EP2960687B1 - Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive - Google Patents
Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive Download PDFInfo
- Publication number
- EP2960687B1 EP2960687B1 EP14305987.1A EP14305987A EP2960687B1 EP 2960687 B1 EP2960687 B1 EP 2960687B1 EP 14305987 A EP14305987 A EP 14305987A EP 2960687 B1 EP2960687 B1 EP 2960687B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition according
- yellowing additive
- yellowing
- group
- branched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004383 yellowing Methods 0.000 title claims description 92
- 239000000203 mixture Substances 0.000 title claims description 89
- 239000000654 additive Substances 0.000 title claims description 87
- 230000000996 additive effect Effects 0.000 title claims description 75
- 239000006096 absorbing agent Substances 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 27
- 239000000178 monomer Substances 0.000 claims description 23
- 238000006116 polymerization reaction Methods 0.000 claims description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 16
- -1 ethyl-hexyl Chemical group 0.000 claims description 16
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- JHQVCQDWGSXTFE-UHFFFAOYSA-N 2-(2-prop-2-enoxycarbonyloxyethoxy)ethyl prop-2-enyl carbonate Chemical compound C=CCOC(=O)OCCOCCOC(=O)OCC=C JHQVCQDWGSXTFE-UHFFFAOYSA-N 0.000 claims description 13
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 125000006732 (C1-C15) alkyl group Chemical group 0.000 claims description 11
- 150000001721 carbon Chemical group 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 7
- 125000003277 amino group Chemical group 0.000 claims description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 125000006832 (C1-C10) alkylene group Chemical group 0.000 claims description 5
- 239000005864 Sulphur Chemical group 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 4
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 4
- 239000012965 benzophenone Substances 0.000 claims description 4
- 239000012964 benzotriazole Substances 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- FTWUXYZHDFCGSV-UHFFFAOYSA-N n,n'-diphenyloxamide Chemical compound C=1C=CC=CC=1NC(=O)C(=O)NC1=CC=CC=C1 FTWUXYZHDFCGSV-UHFFFAOYSA-N 0.000 claims description 4
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical group CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 claims description 4
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- ODJQKYXPKWQWNK-UHFFFAOYSA-L 3-(2-carboxylatoethylsulfanyl)propanoate Chemical compound [O-]C(=O)CCSCCC([O-])=O ODJQKYXPKWQWNK-UHFFFAOYSA-L 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 125000006578 monocyclic heterocycloalkyl group Chemical group 0.000 claims description 2
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 claims 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 33
- 238000000576 coating method Methods 0.000 description 21
- 239000011248 coating agent Substances 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 230000032683 aging Effects 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- ZCILGMFPJBRCNO-UHFFFAOYSA-N 4-phenyl-2H-benzotriazol-5-ol Chemical compound OC1=CC=C2NN=NC2=C1C1=CC=CC=C1 ZCILGMFPJBRCNO-UHFFFAOYSA-N 0.000 description 5
- UBJVUCKUDDKUJF-UHFFFAOYSA-N Diallyl sulfide Chemical compound C=CCSCC=C UBJVUCKUDDKUJF-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 125000003386 piperidinyl group Chemical group 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 4
- IYAZLDLPUNDVAG-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 IYAZLDLPUNDVAG-UHFFFAOYSA-N 0.000 description 4
- BKCNDTDWDGQHSD-UHFFFAOYSA-N 2-(tert-butyldisulfanyl)-2-methylpropane Chemical compound CC(C)(C)SSC(C)(C)C BKCNDTDWDGQHSD-UHFFFAOYSA-N 0.000 description 4
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- BVOMRRWJQOJMPA-UHFFFAOYSA-N 1,2,3-trithiane Chemical compound C1CSSSC1 BVOMRRWJQOJMPA-UHFFFAOYSA-N 0.000 description 3
- NBNWHQAWKFYFKI-UHFFFAOYSA-N 2,2,4,4,6,6-Hexamethyl-1,3,5-trithiane Chemical compound CC1(C)SC(C)(C)SC(C)(C)S1 NBNWHQAWKFYFKI-UHFFFAOYSA-N 0.000 description 3
- OSIVCXJNIBEGCL-UHFFFAOYSA-N bis(2,2,6,6-tetramethyl-1-octoxypiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(OCCCCCCCC)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(OCCCCCCCC)C(C)(C)C1 OSIVCXJNIBEGCL-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229910052736 halogen Chemical group 0.000 description 3
- 150000002367 halogens Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- MZHULIWXRDLGRR-UHFFFAOYSA-N tridecyl 3-(3-oxo-3-tridecoxypropyl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCC MZHULIWXRDLGRR-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- ROLAGNYPWIVYTG-UHFFFAOYSA-N 1,2-bis(4-methoxyphenyl)ethanamine;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1CC(N)C1=CC=C(OC)C=C1 ROLAGNYPWIVYTG-UHFFFAOYSA-N 0.000 description 2
- CXWGKAYMVASWDQ-UHFFFAOYSA-N 1,2-dithiane Chemical compound C1CCSSC1 CXWGKAYMVASWDQ-UHFFFAOYSA-N 0.000 description 2
- OTCWVYFQGYOYJO-UHFFFAOYSA-N 1-o-methyl 10-o-(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound COC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 OTCWVYFQGYOYJO-UHFFFAOYSA-N 0.000 description 2
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical class CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- QTWKINKGAHTPFJ-UHFFFAOYSA-N 2-(butan-2-yldisulfanyl)butane Chemical compound CCC(C)SSC(C)CC QTWKINKGAHTPFJ-UHFFFAOYSA-N 0.000 description 2
- VMRIVYANZGSGRV-UHFFFAOYSA-N 4-phenyl-2h-triazin-5-one Chemical group OC1=CN=NN=C1C1=CC=CC=C1 VMRIVYANZGSGRV-UHFFFAOYSA-N 0.000 description 2
- VNFYMAPAENTMMO-UHFFFAOYSA-N 5-chloro-2-methylquinoline Chemical compound ClC1=CC=CC2=NC(C)=CC=C21 VNFYMAPAENTMMO-UHFFFAOYSA-N 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 2
- HTIRHQRTDBPHNZ-UHFFFAOYSA-N Dibutyl sulfide Chemical compound CCCCSCCCC HTIRHQRTDBPHNZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 206010034944 Photokeratitis Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 229940008075 allyl sulfide Drugs 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 2
- VYCDFODYRFOXDA-UHFFFAOYSA-N bis(2,2,6,6-tetramethyl-1-undecoxypiperidin-4-yl) carbonate Chemical compound C1C(C)(C)N(OCCCCCCCCCCC)C(C)(C)CC1OC(=O)OC1CC(C)(C)N(OCCCCCCCCCCC)C(C)(C)C1 VYCDFODYRFOXDA-UHFFFAOYSA-N 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- ZDNFTNPFYCKVTB-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,4-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=C(C(=O)OCC=C)C=C1 ZDNFTNPFYCKVTB-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- LOZWAPSEEHRYPG-UHFFFAOYSA-N dithiane Natural products C1CSCCS1 LOZWAPSEEHRYPG-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- MYWWWNVEZBAKHR-UHFFFAOYSA-N methyl 3-(3-methoxy-3-oxopropyl)sulfanylpropanoate Chemical compound COC(=O)CCSCCC(=O)OC MYWWWNVEZBAKHR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 229940059574 pentaerithrityl Drugs 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- STCROAQXEXRGDO-UHFFFAOYSA-N trithiane-5-carboxylic acid Chemical compound OC(=O)C1CSSSC1 STCROAQXEXRGDO-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- NWPIOULNZLJZHU-UHFFFAOYSA-N (1,2,2,6,6-pentamethylpiperidin-4-yl) 2-methylprop-2-enoate Chemical compound CN1C(C)(C)CC(OC(=O)C(C)=C)CC1(C)C NWPIOULNZLJZHU-UHFFFAOYSA-N 0.000 description 1
- XCUMSNPHSUGHKU-UHFFFAOYSA-N (2,4-dihydroxyphenyl)-(2-hydroxy-4-octoxyphenyl)methanone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=C(O)C=C1O XCUMSNPHSUGHKU-UHFFFAOYSA-N 0.000 description 1
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 1
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 1
- 125000000027 (C1-C10) alkoxy group Chemical group 0.000 description 1
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- 125000006686 (C1-C24) alkyl group Chemical group 0.000 description 1
- VZFJMKRFMNCZSK-UHFFFAOYSA-N 1,3,5-trithiane-2,4,6-tricarboxylic acid Chemical compound OC(=O)C1SC(C(O)=O)SC(C(O)=O)S1 VZFJMKRFMNCZSK-UHFFFAOYSA-N 0.000 description 1
- JIPISJJJEAGYDG-UHFFFAOYSA-N 1,3,5-trithiane-2,4-dicarboxylic acid Chemical compound S1C(SC(SC1)C(=O)O)C(=O)O JIPISJJJEAGYDG-UHFFFAOYSA-N 0.000 description 1
- NKPXGICIHGXXFQ-UHFFFAOYSA-N 1,3,5-trithiane-2-carboxylic acid Chemical compound OC(=O)C1SCSCS1 NKPXGICIHGXXFQ-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- MEZZCSHVIGVWFI-UHFFFAOYSA-N 2,2'-Dihydroxy-4-methoxybenzophenone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1O MEZZCSHVIGVWFI-UHFFFAOYSA-N 0.000 description 1
- PHQSYHLEPPMJSU-UHFFFAOYSA-N 2,4,6-Triethyl-1,3,5-trithiane Chemical compound CCC1SC(CC)SC(CC)S1 PHQSYHLEPPMJSU-UHFFFAOYSA-N 0.000 description 1
- XQVYLDFSPBXACS-UHFFFAOYSA-N 2,4,6-Trimethyl-1,3,5-trithiane Chemical compound CC1SC(C)SC(C)S1 XQVYLDFSPBXACS-UHFFFAOYSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 1
- YHYCMHWTYHPIQS-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-methoxyethanol Chemical compound COC(O)COCCO YHYCMHWTYHPIQS-UHFFFAOYSA-N 0.000 description 1
- OPLGHQYTZQXDAN-UHFFFAOYSA-N 2-(4-benzoyl-3-hydroxyphenoxy)ethyl acetate Chemical compound OC1=CC(OCCOC(=O)C)=CC=C1C(=O)C1=CC=CC=C1 OPLGHQYTZQXDAN-UHFFFAOYSA-N 0.000 description 1
- NMMXJQKTXREVGN-UHFFFAOYSA-N 2-(4-benzoyl-3-hydroxyphenoxy)ethyl prop-2-enoate Chemical compound OC1=CC(OCCOC(=O)C=C)=CC=C1C(=O)C1=CC=CC=C1 NMMXJQKTXREVGN-UHFFFAOYSA-N 0.000 description 1
