CN117794832A - System and method for automatically orienting product containers - Google Patents
System and method for automatically orienting product containers Download PDFInfo
- Publication number
- CN117794832A CN117794832A CN202280048235.0A CN202280048235A CN117794832A CN 117794832 A CN117794832 A CN 117794832A CN 202280048235 A CN202280048235 A CN 202280048235A CN 117794832 A CN117794832 A CN 117794832A
- Authority
- CN
- China
- Prior art keywords
- label
- product
- center
- image
- calculated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C9/00—Details of labelling machines or apparatus
- B65C9/06—Devices for presenting articles in predetermined attitude or position at labelling station
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B35/00—Supplying, feeding, arranging or orientating articles to be packaged
- B65B35/56—Orientating, i.e. changing the attitude of, articles, e.g. of non-uniform cross-section
- B65B35/58—Turning articles by positively-acting means, e.g. to present labelled portions in uppermost position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B57/00—Automatic control, checking, warning, or safety devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C9/00—Details of labelling machines or apparatus
- B65C9/02—Devices for moving articles, e.g. containers, past labelling station
- B65C9/04—Devices for moving articles, e.g. containers, past labelling station having means for rotating the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C9/00—Details of labelling machines or apparatus
- B65C9/40—Controls; Safety devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G43/00—Control devices, e.g. for safety, warning or fault-correcting
- B65G43/08—Control devices operated by article or material being fed, conveyed or discharged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/22—Devices influencing the relative position or the attitude of articles during transit by conveyors
- B65G47/24—Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles
- B65G47/244—Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles by turning them about an axis substantially perpendicular to the conveying plane
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/771—Feature selection, e.g. selecting representative features from a multi-dimensional feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2201/00—Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
- B65G2201/02—Articles
- B65G2201/0235—Containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2203/00—Indexing code relating to control or detection of the articles or the load carriers during conveying
- B65G2203/02—Control or detection
- B65G2203/0208—Control or detection relating to the transported articles
- B65G2203/0225—Orientation of the article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2203/00—Indexing code relating to control or detection of the articles or the load carriers during conveying
- B65G2203/04—Detection means
- B65G2203/041—Camera
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/09—Recognition of logos
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域Technical field
本公开的实施方式涉及用于以期望的方式(例如用于包装目的)定向产品容器的系统和方法。尤其是,本公开的一个或多个实施方式涉及一种基于产品标签特征和图形使产品容器在生产线上的定向自动化的技术。Embodiments of the present disclosure relate to systems and methods for orienting product containers in a desired manner, such as for packaging purposes. In particular, one or more embodiments of the present disclosure relate to a technology that automates the orientation of product containers on a production line based on product label features and graphics.
背景技术Background technique
在许多工业生产过程中,尤其是在食品和饮料工业中,产品以容器如瓶、罐等形式运输。产品标签通常围绕产品容器的外表面附着,其可以包含图形/特征,如品牌标志、通用产品代码(UPC)、营养成分等。贴有标签的容器可以以相对于相应产品标签的随机定向或旋转角度到达包装机。期望以视觉上一致和/或吸引人的方式定向被传送到包装机的贴有标签的容器,使得最终消费者可以最佳地观察或利用最终包装或现成的产品布置。In many industrial production processes, especially in the food and beverage industry, products are transported in containers such as bottles, cans, etc. Product labels are typically attached around the outer surface of product containers and can include graphics/features such as brand logos, Universal Product Codes (UPC), nutritional facts, etc. Labeled containers can arrive at the packaging machine in a random orientation or rotation relative to the corresponding product label. It is desirable to orient the labeled containers delivered to the packaging machine in a visually consistent and/or attractive manner so that the final package or ready product arrangement can be optimally viewed or utilized by the end consumer.
发明内容Contents of the invention
简而言之,本公开的各方面提供了一种基于产品标签特征在生产线上自动定向产品容器的技术,减少操作员干预或配置。Briefly, aspects of the present disclosure provide a technology that automatically orients product containers on a production line based on product label characteristics, reducing operator intervention or configuration.
本公开的第一方面提供了一种用于在生产线上自动定向产品容器的计算机实现的方法,其中每个产品容器具有围绕产品容器的外表面设置的产品标签。该方法包括获取与生产线上的一批产品容器相关联的参考产品标签图像。该方法还包括基于参考产品标签图像的感知相关标签特征,使用经训练的深度学习模型来计算参考产品标签图像的感知中心。该方法还包括经由生产线摄像机获取该批产品容器中的单独产品容器的相应产品标签的图像切片。该方法还包括基于所获取的相应产品标签的图像切片和以所计算的参考产品标签图像的感知中心为基础所确定的标签中心来计算单独产品容器的旋转角度。该方法还包括将所计算的旋转角度传送到控制器,以基于所计算的旋转角度实现单独产品容器从初始定向到最终定向的旋转。A first aspect of the present disclosure provides a computer-implemented method for automatically orienting product containers on a production line, wherein each product container has a product label disposed about an exterior surface of the product container. The method includes obtaining a reference product label image associated with a batch of product containers on a production line. The method also includes using a trained deep learning model to calculate the perceptual center of the reference product label image based on the perceptually relevant label features of the reference product label image. The method also includes acquiring, via the production line camera, image slices of corresponding product labels for individual product containers in the batch of product containers. The method also includes calculating the angle of rotation of the individual product container based on the acquired image slice of the corresponding product label and the label center determined based on the calculated perceptual center of the reference product label image. The method also includes transmitting the calculated angle of rotation to the controller to effect rotation of the individual product containers from an initial orientation to a final orientation based on the calculated angle of rotation.
本公开的其他方面以计算系统和计算机程序产品形式实现上述方法的特征。Other aspects of the disclosure implement features of the methods described above in the form of computing systems and computer program products.
通过本公开的技术可以实现附加技术特征和益处。本公开的实施方式和各方面在本文中详细描述并且被认为是所要求保护的主题的一部分。为了更好地理解,参考详细描述和附图。Additional technical features and benefits may be achieved through the technology of the present disclosure. Embodiments and aspects of the disclosure are described in detail herein and are considered a part of the claimed subject matter. For better understanding, refer to the detailed description and accompanying drawings.
附图说明Description of drawings
当结合附图阅读时,从以下详细描述最佳地理解本公开的前述和其他方面。为了容易地识别对任何元素或动作的讨论,参考数字中的一个或多个最高有效数位是指该元素或动作首先被引入其中的图号。The foregoing and other aspects of the disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. To easily identify discussion of any element or action, one or more of the most significant digits in a reference number refers to the figure number in which the element or action is first introduced.
图1是示出根据示例性实施方式的用于在生产线上自动定向产品容器的系统的示意图。Figure 1 is a schematic diagram illustrating a system for automatically orienting product containers on a production line, according to an exemplary embodiment.
图2是参考产品标签图像的说明性实施例。Figure 2 is an illustrative embodiment of a reference product label image.
图3是位于参考产品标签图像上的感知相关标签特征的说明性视觉化。Figure 3 is an illustrative visualization of perceptually relevant label features located on a reference product label image.
图4是参考产品标签图像的感知中心的示例性表示。Figure 4 is an exemplary representation of the perceptual center of a reference product label image.
