or impossible. However, in a simulated ablation procedure, there is no need for such rapid surgical conclusions, and the ability to monitor EP potentials after different stages of the simulated procedure increases the usefulness of the system 20 .
在条件步骤212中,处理器30检查是否在步骤208中已执行了校正AVNRT状况所需的所有消融阶段。可由处理器自动启动步骤212。可由操作员使用指向装置36来启动可供选择的步骤212,以指示模拟的完成。In a conditional step 212 the processor 30 checks whether in step 208 all ablation phases required to correct the AVNRT condition have been performed. Step 212 may be initiated automatically by the processor. Optional step 212 may be initiated by an operator using pointing device 36 to indicate completion of the simulation.
如果条件步骤提供正返回,那么在窦性步骤214中,处理器向发生器31提供窦性数据组,使得电极33在表面100上产生电势的窦性状态。在步骤214中,操作员可操控电极45以检查实体模型心脏48处于窦性节律状态。If the condition step provides a positive return, then in a sinus step 214 the processor provides a sinus data set to the generator 31 such that the electrodes 33 produce a sinus state of potential on the surface 100 . In step 214, the operator may manipulate the electrodes 45 to check that the mock-up heart 48 is in sinus rhythm.
如果条件步骤提供负返回,那么在误差步骤216中,处理器可在显示器44上呈现误差通知。误差通知通常表明已错误地执行或已错过一个或多个消融阶段。通常,在步骤216中,处理器向发生器31提供非窦性数据组(通常与所执行的最后一个消融阶段对应),使得电极33产生表面100上的电势的心律失常状态,操作员能够使用电极45对此进行观察。通常,操作员可返回步骤208以便校正误差。If the conditional step provides a negative return, then in an error step 216 the processor may present an error notification on the display 44 . Error notifications typically indicate that one or more ablation phases have been performed incorrectly or have been missed. Typically, in step 216, the processor provides the generator 31 with a non-sinus data set (typically corresponding to the last ablation phase performed) so that the electrodes 33 generate an arrhythmic state of the potential on the surface 100, which the operator can use Electrode 45 observes this. Typically, the operator may return to step 208 in order to correct the error.
上文所描述的流程图已假定使用一个系统探针24。侵入式医疗手术通常可使用多于一个的真实探针,并且本发明的实施例也可使用多于一个的系统探针,或者具有一个或多个模拟探针的一个系统探针。下文描述了使用多于一个探针的一些例子。The flowcharts described above have assumed the use of one system probe 24 . Invasive medical procedures can often use more than one real probe, and embodiments of the invention can also use more than one system probe, or one system probe with one or more simulated probes. Some examples of using more than one probe are described below.
在由流程图150(图3)示出的手术中,在步骤156中,操作员可将第一系统针24A插入心脏48中,并定位第一系统探针以用作参比探针。操作员可接着插入第二系统探针24B并可随后执行步骤156和158的指令以对实体模型心脏48作图。In the procedure shown by flowchart 150 (FIG. 3), in step 156, the operator may insert first system needle 24A into heart 48 and position the first system probe for use as a reference probe. The operator may then insert the second system probe 24B and may then execute the instructions of steps 156 and 158 to map the mock-up heart 48 .
在由流程图200(图4)示出的手术中,在步骤204中所选定的状况可能需要不同类型的探针,例如两种类型的套索探针。第一系统套索探针24C和第二系统套索探针24D可以是真实套索手术探针的形式,操作员可将第一系统探针和第二系统探针插入心脏48中,并且随后可执行步骤206和后续步骤中的指令。In the procedure shown by flowchart 200 (FIG. 4), the condition selected in step 204 may require different types of probes, for example two types of lasso probes. First system stylet 24C and second system stylet 24D may be in the form of actual lasso stylets that an operator may insert into heart 48 and then The instructions in step 206 and subsequent steps may be executed.
在一些实施例中,操作员可使用物理系统探针、系统探针24、和不具有被插入实体模型患者中的物理部件的模拟探针,而不是使用两个或更多的物理系统探针。相反,由处理单元30对模拟探针的动作进行模拟。In some embodiments, instead of using two or more physical system probes, the operator may use the physical system probe, system probe 24, and a dummy probe that has no physical parts inserted into the mockup patient. . Instead, the motion of the simulated probe is simulated by the processing unit 30 .