- LINWQJYVLPPWSY-UHFFFAOYSA-N 2-(5-bromobenzotriazol-2-yl)benzene-1,3,5-triol Chemical compound OC1=CC(O)=CC(O)=C1N1N=C2C=C(Br)C=CC2=N1 LINWQJYVLPPWSY-UHFFFAOYSA-N 0.000 description 1
- ZMWRRFHBXARRRT-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC(C(C)(C)CC)=CC(N2N=C3C=CC=CC3=N2)=C1O ZMWRRFHBXARRRT-UHFFFAOYSA-N 0.000 description 1
- OLFNXLXEGXRUOI-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-phenylpropan-2-yl)phenol Chemical compound C=1C(N2N=C3C=CC=CC3=N2)=C(O)C(C(C)(C)C=2C=CC=CC=2)=CC=1C(C)(C)C1=CC=CC=C1 OLFNXLXEGXRUOI-UHFFFAOYSA-N 0.000 description 1
- ITLDHFORLZTRJI-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-5-octoxyphenol Chemical compound OC1=CC(OCCCCCCCC)=CC=C1N1N=C2C=CC=CC2=N1 ITLDHFORLZTRJI-UHFFFAOYSA-N 0.000 description 1
- VQMHSKWEJGIXGA-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-dodecyl-4-methylphenol Chemical compound CCCCCCCCCCCCC1=CC(C)=CC(N2N=C3C=CC=CC3=N2)=C1O VQMHSKWEJGIXGA-UHFFFAOYSA-N 0.000 description 1
- BUPWWGPVYBCXEG-UHFFFAOYSA-N 2-(benzotriazol-2-yl)benzene-1,3,5-triol Chemical compound OC1=CC(O)=CC(O)=C1N1N=C2C=CC=CC2=N1 BUPWWGPVYBCXEG-UHFFFAOYSA-N 0.000 description 1
- MLGITEWCALEOOJ-UHFFFAOYSA-N 2-(thiiran-2-ylmethylsulfanylmethyl)thiirane Chemical compound C1SC1CSCC1CS1 MLGITEWCALEOOJ-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- CQNQNWUSTVCIDH-UHFFFAOYSA-N 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(6-methylheptoxy)phenol Chemical compound OC1=CC(OCCCCCC(C)C)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(C)=CC=2)C)=N1 CQNQNWUSTVCIDH-UHFFFAOYSA-N 0.000 description 1
- IHTNXIFVUBNUFL-UHFFFAOYSA-N 2-butan-2-ylsulfanylbutane 1-butylsulfanylbutane Chemical compound CCCCSCCCC.CCC(C)SC(C)CC IHTNXIFVUBNUFL-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- PNHQFBIRVSCEPP-UHFFFAOYSA-N 3-[3-(3-ethyloctan-3-yloxy)-3-oxopropyl]sulfanylpropanoic acid Chemical compound CCCCCC(CC)(CC)OC(=O)CCSCCC(O)=O PNHQFBIRVSCEPP-UHFFFAOYSA-N 0.000 description 1
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- FWQJIRVARXVALW-UHFFFAOYSA-N 4-(4,5-dibromo-6,7-dichlorobenzotriazol-2-yl)benzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1N1N=C2C(Br)=C(Br)C(Cl)=C(Cl)C2=N1 FWQJIRVARXVALW-UHFFFAOYSA-N 0.000 description 1
- BPHWHDWHPNLVBC-UHFFFAOYSA-N 4-(4,5-dichlorobenzotriazol-2-yl)benzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1N1N=C2C(Cl)=C(Cl)C=CC2=N1 BPHWHDWHPNLVBC-UHFFFAOYSA-N 0.000 description 1
- IIRSYDWYPXCLQN-UHFFFAOYSA-N 4-(5-bromobenzotriazol-2-yl)benzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1N1N=C2C=C(Br)C=CC2=N1 IIRSYDWYPXCLQN-UHFFFAOYSA-N 0.000 description 1
- PDWJJJRPZTZWDE-UHFFFAOYSA-N 4-(5-chlorobenzotriazol-2-yl)benzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1N1N=C2C=C(Cl)C=CC2=N1 PDWJJJRPZTZWDE-UHFFFAOYSA-N 0.000 description 1
- LEBRCVXHIFZXEM-UHFFFAOYSA-N 4-(benzotriazol-2-yl)benzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1N1N=C2C=CC=CC2=N1 LEBRCVXHIFZXEM-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- NFWPZNNZUCPLAX-UHFFFAOYSA-N 4-methoxy-3-methylaniline Chemical compound COC1=CC=C(N)C=C1C NFWPZNNZUCPLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 0 C*C1C(CCC2)N(*)C2C1*C(**)=* Chemical compound C*C1C(CCC2)N(*)C2C1*C(**)=* 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- CUDSBWGCGSUXDB-UHFFFAOYSA-N Dibutyl disulfide Chemical compound CCCCSSCCCC CUDSBWGCGSUXDB-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- OKKFBZHLLPZUNH-UHFFFAOYSA-N OC1=C(C(=O)C2=C(C=C(C=C2)O)O)C=CC(C1)(OCCCCCCCC)O Chemical compound OC1=C(C(=O)C2=C(C=C(C=C2)O)O)C=CC(C1)(OCCCCCCCC)O OKKFBZHLLPZUNH-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WXNRYSGJLQFHBR-UHFFFAOYSA-N bis(2,4-dihydroxyphenyl)methanone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1O WXNRYSGJLQFHBR-UHFFFAOYSA-N 0.000 description 1
- SODJJEXAWOSSON-UHFFFAOYSA-N bis(2-hydroxy-4-methoxyphenyl)methanone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=C(OC)C=C1O SODJJEXAWOSSON-UHFFFAOYSA-N 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical group C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- SYFOAKAXGNMQAX-UHFFFAOYSA-N bis(prop-2-enyl) carbonate;2-(2-hydroxyethoxy)ethanol Chemical compound OCCOCCO.C=CCOC(=O)OCC=C SYFOAKAXGNMQAX-UHFFFAOYSA-N 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- QDCHWIWENYCPIL-UHFFFAOYSA-L disodium;4-hydroxy-5-(2-hydroxy-4-methoxy-5-sulfonatobenzoyl)-2-methoxybenzenesulfonate Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(OC)=CC(O)=C1C(=O)C1=CC(S([O-])(=O)=O)=C(OC)C=C1O QDCHWIWENYCPIL-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- RBNPOMFGQQGHHO-UHFFFAOYSA-N glyceric acid Chemical compound OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 description 1
- DYGOPFFOGFHOIB-UHFFFAOYSA-N methylperoxyethane Chemical compound CCOOC DYGOPFFOGFHOIB-UHFFFAOYSA-N 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- YIMHRDBSVCPJOV-UHFFFAOYSA-N n'-(2-ethoxyphenyl)-n-(2-ethylphenyl)oxamide Chemical compound CCOC1=CC=CC=C1NC(=O)C(=O)NC1=CC=CC=C1CC YIMHRDBSVCPJOV-UHFFFAOYSA-N 0.000 description 1
- PIPJHDJQUXGVNR-UHFFFAOYSA-N n'-(2-ethoxyphenyl)-n-[4-(10-methylundecyl)phenyl]oxamide Chemical group CCOC1=CC=CC=C1NC(=O)C(=O)NC1=CC=C(CCCCCCCCCC(C)C)C=C1 PIPJHDJQUXGVNR-UHFFFAOYSA-N 0.000 description 1
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical group OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 1
- QADJHAOXTKCYFT-UHFFFAOYSA-N octyl 3-(3-octoxy-3-oxopropyl)sulfanylpropanoate Chemical compound CCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCC QADJHAOXTKCYFT-UHFFFAOYSA-N 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- RYSBYLUYRUYPNW-UHFFFAOYSA-N phenyl-(2-propoxyphenyl)methanone Chemical compound CCCOC1=CC=CC=C1C(=O)C1=CC=CC=C1 RYSBYLUYRUYPNW-UHFFFAOYSA-N 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- BSKOQUXENQTAKB-UHFFFAOYSA-N trithiane-4-carboxylic acid Chemical compound S1SSC(CC1)C(=O)O BSKOQUXENQTAKB-UHFFFAOYSA-N 0.000 description 1
- 150000000095 trithianes Chemical class 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L35/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L35/02—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3435—Piperidines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F22/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
- C08F22/10—Esters
- C08F22/26—Esters of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F28/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
- C08F28/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3472—Five-membered rings
- C08K5/3475—Five-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34926—Triazines also containing heterocyclic groups other than triazine groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/372—Sulfides, e.g. R-(S)x-R'
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/45—Heterocyclic compounds having sulfur in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L41/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Compositions of derivatives of such polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/022—Ophthalmic lenses having special refractive features achieved by special materials or material structures
Definitions
- the present invention relates to a thermosetting composition for the manufacture of an ophthalmic lens which efficiently absorbs ultraviolet (UV) rays without exhibiting undesirable yellowing, said composition comprising an allyl monomer or oligomer, a catalyst, a UV-absorber and a specific anti-yellowing additive.
- the present invention also relates to the use of said composition and to the ophthalmic lens obtained from said composition.
- UV rays having a wavelength between 200 and 400 nm are known to be harmful to the human eye.
- they can accelerate ocular ageing which can lead to an early cataract or to more extreme disorders such as photokeratitis or « snow blindness Jardin These damages can be prevented by incorporating UV-absorbers in ophthalmic lenses.
- the first method is the impregnation of a polymerized lens in a bath containing a UV-absorber as disclosed in European patent N°1 085 349 .
- this method adds a step to the production process of the lens, which is not desirable in terms of cost and time.
- the second method is the coating of a substance capable of absorbing UV rays onto the surface of ophthalmic lenses as disclosed in US patent N°5 949 518 .
- the incorporation of high amounts of UV-absorbers in a coating weakens its mechanical properties.
- the third method is the incorporation of a UV-absorber in the bulk liquid formulation (i.e. before polymerization) as taught in European patent N°1 085 348 .
- a thermosetting composition comprising a diethylene glycol bisallylcarbonate or bis( ⁇ -epithiopropyl)sulfide monomer, diisopropyl peroxydicarbonate as a catalyst and 2-(2-hydroxy-4-octyloxyphenyl)-benzotriazole as a UV-absorber is cast into a mold for lenses and heated until polymerized.
- this method is unable to provide a lens that can both efficiently absorb UV rays and that does not exhibit undesirable yellowing.
- Yellowing of the lens as measured by the yellow index, can be caused by two degradation mechanisms:
- European patent application N°2 172 792 mentions that the yellow index of a lens made with a thermosetting composition comprising a UV absorber can be reduced by introducing specific dyes or pigments, namely a cobalt oxide and alumina compound and a nanodispersion of gold particles.
- specific dyes or pigments namely a cobalt oxide and alumina compound and a nanodispersion of gold particles.