图5是示出用于训练部署用于在运行时计算旋转角度的旋转角度分类器的示例性技术的示意性流程图。5 is a schematic flowchart illustrating an exemplary technique for training a rotation angle classifier deployed for calculating rotation angles at runtime.
图6是在运行时使用模板匹配算法来推断与产品标签的捕获图像切片匹配的参考产品标签图像上的补丁位置的示例性表示。Figure 6 is an exemplary representation of using a template matching algorithm at runtime to infer the location of a patch on a reference product label image that matches a captured image slice of the product label.
图7示出了根据所公开的实施方式的能够支持生产线中产品容器的自动定向的计算系统。Figure 7 illustrates a computing system capable of supporting automated orientation of product containers in a production line in accordance with disclosed embodiments.
具体实施方式Detailed ways
现在将参考附图描述与系统和方法相关的各种技术,其中相同的附图标记始终表示相同的元件。以下讨论的附图和用于描述本专利文件中的本公开的原理的各种实施方式仅作为说明,而不应当以任何方式解释为限制本公开的范围。本领域技术人员将理解,本公开的原理可以在任何适当布置的装置中实现。应当理解,被描述为由某些系统元件执行的功能可以由多个元件执行。类似地,例如,一个元件可以配置为执行被描述为由多个元件执行的功能。将参考示例性非限制性实施方式来描述本申请的许多创新教导。Various techniques related to systems and methods will now be described with reference to the accompanying drawings, wherein like reference numerals refer to like elements throughout. The drawings discussed below and the various embodiments used to describe the principles of the disclosure in this patent document are merely illustrative and should not be construed in any way to limit the scope of the disclosure. Those skilled in the art will understand that the principles of the present disclosure may be implemented in any suitably arranged device. It should be understood that functions described as performed by certain system elements may be performed by multiple elements. Similarly, for example, one element may be configured to perform a function described as being performed by multiple elements. Many of the innovative teachings of the present application will be described with reference to exemplary, non-limiting embodiments.
存在多种容器定向系统以在共同方向上定向各种形状的罐、瓶或其他容器。例如,基于伺服的定向系统可以使用传感器(例如视觉系统)以高速执行该任务,以检测任意的实际容器位置,然后相应地将容器旋转到期望定向。A variety of container orientation systems exist to orient various shapes of cans, bottles, or other containers in a common direction. For example, a servo-based orientation system can perform this task at high speed using sensors (such as a vision system) to detect arbitrary actual container positions and then rotate the container accordingly to the desired orientation.
为了配置用于新产品或标签的定向系统,生产工程师通常为定向系统指定基线产品标签/图形,以及产品容器相对于该标签的期望定向。该手动工程步骤可以限制生产线可以多快地从一个产品转换到另一个产品,或者为同一产品引入新的产品标签。To configure an orientation system for a new product or label, a production engineer typically specifies a baseline product label/graphic for the orientation system, as well as the desired orientation of the product container relative to that label. This manual engineering step can limit how quickly a production line can switch from one product to another, or introduce new product labels for the same product.
本公开的实施方式提供了一种基于人工智能(AI)的解决方案,该解决方案可以在没有产品标签的任何先验知识但具有高精度的情况下识别产品标签的哪个部分应该形成要向消费者显示的产品标签的前部。基于AI的解决方案是基于这样的认识,即产品标签通常是由营销专家和图形设计师设计的,因此遵循常见的设计模式和最佳实践以吸引消费者的注意。例如,某些标签特征(例如大文本或产品/品牌标志)通常可以是产品标签的旨在吸引消费者眼球的部分,并且因此旨在定位在产品标签的前部上。此外,某些标签特征(例如条形码/UPC、营养成分表等)可旨在远离产品标签的前部定位,例如出于扫描/定价原因。例如,在多包装产品容器中,可能希望单个容器的条形码面向内部,以防止顾客扫描单个产品条形码而不是包装的条形码进行定价。Embodiments of the present disclosure provide an artificial intelligence (AI)-based solution that can identify which part of a product label should form the product label without any prior knowledge of the product label but with high accuracy. or the front of the product label displayed. The AI-based solution is based on the understanding that product labels are typically designed by marketing experts and graphic designers and therefore follow common design patterns and best practices to attract consumers’ attention. For example, certain label features (such as large text or product/brand logos) may often be parts of the product label intended to attract the consumer's eye, and therefore are intended to be positioned on the front of the product label. Additionally, certain label features (e.g. barcode/UPC, Nutrition Facts, etc.) may be designed to be positioned away from the front of the product label, e.g. for scanning/pricing reasons. For example, in a multi-pack product container, you may want the barcode of the individual container to face inward to prevent customers from scanning the individual product barcode instead of the package's barcode for pricing.
在至少一些实施方式中,所提出的基于AI的解决方案可以实现全自动系统,该全自动系统可以自动确定参考产品标签的感知中心,并且当在生产线上与随机定向的产品容器一起呈现时,计算旋转角度以将产品容器旋转到正确定向,例如用于包装目的,而无需操作员配置或干预。在一些实施方式中,取决于所计算的产品标签的感知中心的置信水平,基于AI的解决方案可以由用户确认或使用产品标签的用户指定的前部覆盖来辅助。In at least some embodiments, the proposed AI-based solution can enable a fully automated system that can automatically determine the perceptual center of a reference product label and, when presented with randomly oriented product containers on a production line, Calculate the angle of rotation to rotate product containers into the correct orientation, for example for packaging purposes, without operator configuration or intervention. In some embodiments, depending on the calculated confidence level in the perceptual center of the product label, the AI-based solution may be assisted by user confirmation or using a user-specified front overlay of the product label.
所公开的实施方式可以减少到达生产线上的新产品容器的自动化系统集成和标签配置的总体工程工作量,并且因此可以在从生产线上的一个产品或产品标签切换到另一个产品或产品标签时提供更快的转换。此外,所公开的实施方式可以以高精确度执行标签感知,同时提供与现有解决方案可比的用于推断和对准的运行时性能。The disclosed embodiments may reduce the overall engineering effort of automated system integration and label configuration for new product containers arriving on the production line, and thus may provide when switching from one product or product label to another on the production line Faster conversion. Furthermore, the disclosed embodiments can perform tag awareness with high accuracy while providing comparable runtime performance for inference and alignment as existing solutions.
现在转向附图,图1示出了根据示例性实施方式的用于在生产线102上自动定向产品容器104的系统100。尤其是,所公开的系统100可用于基于产品标签上的标签特征和图形来自动定向贴有标签的产品容器104。Turning now to the drawings, FIG. 1 illustrates a system 100 for automatically orienting product containers 104 on a production line 102 according to an exemplary embodiment. In particular, the disclosed system 100 may be used to automatically orient labeled product containers 104 based on label features and graphics on the product label.
产品容器104可具有各种形状,通常(但不一定)具有轴对称的外表面。例如,在食品和饮料工业中使用的最常见类型的产品容器包括罐、瓶等。产品标签可围绕每个产品容器104的外表面附着或以其他方式设置。产品标签可完全围绕产品容器104的外表面延伸(即,360度)。作为示意图,在图1中,产品容器104上的黑框和白框描绘了相应产品标签的各种标签特征(例如,品牌标志、UPC代码等)。The product container 104 can have a variety of shapes, typically (but not necessarily) having an axisymmetric outer surface. For example, the most common types of product containers used in the food and beverage industry include cans, bottles, etc. A product label can be attached or otherwise disposed around the outer surface of each product container 104. The product label can extend completely around the outer surface of the product container 104 (i.e., 360 degrees). As a schematic diagram, in FIG. 1, the black and white boxes on the product container 104 depict various label features (e.g., brand logo, UPC code, etc.) of the corresponding product label.