例如,在如流程图150所示的手术中,在步骤156中,操作员可模拟使用指向装置30和显示器44来将参比探针插入心脏48中,使得代表模拟探针的光标正确地定位在实体模型心脏48的图像上。操作员可接着插入物理系统探针24并且随后可执行步骤156和158的指令以对实体模型心脏48作图。此外,在模拟期间,处理单元30在显示器44上所显示的输出与来自模拟参比探针的那些输出对应。For example, in the procedure shown in flowchart 150, in step 156, the operator may simulate using pointing device 30 and display 44 to insert a reference probe into heart 48 so that the cursor representing the simulated probe is correctly positioned. On the image of the mock-up heart 48. The operator may then insert the physical system probe 24 and may then execute the instructions of steps 156 and 158 to map the mock-up heart 48 . Furthermore, during the simulation, the outputs displayed by the processing unit 30 on the display 44 correspond to those from the simulated reference probe.
应当理解,上述实施例仅以举例的方式进行引用,且本发明并不限于上面具体示出和描述的内容。相反,本发明的范围包括上述各种特征的组合和亚组合以及它们的变化形式和修改形式,本领域技术人员在阅读上述说明时将会想到所述变化形式和修改形式,并且所述变化形式和修改形式并未在现有技术中公开。It should be understood that the above embodiments are cited by way of example only, and the present invention is not limited to what has been specifically shown and described above. Rather, the scope of the present invention includes combinations and sub-combinations of the various features described above, and variations and modifications thereof, which would occur to those skilled in the art upon reading the foregoing description, and which variations and modifications are not disclosed in the prior art.
Claims (26)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/494334 | 2012-06-12 | ||
US13/494,334 | 2012-06-12 | ||
US13/494,334 US8834172B2 (en) | 2012-06-12 | 2012-06-12 | Physical heart simulator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103489360A CN103489360A (en) | 2014-01-01 |
CN103489360B true CN103489360B (en) | 2017-11-28 |
Family
ID=48669749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310228157.5A Expired - Fee Related CN103489360B (en) | 2012-06-12 | 2013-06-08 | physical heart simulator |
Country Status (7)
Country | Link |
---|---|
US (1) | US8834172B2 (en) |
EP (1) | EP2674928A1 (en) |
JP (1) | JP6293424B2 (en) |
CN (1) | CN103489360B (en) |
AU (2) | AU2013206182A1 (en) |
CA (1) | CA2818644A1 (en) |
IL (1) | IL226745A (en) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2051625B1 (en) | 2006-08-03 | 2019-07-17 | Christoph Scharf | Method and device for determining and presenting surface charge and dipole densities on cardiac walls |
EP2737849A3 (en) | 2008-01-17 | 2014-10-29 | Christoph Scharf | A device and method for the geometric determination of electrical dipole densities on the cardiac wall |
US9251721B2 (en) | 2010-04-09 | 2016-02-02 | University Of Florida Research Foundation, Inc. | Interactive mixed reality system and uses thereof |
CA2829626C (en) | 2011-03-10 | 2020-06-16 | Acutus Medical, Inc. | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
JP6316821B2 (en) | 2012-08-31 | 2018-04-25 | アクタス メディカル インクAcutus Medical,Inc. | Ablation system |
EP3777703B1 (en) | 2013-02-08 | 2023-04-05 | Acutus Medical Inc. | Expandable catheter assembly with flexible printed circuit board |
EP3043701B1 (en) | 2013-09-13 | 2024-02-21 | Acutus Medical, Inc. | Devices and methods for determination of electrical dipole densities on a cardiac surface |
WO2015108869A2 (en) * | 2014-01-14 | 2015-07-23 | New York University | In-vitro cardiac chamber |
US9986949B2 (en) * | 2014-03-05 | 2018-06-05 | Biosense Webster (Israel) Ltd. | Multi-arm catheter with signal transmission over braid wires |