- the preparation process of the lens is complex and the lens obtained with this composition has decreased transmittance or a greyish shade.
- thermosetting composition that can produce ophthalmic lenses that have a UV cut of 380 nm and a yellow index that is less than 1.5 while at the same time having sufficient transparency.
- a first object of this invention is a polymerizable composition for the manufacture of an ophthalmic lens, comprising:
- Another object of the present invention is the use of the composition according to the invention to manufacture an ophthalmic lens.
- Yet another object of the present invention is an ophthalmic lens obtained by filling the composition according to the invention in a mould and then heating it at a temperature of from 75 to 95°C.
- the ophthalmic lens obtained according to the invention has a Yellow Index below 2.0 and a variation in the Yellow Index after exposing said lens to UV light for 80h that does not exceed 0.5 in absolute value, as measured according to the methods described herein.
- the mechanical properties of the lens are not degraded by these anti-yellowing additives.
- the polymerizable composition according to the invention comprises an allyl monomer or oligomer, a catalyst, a UV-absorber and a specific anti-yellowing additive.
- the allyl monomer or oligomer included in the composition according to the present invention is a compound comprising an allyl group.
- allyl monomers or oligomers examples include an allyl sulfide, a diallyl phthalate, a diallyl isophthalate, a diallyl terephthalate, a compound comprising an allyl carbonate group which corresponds to the following formula an allyl methane, and mixtures thereof.
- the allyl monomer used in the composition of the present invention is diethylene glycol bis(allyl carbonate) having the following formula: or an oligomer of diethylene glycol bis(allyl carbonate).
- the amount of allyl monomer or oligomer in the polymerizable composition according to the present invention is from 50 to 99% by weight, preferably from 80 to 98%, more preferably from 90 to 97% by weight, based on the total weight of the composition.
- the polymerizable composition may also comprise a second monomer or oligomer that is capable of polymerizing with the allyl monomer or oligomer described above.
- a suitable second monomer include: aromatic vinyl compounds such as styrene, [alpha]-methylstyrene, vinyltoluene, chlorostyrene, chloromethylstyrene and divinylbenzene; alkyl mono(meth)acrylates such as methyl (meth)acrylate, n-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, phenyl
- the amount of the second monomer or oligomer in the polymerizable composition according to the present invention may be from 1 to 50% by weight, preferably from 2 to 20%, more preferably from 3 to 10% by weight, based on the total weight of the composition.
- the catalyst included in the composition according to the present invention is a catalyst that is suitable for allyl monomer polymerization, such as for example an organic peroxide, an organic azo compound, and mixtures thereof.
- Examples of a suitable organic peroxide include benzoyl peroxide, methyl ethyl peroxide, methyl ethyl ketone peroxide, di-t-butyl peroxide, lauroyl peroxide, acetyl peroxide, diisopropyl peroxydicarbonate, bis(4-t-butylcyclohexyl) peroxydicarbonate, t-butyl peroxy-2-ethylhexanoate, t-hexyl peroxy-2-ethylhexanoate, and mixtures thereof.
- Examples of a suitable organic azo compound include 2,2'-azobisisobutyronitrile, dimethyl 2,2'-azobis(2-methylpropionate), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 4,4'-azobis(4-cyanopentanoic acid), and mixtures thereof.
- the catalyst is diisopropyl peroxydicarbonate (IPP).
- the amount of catalyst in the polymerizable composition according to the present invention may be from 1.0 to 5.0% by weight, preferably from 2.5 to 4.5% preferably from 3.0 to 4.0% by weight, based on the total weight of the composition.
- the UV-absorber included in the composition according to the present invention is a compound that is responsible for the UV-cut of the resulting ophthalmic lens.
- UV-cut it is meant the highest wavelength for which the transmittance is lower than 1% as measured according to the method described herein.
- the UV absorber is chosen so that the ophthalmic lens obtained from the polymerizable composition of the present invention has a UV-cut of at least 380 nm.
- the UV-absorber included in the composition according to the present invention is a benzotriazole, a benzophenone, a triazine, an oxalanilide, and mixtures thereof, preferably a benzotriazole and more preferably a hydroxyphenyl benzotriazole.
- a hydroxyphenyl benzotriazole suitable for use as a UV-absorber is a compound having the following formula (II): wherein R1 and R2 are independently hydrogen or a linear or branched (C 1 -C 12 ) alkyl which is optionally substituted by a phenyl group; and wherein R3 is hydrogen or halogen.
- the hydroxyphenyl benzotriazole UV-absorber is selected in the group consisting of 2-(2 H -Benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol, 2-(2 H- Benzotriazol-2-yl)-6-dodecyl-4-methylphenol, 2-(2-Hydroxy-5-methylphenyl)benzotriazole, 2-(2 H -Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, 2(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2 H -Benzotriazol-2-yl)-4,6-di- tert -pentylphenol, 2-(2,4-dihydroxyphenyl)benzotriazole, 2-(2,4,6-trihydroxyphenyl)benzotriazole, 5-chloro-2-(2,4-dihydroxyphenyl
- a benzophenone suitable for use as a UV-absorber is a compound having the following formula (III): wherein R1 to R5 are independently hydrogen, hydroxy, a linear or branched (C 1- C 10 ) alkyl, a linear or branched (C 1 -C 10 ) alkoxy, wherein said alkyl and alkoxy groups are optionally substituted by an acrylate or methacrylate group.
- the benzophenone UV-absorber is selected from the group consisting of 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4-(2-acryloxyethoxy)-benzophenone, 2-hydroxy-4-(2-hydroxy-3-methacryloxy)propoxy-benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-acetoxyethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone-disodium salt, 2,2',4,4'-tetrahydroxy-4-octyloxybenzophenone, 2,2',4'-trihydroxy-4-octyloxybenzophenone, and
- a triazine suitable for use as a UV-absorber is a hydroxyphenyl triazine having the following formula (IV): wherein R1 to R5 are independently hydrogen, hydroxy, halogen, cyano, nitro, a linear or branched (C 1 -C 24 ) alkyl, a linear or branched (C 1 -C 24 ) alkoxy, an aryl group, an aralkyl group wherein the alkyl part is linear or branched (C 1 -C 24 ) group, a glycerol ether corresponding to the following formula -O-CH 2 -CH(OH)-CH 2 -OR6 wherein R6 is a linear or branched (C 1 -C 15 ) alkyl.
- R1 to R5 are independently hydrogen, hydroxy, halogen, cyano, nitro, a linear or branched (C 1 -C 24 ) alkyl, a linear or branched (C 1 -
- the hydroxyphenyl triazine UV-absorber is selected in the group consisting of 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-iso-octyloxyphenyl)-1,3,5-triazine, 2-[4-[(2-hydroxy-3-(2'-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, a mixture of 2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-[2-hydroxy-3-didecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, and mixtures thereof.
- An oxalanilide suitable for use as a UV-absorber is a compound having the following formula (V): wherein R1 to R4 are independently hydrogen, hydroxy, a linear or branched (C 1 -C 15 ) alkyl, a linear or branched (C 1 -C 15 ) alkoxy.
- the oxalanilide UV-absorber is selected from the group consisting of N-(2-ethoxyphenyl)-N'-(4-isododecylphenyl)oxamide, N-(2-ethoxyphenyl)-N'-(2-ethylphenyl)oxamide, and mixtures thereof.
- the amount of UV-absorber in the polymerizable composition according to the present invention may be from 0.01 to 5.0% by weight, preferably from 0.1 to 2.0%, more preferably from 0.2 to 1.0% by weight, based on the total weight of the composition.
- the anti-yellowing additive included in the composition according to the present invention is a compound that is able to limit the yellow index of the resulting ophthalmic lens.
- yellow index it is meant a value obtained by calculation from tristimulus values (X, Y, Z) according to ASTM D1925 standard.
- the anti-yellowing additive is chosen so that the ophthalmic lens obtained with the polymerizable composition of the present invention has a yellow index that is lower than or equal to 2.0, preferably lower than or equal to 1.7, more preferably lower than or equal to 1.5.
- the anti-yellowing additive included in the composition of the present invention corresponds to general formula (I): wherein:
- the molecular weight of the anti-yellowing additive divided by the number of Y 3 -C(Y 1 )-Y 2 polar groups of the anti-yellowing additive is in the range of about 75 g/mol to about 1000 g/mol, preferably in the range of about 100 g/mol to about 800 g/mol.
- Said other anti-yellowing additive may be a substituted 2,2,6,6-tetramethylpiperidine, more preferably compound having the following formula (VII): wherein:
- HALS hindered amine light stabilizer
- the HALS anti-yellowing additive may correspond to the following formula (VIII): wherein
- the HALS anti-yellowing additive may also particularly correspond to the following formula (IX): wherein each R1 is independently linear or branched (C 1 -C 15 ) alkyl or linear or branched (C 1 -C 15 ) alkoxy, preferably R1 is undecyloxy.
- the HALS anti-yellowing additive may be selected in the group consisting of bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate, bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)-carbonate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, and mixtures thereof.
- the anti-yellowing additive used in the composition of the present invention may correspond to the following formula (X): wherein:
- An anti-yellowing additive corresponding to formula (X) will be referred to as a sulfide anti-yellowing additive.
- the sulfide anti-yellowing additive may be a dialkyl thiodipropionate corresponding to formula (XI) wherein each R2 is independently a linear or branched (C 1 -C 15 ) alkyl, preferably R2 is methyl, ethyl, ethyl-hexyl, octyl or tridecyl.
- the sulfide anti-yellowing additive may be a dialkyl thiodiglycolate corresponding to formula (XII) wherein each R2 is independently a linear or branched (C 1 -C 15 ) alkyl, preferably R2 is methyl, ethyl, ethyl-hexyl, octyl or tridecyl.
- the sulfide anti-yellowing additive may be selected in the group consisting of ditridecyl thiodipropionate, diethylhexyl thiodipropionate, dioctyl thiodipropionate, dimethyl thiodipropionate, diethyl thiodiglycolate, and mixtures thereof.
- the anti-yellowing additive of the polymerizable composition may be a mixture of bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate and ditridecyl thiodipropionate.
- sulfide anti-yellowing additive may be selected in the group consisting of sulfide heterocycles such as thiane, dithiane and trithiane having the following formula (XIII) wherein
- heterocyclic sulfide anti-yellowing additive may be selected in the group consisting of 1,3,5-trithiane-2-carboxylic acid, 1,3,5-trithiane-2,4-dicarboxylic acid, 1,3,5-trithiane-2,4,6-tricarboxylic acid, 1,2,3-trithiane-4-carboxylic acid, 1,2,3-trithiane-5-carboxylic acid, wherein carboxylic acid represents a linear or branched (C 1 -C 8 ) carboxylic acid, preferably methanoic acid, propanoic acid or pentanoic acid, esters thereof, and mixtures thereof.
