CN108847979A - A kind of adaptive configuration system and method based on SCADA - Google Patents
A kind of adaptive configuration system and method based on SCADA Download PDFInfo
- Publication number
- CN108847979A CN108847979A CN201810645031.0A CN201810645031A CN108847979A CN 108847979 A CN108847979 A CN 108847979A CN 201810645031 A CN201810645031 A CN 201810645031A CN 108847979 A CN108847979 A CN 108847979A
- Authority
- CN
- China
- Prior art keywords
- scada
- data
- eip
- real
- configuration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000003044 adaptive effect Effects 0.000 title claims description 14
- 238000004891 communication Methods 0.000 claims abstract description 46
- 238000007726 management method Methods 0.000 claims description 40
- 238000012544 monitoring process Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 5
- 238000013499 data model Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract description 9
- 230000004048 modification Effects 0.000 abstract description 5
- 238000012986 modification Methods 0.000 abstract description 5
- 238000004458 analytical method Methods 0.000 abstract description 3
- 230000003862 health status Effects 0.000 abstract description 3
- 238000007689 inspection Methods 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000008676 import Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0806—Configuration setting for initial configuration or provisioning, e.g. plug-and-play
- H04L41/0809—Plug-and-play configuration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5041—Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0805—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
- H04L43/0811—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Environmental & Geological Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Computer And Data Communications (AREA)
Abstract
本发明公开了一种基于SCADA的自适应组态系统及方法,包括数据采集组件,以及SCADA组态系统,所述数据采集组件按照标准总线通信协议(EIP)自动发现现场总线上的子站设备,同时自动建立与子站设备的通信链路,所述数据采集组件以FEP驱动服务方式运行于SCADA组态系统的IO服务站,通过IO服务站建立SCADA组态系统与总线上子站设备之间的通信链路,本发明通过组态通用的模型,可适应于灵活多变的现场应用,避免频繁的修改和下装,从而实现了图、模、库一体化,保持高度一致性,同时实现了巡检工作的可跟踪性、管理方便,智能分析、便于快速了解设备或设施的健康状况;实现设备自描述、自接入,做到系统自发现、自组态、“零”配置。
The invention discloses a SCADA-based self-adaptive configuration system and method, including a data acquisition component and a SCADA configuration system, and the data acquisition component automatically discovers substation equipment on the field bus according to the standard bus communication protocol (EIP) At the same time, the communication link with the sub-station equipment is automatically established. The data acquisition component runs in the IO service station of the SCADA configuration system in the FEP-driven service mode, and the connection between the SCADA configuration system and the sub-station equipment on the bus is established through the IO service station. The communication link between, the present invention can be adapted to the flexible field application by configuring the common model, avoids frequent modification and downloading, thus realizes the integration of diagram, model and library, maintains a high degree of consistency, and at the same time Realize the traceability of inspection work, convenient management, intelligent analysis, and easy to quickly understand the health status of equipment or facilities; realize self-description and self-connection of equipment, and achieve system self-discovery, self-configuration, and "zero" configuration.
Description
技术领域technical field
本发明涉及数据采集与监视控制系统领域,具体为一种基于SCADA的自适应组态系统及方法。The invention relates to the field of data acquisition and monitoring control systems, in particular to a SCADA-based self-adaptive configuration system and method.
背景技术Background technique
传统的SCADA软件在实际应用过程中都会涉及组态、下装的操作,当部署结构频繁发生变换时例如“设备布局”、“设备种类与数量”、“管理结构”,就需要频繁的修改对应的工程数据、进行下装,以适应现场的新环境,尤其在某些生产领域,外部设备的增加、拆除、移动都很频繁,就需要不断重复组态、下装的过程,一方面使用极不灵活,另一方面操作过程容易出错,这就给使用SCADA组态的工程人员带来很大的压力和工作量,所以需要一种能够快速自适应现场部署改变、低工作量、高自动化的组态系统,当外部设备增加、拆除时,系统能自动侦测、识别并配置系统资源,不需要重新组态,或仅需要很少量的配置即可完成设备的维护工作,如,在矿井自动化系统建设、生产和运维过程中,系统能够主动发现生产现场新安装或拆除的设备(如移动变电站),并根据设备上送的自描述配置信息,动态分配设备地址,自动识别设备上送的遥测、遥信等实时数据,并自动更新界面上的拓扑图:Traditional SCADA software will involve configuration and download operations in the actual application process. When the deployment structure changes frequently, such as "equipment layout", "equipment type and quantity", and "management structure", frequent modification and corresponding Download and download the engineering data to adapt to the new environment on site, especially in some production fields, the addition, removal, and movement of external equipment are very frequent, so it is necessary to repeat the process of configuration and download. On the one hand, using extremely Inflexible, on the other hand, the operation process is prone to errors, which brings a lot of pressure and workload to the engineers who use SCADA configuration, so it is necessary to quickly adapt to field deployment changes, low workload, high automation Configuration system, when external equipment is added or removed, the system can automatically detect, identify and configure system resources, without reconfiguration, or only a small amount of configuration is required to complete equipment maintenance, such as in mines In the process of construction, production and operation and maintenance of the automation system, the system can actively discover newly installed or removed equipment (such as mobile substations) on the production site, and dynamically assign equipment addresses according to the self-describing configuration information sent by the equipment, and automatically identify the equipment to be sent Real-time data such as telemetry and remote signaling, and automatically update the topology map on the interface:
发明内容Contents of the invention
为了克服现有技术方案的不足,本发明提供一种基于SCADA的自适应组态系统及方法,能有效的解决背景技术提出的问题。In order to overcome the shortcomings of the prior art solutions, the present invention provides a SCADA-based self-adaptive configuration system and method, which can effectively solve the problems raised by the background technology.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
一种基于SCADA的自适应组态系统,其特征在于,A kind of adaptive configuration system based on SCADA, it is characterized in that,
包括数据采集组件,以及SCADA组态系统,所述数据采集组件按照标准总线通信协议(EIP)自动发现现场总线上的子站设备,同时自动建立与子站设备的通信链路,所述数据采集组件以FEP驱动服务方式运行于SCADA组态系统的IO服务站,通过IO服务站建立SCADA组态系统与总线上子站设备之间的通信链路。Including a data acquisition component and a SCADA configuration system, the data acquisition component automatically discovers the substation equipment on the field bus according to the standard bus communication protocol (EIP), and automatically establishes a communication link with the substation equipment at the same time. The components run on the IO service station of the SCADA configuration system in FEP-driven service mode, and the communication link between the SCADA configuration system and the substation devices on the bus is established through the IO service station.