JP6739346B2 (en) | 2014-03-25 | 2020-08-12 | アクタス メディカル インクAcutus Medical,Inc. | Method of operating system of cardiac analysis user interface |
WO2016028821A1 (en) * | 2014-08-18 | 2016-02-25 | The General Hospital Corporation | System and methods for a haptic medical simulation device |
US10629308B1 (en) * | 2014-11-03 | 2020-04-21 | Shahriar Iravanian | Cardiac electrophysiology simulator |
US11094223B2 (en) * | 2015-01-10 | 2021-08-17 | University Of Florida Research Foundation, Incorporated | Simulation features combining mixed reality and modular tracking |
WO2016183285A1 (en) | 2015-05-12 | 2016-11-17 | Acutus Medical, Inc. | Ultrasound sequencing system and method |
WO2016183179A1 (en) * | 2015-05-12 | 2016-11-17 | Acutus Medical, Inc. | Cardiac virtualization test tank and testing system and method |
JP7030521B2 (en) | 2015-05-13 | 2022-03-07 | アクタス メディカル インク | Positioning system useful for acquisition and analysis of cardiac information |
US11062626B2 (en) * | 2015-05-27 | 2021-07-13 | Atricure, Inc. | Beating heart controller and simulator |
JP6710027B2 (en) * | 2015-08-20 | 2020-06-17 | テルモ株式会社 | Heart simulation device, control method for heart simulation device, and control program for heart simulation device |
CN105225569B (en) * | 2015-11-04 | 2018-01-05 | 赵鑫 | A kind of cardiac operation simulator and its application method |
US9852660B1 (en) * | 2015-12-03 | 2017-12-26 | Robert Fairbanks | Catheterization procedure training apparatus |
CN106859683B (en) * | 2015-12-10 | 2020-08-04 | 上海联影医疗科技有限公司 | Heart dynamic simulation device |
JP6937321B2 (en) * | 2016-05-03 | 2021-09-22 | アクタス メディカル インクAcutus Medical,Inc. | Cardiac information dynamic display system |
CN106128255A (en) * | 2016-06-14 | 2016-11-16 | 高跃技 | A kind of cardiac electrophysiology signal imitation system and analogy method thereof |
US11304644B2 (en) * | 2017-03-07 | 2022-04-19 | Biosense Webster (Israel) Ltd. | 3-D electrophysiology heart simulation system and related methods |
WO2018175690A1 (en) * | 2017-03-22 | 2018-09-27 | Boston Scientific Scimed Inc. | Electrified anatomical model |
JP2018186959A (en) * | 2017-04-28 | 2018-11-29 | ディーブイエックス株式会社 | ECG electrophysiology procedure simulation system, electrocardiogram electrophysiology procedure simulation program |
JP7257331B2 (en) * | 2017-05-09 | 2023-04-13 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Operating room device, method and system |
US11295634B2 (en) * | 2017-12-04 | 2022-04-05 | St. Jude Medical, Cardiology Division, Inc. | Realistic electro-anatomical model of the mammalian His/Purkinje system |
IT201800006287A1 (en) * | 2018-06-13 | 2019-12-13 | TRAINING / TRAINING UNIT OF A HOSPITAL OPERATOR FOR THE PERFORMANCE OF CARDIAC ELECTROPHYSIOLOGY TREATMENTS | |
EP3853838A1 (en) * | 2018-09-21 | 2021-07-28 | Mentice AB | Cardiac simulation device |
US12178582B2 (en) | 2018-11-09 | 2024-12-31 | Acutus Medical, Inc. | Systems and methods for calculating patient information |
CN110025376A (en) * | 2019-03-22 | 2019-07-19 | 江苏霆升科技有限公司 | A kind of interventional cardiac procedures analogy method, terminal device and system |
CA3135773A1 (en) | 2019-06-04 | 2020-12-10 | Acutus Medical, Inc. | Systems and methods for performing localization within a body |
CN110555261B (en) * | 2019-08-29 | 2021-06-18 | 清华大学 | Digital three-generation simulation method and device for heart motion |
CN110808104B (en) * | 2019-11-07 | 2023-03-31 | 司马大大(北京)智能系统有限公司 | Gastric behavior simulation method and system |
CN111489603B (en) * | 2019-12-18 | 2024-09-24 | 首都医科大学附属北京友谊医院 | Atrial fibrillation radio frequency ablation operation simulation training device |
KR102376781B1 (en) * | 2020-01-30 | 2022-03-21 | (주)시지바이오 | Apparatus of dynamic phantom for cardiac impulse |
EP4133473A1 (en) * | 2020-04-10 | 2023-02-15 | Howmedica Osteonics Corp. | Simulation of minimally invasive surgery procedures |
CN111755104B (en) * | 2020-05-18 | 2022-11-01 | 清华大学 | Cardiac state monitoring method, system, electronic device and storage medium |
US20210390883A1 (en) * | 2020-06-12 | 2021-12-16 | University Of Florida Research Foundation, Incorporated | Task trainer for open chest cardiac massage |
CN112201133B (en) * | 2020-10-29 | 2023-03-31 | 深圳普汇医疗科技有限公司 | Ultrasonic positioning puncture simulator |
CN112837592B (en) * | 2021-02-08 | 2024-05-03 | 中国人民解放军联勤保障部队第九〇〇医院 | Atrial fibrillation demonstration model |
CN113303905B (en) * | 2021-05-26 | 2022-07-01 | 中南大学湘雅二医院 | Interventional operation simulation method based on video image feedback |
CN115273590A (en) * | 2022-07-15 | 2022-11-01 | 赵雯冬 | Simulated operation device for simulating EGM electric signal in heart chamber |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5482472A (en) * | 1993-11-17 | 1996-01-09 | Board Of Regents, The University Of Texas System | Electrical signal generator interface with three-dimensional electrical pathway and transparent heart and method of visually simulating cardiac waveforms in three dimensions |
US6234804B1 (en) * | 1999-03-02 | 2001-05-22 | Peter Yong | Thoracic training model for endoscopic cardiac surgery |
CN1549693A (en) * | 2001-07-31 | 2004-11-24 | ����ϣ��ѧ | Method and device for predicting the fertile phase of women |
US6910896B1 (en) * | 2000-12-15 | 2005-06-28 | Ram Consulting, Inc. | Mechanical lungs |
CN101416874A (en) * | 2007-10-08 | 2009-04-29 | 韦伯斯特生物官能公司 | Catheter with pressure sensing |
CN101848677A (en) * | 2007-09-26 | 2010-09-29 | 麦德托尼克公司 | Frequency selective monitoring of physiological signals |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7976313B2 (en) | 2000-08-17 | 2011-07-12 | Gaumard Scientific Company, Inc. | Interactive education system for teaching patient care |
US7857626B2 (en) | 2000-10-23 | 2010-12-28 | Toly Christopher C | Medical physiological simulator including a conductive elastomer layer |
US7665995B2 (en) | 2000-10-23 | 2010-02-23 | Toly Christopher C | Medical training simulator including contact-less sensors |
US7798815B2 (en) | 2002-04-03 | 2010-09-21 | University Of The West Indies | Computer-controlled tissue-based simulator for training in cardiac surgical techniques |
WO2005053508A2 (en) * | 2002-11-11 | 2005-06-16 | Gaumard Scientific Company, Inc. | Interactive education system for teaching patient care |
JP4681242B2 (en) * | 2004-02-25 | 2011-05-11 | 公立大学法人会津大学 | Catheter examination simulation system |
EP1934848A2 (en) * | 2005-09-29 | 2008-06-25 | The General Hospital Corporation | Medical training system for casualty simulation |
US8251703B2 (en) * | 2007-05-21 | 2012-08-28 | Johnson County Community College Foundation, Inc. | Healthcare training system and method |
JP4968739B2 (en) * | 2007-12-28 | 2012-07-04 | 株式会社マクロウェア | Cardiac catheter simulation device and computer program |
US8360786B2 (en) | 2009-04-29 | 2013-01-29 | Scott Duryea | Polysomnography training apparatus |
US8636519B2 (en) * | 2010-10-05 | 2014-01-28 | Biosense Webster (Israel) Ltd. | Simulation of an invasive procedure |
-
2012
- 2012-06-12 US US13/494,334 patent/US8834172B2/en not_active Expired - Fee Related
-
2013
- 2013-06-04 IL IL226745A patent/IL226745A/en not_active IP Right Cessation
- 2013-06-05 AU AU2013206182A patent/AU2013206182A1/en not_active Abandoned
- 2013-06-08 CN CN201310228157.5A patent/CN103489360B/en not_active Expired - Fee Related
- 2013-06-11 JP JP2013122461A patent/JP6293424B2/en not_active Expired - Fee Related
- 2013-06-11 EP EP13171368.7A patent/EP2674928A1/en not_active Withdrawn
- 2013-06-11 CA CA2818644A patent/CA2818644A1/en not_active Abandoned
-
2017
- 2017-06-16 AU AU2017204066A patent/AU2017204066A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5482472A (en) * | 1993-11-17 | 1996-01-09 | Board Of Regents, The University Of Texas System | Electrical signal generator interface with three-dimensional electrical pathway and transparent heart and method of visually simulating cardiac waveforms in three dimensions |
US6234804B1 (en) * | 1999-03-02 | 2001-05-22 | Peter Yong | Thoracic training model for endoscopic cardiac surgery |
US6910896B1 (en) * | 2000-12-15 | 2005-06-28 | Ram Consulting, Inc. | Mechanical lungs |
CN1549693A (en) * | 2001-07-31 | 2004-11-24 | ����ϣ��ѧ | Method and device for predicting the fertile phase of women |
CN101848677A (en) * | 2007-09-26 | 2010-09-29 | 麦德托尼克公司 | Frequency selective monitoring of physiological signals |
CN101416874A (en) * | 2007-10-08 | 2009-04-29 | 韦伯斯特生物官能公司 | Catheter with pressure sensing |
Also Published As
Publication number | Publication date |
---|---|
EP2674928A1 (en) | 2013-12-18 |
AU2017204066A1 (en) | 2017-07-06 |
US8834172B2 (en) | 2014-09-16 |
US20130330701A1 (en) | 2013-12-12 |
AU2013206182A1 (en) | 2014-01-09 |
JP6293424B2 (en) | 2018-03-14 |
JP2013257563A (en) | 2013-12-26 |
IL226745A (en) | 2016-06-30 |
CA2818644A1 (en) | 2013-12-12 |
CN103489360A (en) | 2014-01-01 |
IL226745A0 (en) | 2013-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103489360B (en) | physical heart simulator | |
EP3372276B1 (en) | 3-d electrophysiology heart simulation system and related methods | |
JP2023144056A (en) | Automatic display of earliest lat point | |
JP4738609B2 (en) | Catheter, method and apparatus for creating an electrical map of the ventricle | |
EP2859861B1 (en) | Method of manufacturing a patient-specific pre-shaped cardiac catheter | |
CN112617842A (en) | 3D intracardiac activity demonstration | |
CA2987760A1 (en) | Real time electroanatomical coloring of the heart | |
CN103976787B (en) | Operator controlled mixed modality feedback | |
JP2021023822A (en) | Electroanatomical map re-annotation | |
BR102018069940A2 (en) | ESTIMATION OF ABLATION SIZE AND VISUAL REPRESENTATION | |
US20250127449A1 (en) | Signal processing of velocity streams of a signal flow for coherent mapping of an anatomical structure | |
WO2013117152A1 (en) | Interventional medical catheter and three-dimensional mapping device applying same | |
JP7123546B2 (en) | Multi-electrode catheters to prevent restriction of physiological fluid flow | |
JP2022115837A (en) | Management of medical devices by online magnetic calibration of catheters | |
JP2022051707A (en) | Systems and methods for clustering wavefront signals in electrophysiological maps | |
US20230181246A1 (en) | Cardiac vein ablation visualization system and catheter | |
JP2025020050A (en) | Methods and systems for shaving anatomical map | |
CN118102994A (en) | Digital twin of patients with atrial fibrillation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171128 Termination date: 20180608 |
|
CF01 | Termination of patent right due to non-payment of annual fee |