- Anti-yellowing additives according to the invention may also be selected from:
- the sulfide heterocyclic that may be used as an anti-yellowing additive is a compound of formula (XV): wherein each R 21 is independently hydrogen or a linear or branched (C 1 -C 15 ) alkyl group.
- sulfide heterocycles that may be used as anti-yellowing additives are 2,2,4,4,6,6-hexamethyl-1,3,5-trithiane, 2,4,6-trimethyl-1,3,5-trithiane and 2,4,6-triethyl-1,3,5-trithiane.
- dialkyl sulfide, dialkyl disulfide, dialkenyl sulfide and dialkenyl disulfide that may be used as anti-yellowing additives are di-ter-butyl disulfide, di-sec-butyl disulfide, di-n-butyl disulfide, di-ter-butyl sulfide, di-sec-butyl sulfide di-n-butyl sulfide and diallylsulfide.
- the polymerizable composition according to the present invention may comprise a mixture of a HALS anti-yellowing additive of formula (VII), (VIII) or (IX) and a sulfide anti-yellowing additive of formula (X), (XIII), (XIV) or (XV) as defined above.
- the weight ratio of HALS anti-yellowing additive to sulfide anti-yellowing additive may range from 1:4 to 4:1, preferably from 1:2 to 2:1.
- the amount of anti-yellowing additive(s) in the polymerizable composition according to the present invention may be from 0.05 to 1% by weight, preferably from 0.1 to 0.5% by weight, based on the total weight of the composition.
- the polymerizable composition according to the present invention may also optionally comprise other constituents such as demolding agents, optical brighteners, dyes, pigments, antioxidants, chain transfer additives, inorganic fillers, and mixtures thereof.
- the process carried out for the manufacture of an ophthalmic lens from the composition described herein comprises mixing the allyl monomer or oligomer, the catalyst, the UV absorber and the anti-yellowing additive(s) as defined above and polymerizing the obtained composition to prepare an ophthalmic lens.
- the composition may be stirred until homogeneous and subsequently degassed and/or filtered before polymerization.
- the polymerizable composition of the present invention described above may be cast into a casting mold for forming a lens and polymerized by heating at a temperature of from 40 to 95°C, preferably from 45 to 85°C. According to a preferred embodiment, the heating may last for 5 to 24 hours, preferably 7 to 22 hours, more preferably 15 to 20 hours.
- the casting mold may then be disassembled and the lens may be cleaned with water, ethanol or isopropanol.
- the lens may then be coated with one or more coatings selected from the group consisting of an anti-abrasion coating, an anti-reflection coating, an antifouling coating, an antistatic coating, an anti-fog coating, a polarizing coating, a tinted coating and a photochromic coating.
- one or more coatings selected from the group consisting of an anti-abrasion coating, an anti-reflection coating, an antifouling coating, an antistatic coating, an anti-fog coating, a polarizing coating, a tinted coating and a photochromic coating.
- the lens may typically comprise an anti-abrasion coating disposed on the lens directly after polymerization or after applying an impact-resistant primer latex coating.
- the abrasion-resistant coating may be formed from alkyl (meth)acrylate or by a sol-gel process with at least one epoxyalkoxysilane and optionally at least one alkoxysilane, as described in European patent N°0 614 957 , for example.
- the anti-abrasion coating may be applied to the lens by known methods, for example by spin coating, dip coating, bar coating or spray coating.
- the anti-abrasion coating on the lens After applying the anti-abrasion coating on the lens, it may be cured by heating in an oven or by infrared, typically at a temperature of 60 to 200°C, preferably 80 to 150°C, for a period of 30 min to 3 hours. It may also be cured by UV irradiation.
- an antireflection coating may then be applied over the abrasion-resistant coating, according to the same coating methods.
- Anti-reflection coatings are well-known and typically comprise a monolayer or multilayer stack of dielectric materials such as SiO, SiO 2 , Al 2 O 3 , MgF 2 , LiF, Si 3 N 4 , TiO 2 , ZrO 2 , Nb 2 O 5 , Y 2 O 3 , HfO 2 , Sc 2 O 3 , Ta 2 O 5 , Pr 2 O 3 , and mixtures thereof. It is preferred to use a multilayer stack comprising alternating layers of inorganic dielectric materials with a high refractive index (RI > 1.55) and a low refractive index (RI ⁇ 1.55).
- the present invention also pertains to the use of the composition according to the present invention to manufacture an ophthalmic lens, and to the lens thus obtained.
- the ophthalmic lens obtained according to the present invention may have a Yellow Index lower than or equal to 2.0, preferably lower than or equal to 1.7, more preferably lower than or equal to 1.5, as measured according to ASTM D-1925 immediately after manufacture.
- the Yellow Index after manufacture reflects the interactions of the UV absorber with the catalyst and radicals.
- the ophthalmic lens according to the present invention may have a variation in the Yellow Index after exposing said lens to UV light for 80h that does not exceed 0.5 in absolute value.
- the variation in the Yellow Index after exposing the lens to UV light for 80h reflects the ageing behaviour of the lens, more particularly the degradation of the polymer matrix by UV rays which leads to the formation of yellow by-products.
- the ophthalmic lens obtained according to the present invention exhibit satisfying mechanical properties due to complete reticulation during polymerization.
- the following measures are carried out on a lens that is 2 mm thick in its center and that has been cleaned with isopropyl alcohol.
- the UV-cut of the lens is determined with a spectrophotometer (Cary50) under normal incident light by plotting the graph of the transmittance percentage of the lens as a function of the wavelength.
- the UV-cut of the material can be read on the graph as the wavelength corresponding to a transmittance of 1%.
- the Yellow Index is measured according to ASTM D-1925 immediately after manufacture or after accelerated ageing in Q-Sun cell (80 hours of UV light exposition in a Xenon test chamber Q-SUN® Xe-3 from Q-LAB at 23°C ( ⁇ 5°C) and 20% ( ⁇ 5%) of relative humidity).
- Formulae 1-44 comprising the following ingredients were prepared. The values expressed in the tables below are weight percentages based on the total weight of the composition. Examples 4-7, 22, 24, 27-36 are according to the present invention.
- Formula # 1 2 3 4 5 6 7 8 9 10 11 CR-39E ® 2 2 2 2 2 2 2 2 2 2 2 AO-503 0.05 0.1 0.2 0.3 LA-81 0.05 0.1 0.2 0.3 Seesorb® 709 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 IPP 2.92 3.65 3.8 3.65 3.65 3.65 3.65 3.65 3.65 3.65 3.65 CR-39 ® 94.9 94.1 94 94.1 94 93.9 93.8 94.1 94 93.9 93.8 Yellow Index after manufacture 1.48 1.96 2.15 1.43 1.39 1.38 1.40 1.70 1.60 1.70 1.80
- composition was manufactured by weighing and mixing the ingredients in a beaker. CR-39E was first added, followed by the anti-yellowing additive, when present, and CR-39. Once the mixture was homogeneous, the UV-absorber was added and the beaker content was mixed again until full dissolution. Finally, the catalyst (IPP) was added and the mixture was stirred thoroughly, then degassed and filtered. A 71 mm diameter glass bi-plano mold was then filled with the composition using a syringe, and the polymerization was carried out in a regulated electronic oven in which the temperature was gradually increased from 45°C to 85°C in 15 hours then kept constant at 85°C for 5 hours. The mold was then disassembled and the resulting lens had a 2 mm thickness in its center.
- Formulae 1-3 did not contain any anti-yellowing additive but contained increasing amounts of IPP catalyst (2.92 to 3.80%).
- the Yellow index increased linearly with IPP concentration, evidencing that UV absorber interacts with radicals during polymerization.
- Formulae 4 to 7 contained various amounts of sulfide anti-yellowing additive AO-503.
- the anti-yellowing additive protects the UV absorber without altering polymerization achievement.
- Formulae 8 to 11 contained various amounts of HALS anti-yellowing additive LA-81.
- This anti-yellowing additive was less efficient in reducing the Yellow index than sulfide anti-yellowing additive AO-503 but it was still able to protect the UV absorber as can be seen from the difference in Yellow index between formula 2 and 8 or 9.
- HALS anti-yellowing additive such as Tinuvin®5100 or Tinuvin®292 (formulae 12-19) and with other sulfide anti-yellowing additives (formulae 30-44): Yellow index after polymerization is lower than 2, often lower than 1.5.
- Lenses obtained with formulae 21-29 were subjected to an accelerated ageing in Q-Sun cell.
- the evolution of Yellow Index in time for formulae 21-24 is shown in Figure 1 and the evolution of Yellow Index in time for formulae 25-29 is shown in Figure 2 .
- Formula 22 containing sulfide anti-yellowing additive AO-503 did not provide stabilization toward UV exposure. Indeed, between 0 and 20 h, the Yellow index reached the value obtained without any anti-yellowing additive (formula 21).
- Formula 23 containing HALS anti-yellowing additive Tinuvin® 5100 was photostable, as the Yellow index remained stable during all the test duration.
- Formula 24 comprised a mixture of HALS anti-yellowing additive and sulfide anti-yellowing additive (AO-503 and Tinuvin® 5100). Results show that the benefits of both these anti-yellowing additives were combined: low initial yellow index from sulfide anti-yellowing additive AO-503 (as previously pointed out in Example 1), and reduced Yellow index build-up during accelerated ageing brought by HALS anti-yellowing additive Tinuvin® 5100.
- Formulae 25 to 29 contained the hydroxyphenyl benzotriazole UV-absorber Tinoguard® TL. At 0.10% or 0.15% by weight of Tinoguard® 5100 (formula 25 and 26), the UV-absorber was able to photostabilize the lens toward UV exposure. As observed in the above experiments with Seesorb® 709 (formulae 21-24), the Yellow index remained stable during all the tests.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Eyeglasses (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
- The present invention relates to a thermosetting composition for the manufacture of an ophthalmic lens which efficiently absorbs ultraviolet (UV) rays without exhibiting undesirable yellowing, said composition comprising an allyl monomer or oligomer, a catalyst, a UV-absorber and a specific anti-yellowing additive. The present invention also relates to the use of said composition and to the ophthalmic lens obtained from said composition.
- UV rays having a wavelength between 200 and 400 nm are known to be harmful to the human eye. In particular, they can accelerate ocular ageing which can lead to an early cataract or to more extreme disorders such as photokeratitis or « snow blindness ». These damages can be prevented by incorporating UV-absorbers in ophthalmic lenses.
