CN114901200A - Advanced basket drive mode - Google Patents
Advanced basket drive mode Download PDFInfo
- Publication number
- CN114901200A CN114901200A CN202080091164.3A CN202080091164A CN114901200A CN 114901200 A CN114901200 A CN 114901200A CN 202080091164 A CN202080091164 A CN 202080091164A CN 114901200 A CN114901200 A CN 114901200A
- Authority
- CN
- China
- Prior art keywords
- basket
- robotic
- movement
- preprogrammed
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 232
- 230000003993 interaction Effects 0.000 claims abstract description 45
- 230000004044 response Effects 0.000 claims abstract description 45
- 230000009471 action Effects 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 147
- 230000007246 mechanism Effects 0.000 claims description 29
- 210000003484 anatomy Anatomy 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 17
- 238000010079 rubber tapping Methods 0.000 claims description 15
- 230000003252 repetitive effect Effects 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 abstract description 24
- 239000004575 stone Substances 0.000 description 47
- 201000009160 urethral calculus Diseases 0.000 description 36
- 230000008569 process Effects 0.000 description 33
- 210000003734 kidney Anatomy 0.000 description 19
- 206010029148 Nephrolithiasis Diseases 0.000 description 17
- 238000003780 insertion Methods 0.000 description 17
- 230000037431 insertion Effects 0.000 description 17
- 208000000913 Kidney Calculi Diseases 0.000 description 15
- 230000006870 function Effects 0.000 description 14
- 230000008901 benefit Effects 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 11
- 210000003708 urethra Anatomy 0.000 description 11
- 238000013500 data storage Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 238000003860 storage Methods 0.000 description 7
- 210000003932 urinary bladder Anatomy 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 210000000626 ureter Anatomy 0.000 description 5
- 210000001635 urinary tract Anatomy 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000002262 irrigation Effects 0.000 description 4
- 238000003973 irrigation Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002324 minimally invasive surgery Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 206010007027 Calculus urinary Diseases 0.000 description 2
- 241001164374 Calyx Species 0.000 description 2
- 206010073306 Exposure to radiation Diseases 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 208000009911 Urinary Calculi Diseases 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000000621 bronchi Anatomy 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002504 lithotomy Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000011022 operating instruction Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 208000008281 urolithiasis Diseases 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010038478 Renal lithiasis Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 208000006568 Urinary Bladder Calculi Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 238000002574 cystoscopy Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002575 gastroscopy Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002686 lithotriptor Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- -1 plastics Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 208000008918 voyeurism Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00006—Operational features of endoscopes characterised by electronic signal processing of control signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
- A61B1/00149—Holding or positioning arrangements using articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/307—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the urinary organs, e.g. urethroscopes, cystoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/221—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Leader-follower robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
- A61B2034/742—Joysticks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
- A61B2034/743—Keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
- A61B2034/744—Mouse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
- A61B2090/066—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Urology & Nephrology (AREA)
- Signal Processing (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
- Endoscopes (AREA)
- Centrifugal Separators (AREA)
Abstract
本发明提供一种机器人系统,该机器人系统包括机器人操纵器,该机器人操纵器被配置成:操纵具有篮子的医疗器械;以第一打开速度和更快的第二打开速度打开该篮子;以及以第一关闭速度和更快的第二关闭速度关闭该篮子。该系统包括输入装置,该输入装置被配置成接收一个或多个用户交互并通过该机器人操纵器引发一个或多个动作,包括直接控制的移动和/或预编程的运动。该机器人系统的控制电路被配置成:响应于经由该输入装置接收到第一用户交互,触发该机器人操纵器的第一预编程运动,从而以该更快的第二打开速度打开该篮子;以及响应于经由该输入装置接收到第二用户交互,触发第二预编程运动,从而以该更快的第二关闭速度关闭该篮子。
The present invention provides a robotic system comprising a robotic manipulator configured to: manipulate a medical instrument having a basket; open the basket at a first opening speed and a second, faster opening speed; and The first closing speed and the faster second closing speed close the basket. The system includes an input device configured to receive one or more user interactions and induce one or more actions, including directly controlled movements and/or pre-programmed movements, through the robotic manipulator. The control circuitry of the robotic system is configured to: in response to receiving a first user interaction via the input device, trigger a first pre-programmed movement of the robotic manipulator to open the basket at the faster second opening speed; and In response to receiving a second user interaction via the input device, a second preprogrammed motion is triggered to close the basket at the faster second closing speed.
Description
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本专利申请要求于2019年12月31日提交的名称为“高级篮式驱动模式(ADVANCEDBASKET DRIVE MODE)”的美国临时专利申请序号62/956,071的优先权,该美国临时专利申请的公开内容据此全文以引用方式并入。This patent application claims priority to US Provisional Patent Application Serial No. 62/956,071, filed December 31, 2019, entitled "ADVANCEDBASKET DRIVE MODE," the disclosure of which is hereby The entire text is incorporated by reference.
背景技术Background technique
技术领域technical field
本公开涉及医疗装置和规程以及用户界面的领域。The present disclosure relates to the fields of medical devices and procedures and user interfaces.
相关技术的描述Description of Related Art
各种医疗规程涉及使用被配置成穿透人体解剖结构以到达治疗部位的一个或多个装置。某些操作过程可涉及将一个或多个装置插入穿过患者的皮肤或孔口以到达治疗部位并从患者体中抽取对象(诸如尿道结石)。Various medical procedures involve the use of one or more devices configured to penetrate human anatomy to reach a treatment site. Certain procedures may involve inserting one or more devices through a patient's skin or orifice to reach a treatment site and extract objects, such as urethral stones, from the patient.
发明内容SUMMARY OF THE INVENTION
本文描述了一种或多种系统、装置和/或方法,用于帮助医师或其他人控制医疗器械进入位于人体解剖结构内的对象(诸如尿道结石)。Described herein is one or more systems, devices, and/or methods for assisting a physician or other person in controlling the access of medical devices to objects located within human anatomy, such as urethral stones.
一个一般方面包括一种用于执行医疗规程的机器人系统,该机器人系统包括机器人操纵器,该机器人操纵器被配置成:操纵具有篮子的医疗器械,该医疗器械被配置成进入人体解剖结构;以第一打开速度和比该第一打开速度快的第二打开速度打开该篮子;以及以第一关闭速度和比该第一关闭速度快的第二关闭速度关闭该篮子。该系统可包括输入装置,该输入装置被配置成接收一个或多个用户交互并通过该机器人操纵器引发一个或多个动作,该一个或多个动作包括直接控制的移动和预编程的运动中的至少一者。该系统还可包括控制电路,该控制电路通信地联接到该输入装置和该机器人操纵器并且被配置成:响应于经由该输入装置接收到第一用户交互,触发该机器人操纵器的第一预编程运动,该第一预编程运动包括以该第二打开速度打开该篮子;以及响应于经由该输入装置接收到第二用户交互,触发该机器人操纵器的第二预编程运动,该第二预编程运动包括以该第二关闭速度关闭该篮子。该方面的其他实施方案包括对应的计算机系统、设备和记录在一个或多个计算机存储装置上的计算机程序,每个计算机程序被配置为执行这些方法的动作。One general aspect includes a robotic system for performing a medical procedure, the robotic system including a robotic manipulator configured to: manipulate a medical instrument having a basket, the medical instrument configured to enter a human anatomy; opening the basket at a first opening speed and a second opening speed faster than the first opening speed; and closing the basket at a first closing speed and a second closing speed faster than the first closing speed. The system may include an input device configured to receive one or more user interactions and induce one or more actions through the robotic manipulator, the one or more actions including directly controlled movements and pre-programmed movements in at least one of. The system may also include control circuitry communicatively coupled to the input device and the robotic manipulator and configured to trigger a first preset of the robotic manipulator in response to receiving a first user interaction via the input device programming a movement, the first pre-programmed movement comprising opening the basket at the second opening speed; and triggering a second pre-programmed movement of the robotic manipulator in response to receiving a second user interaction via the input device, the second pre-programmed movement Programming the movement includes closing the basket at the second closing speed. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each computer program being configured to perform the acts of the methods.
该机器人系统的具体实施可包括以下特征中的一个或多个特征。该机器人系统可包括输尿管镜。该医疗规程可包括输尿管镜检查。该输入装置可包括控制垫,该控制垫具有:多个方向控件,该多个方向控件被配置成引导该机器人操纵器沿着多个轴线的移动;和多个按钮,该多个按钮包括第一按钮和第二按钮。该第一用户交互可包括双击第一按钮。该第二用户交互可包括双击第二按钮。该控制电路可被进一步配置成:响应于同时轻敲该第一按钮和该第二按钮,触发该机器人操纵器的第三预编程运动,该第三预编程运动包括以加速的速度进行的重复、短距离、向前和向后移动。该控制电路可被进一步配置成:响应于接收到第三用户交互,触发该机器人操纵器的第三预编程运动,该第三预编程运动包括以加速的速度进行的重复、短距离、向前和向后移动。该第二预编程运动还可包括:检测该篮子的驱动机构上的扭矩;以及响应于该扭矩超过阈值,停止该篮子的该关闭。该第一用户交互和/或该第二用户交互可包括语音命令。所描述的技术的具体实施可包括硬件、方法或过程或计算机可访问介质上的计算机软件。Implementations of the robotic system may include one or more of the following features. The robotic system may include a ureteroscope. The medical procedure may include ureteroscopy. The input device may include a control pad having: a plurality of directional controls configured to guide movement of the robotic manipulator along a plurality of axes; and a plurality of buttons including a first A button and a second button. The first user interaction may include double-clicking the first button. The second user interaction may include double-clicking the second button. The control circuit may be further configured to trigger a third pre-programmed movement of the robotic manipulator, the third pre-programmed movement comprising repetitions at an accelerated speed in response to the simultaneous tapping of the first button and the second button , short distance, forward and backward movement. The control circuit may be further configured to: in response to receiving a third user interaction, trigger a third pre-programmed movement of the robotic manipulator, the third pre-programmed movement comprising repeated, short distance, forward movement at an accelerated speed and move backwards. The second preprogrammed movement may also include: detecting a torque on a drive mechanism of the basket; and ceasing the closing of the basket in response to the torque exceeding a threshold. The first user interaction and/or the second user interaction may include voice commands. Implementations of the described techniques may include hardware, methods or processes, or computer software on a computer-accessible medium.
一般方面包括一种用于使用机器人操纵器控制医疗器械的方法。该方法可包括:使用该机器人操纵器操纵医疗器械,该医疗器械包括篮子以进入人体解剖结构,该机器人操纵器被配置成以第一打开速度和第二打开速度打开该篮子,该机器人操纵器被进一步配置成以第一关闭速度和第二关闭速度关闭该篮子;经由输入装置接收用于触发该机器人操纵器的预编程动作的一个或多个用户交互。该方法还可包括响应于经由该输入装置接收到第一用户交互,触发该机器人操纵器的第一预编程运动,该第一预编程包括以该第二打开速度打开该篮子,该第二打开速度比该第一打开速度快。该方法还可包括响应于经由该输入装置接收到第二用户交互,触发该机器人操纵器的第二预编程运动,该第二预编程运动包括以该第二关闭速度关闭该篮子,该第二关闭速度比该第一关闭速度快。该方面的其他实施方案包括对应的计算机系统、设备和记录在一个或多个计算机存储装置上的计算机程序,每个计算机程序被配置为执行这些方法的动作。General aspects include a method for controlling a medical device using a robotic manipulator. The method may include manipulating a medical instrument using the robotic manipulator, the medical instrument including a basket to access human anatomy, the robotic manipulator being configured to open the basket at a first opening speed and a second opening speed, the robotic manipulator being further configured to close the basket at a first closing speed and a second closing speed; and receiving one or more user interactions via the input device for triggering preprogrammed actions of the robotic manipulator. The method may also include triggering a first preprogrammed motion of the robotic manipulator in response to receiving a first user interaction via the input device, the first preprogrammed including opening the basket at the second opening speed, the second opening The speed is faster than this first opening speed. The method may also include triggering a second preprogrammed movement of the robotic manipulator in response to receiving a second user interaction via the input device, the second preprogrammed movement including closing the basket at the second closing speed, the second The closing speed is faster than the first closing speed. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each computer program being configured to perform the acts of the methods.
该方法的具体实施可包括以下特征中的一个或多个特征。该第一用户交互可包括双击该输入装置的第一按钮,并且第二用户交互可包括双击该输入装置的第二按钮。该方法还可包括响应于同时轻敲该第一按钮和该第二按钮,触发该机器人操纵器的第三预编程运动,该第三预编程运动包括以加速的速度进行的重复、短距离、向前和向后移动。该方法还可包括:响应于在该输入装置上接收到沿着第一轴线的移动输入,沿着该第一轴线移动该机器人操纵器的该第三预编程运动的中心轨迹;以及在该中心轨迹处重复该短距离、向前和向后移动。该第三预编程运动还可包括重复的旋转移动。该方法还可包括使用该机器人操纵器操纵内窥镜进入人体解剖结构,该内窥镜被配置成捕获该医疗器械在该人体解剖结构内的图像。该方法还可包括:经由输入装置接收用于直接控制该医疗器械的移动的第三用户交互;以及使用该机器人操纵器,基于该接收的第三用户交互来沿着一个或多个移动轴线操纵该医疗器械。该第二预编程运动还可包括:检测该篮子的驱动机构上的扭矩;以及响应于该扭矩超过阈值,停止该篮子的该关闭。所描述的技术的具体实施可包括硬件、方法或过程或计算机可访问介质上的计算机软件。Implementations of the method may include one or more of the following features. The first user interaction may include double-clicking a first button of the input device, and the second user interaction may include double-clicking a second button of the input device. The method may also include triggering a third pre-programmed movement of the robotic manipulator in response to the simultaneous tapping of the first button and the second button, the third pre-programmed movement comprising repetitive, short distance, Move forward and backward. The method may further include: in response to receiving a movement input along a first axis on the input device, moving a center trajectory of the third preprogrammed motion of the robotic manipulator along the first axis; and at the center The short distance, forward and backward movement is repeated at the track. The third preprogrammed movement may also include repeated rotational movements. The method may also include manipulating an endoscope into a human anatomy using the robotic manipulator, the endoscope being configured to capture images of the medical instrument within the human anatomy. The method may also include: receiving, via an input device, a third user interaction for directly controlling movement of the medical instrument; and using the robotic manipulator to manipulate along one or more axes of movement based on the received third user interaction the medical device. The second preprogrammed movement may also include: detecting a torque on a drive mechanism of the basket; and ceasing the closing of the basket in response to the torque exceeding a threshold. Implementations of the described techniques may include hardware, methods or processes, or computer software on a computer-accessible medium.
一般方面包括一种用于控制用于执行医疗规程的机器人装置的控制系统。该控制系统可包括输入装置,该输入装置被配置成接收一个或多个用户交互并通过该机器人装置引发一个或多个动作,该一个或多个动作包括直接控制的移动和预编程的运动中的至少一者。该控制系统还可包括通信接口,该通信接口被配置成向该机器人装置发送对应于该直接控制的移动和该预编程的运动的命令,该命令包括:由该机器人装置移动具有篮子的医疗器械,该医疗器械被配置成进入人体解剖结构;以第一打开速度和比该第一打开速度快的第二打开速度打开该篮子;以及以第一关闭速度和比该第一关闭速度快的第二关闭速度关闭该篮子。该控制系统还可包括控制电路,该控制电路通信地联接到该输入装置和该通信接口,该控制电路被配置成:响应于接收到第一用户交互,触发该机器人装置的第一预编程运动,该第一预编程运动包括以该第二打开速度打开该篮子;以及响应于接收到第二用户交互,触发该机器人装置的第二预编程运动,该第二预编程包括以该第二关闭速度关闭该篮子。该方面的其他实施方案包括对应的计算机系统、设备和记录在一个或多个计算机存储装置上的计算机程序,每个计算机程序被配置为执行这些方法的动作。General aspects include a control system for controlling a robotic device for performing medical procedures. The control system may include an input device configured to receive one or more user interactions and induce one or more actions through the robotic device, the one or more actions including directly controlled movements and pre-programmed movements in at least one of. The control system may also include a communication interface configured to send commands to the robotic device corresponding to the directly controlled movement and the preprogrammed movement, the commands comprising: moving, by the robotic device, a medical instrument with a basket , the medical device is configured to enter human anatomy; open the basket at a first opening speed and a second opening speed faster than the first opening speed; and open the basket at a first closing speed and a first closing speed faster than the first closing speed Two closing speeds close the basket. The control system may also include control circuitry communicatively coupled to the input device and the communication interface, the control circuitry configured to trigger a first preprogrammed movement of the robotic device in response to receiving a first user interaction , the first preprogrammed movement includes opening the basket at the second opening speed; and in response to receiving a second user interaction, triggering a second preprogrammed movement of the robotic device, the second preprogramming comprising closing at the second Speed closes the basket. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each computer program being configured to perform the acts of the methods.
该控制系统的具体实施可包括以下特征中的一个或多个特征。该输入装置可包括:方向控件,该方向控件被配置成引导该机器人装置沿着多个轴线的移动;和多个按钮,该多个按钮包括被配置成触发该第一预编程运动的第一按钮和被配置成触发该第二预编程运动的第二按钮。双击该第一按钮可触发该第一预编程运动并且双击该第二按钮可触发该第二预编程运动。单击该第一按钮可触发与该第一预编程运动不同的第三预编程运动并且单击该第二按钮可触发与该第二预编程运动不同的第四预编程运动。该控制电路可被进一步配置成:响应于同时轻敲该第一按钮和该第二按钮,触发该机器人装置的第三预编程运动,该第三预编程运动包括以加速的速度进行的重复、短距离、向前和向后移动。该控制电路可被进一步配置成:响应于经由该方向控件接收到沿着第一轴线的移动请求,沿着该第一轴线移动该机器人装置的该第三预编程运动的中心轨迹;以及在该中心轨迹处重复该短距离、向前和向后移动。该输入装置可包括麦克风,该麦克风被配置成捕获声音用户命令;并且该控制电路被进一步配置成识别对应于该第一用户交互的第一声音用户命令,以及对应于该第二用户交互的第二声音用户命令。该机器人装置可位于与该控制系统的第二地理位置不同的第一地理位置处;并且该通信接口被进一步配置成通过广域网发送该命令。所描述的技术的具体实施可包括硬件、方法或过程或计算机可访问介质上的计算机软件。Specific implementations of the control system may include one or more of the following features. The input device may include: a directional control configured to direct movement of the robotic device along a plurality of axes; and a plurality of buttons including a first configured to trigger the first preprogrammed movement A button and a second button configured to trigger the second preprogrammed movement. Double-tapping the first button triggers the first pre-programmed movement and double-tapping the second button triggers the second pre-programmed movement. Clicking the first button triggers a third pre-programmed movement different from the first pre-programmed movement and clicking the second button triggers a fourth pre-programmed movement different from the second pre-programmed movement. The control circuit may be further configured to trigger a third pre-programmed movement of the robotic device in response to the simultaneous tapping of the first button and the second button, the third pre-programmed movement comprising repetitions at an accelerated speed, Short distances, forwards and backwards. The control circuit may be further configured to: in response to receiving a movement request along the first axis via the directional control, move the center trajectory of the third preprogrammed motion of the robotic device along the first axis; and at the This short distance, forward and backward movement is repeated at the center track. The input device may include a microphone configured to capture voice user commands; and the control circuit is further configured to identify a first voice user command corresponding to the first user interaction and a first voice user command corresponding to the second user interaction Two voice user commands. The robotic device may be located at a first geographic location different from the second geographic location of the control system; and the communication interface is further configured to send the command over a wide area network. Implementations of the described techniques may include hardware, methods or processes, or computer software on a computer-accessible medium.
一个一般方面包括一个或多个非暂态计算机可读介质,该一个或多个非暂态计算机可读介质存储计算机可执行指令,当由控制电路执行时,该计算机可执行指令致使该控制电路执行包括以下项的操作:使用机器人装置操纵医疗器械,该医疗器械包括篮子以进入人体解剖结构,该机器人装置被配置成以第一打开速度和第二打开速度打开该篮子,该机器人装置被进一步配置成以第一关闭速度和第二关闭速度关闭该篮子;经由输入装置接收用于触发该机器人装置的预编程动作的一个或多个输入;响应于经由该输入装置接收到第一输入,触发该机器人装置的第一预编程运动,该第一预编程运动包括以该第二打开速度打开该篮子,该第二打开速度比该第一打开速度快;以及响应于经由该输入装置接收到第二输入,触发该机器人装置的第二预编程运动,该第二预编程包括以该第二关闭速度关闭该篮子,该第二关闭速度比该第一关闭速度快。该方面的其他实施方案包括对应的计算机系统、设备和记录在一个或多个计算机存储装置上的计算机程序,每个计算机程序被配置为执行这些方法的动作。One general aspect includes one or more non-transitory computer-readable media that store computer-executable instructions that, when executed by a control circuit, cause the control circuit to performing operations comprising: manipulating a medical instrument using a robotic device, the medical device including a basket to access human anatomy, the robotic device being configured to open the basket at a first opening speed and a second opening speed, the robotic device being further configured to close the basket at a first closing speed and a second closing speed; receiving via the input device one or more inputs for triggering a preprogrammed action of the robotic device; in response to receiving the first input via the input device, triggering a first preprogrammed movement of the robotic device, the first preprogrammed movement comprising opening the basket at the second opening speed, the second opening speed being faster than the first opening speed; and in response to receiving a first opening speed via the input device A second input triggers a second pre-programmed movement of the robotic device, the second pre-programming including closing the basket at the second closing speed, the second closing speed being faster than the first closing speed. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each computer program being configured to perform the acts of the methods.
该非暂态计算机可读介质的具体实施可包括以下特征中的一个或多个特征。该第一输入可包括双击该输入装置的第一按钮并且该第二输入可包括双击该输入装置的第二按钮。该计算机可执行指令可被进一步配置成使该控制电路执行包括以下项的操作:响应于同时轻敲该第一按钮和该第二按钮,触发该机器人装置的第三预编程运动,该第三预编程运动包括以加速的速度进行的重复、短距离、向前和向后移动。该计算机可执行指令可被进一步配置成致使该控制电路执行包括以下项的操作:经由该输入装置接收用于控制该机器人装置的直接移动的第三输入;以及使用该机器人装置,基于该接收的第三输入来沿着一个或多个移动轴线操纵该医疗器械。所描述的技术的具体实施可包括硬件、方法或过程或计算机可访问介质上的计算机软件。Implementations of the non-transitory computer-readable medium may include one or more of the following features. The first input may include double-tapping a first button of the input device and the second input may include double-tapping a second button of the input device. The computer-executable instructions may be further configured to cause the control circuit to perform operations comprising: in response to simultaneous tapping of the first button and the second button, triggering a third preprogrammed motion of the robotic device, the third Preprogrammed movements include repetitions, short distances, forward and backward movements at accelerated speeds. The computer-executable instructions may be further configured to cause the control circuit to perform operations comprising: receiving, via the input device, a third input for controlling direct movement of the robotic device; and using the robotic device, based on the received The third input is to manipulate the medical device along one or more axes of movement. Implementations of the described techniques may include hardware, methods or processes, or computer software on a computer-accessible medium.
为了概述本公开,已描述了某些方面、优点和新颖特征。应当理解,根据任何特定实施方案,不必实现所有此类优点。因此,可以实现或优化本文所教导的一个优点或优点组的方式来执行所公开的实施方案,而不必实现本文所教导或所建议的其他优点。For purposes of summarizing the present disclosure, certain aspects, advantages and novel features have been described. It should be understood that not all such advantages are required to be achieved in accordance with any particular implementation. Accordingly, the disclosed embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as taught or suggested herein.
附图说明Description of drawings
出于说明的目的,在附图中描绘了各种实施方案,并且决不应将其解释为限制本公开的范围。此外,可组合所公开的不同实施方案的各种特征以形成附加实施方案,这些附加实施方案是本公开的一部分。在整个附图中,可重复使用参考号来指示参考元件之间的对应关系。Various embodiments are depicted in the drawings for purposes of illustration and should in no way be construed as limiting the scope of the present disclosure. Furthermore, various features of the different disclosed embodiments may be combined to form additional embodiments, which are a part of this disclosure. Throughout the drawings, reference numerals may be reused to indicate correspondence between referenced elements.
图1示出了根据某些实施方案的用于执行或帮助执行医疗规程的示例性医疗系统。1 illustrates an exemplary medical system for performing or assisting in performing a medical procedure, according to certain embodiments.
图2A至图2B分别示出了根据某些实施方案的用于医疗系统的控制器的透视图和顶部轮廓图。2A-2B illustrate a perspective view and a top profile view, respectively, of a controller for a medical system in accordance with certain embodiments.
图3A至图3C示出了根据某些实施方案的尿道结石捕获规程。3A-3C illustrate a urethral stone capture procedure according to certain embodiments.
图4A至图4B分别示出了根据某些实施方案的篮式回收装置和若干篮式配置。4A-4B illustrate a basket recovery device and several basket configurations, respectively, according to certain embodiments.
图5是根据某些实施方案的预编程的快速打开过程的流程图。5 is a flow diagram of a preprogrammed quick open process according to certain embodiments.
图6是根据某些实施方案的预编程的快速关闭过程的流程图。6 is a flow diagram of a pre-programmed quick shutdown process according to certain embodiments.
图7是根据某些实施方案的预编程的摇晃过程的流程图。7 is a flow diagram of a preprogrammed shaking process according to certain embodiments.
图8示出了根据某些实施方案的机器人系统110的示例性细节。FIG. 8 shows exemplary details of
图9示出了根据某些实施方案的控制系统140的示例性细节。FIG. 9 shows exemplary details of the
具体实施方式Detailed ways
本文提供的标题仅出于方便起见,并且不一定影响公开内容的范围或含义。尽管下文公开了某些优选实施方案和示例,但本主题超出了具体公开的实施方案,扩展到其他另选的实施方案和/或使用以及其修改和等效物。因此,本文可能出现的权利要求的范围不受下面描述的任何特定实施方案的限制。例如,在本文公开的任何方法或过程中,该方法或过程的行为或操作可以任何合适的顺序执行,并且不一定限于任何特定的公开序列。各种操作可以有助于理解某些实施方案的方式依次被描述为多个离散操作;然而,描述顺序不应被解释为暗示这些操作是顺序相关的。另外,本文所述的结构、系统和/或装置可实现为集成部件或单独部件。为了比较各种实施方案,描述了这些实施方案的某些方面和优点。并非所有这些方面或优点都必须通过任何特定实施方案来实现。因此,例如,可以实现或优化本文所教导的一个优点或一组优点的方式来执行各种实施方案,而不必实现本文所教导或建议的其他方面或优点。Headings are provided herein for convenience only and do not necessarily affect the scope or meaning of the disclosure. While certain preferred embodiments and examples are disclosed below, the subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, as well as modifications and equivalents thereof. Therefore, the scope of the claims that may appear herein is not to be limited by any specific embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process can be performed in any suitable order and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems and/or devices described herein may be implemented as integrated components or as separate components. For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not all of these aspects or advantages must be realized by any particular implementation. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as taught or suggested herein.