如图1所示,进入的产品容器104可以相对于他们的产品标签具有随机定向。随机定向的产品容器104可以经由定向单元106单独地旋转相应指定旋转角度,以确保输出的产品容器104相对于产品标签具有一致定向,如图所示。在一个示例性配置中,定向单元106可包括一个或多个夹具108(例如,基于抽吸的夹具),用于夹持单独产品容器104和联接到相应夹具108的伺服控制马达110。可以基于来自控制器124的相应控制信号126单独地控制马达110,用于使夹具夹持的产品容器104旋转相应指定旋转角度。在实施例中,输出的(重新)定向的产品容器104可被传送到包装机,其中一组产品容器104可被包装成单个包装(例如,六罐装饮料)。所公开的实施方式能够基于AI确定单独产品容器的旋转角度,使得最终消费者可以最佳地观察或利用最终包装或现成的产品布置。As shown in Figure 1, incoming product containers 104 may have random orientations relative to their product labels. The randomly oriented product containers 104 may be individually rotated via the orientation unit 106 by a corresponding specified rotation angle to ensure that the output product containers 104 have a consistent orientation relative to the product label, as shown. In one exemplary configuration, the orientation unit 106 may include one or more grippers 108 (eg, suction-based grippers) for gripping individual product containers 104 and servo-controlled motors 110 coupled to the respective grippers 108 . The motors 110 may be individually controlled based on corresponding control signals 126 from the controller 124 for rotating the product container 104 held by the clamp by a corresponding designated rotation angle. In embodiments, the output (re)oriented product containers 104 may be conveyed to a packaging machine, where a group of product containers 104 may be packaged into a single package (eg, a six-pack of beverages). The disclosed embodiments are able to determine the angle of rotation of individual product containers based on AI so that the final package or ready product arrangement can be optimally viewed or utilized by the end consumer.
根据所示实施方式,系统100可包括生产线摄像机112,该生产线摄像机被布置为扫描传送到生产线102上的每个产品容器104以获取其图像。由于产品容器104的3D形状,生产线摄像机112可以仅捕获相应产品标签的图像切片。如本说明书中所使用的,术语“图像切片”是指经由生产线摄像机112的部分(例如,180度)扫描获取的产品标签的一部分或片段的图像。生产线摄像机112可以适当地包括高速摄像机,该高速摄像机被配置为捕获生产线102上的一批产品容器中的单独产品容器104的相应产品标签的图像切片。例如,在本文所示的一个实施方式中,生产线摄像机112及其用于产生闪光的照明系统可以基于来自控制器124的精确定时的触发信号128而被触发,控制器还可以控制产品容器104的位置和速度(例如,传送带系统的速度)。为单独产品容器104获取的图像切片可以作为数据信号114传送到计算系统116,以在运行时计算那些单独产品容器104的相应旋转角度。According to the illustrated embodiment, the system 100 may include a production line camera 112 that is arranged to scan each product container 104 transmitted to the production line 102 to obtain an image thereof. Due to the 3D shape of the product container 104, the production line camera 112 may only capture an image slice of the corresponding product label. As used in this specification, the term "image slice" refers to an image of a portion or segment of a product label acquired via a partial (e.g., 180 degrees) scan of the production line camera 112. The production line camera 112 may suitably include a high-speed camera that is configured to capture image slices of the corresponding product labels of individual product containers 104 in a batch of product containers on the production line 102. For example, in one embodiment shown herein, the production line camera 112 and its lighting system for generating a flash can be triggered based on a precisely timed trigger signal 128 from a controller 124, which can also control the position and speed of the product container 104 (e.g., the speed of the conveyor system). The image slices acquired for the individual product containers 104 can be transmitted as data signals 114 to the computing system 116 to calculate the corresponding rotation angles of those individual product containers 104 at runtime.
计算系统116可以包括例如工业PC、边缘计算设备或包括一个或多个处理器和存储可由一个或多个处理器执行的算法模块的存储器的任何其他计算系统。算法模块至少包括视觉标签感知引擎118和旋转角度计算引擎120。本文所描述的各种引擎,包括视觉标签感知引擎118和旋转角度计算引擎120,包括其组件,可以由计算系统116以各种方式实现,例如作为硬件和编程。引擎118、120的编程可以采用存储在非瞬时机器可读存储介质上的处理器可执行指令的形式,并且引擎的硬件可以包括执行那些指令的处理器。本文所描述的包括视觉标签感知引擎118和旋转角度计算引擎120的系统、设备和引擎的处理能力可以分布在多个系统组件之间,例如分布在多个处理器和存储器之间,可选地包括多个分布式处理系统或云/网络元件。下面参照图7描述适用于本申请的计算系统的实施例。Computing system 116 may include, for example, an industrial PC, an edge computing device, or any other computing system that includes one or more processors and memory that stores algorithm modules executable by the one or more processors. The algorithm module at least includes a visual label perception engine 118 and a rotation angle calculation engine 120. The various engines described herein, including the visual label perception engine 118 and the rotation angle calculation engine 120 , including components thereof, may be implemented by the computing system 116 in various ways, such as as hardware and programming. Programming of the engines 118, 120 may be in the form of processor-executable instructions stored on a non-transitory machine-readable storage medium, and the engine's hardware may include a processor that executes those instructions. The processing capabilities of the systems, devices, and engines described herein, including the visual tag perception engine 118 and the rotation angle calculation engine 120, may be distributed among multiple system components, such as among multiple processors and memories, optionally Including multiple distributed processing systems or cloud/network elements. An embodiment of a computing system suitable for the present application is described below with reference to FIG. 7 .
仍然参考图1,视觉标签感知引擎118可以配置为获取与生产线102上的该批产品容器104相关联的参考产品标签图像,并且基于参考产品标签图像的感知相关标签特征,使用经训练的深度学习模型来计算参考产品标签图像的感知中心。视觉标签感知引擎118可以实现为用于初始校准设置的离线系统的一部分。旋转角度计算引擎120可以配置为在运行时基于经由生产线摄像机112获取的相应产品标签的图像切片和以所计算的参考产品标签图像的感知中心为基础所确定的标签中心来计算单独产品容器104的旋转角度。所计算的参考产品标签图像的感知中心可以被确定为用于计算旋转角度的标签中心。在一些实施方式中,取决于与所计算的感知中心相关联的置信水平,用于计算旋转角度的标签中心可以是所计算的感知中心,或者可以从标签的用户指定的前部导出。Still referring to FIG. 1 , the visual label perception engine 118 may be configured to obtain a reference product label image associated with the batch of product containers 104 on the production line 102 and use trained deep learning based on the perceptually relevant label features of the reference product label image. model to calculate the perceptual center of a reference product label image. The visual tag awareness engine 118 may be implemented as part of an offline system for initial calibration setup. The rotation angle calculation engine 120 may be configured to calculate, at runtime, the center of the individual product container 104 based on the image slice of the corresponding product label acquired via the production line camera 112 and the label center determined based on the calculated perceptual center of the reference product label image. Rotation angle. The calculated perceptual center of the reference product label image may be determined as the label center used to calculate the rotation angle. In some embodiments, the label center used to calculate the rotation angle may be the calculated perceptual center, or may be derived from a user-specified front portion of the label, depending on the confidence level associated with the calculated perceptual center.