- Three different methods can be used to prepare UV-absorbing ophthalmic lenses. The first method is the impregnation of a polymerized lens in a bath containing a UV-absorber as disclosed in
European patent N°1 085 349 . However, this method adds a step to the production process of the lens, which is not desirable in terms of cost and time. - The second method is the coating of a substance capable of absorbing UV rays onto the surface of ophthalmic lenses as disclosed in
US patent N°5 949 518 . However, the incorporation of high amounts of UV-absorbers in a coating weakens its mechanical properties. - The third method is the incorporation of a UV-absorber in the bulk liquid formulation (i.e. before polymerization) as taught in
European patent N°1 085 348 . In this document, a thermosetting composition comprising a diethylene glycol bisallylcarbonate or bis(β-epithiopropyl)sulfide monomer, diisopropyl peroxydicarbonate as a catalyst and 2-(2-hydroxy-4-octyloxyphenyl)-benzotriazole as a UV-absorber is cast into a mold for lenses and heated until polymerized. However, this method is unable to provide a lens that can both efficiently absorb UV rays and that does not exhibit undesirable yellowing. - Yellowing of the lens, as measured by the yellow index, can be caused by two degradation mechanisms:
- during polymerization, interaction between radicals and UV absorber generates a yellowing effect;
- during ageing of the lens, UV rays interact with the polymer matrix and UV absorbers, generating a yellowing effect.
-
European patent application N°2 172 792 mentions that the yellow index of a lens made with a thermosetting composition comprising a UV absorber can be reduced by introducing specific dyes or pigments, namely a cobalt oxide and alumina compound and a nanodispersion of gold particles. However, the preparation process of the lens is complex and the lens obtained with this composition has decreased transmittance or a greyish shade. - There is thus a need for a thermosetting composition that can produce ophthalmic lenses that have a UV cut of 380 nm and a yellow index that is less than 1.5 while at the same time having sufficient transparency.
- The Applicant has found that this need could be met by adding a UV absorber and a specific anti-yellowing additive in the thermosetting composition. This specific anti-yellowing additive presents two chemical functions:
- ▪ Anti-yellowing function. Surprisingly, sulfide-containing compound, dithiane or trithiane derivatives yield good results. Usually, in the ophthalmic industry, sulphur-containing compounds are known to bring yellow colour to lenses. In this invention though, sulphur compounds provide for less yellow lenses. Piperidine derivatives were also identified as very efficient anti-yellowing additives.
- ▪ Solubilisation function. A good solubilisation of anti-yellowing additives in monomers is required to avoid defects such as haze or colour unhomogeneity. In allylic monomers used in ophthalmic industry, solubilisation is facilitated when polar groups such as (thio)esters, (thio)carbonates, (thio)carbamates or (thio)amides are present. The number of such polar groups in relationship with the molecular weight of these compounds defines good solubility parameters.
- A first object of this invention is a polymerizable composition for the manufacture of an ophthalmic lens, comprising:
- a) 50% to 99% by weight of at least one allyl monomer or oligomer selected from diethylene glycol bis(allyl carbonate) or oligomers of diethylene glycol bis(allyl carbonate) based on the total weight of the composition,
- b) at least one catalyst suitable for initiating the polymerization of said allyl monomer,
- c) at least one UV absorber,
- d) at least one anti-yellowing additive,
- (i) F represents a sulfide;
- (ii) A is a bond or represents a linear or branched (C1-C10) alkylene group, wherein 1 to 4 non adjacent carbon atom(s) may independently be replaced by an oxygen atom, a sulphur atom or an amino group, and may comprise from 1 to 4 carbon-carbon double bond(s);
- (iii) Y3-C(Y1)-Y2 is a polar group in which:
- Y1 represents O or S, preferably O;
- Y2 and Y3 are similar or different and represent O, S, NH or a bond;
- (iv) R99 are each independently any group, which may include at least one function F and/or at least one polar group as defined in (i) and (iii) respectively.
- Another object of the present invention is the use of the composition according to the invention to manufacture an ophthalmic lens.
- Yet another object of the present invention is an ophthalmic lens obtained by filling the composition according to the invention in a mould and then heating it at a temperature of from 75 to 95°C.
- It has been shown that the ophthalmic lens obtained according to the invention has a Yellow Index below 2.0 and a variation in the Yellow Index after exposing said lens to UV light for 80h that does not exceed 0.5 in absolute value, as measured according to the methods described herein. In addition, the mechanical properties of the lens are not degraded by these anti-yellowing additives.
- The polymerizable composition according to the invention comprises an allyl monomer or oligomer, a catalyst, a UV-absorber and a specific anti-yellowing additive.
- The allyl monomer or oligomer included in the composition according to the present invention is a compound comprising an allyl group.
-
-
- The amount of allyl monomer or oligomer in the polymerizable composition according to the present invention is from 50 to 99% by weight, preferably from 80 to 98%, more preferably from 90 to 97% by weight, based on the total weight of the composition.
- The polymerizable composition may also comprise a second monomer or oligomer that is capable of polymerizing with the allyl monomer or oligomer described above. Examples of a suitable second monomer include: aromatic vinyl compounds such as styrene, [alpha]-methylstyrene, vinyltoluene, chlorostyrene, chloromethylstyrene and divinylbenzene; alkyl mono(meth)acrylates such as methyl (meth)acrylate, n-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, 3-chloro-2-hydroxypropyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, phenyl (meth)acrylate, glycidyl (meth)acrylate and benzyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 3-phenoxy-2-hydroxypropyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate; di(meth)acrylates such as ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, 2,2-bis[4-((meth)acryloxyethoxy)phenyl]propane, 2,2-bis[4-((meth)acryloxydiethoxy)phenyl]propane and 2,2-bis[4-((meth)-acryloxypolyethoxy)phenyl]propane; tri(meth)acrylates such as trimethylolpropane tri(meth)acrylate and tetramethylolmethane tri(meth)acrylate; tetra(meth)acrylates such as tetramethylolmethane tetra(meth)acrylate; and diallylphthalates such as diallyl phthalate, diallyl isophthalate and diallyl terephthalate. These monomers may be used singly or in combination of two or more. In the above description, "(meth)acrylate" means "methacrylate" or "acrylate", and "(meth)acryloxy" means "methacryloxy" or "acryloxy".
- The amount of the second monomer or oligomer in the polymerizable composition according to the present invention may be from 1 to 50% by weight, preferably from 2 to 20%, more preferably from 3 to 10% by weight, based on the total weight of the composition.
- The catalyst included in the composition according to the present invention is a catalyst that is suitable for allyl monomer polymerization, such as for example an organic peroxide, an organic azo compound, and mixtures thereof.
- Examples of a suitable organic peroxide include benzoyl peroxide, methyl ethyl peroxide, methyl ethyl ketone peroxide, di-t-butyl peroxide, lauroyl peroxide, acetyl peroxide, diisopropyl peroxydicarbonate, bis(4-t-butylcyclohexyl) peroxydicarbonate, t-butyl peroxy-2-ethylhexanoate, t-hexyl peroxy-2-ethylhexanoate, and mixtures thereof.
- Examples of a suitable organic azo compound include 2,2'-azobisisobutyronitrile,
dimethyl 2,2'-azobis(2-methylpropionate), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 4,4'-azobis(4-cyanopentanoic acid), and mixtures thereof. - According to a preferred embodiment, the catalyst is diisopropyl peroxydicarbonate (IPP).
- The amount of catalyst in the polymerizable composition according to the present invention may be from 1.0 to 5.0% by weight, preferably from 2.5 to 4.5% preferably from 3.0 to 4.0% by weight, based on the total weight of the composition.
- The UV-absorber included in the composition according to the present invention is a compound that is responsible for the UV-cut of the resulting ophthalmic lens. By "UV-cut" it is meant the highest wavelength for which the transmittance is lower than 1% as measured according to the method described herein. Preferably, the UV absorber is chosen so that the ophthalmic lens obtained from the polymerizable composition of the present invention has a UV-cut of at least 380 nm.
- According to a particular embodiment, the UV-absorber included in the composition according to the present invention is a benzotriazole, a benzophenone, a triazine, an oxalanilide, and mixtures thereof, preferably a benzotriazole and more preferably a hydroxyphenyl benzotriazole.
-
- Preferably, the hydroxyphenyl benzotriazole UV-absorber is selected in the group consisting of 2-(2H-Benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol, 2-(2H-Benzotriazol-2-yl)-6-dodecyl-4-methylphenol, 2-(2-Hydroxy-5-methylphenyl)benzotriazole, 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, 2(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol, 2-(2,4-dihydroxyphenyl)benzotriazole, 2-(2,4,6-trihydroxyphenyl)benzotriazole, 5-chloro-2-(2,4-dihydroxyphenyl)benzotriazole, 5-(chloro-2-(2,4,6-trihydroxyphenyl)benzotriazole, 5-bromo-2-(2,4-dihydroxyphenyl)benzotriazole, 5-bromo-2-(2,4,6-trihydroxyphenyl)benzotriazole, dichloro-2-(2,4-dihydroxyphenyl)benzotriazole, dibromodichloro-2-(2,4-dihydroxyphenyl)benzotriazole, and mixtures thereof.
- A benzophenone suitable for use as a UV-absorber is a compound having the following formula (III):
- Preferably, the benzophenone UV-absorber is selected from the group consisting of 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4-(2-acryloxyethoxy)-benzophenone, 2-hydroxy-4-(2-hydroxy-3-methacryloxy)propoxy-benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-acetoxyethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone-disodium salt, 2,2',4,4'-tetrahydroxy-4-octyloxybenzophenone, 2,2',4'-trihydroxy-4-octyloxybenzophenone, and mixtures thereof.
- A triazine suitable for use as a UV-absorber is a hydroxyphenyl triazine having the following formula (IV):
- Preferably, the hydroxyphenyl triazine UV-absorber is selected in the group consisting of 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-iso-octyloxyphenyl)-1,3,5-triazine, 2-[4-[(2-hydroxy-3-(2'-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, a mixture of 2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-[2-hydroxy-3-didecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, and mixtures thereof.
-
- Preferably, the oxalanilide UV-absorber is selected from the group consisting of N-(2-ethoxyphenyl)-N'-(4-isododecylphenyl)oxamide, N-(2-ethoxyphenyl)-N'-(2-ethylphenyl)oxamide, and mixtures thereof.
- The amount of UV-absorber in the polymerizable composition according to the present invention may be from 0.01 to 5.0% by weight, preferably from 0.1 to 2.0%, more preferably from 0.2 to 1.0% by weight, based on the total weight of the composition.
- The anti-yellowing additive included in the composition according to the present invention is a compound that is able to limit the yellow index of the resulting ophthalmic lens. By "yellow index" it is meant a value obtained by calculation from tristimulus values (X, Y, Z) according to ASTM D1925 standard.
- Preferably, the anti-yellowing additive is chosen so that the ophthalmic lens obtained with the polymerizable composition of the present invention has a yellow index that is lower than or equal to 2.0, preferably lower than or equal to 1.7, more preferably lower than or equal to 1.5.
-
- (i) F represents a sulfide;
- (ii) A is a bond or represents a linear or branched (C1-C10) alkylene group, wherein 1 to 4 non adjacent carbon atom(s) may independently be replaced by an oxygen atom, a sulphur atom or an amino group, and may comprise from 1 to 4 carbon-carbon double bond(s);
- (iii) Y3-C(Y1)-Y2 is a polar group in which:
- Y1 represents O or S, preferably O;
- Y2 and Y3 are similar or different and represent O, S, NH or a bond;
- (iv) R99 are each independently any group, which may include at least one function F and/or at least one polar group as defined in (i) and (iii) respectively.
- The anti-yellowing additive included in the composition of the present invention comprises one or several polar groups, which can be enumerated by C=Y1 occurences. Preferably, the molecular weight of the anti-yellowing additive divided by the number of Y3-C(Y1)-Y2 polar groups of the anti-yellowing additive is in the range of about 75 g/mol to about 1000 g/mol, preferably in the range of about 100 g/mol to about 800 g/mol.
-
- R10 represents a group selected from H, -Ra, aryl, -XH, -XRa, -C(X)-Ra, -C(X)-Y-Ra and-(Re)-Z, in which:
- Ra represents a linear or branched (C1-C20) alkyl group, or a linear or branched (C2-C20) alkenyl group;
- aryl represents a monocyclic or bicyclic (C6-C14) hydrocarbyl group, which may optionally be substituted with 1 to 4 substituents independently selected from halogen, linear or branched (C1-C8) alkyl, linear or branched (C1-C8) alkoxy, linear or branched (C1-C8) alkylthio, amino, linear or branched (C1-C8) monoalkylamino, and linear or branched (C1-C8) dialkylamino;
- X represents oxygen or sulphur atom;
- Y represents oxygen atom, sulphur atom or a group -NRb wherein Rb represents hydrogen atom or a linear or branched (C1-C20) alkyl group;
- Re represents a linear or branched (C1-C20) alkylene group, wherein 1 to 4 non adjacent carbon atom(s) may independently be replaced by an oxygen atom, a sulphur atom or an amino group -NRb as defined above, and may comprise from 1 to 4 carbon-carbon double bond(s);
- Z represents a hydrogen atom or an aryl group as defined above;
- R20 represents a group selected from linear or branched (C1-C8) alkyl, linear or branched (C2-C8) alkenyl, linear or branched (C1-C8) alkoxy, linear or branched (C1-C8) alkylthio, and -(Re)-Z wherein Re and Z are defined as hereinbefore;
- n is an integer from 1 to 4 inclusive;
- Y1 represents O or S, preferably O;
- Y2 and Y3 are similar or different and represent O, S, NH or a bond;
- R99 is any group, preferably R99 is a group selected from linear or branched (C1-C8) alkyl, substituted piperidinyl or a linear or branched (C1-C10) alkylene carrying a -COO-(C1-C10)alkyl or a -COO-(substituted piperidinyl) group.
-
- R1 is hydrogen, linear or branched (C1-C15) alkyl, linear or branched (C1-C15) acyl or linear or branched (C1-C15) alkoxy;
- Y3 represents O or a bond;
- B is a group selected from linear or branched (C1-C8) alkyl, substituted piperidinyl or a linear or branched (C1-C10) alkylene carrying a -COO-alkyl or -COO-(substituted piperidinyl) group.
- An anti-yellowing additive according to formula (VII) is known as a hindered amine light stabilizer (HALS) and will be referred to as a HALS anti-yellowing additive.
-
- each R1 is independently hydrogen, linear or branched (C1-C15) alkyl or linear or branched (C1-C15) alkoxy, preferably R1 is methyl or octyloxy; and
- n is an integer equal to 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, preferably n is equal to 8.
-
- Particularly, the HALS anti-yellowing additive may be selected in the group consisting of bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate,
methyl -
- each R2 is independently a linear or branched or cyclic (C1-C20) alkyl group wherein 1 to 4 non adjacent carbon atom(s) may be replaced by oxygen atom, sulphur atom, and amino group, and may comprise from 1 to 4 carbon-carbon double bond(s);
- each n is an integer from 1 to 17 inclusive, preferably from 1 to 5 inclusive.
- An anti-yellowing additive corresponding to formula (X) will be referred to as a sulfide anti-yellowing additive.
-
-
- According to another embodiment, the sulfide anti-yellowing additive may be selected in the group consisting of ditridecyl thiodipropionate, diethylhexyl thiodipropionate, dioctyl thiodipropionate, dimethyl thiodipropionate, diethyl thiodiglycolate, and mixtures thereof.
- For example, the anti-yellowing additive of the polymerizable composition may be a mixture of bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate and ditridecyl thiodipropionate.
-
- R20 is as defined above;
- n is an integer from 1 to 5 inclusive, preferably from 1 to 3 inclusive;
- B represents a 3 to 12-membered monocyclic heterocycloalkyl which comprises, in addition to the sulphur atom of the cycle, from 1 to 3 heteroatom(s) independently selected from oxygen and sulphur, preferably sulphur; and
- Y1 represents O or S, preferably O;
- Y2 and Y3 are similar or different and represent O, S, NH or a bond;
- R99 is any group.
- According to another embodiment, heterocyclic sulfide anti-yellowing additive may be selected in the group consisting of 1,3,5-trithiane-2-carboxylic acid, 1,3,5-trithiane-2,4-dicarboxylic acid, 1,3,5-trithiane-2,4,6-tricarboxylic acid, 1,2,3-trithiane-4-carboxylic acid, 1,2,3-trithiane-5-carboxylic acid, wherein carboxylic acid represents a linear or branched (C1-C8) carboxylic acid, preferably methanoic acid, propanoic acid or pentanoic acid, esters thereof, and mixtures thereof.
- Surprisingly, some sulfides comprising a heterocycle or having a low molecular weight are soluble in monomer compositions without polar groups. Anti-yellowing additives according to the invention may also be selected from:
- ▪ dialkyl sulfide, dialkyl disulfide, dialkenyl sulfide, dialkenyl disulfide, wherein alkyl represents a saturated linear or branched hydrocarbon chain comprising from 1 to 6 carbon atom(s) and alkenyl represents an unsaturated linear or branched hydrocarbon chain comprising from 2 to 6 carbon atoms; and
- ▪ sulfide heterocycles having the following formula (XIV)
-
- Examples of sulfide heterocycles that may be used as anti-yellowing additives are 2,2,4,4,6,6-hexamethyl-1,3,5-trithiane, 2,4,6-trimethyl-1,3,5-trithiane and 2,4,6-triethyl-1,3,5-trithiane.
- Examples of dialkyl sulfide, dialkyl disulfide, dialkenyl sulfide and dialkenyl disulfide that may be used as anti-yellowing additives are di-ter-butyl disulfide, di-sec-butyl disulfide, di-n-butyl disulfide, di-ter-butyl sulfide, di-sec-butyl sulfide di-n-butyl sulfide and diallylsulfide.
- According to another embodiment, the polymerizable composition according to the present invention may comprise a mixture of a HALS anti-yellowing additive of formula (VII), (VIII) or (IX) and a sulfide anti-yellowing additive of formula (X), (XIII), (XIV) or (XV) as defined above. The weight ratio of HALS anti-yellowing additive to sulfide anti-yellowing additive may range from 1:4 to 4:1, preferably from 1:2 to 2:1.The amount of anti-yellowing additive(s) in the polymerizable composition according to the present invention may be from 0.05 to 1% by weight, preferably from 0.1 to 0.5% by weight, based on the total weight of the composition.
- The polymerizable composition according to the present invention may also optionally comprise other constituents such as demolding agents, optical brighteners, dyes, pigments, antioxidants, chain transfer additives, inorganic fillers, and mixtures thereof.
- The process carried out for the manufacture of an ophthalmic lens from the composition described herein comprises mixing the allyl monomer or oligomer, the catalyst, the UV absorber and the anti-yellowing additive(s) as defined above and polymerizing the obtained composition to prepare an ophthalmic lens.
- According to a preferred embodiment, the composition may be stirred until homogeneous and subsequently degassed and/or filtered before polymerization.
- The polymerizable composition of the present invention described above may be cast into a casting mold for forming a lens and polymerized by heating at a temperature of from 40 to 95°C, preferably from 45 to 85°C. According to a preferred embodiment, the heating may last for 5 to 24 hours, preferably 7 to 22 hours, more preferably 15 to 20 hours.
- The casting mold may then be disassembled and the lens may be cleaned with water, ethanol or isopropanol.
- The lens may then be coated with one or more coatings selected from the group consisting of an anti-abrasion coating, an anti-reflection coating, an antifouling coating, an antistatic coating, an anti-fog coating, a polarizing coating, a tinted coating and a photochromic coating.
- The lens may typically comprise an anti-abrasion coating disposed on the lens directly after polymerization or after applying an impact-resistant primer latex coating. The abrasion-resistant coating may be formed from alkyl (meth)acrylate or by a sol-gel process with at least one epoxyalkoxysilane and optionally at least one alkoxysilane, as described in
European patent N°0 614 957 , for example. - The anti-abrasion coating may be applied to the lens by known methods, for example by spin coating, dip coating, bar coating or spray coating.
- After applying the anti-abrasion coating on the lens, it may be cured by heating in an oven or by infrared, typically at a temperature of 60 to 200°C, preferably 80 to 150°C, for a period of 30 min to 3 hours. It may also be cured by UV irradiation.
- Optionally, an antireflection coating may then be applied over the abrasion-resistant coating, according to the same coating methods. Anti-reflection coatings are well-known and typically comprise a monolayer or multilayer stack of dielectric materials such as SiO, SiO2, Al2O3, MgF2, LiF, Si3N4, TiO2, ZrO2, Nb2O5, Y2O3, HfO2, Sc2O3, Ta2O5, Pr2O3, and mixtures thereof. It is preferred to use a multilayer stack comprising alternating layers of inorganic dielectric materials with a high refractive index (RI > 1.55) and a low refractive index (RI < 1.55).
- The present invention also pertains to the use of the composition according to the present invention to manufacture an ophthalmic lens, and to the lens thus obtained.
- The ophthalmic lens obtained according to the present invention may have a Yellow Index lower than or equal to 2.0, preferably lower than or equal to 1.7, more preferably lower than or equal to 1.5, as measured according to ASTM D-1925 immediately after manufacture. The Yellow Index after manufacture reflects the interactions of the UV absorber with the catalyst and radicals.
- The ophthalmic lens according to the present invention may have a variation in the Yellow Index after exposing said lens to UV light for 80h that does not exceed 0.5 in absolute value. The variation in the Yellow Index after exposing the lens to UV light for 80h reflects the ageing behaviour of the lens, more particularly the degradation of the polymer matrix by UV rays which leads to the formation of yellow by-products.
- The ophthalmic lens obtained according to the present invention exhibit satisfying mechanical properties due to complete reticulation during polymerization.
- The invention will now be described in more detail with the following examples which are given for purely illustrative purposes and which are not intended to limit the scope of this invention in any manner.
-
-
Figure 1 is a graph of Yellow index as a function of time for formulae 21-24 as described in example 2. -
Figure 2 is a graph of Yellow index as a function of time for formulae 25-29 as described in example 2. - The following measures are carried out on a lens that is 2 mm thick in its center and that has been cleaned with isopropyl alcohol.
- The UV-cut of the lens is determined with a spectrophotometer (Cary50) under normal incident light by plotting the graph of the transmittance percentage of the lens as a function of the wavelength. The UV-cut of the material can be read on the graph as the wavelength corresponding to a transmittance of 1%.
- The Yellow Index is measured according to ASTM D-1925 immediately after manufacture or after accelerated ageing in Q-Sun cell (80 hours of UV light exposition in a Xenon test chamber Q-SUN® Xe-3 from Q-LAB at 23°C (± 5°C) and 20% (± 5%) of relative humidity).
- In the examples, the following compounds are used:
Component CAS number Function CR-39 ® 142-22-3 allyl monomer CR-39E ® allyl monomer (as disclosed in US7214754 )IPP 105-64-6 organic peroxide catalyst Seesorb® 709 3147-75-9 hydroxyphenyl benzotriazole UV Absorber Tinoguard® TL 125304-04-3 hydroxyphenyl benzotriazole UV Absorber Tinuvin® 5100 129757-67-1 Anti-Yellowing Additive (available from BASF) LA-81 705257-84-7 Anti-Yellowing Additive (available from ADEKA Corp) Tinuvin® 292 Mixture of 82919-37-7 and 41556-26-7 Anti-Yellowing Additive (available from BASF) AO-503 10595-72-9 Anti-Yellowing Additive (available from ADEKA Corp) Di methyl thio dipropionate (DMTDP) 4131-74-2 Anti-Yellowing Additive (available from Sigma Aldrich) Allyl sulfide (DAS) 592-88-1 Anti-Yellowing Additive (available from Sigma Aldrich) Butyl sulfide (DBuS) 544-40-1 Anti-Yellowing Additive (available from Sigma Aldrich) Di-tert-butyl disulfide (DTBuDS) 110-06-5 Anti-Yellowing Additive (available from Sigma Aldrich) 2,2,4,4,6,6-hexamethyl-1,3,5-trithiane 828-26-2 Anti-Yellowing Additive (available from Sigma Aldrich) - Formulae 1-44 comprising the following ingredients were prepared. The values expressed in the tables below are weight percentages based on the total weight of the composition. Examples 4-7, 22, 24, 27-36 are according to the present invention.
Formula # 1 2 3 4 5 6 7 8 9 10 11 CR-39E ® 2 2 2 2 2 2 2 2 2 2 2 AO-503 0.05 0.1 0.2 0.3 LA-81 0.05 0.1 0.2 0.3 Seesorb® 709 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 IPP 2.92 3.65 3.8 3.65 3.65 3.65 3.65 3.65 3.65 3.65 3.65 CR-39 ® 94.9 94.1 94 94.1 94 93.9 93.8 94.1 94 93.9 93.8 Yellow Index after manufacture 1.48 1.96 2.15 1.43 1.39 1.38 1.40 1.70 1.60 1.70 1.80 Formula # 12 13 14 15 16 17 18 19 CR-39E ® 2 2 2 2 2 2 2 2 Tinuvin® 292 0.05 0.1 0.2 0.3 Tinuvin® 5100 0.05 0.1 0.2 0.3 Seesorb® 709 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 IPP 2.92 3.65 3.8 3.65 3.65 3.65 3.65 3.65 CR-39 ® 94.9 94.1 94 94.1 94 93.9 93.8 93.8 Yellow Index after manufacture 1.55 1.55 1.57 1.54 1.76 1.67 1.65 Formula # 21 22 23 24 25 26 27 28 29 CR-39E ® 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 AO-503 0.15 0.2 0.05 0.10 0.15 Tinuvin® 5100 0.15 0.15 0.10 0.15 0.05 0.10 0.15 Seesorb® 709 0.23 0.23 0.23 0.23 Tinoguard® TL 0.23 0.23 0.23 0.23 0.23 IPP 3.50 3.50 3.50 3.50 3.65 3.65 3.65 3.65 3.65 CR-39 ® 94.27 94.50 94.12 93.92 94.02 93.97 94.02 93.92 93.82 Formula # 30 31 32 33 34 35 36 CR-39E ® 2.00 2.00 2.00 2.00 0 0 0 LA-81 0.02 0.04 0.06 0.08 Tinuvin® 5100 0.05 0.10 0.15 AO-503 0.05 0.10 0.15 Tinoguard® TL 0.23 0.23 0.23 0.23 0.23 0.23 0.23 DMTDP 0.03 0.06 0.09 0.12 IPP 4.38 4.38 4.38 4.38 3.65 3.65 3.65 CR-39 ® 94.27 94.50 94.12 93.92 96.02 95.92 95.82 Yellow Index after manufacture 1.34 1.32 1.40 1.36 1.89 1.84 1.77 Formula # 37 38 39 40 41 42 43 44 CR-39E ® 2.00 2.00 2.00 2.00 2 2 2 2 Seesorb 709 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 DTBuDS 0.05 0.20 DBuS 0.05 0.20 DAS 0.05 0.10 Trithiane 0.02 0.05 IPP 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38 CR-39 ® 93.35 93.2 93.35 93.2 93.35 93.3 Yellow Index after manufacture 1.45 1.50 1.35 1.47 1.57 1.69 1.32 1.40 - Each composition was manufactured by weighing and mixing the ingredients in a beaker. CR-39E was first added, followed by the anti-yellowing additive, when present, and CR-39. Once the mixture was homogeneous, the UV-absorber was added and the beaker content was mixed again until full dissolution. Finally, the catalyst (IPP) was added and the mixture was stirred thoroughly, then degassed and filtered. A 71 mm diameter glass bi-plano mold was then filled with the composition using a syringe, and the polymerization was carried out in a regulated electronic oven in which the temperature was gradually increased from 45°C to 85°C in 15 hours then kept constant at 85°C for 5 hours. The mold was then disassembled and the resulting lens had a 2 mm thickness in its center.
- All of formulae 1-44 yielded a lens having the required 380 nm UV-cut. The Yellow Index was measured immediately after manufacture of each lens.
- Formulae 1-3 did not contain any anti-yellowing additive but contained increasing amounts of IPP catalyst (2.92 to 3.80%). The Yellow index increased linearly with IPP concentration, evidencing that UV absorber interacts with radicals during polymerization.
- Formulae 4 to 7 contained various amounts of sulfide anti-yellowing additive AO-503. The sharp drop of Yellow Index value between
formulae 2 and 4 indicated that AO-503 is effective at low concentrations. Adding more AO-503 (formulae 5 to 7) didn't induce further Yellow index reduction. If AO-503 anti-yellowing additive had been reacting with IPP, thus reducing IPP concentration available for polymerization initiation, the values of Yellow index would be decreasing in the same proportion as formulae 1-3 and/or polymerization achievement would be inadequate. Hence, these results demonstrate that an unexpected behaviour is obtained: the anti-yellowing additive protects the UV absorber without altering polymerization achievement. - Formulae 8 to 11 contained various amounts of HALS anti-yellowing additive LA-81. This anti-yellowing additive was less efficient in reducing the Yellow index than sulfide anti-yellowing additive AO-503 but it was still able to protect the UV absorber as can be seen from the difference in Yellow index between
formula 2 and 8 or 9. - Similar results were obtained with other HALS anti-yellowing additive such as Tinuvin®5100 or Tinuvin®292 (formulae 12-19) and with other sulfide anti-yellowing additives (formulae 30-44): Yellow index after polymerization is lower than 2, often lower than 1.5.
- Lenses obtained with formulae 21-29 were subjected to an accelerated ageing in Q-Sun cell. The evolution of Yellow Index in time for formulae 21-24 is shown in
Figure 1 and the evolution of Yellow Index in time for formulae 25-29 is shown inFigure 2 . - Formula 22 containing sulfide anti-yellowing additive AO-503 did not provide stabilization toward UV exposure. Indeed, between 0 and 20 h, the Yellow index reached the value obtained without any anti-yellowing additive (formula 21).
- Formula 23 containing HALS anti-yellowing additive Tinuvin® 5100 was photostable, as the Yellow index remained stable during all the test duration.
- Formula 24 comprised a mixture of HALS anti-yellowing additive and sulfide anti-yellowing additive (AO-503 and Tinuvin® 5100). Results show that the benefits of both these anti-yellowing additives were combined: low initial yellow index from sulfide anti-yellowing additive AO-503 (as previously pointed out in Example 1), and reduced Yellow index build-up during accelerated ageing brought by HALS anti-yellowing additive Tinuvin® 5100.
- Formulae 25 to 29 contained the hydroxyphenyl benzotriazole UV-absorber Tinoguard® TL. At 0.10% or 0.15% by weight of Tinoguard® 5100 (formula 25 and 26), the UV-absorber was able to photostabilize the lens toward UV exposure. As observed in the above experiments with Seesorb® 709 (formulae 21-24), the Yellow index remained stable during all the tests.
- Concerning blends of sulfide anti-yellowing additive AO-503 and HALS anti-yellowing additive Tinuvin® 5100, the results also confirmed those obtained above with Seesorb® 709: sulfide anti-yellowing additive AO-503 allowed a low Yellow index after polymerization, whereas Tinuvin® 5100 prevented excessive Yellow index increase during accelerated ageing. However, if the quantity of sulfide anti-yellowing additive and HALS anti-yellowing additive is too low (formula 27), the effect of sulfide anti-yellowing additive on the Yellow index immediately after manufacture is maintained whereas the Yellow index increases dramatically during accelerated ageing.
Claims (13)
- A polymerizable composition for the manufacture of an ophthalmic lens, comprising:a) at least 50% to 99% by weight of one allyl monomer or oligomer selected from diethylene glycol bis(allyl carbonate) or oligomers of diethylene glycol bis(allyl carbonate) based on the total weight of the composition,b) at least one catalyst suitable for initiating the polymerization of said allyl monomer,c) at least one UV absorber,d) at least one anti-yellowing additive, wherein said anti-yellowing additive corresponds to general formula (I):(i) F represents a sulfide;(ii) A is a bond or represents a linear or branched (C1-C10) alkylene group, wherein 1 to 4 non adjacent carbon atom(s) may independently be replaced by an oxygen atom, a sulphur atom or an amino group, and may comprise from 1 to 4 carbon-carbon double bond(s);(iii) Y3-C(Y1)-Y2 is a polar group in which:- Y1 represents O or S, preferably O;- Y2 and Y3 are similar or different and represent O, S, NH or a bond;(iv) R99 is any group, which may include at least one function F and/or at least one polar group as defined hereinabove.
- A polymerizable composition according to claim 1 characterized in that the molecular weight of the anti-yellowing additive divided by the number of Y3-C(Y1)-Y2 polar groups of the anti-yellowing additive is in the range of about 75 g/mol to about 1000 g/mol, preferably in the range of about 100 g/mol to about 800 g/mol.
- A polymerizable composition according to Claim 1 or 2, characterized in that the anti-yellowing additive corresponds to the following formula (X):each R2 is independently a linear or branched or cyclic (C1-C20) alkyl group wherein 1 to 4 non adjacent carbon atom(s) may be replaced by oxygen atom, sulphur atom, and amino group, and may comprise from 1 to 4 carbon-carbon double bond(s);each n is an integer from 1 to 17 inclusive, preferably from 1 to 5 inclusive.
- A polymerizable composition according to Claim 3, characterized in that the anti-yellowing additive is a dialkyl thiodipropionate corresponding to the following formula (XI):
- A polymerizable composition according to Claim 3, characterized in that the anti-yellowing additive is a dialkyl thiodiglycolate corresponding to the following formula (XII):
- A polymerization composition according to claim 1 or 2, characterized in that the anti-yellowing additive is a cyclic sulphide having the following formula (XIII)- R20 is as defined above;- n is an integer from 1 to 5 inclusive, preferably from 1 to 3 inclusive;- B represents a 3 to 12-membered monocyclic heterocycloalkyl which comprises, in addition to the sulphur atom of the cycle, from 1 to 3 heteroatoms independently selected from oxygen and sulphur, preferably sulphur; and- Y1 represents O or S, preferably O;- Y2 and Y3 are similar or different and represent O, S, NH or a bond;- R99 is any group.
- A polymerizable composition according to any of Claims 1 to 6, characterized in that the UV-absorber is a benzotriazole, a benzophenone, a triazine, an oxalanilide, and mixtures thereof.
- A composition according to any one of Claims 1 to 7, characterized in that the catalyst is diisopropyl peroxydicarbonate.
- A composition according to any one of Claims 1 to 8, characterized in that the catalyst represents from 1.0 to 5.0% by weight, preferably from 2.5 to 4.5%, more preferably from 3.0 to 4.0% by weight based on the total weight of the composition.
- A composition according to any one of Claims 1 to 9, characterized in that the anti-yellowing additive represents from 0.05 to 1% by weight, preferably from 0.1 to 0.5% by weight, based on the total weight of the composition.
- Use of the composition according to any one of Claims 1 to 10 to manufacture an ophthalmic lens.
- An ophthalmic lens obtained by filling the composition according to any one of Claims 1 to 10 in a mould and then heating it, characterized in that it has a Yellow Index lower than or equal to 2.0, preferably lower than or equal to 1.7, more preferably lower than or equal to 1.5, as measured immediately after manufacture.
- An ophthalmic lens according to Claim 11 or 12, characterized in that the variation in the Yellow Index after exposing said lens to UV light for 80h does not exceed 0.5 in absolute value.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14305987.1A EP2960687B1 (en) | 2014-06-24 | 2014-06-24 | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive |
US15/319,260 US10370520B2 (en) | 2014-06-24 | 2015-06-23 | Composition for the manufacture of an ophthalmic lens comprising an UV-absorber and an anti-yellowing additive |
PCT/EP2015/064156 WO2015197649A1 (en) | 2014-06-24 | 2015-06-23 | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive |
CN201580033352.XA CN106459555B (en) | 2014-06-24 | 2015-06-23 | The composition for being used to manufacture ophthalmic lens comprising UV absorbent and resisting etiolation additive |
EP15731319.8A EP3161528B1 (en) | 2014-06-24 | 2015-06-23 | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14305987.1A EP2960687B1 (en) | 2014-06-24 | 2014-06-24 | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2960687A1 EP2960687A1 (en) | 2015-12-30 |
EP2960687B1 true EP2960687B1 (en) | 2016-09-21 |
Family
ID=51062759
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14305987.1A Active EP2960687B1 (en) | 2014-06-24 | 2014-06-24 | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive |
EP15731319.8A Active EP3161528B1 (en) | 2014-06-24 | 2015-06-23 | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15731319.8A Active EP3161528B1 (en) | 2014-06-24 | 2015-06-23 | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive |
Country Status (4)
Country | Link |
---|---|
US (1) | US10370520B2 (en) |
EP (2) | EP2960687B1 (en) |
CN (1) | CN106459555B (en) |
WO (1) | WO2015197649A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3382428B1 (en) * | 2017-03-27 | 2021-01-27 | Essilor International | Optical material with improved colour |
ES2819828T3 (en) * | 2017-12-08 | 2021-04-19 | Essilor Int | Composition for the manufacture of an ophthalmic lens comprising an encapsulated light absorbing additive |
WO2019155244A1 (en) * | 2018-02-09 | 2019-08-15 | Essilor International | Nanoparticles of encapsulated light-absorbing agent, preparation thereof and ophthalmic lens comprising said nanoparticles |
CN112752793B (en) * | 2018-07-30 | 2024-01-30 | 奥升德功能材料运营有限公司 | Nylon terpolymer |
CA3122174A1 (en) * | 2018-12-13 | 2020-06-18 | Essilor International | Ophthalmic lens comprising an oxazolone |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2702486B1 (en) | 1993-03-08 | 1995-04-21 | Essilor Int | Abrasion resistant coating compositions based on silane hydrolysates and aluminum compounds, and corresponding coated articles resistant to abrasion and impact. |
US5949518A (en) | 1996-02-13 | 1999-09-07 | Sola International, Inc. | Color-neutral UV blocking coating for plastic lens |
US5989462A (en) * | 1997-07-31 | 1999-11-23 | Q2100, Inc. | Method and composition for producing ultraviolent blocking lenses |
JP3547662B2 (en) | 1999-09-20 | 2004-07-28 | Hoya株式会社 | Plastic spectacle lens excellent in ultraviolet absorption and method of manufacturing the same |
JP3676138B2 (en) | 1999-09-20 | 2005-07-27 | Hoya株式会社 | Plastic spectacle lens excellent in ultraviolet absorption and manufacturing method thereof |
JP2003066201A (en) * | 2000-09-28 | 2003-03-05 | Showa Denko Kk | Plastic lens composition, plastic lens, and method for producing the plastic lens |
EP1328560A2 (en) * | 2000-09-28 | 2003-07-23 | Showa Denko K.K. | Plastic lens composition, plastic lens, and process for producing the plastic lens |
CN1884364B (en) * | 2005-06-23 | 2010-08-25 | 上海伟星光学有限公司 | Composition for manufacturing photochromic resin lens |
EP2172792A4 (en) | 2007-07-31 | 2012-02-29 | Hoya Corp | Plastic lens and method of manufacturing the same |
CN101838369A (en) * | 2009-03-17 | 2010-09-22 | 上海伟星光学有限公司 | Monomer composition for manufacturing chameleon glass blocks and method for preparing chameleon glass blocks |
JP2013184996A (en) * | 2012-03-06 | 2013-09-19 | Hitachi Chemical Co Ltd | Resin composition for optical material and cured product of the same |
-
2014
- 2014-06-24 EP EP14305987.1A patent/EP2960687B1/en active Active
-
2015
- 2015-06-23 CN CN201580033352.XA patent/CN106459555B/en active Active
- 2015-06-23 EP EP15731319.8A patent/EP3161528B1/en active Active
- 2015-06-23 US US15/319,260 patent/US10370520B2/en active Active
- 2015-06-23 WO PCT/EP2015/064156 patent/WO2015197649A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP3161528B1 (en) | 2020-03-04 |
US20170121498A1 (en) | 2017-05-04 |
CN106459555A (en) | 2017-02-22 |
CN106459555B (en) | 2019-03-22 |
EP2960687A1 (en) | 2015-12-30 |
WO2015197649A1 (en) | 2015-12-30 |
EP3161528A1 (en) | 2017-05-03 |
US10370520B2 (en) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2960687B1 (en) | Composition for the manufacture of an ophtalmic lens comprising an uv-absorber and an anti-yellowing additive | |
AU2007294454B2 (en) | Ultraviolet light absorbing optical elements and compositions and methods for manufacture | |
AU704328B2 (en) | Polymerizable compositions based on thio(meth)acrylate monomers, polymers with a low yellow index obtained from such compositions, and corresponding ophthalmic lenses | |
TWI583363B (en) | Ultraviolet light absorbing materials for intraocular lens and uses thereof | |
EP3236296B1 (en) | Optical material comprising a red-shifted benzotriazole uv absorber | |
AU777331B2 (en) | Curable composition comprising photochromic compound | |
CN101980669A (en) | Hydrogel intraocular lens and method of forming same | |
RU2360932C2 (en) | Composition hardened by polymerisation | |
EP2693261A1 (en) | Photochromic lens | |
JPWO2013058218A1 (en) | (Meth) acrylate compound and photochromic curable composition containing the (meth) acrylate compound | |
CN107949584B (en) | Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens | |
EP3521322B1 (en) | Polymerizable composition for optical materials, and molded body | |
EP3894914B1 (en) | Ophthalmic lens comprising an oxazolone | |
DE3333502A1 (en) | THERMOPLASTIC PLASTIC MOLDS CONTAINING UV ABSORBER | |
CN1418318A (en) | Composition for optical materical, optical material and lenses | |
JP6963690B2 (en) | Photocurable composition for 3D stereolithography and 3D model | |
DE60017357T2 (en) | POLYMERIZABLE COMPOSITION FOR THE MANUFACTURE OF TRANSPARENT POLYMER COATINGS, TRANSPARENT POLYMER COATINGS MANUFACTURED THEREOF AND THEIR OPTICAL USE | |
JP4187404B2 (en) | Novel polymerizable composition and optical lens having a high refractive index obtained from said composition | |
WO2019131258A1 (en) | Optical resin material for chromatic aberration correction | |
KR100819998B1 (en) | Photochromic resin, preparation method thereof and optical product | |
AU2002234058B2 (en) | Curable casting compositions having a high refractive index and high impact resistance | |
JP2003105033A (en) | Monomer composition for optical material and cured product | |
JP2005263513A (en) | Ultraviolet-shielding glass and method for producing the same | |
CZ2010867A3 (en) | Photoprotective film-forming composition, especially for protection and restoration of monuments and use thereof | |
JP2013035893A (en) | Acrylamide derivative with little yellowing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160209 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G02B 1/04 20060101AFI20160511BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160531 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 831497 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014003846 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161221 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 831497 Country of ref document: AT Kind code of ref document: T Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161222 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170123 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161221 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170121 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014003846 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
26N | No opposition filed |
Effective date: 20170622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602014003846 Country of ref document: DE Owner name: ESSILOR INTERNATIONAL, FR Free format text: FORMER OWNER: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE), CHARENTON-LE-PONT, FR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170624 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170624 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180517 AND 20180523 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ESSILOR INTERNATIONAL, FR Effective date: 20180601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160921 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240627 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240627 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240625 Year of fee payment: 11 |