关于优选实施方案,本文可使用某些标准的位置解剖学术语来指代动物即人类)的解剖学。尽管本文使用某些空间相对术语,诸如“外部”、“内部”、“上部”、“下部”、“下方”、“上方”、“竖直”、“水平”、“顶部”、“底部”和类似术语来描述一个装置/元素或解剖结构与另一装置/元素或解剖结构的空间关系,但应当理解,为了便于描述,本文使用这些术语来描述元件/结构之间的位置关系,如图所示。应当理解,空间相对术语旨在涵盖除了附图中描绘的取向之外,在使用或操作中的元件/结构的不同取向。例如,描述为在另一元素/结构“上方”的元素/结构可表示相对于受试患者或元素/结构的交替取向在此类其他元件/结构下方或旁边的位置,反之亦然。With regard to preferred embodiments, certain standard positional anatomical terms may be used herein to refer to the anatomy of animals (ie, humans). Although certain spatially relative terms are used herein, such as "outer", "inner", "upper", "lower", "below", "above", "vertical", "horizontal", "top", "bottom" and similar terms to describe the spatial relationship of one device/element or anatomical structure to another device/element or anatomical structure, but it should be understood that, for ease of description, these terms are used herein to describe the positional relationship between elements/structures, as shown in Fig. shown. It should be understood that the spatially relative terms are intended to encompass different orientations of the elements/structures in use or operation in addition to the orientation depicted in the figures. For example, an element/structure described as "above" another element/structure can represent a position under or beside such other element/structure in alternating orientations relative to the subject or element/structure, and vice versa.
概述Overview
本公开涉及用于控制医疗装置的技术和系统,该医疗装置诸如用于回收尿道结石的篮式回收装置。篮式回收装置可在医疗规程(诸如输尿管镜检查)期间用于不同情形。例如,篮子可用于捕获尿道结石,释放尿道结石,重新定位尿道结石,抖落篮子上的组织和/或打碎尿道结石阻塞。不同的场景利用不同的技术来操作篮式回收装置。篮子可被控制为打开/关闭,插入/回缩和/或旋转,速度根据场景而变化。在一些实施方案中,为了获得更好的反馈和控制,将篮式回收装置的移动与窥视镜的移动相协调。通常,篮式回收装置由两个人操作,医师控制篮式回收装置的插入/回缩,而助手控制篮子本身的打开/关闭。因此,为了成功操作该装置,需要医师和助手之间的协作和协调。The present disclosure relates to techniques and systems for controlling medical devices, such as basket retrieval devices for retrieval of urethral stones. Basket retrieval devices can be used in different situations during medical procedures, such as ureteroscopy. For example, the basket can be used to capture urethral stones, release urethral stones, reposition urethral stones, shake tissue off the basket and/or break up urethral stone blockages. Different scenarios utilize different techniques to operate the basket recovery unit. Baskets can be controlled to open/close, insert/retract and/or rotate, and the speed varies depending on the scene. In some embodiments, movement of the basket retrieval device is coordinated with movement of the sight glass for better feedback and control. Typically, the basket retrieval device is operated by two people, with the physician controlling the insertion/retraction of the basket retrieval device and the assistant controlling the opening/closing of the basket itself. Therefore, in order to successfully operate the device, collaboration and coordination between physicians and assistants is required.
肾结石病(也称为尿石病)是一种相对常见的医学病症,其涉及在尿路中形成固体物质块,称为“肾结石”(kidney stone、renal calculi、renal lithiasis或nephrolithiasis)或“尿结石”(urinary stone)。尿道结石可在肾、输尿管和膀胱中形成和/或发现(称为“膀胱结石”)。此类尿道结石是由浓缩矿物质形成的,一旦结石的尺寸足以阻碍尿液通过输尿管或尿道时,就会引起严重的腹痛。尿道结石可由钙、镁、氨、尿酸、半胱氨酸和/或其他化合物形成。Nephrolithiasis (also known as urolithiasis) is a relatively common medical condition that involves the formation of a lump of solid material in the urinary tract, called a "kidney stone" (renal calculi, renal lithiasis or nephrolithiasis) or "urinary stone." Urethral stones can form and/or be found in the kidneys, ureters, and bladder (called "bladder stones"). These urethral stones are formed from concentrated minerals and can cause severe abdominal pain once the stones are large enough to block the passage of urine through the ureter or urethra. Urinary stones can form from calcium, magnesium, ammonia, uric acid, cysteine, and/or other compounds.
为了从膀胱和输尿管中移除尿道结石,外科医生可将输尿管镜经尿道插入尿路。通常,输尿管镜在其远侧端部处包括内窥镜,该内窥镜被配置成使得尿路能够可视化。输尿管镜还可包括截石机构(诸如篮式回收装置),以捕获或破碎尿道结石。如上所述,在输尿管镜检查规程期间,一个医师/技术人员可控制输尿管镜的位置,而另一其他医师/技术人员可控制截石机构。To remove urethral stones from the bladder and ureter, the surgeon may insert a ureteroscope into the urinary tract through the urethra. Typically, a ureteroscope includes an endoscope at its distal end that is configured to enable visualization of the urinary tract. The ureteroscope may also include a lithotomy mechanism, such as a basket retrieval device, to capture or break up urethral stones. As described above, during a ureteroscopy procedure, one physician/technician may control the position of the ureteroscope while another other physician/technician may control the lithotomy mechanism.
在一个示例性操作中,医师试图在助手控制篮子的打开/关闭的同时捕获结石。随着医师插入篮子并对篮子进行关节运动,这需要一定程度的协调(并且可能同时需要窥视镜),而助手需要快速关闭尿道结石周围的篮子,直到完全捕获结石。在涉及释放结石的另一操作中,助手需要将篮子打开到最大量,并以高速释放石块。在用于抖落组织的操作中,助手或医师需要以高频率来回摇晃篮子,使得组织从篮子中掉落。在用于将结石重新定位在篮子内的操作中,助手可能需要略微打开篮子,为结石提供旋转空间,同时医师来回摇晃篮式回收装置,并且有时还需要同时插入或回缩篮式回收装置,以帮助调整篮子位置。In one exemplary procedure, the physician attempts to capture the stone while the assistant controls the opening/closing of the basket. As the physician inserts and articulates the basket, which requires a degree of coordination (and possibly a speculum at the same time), the assistant needs to quickly close the basket around the urethral stone until the stone is completely captured. In another operation involving releasing stones, the assistant needs to open the basket to the maximum and release the stones at high speed. In a procedure for shaking off tissue, an assistant or physician needs to shake the basket back and forth at a high frequency, causing the tissue to fall from the basket. In a procedure for repositioning the stone within the basket, the assistant may need to open the basket slightly to provide room for the stone to rotate, while the physician rocks the basket retrieval device back and forth, and sometimes inserts or retracts the basket retrieval device at the same time, to help adjust the basket position.
如上所述,取决于医疗规程,篮子操作可具有各种程度的复杂性。常规方法采用单一、低速篮式驱动模式,需要两个用户操作,无法为医师提供足够的灵活性或易用性。因此,需要更先进的篮式驱动模式,其允许医师单方面控制篮子(例如,调整篮子速度和/或打开/关闭篮子),以实现更动态的篮子操作,以及同时控制多个器械的能力。As mentioned above, the basket operation can have various degrees of complexity depending on the medical procedure. Conventional methods employ a single, low-speed basket drive mode that requires two user operations and does not provide physicians with sufficient flexibility or ease of use. Therefore, there is a need for more advanced basket drive modes that allow the physician to unilaterally control the basket (eg, adjust basket speed and/or open/close the basket) for more dynamic basket operation, as well as the ability to control multiple instruments simultaneously.
在许多实施方案中,在微创规程的背景下讨论了这些技术和系统。然而,应当理解,这些技术和系统可在任何医疗规程的背景下实现,包括例如通过在身体内进行穿刺和/或小切口以插入医疗器械来进入目标位置的经皮规程、非侵入性规程、治疗规程、诊断规程、非经皮规程或其他类型的规程。内窥镜检查规程可包括支气管镜检查、输尿管镜检查、胃镜检查、肾镜检查、肾结石切除术等。此外,在许多实施方案中,将这些技术和系统作为被实现为机器人辅助规程进行讨论。然而,还应当理解,这些技术和系统可在其他规程中实现,诸如在全机器人医疗规程中实现。In many embodiments, these techniques and systems are discussed in the context of minimally invasive procedures. It should be understood, however, that these techniques and systems may be implemented in the context of any medical procedure, including, for example, percutaneous procedures, non-invasive procedures, Therapeutic procedures, diagnostic procedures, non-transdermal procedures, or other types of procedures. Endoscopy procedures may include bronchoscopy, ureteroscopy, gastroscopy, nephroscopy, nephrolithectomy, and the like. Furthermore, in many embodiments, these techniques and systems are discussed as being implemented as robotically assisted procedures. However, it should also be understood that these techniques and systems may be implemented in other procedures, such as in fully robotic medical procedures.
为了便于说明和讨论,在从肾中移除尿道结石(诸如肾结石)的背景下讨论了这些技术和系统。然而,如上所述,这些技术和系统可用于执行其他规程。For ease of illustration and discussion, these techniques and systems are discussed in the context of removing urethral stones, such as kidney stones, from the kidney. However, as discussed above, these techniques and systems can be used to perform other procedures.
医疗系统medical system
图1示出了根据一个或多个实施方案的用于执行或帮助执行医疗规程的示例性医疗系统100。医疗系统100的实施方案可用于外科和/或诊断规程。医疗系统100包括机器人系统110,该机器人系统被配置成与医疗器械120接合和/或控制该医疗器械,以对患者130执行规程。医疗系统100还包括控制系统140,该控制系统被配置成与机器人系统110交接,提供关于该规程的信息和/或执行各种其他操作。例如,控制系统140可包括显示器142,以呈现用户界面144,从而帮助医师160使用医疗器械120。此外,医疗系统100可包括工作台150,该工作台被配置成保持患者130和/或成像传感器180,诸如相机、x射线、计算断层成像(CT)、磁共振成像(MRI)、正电子发射断层成像(PET)装置等。FIG. 1 illustrates an exemplary
在一些实施方案中,医师执行微创医疗规程,诸如输尿管镜检查。医师160可与控制系统140交互,以控制机器人系统110将医疗器械120(例如,篮式回收装置和/或窥视镜)从尿道导航到结石165所在的肾170。控制系统140可经由显示器142提供关于医疗器械120的信息以帮助医师160进行导航,诸如来自医疗器械120或成像传感器180的实时图像。一旦到达肾结石的部位,医疗器械120可用于打碎和/或捕获尿道结石165。In some embodiments, physicians perform minimally invasive medical procedures, such as ureteroscopy. The
在使用医疗系统100的一些具体实施中,医师160可执行经皮规程。为了说明,如果患者130在肾170中具有的肾结石165太大,无法经尿路移除,则医师160可执行经患者130身上的经皮进入点移除肾结石的规程。例如,医师160可与控制系统140交互,以控制机器人系统110将医疗器械120(例如,窥视镜)从尿道导航到结石165所在的肾170。控制系统140可经由显示器142提供关于医疗器械120的信息以帮助医师160导航医疗器械120,诸如来自医疗器械120或成像传感器180的实时图像。一旦到达肾结石的部位,医疗器械120可用于为第二医疗器械(未示出)指定用于经皮进入肾的目标位置(例如,用于进入肾的期望点)。为了最大限度地减少对肾的损伤,医师160可指定特定乳头作为目标位置,以便使用第二医疗器械进入肾。然而,可指定或确定其他目标位置。一旦第二医疗器械已到达目标位置,医师160可使用第二医疗器械和/或另一医疗器械从患者130体中取出肾结石(诸如通过经皮接入点)。尽管在使用医疗器械120的背景下讨论了上述经皮规程,但在一些具体实施中,可在没有医疗器械120的协助的情况下执行经皮规程。此外,医疗系统100可用于执行各种其他规程。In some implementations using
在图1的示例中,医疗器械120被实现为篮式回收装置。因此,为了便于讨论,医疗器械120也被称为“篮式回收装置120”。然而,医疗器械120可被实现为各种类型的医疗器械,包括例如窥视镜(有时称为“内窥镜”)、针、导管、导丝、碎石机、夹钳、真空器、解剖刀、以上项的组合等。在一些实施方案中,医疗器械是可操纵装置,而在其他实施方案中,医疗器械是不可操纵装置。在一些实施方案中,外科工具是指被配置成穿刺或插入穿过人体解剖结构的装置,诸如针、解剖刀、导丝等。然而,外科工具也可指其他类型的医疗器械。在一些实施方案中,可使用多种医疗器械。例如,内窥镜可与篮式回收装置120一起使用。在一些实施方案中,医疗器械120可以是结合有若干器械(诸如真空器、篮式回收装置、窥视镜或各种器械组合)的复合装置。In the example of FIG. 1 , the
机器人系统110可被配置成至少部分地促进医疗规程。机器人系统110可以多种方式配置,这取决于特定规程。机器人系统110可包括一个或多个机器人臂112(机器人臂112(a)、112(b)、112(c)),以与医疗器械120接合和/或控制该医疗器械以执行规程。如图所示,每个机器人臂112可包括联接到关节的多个臂段,该多个臂段可提供多个移动度。在图1的示例中,机器人系统110被定位成靠近患者130的下躯干,并且机器人臂112被致动以与医疗器械120接合并定位该医疗器械,以便进入进入点(诸如患者130的尿道)。在机器人系统110正确定位的情况下,可使用机器人臂112以机器人的方式、由医师160以手动的方式或这两种方式的组合将医疗器械120插入患者130体中。The
机器人系统110还可包括基部114,该基部联接到一个或多个机器人臂112。基部114可包括多种子系统,诸如控制电子器件、电源、气动装置、光源、致动器(例如,用于移动机器人臂的马达)、控制电路、存储器和/或通信接口。在一些实施方案中,基部114包括输入/输出(I/O)装置116,该I/O装置被配置成接收输入(诸如用于控制机器人系统110的用户输入)并提供输出(诸如患者状态、医疗器械位置等)。I/O装置116可包括控制器、鼠标、键盘、麦克风、触摸板、其他输入装置或上述项的组合。I/O装置可包括输出部件,诸如扬声器、显示器、触觉反馈装置、其他输出装置或上述项的组合。在一些实施方案中,机器人系统110是可移动的(例如,基部114包括轮),使得机器人系统110可定位在适合或期望用于规程的位置。在其他实施方案中,机器人系统110为固定系统。此外,在一些实施方案中,机器人系统110集成到工作台150中。The
机器人系统110可联接到医疗系统100的任何部件,诸如控制系统140、工作台150、成像传感器180和/或医疗器械120。在一些实施方案中,机器人系统通信地联接到控制系统140。在一个示例中,机器人系统110可从控制系统140接收控制信号以执行操作,诸如以特定方式定位机器人臂112、操纵窥视镜等。作为响应,机器人系统110可控制机器人系统110的部件执行操作。在另一示例中,机器人系统110可从窥视镜接收描绘患者130的内部解剖结构的图像和/或将该图像发送到控制系统140(然后可在控制系统140上显示该图像)。此外,在一些实施方案中,机器人系统110联接到医疗系统100的部件(诸如控制系统140),以接收数据信号、功率等。根据正在执行的医疗规程,其他装置(诸如其他医疗器械、静脉注射袋、血液包等)也可联接到机器人系统110或医疗系统100的其他部件。
控制系统140可被配置成提供各种功能以帮助执行医疗规程。在一些实施方案中,控制系统140可联接到机器人系统110并与机器人系统110配合操作,以对患者130执行医疗规程。例如,控制系统140可经由无线或有线连接与机器人系统110通信(例如,以控制机器人系统110、篮式回收装置120,接收由窥视镜捕获的图像等),控制流体经由一个或多个流体通道通过机器人系统110的流动,经由一个或多个电连接向机器人系统110提供功率,经由一个或多个光纤或其他部件向机器人系统110提供光学信号等等。此外,在一些实施方案中,控制系统140可与窥视镜通信,以接收传感器数据。此外,在一些实施方案中,控制系统140可与工作台150通信,以将工作台150定位在特定取向或以其他方式控制工作台150。
如图1所示,控制系统140包括各种I/O装置,该I/O装置被配置成帮助医师160或其他人执行医疗规程。在一些实施方案中,控制系统140包括输入装置146,该输入装置由医师160或另一用户采用来控制篮式回收装置120。例如,输入装置146可用于在患者130体内导航篮式回收装置120。医师160可经由输入装置146提供输入,并且作为响应,控制系统140可向机器人系统110发送控制信号以操纵医疗器械120。As shown in FIG. 1,
尽管输入装置146在图1的示例中被示为控制器,但输入装置146可被实现为各种类型的I/O装置,诸如触摸屏/触摸板、鼠标、键盘、麦克风、智能扬声器等。另外如图1所示,控制系统140可包括显示器142,以提供关于规程的各种信息。例如,控制系统140可接收由窥视镜捕获的实时图像并经由显示器142显示实时图像。除此之外或另选地,控制系统140可从与患者130相关联的医疗监测器和/或传感器接收信号(例如,模拟信号、数字信号、电信号、声学/声信号、气动信号、触觉信号、液压信号等),并且显示器142可呈现关于患者130的健康和/或患者130的环境的信息。此类信息可包括经由医疗监测器显示的信息,包括例如心率(例如,心电图(ECG)、心率变异性(HRV)等)、血压/速率、肌肉生物信号(例如,肌电图(EMG))、体温、氧饱和度(例如,SpO2)、二氧化碳(CO2)、脑波(例如,脑电图(EEG))、环境温度等。Although
在一些实施方案中,输入装置146被配置成直接控制篮式回收装置120的移动,以及触发预编程的运动。在一个实施方案中,直接控制涉及只要用户提供有效输入(例如,通过向上或向下推动操纵杆或致动按钮)就继续进行的移动。直接控制可包括沿着一个或多个轴线的移动,诸如插入/回缩、顺时针/逆时针旋转、向左/向右移动和/或向上/向下移动。预编程运动可包括由命令触发但不需要来自用户的持续输入的快速打开、快速关闭、摇晃或其他预定义移动。通过使用预编程运动,简化了篮式回收装置的操作,因为可由简化的命令引发复杂的移动。例如,不需要医师160与助手之间的协调动作来在结石上方关闭篮子,而是可由单个用户使用简化的命令(例如,按下按钮或双击按钮)来触发快速关闭动作。In some embodiments, the
与篮子的规则速度打开相比,快速打开以更快的速度打开篮子。在一些场景中,用户可使用快速打开来快速打开篮子以准备捕获结石,并且还可用于释放结石。在一个实施方案中,规则打开由用户直接控制。例如,只要按钮被按下,篮子的驱动机构就可打开篮子,但当按钮被松开或达到扭矩阈值水平时停止,扭矩阈值水平通常指示篮子完全打开。这提供了对篮子机构的更精细的控制。同时,在某些实施方案中,快速打开被预编程为在触发时完成一系列动作,其中驱动机构接合篮子以打开直到达到阈值扭矩水平或接收到新命令(例如,按钮按压)。结合起来时,规则打开和快速打开可在医疗规程期间为用户提供更大的控制和灵活性,其中当需要更精细的控制时使用规则打开,而当速度和/或定时更重要时使用快速打开。Fast opening opens the basket at a faster rate than the regular speed opening of the basket. In some scenarios, the user may use the quick open to quickly open the basket in preparation for capturing the stone, and may also be used to release the stone. In one embodiment, rule opening is directly controlled by the user. For example, the basket drive mechanism may open the basket as long as the button is pressed, but stop when the button is released or when a torque threshold level is reached, which typically indicates that the basket is fully open. This provides finer control over the basket mechanism. Meanwhile, in certain embodiments, the quick open is preprogrammed to complete a series of actions when triggered, wherein the drive mechanism engages the basket to open until a threshold torque level is reached or a new command (eg, a button press) is received. When combined, regular open and quick open provide users with greater control and flexibility during medical procedures, with regular open when finer control is required and quick open when speed and/or timing are more important .
与篮子的规则速度关闭相反,快速关闭以更快的速度关闭篮子。在一些场景中,用户可使用快速关闭来快速抓住结石,并且也可在不使用篮子时快速关闭篮子。在一个实施方案中,规则关闭由用户直接控制。例如,只要按钮被按下,篮子的驱动机构就可关闭篮子,但当按钮被松开或达到扭矩阈值水平时停止,扭矩阈值水平通常指示篮子完全关闭或结石被捕获。这提供了对篮子机构的更精细的控制。同时,在某些实施方案中,快速关闭被预编程为在触发时完成一系列动作,其中驱动机构接合篮子以关闭直到达到阈值扭矩水平或接收到新命令(例如,按钮按压)。结合起来时,规则关闭和快速关闭可在医疗规程期间为用户提供更大的控制和灵活性,其中当需要更精细的控制时使用规则关闭,而当速度和/或时机更重要时使用快速关闭。Contrary to the basket's regular speed closing, a quick closing closes the basket at a faster rate. In some scenarios, the user may use the quick-close to quickly grasp the stone, and also to quickly close the basket when not in use. In one embodiment, rule closing is directly controlled by the user. For example, the basket's drive mechanism may close the basket as long as the button is pressed, but stop when the button is released or when a torque threshold level is reached, which typically indicates that the basket is fully closed or stones are trapped. This provides finer control over the basket mechanism. Meanwhile, in certain embodiments, the quick shutdown is preprogrammed to complete a series of actions when triggered, wherein the drive mechanism engages the basket to close until a threshold torque level is reached or a new command (eg, a button press) is received. When combined, Rule Off and Quick Off provide users with greater control and flexibility during medical procedures, with Rule Off when finer control is required and Quick Off when speed and/or timing are more important .
在一个实施方案中,可通过同时按住输入装置146上的两个按钮来触发篮式回收装置的摇晃运动。其他实施方案可通过其他按钮按压、触摸屏选择、语音命令和/或其他用户输入来触发摇晃动作。在一些实施方案中,摇晃运动为预编程运动,其中篮式回收装置向前插入和向后回缩,以便篮子以比正常篮子插入速度更高的速度行进较少固定量。例如,在直接控制期间,篮式回收装置可以正常速度(1倍速度)移动(例如,插入/回缩),而在预编程运动期间,篮式回收装置可以加速的速度(例如,1.5倍、2倍、3倍等)移动。这种高频动态移动可用于抖落附着在篮子上的组织,在结石释放期间抖落结石,和/或可用于打碎结石阻塞。In one embodiment, the shaking motion of the basket retrieval device can be triggered by pressing and holding two buttons on the
在一些实施方案中,摇晃运动包括可变移动。例如,用户可使用直接控制的移动来将篮式回收装置从正在执行摇晃运动的第一位置移动到第二位置以继续执行摇晃运动。在这种场景中,预编程运动与直接控制移动相结合。可变摇晃运动可用于调整结石位置以解决结石被卡住的问题。在一个实施方案中,通过同时按住第一按钮和第二按钮来触发可变摇晃动作,同时移动操纵杆以提供移动方向(例如,插入/回缩)。在用户按下第一按钮和第二按钮时,篮子会来回摇晃固定量。如果用户随后在握住这两个按钮的同时使用操纵杆插入或回缩,则篮子可移动到新的位置。当用户放开插入操纵杆时,篮子将回到摇晃模式,其移动轨迹移动到用户指示的新位置。对于可变摇晃模式,用户可首先摇晃以松开或旋转结石,然后插入或回缩以基于例如从窥视镜或成像传感器180所接收的视觉反馈来调整摇晃位置,然后继续摇晃运动直到结石重新定位到期望位置。In some embodiments, the shaking motion includes variable movement. For example, a user may use a directly controlled movement to move the basket retrieval device from a first position where the shaking motion is being performed to a second position to continue performing the shaking motion. In this scenario, pre-programmed movements are combined with directly controlled movements. The variable rocking motion can be used to adjust stone position to address stone stuck issues. In one embodiment, the variable shake action is triggered by simultaneously holding down the first button and the second button, while moving the joystick to provide direction of movement (eg, insert/retract). When the user presses the first and second buttons, the basket will rock back and forth a fixed amount. If the user then uses the joystick to insert or retract while holding both buttons, the basket can move to a new position. When the user lets go of the insertion joystick, the basket will return to shaking mode, with its trajectory moving to the new position indicated by the user. For variable rocking mode, the user may first rock to loosen or rotate the stone, then insert or retract to adjust the rocking position based on, for example, visual feedback received from a scope or
图1还示出了与本公开的某些方面相关的患者130的各种解剖结构。具体地,患者130包括经由输尿管172流体地连接到膀胱171的肾170,以及流体地连接到膀胱171的尿道173。如肾170的放大图所示,肾包括盏174(包括大盏和小盏)、肾乳头(包括肾乳头176,也称为“乳头176”)和肾锥体(包括肾锥体178)。在这些示例中,肾结石165位于乳头176附近。然而,肾结石可位于肾170内的其他位置。FIG. 1 also illustrates various anatomical structures of
如图1所示,为了在示例性微创规程中移除肾结石165,医师160可将机器人系统110定位在工作台150的脚部处,以引发医疗器械120到患者130体中的递送。具体地,机器人系统110可定位在患者130的下腹部区域附近,并且对准以直接线性地进入患者130的尿道173。可从工作台150的底部,控制机器人臂112(B),以提供对尿道173的进入。在该示例中,医师160沿着该直接线性进入路径(有时称为“虚拟轨道”)将医疗器械120至少部分地插入尿道中。医疗器械120可包括管腔,该管腔被配置成接纳窥视镜和/或篮式回收装置,由此帮助将这些装置插入患者130的解剖结构中。As shown in FIG. 1 , to remove
一旦机器人系统110正确定位和/或医疗器械120至少部分地插入到尿道173中,则可以机器人方式、以手动方式或以这两种方式的组合将窥视镜插入患者130体中。例如,医师160可将医疗器械120连接到机器人臂112(C)。然后,医师160可与控制系统140(诸如输入装置146)交互,以在患者130内导航医疗器械120。例如,医师160可经由输入装置146提供输入,以控制机器人臂112(C)来导航篮式回收装置120通过尿道173、膀胱171、输尿管172,并直至肾170。Once the
控制系统140可包括各种部件(有时称为“子系统”)以促进其功能。例如,控制系统140可包括各种子系统,诸如控制电子器件、电源、气动装置、光源、致动器、控制电路、存储器和/或通信接口。在一些实施方案中,控制系统140包括基于计算机的控制系统,该基于计算机的控制系统存储可执行指令,该可执行指令在执行时实现各种操作。在一些实施方案中,控制系统140是可移动的,如图1所示,而在其他实施方案中,控制系统140为固定系统。尽管讨论了由控制系统140实现的各种功能和部件,但这些功能和/或部件中的任何功能和/或部件都可集成到其他系统和/或装置中和/或由其他系统和/或装置执行,诸如机器人系统110和/或工作台150。
医疗系统100可提供多种益处,诸如提供指导以帮助医师执行规程(例如,器械跟踪、患者状态等),使医师能够从人体工程学位置执行规程而无需笨拙的手臂运动和/或位置,使单个医师能够使用一个或多个医疗器械执行规程,避免辐射暴露(例如,与荧光透视技术相关联),使规程能够在单次手术环境中执行,提供持续抽吸以更有效地移除轴线(例如,移除肾结石)等。此外,医疗系统100可提供基于非辐射的导航和/或定位技术,以减少医师对辐射的暴露和/或减少手术室中的装备数量。此外,医疗系统100可将功能划分为控制系统140和机器人系统110,它们中的每一个都可独立地移动。此类功能性和/或移动性的划分可使得控制系统140和/或机器人系统110能够放置在对于特定医疗规程最佳的位置处,这可最大化患者周围的工作区域和/或为医师执行规程提供最佳位置。例如,该规程的许多方面可由机器人系统110(其相对靠近患者定位)执行,而医师从控制系统140(其可定位得更远)的舒适性来管理该规程。
在一些实施方案中,即使位于与机器人系统110不同的地理位置,控制系统140也可起作用。例如,在远程医疗具体实施中,控制系统140被配置成通过广域网与机器人系统110通信。在一种场景中,医师160可位于具有控制系统140的一家医院,而机器人系统110位于不同的医院。然后,医师可远程执行医疗规程。如果远程医院(诸如农村地区的医院)在特定规程方面的专业知识有限,这可能是有益的。然后,这些医院可依靠其他地方更有经验的医师。在一些实施方案中,控制系统140能够例如通过选择特定机器人系统并形成安全网络连接(例如,使用密码、加密、认证令牌等)来与各种机器人系统110配对。因此,在一个位置的医师能够通过与位于这些不同位置中的每个位置的机器人系统110建立连接来在各种不同位置执行医疗规程。In some embodiments,
在一些实施方案中,机器人系统110、工作台150、医疗器械120、针和/或成像传感器180通过网络彼此通信地联接,该网络可包括无线网络和/或有线网络。示例性网络包括一个或多个个人区域网络(PAN)、一个或多个局域网(LAN)、一个或多个广域网(WAN)、一个或多个互联网区域网络(IAN)、一个或多个蜂窝网络、互联网等。此外,在一些实施方案中,控制系统140、机器人系统110、工作台150、医疗器械120和/或成像传感器180经由一个或多个支持电缆连接用于通信、流体/气体交换、功率交换等。In some embodiments,
尽管图1中未示出,但在一些实施方案中,医疗系统100包括医疗监测器和/或与医疗监测器相关联,该医疗监测器被配置成监测患者130的健康和/或患者130所处的环境。例如,医疗监测器可位于医疗系统100所处的相同环境中,诸如手术室内。医疗监测器可物理地和/或电气地联接到一个或多个传感器,该一个或多个传感器被配置成检测或确定与患者130和/或环境相关联的一个或多个物理、生理、化学和/或生物信号、参数、属性、状态和/或状况。例如,一个或多个传感器可被配置成确定/检测任何类型的物理属性,包括温度、压力、振动、触觉(haptic/tactile)特征、声音、光学水平或特性、负载或重量、流率(例如,目标气体和/或液体的流率)、磁场和电场的振幅、相位和/或取向、与气体、液体或固体形式的物质相关的成分浓度等。一个或多个传感器可向医疗监测器提供传感器数据,并且医疗监测器可呈现关于患者130的健康和/或患者130的环境的信息。此类信息可包括经由医疗监测器显示的信息,包括例如心率(例如,ECG、HRV等)、血压/速率、肌肉生物信号(例如,EMG)、体温、氧饱和度(例如,SpO2)、CO2、脑波(例如,EEG)、环境温度等。在一些实施方案中,医疗监测器和/或一个或多个传感器联接到控制系统140,并且控制系统140被配置成提供关于患者130的健康和/或患者130的环境的信息。Although not shown in FIG. 1 , in some embodiments, the
示例性控制器Exemplary Controller
图2A和图2B分别示出了根据某些实施方案的控制系统140的控制器200的透视图和顶部轮廓图。如图1所描述,在一些实施方案中,输入装置146是控制器200或包括控制器200。控制器的面可包括轴线移动输入,诸如一个或多个操纵杆205、215和一个或多个方向垫210。在一些实施方案中,操纵杆205、215提供模拟输入,而方向垫210提供数字输入。控制器的面还可包括多个按钮220以提供另外的控制。在图2B所示的示例中,控制器200包括控制器的顶侧上的四个按钮:R1 225、R2、230L1 235和L2240。其他实施方案可包括不同数量的按钮和/或不同的布局。在一些实施方案中,控制器200可以是重新用于与机器人系统110一起工作的游戏控制台控制器。例如,控制器游戏固件可被医疗装置固件覆盖和/或输入装置管理器可安装在医疗系统100的部件(例如,控制系统140)中,以将来自控制器的输入转换成机器人系统110能够理解的输入。2A and 2B illustrate a perspective view and a top profile view, respectively, of the
在一个实施方案中,双击侧顶部右下按钮(R2 225)可触发快速打开,双击侧顶部左下按钮(L2 240)可触发快速关闭。用户可双击快速打开篮子,并且双击快速关闭篮子。双击操作使用户能够使用顶部的两个按钮(R2,L2)轻松访问预编程的命令。同时,控制器上的其他输入可用于其他功能,包括控制其他医疗器械,诸如插入窥视镜、对窥视镜进行关节运动和/或插入篮子。这些其他功能可同时触发,也可独立于预编程的运动触发。显而易见的是,其他实施方案可以不同方式配置控制器。例如,可使用其他按钮和/或其他交互(例如,使用单击、双击、按住按钮等)来触发快速打开/快速关闭。在一个实施方案中,切换按钮映射,其中L2按钮触发快速打开,并且R2按钮225触发快速关闭。In one embodiment, a double-tap on the side top bottom right button (R2 225) can trigger a quick open, and a double tap on the side top bottom left button (L2 240) can trigger a quick close. The user can double-tap to quickly open the basket, and double-tap to quickly close the basket. The double-tap operation enables the user to easily access pre-programmed commands using the top two buttons (R2, L2). Meanwhile, other inputs on the controller may be used for other functions, including controlling other medical instruments, such as inserting a scope, articulating a scope, and/or inserting a basket. These other functions can be triggered simultaneously or independently of pre-programmed motions. Obviously, other embodiments may configure the controller differently. For example, other buttons and/or other interactions (eg, using a single click, double click, pressing and holding a button, etc.) may be used to trigger quick open/close. In one embodiment, the button mapping is toggled where the L2 button triggers a quick open and the
在一个实施方案中,可通过同时按住顶部右下按钮(R2 225)和顶部左下按钮(L224)两者来触发篮式回收装置的摇动运动。通过要求按下这两个按钮,用于快速打开和快速关闭(R2/L2)的按钮可具有双重用途,从而允许更多命令被映射到控制器200输入。在一个实施方案中,R2和L2按钮具有三重用途,分别单击R2和L2按钮,每个按钮都会触发另一动作。例如,单次敲击R2可引发篮子的规则速度打开,而单次敲击L2可引发篮子的规则速度关闭,反之亦然。其他实施方案可通过其他按钮按压来触发摇晃运动。In one embodiment, the rocking motion of the basket retrieval device can be triggered by simultaneously pressing and holding both the top lower right button (R2 225) and the top lower left button (L224). By requiring both buttons to be pressed, the buttons for quick open and quick close (R2/L2) can serve dual purpose, allowing more commands to be mapped to
如图1中所描述,摇晃运动可包括可变移动。在一个实施方案中,第一操纵杆205可被配置成直接控制篮式回收装置120的插入和回缩移动。在按住R2和L2以触发摇晃运动的同时,用户可向上移动操纵杆205,以进一步将篮式回收装置120插入患者体内的新位置。另选地,用户可向下移动操纵杆205,以将篮式回收装置120回缩到朝向身体进入点的新位置。一旦用户松开操纵杆205(同时仍然按住R2和L2),摇动运动可在新位置处继续该轨迹。显而易见的是,插入和回缩可映射到其他控制器输入,诸如第二操纵杆215或方向垫210。As depicted in FIG. 1, the shaking motion may include variable movement. In one embodiment, the
在一些实施方案中,控制器200的操作可以是可定制的。控制系统140可包括允许用户将预编程运动(例如,快速打开/关闭、摇动等)分配给期望的控制器布局的用户界面。例如,用户可将快速打开或快速关闭分配给顶部按钮220、方向垫210或操纵杆205、215中的一个操纵杆中的任一者。In some embodiments, the operation of
在一些实施方案中,触发预编程的运动可至少部分地自动化。可实现机器学习或计算机视觉算法,以识别篮式回收装置120何时处于正确位置以执行预编程的运动。例如,医疗系统100使用其成像传感器180、窥视镜或其他传感设备可认识到篮子足够靠近尿道结石165,从而可触发快速打开以捕获装置。一旦达到阈值距离,就可触发快速打开以快速打开篮子。其他预编程运动也可与快速打开链接在一起。例如,在打开篮子之后,可触发预编程动作,以进一步插入篮式回收装置120,使得尿道结石被篮子包围(“向前插入”预编程动作)。接下来,可自动触发快速关闭,以捕获尿道结石165。In some embodiments, triggering the preprogrammed movement can be at least partially automated. Machine learning or computer vision algorithms can be implemented to recognize when the
作为安全预防措施,可将预编程运动配置成仅在允许自动运动的特定模式(“自动捕获”模式)下自动触发。可使用控制器200上的按钮或其他输入中的一者或经由控制系统140界面中的菜单设置来启用该自动捕获模式。在一种场景中,医师160使用直接控制的移动将篮式回收装置120移动到靠近尿道结石165的正确位置。然后,医师可启用自动捕获模式。如果结石足够靠近以达到或超过距离阈值,则自动触发自动捕获预编程运动(例如,快速打开、向前插入和/或快速关闭)。如果该距离大于距离阈值,则医师可进一步调整篮式回收装置120的位置,直到自动捕获预编程运动被触发。As a safety precaution, pre-programmed movements can be configured to trigger automatically only in certain modes that allow automatic movements ("auto-capture" modes). This automatic capture mode may be enabled using one of a button or other input on the
虽然图2A至图2B已示出控制器200的一个实施方案,但其他类型的控制器或其他输入装置也可与控制系统140一起使用。例如,用于控制系统140的输入装置146可为无线的(例如,Wi-Fi、蓝牙等)或有线的(例如,通用串行总线(USB))。在另一示例中,输入装置146可为在触摸屏装置(诸如平板电脑或智能电话)上实现的图形用户界面(GUI)。在一个示例中,控制器可为具有接收语音命令的内置麦克风的智能扬声器。在另一示例中,输入装置146可为用于虚拟现实或增强现实系统的控制器。Although FIGS. 2A-2B have shown one embodiment of the
尿道结石捕获urethral stone capture
图3A至图3C示出了根据某些实施方案的尿道结石捕获规程。在这些示例中,医疗系统100被布置在手术室中,以从患者130体中移除肾结石。在此规程的许多实例中,患者130被定位在经修改的仰卧位,患者130向一侧略微倾斜,以进入患者130的后面或侧面。如图1所示,也可在患者处于正常仰卧位的情况下执行尿道结石捕获规程。尽管图3A至图3C示出了使用医疗系统100来执行微创规程以从患者130体中去除肾结石,但医疗系统100可用于以其他方式移除肾结石和/或执行其他规程。此外,患者130可根据规程的需要布置在其他位置。在图3A至图3C和整个公开中描述了由医师160执行的各种动作。应当理解,这些动作可由医师160直接执行、由医师借助医疗系统100间接执行、由用户在医师的指导下执行、由另一用户(例如,技术人员)执行和/或由任何其他用户执行。3A-3C illustrate a urethral stone capture procedure according to certain embodiments. In these examples,
尽管机器人系统110的特定机器人臂被示为在图3A至图3C的背景下执行特定功能,但任何机器人臂112都可用于执行这些功能。此外,可使用任何附加的机器人臂和/或系统来执行该规程。此外,机器人系统110可用于执行规程的其他部分。Although particular robotic arms of
在框305处,将篮式回收装置120操纵到肾170中以进入尿道结石165。在一些情况下,医师160或其他用户使用输入装置146来直接控制篮式回收装置120的移动。这种直接控制的移动可包括插入/回缩、使篮式回收装置120向左或向右弯曲、旋转和/或篮子的规则打开/关闭。通过使用各种移动,将篮式回收装置120放置在结石附近。At
在框310处,响应于用户输入(例如,双击按钮)触发快速打开的预编程移动。快速打开导致篮式回收装置120的篮子以加速的速率打开。使用快速打开允许篮式回收装置120更快地进入适当位置以捕获尿道结石165,从而减少外来移动(例如,通过篮式回收装置或由于肾内的重新/循环/尿液流动移动)将篮式回收装置120移出位置的机会。可通过双击控制器200按钮,使用控制器上的不同输入或通过使用另一类型的输入装置(诸如语音命令)来触发快速打开移动。At
在一些实施方案中,使用激光、冲击波装置或其他装置来打碎结石。激光器或其他装置可结合到篮式回收装置120中,或者可为单独的医疗器械。用于打碎结石的装置也可由与触发快速打开、快速关闭和/或摇晃运动相同的输入装置(例如,控制器200)控制。在一些情况下,结石165足够小,使得不需要将结石打碎成较小的碎片。在那些情况下,可跳过框315,并且该过程可前进到框320。In some embodiments, a laser, shock wave device, or other device is used to break up the stone. The laser or other device may be incorporated into the
任选地,在框315处,触发预编程的摇晃运动以帮助清除结石阻塞或以其他方式移动结石。例如,如果尿道结石165如上所述破碎成较小的碎片,则可使用摇晃运动来将结石分开。摇晃运动可为预编程运动,其中篮式回收装置向前插入并向后回缩,以便篮子以比正常篮子插入速度更快的速度行进较少固定量。可通过同时按下控制器200的两个按钮、使用控制器上的不同输入或通过使用另一类型的输入装置(诸如语音命令)来触发预编程的摇晃运动。Optionally, at
在框320处,操纵打开的篮子以包围尿道结石165或尿道结石的较小碎片。在一些场景中,通过由篮式回收装置120的医师160直接控制移动来实现操纵。在一些实施方案中,向前插入预编程运动可用于使用篮子包围结石。例如,如果篮子由线材形成,则向前插入移动可包括向前移动,其任选地向一侧略微侧向偏移,以避免形成篮子远侧端部的线材撞击结石。一旦结石已通过远侧端部,则可对篮子应用与第一侧向偏移运动相反的任选侧向运动,以使篮子围绕结石居中。在其他实施方案中,诸如对于由多个尖齿形成的篮子,篮子的插入与关闭尖齿协调,以便篮子围绕结石纵向居中,并避免在篮子关闭期间移动结石。At
可通过使用控制器200上的输入或通过使用另一类型的输入装置(诸如语音命令)来触发向前插入移动。虽然上面已描述了预编程的向前插入移动,但用户也可使用直接控制的移动来完成该移动以包围尿道结石。The forward insertion movement may be triggered by using input on the
在框325处,响应于用户输入(例如,双击按钮)触发快速关闭编程的移动。快速关闭导致篮式回收装置120的篮子以加速的速率关闭。关闭运动可继续直到篮子完全关闭和/或达到阈值扭矩。当篮子的驱动机构达到扭矩阈值时,这可能表明篮子已在结石上方关闭,这阻止篮子的进一步关闭。限制扭矩可保护篮子免受因在关闭期间施加的应力/力增加而造成的任何损坏。使用快速关闭允许篮式回收装置120更快地捕获尿道结石165,从而减少外来移动(例如,患者或篮式回收装置120的移动)将篮式回收装置120移出位置的机会。可通过双击控制器200按钮,使用控制器上的不同输入或通过使用另一类型的输入装置(诸如语音命令)来触发快速关闭移动。任选地,可触发摇晃运动以帮助调整结石165位置,以便更容易从肾中取出结石。At
在框330处,将篮式回收装置120从肾170中取出,然后从患者的身体中取出。一旦篮式回收装置120位于患者的身体外部,就可任选地触发快速打开移动,以便快速释放捕获的结石。At
如果存在另外的结石(或破碎结石165的大碎片),则可将篮式回收装置120重新插入患者体内以捕获剩余的大碎片。在一些实施方案中,可使用真空器械来促进碎片的移除。在一些情况下,结石可能足够小,使得患者可自然地排出这些结石。If additional stones (or large fragments of broken stones 165) are present, the
示例性篮式回收装置Exemplary Basket Recovery Unit
图4A示出了根据某些实施方案的篮式回收装置120。篮式回收装置120可包括形成在远端侧的篮子405、近端侧的柄部410、在篮子与柄部之间的护套415以及篮式驱动机构420。篮子可以多种方式形成以捕获尿道结石。在一些实施方案中,篮子由两个或更多个线材环425形成,该两个或更多个线材环扩张以形成空间,结石被操纵到该空间中并且该空间围绕结石收缩以捕获结石。如图4B所示,线材可被配置成形成各种形状,诸如球状、泪珠状、螺旋状、碗状等。在其他实施方案中,篮子由两个基本上椭圆形或圆形碗组成,碗中的凹部彼此面对,以形成用于放置尿道结石的中空区域。在一些实施方案中,篮子由被配置成围绕结石关闭的多个尖齿形成。篮子可由各种材料制成,诸如镍钛诺、镍、钛、钢、钴铬合金、其他类型的金属、陶瓷、聚合物诸如塑料或它们的组合。FIG. 4A shows a
篮式回收装置120的柄部410可由用户或机器人操作。在一些实施方案中,篮式驱动机构420内置到柄部中。例如,通过滑动或扭转运动来接合驱动器可能会导致篮子打开或关闭。在一个实施方案中,将驱动器接合到打开位置导致篮子线材从护套延伸到打开的篮子位置。将驱动器接合到关闭位置可能会导致篮子线材朝向护套回缩,从而使篮子塌陷。如果尿石在篮子内,则通过关闭篮子线材来捕获结石。The
窥视镜(未示出)(其可为篮式回收装置120的一部分或可与该篮式回收装置结合使用)可被配置成在人体解剖结构内导航,诸如在人体解剖结构的天然孔口或管腔内导航。例如,窥视镜可包括通道,通过该通道,可插入篮式回收装置120的远侧部分。例如,窥视镜可包括输尿管镜(例如,用于进入尿路)、腹腔镜、肾镜(例如,用于进入肾)、支气管镜(例如,用于进入气道,诸如支气管)、结肠镜(例如,用于进入结肠)、关节镜(例如,用于进入关节)、膀胱镜(例如,用于进入膀胱)等。窥视镜也可为能够进行关节运动的(诸如窥视镜的远侧端部),使得窥视镜可在人体解剖结构内被操纵。窥视镜可包括伸缩式零件,诸如内部引导件部分和外部护套部分,这些伸缩式零件可被操纵以伸缩地延伸窥视镜。在一些实施方案中,窥视镜包括工作通道,该工作通道用于将医疗器械(例如,碎石机、篮式装置、镊子等)、冲洗和/或抽吸部署到窥视镜的远侧端部处的手术区域。窥视镜可容纳线材和/或光纤,以向光学组件和窥视镜的远侧端部/从光学组件和窥视镜的远侧端部传输信号,该窥视镜的远侧端部可包括成像装置,诸如光学相机。窥视镜还可容纳光纤,以将光从近距离定位的光源(诸如发光二极管)传送到窥视镜的远侧端部。窥视镜的远侧端部还可包括用于工作通道的开口,以将工具、冲洗和/或抽吸递送到手术部位。窥视镜的远侧端部还可包括用于成像装置(诸如相机)的端口,该成像装置可被配置成捕获内部解剖空间的图像。窥视镜的远侧端部可包括用于光源的端口,以在使用成像装置时照射解剖空间。在一些实施方案中,窥视镜被配置成由机器人系统110控制。窥视镜可包括与机器人系统110接合的部件。A scope (not shown), which may be part of or may be used in conjunction with
示例性预编程移动Exemplary Pre-Programmed Moves
图5是根据某些实施方案的预编程的快速打开过程500的流程图。快速打开过程500可由机器人系统110或图1的医疗系统100的另一部件执行。例如,机器人系统110可使用其一个或多个臂来操纵篮式回收装置120。过程500可根据由用户(例如,医师)提供的输入来执行,或者可至少部分地自动化。虽然以下描述了该过程的一个可能序列,但其他实施方案可以不同的顺序执行该过程。FIG. 5 is a flow diagram of a preprogrammed quick
在框505处,机器人系统110的控制系统140从输入装置146接收第一用户输入。例如,该输入可为双击按钮、语音命令或其他输入。在一个实施方案中,第一输入为在图2A至图2B的控制器200上双击第一按钮。At
在框510处,机器人系统110接合篮式驱动机构,以加速的速度打开篮式回收装置120的篮子405。在一些实施方案中,篮式驱动机构420被配置成以至少两种速度进行操作:对应于篮子的规则打开速度的第一速度和比第一速度快的第二速度。在一个实施方案中,当使用直接控制的移动而不是预编程的运动打开篮子时,使用规则打开速度。At
在框515处,可位于篮式回收装置120或机器人臂112中的扭矩传感器确定由篮式驱动机构420施加到篮子405的扭矩。如果扭矩达到或超过针对机器人系统110配置的扭矩极限,则驱动机构脱离。例如,如果存在组织阻止篮子打开,则可能会达到扭矩极限。如果达到扭矩极限,则过程500前进到框520。否则,过程500前进到框525。At
在框520处,达到扭矩极限,并且驱动机构脱离。由于存在某物阻止篮子进一步打开,因此额外的移动可能会损坏篮子405或周围组织。At
在框525处,完成快速打开移动。篮子405可完全打开(例如,如驱动机构扭矩所指示)或以其他方式达到期望的打开配置。例如,快速打开移动可被配置成在篮子完全打开的50%、60%、70%、80%、90%、100%或其他量时停止。在一个实施方案中,基于检测到的尿道结石的尺寸来设置篮子的目标打开量。At
图6是根据某些实施方案的预编程快速关闭过程600的流程图。快速关闭过程600可由机器人系统110或医疗系统100的另一部件执行。例如,机器人系统110可使用其一个或多个臂来操纵篮式回收装置120。过程600可根据由用户(例如,医师)提供的输入来执行,或者可至少部分地自动化。虽然以下描述了该过程的一个可能序列,但其他实施方案可以不同的顺序执行该过程。FIG. 6 is a flow diagram of a preprogrammed
在框605处,机器人系统110的控制系统140从输入装置146接收第二用户输入。例如,该输入可为双击按钮、语音命令或其他输入。在一个实施方案中,第二输入为在图2A至图2B的控制器200上双击第二按钮。At
在框610处,机器人系统110接合篮式驱动机构,以加速的速度关闭篮式回收装置120的篮子405。在一些实施方案中,篮式驱动机构420被配置成以至少两种速度进行操作:对应于篮子的规则关闭速度的第一速度和比第一速度快的第二速度。在一个实施方案中,当使用直接控制的运动而不是预编程的运动关闭篮子时,使用规则关闭速度。At
在框615处,扭矩传感器确定由篮式驱动机构420施加到篮子405的扭矩。如果扭矩达到或超过针对机器人系统110配置的扭矩极限,则驱动机构脱离。例如,如果存在组织或尿道结石阻止篮子关闭,则可能会达到扭矩极限。如果达到扭矩极限,则过程600前进到框620。否则,过程600前进到框625。At
在框620处,达到扭矩极限,并且驱动机构脱离。由于存在某物阻止篮子进一步关闭,因此额外的移动可能会损坏篮子405或周围组织。At
在框625处,完成快速关闭移动。篮子405可完全关闭(例如,如驱动机构扭矩所指示)或以其他方式达到期望的关闭配置。例如,快速关闭移动可被配置成在篮子完全关闭的50%、60%、70%、80%、90%、100%或其他量时停止。在一个实施方案中,基于检测到的尿道结石165的尺寸来设置篮子的目标关闭量。例如,如果尿道结石较大,则在接触或包围尿道结石之前,篮子可能只关闭一小部分。At
图7是根据某些实施方案的预编程的摇晃运动过程700的流程图。摇晃过程700可由机器人系统110或医疗系统100的另一部件执行。例如,机器人系统110可使用其一个或多个臂来操纵篮式回收装置120。过程700可根据由用户(例如,医师)提供的输入来执行,或者可至少部分地自动化。虽然以下描述了该过程的一个可能序列,但其他实施方案可以不同的顺序执行该过程。FIG. 7 is a flowchart of a preprogrammed shaking motion process 700 according to certain embodiments. The shaking process 700 may be performed by the
在框705处,机器人系统110的控制系统140从输入装置146接收第三用户输入。例如,该输入可为按住一个或多个按钮、双击按钮、语音命令或其他输入。在一个实施方案中,第三输入为按住图2A至图2B的控制器200的第一按钮(与快速打开相关联)和第二按钮(与快速关闭相关联)。At
在框710处,机器人系统110以加速的速度引发篮子的短距离向前和向后移动。例如,篮子可来回移动几毫米。在一些情况下,篮子可移动几厘米。在一些实施方案中,篮式驱动机构420被配置成以至少两种速度操作篮子:对应于篮子的规则移动速度的第一速度和比第一速度快的第二速度。在一个实施方案中,当篮子使用直接控制的移动而不是预编程的运动移动时,使用规则移动速度。At
在框715处,控制系统140在接收第三用户输入的同时接收对应于移动输入的第四用户输入。在一个实施方案中,第四输入为控制器200的操纵杆沿着轴线(例如,向前或向后)的移动。例如,医师160可在按住第一按钮和第二按钮的同时移动操纵杆。At
在框720处,机器人系统110基于第四输入将篮子移动到新位置。例如,如果向上移动操纵杆,则进一步将篮子插入患者体内。如果向后移动操纵杆,则将篮子朝向篮式回收装置120的近侧端部回缩。At
在框725处,机器人系统110继续篮子在新位置的短距离向前和向后移动。移动的轨迹或中心是新位置。At
在框730处,如果第三输入已停止(例如,医师160已松开第一按钮和第二按钮),则过程700前进到框735并且摇晃运动停止。如果第三输入仍在进行中,则过程700前进到框725,并且机器人系统110继续篮子的向前和向后移动。在其他实施方案中,在经过一定时间量之后,或在完成一定量的移动重复之后,摇晃运动响应于其他输入而停止。At
示例性机器人系统Exemplary Robotic System
图8示出了根据一个或多个实施方案的机器人系统110的示例性细节。在该示例中,机器人系统110被示为可移动的推车式机器人使能系统。然而,机器人系统110可实现为固定系统,集成到工作台中,等。FIG. 8 shows exemplary details of a
机器人系统110可包括支撑结构114,该支撑结构包括细长区段114(A)(有时称为“柱114(A)”)和基部114(B)。柱114(A)可包括一个或多个托架,诸如托架1102(另选地称为“臂支撑件1102”),用于支撑一个或多个机器人臂112(图8中示出了三个)的展开。托架1102可包括可单独配置的臂安装件,这些臂安装件沿着垂直轴线旋转,以调整机器人臂112的基部,以便相对于患者进行定位。托架1102还包括托架接口1104,该托架接口允许托架1102沿柱114(A)竖直平移。托架接口1104通过狭槽(诸如狭槽1106)连接到柱114(A),这些狭槽定位在柱114(A)的相对侧上,以引导托架1102的竖直平移。狭槽1106包括竖直平移接口,以将托架1102定位和保持在相对于基部114(B)的各种竖直高度。托架1102的竖直平移允许机器人系统110调整机器人臂112的触及范围,以满足各种工作台高度、患者体型、医师偏好等。类似地,托架1102上的可单独配置的臂安装件允许机器人臂112的机器人臂基部1108以多种配置成角度。柱114(A)可在内部包括机构(诸如齿轮和/或马达),这些机构被设计成使用竖直对准的导螺杆来响应于控制信号而以机械化方式平移托架1102,这些控制信号是响应于用户输入(诸如来自I/O装置116的输入)而生成的。The
在一些实施方案中,狭槽1106可补充有狭槽盖,该狭槽盖与狭槽表面齐平和/或平行,以随着托架1102的竖直平移,防止灰尘和/或流体进入柱114(A)的内部腔室和/或竖直平移接口中。狭槽盖可通过定位在狭槽1106的竖直顶部和底部附近的成对弹簧卷筒展开。随着托架1102的竖直向上和向下平移,盖可在卷筒内卷绕,直到展开以从其卷绕状态伸出和回缩。当托架1102朝向卷筒平移时,卷筒的弹簧加载可提供将盖回缩到卷筒中的力,同时当托架1102远离卷筒平移时,也维持紧密密封。盖可使用例如托架接口1104中的支架连接到托架1102,以确保随着托架1102的平移,盖适当伸出和回缩。In some embodiments, the
基部114(B)可平衡柱114(A)、托架1102和/或臂112在诸如地板的表面上的重量。因此,基部114(B)可容纳较重的部件,诸如一个或多个电子器件、马达、电源等,以及使得机器人系统110能够移动和/或固定不动的部件。例如,基部114(B)可包括可滚动轮1116(也称为“脚轮1116”),这些可滚动轮允许机器人系统110在房间内移动以进行规程。在到达适当位置之后,脚轮1116可使用轮锁固定,以在该规程期间将机器人系统110保持在适当位置。如图所示,机器人系统110还包括柄部1118,以帮助操纵和/或稳定机器人系统110。Base 114(B) may balance the weight of column 114(A),
机器人臂112一般可包括机器人臂基部1108和端部执行器1110,它们由一系列连杆1112分开,该连杆由一系列关节1114连接。每个关节1114可包括独立的致动器,并且每个致动器可包括独立可控的马达。每个独立可控的关节1114表示机器人臂112可用的独立自由度。例如,每个臂112可具有七个关节,从而提供七个自由度。然而,可以任何自由度实现任意数量的关节。在示例中,多个关节可产生多个自由度,从而允许“冗余”自由度。冗余自由度允许机器人臂112使用不同的连杆位置和/或关节角度将它们相应的端部执行器1110定位在空间中的特定位置、取向和/或轨迹上。在一些实施方案中,端部执行器1110可被配置成接合和/或控制医疗器械、装置、轴线等。臂112的移动自由度可允许机器人系统110从空间中的期望点定位和/或引导医疗器械,和/或允许医师将臂112移动到远离患者的临床上有利的位置以形成通路,同时避免臂碰撞。The
如图8所示,机器人系统110还可包括I/O装置116。I/O装置116可包括显示器、触摸屏、触摸板、投影仪、鼠标、键盘、麦克风、扬声器、控制器、相机(例如,用于接收手势输入),或用于接收输入和/或提供输出的另一I/O装置。I/O装置116可被配置成接收触摸、语音、手势或任何其他类型的输入。I/O装置116可定位在柱114(A)的竖直端部(例如,柱114(A)的顶部)和/或提供用于接收用户输入和/或用于提供输出的用户界面。例如,I/O装置116可包括触摸屏(例如,两用装置),以接收输入并向医师提供术前和/或术中数据。示例性术前数据可包括从术前计算机断层扫描(CT)扫描得到的术前计划、导航和/或映射数据,和/或从术前患者访谈得到的记录。示例性术中数据可包括从工具/器械、传感器提供的光学信息,和/或来自传感器的坐标信息,以及重要的患者统计数据(诸如呼吸、心率和/或脉搏)。I/O装置116可被定位和/或倾斜以允许医师从各种位置访问I/O装置116,诸如柱114(A)的与托架1102相对的一侧。从这个位置,医师可在从机器人系统110的后面操作I/O装置116的同时查看I/O装置116、机器人臂112和/或患者。As shown in FIG. 8 , the
机器人系统110可包括多种其他部件。例如,机器人系统110可包括一个或多个控制电子器件/电路、电源、气动装置、光源、致动器(例如,用于移动机器人臂112的马达)、存储器和/或通信接口(例如,用于与另一装置通信)。在一些实施方案中,存储器可存储计算机可执行指令,当由控制电路执行时,这些指令致使控制电路执行本文讨论的任何操作。例如,存储器可存储计算机可执行指令,当由控制电路执行时,这些计算机可执行指令致使控制电路接收关于机器人臂112的操纵的输入和/或控制信号,并且作为响应,控制机器人臂112以特定布置定位和/或导航连接到端部执行器1110的医疗器械。The
在一些实施方案中,机器人系统110被配置成接合和/或控制医疗器械,诸如篮式回收装置120。例如,机器人臂112可被配置成控制窥视镜(例如,窥视镜的护套和/或引导件)的位置、取向和/或尖端关节运动。在一些实施方案中,机器人臂112可被配置成/被配置成能够使用细长移动构件来操纵窥视镜。细长移动构件可包括一根或多根拉线(例如,拉线或推线)、电缆、纤维和/或柔性轴。为了说明,机器人臂112可被配置成致动联接到窥视镜的多根拉线以偏转窥视镜的尖端。拉线可包括任何合适的或期望的材料,诸如金属材料和/或非金属材料,诸如不锈钢、凯夫拉尔(Kevlar)、钨、碳纤维等。在一些实施方案中,窥视镜被配置成响应于由细长移动构件施加的力而表现出非线性行为。非线性行为可基于窥视镜的刚度和可压缩性,以及不同细长移动构件之间的松弛或刚度的可变性。In some embodiments,
示例性控制系统Exemplary Control System
图9示出了根据一个或多个实施方案的控制系统140的示例性细节。如图所示,控制系统140可分别地/单独地和/或组合地/共同地包括以下部件、装置、模块和/或单元(在本文称为“部件”)中的一者或多者:控制电路1202、数据存储装置/存储器1204、一个或多个通信接口1206、一个或多个电源单元1208、一个或多个I/O部件1210和/或一个或多个轮1212(例如,脚轮或其他类型的轮)。在一些实施方案中,控制系统140可包括壳体/外壳,该壳体/外壳被配置成和/或尺寸设定成容纳或包含控制系统140的一个或多个部件的至少一部分。在该示例中,控制系统140被示为推车式系统,其可与一个或多个轮1212一起移动。在一些情况下,在到达适当位置之后,一个或多个轮1212可使用轮锁固定,以将控制系统140保持在适当位置。然而,控制系统140可实现为固定系统,集成到另一系统/装置中,等。FIG. 9 shows exemplary details of the
尽管图9中示出了控制系统140的某些部件,但应当理解,在根据本公开的实施方案中可包括未示出的附加部件。此外,在一些实施方案中可省略某些示出的部件。尽管在图9的图示中控制电路1202被示为单独的部件,但应当理解,控制系统140的任何或所有剩余部件可至少部分地体现在控制电路1202中。也就是说,控制电路1202可包括各种装置(有源和/或无源)、半导体材料和/或其区域、层、区和/或部分、导体、引线、通孔、连接件等,其中控制系统140的一个或多个其他部件和/或其部分可至少部分地由此类电路部件/装置形成和/或实现。Although certain components of the
控制系统140的各种部件可使用某些连接电路/装置/特征电联接和/或通信地联接,这些连接电路/装置/特征可为,或可不为控制电路1202的一部分。例如,连接特征可包括一个或多个印刷电路板,该一个或多个印刷电路板被配置成促进控制系统140的各种部件/电路中的至少一些部件/电路的安装和/或互连。在一些实施方案中,控制电路1202、数据存储装置/存储器1204、通信接口1206、电源单元1208和/或输入/输出(I/O)部件1210中的两者或更多这可彼此电联接和/或通信地联接。The various components of
如图所示,存储器1204可包括输入装置管理器1216和用户界面部件1218,该用户界面部件被配置成促进本文讨论的各种功能。在一些实施方案中,输入装置管理器1216和/或用户界面部件1218可包括一个或多个指令,该一个或多个指令可由控制电路1202执行以执行一个或多个操作。尽管在包括可由控制电路1202执行的一个或多个指令的部件1216-1218的背景下讨论了许多实施方案,但部件1216-1218中的任何部件都可至少部分地实现为一个或多个硬件逻辑部件,诸如一个或多个专用集成电路(ASIC)、一个或多个现场可编程门阵列(FPGA)、一个或多个程序特定标准产品(ASSP)、一个或多个复杂可编程逻辑器件(CPLD)等。此外,尽管部件1216-1218被示为包括在控制系统140内,但部件1216-1218中的任何部件都可至少部分地在另一装置/系统内实现,诸如机器人系统110、工作台150或另一装置/系统。类似地,控制系统140的任何其他部件都可至少部分地在另一装置/系统内实现。As shown, the memory 1204 may include an
输入装置管理器1216可被配置成接收来自输入装置146的输入并将其转换成机器人系统110可执行的动作。例如,预编程运动(诸如快速打开、快速关闭和摇晃运动)可存储在输入装置管理器1216中。然后,可将这些预编程运动分配给期望输入(例如,单按钮或双按钮按下、语音命令、操纵杆移动等)。在一些具体实施中,预编程运动由制造商确定。在其他具体实施中,用户可能能够修改现有的预编程运动和/或创建新的运动。
用户界面部件1218可被配置成促进一个或多个用户界面(也称为“一个或多个图形用户界面(GUI)”)。例如,用户界面部件1218可生成:配置菜单,用于将预编程运动分配给输入;或设置菜单,用于在特定情况下启用某些操作模式或禁用所选择的预编程运动。用户界面部件1218还可提供用户界面数据1222,以便向用户显示。
一个或多个通信接口1206可被配置成与一个或多个装置/传感器/系统通信。例如,一个或多个通信接口1206可通过网络以无线和/或有线方式发送/接收数据。根据本公开的实施方案的网络可包括局域网(LAN)、广域网(WAN)(例如,互联网)、个人局域网(PAN)、体域网(BAN)等。在一些实施方案中,一个或多个通信接口1206可实现无线技术,诸如蓝牙、Wi-Fi、近场通信(NFC)等。One or
一个或多个电源单元1208可被配置成管理控制系统140(和/或机器人系统110,在一些情况下)的电力。在一些实施方案中,一个或多个电源单元1208包括一个或多个电池,诸如锂基电池、铅酸电池、碱性电池和/或其他类型的电池。也就是说,一个或多个电源单元1208可包括一个或多个装置和/电路,该一个或多个装置和/电路被配置成提供功率源和/或提供功率管理功能。此外,在一些实施方案中,一个或多个电源单元1208包括主电源连接器,该主电源连接器被配置成联接到交流电(AC)或直流电(DC)主电源。One or more
一个或多个I/O部件1210可包括多种部件以接收输入和/或提供输出,以便与用户交互。一个或多个I/O部件1210可被配置成接收触摸、语音、手势或任何其他类型的输入。在示例中,一个或多个I/O部件1210可用于提供关于对装置/系统的控制的输入,以便控制机器人系统110,导航窥视镜或附接到机器人系统110的其他医疗器械,控制工作台150,控制荧光透视装置190等。如图所示,一个或多个I/O部件1210可包括一个或多个显示器142(有时称为“一个或多个显示装置142”),该一个或多个显示器被配置成显示数据。一个或多个显示器142可包括一个或多个液晶显示器(LCD)、发光二极管(LED)显示器、有机LED显示器、等离子体显示器、电子纸显示器和/或任何其他类型的技术。在一些实施方案中,一个或多个显示器142包括一个或多个触摸屏,该一个或多个触摸屏被配置成接收输入和/或显示数据。此外,一个或多个I/O部件1210可包括一个或多个输入装置146,该一个或多个I/O装置可包括触摸屏、触摸板、控制器、鼠标、键盘,可穿戴装置(例如,光学头戴式显示器)、虚拟或增强现实装置(例如,头戴式显示器)等。另外,一个或多个I/O部件1210可包括:一个或多个扬声器1226,该一个或多个扬声器被配置成基于音频信号输出声音;和/或一个或多个麦克风1228,该一个或多个麦克风被配置成接收声音并生成音频信号。在一些实施方案中,一个或多个I/O部件1210包括控制台或被实现为控制台。One or more of the I/
尽管图9中未示出,但控制系统140可包括和/或可控制其他部件,诸如一个或多个泵、流量计、阀控制器和/或流体进入部件,以便向医疗器械(例如,窥视镜)、可通过医疗器械部署的装置等提供受控的冲洗和/或抽吸能力。在一些实施方案中,冲洗和抽吸能力可通过单独的电缆直接递送到医疗器械。此外,控制系统140可包括电压和/或电涌保护器,该电压和/或电涌保护器被设计成向另一装置(诸如机器人系统110)提供经滤波的和/或受保护的电力,由此避免在机器人系统110中放置电力变压器和其他辅助电力部件,从而形成更小、更可移动的机器人系统110。Although not shown in FIG. 9, the
控制系统140还可包括用于部署在整个医疗系统100中的传感器的支持装备。例如,控制系统140可包括用于检测、接收和/或处理从光学传感器和/或相机接收的数据的光电子装备。此类光电子装备可用于生成实时图像,以便在任何数量的装置/系统中显示,包括在控制系统140中显示。
在一些实施方案中,控制系统140可通过一个或多个电缆或连接件(未示出)联接到机器人系统110、工作台150和/或医疗器械(诸如窥视镜和/或篮式回收装置120)。在一些具体实施中,来自控制系统140的支持功能可通过单个电缆来提供,从而简化和消除手术室的混乱。在其他具体实施中,特定功能可在单独的电缆和连接件中联接。例如,虽然可通过单个电力电缆提供电力,但可通过单独的电缆提供对控制、光学、流体和/或导航的支持用于控制。In some embodiments,
术语“控制电路”在本文根据其广泛且普通的含义使用,并且可指一个或多个处理器、处理电路、处理模块/单元、芯片、管芯(例如,半导体管芯,其包括一个或多个有源装置和/或无源装置和/或连接电路)、微处理器、微控制器、数字信号处理器、微型计算机、中央处理单元、图形处理单元、现场可编程门阵列、可编程逻辑装置、状态机(例如,硬件状态机)、逻辑电路、模拟电路、数字电路和/或基于电路和/或操作指令的硬编码来操纵信号(模拟和/或数字)的任何装置。控制电路还可包括一个或多个存储装置,该一个或多个存储装置可体现在单个存储器装置、多个存储器装置和/或装置的嵌入式电路中。此类数据存储装置可包括只读存储器、随机存取存储器、易失性存储器、非易失性存储器、静态存储器、动态存储器、闪存存储器、高速缓存存储器、数据存储寄存器和/或存储数字信息的任何装置。应当指出的是,在控制电路包括硬件状态机(和/或实现软件状态机)、模拟电路、数字电路和/或逻辑电路的实施方案中,存储任何相关联操作指令的数据存储装置/寄存器可嵌入到包括状态机、模拟电路、数字电路和/或逻辑电路的电路内或电路外。The term "control circuit" is used herein in accordance with its broad and ordinary meaning and may refer to one or more processors, processing circuits, processing modules/units, chips, dies (eg, semiconductor dies, which include one or more active devices and/or passive devices and/or connecting circuits), microprocessors, microcontrollers, digital signal processors, microcomputers, central processing units, graphics processing units, field programmable gate arrays, programmable logic A device, state machine (eg, hardware state machine), logic circuit, analog circuit, digital circuit, and/or any device that manipulates signals (analog and/or digital) based on hardcoding of circuits and/or operating instructions. The control circuit may also include one or more memory devices, which may be embodied in a single memory device, multiple memory devices, and/or embedded circuitry of the device. Such data storage devices may include read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, data storage registers, and/or memory devices that store digital information. any device. It should be noted that in embodiments where the control circuitry includes a hardware state machine (and/or implements a software state machine), analog circuitry, digital circuitry, and/or logic circuitry, the data storage devices/registers storing any associated operating instructions may be Embedded in or out of circuits including state machines, analog circuits, digital circuits, and/or logic circuits.
术语“存储器”在本文根据其广泛且普通的含义使用,并且可指任何合适或期望类型的计算机可读介质。例如,计算机可读介质可包括一个或多个易失性数据存储装置、非易失性数据存储装置、可移动数据存储装置和/或不可移动数据存储装置,它们使用任何技术、布局和/或数据结构/协议实现,包括任何合适或期望的计算机可读指令、数据结构、程序模块或其他类型的数据。The term "memory" is used herein in accordance with its broad and ordinary meaning, and may refer to any suitable or desired type of computer-readable medium. For example, a computer-readable medium may include one or more volatile data storage devices, non-volatile data storage devices, removable data storage devices, and/or non-removable data storage devices, using any technology, layout, and/or Data structures/protocol implementations, including any suitable or desired computer readable instructions, data structures, program modules or other types of data.
可根据本公开的实施方案实现的计算机可读介质包括但不限于相变存储器、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦可编程只读存储器(EEPROM)、闪存存储器或其他存储器技术、光盘只读存储器(CD-ROM)、数字多功能盘(DVD)或其他光学存储装置、盒式磁带、磁带、磁盘存储装置或其他磁存储装置,或可用于存储信息以供计算装置访问的任何其他非暂态介质。如在本文的某些背景下所使用的,计算机可读介质一般可不包括通信介质,诸如调制数据信号和载波。因此,计算机可读介质一般应被理解为指非暂态介质。Computer-readable media that can be implemented in accordance with embodiments of the present disclosure include, but are not limited to, phase change memory, static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or Other Memory Technologies, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage devices, cartridges format tape, magnetic tape, magnetic disk storage, or other magnetic storage, or any other non-transitory medium that can be used to store information for access by a computing device. As used in certain contexts herein, computer-readable media may generally exclude communication media such as modulated data signals and carrier waves. Thus, computer-readable media should generally be understood to refer to non-transitory media.
附加实施方案Additional implementation
取决于实施方案,本文所述的任何过程或算法的某些行为、事件或功能可以不同的序列执行,可被添加、合并或完全省略。因此,在某些实施方案中,并非所有描述的行为或事件都是过程实践所必需的。Depending on the implementation, certain acts, events, or functions of any process or algorithm described herein may be performed in a different sequence, added, combined, or omitted entirely. Thus, in certain embodiments, not all described acts or events are required for the practice of the process.
除非另外特别说明或在所使用的背景下以其他方式理解,否则本文使用的条件语言,诸如“可”、“能够”、“可能”、“可以”、“例如”等,预期处于其普通意义,并且通常旨在传达某些实施方案包括某些特征部、元件和/或步骤而其他实施方案不包括某些特征部、元件和/或步骤。因此,此类条件语言通常不旨在暗示特征、元件和/或步骤以任何方式是一个或多个实施方案所必需的,或者不旨在暗示一个或多个实施方案在有或没有作者输入或提示的情况下,必须包括用于决定这些特征、元件和/或步骤是否包括在任何特定实施方案中或者是否将在任何特定实施方案中执行的逻辑。术语“包括”、“包含”、“具有”等是同义词,以其普通意义使用,并且以开放式方式包含性地使用,并且不排除另外的元素、特征、行为、操作等。另外,术语“或”以其包含性意义(而不是以其排他性意义)使用,使得当用于例如连接一系列元件时,术语“或”是指该系列的元件中的一个、一些或全部。除非另外特别说明,否则诸如短语“X、Y和Z中的至少一者”的连接词用语在一般使用的背景下被理解为传达项目、术语、元素等可为X、Y或Z。因此,这种连接词用语一般不旨在暗示某些实施方案要求X中的至少一者、Y中的至少一者和Z中的至少一者各自存在。Conditional language, such as "may," "could," "may," "could," "for example," etc., as used herein, is intended to be in its ordinary meaning unless specifically stated otherwise or otherwise understood in the context in which it is used , and is generally intended to convey that certain embodiments include certain features, elements, and/or steps while other embodiments exclude certain features, elements, and/or steps. Thus, such conditional language is generally not intended to imply that features, elements, and/or steps are in any way required by one or more embodiments, or that one or more embodiments, with or without author input or Where indicated, logic must be included to determine whether such features, elements and/or steps are included or will be performed in any particular embodiment. The terms "comprising", "including", "having" and the like are synonymous, used in their ordinary sense, and are used inclusively in an open-ended manner and do not exclude additional elements, features, acts, operations, etc. Additionally, the term "or" is used in its inclusive sense (rather than in its exclusive sense) such that when used, for example, to connect a series of elements, the term "or" refers to one, some, or all of the elements of the series. Conjunctive terms such as the phrase "at least one of X, Y, and Z" are understood in the context of common usage to convey that an item, term, element, etc. can be X, Y, or Z unless specifically stated otherwise. Thus, such conjunctions are generally not intended to imply that certain implementations require the presence of at least one of X, at least one of Y, and at least one of Z each.
应当理解,在以上对实施方案的描述中,为了简化公开内容并帮助理解各种发明方面中的一个或多个发明方面,有时将各种特征组合在单个实施方案、附图或其描述中。然而,本公开的方法不应被解释为反映任何权利要求需要比该权利要求中明确阐述的特征更多特征的意图。此外,本文的特定实施方案中示出和/或描述的任何部件,特征或步骤可应用于任何其他实施方案或与任何其他实施方案一起使用。此外,对于每个实施方案,没有部件、特征、步骤或部件、特征或步骤组是必要的或必不可少的。因此,本文公开且下文要求保护的范围不应受上述特定实施方案的限制,而应仅通过公平阅读下面的权利要求来确定。It should be understood that in the foregoing description of embodiments, various features are sometimes grouped together in a single embodiment, the drawings, or its description in order to simplify the disclosure and to aid in the understanding of one or more of the various inventive aspects. However, the methods of the present disclosure are not to be interpreted as reflecting an intention that any claim require more features than those expressly recited in such claim. Furthermore, any components, features or steps shown and/or described in a particular embodiment herein may be applied to or used with any other embodiment. Furthermore, no component, feature, step or group of components, feature or step is required or essential to each embodiment. Therefore, the scope of what is disclosed herein and claimed below should not be limited by the specific embodiments described above, but should be determined only by a fair reading of the following claims.
应当理解,某些序数术语(例如,“第一”或“第二”)可能是为了便于参考而提供的,并不一定暗示物理特性或顺序。因此,如本文所用,用于修饰诸如结构、部件、操作等元素的序数术语(例如,“第一”、“第二”、“第三”等)不一定指示元素相对于任何其他元素的优先级或顺序,而是通常可将该元素与具有类似或相同名称的另一元素区分开来(但使用序数术语)。此外,如本文所用,不定冠词(“一个(a/an)”)可指示“一个或多个”而不是“一个”。此外,“基于”条件或事件执行的操作也可基于未明确阐述的一个或多个其他条件或事件来执行。It should be understood that certain ordinal terms (eg, "first" or "second") may be provided for ease of reference and do not necessarily imply a physical specificity or order. Thus, as used herein, ordinal terms (eg, "first," "second," "third," etc.) used to modify elements such as structures, components, operations, etc. do not necessarily indicate the priority of the element over any other element rank or order, but often the element can be distinguished from another element with a similar or identical name (but using ordinal terms). Also, as used herein, the indefinite article ("a/an") may mean "one or more" rather than "an." Furthermore, an operation performed "based on" a condition or event may also be performed based on one or more other conditions or events not expressly recited.
除非另外定义,否则本文使用的所有术语(包括技术和科学术语)具有与示例性实施方案所属领域的普通技术人员通常理解的相同含义。还应当理解,术语(诸如在常用词典中定义的术语)应被解释为具有与它们在相关技术的背景下的含义一致的含义,并且不被解释为理想化或过于正式的意义,除非在本文明确地如此定义。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It should also be understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having meanings consistent with their meanings in the context of the relevant art, and should not be interpreted as idealized or overly formal meanings, except in this context explicitly so defined.
除非另外明确说明,比较和/或定量术语(诸如“更少”、“更多”、“更大”等)旨在涵盖等同的概念。例如,“更少”不仅可表示最严格的数学意义上的“更少”,而且可表示“小于或等于”。Comparative and/or quantitative terms (such as "less," "more," "greater," etc.) are intended to encompass equivalent concepts, unless expressly stated otherwise. For example, "less" can mean not only "less" in the strictest mathematical sense, but also "less than or equal to."
Claims (30)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962956071P | 2019-12-31 | 2019-12-31 | |
US62/956071 | 2019-12-31 | ||
PCT/IB2020/061905 WO2021137071A1 (en) | 2019-12-31 | 2020-12-14 | Advanced basket drive mode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114901200A true CN114901200A (en) | 2022-08-12 |
Family
ID=76547129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080091164.3A Pending CN114901200A (en) | 2019-12-31 | 2020-12-14 | Advanced basket drive mode |
Country Status (6)
Country | Link |
---|---|
US (2) | US11439419B2 (en) |
EP (1) | EP4084724A4 (en) |
JP (1) | JP7640052B2 (en) |
KR (1) | KR20220123269A (en) |
CN (1) | CN114901200A (en) |
WO (1) | WO2021137071A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10231793B2 (en) | 2015-10-30 | 2019-03-19 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
KR102578978B1 (en) | 2017-06-28 | 2023-09-19 | 아우리스 헬스, 인코포레이티드 | Electromagnetic distortion detection |
KR102558063B1 (en) | 2017-06-28 | 2023-07-25 | 아우리스 헬스, 인코포레이티드 | Align electromagnetic field generator |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
US20210045824A1 (en) | 2019-08-15 | 2021-02-18 | Auris Health, Inc. | Axial motion drive devices, systems, and methods for a robotic medical system |
EP4025921A4 (en) | 2019-09-03 | 2023-09-06 | Auris Health, Inc. | DETECTION AND COMPENSATION OF ELECTROMAGNETIC DISTORTION |
JP7640052B2 (en) | 2019-12-31 | 2025-03-05 | オーリス ヘルス インコーポレイテッド | Advanced basket drive mode |
WO2022108102A1 (en) * | 2020-11-18 | 2022-05-27 | 재단법인 아산사회복지재단 | Surgical tool control apparatus |
US20230157777A1 (en) * | 2021-11-22 | 2023-05-25 | Roen Surgical, Inc. | System and device for endoscope surgery robot |
EP4440475A1 (en) * | 2021-11-29 | 2024-10-09 | Microbot Medical Ltd. | Remote control for a surgical robotic device |
CN114391946A (en) * | 2022-01-14 | 2022-04-26 | 苏州欧畅医疗科技有限公司 | Interventional robot and using method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5190557A (en) * | 1991-10-03 | 1993-03-02 | Urological Instrument Research, Inc. | Vibratory method and instrument for extracting stones from urinary tract |
US20070185377A1 (en) * | 2006-02-06 | 2007-08-09 | Olympus Medical Systems Corp. | Endoscopy system |
US20140094825A1 (en) * | 2011-06-02 | 2014-04-03 | Medrobotics Corporation | Robotic systems, robotic system user interfaces, human interface devices for controlling robotic systems and methods of controlling robotic systems |
WO2016014414A1 (en) * | 2014-07-21 | 2016-01-28 | C.R. Bard, Inc. | Kidney stone removal control devices, systems, and methods |
CN107257665A (en) * | 2015-03-04 | 2017-10-17 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Medical Devices for capturing stone debris |
US20180221038A1 (en) * | 2015-10-30 | 2018-08-09 | Auris Health, Inc. | Object capture with a basket |
CN109688894A (en) * | 2016-12-14 | 2019-04-26 | 奥林巴斯株式会社 | Endoscope |
CN208974012U (en) * | 2018-01-25 | 2019-06-14 | 无锡市第三人民医院 | A kind of automatic control stone extraction basket |
Family Cites Families (794)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2556601A (en) | 1947-02-10 | 1951-06-12 | Niles Bement Pond Co | Multiple tapping head |
US2566183A (en) | 1947-05-29 | 1951-08-28 | Skilsaw Inc | Portable power-driven tool |
US2623175A (en) | 1949-03-25 | 1952-12-23 | Radiart Corp | Reel antenna |
US2730699A (en) | 1952-02-01 | 1956-01-10 | Gen Dynamics Corp | Telemetering system |
US2884808A (en) | 1957-10-23 | 1959-05-05 | Mueller Co | Drive for drilling machine |
US3294183A (en) | 1964-09-30 | 1966-12-27 | Black & Decker Mfg Co | Power driven tools |
US3472083A (en) | 1967-10-25 | 1969-10-14 | Lawrence S Schnepel | Torque wrench |
US3513724A (en) | 1968-07-17 | 1970-05-26 | Monogram Ind Inc | Speed reduction mechanism |
US3595074A (en) | 1968-10-30 | 1971-07-27 | Clarence Johnson | Torque transducer |
JPS5025234B1 (en) | 1970-02-20 | 1975-08-21 | ||
JPS4921672Y1 (en) | 1970-08-21 | 1974-06-10 | ||
US3763860A (en) | 1971-08-26 | 1973-10-09 | H Clarke | Laparoscopy instruments and method for suturing and ligation |
GB1372327A (en) | 1971-10-11 | 1974-10-30 | Commissariat Energie Atomique | Articulated manipulator |
US3734207A (en) | 1971-12-27 | 1973-05-22 | M Fishbein | Battery powered orthopedic cutting tool |
US3926386A (en) | 1974-07-09 | 1975-12-16 | Us Air Force | Spool for wire deployment |
US4040413A (en) | 1974-07-18 | 1977-08-09 | Fuji Photo Optical Co. Ltd. | Endoscope |
US3921536A (en) | 1975-01-30 | 1975-11-25 | Hall Ski Lift Company Inc | Cable grip tester |
DE2524605A1 (en) | 1975-06-03 | 1976-12-23 | Heinz Peter Dipl Brandstetter | DEVICE FOR MEASURING MECHANICAL WORK AND POWER |
JPS5394515A (en) | 1977-01-31 | 1978-08-18 | Kubota Ltd | Method of producing glass fiber reinforced cement plate |
SE414272B (en) | 1978-10-17 | 1980-07-21 | Viggo Ab | CANNEL OR CATETER DEVICE |
US4241884A (en) | 1979-03-20 | 1980-12-30 | George Lynch | Powered device for controlling the rotation of a reel |
AT365363B (en) | 1979-09-20 | 1982-01-11 | Philips Nv | RECORDING AND / OR PLAYING DEVICE |
CH643092A5 (en) | 1980-02-18 | 1984-05-15 | Gruenbaum Heinrich Leuzinger | DEVICE FOR MEASURING TORQUE EXTENDED BY AN ELECTRIC MOTOR. |
US4357843A (en) | 1980-10-31 | 1982-11-09 | Peck-O-Matic, Inc. | Tong apparatus for threadedly connecting and disconnecting elongated members |
JPS57144633A (en) | 1981-03-05 | 1982-09-07 | Inoue Japax Res Inc | Wire electrode feeder |
US4470407A (en) | 1982-03-11 | 1984-09-11 | Laserscope, Inc. | Endoscopic device |
US4507026A (en) | 1982-09-29 | 1985-03-26 | Boeing Aerospace Company | Depth control assembly |
US4532935A (en) | 1982-11-01 | 1985-08-06 | Wang Ko P | Bronchoscopic needle assembly |
US4555960A (en) | 1983-03-23 | 1985-12-03 | Cae Electronics, Ltd. | Six degree of freedom hand controller |
EP0152032B1 (en) | 1984-02-03 | 1988-10-26 | Olympus Optical Co., Ltd. | Calculus crushing apparatus |
US4685458A (en) | 1984-03-01 | 1987-08-11 | Vaser, Inc. | Angioplasty catheter and method for use thereof |
US4747405A (en) | 1984-03-01 | 1988-05-31 | Vaser, Inc. | Angioplasty catheter |
US4611594A (en) | 1984-04-11 | 1986-09-16 | Northwestern University | Medical instrument for containment and removal of calculi |
US4590938A (en) * | 1984-05-04 | 1986-05-27 | Segura Joseph W | Medical retriever device |
US4688555A (en) | 1986-04-25 | 1987-08-25 | Circon Corporation | Endoscope with cable compensating mechanism |
DE3715418A1 (en) | 1986-05-08 | 1987-11-12 | Olympus Optical Co | LITHOTOM |
US4784150A (en) | 1986-11-04 | 1988-11-15 | Research Corporation | Surgical retractor and blood flow monitor |
US4854301A (en) | 1986-11-13 | 1989-08-08 | Olympus Optical Co., Ltd. | Endoscope apparatus having a chair with a switch |
US4745908A (en) | 1987-05-08 | 1988-05-24 | Circon Corporation | Inspection instrument fexible shaft having deflection compensation means |
US4907168A (en) | 1988-01-11 | 1990-03-06 | Adolph Coors Company | Torque monitoring apparatus |
US5029574A (en) | 1988-04-14 | 1991-07-09 | Okamoto Industries, Inc. | Endoscopic balloon with a protective film thereon |
EP0377749B1 (en) | 1988-06-06 | 1994-08-31 | Sumitomo Electric Industries, Ltd. | Catheter |
US4857058A (en) | 1988-07-11 | 1989-08-15 | Payton Hugh W | Support patch for intravenous catheter |
US4899733A (en) | 1988-12-19 | 1990-02-13 | Blackstone Ultrasonic, Inc. | Device and technique for transurethral ultrasonic lithotripsy using a flexible ureteroscope |
US5150452A (en) | 1989-07-28 | 1992-09-22 | Megamation Incorporated | Method and apparatus for anti-collision and collision protection for multiple robot system |
US4945790A (en) | 1989-08-07 | 1990-08-07 | Arthur Golden | Multi-purpose hand tool |
US5344395A (en) | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US4983165A (en) | 1990-01-23 | 1991-01-08 | Loiterman David A | Guidance system for vascular catheter or the like |
DE9001262U1 (en) | 1990-02-05 | 1990-08-09 | Martin, Werner, 7207 Rietheim-Weilheim | Surgical needle holder for an endo-suture, endo-ligature or similar. |
US5345927A (en) | 1990-03-02 | 1994-09-13 | Bonutti Peter M | Arthroscopic retractors |
CA2048120A1 (en) | 1990-08-06 | 1992-02-07 | William J. Drasler | Thrombectomy method and device |
US5496267A (en) | 1990-11-08 | 1996-03-05 | Possis Medical, Inc. | Asymmetric water jet atherectomy |
US5350101A (en) | 1990-11-20 | 1994-09-27 | Interventional Technologies Inc. | Device for advancing a rotatable tube |
US5085659A (en) | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
JPH05208014A (en) | 1991-04-10 | 1993-08-20 | Olympus Optical Co Ltd | Treating tool |
DK0637223T3 (en) | 1991-05-29 | 1999-04-26 | Origin Medsystems Inc | Endoscopic Surgery Retention Device |
US5234428A (en) | 1991-06-11 | 1993-08-10 | Kaufman David I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5269797A (en) | 1991-09-12 | 1993-12-14 | Meditron Devices, Inc. | Cervical discectomy instruments |
US5449356A (en) | 1991-10-18 | 1995-09-12 | Birtcher Medical Systems, Inc. | Multifunctional probe for minimally invasive surgery |
US5190542A (en) | 1991-11-05 | 1993-03-02 | Nakao Naomi L | Surgical retrieval assembly and related method |
JPH05146975A (en) | 1991-11-26 | 1993-06-15 | Bridgestone Corp | Multi-shaft automatic nut runner |
US5217001A (en) | 1991-12-09 | 1993-06-08 | Nakao Naomi L | Endoscope sheath and related method |
US5256150A (en) | 1991-12-13 | 1993-10-26 | Endovascular Technologies, Inc. | Large-diameter expandable sheath and method |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
US5217465A (en) | 1992-02-28 | 1993-06-08 | Alcon Surgical, Inc. | Flexible and steerable aspiration tip for microsurgery |
US5737500A (en) | 1992-03-11 | 1998-04-07 | California Institute Of Technology | Mobile dexterous siren degree of freedom robot arm with real-time control system |
US5207128A (en) | 1992-03-23 | 1993-05-04 | Weatherford-Petco, Inc. | Tong with floating jaws |
US5709661A (en) | 1992-04-14 | 1998-01-20 | Endo Sonics Europe B.V. | Electronic catheter displacement sensor |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
GB2280343A (en) | 1993-07-08 | 1995-01-25 | Innovative Care Ltd | A laser targeting device for use with image intensifiers |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5325848A (en) | 1992-09-10 | 1994-07-05 | Ethicon, Inc. | Endoscopic tissue manipulator with expandable frame |
US5545170A (en) | 1992-10-09 | 1996-08-13 | Innovasive Devices, Inc. | Surgical instrument |
US5368564A (en) | 1992-12-23 | 1994-11-29 | Angeion Corporation | Steerable catheter |
US5342381A (en) | 1993-02-11 | 1994-08-30 | Everest Medical Corporation | Combination bipolar scissors and forceps instrument |
WO1994028809A1 (en) | 1993-06-10 | 1994-12-22 | Imran Mir A | Transurethral radio frequency ablation apparatus |
US5731804A (en) | 1995-01-18 | 1998-03-24 | Immersion Human Interface Corp. | Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems |
US5792165A (en) | 1993-07-21 | 1998-08-11 | Charles H. Klieman | Endoscopic instrument with detachable end effector |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5779623A (en) | 1993-10-08 | 1998-07-14 | Leonard Medical, Inc. | Positioner for medical instruments |
JP3476878B2 (en) | 1993-11-15 | 2003-12-10 | オリンパス株式会社 | Surgical manipulator |
US5645083A (en) | 1994-02-10 | 1997-07-08 | Essig; Mitchell N. | Peritoneal surgical method |
US5411016A (en) | 1994-02-22 | 1995-05-02 | Scimed Life Systems, Inc. | Intravascular balloon catheter for use in combination with an angioscope |
US5441485A (en) | 1994-02-24 | 1995-08-15 | Peters; Michael J. | Bladder catheter |
US5501667A (en) | 1994-03-15 | 1996-03-26 | Cordis Corporation | Perfusion balloon and method of use and manufacture |
US5529235A (en) | 1994-04-28 | 1996-06-25 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
EP0699418A1 (en) | 1994-08-05 | 1996-03-06 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US6154000A (en) | 1994-09-07 | 2000-11-28 | Omnitek Research & Development, Inc. | Apparatus for providing a controlled deflection and/or actuator apparatus |
US5559294A (en) | 1994-09-15 | 1996-09-24 | Condux International, Inc. | Torque measuring device |
US5573535A (en) | 1994-09-23 | 1996-11-12 | United States Surgical Corporation | Bipolar surgical instrument for coagulation and cutting |
US5798627A (en) | 1995-01-04 | 1998-08-25 | Gilliland; Malcolm T. | Method for simultaneous operation of robot welders |
US5613973A (en) | 1995-03-10 | 1997-03-25 | Wilson Greatbatch Ltd. | Laraposcopic surgical grasper having an attachable strap |
US5562648A (en) | 1995-03-31 | 1996-10-08 | E. I. Du Pont De Nemours And Company | Adult incontinent absorbent undergarment |
US5697949A (en) | 1995-05-18 | 1997-12-16 | Symbiosis Corporation | Small diameter endoscopic instruments |
US5562678A (en) | 1995-06-02 | 1996-10-08 | Cook Pacemaker Corporation | Needle's eye snare |
DE19625850B4 (en) | 1995-06-27 | 2008-01-31 | Matsushita Electric Works, Ltd., Kadoma | planetary gear |
JP2915826B2 (en) | 1995-07-11 | 1999-07-05 | 富士通株式会社 | Interference check device |
DE19532098A1 (en) | 1995-08-30 | 1997-03-06 | Stuemed Gmbh | Device for endoscopic operations, in particular an expandable support epi-hypopharyngo-laryngoscope according to Feyh-Kastenbauer |
US5710870A (en) | 1995-09-07 | 1998-01-20 | California Institute Of Technology | Decoupled six degree-of-freedom robot manipulator |
US5989230A (en) | 1996-01-11 | 1999-11-23 | Essex Technology, Inc. | Rotate to advance catheterization system |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5842390A (en) | 1996-02-28 | 1998-12-01 | Frank's Casing Crew And Rental Tools Inc. | Dual string backup tong |
US5788710A (en) | 1996-04-30 | 1998-08-04 | Boston Scientific Corporation | Calculus removal |
US6706050B1 (en) | 1996-05-10 | 2004-03-16 | Emmanuil Giannadakis | System of laparoscopic-endoscopic surgery |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6786896B1 (en) | 1997-09-19 | 2004-09-07 | Massachusetts Institute Of Technology | Robotic apparatus |
US5767840A (en) | 1996-06-28 | 1998-06-16 | International Business Machines Corporation | Six-degrees-of-freedom movement sensor having strain gauge mechanical supports |
US5658311A (en) | 1996-07-05 | 1997-08-19 | Schneider (Usa) Inc. | High pressure expander bundle for large diameter stent deployment |
US5788667A (en) | 1996-07-19 | 1998-08-04 | Stoller; Glenn | Fluid jet vitrectomy device and method for use |
JPH10148152A (en) | 1996-11-19 | 1998-06-02 | Unisia Jecs Corp | Temperature estimating device for oxygen sensor in engine |
DE19649082C1 (en) | 1996-11-27 | 1998-01-08 | Fraunhofer Ges Forschung | Remote control unit for implement with holder and two hexapods |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US7727244B2 (en) | 1997-11-21 | 2010-06-01 | Intuitive Surgical Operation, Inc. | Sterile surgical drape |
US5810770A (en) | 1996-12-13 | 1998-09-22 | Stryker Corporation | Fluid management pump system for surgical procedures |
US6272371B1 (en) | 1997-01-03 | 2001-08-07 | Biosense Inc. | Bend-responsive catheter |
US5893869A (en) | 1997-02-19 | 1999-04-13 | University Of Iowa Research Foundation | Retrievable inferior vena cava filter system and method for use thereof |
DE19717108A1 (en) | 1997-04-23 | 1998-11-05 | Stm Medtech Starnberg | Inverted hose system |
EP1014869B1 (en) | 1997-04-29 | 2005-02-09 | Raymond F. Lippitt | Annularly expanding and retracting gripping and releasing mechanism |
US6185478B1 (en) | 1997-05-29 | 2001-02-06 | Seiko Epson Corporation | Printing apparatus, control method for a printing apparatus, and recording medium for recording a control program for a printing apparatus |
US6156030A (en) | 1997-06-04 | 2000-12-05 | Y-Beam Technologies, Inc. | Method and apparatus for high precision variable rate material removal and modification |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
US6174318B1 (en) | 1998-04-23 | 2001-01-16 | Scimed Life Systems, Inc. | Basket with one or more moveable legs |
US6183482B1 (en) | 1997-10-01 | 2001-02-06 | Scimed Life Systems, Inc. | Medical retrieval basket with legs shaped to enhance capture and reduce trauma |
US6071281A (en) | 1998-05-05 | 2000-06-06 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same |
US6093157A (en) | 1997-10-22 | 2000-07-25 | Scimed Life Systems, Inc. | Radiopaque guide wire |
US5921968A (en) | 1997-11-25 | 1999-07-13 | Merit Medical Systems, Inc. | Valve apparatus with adjustable quick-release mechanism |
US6120476A (en) | 1997-12-01 | 2000-09-19 | Cordis Webster, Inc. | Irrigated tip catheter |
RU2130762C1 (en) | 1997-12-10 | 1999-05-27 | Федоров Святослав Николаевич | Device for performing ophthalmosurgical operations |
GB2334270A (en) | 1998-02-14 | 1999-08-18 | Weatherford Lamb | Apparatus for attachment to pipe handling arm |
US20080177285A1 (en) | 1998-02-24 | 2008-07-24 | Hansen Medical, Inc. | Surgical instrument |
US6120498A (en) | 1998-03-05 | 2000-09-19 | Jani; Mahendra G. | Aspirating handpieces for laser surgical operations |
IL123646A (en) | 1998-03-11 | 2010-05-31 | Refael Beyar | Remote control catheterization |
DE19814630B4 (en) | 1998-03-26 | 2011-09-29 | Carl Zeiss | Method and apparatus for manually controlled guiding a tool in a predetermined range of motion |
FR2779934B1 (en) | 1998-06-17 | 2001-01-05 | Saphir Medical Sa | PNEUMATICALLY CONTROLLED HANDPIECE FOR SURGICAL AND MEDICAL APPLICATIONS |
US6428563B1 (en) | 2000-01-21 | 2002-08-06 | Radiant Medical, Inc. | Heat exchange catheter with improved insulated region |
US6171234B1 (en) | 1998-09-25 | 2001-01-09 | Scimed Life Systems, Inc. | Imaging gore loading tool |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6620173B2 (en) | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
DE19859434C2 (en) | 1998-12-22 | 2001-03-08 | Bruker Optik Gmbh | IR spectroscopic endoscope with inflatable balloon |
US6405078B1 (en) | 1999-01-15 | 2002-06-11 | Biosense Webster, Inc. | Porous irrigated tip electrode catheter |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US6084371A (en) | 1999-02-19 | 2000-07-04 | Lockheed Martin Energy Research Corporation | Apparatus and methods for a human de-amplifier system |
CA2363254C (en) | 1999-03-07 | 2009-05-05 | Discure Ltd. | Method and apparatus for computerized surgery |
US6110171A (en) | 1999-03-09 | 2000-08-29 | Everest Medical Corporation | Electrosurgical cutting and coagulating instrument for open surgery |
WO2000053099A1 (en) | 1999-03-09 | 2000-09-14 | Advance Sentry Corporation | Biopsy apparatus and method of obtaining biopsy sample |
US6159220A (en) | 1999-03-11 | 2000-12-12 | Scimed Life Systems, Inc. | Medical retrieval device |
US6183435B1 (en) | 1999-03-22 | 2001-02-06 | Cordis Webster, Inc. | Multi-directional steerable catheters and control handles |
US6289579B1 (en) | 1999-03-23 | 2001-09-18 | Motorola, Inc. | Component alignment and transfer apparatus |
US6893450B2 (en) | 1999-03-26 | 2005-05-17 | Cook Urological Incorporated | Minimally-invasive medical retrieval device |
US6911026B1 (en) | 1999-07-12 | 2005-06-28 | Stereotaxis, Inc. | Magnetically guided atherectomy |
US6375635B1 (en) | 1999-05-18 | 2002-04-23 | Hydrocision, Inc. | Fluid jet surgical instruments |
JP2003508133A (en) | 1999-08-27 | 2003-03-04 | ヴォルシュレーガー ヘルムート | Catheter handling device |
US9517106B2 (en) | 1999-09-17 | 2016-12-13 | Intuitive Surgical Operations, Inc. | Systems and methods for commanded reconfiguration of a surgical manipulator using the null-space |
US10029367B2 (en) | 1999-09-17 | 2018-07-24 | Intuitive Surgical Operations, Inc. | System and method for managing multiple null-space objectives and constraints |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US9510911B2 (en) | 1999-09-17 | 2016-12-06 | Intuitive Surgical Operations, Inc. | System and methods for managing multiple null-space objectives and SLI behaviors |
US9345544B2 (en) | 1999-09-17 | 2016-05-24 | Intuitive Surgical Operations, Inc. | Systems and methods for avoiding collisions between manipulator arms using a null-space |
US8768516B2 (en) | 2009-06-30 | 2014-07-01 | Intuitive Surgical Operations, Inc. | Control of medical robotic system manipulator about kinematic singularities |
US6206903B1 (en) | 1999-10-08 | 2001-03-27 | Intuitive Surgical, Inc. | Surgical tool with mechanical advantage |
US6491691B1 (en) | 1999-10-08 | 2002-12-10 | Intuitive Surgical, Inc. | Minimally invasive surgical hook apparatus and method for using same |
US6427783B2 (en) | 2000-01-12 | 2002-08-06 | Baker Hughes Incorporated | Steerable modular drilling assembly |
US6440061B1 (en) | 2000-03-24 | 2002-08-27 | Donald E. Wenner | Laparoscopic instrument system for real-time biliary exploration and stone removal |
US6858005B2 (en) | 2000-04-03 | 2005-02-22 | Neo Guide Systems, Inc. | Tendon-driven endoscope and methods of insertion |
DE10025285A1 (en) | 2000-05-22 | 2001-12-06 | Siemens Ag | Fully automatic, robot-assisted camera guidance using position sensors for laparoscopic interventions |
EP2292185B1 (en) | 2000-07-24 | 2013-12-04 | Jeffrey Grayzel | Stiffened balloon catheter for dilatation and stenting |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US20030158545A1 (en) | 2000-09-28 | 2003-08-21 | Arthrocare Corporation | Methods and apparatus for treating back pain |
US20020100254A1 (en) | 2000-10-12 | 2002-08-01 | Dsd Communications, Inc. | System and method for targeted advertising and marketing |
EP1199622B1 (en) | 2000-10-20 | 2007-12-12 | Deere & Company | Operating element |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
WO2002053037A2 (en) | 2001-01-08 | 2002-07-11 | Scimed Life Systems, Inc. | Retrieval basket with releasable tip |
EP2335660B1 (en) | 2001-01-18 | 2018-03-28 | The Regents of The University of California | Minimally invasive glaucoma surgical instrument |
US6676557B2 (en) | 2001-01-23 | 2004-01-13 | Black & Decker Inc. | First stage clutch |
US6487940B2 (en) | 2001-01-23 | 2002-12-03 | Associated Toolmakers Incorporated | Nut driver |
EP3097863A1 (en) | 2001-02-15 | 2016-11-30 | Hansen Medical, Inc. | Flexible instrument |
US7699835B2 (en) | 2001-02-15 | 2010-04-20 | Hansen Medical, Inc. | Robotically controlled surgical instruments |
US7766894B2 (en) | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US8414505B1 (en) | 2001-02-15 | 2013-04-09 | Hansen Medical, Inc. | Catheter driver system |
JP4588906B2 (en) | 2001-03-13 | 2010-12-01 | オリンパス株式会社 | Endoscope collection tool |
US7101379B2 (en) | 2001-04-02 | 2006-09-05 | Acmi Corporation | Retrieval basket for a surgical device and system and method for manufacturing same |
US6612143B1 (en) | 2001-04-13 | 2003-09-02 | Orametrix, Inc. | Robot and method for bending orthodontic archwires and other medical devices |
US6640412B2 (en) | 2001-04-26 | 2003-11-04 | Endovascular Technologies, Inc. | Method for loading a stent using a collapsing machine |
ATE412372T1 (en) | 2001-05-06 | 2008-11-15 | Stereotaxis Inc | CATHETER ADVANCEMENT SYSTEM |
US7766856B2 (en) | 2001-05-06 | 2010-08-03 | Stereotaxis, Inc. | System and methods for advancing a catheter |
US7635342B2 (en) | 2001-05-06 | 2009-12-22 | Stereotaxis, Inc. | System and methods for medical device advancement and rotation |
US7607440B2 (en) | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US20030004455A1 (en) | 2001-06-28 | 2003-01-02 | Kadziauskas Kenneth E. | Bi-manual phaco needle |
CA2351993C (en) | 2001-06-29 | 2003-02-18 | New World Technologie Inc. | Torque tool |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
US20060199999A1 (en) | 2001-06-29 | 2006-09-07 | Intuitive Surgical Inc. | Cardiac tissue ablation instrument with flexible wrist |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
WO2003013374A1 (en) | 2001-08-06 | 2003-02-20 | Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
US20030208189A1 (en) | 2001-10-19 | 2003-11-06 | Payman Gholam A. | Integrated system for correction of vision of the human eye |
DE10157924C1 (en) | 2001-11-26 | 2003-06-26 | Fresenius Medical Care De Gmbh | Medical fluid treatment device |
US6652537B2 (en) | 2001-12-12 | 2003-11-25 | C. R. Bard, Inc. | Articulating stone basket |
US6676668B2 (en) | 2001-12-12 | 2004-01-13 | C.R. Baed | Articulating stone basket |
JP2003204920A (en) | 2002-01-11 | 2003-07-22 | Olympus Optical Co Ltd | Insertion assisting tool |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
DE10212154A1 (en) | 2002-03-19 | 2003-10-09 | Norbert F Heske | Handheld biopsy unit for the removal of tissue, comprises at least one tensioning and launching unit, and a needle unit with an outer hollow needle and a hollow biopsy needle |
US8002713B2 (en) | 2002-03-19 | 2011-08-23 | C. R. Bard, Inc. | Biopsy device and insertable biopsy needle module |
US6830545B2 (en) | 2002-05-13 | 2004-12-14 | Everest Vit | Tube gripper integral with controller for endoscope of borescope |
US20040158261A1 (en) | 2002-05-15 | 2004-08-12 | Vu Dinh Q. | Endoscopic device for spill-proof laparoscopic ovarian cystectomy |
US7041108B2 (en) | 2002-05-28 | 2006-05-09 | Lippitt Extractor Company, Llc | Grasper mechanism with biased fixed flexure elements |
US8956280B2 (en) | 2002-05-30 | 2015-02-17 | Intuitive Surgical Operations, Inc. | Apparatus and methods for placing leads using direct visualization |
EP2070487B1 (en) | 2002-08-13 | 2014-03-05 | NeuroArm Surgical, Ltd. | Microsurgical robot system |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US7044936B2 (en) | 2002-08-21 | 2006-05-16 | Arrow International Inc. | Catheter connector with pivot lever spring latch |
FR2844446B1 (en) | 2002-09-17 | 2004-11-26 | Porges Sa | SURGICAL EXTRACTOR FOR THE EXTRACTION OF FOREIGN BODIES THROUGH NATURAL OR SURGICAL PATHWAYS |
US8043303B2 (en) | 2002-10-04 | 2011-10-25 | Cook Medical Technologies Llc | Handle for interchangeable medical device |
US20040186349A1 (en) | 2002-12-24 | 2004-09-23 | Usgi Medical Corp. | Apparatus and methods for achieving endoluminal access |
US6984232B2 (en) | 2003-01-17 | 2006-01-10 | St. Jude Medical, Daig Division, Inc. | Ablation catheter assembly having a virtual electrode comprising portholes |
US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures |
US20040153093A1 (en) | 2003-01-31 | 2004-08-05 | Advanced Medical Optics, Inc. | Bi-manual phacoemulsification apparatus and method |
EP1442720A1 (en) | 2003-01-31 | 2004-08-04 | Tre Esse Progettazione Biomedica S.r.l | Apparatus for the maneuvering of flexible catheters in the human cardiovascular system |
US7246273B2 (en) | 2003-02-28 | 2007-07-17 | Sony Corporation | Method of, apparatus and graphical user interface for automatic diagnostics |
US7559934B2 (en) | 2003-04-07 | 2009-07-14 | Scimed Life Systems, Inc. | Beaded basket retrieval device |
US7122003B2 (en) | 2003-04-16 | 2006-10-17 | Granit Medical Innovations, Llc | Endoscopic retractor instrument and associated method |
US7121781B2 (en) | 2003-06-11 | 2006-10-17 | Intuitive Surgical | Surgical instrument with a universal wrist |
US8579804B2 (en) | 2003-06-23 | 2013-11-12 | Boston Scientific Scimed, Inc. | Variable length nephrostomy sheath |
US20050004579A1 (en) | 2003-06-27 | 2005-01-06 | Schneider M. Bret | Computer-assisted manipulation of catheters and guide wires |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US8403828B2 (en) | 2003-07-21 | 2013-03-26 | Vanderbilt University | Ophthalmic orbital surgery apparatus and method and image-guide navigation system |
US20050059645A1 (en) | 2003-07-31 | 2005-03-17 | Bodor Nicholas S. | Methods for the treatment of male and female sexual dysfunction |
US20050159645A1 (en) | 2003-11-12 | 2005-07-21 | Bertolero Arthur A. | Balloon catheter sheath |
ITPI20030107A1 (en) | 2003-11-14 | 2005-05-15 | Massimo Bergamasco | DEVICE FOR PERFORMING OPERATIONS |
CA2548499C (en) | 2003-12-11 | 2012-08-21 | Cook Incorporated | Hemostatic valve assembly |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
CA2555314C (en) | 2004-02-09 | 2016-02-02 | Smart Medical Systems Ltd. | Endoscope assembly |
US7344494B2 (en) | 2004-02-09 | 2008-03-18 | Karl Storz Development Corp. | Endoscope with variable direction of view module |
US7204168B2 (en) | 2004-02-25 | 2007-04-17 | The University Of Manitoba | Hand controller and wrist device |
JP4755638B2 (en) | 2004-03-05 | 2011-08-24 | ハンセン メディカル,インク. | Robotic guide catheter system |
US8052636B2 (en) | 2004-03-05 | 2011-11-08 | Hansen Medical, Inc. | Robotic catheter system and methods |
CN100463648C (en) | 2004-03-11 | 2009-02-25 | 梅德拉股份有限公司 | Energy assisted medical devices, systems and methods |
US9345456B2 (en) | 2004-03-24 | 2016-05-24 | Devicor Medical Products, Inc. | Biopsy device |
JP4638683B2 (en) | 2004-03-25 | 2011-02-23 | テルモ株式会社 | Intravascular foreign body removal aspiration catheter |
US20070208252A1 (en) | 2004-04-21 | 2007-09-06 | Acclarent, Inc. | Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses |
DE102004020465B3 (en) | 2004-04-26 | 2005-09-01 | Aumann Gmbh | Wire tension regulator for winding machine has braking wheel which may be driven by electric motor and braked by disk brake applied by moving coil actuator |
US20050267488A1 (en) | 2004-05-13 | 2005-12-01 | Omnisonics Medical Technologies, Inc. | Apparatus and method for using an ultrasonic medical device to treat urolithiasis |
US20050261705A1 (en) | 2004-05-21 | 2005-11-24 | Gist Christopher W | Device to remove kidney stones |
US10258285B2 (en) | 2004-05-28 | 2019-04-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated creation of ablation lesions |
US7974674B2 (en) | 2004-05-28 | 2011-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for surface modeling |
IL162318A (en) | 2004-06-03 | 2011-07-31 | Tal Wenderow | Transmission for a remote catheterization system |
US7883516B2 (en) | 2004-07-07 | 2011-02-08 | Percutaneous Systems, Inc. | Methods for removing kidney stones from the ureter |
US8005537B2 (en) | 2004-07-19 | 2011-08-23 | Hansen Medical, Inc. | Robotically controlled intravascular tissue injection system |
DE102004040959B4 (en) | 2004-08-24 | 2008-12-24 | Erbe Elektromedizin Gmbh | Surgical instrument |
US20060135963A1 (en) | 2004-09-09 | 2006-06-22 | Kick George F | Expandable gastrointestinal sheath |
US7824415B2 (en) | 2004-09-15 | 2010-11-02 | Boston Scientific Scimed, Inc. | Atraumatic medical device |
US8827899B2 (en) | 2004-09-24 | 2014-09-09 | Vivid Medical, Inc. | Disposable endoscopic access device and portable display |
US10646292B2 (en) | 2004-09-30 | 2020-05-12 | Intuitive Surgical Operations, Inc. | Electro-mechanical strap stack in robotic arms |
US8954738B2 (en) | 2004-11-22 | 2015-02-10 | Core Wireless Licensing, S.a.r.l. | Method and device for verifying the integrity of platform software of an electronic device |
WO2006060658A2 (en) | 2004-12-01 | 2006-06-08 | Ethicon Endo-Surgery, Inc. | Apparatus and method for stone capture and removal |
JP4982637B2 (en) | 2004-12-15 | 2012-07-25 | クック メディカル テクノロジーズ エルエルシー | Flexible surgical needle device |
US20060156875A1 (en) | 2005-01-19 | 2006-07-20 | Depuy Mitek, Inc. | Fluid cutting device and method of use |
WO2006081134A2 (en) | 2005-01-26 | 2006-08-03 | Wilk Patent, Llc | Intra-abdominal medical procedures and device |
US7314097B2 (en) | 2005-02-24 | 2008-01-01 | Black & Decker Inc. | Hammer drill with a mode changeover mechanism |
US8375808B2 (en) | 2005-12-30 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Force sensing for surgical instruments |
US20060237205A1 (en) | 2005-04-21 | 2006-10-26 | Eastway Fair Company Limited | Mode selector mechanism for an impact driver |
US20080045981A1 (en) | 2005-04-22 | 2008-02-21 | Ilya Margolin | Ligating clip and ligating clip applicator |
CN1851021A (en) | 2005-04-22 | 2006-10-25 | 鸿富锦精密工业(深圳)有限公司 | Magnesium-aluminium alloy material |
US7914540B2 (en) | 2005-04-27 | 2011-03-29 | Board Of Trustees Of Southern Illinois University | Material retrieval device and method of using |
US7789874B2 (en) | 2005-05-03 | 2010-09-07 | Hansen Medical, Inc. | Support assembly for robotic catheter system |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US8092481B2 (en) | 2005-06-03 | 2012-01-10 | Onset Medical Corporation | Expandable percutaneous sheath |
US8104479B2 (en) | 2005-06-23 | 2012-01-31 | Volcano Corporation | Pleated bag for interventional pullback systems |
US7465288B2 (en) | 2005-06-28 | 2008-12-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Actuation handle for a catheter |
US20070027443A1 (en) | 2005-06-29 | 2007-02-01 | Ondine International, Ltd. | Hand piece for the delivery of light and system employing the hand piece |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
EP1906858B1 (en) | 2005-07-01 | 2016-11-16 | Hansen Medical, Inc. | Robotic catheter system |
US8790396B2 (en) | 2005-07-27 | 2014-07-29 | Medtronic 3F Therapeutics, Inc. | Methods and systems for cardiac valve delivery |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
WO2007033379A2 (en) | 2005-09-14 | 2007-03-22 | Neoguide Systems, Inc. | Methods and apparatus for performing transluminal and other procedures |
US20070086934A1 (en) | 2005-10-13 | 2007-04-19 | Bayerische Motoren Werke Aktiengesellschaft | Reformer system and method reforming |
JP4763420B2 (en) | 2005-10-27 | 2011-08-31 | オリンパスメディカルシステムズ株式会社 | Endoscope operation assistance device |
JP5121132B2 (en) | 2005-11-02 | 2013-01-16 | オリンパスメディカルシステムズ株式会社 | Endoscope system and operation assist device for endoscope |
WO2007056003A1 (en) | 2005-11-03 | 2007-05-18 | Vance Products Incorporated, D/B/A Cook Urological Incorporated | Articulating basket with simultaneous basket extension or basket retraction |
EP1943938B9 (en) | 2005-11-04 | 2016-09-21 | Olympus Corporation | Endoscope system |
US20070149946A1 (en) | 2005-12-07 | 2007-06-28 | Viswanathan Raju R | Advancer system for coaxial medical devices |
CN101340852B (en) | 2005-12-20 | 2011-12-28 | 直观外科手术操作公司 | Instrument interface of a robotic surgical system |
US9266239B2 (en) | 2005-12-27 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Constraint based control in a minimally invasive surgical apparatus |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
EP1981414A2 (en) | 2006-02-08 | 2008-10-22 | VANCE PRODUCTS INCORPORATED d/b/a COOK UROLOGICAL INCORPORATED | Irrigating catch and removal device |
JP4789000B2 (en) | 2006-02-16 | 2011-10-05 | Smc株式会社 | Automatic reduction ratio switching device |
US8989528B2 (en) | 2006-02-22 | 2015-03-24 | Hansen Medical, Inc. | Optical fiber grating sensors and methods of manufacture |
WO2007098494A1 (en) | 2006-02-22 | 2007-08-30 | Hansen Medical, Inc. | System and apparatus for measuring distal forces on a working instrument |
US20070208375A1 (en) | 2006-02-23 | 2007-09-06 | Kouji Nishizawa | Surgical device |
WO2007103995A2 (en) | 2006-03-07 | 2007-09-13 | Vance Products Incorporated, D/B/A Cook Urological Incorporated | Foot operated irrigation control apparatus for medical procedures |
US9675375B2 (en) | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
US8211114B2 (en) | 2006-04-24 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Medical instrument having a medical snare |
US7927327B2 (en) | 2006-04-25 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | Medical instrument having an articulatable end effector |
US8628520B2 (en) | 2006-05-02 | 2014-01-14 | Biosense Webster, Inc. | Catheter with omni-directional optical lesion evaluation |
WO2007136591A1 (en) | 2006-05-15 | 2007-11-29 | Baystate Health, Inc. | Balloon endoscope device |
US20080140087A1 (en) | 2006-05-17 | 2008-06-12 | Hansen Medical Inc. | Robotic instrument system |
JP5193190B2 (en) | 2006-05-17 | 2013-05-08 | セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド | Self-locking catheter handle |
US8092470B2 (en) | 2006-06-08 | 2012-01-10 | Olympus Medical Systems Corp. | Calculus crushing apparatus and medical procedure using endoscope |
US20080064921A1 (en) | 2006-06-13 | 2008-03-13 | Intuitive Surgical, Inc. | Guide tube control of minimally invasive surgical instruments |
CA2860487C (en) | 2006-06-14 | 2019-03-26 | Macdonald, Dettwiler And Associates Inc. | Serially jointed manipulator arm |
JP2009541006A (en) | 2006-06-26 | 2009-11-26 | ウィルソン−クック・メディカル・インコーポレーテッド | Improved handle for lithotripsy basket device |
US8151661B2 (en) | 2006-06-30 | 2012-04-10 | Intuituve Surgical Operations, Inc. | Compact capstan |
US9585714B2 (en) | 2006-07-13 | 2017-03-07 | Bovie Medical Corporation | Surgical sealing and cutting apparatus |
EP2043501A2 (en) | 2006-07-26 | 2009-04-08 | Hansen Medical, Inc. | Systems for performing minimally invasive surgical operations |
US8303449B2 (en) | 2006-08-01 | 2012-11-06 | Techtronic Power Tools Technology Limited | Automatic transmission for a power tool |
US8409172B2 (en) * | 2006-08-03 | 2013-04-02 | Hansen Medical, Inc. | Systems and methods for performing minimally invasive procedures |
JP4755047B2 (en) | 2006-08-08 | 2011-08-24 | テルモ株式会社 | Working mechanism and manipulator |
US7582055B2 (en) * | 2006-08-09 | 2009-09-01 | Olympus Medical Systems Corp. | Endoscope system |
US8652086B2 (en) | 2006-09-08 | 2014-02-18 | Abbott Medical Optics Inc. | Systems and methods for power and flow rate control |
US20080082109A1 (en) | 2006-09-08 | 2008-04-03 | Hansen Medical, Inc. | Robotic surgical system with forward-oriented field of view guide instrument navigation |
JP2010504151A (en) | 2006-09-19 | 2010-02-12 | ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク | System, apparatus and method for surgery on hollow anatomically suspended organs |
US8858567B2 (en) | 2006-10-14 | 2014-10-14 | Rafic Saleh | Surgical retrieval device and method |
US7535991B2 (en) | 2006-10-16 | 2009-05-19 | Oraya Therapeutics, Inc. | Portable orthovoltage radiotherapy |
US20090131885A1 (en) | 2006-11-08 | 2009-05-21 | Takayuki Akahoshi | Curved Irrigation/Aspiration Needle |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
US8480595B2 (en) | 2006-12-13 | 2013-07-09 | Devicor Medical Products, Inc. | Biopsy device with motorized needle cocking |
US7699809B2 (en) | 2006-12-14 | 2010-04-20 | Urmey William F | Catheter positioning system |
JP5369336B2 (en) | 2007-01-02 | 2013-12-18 | アクアビーム エルエルシー | Method and device with minimal invasiveness for treating prostate disease |
US9232959B2 (en) | 2007-01-02 | 2016-01-12 | Aquabeam, Llc | Multi fluid tissue resection methods and devices |
EP2099367A2 (en) | 2007-01-12 | 2009-09-16 | Wilson-Cook Medical Inc. | Lithotripsy basket drill |
US20090036900A1 (en) | 2007-02-02 | 2009-02-05 | Hansen Medical, Inc. | Surgery methods using a robotic instrument system |
US9254374B2 (en) | 2007-02-15 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter and method of manufacture |
US20080262513A1 (en) | 2007-02-15 | 2008-10-23 | Hansen Medical, Inc. | Instrument driver having independently rotatable carriages |
US20080214925A1 (en) | 2007-03-01 | 2008-09-04 | Civco Medical Instruments Co., Inc. | Device for precision positioning of instruments at a mri scanner |
CN104287888B (en) | 2007-03-13 | 2016-11-09 | 眼科医疗公司 | For creating the device of ocular surgical and relaxing incisions |
US7987046B1 (en) | 2007-04-04 | 2011-07-26 | Garmin Switzerland Gmbh | Navigation device with improved user interface and mounting features |
US7695154B2 (en) | 2007-04-05 | 2010-04-13 | Dpm Associates, Llc | Illuminating footwear accessory |
JP5444209B2 (en) | 2007-04-16 | 2014-03-19 | ニューロアーム サージカル リミテッド | Frame mapping and force feedback method, apparatus and system |
US20080262301A1 (en) | 2007-04-20 | 2008-10-23 | Wilson-Cook Medical Inc. | Steerable overtube |
US20090138025A1 (en) | 2007-05-04 | 2009-05-28 | Hansen Medical, Inc. | Apparatus systems and methods for forming a working platform of a robotic instrument system by manipulation of components having controllably rigidity |
US8414246B2 (en) | 2007-06-06 | 2013-04-09 | Cycogs, Llc | Modular hybrid snake arm |
WO2008157399A1 (en) | 2007-06-14 | 2008-12-24 | Hansen Medical, Inc. | System and method for determining electrode-tissue contact |
US20080312521A1 (en) | 2007-06-14 | 2008-12-18 | Solomon Edward G | System and method for determining electrode-tissue contact using phase difference |
US20090030446A1 (en) | 2007-07-25 | 2009-01-29 | Measamer John P | Tissue Manipulator |
US20090062602A1 (en) | 2007-07-30 | 2009-03-05 | Hansen Medical, Inc. | Apparatus for robotic instrument having variable flexibility and torque transmission |
EP2187830A1 (en) | 2007-08-14 | 2010-05-26 | Hansen Medical, Inc. | Robotic instrument systems and methods utilizing optical fiber sensor |
US20090082722A1 (en) | 2007-08-21 | 2009-03-26 | Munger Gareth T | Remote navigation advancer devices and methods of use |
US7998020B2 (en) | 2007-08-21 | 2011-08-16 | Stereotaxis, Inc. | Apparatus for selectively rotating and/or advancing an elongate device |
JP5296351B2 (en) | 2007-08-28 | 2013-09-25 | オリンパスメディカルシステムズ株式会社 | Endoscope insertion device |
EP2190761B1 (en) | 2007-08-28 | 2013-10-30 | Marel A/S | Gripping device, for example for a robot |
US9199372B2 (en) | 2007-09-13 | 2015-12-01 | Procure Treatment Centers, Inc. | Patient positioner system |
US20090082634A1 (en) | 2007-09-25 | 2009-03-26 | Biten Kishore Kathrani | Surgical method |
US9050120B2 (en) | 2007-09-30 | 2015-06-09 | Intuitive Surgical Operations, Inc. | Apparatus and method of user interface with alternate tool mode for robotic surgical tools |
CN100522507C (en) | 2007-10-19 | 2009-08-05 | 哈尔滨工业大学 | Flexible connecting line structure between integrated circuit board in the finger of robot delicacy hand |
US8328819B2 (en) | 2007-10-22 | 2012-12-11 | Boston Scientific Scimed, Inc. | Steerable stone basket |
JP2009139187A (en) | 2007-12-05 | 2009-06-25 | Sumitomo Heavy Ind Ltd | Torque measuring device |
US20140058365A1 (en) | 2007-12-17 | 2014-02-27 | Josef F. Bille | System and Method for Using Compensating Incisions in Intrastromal Refractive Surgery |
JP5017076B2 (en) | 2007-12-21 | 2012-09-05 | テルモ株式会社 | Manipulator system and manipulator control method |
US20090299352A1 (en) | 2007-12-21 | 2009-12-03 | Boston Scientific Scimed, Inc. | Steerable laser-energy delivery device |
CN101951990A (en) | 2007-12-23 | 2011-01-19 | Oraya治疗公司 | Methods and devices for detecting, controlling, and predicting radiation delivery |
US8473031B2 (en) | 2007-12-26 | 2013-06-25 | Intuitive Surgical Operations, Inc. | Medical robotic system with functionality to determine and display a distance indicated by movement of a tool robotically manipulated by an operator |
WO2009092059A2 (en) | 2008-01-16 | 2009-07-23 | Catheter Robotics, Inc. | Remotely controlled catheter insertion system |
US8435237B2 (en) | 2008-01-29 | 2013-05-07 | Covidien Lp | Polyp encapsulation system and method |
EP2244784A2 (en) | 2008-01-30 | 2010-11-03 | The Trustees of Columbia University in the City of New York | Systems, devices, and methods for robot-assisted micro-surgical stenting |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
JP5506702B2 (en) | 2008-03-06 | 2014-05-28 | アクアビーム エルエルシー | Tissue ablation and cauterization by optical energy transmitted in fluid flow |
RU2010140886A (en) | 2008-03-07 | 2012-04-20 | Новозимс Эдениум Байотек А/С (Dk) | APPLICATION OF DEFENSINS IN TUBERCULOSIS |
US20090254083A1 (en) | 2008-03-10 | 2009-10-08 | Hansen Medical, Inc. | Robotic ablation catheter |
US8048024B2 (en) | 2008-03-17 | 2011-11-01 | Boston Scientific Scimed, Inc. | Steering mechanism |
JP5322153B2 (en) | 2008-03-25 | 2013-10-23 | Ntn株式会社 | Drive device for medical linear body |
US8317745B2 (en) | 2008-03-27 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter rotatable device cartridge |
US10368838B2 (en) | 2008-03-31 | 2019-08-06 | Intuitive Surgical Operations, Inc. | Surgical tools for laser marking and laser cutting |
US7886743B2 (en) | 2008-03-31 | 2011-02-15 | Intuitive Surgical Operations, Inc. | Sterile drape interface for robotic surgical instrument |
US7938809B2 (en) | 2008-04-14 | 2011-05-10 | Merit Medical Systems, Inc. | Quick release hemostasis valve |
US20090264878A1 (en) | 2008-04-21 | 2009-10-22 | Electro Medical Associates, Llc | Devices and methods for ablating and removing a tissue mass |
US8864681B2 (en) | 2008-04-23 | 2014-10-21 | Devicor Medical Products, Inc. | Biopsy devices |
EP3858416B1 (en) | 2008-05-06 | 2023-11-01 | Corindus, Inc. | Catheter system |
US9539381B2 (en) | 2008-05-12 | 2017-01-10 | Humparkull, Llc | Hemostatic devices and methods for use thereof |
BRPI0911039A2 (en) | 2008-05-12 | 2016-08-16 | Longyear Tm Inc | open face rod turning device, drilling rig, and drilling rig |
WO2009140288A2 (en) | 2008-05-13 | 2009-11-19 | Boston Scientific Scimed, Inc. | Steering system with locking mechanism |
WO2009140688A2 (en) | 2008-05-16 | 2009-11-19 | The Johns Hopkins University | System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye |
KR101016102B1 (en) | 2008-05-30 | 2011-02-17 | 정창욱 | Minimally invasive surgical instruments |
CN102014759B (en) | 2008-06-11 | 2012-12-26 | 韩商未来股份有限公司 | Instrument of surgical robot arm |
US8628545B2 (en) | 2008-06-13 | 2014-01-14 | Covidien Lp | Endoscopic stitching devices |
US20100004642A1 (en) | 2008-07-02 | 2010-01-07 | Lumpkin Christopher F | Selectively bendable laser fiber for surgical laser probe |
US8540748B2 (en) | 2008-07-07 | 2013-09-24 | Intuitive Surgical Operations, Inc. | Surgical instrument wrist |
US9186221B2 (en) | 2008-07-16 | 2015-11-17 | Intuitive Surgical Operations Inc. | Backend mechanism for four-cable wrist |
US8821480B2 (en) | 2008-07-16 | 2014-09-02 | Intuitive Surgical Operations, Inc. | Four-cable wrist with solid surface cable channels |
US8771270B2 (en) | 2008-07-16 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Bipolar cautery instrument |
US9204923B2 (en) | 2008-07-16 | 2015-12-08 | Intuitive Surgical Operations, Inc. | Medical instrument electronically energized using drive cables |
JP2010035768A (en) | 2008-08-04 | 2010-02-18 | Olympus Medical Systems Corp | Active drive type medical apparatus |
JP2010046384A (en) | 2008-08-25 | 2010-03-04 | Terumo Corp | Medical manipulator and experimental device |
US8390438B2 (en) | 2008-09-24 | 2013-03-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system including haptic feedback |
US20100082017A1 (en) | 2008-09-26 | 2010-04-01 | Advanced Medical Optics, Inc. | Laser modification of intraocular lens |
US9259274B2 (en) | 2008-09-30 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Passive preload and capstan drive for surgical instruments |
US9186128B2 (en) | 2008-10-01 | 2015-11-17 | Covidien Lp | Needle biopsy device |
US8720448B2 (en) | 2008-11-07 | 2014-05-13 | Hansen Medical, Inc. | Sterile interface apparatus |
US8317746B2 (en) | 2008-11-20 | 2012-11-27 | Hansen Medical, Inc. | Automated alignment |
US8095223B2 (en) | 2008-11-26 | 2012-01-10 | B. Braun Medical, Inc. | Apparatus and method for inserting a catheter |
EP2355717B1 (en) | 2008-12-01 | 2014-02-19 | Percutaneous Systems, Inc. | Systems for capturing and removing urinary stones from body cavities |
CN102264434B (en) | 2008-12-02 | 2016-02-03 | 拜欧利泰克投资二代公司 | The medical procedure of induced with laser steam/plasma-mediated and device |
US20100331856A1 (en) | 2008-12-12 | 2010-12-30 | Hansen Medical Inc. | Multiple flexible and steerable elongate instruments for minimally invasive operations |
US20100179632A1 (en) | 2009-01-12 | 2010-07-15 | Medtronic Vascular, Inc. | Robotic Fenestration Device Having Impedance Measurement |
US8602031B2 (en) | 2009-01-12 | 2013-12-10 | Hansen Medical, Inc. | Modular interfaces and drive actuation through barrier |
ITBO20090004U1 (en) | 2009-02-11 | 2010-08-12 | Tre Esse Progettazione Biomedica S R L | ROBOTIC MANIPULATOR FOR DISTANCE MANEUVERING OF STEERABLE CATHETERS IN THE HUMAN CARDIOVASCULAR SYSTEM. |
WO2010093803A2 (en) | 2009-02-12 | 2010-08-19 | Keimar, Inc. | Physiological parameter sensors |
KR100961661B1 (en) | 2009-02-12 | 2010-06-09 | 주식회사 래보 | Apparatus and method of operating a medical navigation system |
US8694129B2 (en) | 2009-02-13 | 2014-04-08 | Cardiac Pacemakers, Inc. | Deployable sensor platform on the lead system of an implantable device |
US20100228191A1 (en) | 2009-03-05 | 2010-09-09 | Hansen Medical, Inc. | Lockable support assembly and method |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US8659835B2 (en) | 2009-03-13 | 2014-02-25 | Optotune Ag | Lens systems and method |
EP2405824B1 (en) | 2009-03-14 | 2018-08-08 | Vasostitch, Inc. | Vessel access and closure device |
EP2233103B1 (en) | 2009-03-26 | 2017-11-15 | W & H Dentalwerk Bürmoos GmbH | Medical, in particular dental handpiece |
US10004387B2 (en) | 2009-03-26 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Method and system for assisting an operator in endoscopic navigation |
US8945163B2 (en) | 2009-04-01 | 2015-02-03 | Ethicon Endo-Surgery, Inc. | Methods and devices for cutting and fastening tissue |
US8292879B2 (en) | 2009-04-17 | 2012-10-23 | Domain Surgical, Inc. | Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool |
DE102009018820A1 (en) | 2009-04-24 | 2010-10-28 | Aesculap Ag | Magazine with a variety of C-shaped ligature clips |
KR101030371B1 (en) | 2009-04-27 | 2011-04-20 | 국립암센터 | Endoscopic adjustment device for minimally invasive surgery |
US9254123B2 (en) | 2009-04-29 | 2016-02-09 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US8517955B2 (en) | 2009-05-08 | 2013-08-27 | Broncus Medical Inc. | Tissue sampling devices, systems and methods |
GB0908368D0 (en) | 2009-05-15 | 2009-06-24 | Univ Leuven Kath | Adjustable remote center of motion positioner |
JP5836267B2 (en) | 2009-05-18 | 2015-12-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Method and system for markerless tracking registration and calibration for an electromagnetic tracking endoscope system |
ES2388029B1 (en) | 2009-05-22 | 2013-08-13 | Universitat Politècnica De Catalunya | ROBOTIC SYSTEM FOR LAPAROSCOPIC SURGERY. |
US10537713B2 (en) | 2009-05-25 | 2020-01-21 | Stereotaxis, Inc. | Remote manipulator device |
SG10201402759QA (en) | 2009-05-29 | 2014-08-28 | Univ Nanyang Tech | Robotic System for Flexible Endoscopy |
WO2011005335A1 (en) | 2009-07-10 | 2011-01-13 | Tyco Healthcare Group Lp | Shaft constructions for medical devices with an articulating tip |
US20110015483A1 (en) | 2009-07-16 | 2011-01-20 | Federico Barbagli | Endoscopic robotic catheter system |
WO2011008922A2 (en) | 2009-07-16 | 2011-01-20 | Hansen Medical, Inc. | Endoscopic robotic catheter system |
US20110015484A1 (en) | 2009-07-16 | 2011-01-20 | Alvarez Jeffrey B | Endoscopic robotic catheter system |
US20110015648A1 (en) | 2009-07-16 | 2011-01-20 | Hansen Medical, Inc. | Endoscopic robotic catheter system |
US8888789B2 (en) | 2009-09-23 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system control |
US8277417B2 (en) | 2009-09-23 | 2012-10-02 | James J. Fedinec | Central venous catheter kit with line gripping and needle localizing devices |
US20110071541A1 (en) | 2009-09-23 | 2011-03-24 | Intuitive Surgical, Inc. | Curved cannula |
US8721631B2 (en) | 2009-09-24 | 2014-05-13 | Biolite Pharma Marketing Ltd | Twister fiber optic systems and their use in medical applications |
US8992542B2 (en) | 2009-10-01 | 2015-03-31 | Mako Surgical Corp. | Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool |
EP2488093A4 (en) | 2009-10-15 | 2013-04-03 | Inventio Llc | Disposable and reusable complex shaped see-through endoscope |
ES2388867B1 (en) | 2009-10-27 | 2013-09-18 | Universitat Politècnica De Catalunya | MINIMALLY INVASIVE LAPAROSCOPIC SURGERY CLAMPS. |
WO2011058493A1 (en) | 2009-11-12 | 2011-05-19 | Koninklijke Philips Electronics N.V. | A steering system and a catcher system |
JP5750116B2 (en) | 2009-11-16 | 2015-07-15 | コーニンクレッカ フィリップス エヌ ヴェ | Human-Robot Shared Control for Endoscope-Assisted Robot |
US8740241B2 (en) | 2009-12-07 | 2014-06-03 | Concaten, Inc. | Mobile barrier |
US8932211B2 (en) | 2012-06-22 | 2015-01-13 | Macroplata, Inc. | Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment |
DE102010031274B4 (en) | 2009-12-18 | 2023-06-22 | Robert Bosch Gmbh | Hand tool with gear cooling |
US20110152880A1 (en) | 2009-12-23 | 2011-06-23 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with torsion control |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US20130053877A1 (en) | 2010-02-05 | 2013-02-28 | Imds Corporation | Multiple Function Surgical Instrument |
WO2011100753A2 (en) | 2010-02-15 | 2011-08-18 | The Johns Hopkins University | Interventional photoacoustic imaging system |
US8403945B2 (en) | 2010-02-25 | 2013-03-26 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8292889B2 (en) | 2010-02-26 | 2012-10-23 | Tyco Healthcare Group Lp | Drive mechanism for articulation of a surgical instrument |
WO2011109283A1 (en) | 2010-03-02 | 2011-09-09 | Corindus Inc. | Robotic catheter system with variable drive mechanism |
US9610133B2 (en) | 2010-03-16 | 2017-04-04 | Covidien Lp | Wireless laparoscopic camera |
JP5571432B2 (en) | 2010-03-30 | 2014-08-13 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Medical robot system |
GB201006079D0 (en) | 2010-04-13 | 2010-05-26 | Central Manchester University | Surgical device and methods |
US20110257641A1 (en) | 2010-04-14 | 2011-10-20 | Roger Hastings | Phototherapy for renal denervation |
US8394120B2 (en) | 2010-05-04 | 2013-03-12 | Jacek Krzyzanowski | End effector assembly with increased clamping force for a surgical instrument |
US20110282357A1 (en) | 2010-05-14 | 2011-11-17 | Intuitive Surgical Operations, Inc. | Surgical system architecture |
US9950139B2 (en) | 2010-05-14 | 2018-04-24 | C. R. Bard, Inc. | Catheter placement device including guidewire and catheter control elements |
DE102010029275A1 (en) | 2010-05-25 | 2011-12-01 | Siemens Aktiengesellschaft | Method for moving an instrument arm of a Laparoskopierobotors in a predetermined relative position to a trocar |
EP2239600A1 (en) | 2010-06-02 | 2010-10-13 | Optotune AG | Adjustable optical lens |
BR112012031812A2 (en) | 2010-06-13 | 2016-11-01 | Motus Gi Medical Technologies Ltd | systems and methods for cleaning body cavities |
US20110313343A1 (en) | 2010-06-18 | 2011-12-22 | Alcon Research, Ltd. | Phacoemulsification Fluidics System Having a Single Pump Head |
WO2011160686A1 (en) | 2010-06-23 | 2011-12-29 | Renzo Marco Giovanni Brun Del Re | Biopsy alignment guide |
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
WO2017066518A1 (en) | 2010-06-29 | 2017-04-20 | Mighty Oak Medical, Inc. | Patient-matched apparatus and methods for performing surgical procedures |
US8226580B2 (en) | 2010-06-30 | 2012-07-24 | Biosense Webster (Israel), Ltd. | Pressure sensing for a multi-arm catheter |
US9592119B2 (en) | 2010-07-13 | 2017-03-14 | C.R. Bard, Inc. | Inflatable medical devices |
EP2600788B1 (en) | 2010-08-02 | 2023-07-26 | The Johns Hopkins University | Tool exchange interface and control algorithm for cooperative surgical robots |
EP2532299B1 (en) | 2010-09-14 | 2014-11-05 | Olympus Medical Systems Corp. | Endoscope system and low visibility determining method |
US8827948B2 (en) | 2010-09-17 | 2014-09-09 | Hansen Medical, Inc. | Steerable catheters |
US9730690B2 (en) | 2010-09-20 | 2017-08-15 | Entourage Medical Technologies, Inc. | Method for providing surgical access |
HUE065575T2 (en) | 2010-09-25 | 2024-06-28 | Ipg Photonics Canada Inc | Method of coherent imaging and feedback control for modification of materials |
WO2012049623A1 (en) | 2010-10-11 | 2012-04-19 | Ecole Polytechnique Federale De Lausanne (Epfl) | Mechanical manipulator for surgical instruments |
US9066741B2 (en) | 2010-11-01 | 2015-06-30 | Atricure, Inc. | Robotic toolkit |
CN201884596U (en) | 2010-11-02 | 2011-06-29 | 李国铭 | Differential |
KR101854707B1 (en) | 2010-11-15 | 2018-05-04 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Decoupling instrument shaft roll and end effector actuation in a surgical instrument |
DE102011086032A1 (en) | 2010-11-16 | 2012-05-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Liquid jet scalpel for use with medical robot for performing minimally invasive surgery on thorax of patient in surgical site, has nozzle for outputting liquid jet, and functional end effector for manipulating tissue in surgical site |
US20130066136A1 (en) | 2010-11-24 | 2013-03-14 | Mount Sinai School Of Medicine | Magnetic based device for retrieving a misplaced article |
US20120136419A1 (en) | 2010-11-29 | 2012-05-31 | Zarembo Paul E | Implantable medical leads with spiral lumens |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US20120191079A1 (en) | 2011-01-20 | 2012-07-26 | Hansen Medical, Inc. | System and method for endoluminal and translumenal therapy |
DE102011003118A1 (en) | 2011-01-25 | 2012-07-26 | Krones Aktiengesellschaft | closing |
DE102011011497A1 (en) | 2011-02-17 | 2012-08-23 | Kuka Roboter Gmbh | Surgical instrument |
US10716706B2 (en) | 2011-04-07 | 2020-07-21 | Bausch & Lomb Incorporated | System and method for performing lens fragmentation |
US10786432B2 (en) | 2011-04-12 | 2020-09-29 | Sartorius Stedim Biotech Gmbh | Use of a device and a method for preparing mixtures of pharmaceutical substances |
US9655615B2 (en) | 2011-04-19 | 2017-05-23 | Dextera Surgical Inc. | Active wedge and I-beam for surgical stapler |
AU2012250729B2 (en) | 2011-05-03 | 2016-12-01 | Shifamed Holdings, Llc | Steerable delivery sheaths |
EP3381421B1 (en) | 2011-05-12 | 2019-10-16 | Carl Zeiss Meditec AG | Laser instrument for eye therapy |
US9301876B2 (en) | 2011-05-16 | 2016-04-05 | Wavelight Gmbh | System and process for surgical treatment of an eye as well as process for calibrating a system of such a type |
WO2013003088A1 (en) | 2011-06-28 | 2013-01-03 | Cook Medical Technologies, LLC | Biopsy needle with flexible length |
WO2013009252A2 (en) | 2011-07-11 | 2013-01-17 | Medical Vision Research & Development Ab | Status control for electrically powered surgical tool systems |
JP5931497B2 (en) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | Surgery support apparatus and assembly method thereof |
US20130035537A1 (en) | 2011-08-05 | 2013-02-07 | Wallace Daniel T | Robotic systems and methods for treating tissue |
CN102973317A (en) | 2011-09-05 | 2013-03-20 | 周宁新 | Arrangement structure for mechanical arm of minimally invasive surgery robot |
US8821377B2 (en) | 2011-09-07 | 2014-09-02 | Justin Collins | Laparoscopic surgery |
FR2979532B1 (en) | 2011-09-07 | 2015-02-20 | Robocath | MODULE AND METHOD FOR DRIVING LONG SOFT MEDICAL ORGANS AND ASSOCIATED ROBOTIC SYSTEM |
WO2013036900A1 (en) | 2011-09-10 | 2013-03-14 | Cook Medical Technologies Llc | Control handles for medical devices |
US9918681B2 (en) | 2011-09-16 | 2018-03-20 | Auris Surgical Robotics, Inc. | System and method for virtually tracking a surgical tool on a movable display |
WO2013043804A1 (en) | 2011-09-20 | 2013-03-28 | Corindus, Inc. | Catheter force measurement apparatus and method |
US9956039B2 (en) | 2011-10-03 | 2018-05-01 | Biolase, Inc. | Surgical laser cutting device |
US9060794B2 (en) | 2011-10-18 | 2015-06-23 | Mako Surgical Corp. | System and method for robotic surgery |
JP6170931B2 (en) | 2011-10-31 | 2017-07-26 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Endoscopic instrument with a deflectable distal tool |
WO2013063675A1 (en) | 2011-11-04 | 2013-05-10 | Titan Medical Inc. | Apparatus and method for controlling an end-effector assembly |
US10213260B2 (en) | 2011-12-01 | 2019-02-26 | Joe Denton Brown | End fire fiber arrangements with improved erosion resistance |
US9131987B2 (en) | 2011-12-02 | 2015-09-15 | Ethicon Endo-Surgery, Inc. | Elbow assembly for surgical devices |
US9179927B2 (en) | 2011-12-02 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Surgical methods using a surgical device having a fixed angular orientation |
WO2013090558A1 (en) | 2011-12-15 | 2013-06-20 | Imricor Medical Systems, Inc. | Mri compatible handle and steerable sheath |
US9504604B2 (en) | 2011-12-16 | 2016-11-29 | Auris Surgical Robotics, Inc. | Lithotripsy eye treatment |
CA2861139C (en) | 2012-01-18 | 2017-07-11 | Wavelight Gmbh | Adjusting laser energy in accordance with optical density |
EP3488803B1 (en) | 2012-02-03 | 2023-09-27 | Intuitive Surgical Operations, Inc. | Steerable flexible needle with embedded shape sensing |
KR102080336B1 (en) | 2012-02-25 | 2020-02-21 | 스루포커스 옵틱스 인코포레이티드 | Devices and methods for improving vision using laser photomiosis |
JP6034573B2 (en) | 2012-02-28 | 2016-11-30 | テルモ株式会社 | Flexible tube for medical device and medical device |
US20130225996A1 (en) | 2012-02-28 | 2013-08-29 | Spiration, Inc. | Lung biopsy needle |
CN108606773B (en) | 2012-02-29 | 2020-08-11 | 普罗赛普特生物机器人公司 | Automated image-guided tissue resection and processing |
DE112013001765T5 (en) | 2012-03-28 | 2015-02-19 | Cibiem, Inc. | Planning and determination of the modulation of the Glomus Caroticum |
CN104619281B (en) | 2012-04-12 | 2017-10-13 | 波士顿科学医学有限公司 | Surgical laser system and laser lithotripsy technology |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
US20140142591A1 (en) | 2012-04-24 | 2014-05-22 | Auris Surgical Robotics, Inc. | Method, apparatus and a system for robotic assisted surgery |
CN104622577B (en) | 2012-04-27 | 2017-11-21 | 库卡实验仪器有限公司 | Robotic surgical system |
DE102012207060A1 (en) | 2012-04-27 | 2013-10-31 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Robot assembly for use in medical fields |
US20130317519A1 (en) | 2012-05-25 | 2013-11-28 | Hansen Medical, Inc. | Low friction instrument driver interface for robotic systems |
JP2014004310A (en) | 2012-05-31 | 2014-01-16 | Canon Inc | Medical instrument |
US9364220B2 (en) | 2012-06-19 | 2016-06-14 | Covidien Lp | Apparatus for endoscopic procedures |
BR112014032112A2 (en) | 2012-06-28 | 2017-06-27 | Koninklijke Philips Nv | image acquisition system; and method for multimodal image acquisition |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
DE102012212510B4 (en) | 2012-07-17 | 2014-02-13 | Richard Wolf Gmbh | Endoscopic instrument |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
US9820818B2 (en) | 2012-08-03 | 2017-11-21 | Stryker Corporation | System and method for controlling a surgical manipulator based on implant parameters |
KR102397265B1 (en) | 2012-08-03 | 2022-05-12 | 스트리커 코포레이션 | Systems and methods for robotic surgery |
KR102189666B1 (en) | 2012-08-15 | 2020-12-11 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Phantom degrees of freedom for manipulating the movement of mechanical bodies |
JP6255403B2 (en) | 2012-08-15 | 2017-12-27 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Phantom degrees of freedom in joint estimation and control |
CN104736095B (en) | 2012-08-15 | 2018-07-03 | 直观外科手术操作公司 | The removable mounting platform of having an operation controlled by the manual movement of robot arm |
US20140051985A1 (en) | 2012-08-17 | 2014-02-20 | Tailin Fan | Percutaneous nephrolithotomy target finding system |
CA2882748C (en) | 2012-08-27 | 2020-10-06 | Facet Technologies, Llc | Twist-to-charge mechanism of lancing device |
JP6219396B2 (en) | 2012-10-12 | 2017-10-25 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Positioning of medical devices in bifurcated anatomical structures |
US8671817B1 (en) | 2012-11-28 | 2014-03-18 | Hansen Medical, Inc. | Braiding device for catheter having acuately varying pullwires |
US8894610B2 (en) | 2012-11-28 | 2014-11-25 | Hansen Medical, Inc. | Catheter having unirail pullwire architecture |
EP3932628A1 (en) | 2012-12-10 | 2022-01-05 | Intuitive Surgical Operations, Inc. | Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms |
US9375235B2 (en) | 2012-12-12 | 2016-06-28 | Boston Scientific Scimed, Inc. | Method and system for transhiatal esophagectomy |
JP2014134530A (en) | 2012-12-14 | 2014-07-24 | Panasonic Corp | Force measurement device, force measurement method, force measurement program, force measurement integrated electronic circuit and master-slave device |
EP2943133A1 (en) | 2013-01-08 | 2015-11-18 | Boston Scientific Scimed, Inc. | Low profile medical device and related methods of use |
US20140194859A1 (en) | 2013-01-10 | 2014-07-10 | Pravoslava IANCHULEV | System and method of performing femtosecond laser accomodative capsulotomy |
US9522003B2 (en) | 2013-01-14 | 2016-12-20 | Intuitive Surgical Operations, Inc. | Clamping instrument |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
DE102013002818A1 (en) | 2013-02-19 | 2014-08-21 | Rg Mechatronics Gmbh | Holding device for a surgical instrument and a lock and method for operating a robot with such a holding device |
DE102013002813B4 (en) | 2013-02-19 | 2017-11-09 | Rg Mechatronics Gmbh | Holding device with at least one jaw for a robotic surgical system |
BR112015020589B8 (en) | 2013-02-26 | 2022-03-22 | Sinan Kabakci Ahmet | robotic manipulator system |
US9782169B2 (en) | 2013-03-01 | 2017-10-10 | Ethicon Llc | Rotary powered articulation joints for surgical instruments |
EP2868256A4 (en) | 2013-03-06 | 2016-08-10 | Olympus Corp | Endoscope system and endoscope system operation method |
US9839481B2 (en) | 2013-03-07 | 2017-12-12 | Intuitive Surgical Operations, Inc. | Hybrid manual and robotic interventional instruments and methods of use |
US9668814B2 (en) | 2013-03-07 | 2017-06-06 | Hansen Medical, Inc. | Infinitely rotatable tool with finite rotating drive shafts |
US10149720B2 (en) | 2013-03-08 | 2018-12-11 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9867635B2 (en) | 2013-03-08 | 2018-01-16 | Auris Surgical Robotics, Inc. | Method, apparatus and system for a water jet |
US10080576B2 (en) | 2013-03-08 | 2018-09-25 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US20140276389A1 (en) | 2013-03-13 | 2014-09-18 | Sean Walker | Selective grip device for drive mechanism |
US9737300B2 (en) | 2013-03-13 | 2017-08-22 | Ethicon Llc | Electrosurgical device with disposable shaft having rack and pinion drive |
US9173713B2 (en) | 2013-03-14 | 2015-11-03 | Hansen Medical, Inc. | Torque-based catheter articulation |
US9498601B2 (en) | 2013-03-14 | 2016-11-22 | Hansen Medical, Inc. | Catheter tension sensing |
US20140277334A1 (en) | 2013-03-14 | 2014-09-18 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
EP2967411B1 (en) | 2013-03-14 | 2021-03-10 | Gyrus Acmi Inc. | Surgical positioning circuit |
US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
US10258364B2 (en) | 2013-03-14 | 2019-04-16 | The Brigham And Women's Hospital | System and method for laparoscopic morcellator |
AU2014236718B2 (en) | 2013-03-14 | 2018-07-05 | Sri International | Compact robotic wrist |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
JP6421171B2 (en) | 2013-03-15 | 2018-11-07 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for following a path using zero space |
US20140276936A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Active drive mechanism for simultaneous rotation and translation |
JP6363165B2 (en) | 2013-03-15 | 2018-07-25 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Shape sensor system for tracking interventional instruments and method of using the system |
JP2016516487A (en) | 2013-03-15 | 2016-06-09 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for positioning a manipulator arm by clutching in zero orthogonal space simultaneously with zero space motion |
US20140276647A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Vascular remote catheter manipulator |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
JP6535653B2 (en) | 2013-03-15 | 2019-06-26 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System and method for facilitating access to the edge of Cartesian coordinate space using zero space |
US20140276394A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Input device for controlling a catheter |
US9452018B2 (en) | 2013-03-15 | 2016-09-27 | Hansen Medical, Inc. | Rotational support for an elongate member |
US10219864B2 (en) | 2013-04-16 | 2019-03-05 | Calcula Technologies, Inc. | Basket and everting balloon with simplified design and control |
US9232956B2 (en) | 2013-04-16 | 2016-01-12 | Calcula Technologies, Inc. | Device for removing kidney stones |
US10076231B2 (en) | 2013-04-22 | 2018-09-18 | Gyrus Acmi, Inc. | Surgeon controlled endoscope device and method |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
WO2014201165A1 (en) | 2013-06-11 | 2014-12-18 | Auris Surgical Robotics, Inc. | System for robotic assisted cataract surgery |
US20140375784A1 (en) | 2013-06-21 | 2014-12-25 | Omnivision Technologies, Inc. | Image Sensor With Integrated Orientation Indicator |
WO2015013470A2 (en) | 2013-07-26 | 2015-01-29 | Knowles Electronics, Llc | Optical apparatus and method |
JP6037964B2 (en) | 2013-07-26 | 2016-12-07 | オリンパス株式会社 | Manipulator system |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
CN105451802B (en) | 2013-08-15 | 2019-04-19 | 直观外科手术操作公司 | Graphical user interface for catheter positioning and insertion |
US11166646B2 (en) | 2013-08-15 | 2021-11-09 | Intuitive Surgical Operations Inc. | Systems and methods for medical procedure confirmation |
US9993614B2 (en) | 2013-08-27 | 2018-06-12 | Catheter Precision, Inc. | Components for multiple axis control of a catheter in a catheter positioning system |
US9220508B2 (en) | 2013-09-06 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Surgical clip applier with articulation section |
US9861428B2 (en) | 2013-09-16 | 2018-01-09 | Ethicon Llc | Integrated systems for electrosurgical steam or smoke control |
US9737373B2 (en) | 2013-10-24 | 2017-08-22 | Auris Surgical Robotics, Inc. | Instrument device manipulator and surgical drape |
JP6656148B2 (en) | 2013-10-24 | 2020-03-04 | オーリス ヘルス インコーポレイテッド | System and associated method for robot-assisted endoluminal surgery |
WO2015061775A1 (en) | 2013-10-26 | 2015-04-30 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Atrial appendage ligation |
US9757298B2 (en) | 2013-10-31 | 2017-09-12 | General Electric Company | Self-closing door apparatus |
US9962226B2 (en) | 2013-11-28 | 2018-05-08 | Alcon Pharmaceuticals Ltd. | Ophthalmic surgical systems, methods, and devices |
CN103735313B (en) | 2013-12-11 | 2016-08-17 | 中国科学院深圳先进技术研究院 | A kind of operating robot and state monitoring method thereof |
CN110074844B (en) | 2013-12-11 | 2023-02-17 | 柯惠Lp公司 | Wrist assembly and jaw assembly for robotic surgical system |
US9808269B2 (en) | 2013-12-12 | 2017-11-07 | Boston Scientific Scimed, Inc. | Adjustable medical retrieval devices and related methods of use |
CN114366181B (en) | 2013-12-13 | 2024-08-02 | 直观外科手术操作公司 | Telescopic biopsy needle |
US9539020B2 (en) | 2013-12-27 | 2017-01-10 | Ethicon Endo-Surgery, Llc | Coupling features for ultrasonic surgical instrument |
JP5788029B2 (en) | 2014-01-10 | 2015-09-30 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Medical manipulator |
WO2015109178A1 (en) | 2014-01-17 | 2015-07-23 | Merit Medical Systems, Inc. | Flush cut biopsy needle assembly and method of use |
CN105979882B (en) | 2014-02-07 | 2019-03-26 | 柯惠Lp公司 | Input device assembly for robotic surgical system |
KR102410823B1 (en) | 2014-02-21 | 2022-06-21 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Mechanical joints, and related systems and methods |
WO2015142824A1 (en) | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Surgical drape and systems including surgical drape and attachment sensor |
CN106455916A (en) | 2014-03-19 | 2017-02-22 | 恩达马斯特有限公司 | Master-slave flexible robotic endoscopy system |
JP6431678B2 (en) | 2014-03-20 | 2018-11-28 | オリンパス株式会社 | Insertion shape detection device |
JP6629230B2 (en) | 2014-04-02 | 2020-01-15 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Minimal invasive system |
US10046140B2 (en) | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
US20150314110A1 (en) | 2014-05-05 | 2015-11-05 | Hansen Medical, Inc. | Balloon visualization for traversing a vessel |
WO2015171418A2 (en) | 2014-05-06 | 2015-11-12 | St. Jude Medical, Cardiology Division, Inc. | Electrode support structure assembly |
US10569052B2 (en) | 2014-05-15 | 2020-02-25 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
JP6302754B2 (en) | 2014-06-04 | 2018-03-28 | オリンパス株式会社 | Joining structure and biopsy needle |
US20170007337A1 (en) | 2014-07-01 | 2017-01-12 | Auris Surgical Robotics, Inc. | Driver-mounted torque sensing mechanism |
US9744335B2 (en) | 2014-07-01 | 2017-08-29 | Auris Surgical Robotics, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
US9561083B2 (en) | 2014-07-01 | 2017-02-07 | Auris Surgical Robotics, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
US20160270865A1 (en) | 2014-07-01 | 2016-09-22 | Auris Surgical Robotics, Inc. | Reusable catheter with disposable balloon attachment and tapered tip |
US9788910B2 (en) | 2014-07-01 | 2017-10-17 | Auris Surgical Robotics, Inc. | Instrument-mounted tension sensing mechanism for robotically-driven medical instruments |
US10159533B2 (en) | 2014-07-01 | 2018-12-25 | Auris Health, Inc. | Surgical system with configurable rail-mounted mechanical arms |
WO2016015011A1 (en) | 2014-07-24 | 2016-01-28 | Lim Innovations, Inc. | A sequential series of orthopedic devices that include incremental changes in form |
US10828051B2 (en) | 2014-07-28 | 2020-11-10 | Shaw P. Wan | Suction evacuation device |
US20160030016A1 (en) | 2014-07-30 | 2016-02-04 | Covidien Lp | Exchangeable core biopsy needle |
US10085759B2 (en) | 2014-08-14 | 2018-10-02 | Boston Scientific Scimed, Inc. | Kidney stone suction device |
CN107072681B (en) | 2014-09-08 | 2020-12-04 | 波士顿科学国际有限公司 | Retrieval device and related method of use |
EP3193768A4 (en) | 2014-09-17 | 2018-05-09 | Intuitive Surgical Operations, Inc. | Systems and methods for utilizing augmented jacobian to control manipulator joint movement |
EP3200718A4 (en) | 2014-09-30 | 2018-04-25 | Auris Surgical Robotics, Inc | Configurable robotic surgical system with virtual rail and flexible endoscope |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
DE102014222293A1 (en) | 2014-10-31 | 2016-05-19 | Siemens Aktiengesellschaft | Method for automatically monitoring the penetration behavior of a trocar held by a robot arm and monitoring system |
WO2016099686A1 (en) | 2014-11-05 | 2016-06-23 | Clph, Llc | Catheter devices and methods for making them |
EP3215137A1 (en) | 2014-11-07 | 2017-09-13 | Lipoxen Technologies Limited | Method for treatment of primary hormone resistant endometrial and breast cancers |
US9949719B2 (en) | 2014-12-16 | 2018-04-24 | General Electric Company | Breast imaging method and system |
DE102014226240A1 (en) | 2014-12-17 | 2016-06-23 | Kuka Roboter Gmbh | System for robot-assisted medical treatment |
WO2016098251A1 (en) | 2014-12-19 | 2016-06-23 | オリンパス株式会社 | Insertion and removal support device and insertion and removal support method |
JP6342794B2 (en) | 2014-12-25 | 2018-06-13 | 新光電気工業株式会社 | Wiring board and method of manufacturing wiring board |
DE102015200355B3 (en) | 2015-01-02 | 2016-01-28 | Siemens Aktiengesellschaft | A medical robotic device with collision detection and method for collision detection of a medical robotic device |
DE102015200428B3 (en) | 2015-01-14 | 2016-03-17 | Kuka Roboter Gmbh | Method for aligning a multi-axis manipulator with an input device |
KR102653682B1 (en) | 2015-02-25 | 2024-04-03 | 마코 서지컬 코포레이션 | Navigation systems and methods for reducing tracking interruptions during a surgical procedure |
WO2016137612A1 (en) | 2015-02-26 | 2016-09-01 | Covidien Lp | Robotically controlling remote center of motion with software and guide tube |
US10856726B2 (en) | 2015-03-25 | 2020-12-08 | Sony Corporation | Medical support arm apparatus |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
WO2016164824A1 (en) | 2015-04-09 | 2016-10-13 | Auris Surgical Robotics, Inc. | Surgical system with configurable rail-mounted mechanical arms |
US10959783B2 (en) | 2015-04-15 | 2021-03-30 | Mobius Imaging, Llc | Integrated medical imaging and surgical robotic system |
JP6767999B2 (en) | 2015-04-23 | 2020-10-14 | ヴィーア サージカル リミテッド | Surgical fastener delivery and locking mechanism |
GB2538326B (en) | 2015-05-07 | 2019-06-05 | Cmr Surgical Ltd | A surgical drape for transferring drive |
WO2016187081A1 (en) | 2015-05-15 | 2016-11-24 | Sharma Virender K | Variable flexibility snare |
US9622827B2 (en) | 2015-05-15 | 2017-04-18 | Auris Surgical Robotics, Inc. | Surgical robotics system |
EP3305229A4 (en) | 2015-06-01 | 2019-02-20 | Olympus Corporation | Medical manipulator |
US10117713B2 (en) | 2015-07-01 | 2018-11-06 | Mako Surgical Corp. | Robotic systems and methods for controlling a tool removing material from a workpiece |
WO2017015599A1 (en) | 2015-07-23 | 2017-01-26 | Sri International | Robotic arm and robotic surgical system |
US10136949B2 (en) | 2015-08-17 | 2018-11-27 | Ethicon Llc | Gathering and analyzing data for robotic surgical systems |
CN105147393B (en) | 2015-08-19 | 2017-06-20 | 哈尔滨工业大学 | A kind of minimally invasive robot holds mirror mechanical arm |
US10610254B2 (en) | 2015-08-20 | 2020-04-07 | Boston Scientific Scimed, Inc. | Medical device and related methods |
WO2017033367A1 (en) | 2015-08-25 | 2017-03-02 | 川崎重工業株式会社 | Remote control robot system |
WO2017031600A1 (en) | 2015-08-27 | 2017-03-02 | Focal Healthcare Inc. | Moveable interface between a stepper and a stabilizer |
CN108348133B (en) | 2015-09-09 | 2020-11-13 | 奥瑞斯健康公司 | Instrument device manipulator for surgical robotic system |
US9727963B2 (en) | 2015-09-18 | 2017-08-08 | Auris Surgical Robotics, Inc. | Navigation of tubular networks |
WO2017059412A1 (en) | 2015-10-02 | 2017-04-06 | Vanderbilt University | Concentric tube robot |
US10052164B2 (en) | 2015-10-02 | 2018-08-21 | Ethicon Llc | System and method of converting user input into motion of a surgical instrument via a robotic surgical system |
ITUB20155057A1 (en) | 2015-10-16 | 2017-04-16 | Medical Microinstruments S R L | Robotic surgery set |
ITUB20154977A1 (en) | 2015-10-16 | 2017-04-16 | Medical Microinstruments S R L | Medical instrument and method of manufacture of said medical instrument |
US10231793B2 (en) | 2015-10-30 | 2019-03-19 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
JP6942700B2 (en) | 2015-10-30 | 2021-09-29 | オーリス ヘルス インコーポレイテッド | Methods for percutaneous surgery |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
CN113303915B (en) | 2015-11-12 | 2024-04-12 | 柯惠Lp公司 | Robotic surgical system and method of monitoring applied force |
US20170151416A1 (en) | 2015-12-01 | 2017-06-01 | Invivo Therapeutics Corporation | Methods and Systems for Delivery of a Trail of a Therapeutic Substance into an Anatomical Space |
GB201521804D0 (en) | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Pulley arrangement for articulating a surgical instrument |
GB201521809D0 (en) | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Symmetrically arranged surgical instrument articulation |
DE102015016152A1 (en) | 2015-12-12 | 2017-06-14 | Daimler Ag | Haptic feedback at a user interface |
CN105559850B (en) | 2015-12-17 | 2017-08-25 | 天津工业大学 | It is a kind of to be used for the surgical drill apparatus that robot assisted surgery has power sensing function |
EP3397184A1 (en) | 2015-12-29 | 2018-11-07 | Koninklijke Philips N.V. | System, control unit and method for control of a surgical robot |
US10130429B1 (en) | 2016-01-06 | 2018-11-20 | Ethicon Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
US10912620B2 (en) | 2016-01-06 | 2021-02-09 | Vanderbilt University | Snare tool manipulator system |
US10219868B2 (en) | 2016-01-06 | 2019-03-05 | Ethicon Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
US10932861B2 (en) | 2016-01-14 | 2021-03-02 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
US10932691B2 (en) | 2016-01-26 | 2021-03-02 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
CN114224403B (en) | 2016-01-29 | 2025-01-28 | 直观外科手术操作公司 | Systems and methods for variable speed surgical instruments |
US10864050B2 (en) | 2016-02-26 | 2020-12-15 | Think Surgical, Inc. | Method and system for guiding user positioning of a robot |
AU2017225996B2 (en) | 2016-03-04 | 2021-05-20 | Covidien Lp | Electromechanical surgical systems and robotic surgical instruments thereof |
CN109219412B (en) | 2016-03-07 | 2022-02-08 | 伊西康有限责任公司 | Robot bipolar instrument |
US11304770B2 (en) | 2016-03-09 | 2022-04-19 | Intuitive Surgical Operations, Inc. | Force transmission mechanism for surgical instrument, and related devices, systems, and methods |
US10350016B2 (en) | 2016-03-17 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and dual distal pulleys |
EP3440300B1 (en) | 2016-04-08 | 2019-12-04 | Plastex SA | Cushion for the guiding rail of a sunshade for doors or windows |
US11324554B2 (en) | 2016-04-08 | 2022-05-10 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
US10454347B2 (en) | 2016-04-29 | 2019-10-22 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
US10888428B2 (en) | 2016-05-12 | 2021-01-12 | University Of Notre Dame Du Lac | Additive manufacturing device for biomaterials |
US11369450B2 (en) | 2016-05-20 | 2022-06-28 | Intuitive Surgical Operations, Inc. | Instrument drape |
US10470847B2 (en) | 2016-06-17 | 2019-11-12 | Align Technology, Inc. | Intraoral appliances with sensing |
CN109310848B (en) * | 2016-06-30 | 2022-05-31 | 直观外科手术操作公司 | Systems and methods for steerable elongated devices |
EP3478213A4 (en) | 2016-07-01 | 2020-02-19 | Intuitive Surgical Operations Inc. | Computer-assisted medical systems and methods |
WO2018013300A1 (en) | 2016-07-14 | 2018-01-18 | Intuitive Surgical Operations, Inc. | Mechanism for managing and retaining a surgical drape |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
US10398517B2 (en) | 2016-08-16 | 2019-09-03 | Ethicon Llc | Surgical tool positioning based on sensed parameters |
US10687904B2 (en) | 2016-08-16 | 2020-06-23 | Ethicon Llc | Robotics tool exchange |
US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
KR20230096148A (en) | 2016-08-31 | 2023-06-29 | 아우리스 헬스, 인코포레이티드 | Length conservative surgical instrument |
CN108472028B (en) | 2016-09-16 | 2021-04-13 | 威博外科公司 | robotic arm |
WO2018053361A1 (en) | 2016-09-16 | 2018-03-22 | Verb Surgical Inc. | Multi-degree of freedom sensor |
CN109310474B (en) | 2016-09-19 | 2022-06-07 | 直观外科手术操作公司 | Position indicator system and related method for a remotely controllable arm |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
EP3949891B1 (en) | 2016-10-04 | 2025-03-19 | Intuitive Surgical Operations, Inc. | Computer-assisted teleoperated surgery systems |
GB2554915B (en) | 2016-10-14 | 2022-03-02 | Cmr Surgical Ltd | Driving arrangement for articulating a surgical instrument |
US10286556B2 (en) | 2016-10-16 | 2019-05-14 | The Boeing Company | Method and apparatus for compliant robotic end-effector |
EP3541315A4 (en) | 2016-11-21 | 2020-07-01 | Intuitive Surgical Operations Inc. | Cable length conserving medical instrument |
BR112019010623B1 (en) | 2016-12-20 | 2023-01-24 | Verb Surgical Inc | SYSTEM FOR USE IN A ROBOTIC SURGICAL SYSTEM AND METHOD OF OPERATING A ROBOTIC SURGICAL SYSTEM |
US10471282B2 (en) | 2016-12-21 | 2019-11-12 | Ethicon Llc | Ultrasonic robotic tool actuation |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US10543048B2 (en) | 2016-12-28 | 2020-01-28 | Auris Health, Inc. | Flexible instrument insertion using an adaptive insertion force threshold |
US10136959B2 (en) | 2016-12-28 | 2018-11-27 | Auris Health, Inc. | Endolumenal object sizing |
US10987120B2 (en) | 2017-01-10 | 2021-04-27 | New Wave Endo-Surgery Inc. | Multifunction surgical instrument for use in laparoscopic surgery |
US10820951B2 (en) | 2017-03-14 | 2020-11-03 | Verb Surgical Inc. | Techniques for damping vibration in a robotic surgical system |
EP3600112A4 (en) | 2017-03-22 | 2020-10-28 | Intuitive Surgical Operations Inc. | Systems and methods for intelligently seeding registration |
US10792466B2 (en) | 2017-03-28 | 2020-10-06 | Auris Health, Inc. | Shaft actuating handle |
CN108990412B (en) | 2017-03-31 | 2022-03-22 | 奥瑞斯健康公司 | Robot system for cavity network navigation compensating physiological noise |
US10285574B2 (en) | 2017-04-07 | 2019-05-14 | Auris Health, Inc. | Superelastic medical instrument |
KR20230106716A (en) | 2017-04-07 | 2023-07-13 | 아우리스 헬스, 인코포레이티드 | Patient introducer alignment |
IT201700041991A1 (en) | 2017-04-14 | 2018-10-14 | Medical Microinstruments Spa | ROBOTIC ASSEMBLY FOR MICROSURGERY |
EP4234061A1 (en) | 2017-04-28 | 2023-08-30 | Dow Global Technologies Llc | Processes and systems for separating carbon dioxide in the production of alkanes |
WO2018208994A1 (en) | 2017-05-12 | 2018-11-15 | Auris Health, Inc. | Biopsy apparatus and system |
JP7301750B2 (en) | 2017-05-17 | 2023-07-03 | オーリス ヘルス インコーポレイテッド | Interchangeable working channel |
GB2563233B (en) | 2017-06-06 | 2022-09-14 | Cmr Surgical Ltd | Pulley arrangement and pulley guard for articulating a surgical instrument |
GB2563234B (en) | 2017-06-06 | 2021-12-08 | Cmr Surgical Ltd | Securing an interface element rail of a robotic surgical instrument interface |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
KR102558063B1 (en) | 2017-06-28 | 2023-07-25 | 아우리스 헬스, 인코포레이티드 | Align electromagnetic field generator |
CN110831653B (en) | 2017-06-28 | 2021-12-17 | 奥瑞斯健康公司 | Instrument insertion compensation |
KR102578978B1 (en) | 2017-06-28 | 2023-09-19 | 아우리스 헬스, 인코포레이티드 | Electromagnetic distortion detection |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
WO2019023383A2 (en) * | 2017-07-27 | 2019-01-31 | Intuitive Surgical Operations, Inc. | Integral display and display of content |
CA2977489C (en) | 2017-08-28 | 2019-11-26 | Synaptive Medical (Barbados) Inc. | Positioning arm for a surgical navigation system |
US10973600B2 (en) | 2017-09-29 | 2021-04-13 | Ethicon Llc | Power axle wrist for robotic surgical tool |
US11096754B2 (en) | 2017-10-04 | 2021-08-24 | Mako Surgical Corp. | Sterile drape assembly for surgical robot |
US10464209B2 (en) | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US10016900B1 (en) | 2017-10-10 | 2018-07-10 | Auris Health, Inc. | Surgical robotic arm admittance control |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
US11123375B2 (en) | 2017-10-18 | 2021-09-21 | Lifecell Corporation | Methods of treating tissue voids following removal of implantable infusion ports using adipose tissue products |
CN107595368B (en) | 2017-10-19 | 2024-04-30 | 以诺康医疗科技(苏州)有限公司 | Ultrasonic surgical tool bit, cutter bar and ultrasonic surgical knife |
US10639116B2 (en) | 2017-10-23 | 2020-05-05 | Ethicon Llc | Distally replaceable cable systems in surgical tools |
US10881476B2 (en) | 2017-10-26 | 2021-01-05 | Ethicon Llc | Drive cable capstans for robotic surgical tools |
WO2019113249A1 (en) | 2017-12-06 | 2019-06-13 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
EP4467171A3 (en) | 2017-12-08 | 2025-02-26 | Auris Health, Inc. | Systems employing directed fluidics |
AU2018378810B2 (en) | 2017-12-08 | 2024-02-22 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
WO2019118368A1 (en) | 2017-12-11 | 2019-06-20 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
AU2018384820B2 (en) | 2017-12-14 | 2024-07-04 | Auris Health, Inc. | System and method for estimating instrument location |
JP7059377B2 (en) | 2017-12-18 | 2022-04-25 | オーリス ヘルス インコーポレイテッド | Instrument tracking and navigation methods and systems within the luminal network |
US11026751B2 (en) * | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
CN111867511A (en) | 2018-01-17 | 2020-10-30 | 奥瑞斯健康公司 | Surgical robotic system with improved robotic arm |
MX2020007623A (en) | 2018-01-17 | 2020-09-14 | Auris Health Inc | Surgical platform with adjustable arm supports. |
US10779839B2 (en) | 2018-02-08 | 2020-09-22 | Ethicon Llc | Surgical clip applier with parallel closure jaws |
KR102690164B1 (en) | 2018-02-13 | 2024-08-02 | 아우리스 헬스, 인코포레이티드 | Systems and methods for operating medical devices |
KR20200136931A (en) | 2018-03-01 | 2020-12-08 | 아우리스 헬스, 인코포레이티드 | Methods and systems for mapping and navigation |
CN117017505A (en) | 2018-03-28 | 2023-11-10 | 奥瑞斯健康公司 | Composite instrument and robotic system |
MX2020010117A (en) | 2018-03-28 | 2020-11-06 | Auris Health Inc | Systems and methods for displaying estimated location of instrument. |
CN110891469B (en) | 2018-03-28 | 2023-01-13 | 奥瑞斯健康公司 | System and method for registration of positioning sensors |
US11141232B2 (en) | 2018-03-29 | 2021-10-12 | Intuitive Surgical Operations, Inc. | Teleoperated surgical instruments |
CN111954497A (en) | 2018-03-29 | 2020-11-17 | 奥瑞斯健康公司 | Robot-enabled medical system with multifunctional end effector with rotational offset |
EP3756608B1 (en) | 2018-04-12 | 2023-08-09 | ROEN Surgical, Inc. | Calculi removing device |
CN114601559B (en) | 2018-05-30 | 2024-05-14 | 奥瑞斯健康公司 | System and medium for positioning sensor based branch prediction |
JP7214757B2 (en) | 2018-05-31 | 2023-01-30 | オーリス ヘルス インコーポレイテッド | Robotic system and method for navigation of luminal networks that detect physiological noise |
CN110831538B (en) | 2018-05-31 | 2023-01-24 | 奥瑞斯健康公司 | Image-based airway analysis and mapping |
KR102799357B1 (en) | 2018-05-31 | 2025-04-25 | 아우리스 헬스, 인코포레이티드 | Path-based navigation in the vascular network |
US10744981B2 (en) | 2018-06-06 | 2020-08-18 | Sensata Technologies, Inc. | Electromechanical braking connector |
CN112218596B (en) | 2018-06-07 | 2025-05-16 | 奥瑞斯健康公司 | Robotic medical system with high-force instruments |
JP7366943B2 (en) | 2018-06-27 | 2023-10-23 | オーリス ヘルス インコーポレイテッド | Alignment and mounting system for medical devices |
WO2020005370A1 (en) | 2018-06-27 | 2020-01-02 | Auris Health, Inc. | Systems and techniques for providing multiple perspectives during medical procedures |
CN112367928A (en) | 2018-06-28 | 2021-02-12 | 奥瑞斯健康公司 | Medical system combined with pulley sharing |
EP3820373A4 (en) | 2018-08-07 | 2022-04-27 | Auris Health, Inc. | CONSTRAINT-BASED SHAPE DETECTION SUIT WITH CATHETER CONTROL |
EP3806772A4 (en) | 2018-08-15 | 2022-03-30 | Auris Health, Inc. | MEDICAL INSTRUMENTS FOR TISSUE CAUTERATION |
WO2020036686A1 (en) | 2018-08-17 | 2020-02-20 | Auris Health, Inc. | Bipolar medical instrument |
CN113164184B (en) | 2018-08-24 | 2024-06-14 | 奥瑞斯健康公司 | Medical instrument capable of being controlled manually and robotically |
JP7427654B2 (en) | 2018-09-17 | 2024-02-05 | オーリス ヘルス インコーポレイテッド | Systems and methods for performing associated medical procedures |
WO2020068303A1 (en) | 2018-09-26 | 2020-04-02 | Auris Health, Inc. | Systems and instruments for suction and irrigation |
US11179212B2 (en) | 2018-09-26 | 2021-11-23 | Auris Health, Inc. | Articulating medical instruments |
WO2020069430A1 (en) | 2018-09-28 | 2020-04-02 | Auris Health, Inc. | Systems and methods for docking medical instruments |
CN112752534B (en) | 2018-09-28 | 2024-12-03 | 奥瑞斯健康公司 | Apparatus, system and method for manual and robotic actuation of medical devices |
AU2019347754B2 (en) | 2018-09-28 | 2024-10-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
US11576738B2 (en) | 2018-10-08 | 2023-02-14 | Auris Health, Inc. | Systems and instruments for tissue sealing |
US11950863B2 (en) | 2018-12-20 | 2024-04-09 | Auris Health, Inc | Shielding for wristed instruments |
JP7480152B2 (en) | 2018-12-28 | 2024-05-09 | オーリス ヘルス インコーポレイテッド | Percutaneous sheath for robotic medical systems and methods |
EP3890645A4 (en) | 2019-02-22 | 2022-09-07 | Auris Health, Inc. | SURGICAL PLATFORM EQUIPPED WITH MOTORIZED ARMS FOR ADJUSTABLE ARM SUPPORTS |
EP3965710A4 (en) | 2019-03-08 | 2023-04-05 | Auris Health, Inc. | Tilt mechanisms for medical systems and applications |
US11583350B2 (en) * | 2019-03-15 | 2023-02-21 | Cilag Gmbh International | Jaw coordination of robotic surgical controls |
US20200297444A1 (en) | 2019-03-21 | 2020-09-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for localization based on machine learning |
EP3908224A4 (en) | 2019-03-22 | 2022-10-19 | Auris Health, Inc. | Systems and methods for aligning inputs on medical instruments |
CN113613566B (en) | 2019-03-25 | 2024-10-11 | 奥瑞斯健康公司 | System and method for medical suturing |
US11617627B2 (en) | 2019-03-29 | 2023-04-04 | Auris Health, Inc. | Systems and methods for optical strain sensing in medical instruments |
EP3952779A4 (en) | 2019-04-08 | 2023-01-18 | Auris Health, Inc. | SYSTEMS, PROCESSES AND WORKFLOW FOR CONCURRENT PROCEEDINGS |
CN114126529A (en) | 2019-06-25 | 2022-03-01 | 奥瑞斯健康公司 | Medical instrument including a wrist with hybrid redirecting surfaces |
CN114007521A (en) | 2019-06-26 | 2022-02-01 | 奥瑞斯健康公司 | System and method for robotic arm alignment and docking |
CN114040727A (en) | 2019-06-28 | 2022-02-11 | 奥瑞斯健康公司 | Medical instrument including a wrist with hybrid redirecting surfaces |
WO2020261208A2 (en) | 2019-06-28 | 2020-12-30 | Auris Health, Inc. | Patient introducer for a robotic system |
US11872007B2 (en) | 2019-06-28 | 2024-01-16 | Auris Health, Inc. | Console overlay and methods of using same |
US20210045824A1 (en) | 2019-08-15 | 2021-02-18 | Auris Health, Inc. | Axial motion drive devices, systems, and methods for a robotic medical system |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
EP4025921A4 (en) | 2019-09-03 | 2023-09-06 | Auris Health, Inc. | DETECTION AND COMPENSATION OF ELECTROMAGNETIC DISTORTION |
CN114901197A (en) | 2019-12-30 | 2022-08-12 | 奥瑞斯健康公司 | Sample collector for robotic medical system |
JP7640052B2 (en) | 2019-12-31 | 2025-03-05 | オーリス ヘルス インコーポレイテッド | Advanced basket drive mode |
CN118383870A (en) | 2019-12-31 | 2024-07-26 | 奥瑞斯健康公司 | Alignment interface for percutaneous access |
JP7646675B2 (en) | 2019-12-31 | 2025-03-17 | オーリス ヘルス インコーポレイテッド | Positioning Techniques for Percutaneous Access |
-
2020
- 2020-12-14 JP JP2022540451A patent/JP7640052B2/en active Active
- 2020-12-14 CN CN202080091164.3A patent/CN114901200A/en active Pending
- 2020-12-14 US US17/121,167 patent/US11439419B2/en active Active
- 2020-12-14 EP EP20910959.4A patent/EP4084724A4/en active Pending
- 2020-12-14 WO PCT/IB2020/061905 patent/WO2021137071A1/en unknown
- 2020-12-14 KR KR1020227026270A patent/KR20220123269A/en active Pending
-
2022
- 2022-09-12 US US17/943,120 patent/US20230000509A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5190557A (en) * | 1991-10-03 | 1993-03-02 | Urological Instrument Research, Inc. | Vibratory method and instrument for extracting stones from urinary tract |
US20070185377A1 (en) * | 2006-02-06 | 2007-08-09 | Olympus Medical Systems Corp. | Endoscopy system |
US20140094825A1 (en) * | 2011-06-02 | 2014-04-03 | Medrobotics Corporation | Robotic systems, robotic system user interfaces, human interface devices for controlling robotic systems and methods of controlling robotic systems |
WO2016014414A1 (en) * | 2014-07-21 | 2016-01-28 | C.R. Bard, Inc. | Kidney stone removal control devices, systems, and methods |
CN107257665A (en) * | 2015-03-04 | 2017-10-17 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Medical Devices for capturing stone debris |
US20180221038A1 (en) * | 2015-10-30 | 2018-08-09 | Auris Health, Inc. | Object capture with a basket |
CN109688894A (en) * | 2016-12-14 | 2019-04-26 | 奥林巴斯株式会社 | Endoscope |
CN208974012U (en) * | 2018-01-25 | 2019-06-14 | 无锡市第三人民医院 | A kind of automatic control stone extraction basket |
Also Published As
Publication number | Publication date |
---|---|
JP2023508718A (en) | 2023-03-03 |
KR20220123269A (en) | 2022-09-06 |
US11439419B2 (en) | 2022-09-13 |
EP4084724A1 (en) | 2022-11-09 |
US20230000509A1 (en) | 2023-01-05 |
JP7640052B2 (en) | 2025-03-05 |
EP4084724A4 (en) | 2023-12-27 |
WO2021137071A1 (en) | 2021-07-08 |
US20210196293A1 (en) | 2021-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7640052B2 (en) | Advanced basket drive mode | |
US12290249B2 (en) | Case-specific fluid management | |
US20240000528A1 (en) | Instrument shaft tensioning | |
KR20230079174A (en) | Guided coordinated bed movement for intraoperative patient positioning in robotic surgery | |
KR20230074229A (en) | Haptic feedback to align robotic arms | |
US20240000530A1 (en) | Robotic and manual aspiration catheters | |
US20230101211A1 (en) | Imedical instrument drive assembly and docking system | |
JP2023550119A (en) | automatic treatment evaluation | |
KR20230061461A (en) | Robot collision boundary determination | |
CN116669648A (en) | AI-based triggering of automated actions | |
CN116963690B (en) | Engagement control of instrument feeder device | |
JP2024503315A (en) | catheter tip | |
JP2023550123A (en) | AI-based triggers for automated actions | |
JP2023550120A (en) | AI-assisted workflow segmentation | |
CN116916849A (en) | Robotic instrument drive control | |
CN116456924A (en) | Automated procedure assessment | |
JP2023553816A (en) | Visualization adjustment for instrument rotation | |
CN116456923A (en) | AI-assisted workflow segmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |