JP2007067340A - Semiconductor integrated circuit device and method for testing the same - Google Patents

Semiconductor integrated circuit device and method for testing the same Download PDF

Info

Publication number
JP2007067340A
JP2007067340A JP2005255043A JP2005255043A JP2007067340A JP 2007067340 A JP2007067340 A JP 2007067340A JP 2005255043 A JP2005255043 A JP 2005255043A JP 2005255043 A JP2005255043 A JP 2005255043A JP 2007067340 A JP2007067340 A JP 2007067340A
Authority
JP
Japan
Prior art keywords
fuse element
semiconductor integrated
integrated circuit
fuse
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005255043A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sugano
清 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2005255043A priority Critical patent/JP2007067340A/en
Priority to US11/514,235 priority patent/US7474106B2/en
Publication of JP2007067340A publication Critical patent/JP2007067340A/en
Priority to US12/202,903 priority patent/US7629802B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/143Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using laser-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/027Detection or location of defective auxiliary circuits, e.g. defective refresh counters in fuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To find out a fuse element which is cut halfway. <P>SOLUTION: A control signal CNT is turned into a high level and an NMOS transistor Q0 is turned on. Since a resistance value of a resistor R0 is a predetermined value at manufacturing a semiconductor integrated circuit device beforehand, a current I0 flowing through a measuring terminal P0 is measured by an external tester or the like, thereby determining a resistance value of a fuse element F0. If the resistance value (r) of the fuse element F0 is a certain value r1 or larger, for example, it is determined that the fuse element F0 is cut. If the resistance value (r) is a certain value r2 or smaller, it is determined that the fuse element is not cut. In the case of r2<r<r1, it is determined that the fuse element is cut incompletely. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体集積回路装置およびそのテスト方法に係り、特にヒューズ等のトリミング素子を含む半導体集積回路装置およびそのテスト方法に係る。   The present invention relates to a semiconductor integrated circuit device and a test method thereof, and more particularly to a semiconductor integrated circuit device including a trimming element such as a fuse and a test method thereof.

電気的に切断可能なトリミング素子により、ビット論理の出力をハイ(H)レベル又はロー(L)レベルに固定するようにされたトリミング検出回路は、電子回路の機能や動作パラメータの設定、基準電圧発生回路の出力電圧の微調整等の目的で、広く半導体装置(ICチップ)に組み込まれている。半導体装置に搭載されるトリミング素子としては、レーザで配線を焼き切るレーザヒューズ、ツェナーダイオードを焼き切るツェナーザップ、トリミング素子に電流を流した際に生じるジュール熱によって電気的に切断する、いわゆるEヒューズ等が知られている。   The trimming detection circuit, in which the output of the bit logic is fixed to a high (H) level or a low (L) level by an electrically disconnectable trimming element, functions of electronic circuits, setting of operation parameters, reference voltage Widely incorporated in semiconductor devices (IC chips) for the purpose of fine adjustment of the output voltage of the generation circuit. As a trimming element mounted on a semiconductor device, a laser fuse that burns out wiring with a laser, a zener zap that burns out a Zener diode, a so-called E fuse that is electrically cut by Joule heat generated when a current is passed through the trimming element, and the like. Are known.

このようなトリミング検出回路のヒューズ切断においては、切断不良が発生する可能性があることが知られている。例えばレーザによる切断の場合に、溶解した残存が素子近傍に一部付着し、完全に切断されずに中途半端な抵抗値を持って接続される状態となることがある。このため、切断すべきヒューズが中途半端に切断された場合や切断してはならないヒューズが誤って切断されて中途半端な切断となった場合、そのヒューズを確実に不良品として除去することができるような半導体装置が特許文献1において開示されている。   It is known that a disconnection failure may occur in the fuse cutting of such a trimming detection circuit. For example, in the case of cutting with a laser, a part of the dissolved residue may be attached in the vicinity of the element and may be connected with a halfway resistance value without being completely cut. For this reason, when a fuse to be cut is cut halfway or when a fuse that should not be cut is cut accidentally and cut halfway, the fuse can be reliably removed as a defective product. Such a semiconductor device is disclosed in Patent Document 1.

図8は、特許文献1に記載の半導体装置の回路図である。図8において、半導体装置は、電源電位VDDと接地間に直列接続されたヒューズ101及び抵抗102と、入力端子がヒューズ101と抵抗102の接続点に接続され、ヒューズ101の切断の有無を判定する判定回路103と、テスト用抵抗108と、テスト時にヒューズ101と並列にテスト用抵抗108を接続し、通常時にテスト用抵抗108を接続しないトランジスタ107とを備える。このように構成される半導体装置は、通常使用時にトランジスタ107をオフとしてヒューズ101にテスト用抵抗108を接続せず、出荷テスト時にトランジスタ107をオンとしてヒューズ101に並列にテスト用抵抗108を接続する。このようにトランジスタ107を動作させることで、切断されるべきであるのに中途半端に切断されながら良品として出荷されたが、顧客の通常使用時に不良品と判定されるような不良なヒューズを出荷テスト時に排除することができる。   FIG. 8 is a circuit diagram of the semiconductor device described in Patent Document 1. In FIG. In FIG. 8, the semiconductor device has a fuse 101 and a resistor 102 connected in series between the power supply potential VDD and the ground, and an input terminal connected to a connection point between the fuse 101 and the resistor 102, and determines whether the fuse 101 is cut or not. A determination circuit 103, a test resistor 108, and a transistor 107 that connects the test resistor 108 in parallel with the fuse 101 during testing and does not connect the test resistor 108 during normal operation. In the semiconductor device configured as described above, the transistor 107 is turned off during normal use and the test resistor 108 is not connected to the fuse 101, and the test resistor 108 is connected in parallel to the fuse 101 while the transistor 107 is turned on during a shipping test. . By operating the transistor 107 in this way, it should have been cut, but it was shipped as a non-defective product while being cut halfway, but shipped a defective fuse that was judged as a defective product during normal use by the customer Can be eliminated during testing.

特開平10−62477号公報(図1)Japanese Patent Laid-Open No. 10-62477 (FIG. 1)

ところで、特許文献1に記載の半導体装置では、判定回路103の入力端の電圧が閾値より大きいか小さいかによって、中途半端な切断か完全な切断かを判定している。しかし、中途半端に切断されている(半切れ状態の)ヒューズは、使用環境(電源電圧、温度等)や経時変化によって、その抵抗値が変動したり、あるいは再癒着したりして、回路誤動作の原因となる可能性がある。このため、より広い抵抗値の範囲に存在する「半切れ状態」を検出する必要があるが、従来のような単に閾値に基づくロジック的なGO/NOGO判定(0,1判定)による検出方法では、広い抵抗値の範囲に存在する「半切れ状態」の検出が困難であった。   By the way, in the semiconductor device described in Patent Document 1, it is determined whether the cutting is halfway or complete, depending on whether the voltage at the input terminal of the determination circuit 103 is larger or smaller than the threshold value. However, the fuse that is cut halfway (half-cut) may malfunction due to fluctuations in its resistance value or re-adhesion depending on the usage environment (power supply voltage, temperature, etc.) and changes over time. It may cause For this reason, it is necessary to detect a “half-cut state” existing in a wider range of resistance values. However, in the conventional detection method based on logical GO / NOGO determination (0, 1 determination) based simply on a threshold value. Therefore, it was difficult to detect a “half-cut state” existing in a wide resistance value range.

本発明の一つのアスペクトに係る半導体集積回路装置は、ヒューズ素子と第1のスイッチ素子との縦続接続回路と、通電素子と、縦続接続回路の一端と通電素子の一端とが入力端に接続され、ヒューズ素子の断続を判定する判定回路と、を含むトリンミング検出回路を1または2以上備える。また、共通に接続されるそれぞれの通電素子の他端と第1の電源との間、または、共通に接続されるそれぞれの縦続接続回路の他端と第2の電源との間に介在する測定端子を備える。   A semiconductor integrated circuit device according to one aspect of the present invention includes a cascade connection circuit of a fuse element and a first switch element, an energization element, one end of the cascade connection circuit, and one end of the energization element connected to an input end. And one or more trimming detection circuits including a determination circuit for determining whether the fuse element is intermittent. In addition, the measurement is interposed between the other end of each energization element connected in common and the first power supply, or between the other end of each cascade connection circuit connected in common and the second power supply. Provide terminals.

本発明の一つのアスペクトに係る半導体集積回路装置のテスト方法は、ヒューズ素子と第1のスイッチ素子との縦続接続回路と、通電素子と、縦続接続回路の一端と通電素子の一端とが入力端に接続され、ヒューズ素子の断続を判定する判定回路と、を含むトリンミング検出回路を1または2以上備え、共通に接続されるそれぞれの通電素子の他端と第1の電源との間、または、共通に接続されるそれぞれの縦続接続回路の他端と第2の電源との間に介在する測定端子を備える半導体集積回路装置のテスト方法である。この方法は、テスト対象となるヒューズ素子を含むトリンミング検出回路中の第1のスイッチ素子のみを短絡して測定端子における電流を測定する。   A test method for a semiconductor integrated circuit device according to one aspect of the present invention includes a cascade connection circuit of a fuse element and a first switch element, an energization element, one end of the cascade connection circuit, and one end of the energization element. 1 or 2 or more trimming detection circuits including a determination circuit that determines whether the fuse element is intermittent, and between the other end of each energization element connected in common and the first power source, or This is a test method for a semiconductor integrated circuit device including a measurement terminal interposed between the other end of each cascade connection circuit connected in common and a second power supply. In this method, only the first switch element in the trimming detection circuit including the fuse element to be tested is short-circuited, and the current at the measurement terminal is measured.

本発明によれば、ヒューズ素子の抵抗値を計ることで、より広い抵抗値の範囲をもった中途半端に切断されているヒューズ素子を見出すことができる。   According to the present invention, by measuring the resistance value of a fuse element, it is possible to find a fuse element that is cut halfway with a wider range of resistance values.

図1は、本発明の実施形態に係る半導体集積回路装置のトリミング検出回路部分の回路図である。図1において、トリミング検出回路は、ヒューズ素子F0と、NMOSトランジスタQ0と、インバータ回路INVと、抵抗R0と、測定端子P0とを備える。NMOSトランジスタQ0のソースは接地され、ゲートは制御信号CNTが供給され、ドレインはヒューズ素子F0の一端に接続される。ヒューズ素子F0の他端と抵抗R0の一端とは、インバータ回路INVの入力端に接続される。抵抗R0の他端は、測定端子P0を介して電源VDDに接続される。なお、抵抗R0は、ヒューズ素子F0に電流を供給する半導体素子等で構成されてもよい。   FIG. 1 is a circuit diagram of a trimming detection circuit portion of a semiconductor integrated circuit device according to an embodiment of the present invention. In FIG. 1, the trimming detection circuit includes a fuse element F0, an NMOS transistor Q0, an inverter circuit INV, a resistor R0, and a measurement terminal P0. The source of the NMOS transistor Q0 is grounded, the gate is supplied with the control signal CNT, and the drain is connected to one end of the fuse element F0. The other end of the fuse element F0 and one end of the resistor R0 are connected to the input end of the inverter circuit INV. The other end of the resistor R0 is connected to the power supply VDD via the measurement terminal P0. The resistor R0 may be formed of a semiconductor element that supplies current to the fuse element F0.

以上のような構成のトリミング検出回路は、トリミング検出回路を備える半導体集積回路装置の通常動作時において制御信号CNTをハイレベルとしてNMOSトランジスタQ0をオンとする。この状態でヒューズ素子F0が切断されていれば、インバータ回路INVの入力端が電源VDDの電位となってインバータ回路INVの出力信号VOUTはローレベルとなる。また、ヒューズ素子F0が切断されていなければ、インバータ回路INVの入力端が接地の電位となってインバータ回路INVの出力信号VOUTはハイレベルとなる。すなわち、ヒューズ素子F0の切断状態が出力信号VOUTの信号レベルとして現れることとなる。   The trimming detection circuit configured as described above turns on the NMOS transistor Q0 by setting the control signal CNT to the high level during the normal operation of the semiconductor integrated circuit device including the trimming detection circuit. If the fuse element F0 is cut in this state, the input terminal of the inverter circuit INV becomes the potential of the power supply VDD, and the output signal VOUT of the inverter circuit INV becomes low level. If the fuse element F0 is not cut, the input terminal of the inverter circuit INV becomes a ground potential, and the output signal VOUT of the inverter circuit INV becomes high level. That is, the cut state of the fuse element F0 appears as the signal level of the output signal VOUT.

一方、半導体集積回路装置のテスト時、すなわちヒューズ素子F0の切断状況をテストする場合にも、制御信号CNTをハイレベルとしてNMOSトランジスタQ0をオンとする。抵抗R0の抵抗値は、あらかじめ半導体集積回路装置の製作時において所定の値であることが分かっているため、測定端子P0を流れる電流I0を外部のテスタなどによって測定することで、ヒューズ素子F0の抵抗値を求めることができる。そして、例えばヒューズ素子F0は、ヒューズ素子F0の抵抗値rが或る値r1以上であれば、切断されているものと判断し、抵抗値rが或る値r2以下であれば切断されていないものと判断し、r2<r<r1であれば不完全に切断されているもの(半切れ状態)とみなす。このようにヒューズ素子の抵抗値自体を求めることで、不完全に切断されているヒューズ素子を正確に把握することができる。なお、測定端子P0は、ヒューズ素子に流れる電流を測定できればよいので、測定端子P0を電源VDD側に替えて接地側に設けるようにしてもよい。   On the other hand, also when testing the semiconductor integrated circuit device, that is, when testing the cutting state of the fuse element F0, the control signal CNT is set to the high level to turn on the NMOS transistor Q0. Since it is known that the resistance value of the resistor R0 is a predetermined value at the time of manufacturing the semiconductor integrated circuit device in advance, the current I0 flowing through the measurement terminal P0 is measured by an external tester or the like, so that the fuse element F0 The resistance value can be obtained. For example, the fuse element F0 is determined to be disconnected if the resistance value r of the fuse element F0 is equal to or greater than a certain value r1, and is not disconnected if the resistance value r is equal to or less than a certain value r2. If r2 <r <r1, it is considered that it has been cut incompletely (half cut state). Thus, by determining the resistance value itself of the fuse element, it is possible to accurately grasp the incompletely cut fuse element. Since the measurement terminal P0 only needs to be able to measure the current flowing through the fuse element, the measurement terminal P0 may be provided on the ground side instead of the power supply VDD side.

以上のように半導体集積回路装置をテストすることで、ヒューズ素子が高い抵抗となって切断されていると判断され、時間を経て抵抗値が低下して出力信号VOUTが所定の設定と異なるように変化してしまうことを初期の段階で検出することが可能である。以下、実施例に即して詳細に説明する。   By testing the semiconductor integrated circuit device as described above, it is determined that the fuse element has become a high resistance and has been cut, and the resistance value decreases over time so that the output signal VOUT differs from the predetermined setting. It is possible to detect the change at an early stage. Hereinafter, a detailed description will be given in accordance with examples.

図2は、本発明の第1の実施例に係る半導体集積回路装置のトリミング検出回路部分の回路図である。図2において、トリミング検出回路は、図1に示したトリミング検出回路をn個(nは自然数)備えている。ヒューズ素子F1〜Fnは、ヒューズ素子F0と、NMOSトランジスタQ1〜Qnは、NMOSトランジスタQ0と、インバータ回路INV1〜INVnは、インバータ回路INVと、抵抗R1〜Rnは、抵抗R0とそれぞれ同等である。   FIG. 2 is a circuit diagram of a trimming detection circuit portion of the semiconductor integrated circuit device according to the first embodiment of the present invention. In FIG. 2, the trimming detection circuit includes n trimming detection circuits (n is a natural number) shown in FIG. The fuse elements F1 to Fn are equivalent to the fuse element F0, the NMOS transistors Q1 to Qn are equivalent to the NMOS transistor Q0, the inverter circuits INV1 to INVn are equivalent to the inverter circuit INV, and the resistors R1 to Rn are equivalent to the resistor R0.

また、抵抗R1〜Rnの他端は、全てのトリンミング検出回路で共通とされ、測定端子P0を介して電源VDDに接続される。測定端子P0は、チップ外部に接続されるパッドあるいはチップ内部に配設されるパッド等、テスタが接続されヒューズ素子F1〜Fnに流れる電流を検出することができるものであることが好ましい。また、測定端子P0は、ヒューズ素子の抵抗測定においてテスタに接続され、測定終了後の出荷前には、通常動作時のためにボンディングなど配線を行うことで電源VDDに接続されることが好ましい。   The other ends of the resistors R1 to Rn are common to all the trimming detection circuits, and are connected to the power supply VDD via the measurement terminal P0. The measurement terminal P0 is preferably one that can detect a current flowing through the fuse elements F1 to Fn by connecting a tester such as a pad connected outside the chip or a pad arranged inside the chip. The measurement terminal P0 is preferably connected to a tester in the resistance measurement of the fuse element, and is preferably connected to the power supply VDD by performing wiring such as bonding for normal operation before shipment after the measurement is completed.

以上のような構成のトリミング検出回路は、トリミング検出回路を備える半導体集積回路装置の通常動作時には、制御信号CNT1〜CNTnを全てハイレベルとしてNMOSトランジスタQ1〜Qnをオンとする。この状態でヒューズ素子Fi(i=1〜n)が切断されていれば、インバータ回路INViの入力端が電源VDDの電位となってインバータ回路INViの出力信号VOUTiはローレベルとなる。また、ヒューズ素子Fiが切断されていなければ、インバータ回路INViの入力端が接地の電位となってインバータ回路INViの出力信号VOUTiはハイレベルとなる。すなわち、ヒューズ素子Fiの切断情報が出力信号VOUTiとして現れることとなる。   The trimming detection circuit configured as described above turns on the NMOS transistors Q1 to Qn by setting all the control signals CNT1 to CNTn to the high level during the normal operation of the semiconductor integrated circuit device including the trimming detection circuit. If the fuse element Fi (i = 1 to n) is cut in this state, the input terminal of the inverter circuit INVi becomes the potential of the power supply VDD, and the output signal VOUTi of the inverter circuit INVi becomes a low level. If the fuse element Fi is not cut, the input terminal of the inverter circuit INVi becomes a ground potential, and the output signal VOUTi of the inverter circuit INVi becomes high level. That is, the cutting information of the fuse element Fi appears as the output signal VOUTi.

次に、ヒューズ切断時のテストの方法について説明する。図3は、本発明の第1の実施例に係るヒューズの測定方法のフローチャートである。ヒューズの測定方法に際し、例えば図2のヒューズ素子F1、F2、・・Fnの順に測定するものとする。   Next, a test method at the time of fuse cutting will be described. FIG. 3 is a flowchart of the fuse measuring method according to the first embodiment of the present invention. In the fuse measurement method, for example, the fuse elements F1, F2,... Fn in FIG.

ステップS11において、ヒューズ素子Fiを切断する。   In step S11, the fuse element Fi is cut.

ステップS12において、切断後のヒューズ素子Fiの抵抗値を測定する。このため、制御信号CNTiをハイレベルとしてNMOSトランジスタQiをオンとする。なお、制御信号CNTi以外の制御信号CNTj(j≠i)はローレベルとしてNMOSトランジスタQj(j≠i)を全てオフとする。測定端子P0に流れる電流I0を外部のテスタなどによって測定することで、ヒューズ素子Fiの抵抗値を求める。なお、抵抗値の測定の詳細については後述する。   In step S12, the resistance value of the fuse element Fi after cutting is measured. Therefore, the control signal CNTi is set to the high level to turn on the NMOS transistor Qi. Note that the control signals CNTj (j ≠ i) other than the control signal CNTi are at a low level, and all the NMOS transistors Qj (j ≠ i) are turned off. The resistance value of the fuse element Fi is obtained by measuring the current I0 flowing through the measurement terminal P0 with an external tester or the like. Details of the resistance value measurement will be described later.

ステップS13において、ヒューズ素子Fiは、ヒューズ素子Fiの抵抗値rが或る値r1以上であれば切断されているものと判断し、抵抗値rが或る値r2以下であれば切断されていないものと判断し、r2<r<r1であれば不完全に切断されているものとみなす。   In step S13, the fuse element Fi is determined to be disconnected if the resistance value r of the fuse element Fi is equal to or greater than a certain value r1, and is not disconnected if the resistance value r is equal to or less than a certain value r2. If r2 <r <r1, it is considered that it has been cut incompletely.

ステップS14において、切断対象となる全てのヒューズ素子について抵抗値の測定が終了したかを判断し、終了していなければステップS11に戻り、次の切断対象となるヒューズ素子の切断を行う。   In step S14, it is determined whether or not the resistance value measurement has been completed for all the fuse elements to be cut, and if not, the process returns to step S11 to cut the next fuse element to be cut.

なお、以上の方法では、ヒューズ素子の切断と、ヒューズ素子の抵抗値の測定とを一つ一つ繰り返す例を示したが、予め必要な全てのヒューズ素子を切断しておき、順次、ヒューズ素子の抵抗値の測定を行うようにしてもよい。   In the above method, the example in which the cutting of the fuse element and the measurement of the resistance value of the fuse element are repeated one by one is shown. However, all necessary fuse elements are cut in advance, and the fuse elements are sequentially The resistance value may be measured.

次に、抵抗値の測定について説明する。図4は、ヒューズ素子測定に係わる抵抗の接続を模式的に示す図である。図4において、電源VDDの印加電圧をVF、テスタ中の電流計Aで測定される電流をIMとする。測定経路の抵抗値をR、ヒューズ素子の抵抗値をRfuse、NMOSトランジスタQiのオン抵抗をRmn1、抵抗R0の抵抗値をRrとすると、測定経路の抵抗値Rは、式(1)で表される。
R=VF/IM=Rr+Rfuse+Rmn1 −−−−式(1)
Next, the measurement of the resistance value will be described. FIG. 4 is a diagram schematically showing connection of resistors related to the fuse element measurement. In FIG. 4, the applied voltage of the power source VDD is VF, and the current measured by the ammeter A in the tester is IM. When the resistance value of the measurement path is R, the resistance value of the fuse element is Rfuse, the on-resistance of the NMOS transistor Qi is Rmn1, and the resistance value of the resistor R0 is Rr, the resistance value R of the measurement path is expressed by Equation (1). The
R = VF / IM = Rr + Rfuse + Rmn1 ---- Formula (1)

ここで、Rmn1は、Rrに比べてきわめて小さいので、Rfuseは、式(2)で求められる。
Rfuse=VF/IM−Rr −−−−式(2)
Here, since Rmn1 is extremely smaller than Rr, Rfuse can be obtained by Expression (2).
Rfuse = VF / IM-Rr ---- Formula (2)

以上の説明において、切断対象となるヒューズ素子は、予め半導体集積回路装置の機能設定によって定められる。あるいは、半導体集積回路装置の所定の動作をチェックしつつ微調しながらヒューズ素子の切断を行っていく場合もある。この場合、ヒューズ素子が確実に切断されたことを確認しながら、所定の機能を実現するように次々と必要なヒューズ素子を切断することができる。   In the above description, the fuse element to be cut is determined in advance by the function setting of the semiconductor integrated circuit device. Alternatively, the fuse element may be cut while finely adjusting a predetermined operation of the semiconductor integrated circuit device. In this case, it is possible to cut the necessary fuse elements one after another so as to realize a predetermined function while confirming that the fuse elements are surely cut.

以上のように本実施例に係る半導体集積回路装置は、測定経路の抵抗値を測定することでヒューズ素子の抵抗値を直接測定することができるため、広い抵抗値の範囲で半切れ状態のヒューズ素子を検出することができる。   As described above, the semiconductor integrated circuit device according to the present embodiment can directly measure the resistance value of the fuse element by measuring the resistance value of the measurement path. The element can be detected.

また、制御信号CNTiによってNMOSトランジスタQiをオンオフすることで、ヒューズ素子を切断することなく出力信号VOUTiを設定することができる。したがって、ヒューズ切断前の半導体集積回路装置のテスト・デバッグに有効である。   Further, by turning on / off the NMOS transistor Qi by the control signal CNTi, the output signal VOUTi can be set without cutting the fuse element. Therefore, it is effective for testing and debugging the semiconductor integrated circuit device before the fuse is cut.

さらに、ヒューズ素子が複数本ある場合に、抵抗値の測定対象となるヒューズ素子を制御信号CNTiによって任意に選択してテストすることができるため、テスト効率およびテスト品質が高い。言い換えれば、不良検出率が高い。   Furthermore, when there are a plurality of fuse elements, the fuse element to be measured for resistance value can be arbitrarily selected and tested by the control signal CNTi, so that the test efficiency and test quality are high. In other words, the defect detection rate is high.

また、ヒューズ素子の抵抗値の測定と出力信号VOUTiの観測の双方を行うことで、不良と判断された場合にヒューズ素子が不良なのかインバータ回路が不良なのかの切り分けが可能である。例えば、ヒューズ素子の抵抗値が切断状態を示す値であるにもかかわらず、出力信号VOUTiがハイレベルにある場合、あるいは、ヒューズ素子の抵抗値が接続状態を示す値であるにもかかわらず、出力信号VOUTiがローレベルにある場合、このヒューズ素子に接続されているインバータ回路の不良が想定される。   Further, by performing both measurement of the resistance value of the fuse element and observation of the output signal VOUTi, it is possible to determine whether the fuse element is defective or the inverter circuit is defective when it is determined as defective. For example, despite the fact that the resistance value of the fuse element is a value indicating a disconnected state, even when the output signal VOUTi is at a high level, or the resistance value of the fuse element is a value indicating a connected state, When the output signal VOUTi is at a low level, a failure of the inverter circuit connected to the fuse element is assumed.

図5は、本発明の第2の実施例に係るヒューズの測定方法のフローチャートである。第2の実施例に係るヒューズの測定方法は、図2に示す半導体装置のトリミング検出回路部分に適用されるが、第1の実施例の測定方法に対し、ヒューズ素子の切断前にも抵抗値を測定する点が異なる。   FIG. 5 is a flowchart of a fuse measuring method according to the second embodiment of the present invention. The fuse measurement method according to the second embodiment is applied to the trimming detection circuit portion of the semiconductor device shown in FIG. 2, but in contrast to the measurement method of the first embodiment, the resistance value before the fuse element is cut. The point to measure is different.

ステップS21において、切断前のヒューズ素子Fi(i=1〜n)の抵抗値を測定する。制御信号CNTiをハイレベルとしてNMOSトランジスタQiをオンとする。なお、制御信号CNTi以外の制御信号CNTj(j≠i)をローレベルとしてNMOSトランジスタQj(j≠i)は全てオフとする。測定端子P0を流れる電流I0を外部のテスタなどによって測定することで、ヒューズ素子Fiの抵抗値を求め、保持しておく。   In step S21, the resistance value of the fuse element Fi (i = 1 to n) before cutting is measured. The control signal CNTi is set to high level to turn on the NMOS transistor Qi. Note that the control signals CNTj (j ≠ i) other than the control signal CNTi are set to a low level to turn off all the NMOS transistors Qj (j ≠ i). By measuring the current I0 flowing through the measurement terminal P0 with an external tester or the like, the resistance value of the fuse element Fi is obtained and held.

ステップS22、S23は、それぞれステップS11、S12と同様の処理がなされる。   Steps S22 and S23 are processed in the same manner as steps S11 and S12, respectively.

ステップS24において、ヒューズ素子Fiの切断前後の抵抗値の差分を求める。以下で説明するように、求めた差分を用いて切断後の抵抗値として完全に切断されているか、不完全かを判定する。   In step S24, a difference between resistance values before and after the fuse element Fi is cut is obtained. As will be described below, the obtained difference is used to determine whether the resistance value after cutting is completely cut or incomplete.

ステップS25は、ステップS14と同様の処理がなされる。   In step S25, processing similar to that in step S14 is performed.

次に、ヒューズ素子Fiの切断前後の抵抗値について説明する。図6は、ヒューズ素子の切断前後のヒューズ素子測定に係る抵抗の接続を模式的に示す図である。図6(a)は、切断前の図であり、図6(b)は、切断後の図である。図6において、電源VDDの印加電圧をVF、テスタ中の電流計Aで測定される電流をIMuncut(図6(a))あるいはIMcut(図6(b))とする。また、切断前の測定経路の抵抗値をRuncut、切断前のヒューズの抵抗値をRfuse、切断後の測定経路の抵抗値をRcut、切断後のヒューズの抵抗値をRcutfuse、抵抗R0の抵抗値をRr、NMOSトランジスタQiのオン抵抗をRmn1とすると、ヒューズ素子Fiの切断前後の抵抗値の差分ΔRは、以下の式(3)で表される。
ΔR=Rcut−Runcut
=(Rr+Rcutfuse+Rmn1)−(Rr+Rfuse+Rmn1)
=Rcutfuse−Rfuse −−−−式(3)
Next, resistance values before and after the fuse element Fi is cut will be described. FIG. 6 is a diagram schematically illustrating connection of resistors according to the fuse element measurement before and after the fuse element is cut. FIG. 6A is a view before cutting, and FIG. 6B is a view after cutting. In FIG. 6, the applied voltage of the power supply VDD is VF, and the current measured by the ammeter A in the tester is IMuncut (FIG. 6 (a)) or IMcut (FIG. 6 (b)). Also, the resistance value of the measurement path before cutting is Runcut, the resistance value of the fuse before cutting is Rfuse, the resistance value of the measuring path after cutting is Rcut, the resistance value of the fuse after cutting is Rcutfuse, and the resistance value of the resistor R0 is When the on-resistance of Rr and NMOS transistor Qi is Rmn1, the difference ΔR between the resistance values before and after the fuse element Fi is cut is expressed by the following equation (3).
ΔR = Rcut−Runcut
= (Rr + Rcutfuse + Rmn1)-(Rr + Rfuse + Rmn1)
= Rcutfuse-Rfuse ---- Formula (3)

式(3)において、Rcutfuseは、Rfuseに比べて極めて大きいので、式(3)は、ほぼ以下の式(4)のように表される。すなわち、切断前後の抵抗値の差分ΔRが切断後のヒューズ素子の抵抗値にほぼ等しくなる。
ΔR=Rcutfuse −−−−式(4)
In Expression (3), Rcutfuse is extremely larger than Rfuse, and therefore Expression (3) is approximately expressed as Expression (4) below. That is, the difference ΔR between the resistance values before and after cutting becomes substantially equal to the resistance value of the fuse element after cutting.
ΔR = Rcutfuse ---- Formula (4)

さらに、ヒューズ切断後の測定経路の抵抗値Rcutと、抵抗値の差分ΔR=Rcutfuseとは、以下の(a)〜(c)のように分類される。
(a)正常に切断された場合: Rcut=Rcutfuse=R∞(ハイインピーダンス)
(b)未切断の場合: Rcut=Runcut、Rcutfuse=Rfuse(切断前抵抗)
(c)半切れの場合: Runcut<Rcut<R∞、Rfuse<Rcutfuse<R∞
Furthermore, the resistance value Rcut of the measurement path after the fuse is cut and the difference ΔR = Rcutfuse between the resistance values are classified as follows (a) to (c).
(A) When cut normally: Rcut = Rcutfuse = R∞ (high impedance)
(B) When not cut: Rcut = Runcut, Rcutfuse = Rfuse (resistance before cutting)
(C) When half cut: Runcut <Rcut <R∞, Rfuse <Rcutfuse <R∞

以上のことから、半切れの場合の判定条件を正常切断時の抵抗値R∞に近い値に設定することで、より確実に半切れを検出することができる。   From the above, it is possible to detect the half-cut more reliably by setting the determination condition in the case of the half-cut to a value close to the resistance value R∞ at the time of normal cutting.

図7は、本発明の第3の実施例に係る半導体集積回路装置のトリミング検出回路部分の回路図である。図7において図1と同一の符号は同一物を表し、その説明を省略する。図7に示すトリミング検出回路は、図1のトリミング検出回路にさらにNMOSトランジスタQa、抵抗Raを付加している。NMOSトランジスタQaのソースは、抵抗Raを介して接地され、ドレインはインバータ回路INVの入力端に接続され、ゲートは制御信号CNTaが供給される。   FIG. 7 is a circuit diagram of the trimming detection circuit portion of the semiconductor integrated circuit device according to the third embodiment of the present invention. In FIG. 7, the same reference numerals as those in FIG. The trimming detection circuit shown in FIG. 7 further includes an NMOS transistor Qa and a resistor Ra in addition to the trimming detection circuit of FIG. The source of the NMOS transistor Qa is grounded via the resistor Ra, the drain is connected to the input terminal of the inverter circuit INV, and the gate is supplied with the control signal CNTa.

以上のような構成の半導体集積回路装置は、NMOSトランジスタQaをオフとした場合には図1と同等の構成となる。したがって、通常動作時には、制御信号CNTをハイレベルとしてNMOSトランジスタQ0をオンとすると共に、制御信号CNTaをローレベルとしNMOSトランジスタQaはオフ状態にする。   The semiconductor integrated circuit device having the above configuration has the same configuration as that of FIG. 1 when the NMOS transistor Qa is turned off. Therefore, during normal operation, the control signal CNT is set to the high level to turn on the NMOS transistor Q0, and the control signal CNTa is set to the low level to turn off the NMOS transistor Qa.

一方、テストモード時には、制御信号CNTaをローレベルとしNMOSトランジスタQaをオフとし、制御信号CNTをハイレベルとしてNMOSトランジスタQ0をオンとする。そして、図1で説明したと同様に、測定端子P0を流れる電流を外部のテスタなどによって測定することでヒューズ素子F0の抵抗値を求め、抵抗値の大小でヒューズ素子F0の切断の確実性を判断する。   On the other hand, in the test mode, the control signal CNTa is set to low level to turn off the NMOS transistor Qa, and the control signal CNT is set to high level to turn on the NMOS transistor Q0. Then, as described with reference to FIG. 1, the resistance value of the fuse element F0 is obtained by measuring the current flowing through the measurement terminal P0 with an external tester or the like. to decide.

あるいは、制御信号CNTaをハイレベルとしNMOSトランジスタQaをオンとし、制御信号CNTをハイレベルとしてNMOSトランジスタQ0をオンとする。そして、従来技術で説明したと同様に、ヒューズ素子F0を切断したにもかかわらず出力信号VOUTがハイレベルとなることを検知してヒューズ素子F0の切断不良を判断するようにしてもよい。   Alternatively, the control signal CNTa is set to high level to turn on the NMOS transistor Qa, and the control signal CNT is set to high level to turn on the NMOS transistor Q0. As described in the related art, the disconnection failure of the fuse element F0 may be determined by detecting that the output signal VOUT is at a high level even though the fuse element F0 is disconnected.

以上本発明を上記実施例に即して説明したが、本発明は、上記実施例にのみ限定されるものではなく、本願特許請求の範囲の各請求項の発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。   The present invention has been described with reference to the above-described embodiments. However, the present invention is not limited to the above-described embodiments, and those skilled in the art within the scope of the invention of each claim of the present application claims. It goes without saying that various modifications and corrections that can be made are included.

本発明の実施形態に係る半導体集積回路装置のトリミング検出回路部分の回路図である。It is a circuit diagram of a trimming detection circuit portion of a semiconductor integrated circuit device according to an embodiment of the present invention. 本発明の第1の実施例に係る半導体集積回路装置のトリミング検出回路部分の回路図である。1 is a circuit diagram of a trimming detection circuit portion of a semiconductor integrated circuit device according to a first embodiment of the present invention; FIG. 本発明の第1の実施例に係るヒューズの測定方法のフローチャートである。It is a flowchart of the measuring method of the fuse which concerns on 1st Example of this invention. ヒューズ素子測定に係わる抵抗の接続を模式的に示す図である。It is a figure which shows typically the connection of the resistor concerning a fuse element measurement. 本発明の第2の実施例に係るヒューズの測定方法のフローチャートである。It is a flowchart of the measuring method of the fuse which concerns on the 2nd Example of this invention. ヒューズ素子の切断前後のヒューズ素子測定に係る抵抗の接続を模式的に示す図である。It is a figure which shows typically the connection of the resistor which concerns on the fuse element measurement before and behind the cutting | disconnection of a fuse element. 本発明の第3の実施例に係る半導体集積回路装置のトリミング検出回路部分の回路図である。FIG. 7 is a circuit diagram of a trimming detection circuit portion of a semiconductor integrated circuit device according to a third embodiment of the present invention. 従来の半導体装置の回路図である。It is a circuit diagram of the conventional semiconductor device.

符号の説明Explanation of symbols

F0、F1〜Fn ヒューズ素子
Q0、Q1〜Qn、Qa NMOSトランジスタ
INV、INV1〜INVn インバータ回路
R0、R1〜Rn、Ra 抵抗
P0 測定端子
CNT、CNT1〜CNTn、CNTa 制御信号
VDD 電源
F0, F1-Fn Fuse elements Q0, Q1-Qn, Qa NMOS transistors INV, INV1-INVn Inverter circuits R0, R1-Rn, Ra resistance P0 Measuring terminals CNT, CNT1-CNTn, CNTa Control signal VDD Power supply

Claims (8)

ヒューズ素子と第1のスイッチ素子との縦続接続回路と、
通電素子と、
前記縦続接続回路の一端と前記通電素子の一端とが入力端に接続され、前記ヒューズ素子の断続を判定する判定回路と、
を含むトリンミング検出回路を1または2以上備え、
共通に接続されるそれぞれの前記通電素子の他端と第1の電源との間、または、共通に接続されるそれぞれの前記縦続接続回路の他端と第2の電源との間に介在する測定端子を備えることを特徴とする半導体集積回路装置。
A cascade connection circuit of the fuse element and the first switch element;
An energizing element;
One end of the cascade connection circuit and one end of the energization element are connected to the input end, and a determination circuit for determining the disconnection of the fuse element,
Including one or more trimming detection circuits including
Measurement interposed between the other end of each energization element connected in common and the first power supply, or between the other end of each cascade connection circuit connected in common and the second power supply A semiconductor integrated circuit device comprising a terminal.
それぞれの前記トリンミング検出回路においてそれぞれ制御端子をさらに備え、
前記制御端子に与えるモード信号に応じ、通常動作モードでは全てのトリンミング検出回路の前記第1のスイッチ素子を短絡し、テストモードではテスト対象となるヒューズ素子に接続される前記第1のスイッチ素子のみを短絡するように制御することを特徴とする請求項1記載の半導体集積回路装置。
Each of the trimming detection circuits further comprises a control terminal,
In response to a mode signal applied to the control terminal, the first switch elements of all the trimming detection circuits are short-circuited in the normal operation mode, and only the first switch element connected to the fuse element to be tested is in the test mode. 2. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is controlled to be short-circuited.
前記第1のスイッチ素子は、MOSトランジスタで構成され、該MOSトランジスタのゲートを前記制御端子に接続することを特徴とする請求項2記載の半導体集積回路装置。   3. The semiconductor integrated circuit device according to claim 2, wherein the first switch element is composed of a MOS transistor, and the gate of the MOS transistor is connected to the control terminal. 前記通電素子は、第1の抵抗素子であることを特徴とする請求項1または2記載の半導体集積回路装置。   3. The semiconductor integrated circuit device according to claim 1, wherein the energization element is a first resistance element. 第2の抵抗素子と第2のスイッチ素子とを縦続接続した回路を、前記縦続接続回路の一端と他端との間に並列に付加することを特徴とする請求項1記載の半導体集積回路装置。   2. The semiconductor integrated circuit device according to claim 1, wherein a circuit in which a second resistance element and a second switch element are cascade-connected is added in parallel between one end and the other end of the cascade connection circuit. . ヒューズ素子と第1のスイッチ素子との縦続接続回路と、
通電素子と、
前記縦続接続回路の一端と前記通電素子の一端とが入力端に接続され、前記ヒューズ素子の断続を判定する判定回路と、
を含むトリンミング検出回路を1または2以上備え、
共通に接続されるそれぞれの前記通電素子の他端と第1の電源との間、または、共通に接続されるそれぞれの前記縦続接続回路の他端と第2の電源との間に介在する測定端子を備える半導体集積回路装置のテスト方法であって、
テスト対象となるヒューズ素子を含むトリンミング検出回路中の前記第1のスイッチ素子のみを短絡して前記測定端子における電流を測定することを特徴とする半導体集積回路装置のテスト方法。
A cascade connection circuit of the fuse element and the first switch element;
An energizing element;
One end of the cascade connection circuit and one end of the energization element are connected to the input end, and a determination circuit for determining the disconnection of the fuse element,
Including one or more trimming detection circuits including
Measurement interposed between the other end of each energization element connected in common and the first power source, or between the other end of each cascade connection circuit connected in common and the second power source A method for testing a semiconductor integrated circuit device having terminals,
A test method for a semiconductor integrated circuit device, comprising: measuring only a current at the measurement terminal by short-circuiting only the first switch element in a trimming detection circuit including a fuse element to be tested.
前記電流を測定することで前記テスト対象となるヒューズ素子の抵抗値を求めることを特徴とする請求項6記載の半導体集積回路装置のテスト方法。   7. The method of testing a semiconductor integrated circuit device according to claim 6, wherein a resistance value of the fuse element to be tested is obtained by measuring the current. 前記テスト対象となるヒューズ素子の切断前後のそれぞれの前記電流を測定することで該ヒューズ素子の抵抗値を求めることを特徴とする請求項7記載の半導体集積回路装置のテスト方法。
8. The method of testing a semiconductor integrated circuit device according to claim 7, wherein the resistance value of the fuse element is obtained by measuring the current before and after the cutting of the fuse element to be tested.
JP2005255043A 2005-09-02 2005-09-02 Semiconductor integrated circuit device and method for testing the same Pending JP2007067340A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005255043A JP2007067340A (en) 2005-09-02 2005-09-02 Semiconductor integrated circuit device and method for testing the same
US11/514,235 US7474106B2 (en) 2005-09-02 2006-09-01 Semiconductor device including fuse and method for testing the same capable of suppressing erroneous determination
US12/202,903 US7629802B2 (en) 2005-09-02 2008-09-02 Semiconductor device including fuse and method for testing the same capable of suppressing erroneous determination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255043A JP2007067340A (en) 2005-09-02 2005-09-02 Semiconductor integrated circuit device and method for testing the same

Publications (1)

Publication Number Publication Date
JP2007067340A true JP2007067340A (en) 2007-03-15

Family

ID=37829912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255043A Pending JP2007067340A (en) 2005-09-02 2005-09-02 Semiconductor integrated circuit device and method for testing the same

Country Status (2)

Country Link
US (2) US7474106B2 (en)
JP (1) JP2007067340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011148926A1 (en) * 2010-05-28 2013-07-25 三洋電機株式会社 Power supply
JP2018054390A (en) * 2016-09-28 2018-04-05 株式会社ケーヒン Voltage detecting device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676590B2 (en) * 2004-05-03 2010-03-09 Microsoft Corporation Background transcoding
US7669121B2 (en) * 2005-01-19 2010-02-23 Microsoft Corporation Transcode matrix
US7738766B2 (en) * 2005-04-18 2010-06-15 Microsoft Corporation Sanctioned transcoding of digital-media content
US7558463B2 (en) * 2005-04-18 2009-07-07 Microsoft Corporation Retention of information about digital-media rights in transformed digital media content
US9436804B2 (en) * 2005-04-22 2016-09-06 Microsoft Technology Licensing, Llc Establishing a unique session key using a hardware functionality scan
US9363481B2 (en) 2005-04-22 2016-06-07 Microsoft Technology Licensing, Llc Protected media pipeline
US7924913B2 (en) * 2005-09-15 2011-04-12 Microsoft Corporation Non-realtime data transcoding of multimedia content
JP5168927B2 (en) * 2007-02-14 2013-03-27 株式会社リコー Semiconductor device and trimming method thereof
US7733096B2 (en) * 2007-04-02 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of testing fuse elements for memory devices
US7701226B2 (en) * 2007-07-03 2010-04-20 Kabushiki Kaisha Toshiba Systems and methods for determining the state of a programmable fuse in an IC
KR101274208B1 (en) * 2007-08-07 2013-06-17 삼성전자주식회사 Semiconductor device having contact failure detector
JP2010206114A (en) * 2009-03-05 2010-09-16 Renesas Electronics Corp Method of testing electric fuse, and electric fuse circuit
JP2010210238A (en) * 2009-03-06 2010-09-24 Renesas Electronics Corp Probe card, semiconductor inspection device equipped with the same and method for checking fuse of probe card
TWM351546U (en) * 2009-03-30 2009-02-21 Cheng Uei Prec Ind Co Ltd Circuit for acquiring battery-protected signals
US7932738B1 (en) * 2010-05-07 2011-04-26 Power Integrations, Inc. Method and apparatus for reading a programmable anti-fuse element in a high-voltage integrated circuit
KR20160084062A (en) * 2015-01-05 2016-07-13 에스케이하이닉스 주식회사 Semiconductor device and semiconductor system using the same
JP6314845B2 (en) * 2015-01-08 2018-04-25 株式会社オートネットワーク技術研究所 Electrical junction box
JP7368198B2 (en) * 2019-11-22 2023-10-24 ローム株式会社 Semiconductor device, memory abnormality determination system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258600A (en) * 1992-03-09 1993-10-08 Fujitsu Ltd Redundancy selecting circuit
JPH0793990A (en) * 1992-07-10 1995-04-07 Texas Instr Japan Ltd Semiconductor memory device and defective memory cell relief circuit
JPH07307389A (en) * 1994-05-07 1995-11-21 Samsung Electron Co Ltd Fuse element for semiconductor integrated circuit
JPH08274266A (en) * 1995-03-29 1996-10-18 Hitachi Ltd Fuse trimming circuit and semiconductor integrated circuit including the same
JPH1062477A (en) * 1996-08-14 1998-03-06 Toshiba Corp Semiconductor device and fuse checking method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437565B2 (en) * 1998-11-26 2010-03-24 富士通マイクロエレクトロニクス株式会社 Semiconductor integrated circuit device, semiconductor integrated circuit device design method, and recording medium
JP2003023085A (en) * 2001-07-05 2003-01-24 Seiko Instruments Inc Semiconductor integrated circuit
JP2003152087A (en) * 2001-11-15 2003-05-23 Mitsubishi Electric Corp Laser trimmed fuse detecting device for semiconductor integrated circuit and its method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258600A (en) * 1992-03-09 1993-10-08 Fujitsu Ltd Redundancy selecting circuit
JPH0793990A (en) * 1992-07-10 1995-04-07 Texas Instr Japan Ltd Semiconductor memory device and defective memory cell relief circuit
JPH07307389A (en) * 1994-05-07 1995-11-21 Samsung Electron Co Ltd Fuse element for semiconductor integrated circuit
JPH08274266A (en) * 1995-03-29 1996-10-18 Hitachi Ltd Fuse trimming circuit and semiconductor integrated circuit including the same
JPH1062477A (en) * 1996-08-14 1998-03-06 Toshiba Corp Semiconductor device and fuse checking method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011148926A1 (en) * 2010-05-28 2013-07-25 三洋電機株式会社 Power supply
JP2018054390A (en) * 2016-09-28 2018-04-05 株式会社ケーヒン Voltage detecting device
US10845420B2 (en) 2016-09-28 2020-11-24 Keihin Corporation Voltage detecting apparatus

Also Published As

Publication number Publication date
US7629802B2 (en) 2009-12-08
US20070053230A1 (en) 2007-03-08
US20090001994A1 (en) 2009-01-01
US7474106B2 (en) 2009-01-06

Similar Documents

Publication Publication Date Title
JP2007067340A (en) Semiconductor integrated circuit device and method for testing the same
KR100466984B1 (en) Integrated circuit chip having test element group circuit and method of test the same
US7573273B2 (en) Fuse cutting test circuit, fuse cutting test method, and semiconductor circuit
US10746812B2 (en) Semiconductor device, electronic circuit, and method of inspecting semiconductor device
CN103187097A (en) E-fuse macro
US20100225343A1 (en) Probe card, semiconductor testing device including the same, and fuse checking method for probe card
JP2006197124A (en) Semiconductor integrated circuit
US7622940B2 (en) Semiconductor device having contact failure detector
CN113711065B (en) Semiconductor integrated circuit device and inspection method for semiconductor integrated circuit device
JP3642555B2 (en) Semiconductor device and test method thereof
US6972612B2 (en) Semiconductor device with malfunction control circuit and controlling method thereof
JP4618598B2 (en) Semiconductor device
JP2018032981A (en) Semiconductor integrated circuit
JP2010272825A (en) Semiconductor integrated circuit device
JP2007141882A (en) Semiconductor device, its testing device and method
JP3783865B2 (en) Semiconductor device, burn-in test method, manufacturing method thereof, and burn-in test control circuit
JP2006269901A (en) Semiconductor integrated circuit and method of inspecting bonding option pad
KR100506667B1 (en) Semiconductor integrated circuit
JP4849390B2 (en) Method for adjusting analog semiconductor integrated circuit
JP2007108041A (en) Test signal generation circuit, function addition circuit module and inspection system for semiconductor device
JPH1090356A (en) Semiconductor device
KR100474986B1 (en) Semiconductor device
JP2018022789A (en) Semiconductor device and fuse state detection method
JP2024134706A (en) Semiconductor Device
JP2001014886A (en) Semiconductor integrated circuit device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410

OSZAR »