作为本发明一种优选的技术方案,所述通信链路包括监控网络和若干EIP 网络,所述监控网络和IP网络之间通过网关连接,所有的EIP网络通过中继器建立起在物理层上网络互连,并将EIP网络的数据信号重新发送或者转发至SCADA组态系统,所述子站设备包括建立在监控网络上的操作站、通讯站、服务站和工程师站。As a preferred technical solution of the present invention, the communication link includes a monitoring network and several EIP networks, the monitoring network and the IP network are connected through a gateway, and all EIP networks are established on the physical layer through repeaters The network is interconnected, and the data signal of the EIP network is resent or forwarded to the SCADA configuration system. The substation equipment includes the operation station, communication station, service station and engineer station established on the monitoring network.
作为本发明一种优选的技术方案,所述SCADA组态系统包括数据库组态工具、实时服务组件、HMI图形组态工具和EIP驱动,所述数据库组态工具用于按照EIP建模规范对子站设备对象进行建模,也可导入子站设备的EDS文件自动为其构建实时库对象模型,定义数据点与子站设备的IO数据通道;所述实时服务组件用于从IO服务站中获得当前网络中的实体设备信息列表,根据类型自动创建或删除对应的设备实例,建立数据点与实际设备IO的连接通路;所述HMI图形组态工具用于建立子站设备类型的图符库,定义图府库对象的实例化特征信息,所述数据采集组件通过EIP驱动与SCADA组态系统建立联系。As a preferred technical solution of the present invention, the SCADA configuration system includes a database configuration tool, a real-time service component, an HMI graphic configuration tool and an EIP driver, and the database configuration tool is used to pair It can also import the EDS file of the sub-station equipment to automatically build a real-time library object model for it, and define the data points and the IO data channel of the sub-station equipment; the real-time service component is used to obtain from the IO service station The list of physical equipment information in the current network, automatically create or delete the corresponding equipment instance according to the type, and establish the connection path between the data point and the actual equipment IO; the HMI graphic configuration tool is used to establish the icon library of the substation equipment type, The instantiation feature information of the Tufu library object is defined, and the data acquisition component establishes a connection with the SCADA configuration system through the EIP driver.
作为本发明一种优选的技术方案,所述数据库组态工具包括离线对象管理插件,离线对象管理插件包括对子站设备的EDS文件进行解析的EDS解析器,以及用于管理实时库对象模型的模板管理模块。As a preferred technical solution of the present invention, the database configuration tool includes an offline object management plug-in, and the offline object management plug-in includes an EDS parser for parsing the EDS file of the substation device, and an EDS parser for managing the real-time library object model Template management module.
作为本发明一种优选的技术方案,所述实时服务组件包括在线对象管理插件,在线对象管理插件包括用于创建并管理实时库对象模型的对应模型对象的实例,同时将实例和实体设备进行绑定或解绑的实例管理模块、拓扑管理模块和数据处理模块三个功能模块。As a preferred technical solution of the present invention, the real-time service component includes an online object management plug-in, and the online object management plug-in includes an instance of a corresponding model object for creating and managing a real-time library object model, and at the same time binds the instance to the physical device There are three functional modules: instance management module, topology management module and data processing module, which can be fixed or unbound.
作为本发明一种优选的技术方案,所述HMI图形组态工具包括即插即用 HMI组件,插即用HMI组件包括用于建立子站设备类型的图符库并定义图府库对象的实例化特征信息图元管理模块和用于在运行时在界面端对数据模型进行展示,进而实现从设备层、数据层到展示层自动关联的配置界面模块。As a preferred technical solution of the present invention, the HMI graphic configuration tool includes a plug-and-play HMI component, and the plug-and-play HMI component includes a symbol library for establishing a substation device type and defines an instance of a library object The feature information graphic element management module and the configuration interface module are used to display the data model on the interface side at runtime, and then realize the automatic association from the device layer, data layer to the display layer.
另外本发明还设计了一种基于SCADA的自适应组态方法,包括如下步骤:The present invention has also designed a kind of adaptive configuration method based on SCADA in addition, comprises the steps:
步骤100、建立SCADA系统的IO服务站与现场总线上所有子站设备的通信链路,获取当前现场总线上所有子站设备及其基本信息;Step 100, establish communication links between the IO service station of the SCADA system and all substation devices on the field bus, and obtain all substation devices and their basic information on the current field bus;
步骤200、使用数据库组态工具建立与设备模型一致的实时库对象模型;Step 200, using a database configuration tool to establish a real-time library object model consistent with the device model;
步骤300、实时库对象模型的在线管理,启动实时服务组件,自动加载数据对象动态管理组件,从IO服务站中获取当前网络中的实体设备信息列表,并根据类型自动创建或删除对应的设备实例;Step 300, online management of the real-time library object model, start the real-time service component, automatically load the data object dynamic management component, obtain the current physical device information list in the network from the IO service station, and automatically create or delete the corresponding device instance according to the type ;
步骤400、建立子站设备类型的HIM图符库,定义HIM图府库对象的实例化特征信息,组态子站设备所在的流程图。Step 400, establishing the HIM icon library of the substation equipment type, defining the instantiation feature information of the HIM library object, and configuring the flow chart where the substation equipment is located.
作为本发明一种优选的技术方案,所述步骤100中通信链路是基于标准总线通信协议(EIP)的通信组件来配置物理网络中的数据采集组件的IP地址,以FEP驱动服务的方式运行于SCADA组态系统的IO服务站,启动IO服务后,能自动识别所属局域网内所有的子站设备。As a preferred technical solution of the present invention, the communication link in the step 100 is to configure the IP address of the data acquisition component in the physical network based on the communication component of the standard bus communication protocol (EIP), and run in the mode of FEP driving service In the IO service station of the SCADA configuration system, after starting the IO service, it can automatically identify all sub-station devices in the local area network to which it belongs.
作为本发明一种优选的技术方案,所述步骤200中数据库组态工具是按照EIP建模规范对设备对象进行建模,或导入设备的EDS文件自动为其构建数据库对象模型,定义数据点与实际设备的IO数据的通道。As a preferred technical solution of the present invention, the database configuration tool in the step 200 is to model the equipment object according to the EIP modeling specification, or import the EDS file of the equipment to automatically build the database object model for it, define the data points and The channel for the IO data of the actual device.
作为本发明一种优选的技术方案,所述步骤400还包括:As a preferred technical solution of the present invention, the step 400 also includes:
启动HMI图形组态工具的在线程序后,打开流程图,HMI图符对象动态管理组件负责与实时库进行信息交互,动态获取当前实时库中所有EIP类型的实例信息,和本地流程图中已有的图符信息进行比对,动态在流程图中创建或删除设备对应的图符元素,且支持手动在线对所创建的图符进行移动、修改、删除操作,修改后的结果保存且可通过系统的在线数据发布机制将修改后的信息同步到域内的各个站点,下次启动后仍然加载上次编辑过的图形页面。After starting the online program of the HMI graphic configuration tool, open the flow chart, the HMI icon object dynamic management component is responsible for information interaction with the real-time library, and dynamically obtains the instance information of all EIP types in the current real-time library, and the existing Compare the icon information of the device, dynamically create or delete the icon elements corresponding to the equipment in the flow chart, and support the manual online operation of moving, modifying, and deleting the created icons, and the modified results are saved and can be passed through the system The online data publishing mechanism synchronizes the modified information to each site in the domain, and the last edited graphic page will still be loaded after the next startup.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明通过组态通用的模型,可适应于灵活多变的现场应用,避免频繁的修改和下装,从而实现了图、模、库一体化,保持高度一致性,同时实现了巡检工作的可跟踪性、管理方便,智能分析、便于快速了解设备或设施的健康状况;(1) The present invention can be adapted to flexible and changeable on-site applications by configuring a general-purpose model, avoiding frequent modification and downloading, thereby realizing the integration of diagrams, models, and libraries, maintaining a high degree of consistency, and realizing patrolling Traceability of inspection work, convenient management, intelligent analysis, easy to quickly understand the health status of equipment or facilities;
(2)本发明基于标准通信协议解决设备自动接入网络,实现设备自描述、自接入,做到系统自发现、自组态、“零”配置,可广泛地应用于电力、铁路、石油石化、矿山等各个工业生产领域。(2) Based on the standard communication protocol, the present invention solves the automatic connection of equipment to the network, realizes self-description and self-connection of equipment, realizes self-discovery, self-configuration, and "zero" configuration of the system, and can be widely used in electric power, railway, petroleum Petrochemical, mining and other industrial production fields.
附图说明Description of drawings
图1为本发明的系统运行部署结构图;Fig. 1 is a system operation deployment structure diagram of the present invention;
图2为本发明的系统功能结构框图;Fig. 2 is a system functional block diagram of the present invention;
图3为本发明的IO数据采集组件流程框图;Fig. 3 is a block flow diagram of the IO data acquisition component of the present invention;
图4为本发明的数据库建模流程框图;Fig. 4 is a flow chart of database modeling of the present invention;
图5为本发明的数据库对象在线管理流程框图;Fig. 5 is a block diagram of the database object online management flow chart of the present invention;
图6为本发明的HMI组件显示流程框图;Fig. 6 is a flow chart showing the HMI component of the present invention;
图7为本发明具体实施方式中设备模型结构图;Fig. 7 is a structural diagram of a device model in a specific embodiment of the present invention;
图8为本发明具体实施方式中设备序列号和已绑定设备实例的示意图。Fig. 8 is a schematic diagram of a device serial number and an example of a bound device in a specific embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1至图6所示,本发明提供了一种基于SCADA的自适应组态系统,其特征在于,包括数据采集组件,以及SCADA组态系统,所述数据采集组件按照标准总线通信协议(EIP)自动发现现场总线上的子站设备,同时自动建立与子站设备的通信链路。As shown in Fig. 1 to Fig. 6, the present invention provides a kind of self-adaptive configuration system based on SCADA, it is characterized in that, comprises data acquisition component, and SCADA configuration system, described data acquisition component follows standard bus communication protocol ( EIP) automatically discovers the substation equipment on the field bus, and automatically establishes a communication link with the substation equipment at the same time.
在本实施方式中,通信链路为基于标准总线通信协议(EIP)的通信组件,简称为EIP通信组件,在本实施方式中基于EIP通信组件实现通讯链接的统称为EIP设备,其包括子站设备和主站设备,主站设备在该系统中起到一个数据采集的功能,上述数据采集组件在本实施方式中为EIP主站设备,通过该EIP通信组件配置物理网络中的EIP主站设备的IP地址,以FEP驱动服务的方式运行于SCADA组态系统的IO服务站,启动IO服务站后,能自动识别所属局域网内的所有EIP类型的子站设备,建立与这些设备通信链路。In this embodiment, the communication link is a communication component based on the standard bus communication protocol (EIP), referred to as the EIP communication component for short. In this embodiment, the communication link based on the EIP communication component is collectively referred to as EIP equipment, which includes substation equipment and a master station device, the master station device plays a function of data collection in the system, the above-mentioned data collection component is an EIP master station device in this embodiment, and the EIP master station device in the physical network is configured through the EIP communication component The IO service station of the SCADA configuration system runs in the form of FEP-driven service. After the IO service station is started, it can automatically identify all EIP-type substation devices in the local area network to which it belongs, and establish communication links with these devices.
在本实施方式中,FEP(前端处理器)是一种基于集群服务器的动态调度模型,该模型提出了次前端机的概念,前端机根据网络服务类型的不同,将动态调度的任务交给相应的次前端机处理,从而降低了前端机的负载,在一定程度上缓解了服务器的瓶颈,增强了集群服务器的可扩展性。In this embodiment, FEP (Front End Processor) is a dynamic scheduling model based on cluster servers. This model proposes the concept of a secondary front-end machine. The front-end machine assigns the tasks of dynamic scheduling to corresponding The secondary front-end machine processing, thereby reducing the load of the front-end machine, alleviating the bottleneck of the server to a certain extent, and enhancing the scalability of the cluster server.
在通信网络中,前端处理器一般位于主机之前,它主要承担通信任务,以减轻主机的负担。如果通信线路进入前端处理器的数据可能有错误或数据代码格式不匹配等,那么在数据传送给主机之前,必须由前端处理器来解决,而主机仅做数据处理。In a communication network, the front-end processor is generally located before the host, and it mainly undertakes communication tasks to reduce the burden on the host. If the data entered by the communication line into the front-end processor may have errors or the data code format does not match, etc., it must be resolved by the front-end processor before the data is transmitted to the host, and the host only does data processing.
前端处理器有可编程和不可编程之分。不可编程前端处理器的功能仅由硬件来实现,一旦定型后,所拥有的通信功能也就完全确定了。由于这类前端处理器的硬件线路不能轻易改变,因此,当网络发生变化或终端增加时,它就无法适应。可编程前端处理器是由硬件和软件构成的,它的通信功能可通过编程控制来改变,从而适应网络系统的变化。显然,这类前端处理器的使用更灵活、方便。There are programmable and non-programmable front-end processors. The functions of the non-programmable front-end processor are only realized by hardware, and once finalized, the communication functions it possesses are completely determined. Because the hardware circuit of this type of front-end processor cannot be changed easily, it cannot adapt when the network changes or the terminal increases. The programmable front-end processor is composed of hardware and software, and its communication function can be changed through programming control to adapt to changes in the network system. Obviously, the use of this type of front-end processor is more flexible and convenient.
在大型的通信网络系统中,都必须配有前端处理器。一般一台前端处理器就是一台计算机,主要具有的功能是:字符或数据的分段与重组,各终端之间的数据代码转换,错误检测与恢复,为不同终端提供协议支持,各终端之间的数据交换,轮询终端,公用电话网络中自动应答,编辑网上的统计资料等。In large-scale communication network systems, front-end processors must be equipped. Generally, a front-end processor is a computer, and its main functions are: segmentation and reorganization of characters or data, data code conversion between terminals, error detection and recovery, providing protocol support for different terminals, and communication between terminals. Data exchange between users, polling terminals, automatic answering in the public telephone network, editing statistical data on the Internet, etc.
通信链路(EIP通信组件)包括监控网络和若干EIP网络,所述监控网络和IP网络之间通过网关连接,所有的EIP网络通过中继器建立起在物理层上网络互连,并将EIP网络的数据信号重新发送或者转发至SCADA组态系统, EIP子站设备包括建立在监控网络上的操作站、通讯站、服务站和工程师站。The communication link (EIP communication component) includes a monitoring network and several EIP networks. The monitoring network and the IP network are connected through a gateway. All EIP networks are interconnected on the physical layer through repeaters, and the EIP The data signal of the network is resent or forwarded to the SCADA configuration system, and the EIP substation equipment includes the operation station, communication station, service station and engineer station established on the monitoring network.
所述SCADA组态系统包括数据库组态工具、实时服务组件、HMI图形组态工具和EIP驱动,所述数据库组态工具用于按照EIP建模规范对子站设备对象进行建模,也可导入子站设备的EDS文件自动为其构建实时库对象模型,定义数据点与子站设备的IO数据通道;所述实时服务组件用于从IO服务站中获得当前网络中的实体设备信息列表,根据类型自动创建或删除对应的设备实例,建立数据点与实际设备IO的连接通路;所述HMI图形组态工具用于建立子站设备类型的图符库,定义图府库对象的实例化特征信息,所述数据采集组件通过EIP驱动与SCADA组态系统建立联系。The SCADA configuration system includes a database configuration tool, a real-time service component, an HMI graphic configuration tool and an EIP driver, and the database configuration tool is used to model substation equipment objects according to the EIP modeling specification, and can also import The EDS file of the substation equipment automatically builds a real-time library object model for it, defining data points and the IO data channel of the substation equipment; the real-time service component is used to obtain a list of physical equipment information in the current network from the IO service station, according to The type automatically creates or deletes the corresponding device instance, and establishes the connection path between the data point and the actual device IO; the HMI graphic configuration tool is used to establish the symbol library of the substation device type, and define the instantiation feature information of the library object , the data acquisition component establishes a connection with the SCADA configuration system through the EIP driver.
在本实施方式中,EIP驱动为FEP服务的驱动方式,其驱动框架对象具体包括:设备管理对象、消息路由对象、以太网接口对象、连接管理对象、UCMM 对象、应用对象和通知管理对象。In this embodiment, the EIP driver is the driving mode of the FEP service, and its driver framework objects specifically include: device management objects, message routing objects, Ethernet interface objects, connection management objects, UCMM objects, application objects, and notification management objects.
在本实施方式中,实时服务组件还通过历史服务、报警服务、FEP驱动服务等功能与HMI图形组态工具建立联系。In this embodiment, the real-time service component also establishes contact with the HMI graphic configuration tool through functions such as history service, alarm service, and FEP drive service.
所述数据库组态工具包括离线对象管理插件,离线对象管理插件包括对子站设备的EDS文件进行解析的EDS解析器,以及用于管理实时库对象模型的模板管理模块;所述实时服务组件包括在线对象管理插件,在线对象管理插件包括用于创建并管理实时库对象模型的对应模型对象的实例,同时将实例和实体设备进行绑定或解绑的实例管理模块、拓扑管理模块和数据处理模块三个功能模块;所述HMI图形组态工具包括即插即用HMI组件,插即用HMI 组件包括用于建立子站设备类型的图符库并定义图府库对象的实例化特征信息图元管理模块和用于在运行时在界面端对数据模型进行展示,进而实现从设备层、数据层到展示层自动关联的配置界面模块。The database configuration tool includes an offline object management plug-in, and the offline object management plug-in includes an EDS resolver for analyzing the EDS file of the substation equipment, and a template management module for managing the real-time library object model; the real-time service component includes Online object management plug-in, the online object management plug-in includes the instance management module, topology management module and data processing module for creating and managing the corresponding model object instance of the real-time library object model, and binding or unbinding the instance and the physical device at the same time Three functional modules; the HMI graphic configuration tool includes a plug-and-play HMI component, and the plug-and-play HMI component includes a symbol library for establishing a substation device type and defines an instantiation feature information graphic element of a library object The management module and the configuration interface module are used to display the data model on the interface side at runtime, and then realize the automatic association from the device layer, data layer to the display layer.
在本实施方式中,In this embodiment,
该SCADA组态系统能根据现场环境的不断变化而做到自适应组态,无需频繁修改工程和下装,减少组态工作量,降低出错概率。The SCADA configuration system can achieve self-adaptive configuration according to the continuous changes of the site environment, without frequent project modification and downloading, reducing configuration workload and error probability.
基于SCADA的自适应组态方法具体包括如下步骤:The SCADA-based adaptive configuration method specifically includes the following steps:
步骤100、建立SCADA系统的IO服务站与现场总线上所有子站设备的通信链路,获取当前现场总线上所有子站设备及其基本信息;Step 100, establish communication links between the IO service station of the SCADA system and all substation devices on the field bus, and obtain all substation devices and their basic information on the current field bus;
通信链路是基于标准总线通信协议(EIP)的通信组件来配置物理网络中的数据采集组件的IP地址,以FEP驱动服务的方式运行于SCADA组态系统的 IO服务站,启动IO服务后,能自动识别所属局域网内所有的子站设备。The communication link is based on the communication component of the standard bus communication protocol (EIP) to configure the IP address of the data acquisition component in the physical network. It runs in the IO service station of the SCADA configuration system in the form of FEP-driven service. After starting the IO service, It can automatically identify all the substation devices in the LAN to which it belongs.
步骤200、使用数据库组态工具建立与设备模型一致的实时库对象模型;按照EIP建模规范对设备对象进行建模,或导入设备的EDS文件自动为其构建数据库对象模型,定义数据点与实际设备的IO数据的通道;Step 200, use the database configuration tool to establish a real-time library object model consistent with the device model; model the device object according to the EIP modeling specification, or import the EDS file of the device to automatically build a database object model for it, define data points and actual The channel of the IO data of the device;
步骤300、实时库对象模型的在线管理,启动实时服务组件,自动加载数据对象动态管理组件,从IO服务站中获取当前网络中的实体设备信息列表,并根据类型自动创建或删除对应的设备实例;Step 300, online management of the real-time library object model, start the real-time service component, automatically load the data object dynamic management component, obtain the current physical device information list in the network from the IO service station, and automatically create or delete the corresponding device instance according to the type ;
步骤400、建立子站设备类型的HIM图符库,定义HIM图府库对象的实例化特征信息,组态子站设备所在的流程图。Step 400, establishing the HIM icon library of the substation equipment type, defining the instantiation feature information of the HIM library object, and configuring the flow chart where the substation equipment is located.
启动HMI图形组态工具的在线程序后,打开流程图,HMI图符对象动态管理组件负责与实时库进行信息交互,动态获取当前实时库中所有EIP类型的实例信息,和本地流程图中已有的图符信息进行比对,动态在流程图中创建或删除设备对应的图符元素,且支持手动在线对所创建的图符进行移动、修改、删除操作,修改后的结果保存且可通过系统的在线数据发布机制将修改后的信息同步到域内的各个站点,下次启动后仍然加载上次编辑过的图形页面。After starting the online program of the HMI graphic configuration tool, open the flow chart, the HMI icon object dynamic management component is responsible for information interaction with the real-time library, and dynamically obtains the instance information of all EIP types in the current real-time library, and the existing Compare the icon information of the device, dynamically create or delete the icon elements corresponding to the equipment in the flow chart, and support the manual online operation of moving, modifying, and deleting the created icons, and the modified results are saved and can be passed through the system The online data publishing mechanism synchronizes the modified information to each site in the domain, and the last edited graphic page will still be loaded after the next startup.
通过该方法组态通用的模型,可适应于灵活多变的现场应用,避免频繁的修改和下装;实现图、模、库一体化,保持高度一致性;也实现了巡检工作的可跟踪性、管理方便,智能分析、便于快速了解设备或设施的健康状况;利用基于标准通信协议解决设备自动接入网络,实现设备自描述、自接入,做到系统自发现、自组态、“零”配置;可广泛地应用于电力、铁路、石油石化、矿山等各个工业生产领域。The common model configured by this method can be adapted to flexible and changeable on-site applications, avoiding frequent modification and downloading; it realizes the integration of diagrams, models and libraries, and maintains a high degree of consistency; it also realizes the traceability of inspection work Features, convenient management, intelligent analysis, easy to quickly understand the health status of equipment or facilities; use the standard communication protocol to solve the automatic connection of equipment to the network, realize self-description and self-connection of equipment, and achieve system self-discovery, self-configuration, " Zero" configuration; it can be widely used in various industrial production fields such as electric power, railway, petroleum and petrochemical, and mining.
以下通过具体实例进一步阐述该组态系统和方法;The configuration system and method are further elaborated below through specific examples;
1、首先,实现IO数据采集组件:实现FEP EIP驱动,启动定时器周期发送ListIdentity命令,以发现和获取当前网段内所有的EIP设备及其基本信息,如设备ID、序列号、IP地址等,将设备列表信息打包上传至实时库,依次向识别到的设备发送RegisterSession命令,与设备建立起连接,保存 SESSION标识,接收实时库发送来的读或写命令,解析命令,向指定的设备发送SendRRData命令,接收设备的响应,解析响应报文,打包数据向实时库回送,EIP驱动和实时库采用指定的数据通道进行信息交互,信息格式为XML数据包,分为两步:1. First, implement the IO data acquisition component: implement the FEP EIP driver, start the timer and periodically send the ListIdentity command to discover and obtain all EIP devices and their basic information in the current network segment, such as device ID, serial number, IP address, etc. , upload the device list information to the real-time library, send the RegisterSession command to the identified device in turn, establish a connection with the device, save the SESSION ID, receive the read or write command sent by the real-time library, parse the command, and send it to the specified device The SendRRData command receives the response from the device, parses the response message, packs the data and sends it back to the real-time library. The EIP driver and the real-time library use the specified data channel for information interaction. The information format is XML data packets, which are divided into two steps:
第一步:上传设备信息通道,FEP—实时库,信息格式:Step 1: Upload device information channel, FEP—real-time library, information format:
第二步:接收命令信息通道,实时库——→FEP,信息格式:Step 2: Receive command information channel, real-time library ——→ FEP, information format:
③上传设备响应信息,FEP——→实时库,信息格式:③Upload device response information, FEP——→real-time library, information format:
2、数据库建模:使用类库组态工具,建立与设备模型一致的实时库设备模型,定义EIP_Device类型的设备,定义EIP_Device设备类的两个子对象:IdentityObj,AssembleObject分别对应EIP设备中的标识对象和组件 (I/O集合)对象,定义IdentityObj的子对象,类型为SI,分别保存设备的序列号、产品型号、设备类型、版本号、状态、IP地址、生产厂商编号、设备名,定义AssembleObj的子对象,类型为AI,对应于EIP设备的一个 IO数据点,设备模型结构如图7所示。2. Database modeling: use the class library configuration tool to establish a real-time library device model consistent with the device model, define the device of the EIP_Device type, and define two sub-objects of the EIP_Device device class: IdentityObj and AssembleObject respectively correspond to the identification objects in the EIP device And component (I/O collection) object, define the sub-object of IdentityObj, the type is SI, respectively save the serial number, product model, device type, version number, status, IP address, manufacturer number, device name of the device, define AssembleObj The sub-object of , whose type is AI, corresponds to an IO data point of the EIP device, and the structure of the device model is shown in Figure 7.
3:数据库对象在线管理:实时库插件负责动态管理预置实例(动态绑定和接触绑定),构建请求报文,解析回应报文,提供HMI组件的访问接口,实时库插件在实时库服务运行时被加载,通过数据通道获得当前网络中的设备列表,获得设备的序列号,然后和相应的设备实例对象进行管理包括:绑定时向设备实例写的IP地址、序列号信息,同时初始化设备实例的其他相关字段;解除绑定时,清空该实例的IP地址、序列号信息;程序内部维护实例映射表;将设备序列号和已绑定的设备实例号存入热数据,以便在该设备下次上线时继续绑定到该实例对象上,如图8所示。3: Online management of database objects: the real-time library plug-in is responsible for dynamically managing preset instances (dynamic binding and contact binding), constructing request messages, parsing response messages, and providing access interfaces for HMI components. The real-time library plug-ins serve in the real-time library It is loaded at runtime, obtains the list of devices in the current network through the data channel, obtains the serial number of the device, and then manages with the corresponding device instance object, including: writing the IP address and serial number information to the device instance when binding, and initializing at the same time Other related fields of the device instance; when unbinding, clear the IP address and serial number information of the instance; maintain the instance mapping table inside the program; store the device serial number and the bound device instance number in hot data, so that the The next time the device goes online, it will continue to be bound to the instance object, as shown in Figure 8.
存储设备和绑定实例的热数据格式:Hot data format for storage devices and bound instances:
获取设备IO数据的过程:获得当前有效的设备实例号和其IP地址;获得该实例下的Assemble类型的对象,同时获得其实例编号;获得Assemble 类型对象下的所有AI点对象,同时获得各对象的编号和偏移地址;根据获得的对象信息拼接EIP对象访问路径;周期向FEP发送读命令,传入设备IP 地址、命令号、会话标识、访问路径;从数据接收通道接收返回报文,通过设备IP地址、命令号、会话标识、访问路径、数据值信息向指定的实时库点写值。The process of obtaining device IO data: obtain the currently effective device instance number and its IP address; obtain the Assemble type object under the instance, and obtain its instance number; obtain all AI point objects under the Assemble type object, and obtain each object at the same time The number and offset address of the EIP object; splicing the EIP object access path according to the obtained object information; periodically sending the read command to the FEP, and passing in the device IP address, command number, session ID, and access path; receiving the return message from the data receiving channel, through The device IP address, command number, session ID, access path, and data value information write values to the specified real-time library point.
写设备IO数据的过程:HMI组件调用实时库接口,将需要被置值的点名和值传送给实时库插件;实时库插件根据点名找到对应的设备实例信息;根据实例信息拼接EIP对象访问路径;向FEP发送写命令,传入设备IP地址、命令号、会话标识、访问路径、写入值。The process of writing device IO data: the HMI component calls the real-time library interface, and transmits the call name and value that need to be set to the real-time library plug-in; the real-time library plug-in finds the corresponding device instance information according to the call name; stitches the EIP object access path according to the instance information; Send a write command to FEP, and pass in the device IP address, command number, session ID, access path, and write value.
4、HMI在线管理插件:以ocx控件的形式提供,使用图形组态工具插入该组件对象;周期向实时库请求当前有效的设备实例对象PID;遍历设备实例对象下的Idengtity对象和Assemble对象;动态绘制设备图元;提供参数窗口和参数面板,调用实时库接口获取数据点值或向实时库写值;后台执行数据保存与同步。4. HMI online management plug-in: provided in the form of ocx control, use the graphical configuration tool to insert the component object; periodically request the current valid device instance object PID from the real-time library; traverse the Identity object and Assemble object under the device instance object; dynamically Draw device primitives; provide parameter windows and parameter panels, call the real-time library interface to obtain data point values or write values to the real-time library; perform data saving and synchronization in the background.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the invention is not limited to the details of the above-described exemplary embodiments, but that the invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the elements are embraced in the present invention. Any reference sign in a claim should not be construed as limiting the claim concerned.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810645031.0A CN108847979B (en) | 2018-06-21 | 2018-06-21 | A SCADA-based self-adaptive configuration system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810645031.0A CN108847979B (en) | 2018-06-21 | 2018-06-21 | A SCADA-based self-adaptive configuration system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108847979A true CN108847979A (en) | 2018-11-20 |
CN108847979B CN108847979B (en) | 2021-10-01 |
Family
ID=64203560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810645031.0A Active CN108847979B (en) | 2018-06-21 | 2018-06-21 | A SCADA-based self-adaptive configuration system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108847979B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109656214A (en) * | 2018-12-26 | 2019-04-19 | 浙江中控技术股份有限公司 | A kind of configuration data synchronous method and device |
CN109901830A (en) * | 2019-02-21 | 2019-06-18 | 苏州宏软信息技术有限公司 | A kind of symbol arranging method and system for scada system development |
CN110058879A (en) * | 2019-04-08 | 2019-07-26 | 浙江天正电气股份有限公司 | A kind of quick configuration method of intelligent terminal |
CN110865619A (en) * | 2019-11-26 | 2020-03-06 | 国核自仪系统工程有限公司 | DCS system signal flow configuration module |
CN111026307A (en) * | 2019-12-11 | 2020-04-17 | 新奥数能科技有限公司 | Method and device for quickly associating graphics primitives in graphics configuration tool |
CN111240209A (en) * | 2020-03-16 | 2020-06-05 | 广东工业大学 | Adaptive configuration method and system for configuration dynamic control type optimal linkage response |
CN111781890A (en) * | 2020-07-14 | 2020-10-16 | 厦门海为科技有限公司 | Multi-equipment engineering communication method and system in configuration engineering |
CN112650175A (en) * | 2020-12-21 | 2021-04-13 | 佳都新太科技股份有限公司 | Self-configuration method and system of environment control equipment, computer equipment and storage medium |
CN113093686A (en) * | 2021-04-14 | 2021-07-09 | 宁波和利时智能科技有限公司 | SCADA-based automatic configuration modeling method and related device |
CN113343409A (en) * | 2021-04-14 | 2021-09-03 | 宁波和利时智能科技有限公司 | Visual configuration method and device based on virtual equipment |
CN113625674A (en) * | 2021-08-23 | 2021-11-09 | 江苏南方通信科技有限公司 | Method for constructing configured SCADA system suitable for large-scale complex production line |
CN114625039A (en) * | 2021-12-07 | 2022-06-14 | 浙江中控技术股份有限公司 | A method for monitoring and displaying data based on SCADA and 3D effect in the pharmaceutical industry |
CN117079652A (en) * | 2023-10-16 | 2023-11-17 | 明度智云(浙江)科技有限公司 | SCADA system voice control method, SCADA system voice control device and SCADA system server |
CN117806256A (en) * | 2023-12-29 | 2024-04-02 | 北京东土科技股份有限公司 | A configuration method and device for field equipment, a networking method and a PLC controller |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101056250A (en) * | 2007-04-12 | 2007-10-17 | 中控科技集团有限公司 | Method and system for operation and management of real time information |
CN103376784A (en) * | 2012-04-23 | 2013-10-30 | 长沙日晶电器科技开发有限公司 | Intelligent remote transformer substation monitoring system |
CN104052151A (en) * | 2014-05-14 | 2014-09-17 | 国家电网公司 | Substation intelligent auxiliary comprehensive monitoring and D5000 comprehensive linkage platform |
CN106532960A (en) * | 2016-12-23 | 2017-03-22 | 烟台东方威思顿电气股份有限公司 | Adaptive SCADA monitoring method applicable to power supply and power distribution field |
CN106911529A (en) * | 2015-12-22 | 2017-06-30 | 国网青海省电力公司 | Power network industry control safety detecting system based on protocol analysis |
CN107069950A (en) * | 2016-12-30 | 2017-08-18 | 国网天津市电力公司 | Automatic identifying method and system of a kind of distribution main website to terminal device |
-
2018
- 2018-06-21 CN CN201810645031.0A patent/CN108847979B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101056250A (en) * | 2007-04-12 | 2007-10-17 | 中控科技集团有限公司 | Method and system for operation and management of real time information |
CN103376784A (en) * | 2012-04-23 | 2013-10-30 | 长沙日晶电器科技开发有限公司 | Intelligent remote transformer substation monitoring system |
CN104052151A (en) * | 2014-05-14 | 2014-09-17 | 国家电网公司 | Substation intelligent auxiliary comprehensive monitoring and D5000 comprehensive linkage platform |
CN106911529A (en) * | 2015-12-22 | 2017-06-30 | 国网青海省电力公司 | Power network industry control safety detecting system based on protocol analysis |
CN106532960A (en) * | 2016-12-23 | 2017-03-22 | 烟台东方威思顿电气股份有限公司 | Adaptive SCADA monitoring method applicable to power supply and power distribution field |
CN107069950A (en) * | 2016-12-30 | 2017-08-18 | 国网天津市电力公司 | Automatic identifying method and system of a kind of distribution main website to terminal device |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109656214A (en) * | 2018-12-26 | 2019-04-19 | 浙江中控技术股份有限公司 | A kind of configuration data synchronous method and device |
CN109901830A (en) * | 2019-02-21 | 2019-06-18 | 苏州宏软信息技术有限公司 | A kind of symbol arranging method and system for scada system development |
CN109901830B (en) * | 2019-02-21 | 2022-04-08 | 苏州宏软信息技术有限公司 | Signal configuration method and system for scada system development |
CN110058879B (en) * | 2019-04-08 | 2023-06-09 | 浙江天正电气股份有限公司 | Rapid configuration method for intelligent terminal |
CN110058879A (en) * | 2019-04-08 | 2019-07-26 | 浙江天正电气股份有限公司 | A kind of quick configuration method of intelligent terminal |
CN110865619A (en) * | 2019-11-26 | 2020-03-06 | 国核自仪系统工程有限公司 | DCS system signal flow configuration module |
CN110865619B (en) * | 2019-11-26 | 2022-09-27 | 国核自仪系统工程有限公司 | DCS system signal flow configuration module |
CN111026307B (en) * | 2019-12-11 | 2021-07-30 | 新奥数能科技有限公司 | Method and device for quickly associating graphics primitives in graphics configuration tool |
CN111026307A (en) * | 2019-12-11 | 2020-04-17 | 新奥数能科技有限公司 | Method and device for quickly associating graphics primitives in graphics configuration tool |
US11340562B2 (en) | 2020-03-16 | 2022-05-24 | Guangdong University Of Technology | Self-adaptive configuration method and system for linkage response of construction type, motion type, control type and optimization type |
CN111240209A (en) * | 2020-03-16 | 2020-06-05 | 广东工业大学 | Adaptive configuration method and system for configuration dynamic control type optimal linkage response |
CN111781890A (en) * | 2020-07-14 | 2020-10-16 | 厦门海为科技有限公司 | Multi-equipment engineering communication method and system in configuration engineering |
CN112650175A (en) * | 2020-12-21 | 2021-04-13 | 佳都新太科技股份有限公司 | Self-configuration method and system of environment control equipment, computer equipment and storage medium |
CN113343409A (en) * | 2021-04-14 | 2021-09-03 | 宁波和利时智能科技有限公司 | Visual configuration method and device based on virtual equipment |
CN113343409B (en) * | 2021-04-14 | 2022-05-17 | 宁波和利时智能科技有限公司 | A visual configuration method and device based on virtual equipment |
CN113093686A (en) * | 2021-04-14 | 2021-07-09 | 宁波和利时智能科技有限公司 | SCADA-based automatic configuration modeling method and related device |
CN113625674A (en) * | 2021-08-23 | 2021-11-09 | 江苏南方通信科技有限公司 | Method for constructing configured SCADA system suitable for large-scale complex production line |
CN114625039A (en) * | 2021-12-07 | 2022-06-14 | 浙江中控技术股份有限公司 | A method for monitoring and displaying data based on SCADA and 3D effect in the pharmaceutical industry |
CN117079652A (en) * | 2023-10-16 | 2023-11-17 | 明度智云(浙江)科技有限公司 | SCADA system voice control method, SCADA system voice control device and SCADA system server |
CN117079652B (en) * | 2023-10-16 | 2024-01-30 | 明度智云(浙江)科技有限公司 | SCADA system voice control method, SCADA system voice control device and SCADA system server |
CN117806256A (en) * | 2023-12-29 | 2024-04-02 | 北京东土科技股份有限公司 | A configuration method and device for field equipment, a networking method and a PLC controller |
Also Published As
Publication number | Publication date |
---|---|
CN108847979B (en) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108847979A (en) | A kind of adaptive configuration system and method based on SCADA | |
CN112187632B (en) | Industrial equipment integration model and construction method, edge gateway device and industrial equipment integration system | |
Loy et al. | Open control networks: LonWorks/EIA 709 technology | |
CN103248512B (en) | The generation method and system of application layer topological structure in communication network | |
CN112235130A (en) | Method and device for realizing operation and maintenance automation based on SDN network | |
CN106790222B (en) | MODBUS/full-interconnection manufacturing network information service adapter and implementation method thereof | |
CN108306804A (en) | A kind of Ethercat main station controllers and its communication means and system | |
CN108989358A (en) | One kind being based on ICP/IP protocol frame operation data acquisition methods | |
CN105794152A (en) | Web-based interaction with building automation | |
CN102013998A (en) | Tr-069 protocol-based management method for realizing home network | |
Miori et al. | Interoperability of home automation systems as a critical challenge for IoT | |
CN105681285A (en) | Method for obtaining information of heterogeneous industrial signal source | |
CN103036934A (en) | Wide area network clustered deployment system and method based on mirror image | |
CN114363164A (en) | Cloud network service arrangement control method and system, storage medium and electronic equipment | |
CN109361585A (en) | A kind of method that child node baud rate and address is arranged in host node automatically | |
CN115516387A (en) | Internet of things linkage device and method of original automatic control system based on field bus | |
CN114500275B (en) | Equipment plug and play identification method based on edge gateway | |
CN103414595B (en) | Power dispatch data network link monitoring system topological drawing generating method | |
CN114466039A (en) | OPCUA communication system and method based on 5G private network | |
CN115756472B (en) | Cloud-edge cooperative industrial equipment digital twin operation monitoring method and system | |
CN111026662A (en) | Remote debugging method, system and medium for terminal equipment of Internet of things | |
CN116094919A (en) | Communication network operation method, device and system and electronic equipment | |
Li et al. | Research on designing methods of the secondary system in digital substation | |
CN115208058A (en) | Plug and play method and system for distributed power distribution terminal | |
Walcher et al. | KNX to MQTT/AMQP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20181122 Address after: Room 210-668, 2nd floor, 003 Chuangyuan Road, 750, Ningbo High-tech Zone, Zhejiang Province, 315000 Applicant after: NINGBO HELISHI INTELLIGENT TECHNOLOGY Co.,Ltd. Applicant after: BEIJING HOLLYSYS AUTOMATION & DRIVE Co.,Ltd. Address before: 100176 Floor 5 510-1515, No. 1 Building, No. 2 Courtyard, Dishengzhong Road, Daxing District Economic and Technological Development Zone, Beijing Applicant before: BEIJING HOLLYSYS AUTOMATION & DRIVE Co.,Ltd. Applicant before: Xi'an HollySys System Engineering Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 5-7, No.38, building 7, East District, Ningbo new material innovation center, Ningbo hi tech Zone, 315000, Zhejiang Province Patentee after: Hollysys Kauber Technology Co.,Ltd. Patentee after: BEIJING HOLLYSYS AUTOMATION & DRIVE Co.,Ltd. Address before: Room 210-668, 2nd floor, 003 Chuangyuan Road, 750, Ningbo High-tech Zone, Zhejiang Province, 315000 Patentee before: NINGBO HELISHI INTELLIGENT TECHNOLOGY Co.,Ltd. Patentee before: BEIJING HOLLYSYS AUTOMATION & DRIVE Co.,Ltd. |
|
CP03 | Change of name, title or address |