计算系统116可以将每个产品容器104的所计算的旋转角度作为数据信号122传送到控制器124。在实施例中,控制器124可以包括可编程逻辑控制器(PLC)或任何其他类型的工业控制器,配置为将数据信号122转换成控制信号126并且将该控制信号126传送到与相应产品容器104相关联的适当的伺服控制马达110,以基于所计算的旋转角度来实现产品容器104从初始定向到最终定向的旋转。Computing system 116 may communicate the calculated angle of rotation of each product container 104 as data signal 122 to controller 124 . In embodiments, the controller 124 may include a programmable logic controller (PLC) or any other type of industrial controller configured to convert the data signal 122 into a control signal 126 and communicate the control signal 126 to the corresponding product container. Appropriate servo-controlled motors 110 are associated with 104 to effect rotation of the product container 104 from an initial orientation to a final orientation based on the calculated angle of rotation.
在一个实施方式中,如图1所示,用于初始校准的参考产品标签图像可以经由对与该批产品容器相关联的参考产品容器的360度扫描来获取。通常,但不一定,同一批中所有产品容器的产品标签可以相同。参考产品容器可以是属于到达生产线102上的新批产品容器的产品容器104中的一个,或者是代表该批的不同产品容器。参考产品容器(例如,产品容器104)可以安装在旋转台130上,使得摄像机132可以执行对参考产品标签的360度扫描。控制器(例如,控制器124)可以传送控制信号134以控制旋转台130的旋转和速度,并且发出适当定时的触发信号136以触发摄像机132及其用于产生同步闪光的照明系统。360度扫描的参考产品标签图像可以由摄像机132作为数据信号138传送到计算系统116,以使用视觉标签感知引擎118来确定参考产品标签图像的感知中心。在一个可替代实施方式中,参考产品标签图像可以直接从产品制造商处获得。In one embodiment, as shown in Figure 1, a reference product label image for initial calibration may be obtained via a 360 degree scan of a reference product container associated with the batch of product containers. Often, but not necessarily, product labels can be the same for all product containers in the same batch. The reference product container may be one of the product containers 104 belonging to a new batch of product containers arriving on the production line 102, or a different product container representative of the batch. A reference product container (eg, product container 104) can be mounted on the rotating stage 130 so that the camera 132 can perform a 360-degree scan of the reference product label. A controller (eg, controller 124) may transmit control signals 134 to control the rotation and speed of the turntable 130 and issue appropriately timed trigger signals 136 to trigger the camera 132 and its lighting system for generating synchronized flashes. The 360-degree scanned reference product label image may be transmitted by the camera 132 as a data signal 138 to the computing system 116 to determine the perceptual center of the reference product label image using the visual label perception engine 118 . In an alternative embodiment, the reference product label image may be obtained directly from the product manufacturer.
图2示出了参考产品标签图像200的说明性实施例。为了进行说明,参考产品标签图像200的水平轴线表示角距离。如图所示,参考产品标签图像200可以包括表示参考产品标签的360度布局的二维平面或非扭曲图像。FIG. 2 shows an illustrative embodiment of a reference product label image 200. For purposes of illustration, angular distances are represented with reference to the horizontal axis of the product label image 200 . As shown, the reference product label image 200 may include a two-dimensional planar or non-distorted image representing a 360-degree layout of the reference product label.
根据所公开的实施方式,视觉标签感知引擎118(图1)可以利用至少一个深度学习模型来检测参考产品标签图像200上的感知相关标签特征,该深度学习模型可以包括一个或多个预先训练的特征检测模型/神经网络。在一个示例性实施方式中,可以使用用于那些图像的(数据集的)已知感知相关标签特征的分类标签经由监督学习过程在包括多个不同产品标签的图像的训练数据集上训练深度学习模型,使得经训练的深度学习模型可以检测和定位参考产品标签图像上的感知相关标签特征。在一个适当的实现方式中,训练数据集可以从包括大量已知产品的产品标签的现有OpenLogo数据集中获得。According to the disclosed embodiments, the visual tag perception engine 118 (FIG. 1) may utilize at least one deep learning model to detect perception-related tag features on the reference product tag image 200, which may include one or more pre-trained feature detection models/neural networks. In an exemplary embodiment, the deep learning model may be trained on a training dataset including images of multiple different product labels via a supervised learning process using classification labels for known perception-related tag features (of the dataset) for those images, so that the trained deep learning model may detect and locate perception-related tag features on the reference product tag image. In a suitable implementation, the training dataset may be obtained from an existing OpenLogo dataset that includes product labels for a large number of known products.
对于模型训练,训练数据集中的产品标签可以设有不同类别感知相关标签特征的边界框注释,该边界框注释可以限定用于深度学习模型的分类标签。不同类别的感知相关标签特征可以包括但不限于大文本、品牌标志、条形码(例如,UPC代码)、几何形状、粗色或高色彩对比度特征、营养成分表等。视觉标签感知引擎118可以使用经训练的深度学习模型来检测和定位参考产品标签图像上的感知相关标签特征,例如,通过边界框。如图3所示,从经训练的深度学习模型获得的示例性输出可以被视觉化,其中检测到的感知相关标签特征,即大文本、几何形状、营养成分表和UPC代码分别通过边界框302、304、306、308在参考产品标签图像200上被定位。For model training, product labels in the training data set may be provided with bounding box annotations of different categories of perceptually relevant label features, which may define classification labels for the deep learning model. Perceptually relevant label features of different categories may include, but are not limited to, large text, brand logos, barcodes (e.g., UPC codes), geometric shapes, coarse or high color contrast features, nutritional information tables, and the like. The visual label perception engine 118 may use a trained deep learning model to detect and locate perceptually relevant label features on a reference product label image, for example, by a bounding box. As shown in FIG3 , an exemplary output obtained from a trained deep learning model may be visualized, wherein the detected perceptually relevant label features, i.e., large text, geometric shapes, nutritional information tables, and UPC codes, are located on the reference product label image 200 by bounding boxes 302 , 304 , 306 , 308 , respectively.
根据所公开的实施方式,感知相关标签特征或特征类别可以被分组为“感兴趣的”和“不感兴趣的”。“感兴趣的”标签特征可以包括限定产品标签的旨在形成产品标签的正面的部分的那些标签特征。“感兴趣的”标签特征的示例包括但不限于大文本、大几何形状、高色彩对比度特征、品牌标志等。“不感兴趣的”标签特征可以包括限定产品标签的旨在远离正面定位的部分的那些标签特征。“不感兴趣的”标签特征的示例包括但不限于条形码(例如,UPC代码)、表格(例如,营养成分表)等。According to disclosed embodiments, perceptually relevant label features or feature categories may be grouped into "interesting" and "not interesting." "Interesting" label features may include those label features that define portions of the product label intended to form the front face of the product label. Examples of "interesting" label features include, but are not limited to, large text, large geometric shapes, high color contrast features, brand logos, etc. "Uninteresting" label features may include those label features that define portions of the product label intended to be positioned away from the front. Examples of "uninteresting" label features include, but are not limited to, barcodes (eg, UPC codes), tables (eg, nutritional facts), and the like.
通过识别“感兴趣的”和“不感兴趣的”标签特征的位置,视觉标签感知引擎118可以在算法上计算参考产品标签图像的感知中心。在一个实施方式中,视觉标签感知引擎118可以基于在参考产品标签图像上检测到的感知相关标签特征的位置的加权组合来计算参考产品标签图像的感知中心。本文中,例如,每个检测到的感知相关标签特征可以被分配相应权重,该权重可以取决于诸如检测到的标签特征的大小(例如,角度范围)的变量、检测到的标签特征是“感兴趣的”标签特征还是“不感兴趣的”标签特征以及其他变量。在实施方式中,为了确保所计算的参考产品标签的感知中心被定位于更远离“不感兴趣的”标签特征,可以为“不感兴趣的”标签特征分配负权重,或者相对于“感兴趣的”标签特征通常分配较低的权重。By identifying the locations of "interesting" and "uninteresting" label features, the visual label perception engine 118 can algorithmically calculate the perceptual center of the reference product label image. In one embodiment, the visual label perception engine 118 may calculate the perceptual center of the reference product label image based on a weighted combination of the locations of perceptually relevant label features detected on the reference product label image. Herein, for example, each detected perceptually relevant label feature may be assigned a corresponding weight, which weight may depend on variables such as the size (eg, angular range) of the detected label feature, the "sense" of the detected label feature. "interesting" tag features or "not interested" tag features and other variables. In an embodiment, to ensure that the calculated perceptual center of the reference product label is positioned further away from the "uninteresting" label features, the "uninteresting" label features may be assigned a negative weight, or relative to the "interesting" Label features are usually assigned lower weights.
为了说明一个示例性方法,在图3所示的实施例中,每个检测到的感知相关标签特征的位置可以由沿水平或角度轴线相应边界框302、304、306、308的中心来限定。这些位置在图3中分别表示为X1、X2、X3和X4。分配给检测到的感知相关标签特征中的每一个的相应权重可以根据相应边界框302、304、306、308沿水平或角度轴线的宽度(即,角度范围)确定。此外,与“感兴趣的”标签特征(例如,对应于边界框302、304)相关联的权重可包括正值,而与“非感兴趣的”标签特征(例如,对应于边界框306、308)相关联的权重可包括负值。感知中心的位置可以被确定为检测到的感知相关标签特征中的每一个的位置X1、X2、X3和X4的加权平均值。在一些实施方式中,所计算的感知中心可以由具有围绕所计算的感知中心的位置的限定宽度的边界框来定位。To illustrate an exemplary approach, in the embodiment shown in Figure 3, the location of each detected perceptually relevant label feature may be defined by the center of the corresponding bounding box 302, 304, 306, 308 along a horizontal or angular axis. These positions are denoted as X 1 , X 2 , X 3 and X 4 respectively in Figure 3 . The respective weight assigned to each of the detected perceptually relevant label features may be determined based on the width (ie, angular range) of the corresponding bounding box 302, 304, 306, 308 along the horizontal or angular axis. Additionally, weights associated with "interesting" label features (e.g., corresponding to bounding boxes 302, 304) may include positive values, whereas weights associated with "non-interesting" label features (e.g., corresponding to bounding boxes 306, 308 ) may include negative values. The position of the perceptual center may be determined as a weighted average of the positions X 1 , X 2 , X 3 and X 4 of each of the detected perceptually relevant label features. In some embodiments, the calculated perceptual center may be located by a bounding box with a defined width surrounding the location of the calculated perceptual center.
图4中描述了所计算的参考产品标签的感知中心的示例性表示。本文中,参考产品标签图像200的感知中心由具有围绕位置XC的限定宽度的边界框402来定位。例如,如上所描述,可以基于位置X1、X2、X3和X4的加权组合来确定位置XC。如图所示,分配给“不感兴趣的”标签特征(对应于边界框306、308)的较低或负权重可使得所计算的感知中心被定位于更远离那些“不感兴趣的”标签特征。An exemplary representation of the calculated perceptual center of a reference product label is depicted in Figure 4. Herein, the perceptual center of the reference product label image 200 is located by a bounding box 402 with a defined width around position XC . For example, as described above, position X C may be determined based on a weighted combination of positions X 1 , X 2 , X 3 and X 4 . As shown, lower or negative weights assigned to "uninteresting" label features (corresponding to bounding boxes 306, 308) may cause the calculated perceptual center to be positioned further away from those "uninteresting" label features.
在一个可替代实施方式中,视觉标签感知引擎118可以使用在包括大量产品标签的图像的数据集上训练的深度学习模型(例如,一个或多个神经网络)来计算参考产品标签图像的感知中心,其中数据集的图像可以各自用已知的标签中心来注释。例如,该模型可利用神经网络的初始层来提取标签特征(其可包括如本文所描述的感知相关标签特征),并利用后续层来学习所提取标签特征与注释标签中心之间的空间关系。In an alternative embodiment, the visual label perception engine 118 can use a deep learning model (e.g., one or more neural networks) trained on a dataset including a large number of product-labeled images to calculate the perception center of the reference product label image, where the images of the dataset can each be annotated with a known label center. For example, the model can use an initial layer of a neural network to extract label features (which may include perception-related label features as described herein) and use subsequent layers to learn the spatial relationship between the extracted label features and the annotated label centers.
因此,视觉标签感知引擎118可以识别新产品标签的感知中心的位置,而无需产品标签或甚至产品或品牌的任何先验知识。因此,所公开的实施方式提供了一种完全通用的方法,该方法不需要用户输入来设置系统,其中基于AI的视觉标签感知引擎118可以根据参考产品标签的单个图像来自行确定图像的“重要”部分是什么,以供客户看到。Thus, the visual label perception engine 118 can identify the location of the perceived center of a new product label without any prior knowledge of the product label or even the product or brand. Thus, the disclosed embodiments provide a completely general method that requires no user input to set up the system, wherein the AI-based visual label perception engine 118 can determine on its own what the "important" part of the image is for a customer to see based on a single image of a reference product label.
继续参考图1,在一些实施方式中,计算系统116可以将表示所计算的参考产品标签图像的感知中心的数据信号142传送到人机接口(HMI)设备140。HMI设备140可以被配置为基于所计算的参考产品标签的感知中心来向操作员视觉化和显示标签正面,从而向底层定向过程提供透明度。HMI设备140还可用于辅助感知中心的基于AI的计算,特别是在与所计算的感知中心相关联的低置信水平的情况下。与所计算的感知中心相关联的置信水平可以例如基于与由深度学习模型推断的所检测的感知相关标签特征相关联的置信度得分来确定。Continuing with reference to FIG. 1 , in some embodiments, the computing system 116 may communicate a data signal 142 representing the calculated perceptual center of the reference product label image to a human machine interface (HMI) device 140 . The HMI device 140 may be configured to visualize and display the label front to the operator based on the calculated perceptual center of the reference product label, thereby providing transparency to the underlying orientation process. The HMI device 140 may also be used to assist in the AI-based calculation of perception centers, particularly where there is a low confidence level associated with the calculated perception centers. The confidence level associated with the calculated perceptual center may, for example, be determined based on the confidence score associated with the detected perceptually relevant label features inferred by the deep learning model.
在一个实施方式中,如果所确定的与所计算的感知中心相关联的置信水平低于预定阈值,则可以经由HMI设备140来寻求用户输入,用于确认或使用用户指定的标签正面来覆盖所显示的标签正面中心。用户确认或覆盖可以由HMI设备140作为数据信号144传送到计算系统116。基于经由数据信号144传送的用户输入,用于由旋转角度计算引擎120计算旋转角度的标签中心可以是以下任一个:由视觉标签感知引擎118计算的感知中心或所计算的用户指定的标签正面的中心。在至少一些实施方式中,如果所确定的与所计算的感知中心相关联的置信水平高于预定阈值,则所计算的感知中心可用于自动确定单独产品容器的旋转角度,而无需任何操作员干预。In one embodiment, if the determined confidence level associated with the calculated perceptual center is below a predetermined threshold, user input may be sought via the HMI device 140 for confirmation or overlaying the all with a user-specified label face. Displays the label front-center. User confirmation or override may be communicated by HMI device 140 as data signal 144 to computing system 116 . Based on user input transmitted via data signal 144, the label center used to calculate the rotation angle by the rotation angle calculation engine 120 may be either: the perceptual center calculated by the visual label perception engine 118 or the calculated user-specified label front. center. In at least some embodiments, if the determined confidence level associated with the calculated perceptual center is above a predetermined threshold, the calculated perceptual center can be used to automatically determine the angle of rotation of the individual product container without any operator intervention. .
在运行时,旋转角度计算引擎120可以执行内联推断循环,该内联推断循环可以涉及获取由生产线摄像机112(经由数据信号114)传送的生产线102上的每个产品容器104的产品标签的图像切片,并且基于所获取的图像切片和所确定的参考产品标签图像的标签中心来计算产品容器104的所需偏移旋转角度。所计算的旋转角度可用于经由控制器124实现产品容器104的旋转,以实现相对于相应产品标签的期望/一致定向,例如,如上所描述。下面描述实现旋转角度计算引擎120的示例性实施方式。At runtime, the rotation angle calculation engine 120 may perform an inline inference loop that may involve acquiring image slices of the product labels of each product container 104 on the production line 102 transmitted by the production line camera 112 (via the data signal 114), and calculating the desired offset rotation angle of the product container 104 based on the acquired image slices and the determined label center of the reference product label image. The calculated rotation angle may be used to implement the rotation of the product container 104 via the controller 124 to achieve a desired/consistent orientation relative to the corresponding product label, for example, as described above. An exemplary implementation of the rotation angle calculation engine 120 is described below.
在第一实施方式中,旋转角度计算引擎120可使用经训练的旋转角度分类器来从所获取的图像切片推断偏移旋转角度。旋转角度分类器可以包括神经网络,并且适当地包括能够为高速生产线执行快速推理循环的浅层卷积神经网络。可以使用数据集来训练旋转角度分类器,该数据集是通过执行与参考产品标签图像的不同区域相对应的图像补丁的增强而产生的,图像不定与标签中心具有不同的角度偏移。角度偏移可用于限定用于图像补丁的分类标签。经过适当训练的旋转角度分类器可以在计算每个产品容器的所需旋转角度时提供高精度。In a first embodiment, the rotation angle calculation engine 120 may use a trained rotation angle classifier to infer the offset rotation angle from the acquired image slices. The rotation angle classifier may comprise a neural network, and suitably a shallow convolutional neural network capable of performing fast inference loops for high speed production lines. A rotation angle classifier can be trained using a dataset generated by performing augmentation of image patches corresponding to different regions of a reference product label image with varying angular offsets from the label center. Angular offsets can be used to define classification labels for image patches. A properly trained rotation angle classifier can provide high accuracy in calculating the required rotation angle for each product container.
图5示出了适于训练诸如上描述的旋转角度分类器的示例性流程500。本文描述的各种模块,包括补丁程序504、增强器/数据变换器506和偏移计算器/标签生成器512,包括其组件,可以由诸如计算系统116的计算系统以各种方式,例如作为硬件和编程来实现。5 shows an exemplary process 500 suitable for training a rotation angle classifier such as described above. The various modules described herein, including patcher 504, enhancer/data transformer 506, and offset calculator/label generator 512, including components thereof, can be implemented by a computing system such as computing system 116 in various ways, such as hardware and programming.
补丁程序504可被用于从参考产品标签图像502生成图像补丁。每个图像补丁可以限定参考产品标签图像502的区域,例如,对应于180度视场。在一个示例性实施方式中,可以通过从参考产品标签图像502裁剪出360/(x-1)个补丁,以x°的步长从0°到(360°-x°)来生成图像补丁。The patching program 504 may be used to generate image patches from the reference product label image 502. Each image patch may define an area of the reference product label image 502, for example, corresponding to a 180 degree field of view. In one exemplary embodiment, the image patches may be generated by cropping 360/(x-1) patches from the reference product label image 502, from 0° to (360°-x°) in steps of x°.
增强器/数据变换器506可以向图像补丁添加噪声和翘曲,以模拟产品标签在围绕轴对称(例如,圆柱形)产品容器缠绕时看起来如何。另外,增强器/数据变换器506可以匹配非本征和本征摄像机属性(例如,照明、分辨率等)并且模拟图像补丁上的摄像机失真以模拟由生产线摄像机112捕获的实际图像切片。增强器/数据变换器506可以添加和组合这些修改以生成足够大和真实的训练数据集508。Enhancer/data transformer 506 can add noise and warping to image patches to simulate how product labels would look when wrapped around an axis-symmetric (eg, cylindrical) product container. Additionally, the enhancer/data transformer 506 can match extrinsic and intrinsic camera properties (eg, illumination, resolution, etc.) and simulate camera distortion on image patches to simulate actual image slices captured by the production line camera 112 . Enhancer/data transformer 506 can add and combine these modifications to generate a sufficiently large and realistic training data set 508.
偏移计算器/标签生成器512可以为每个图像补丁确定相对于所确定的参考产品标签图像502的标签中心510的角度偏移。所确定的标签中心510可以是所计算的参考产品图像502的感知中心。可替换地,如果与所计算的感知中心相关联的置信水平低(例如,低于预定阈值),如上所描述,例如,标签中心510可以根据用户输入来确定。例如,可以通过定位每个图像补丁的中心并计算从图像补丁的中心到所确定的参考产品标签图像502的标签中心的角度距离来确定角度偏移。由此确定的角度偏移可用于限定分类标签514。The offset calculator/label generator 512 can determine an angular offset for each image patch relative to a label center 510 of the determined reference product label image 502. The determined label center 510 can be the calculated perceived center of the reference product image 502. Alternatively, if the confidence level associated with the calculated perceived center is low (e.g., below a predetermined threshold), as described above, for example, the label center 510 can be determined based on user input. For example, the angular offset can be determined by locating the center of each image patch and calculating the angular distance from the center of the image patch to the label center of the determined reference product label image 502. The angular offset thus determined can be used to define a classification label 514.
训练数据集508和对应的标签514可用于经由监督学习过程训练旋转角度分类器516。一旦被训练和验证,旋转角度分类器516可以被部署到运行时系统以从经由生产线摄像机112获取的图像切片自动推断偏移旋转角度。The training data set 508 and corresponding labels 514 may be used to train the rotation angle classifier 516 via a supervised learning process. Once trained and validated, the rotation angle classifier 516 can be deployed to the runtime system to automatically infer offset rotation angles from image slices acquired via the production line camera 112 .
在第二实施方式中,旋转角度计算引擎120可以利用模板匹配算法。模板匹配是计算机视觉中用于在较大的父图像中搜索和找到模板图像的位置的技术。在本申请的上下文中,模板匹配算法可以为计算每个产品容器的所需旋转角度提供高运行时速度。合适的实施例实现方式可以涉及使用由OpenCV库提供的模板匹配功能。In the second embodiment, the rotation angle calculation engine 120 may utilize a template matching algorithm. Template matching is a technique in computer vision for searching and finding the location of a template image within a larger parent image. In the context of this application, template matching algorithms can provide high runtime speed for calculating the required rotation angle for each product container. A suitable embodiment implementation may involve using the template matching functionality provided by the OpenCV library.
图6是在运行时使用模板匹配算法来推断与产品标签的捕获图像切片匹配的参考产品标签图像上的补丁位置的示例性表示。在所示的实施例中,图像切片602表示经由生产线摄像机112(经由数据信号114)获取的具有缠绕在圆柱形产品容器上的产品标签的一部分的180度视场的扭曲图像。可以使用图像切片602作为模板图像并且使用参考产品标签图像200作为父图像来执行模板匹配算法。当执行时,模板匹配算法可以在父图像200上(例如,如在2D卷积中)滑动模板图像602,并且将模板图像602与父图像200的补丁(例如,在本实施例中为180度补丁)进行比较,以在父图像200上定位匹配补丁604。在一个使用OpenCV的实现方式中,取决于所使用的模板匹配准则,可以使用OpenCV中的minMaxLoc函数将匹配补丁604确定为全局最小值(当使用TM_SQDIFF时)或全局最大值(当使用TM_CCORR或TM_CCOEFF时)。Figure 6 is an exemplary representation of using a template matching algorithm at runtime to infer the location of a patch on a reference product label image that matches a captured image slice of the product label. In the illustrated embodiment, image slice 602 represents a distorted image of a 180 degree field of view acquired via production line camera 112 (via data signal 114) having a portion of a product label wrapped around a cylindrical product container. The template matching algorithm may be performed using the image slice 602 as the template image and the reference product label image 200 as the parent image. When executed, the template matching algorithm may slide the template image 602 over the parent image 200 (eg, as in a 2D convolution) and align the template image 602 with a patch of the parent image 200 (eg, 180 degrees in this embodiment). patches) are compared to locate a matching patch 604 on the parent image 200 . In an implementation using OpenCV, depending on the template matching criterion used, the minMaxLoc function in OpenCV can be used to determine the matching patch 604 as a global minimum (when using TM_SQDIFF) or a global maximum (when using TM_CCORR or TM_CCOEFF hour).
可以通过计算匹配补丁604与所确定的标签中心之间的角度偏移来确定旋转角度。例如,可以通过定位匹配补丁604的中心XM并计算从匹配补丁604的中心到所确定的参考产品标签图像200的标签中心的角度距离来确定角度偏移。在所示的实施例中,所确定的标签中心是所计算的参考产品标签图像200的感知中心XC。可替换地,如果与所计算的感知中心XC相关联的置信水平低(例如,低于预定阈值),如上所描述,例如,可以根据用户输入来确定标签中心。The rotation angle may be determined by calculating the angular offset between the matching patch 604 and the determined label center. For example, the angular offset may be determined by locating the center X M of the matching patch 604 and calculating the angular distance from the center of the matching patch 604 to the determined label center of the reference product label image 200 . In the illustrated embodiment, the determined label center is the calculated perceptual center X C of the reference product label image 200 . Alternatively, if the confidence level associated with the calculated perceptual center XC is low (eg, below a predetermined threshold), the label center may be determined based on user input, for example, as described above.
图7示出了根据所公开的实施方式的能够支持生产线中产品容器的自动定向的计算系统700的实施例。在实施例中,计算系统700可以包括工业PC、边缘计算设备等中的一个或多个。计算系统700包括至少一个处理器710,该至少一个处理器可以采用单个或多个处理器的形式。处理器710可以包括中央处理单元(CPU)、图形处理单元(GPU)、神经处理单元(NPU)、微处理器或适于执行存储在包括机器可读介质720的存储器上的指令的任何硬件设备。机器可读介质720可以采用存储可执行指令的任何非瞬时电子、磁、光或其他物理存储设备的形式,可执行指令诸如视觉标签感知指令722和旋转角度计算指令724,如图7所示。这样,机器可读介质720可以是例如随机存取存储器(RAM),诸如动态RAM(DRAM)、闪存、自旋转移力矩存储器、电可擦除可编程只读存储器(EEPROM)、存储驱动器、光盘等。Figure 7 illustrates an embodiment of a computing system 700 capable of supporting automated orientation of product containers in a production line, in accordance with disclosed embodiments. In embodiments, computing system 700 may include one or more of industrial PCs, edge computing devices, and the like. Computing system 700 includes at least one processor 710, which may take the form of a single or multiple processors. Processor 710 may include a central processing unit (CPU), a graphics processing unit (GPU), a neural processing unit (NPU), a microprocessor, or any hardware device suitable for executing instructions stored on memory including machine-readable medium 720 . Machine-readable medium 720 may take the form of any non-transitory electronic, magnetic, optical, or other physical storage device that stores executable instructions, such as visual tag sensing instructions 722 and rotation angle calculation instructions 724, as shown in FIG. 7 . As such, machine-readable medium 720 may be, for example, random access memory (RAM) such as dynamic RAM (DRAM), flash memory, spin transfer torque memory, electrically erasable programmable read-only memory (EEPROM), storage drive, optical disk wait.
计算系统700可以通过处理器710执行存储在机器可读介质720上的指令。执行指令(例如,视觉标签感知指令722和旋转角度计算指令724)可以使计算系统700执行本文描述的任何技术特征,包括根据如上所描述的视觉标签感知引擎118和旋转角度计算引擎120的任何特征。Computing system 700 may execute instructions stored on machine-readable medium 720 by processor 710 . Execution of instructions (eg, visual label awareness instructions 722 and rotation angle calculation instructions 724 ) may cause computing system 700 to perform any of the technical features described herein, including any features in accordance with visual label awareness engine 118 and rotation angle calculation engine 120 as described above. .
包括视觉标签感知引擎118和旋转角度计算引擎120的上述系统、方法、设备和逻辑可以以硬件、逻辑、电路和存储在机器可读介质上的可执行指令的许多不同组合通过许多不同方式来实现。例如,这些引擎可以包括控制器、微处理器或专用集成电路(ASIC)中的电路,或可以使用分立逻辑或组件,或组合在单个集成电路上或分布在多个集成电路之间的其他类型的模拟或数字电路的组合来实现。诸如计算机程序产品的产品可以包括存储介质和存储在该介质上的机器可读指令,当在端点、计算机系统或其他设备中执行指令时,使得该设备执行根据以上描述中任一项的操作,包括根据视觉标签感知引擎118和旋转角度计算引擎120的任何特征的操作。本文描述的计算机可读程序指令可以从计算机可读存储介质下载到相应计算/处理设备,或者经由网络(例如因特网、局域网、广域网和/或无线网)下载到外部计算机或外部存储设备。The systems, methods, devices, and logic described above, including the visual tag perception engine 118 and the rotation angle calculation engine 120, may be implemented in many different ways with many different combinations of hardware, logic, circuitry, and executable instructions stored on a machine-readable medium. . For example, these engines may include a controller, microprocessor, or circuitry in an Application Specific Integrated Circuit (ASIC), or may use discrete logic or components, or other types of combinations on a single integrated circuit or distributed among multiple integrated circuits. A combination of analog or digital circuits. A product, such as a computer program product, may include a storage medium and machine-readable instructions stored on the medium that, when executed in an endpoint, computer system, or other device, cause the device to perform an operation in accordance with any of the above descriptions, Operations based on any features of the visual label perception engine 118 and the rotation angle calculation engine 120 are included. The computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to a corresponding computing/processing device, or to an external computer or external storage device via a network (such as the Internet, a local area network, a wide area network, and/or a wireless network).
本文描述的系统、设备和包括视觉标签感知引擎118和旋转角度计算引擎120的引擎的处理能力可以分布在多个系统组件之间,例如分布在多个处理器和存储器之间,可选地包括多个分布式处理系统或云/网络元件。参数、数据库和其他数据结构可以被分开地存储和管理,可以被合并到单个存储器或数据库中,可以以许多不同的方式在逻辑上和物理上组织,并且可以以许多方式实现,包括诸如链接列表、散列表或隐式存储机制的数据结构。程序可以是单个程序的多部分(例如,子程序)、分开的程序、分布在几个存储器和处理器上,或者以许多不同的方式实现,例如以库(例如,共享库)的形式。The processing capabilities of the systems, devices, and engines including visual tag perception engine 118 and rotation angle calculation engine 120 described herein may be distributed among multiple system components, such as among multiple processors and memories, optionally including Multiple distributed processing systems or cloud/network elements. Parameters, databases, and other data structures can be stored and managed separately, can be combined into a single memory or database, can be logically and physically organized in many different ways, and can be implemented in many ways, including as linked lists , hash table or implicit storage mechanism data structure. A program may be parts of a single program (eg, a subroutine), separate programs, distributed over several memories and processors, or implemented in many different ways, such as in the form of a library (eg, a shared library).
附图的系统和过程不是唯一的。可以根据本公开的原理导出其他系统、过程和菜单以实现相同的目的。尽管已经参考具体实施方式描述了本公开,但是应当理解,本文示出和描述的实施方式和变型仅用于说明目的。在不脱离本公开的范围的情况下,本领域技术人员可以实现对当前设计的修改。The systems and processes illustrated are not unique. Other systems, procedures, and menus may be derived from the principles of this disclosure to achieve the same purpose. Although the present disclosure has been described with reference to specific embodiments, it is to be understood that the embodiments and variations shown and described herein are for illustrative purposes only. Modifications to the current design may be implemented by those skilled in the art without departing from the scope of this disclosure.
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163219965P | 2021-07-09 | 2021-07-09 | |
US63/219,965 | 2021-07-09 | ||
PCT/US2022/015574 WO2023282938A1 (en) | 2021-07-09 | 2022-02-08 | System and method for automatically orienting product containers |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117794832A true CN117794832A (en) | 2024-03-29 |
Family
ID=80462074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280048235.0A Pending CN117794832A (en) | 2021-07-09 | 2022-02-08 | System and method for automatically orienting product containers |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240278952A1 (en) |
EP (1) | EP4351994A1 (en) |
CN (1) | CN117794832A (en) |
WO (1) | WO2023282938A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022122377A1 (en) * | 2022-09-05 | 2024-03-07 | Krones Aktiengesellschaft | Container transport system and method for transporting containers |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011119967B3 (en) * | 2011-12-02 | 2013-01-17 | Khs Gmbh | Apparatus and method for forming packaging units |
GB201217466D0 (en) * | 2012-09-29 | 2012-11-14 | Meadwestvaco Packaging System Llc | Packaging machine and method of packaging articles |
US8903540B2 (en) * | 2012-11-30 | 2014-12-02 | Stork Fabricators, Inc. | Automatic container orientation systems and methods |
-
2022
- 2022-02-08 US US18/571,524 patent/US20240278952A1/en active Pending
- 2022-02-08 EP EP22706463.1A patent/EP4351994A1/en active Pending
- 2022-02-08 WO PCT/US2022/015574 patent/WO2023282938A1/en active Application Filing
- 2022-02-08 CN CN202280048235.0A patent/CN117794832A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4351994A1 (en) | 2024-04-17 |
US20240278952A1 (en) | 2024-08-22 |
WO2023282938A1 (en) | 2023-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10303987B2 (en) | System and method for performing production line product identification | |
CN107016387B (en) | Method and device for identifying label | |
US12235929B2 (en) | Database management system and method for updating a training dataset of an item identification model | |
US11960569B2 (en) | System and method for refining an item identification model based on feedback | |
EP3217324A1 (en) | Hybrid detection recognition system | |
US12073623B2 (en) | System and method for capturing images for training of an item identification model | |
US20220414373A1 (en) | System and method for aggregating metadata for item identification using digital image processing | |
WO2020102613A1 (en) | Brand-identifiable and cloud-enabled packaging material | |
US20180089509A1 (en) | Information delivery system based on packing box image recognition | |
CN117794832A (en) | System and method for automatically orienting product containers | |
Kaskman et al. | 6 dof pose estimation of textureless objects from multiple rgb frames | |
CN112437946A (en) | Illegal action estimation system, illegal action estimation method, and program | |
US20230237710A1 (en) | A method and a server for facilitating provision of food product information | |
WO2024095380A1 (en) | Point-cloud identification device, learning device, point-cloud identification method, and learning method | |
US20220366602A1 (en) | Object positioning method and system | |
WO2023083273A1 (en) | Grip point information acquisition method and apparatus, electronic device, and storage medium | |
Lindermayr et al. | Synthretailproduct3d (syrepro3d): A pipeline for synthesis of 3d retail product models with domain specific details based on package class templates | |
CN113269045A (en) | Chinese artistic word detection and recognition method under natural scene | |
JP7644914B2 (en) | Information Processing System | |
Bobulski et al. | Deep learning method for classifying items into categories for dutch auctions | |
Antony et al. | Enhancing object detection performance for small objects through synthetic data generation and proportional class-balancing technique: A comparative study in industrial scenarios | |
US20230196424A1 (en) | Real-time identification of garments in a rail-based garment intake process | |
Chen et al. | SynthRetailProduct3D (SyRePro3D): A Pipeline for Synthesis of 3D Retail Product Models with Domain Specific Details Based on Package Class Templates | |
CN112424839B (en) | System and method for detecting deviations in packaging containers | |
Forsyth et al. | Representations of 3D objects that incorporate surface markings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |