JP3093086B2 - Electric analysis method using battery cells - Google Patents
Electric analysis method using battery cellsInfo
- Publication number
- JP3093086B2 JP3093086B2 JP05222527A JP22252793A JP3093086B2 JP 3093086 B2 JP3093086 B2 JP 3093086B2 JP 05222527 A JP05222527 A JP 05222527A JP 22252793 A JP22252793 A JP 22252793A JP 3093086 B2 JP3093086 B2 JP 3093086B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- ion
- hexacyanoferrate
- working electrode
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004458 analytical method Methods 0.000 title claims description 13
- 239000000126 substance Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 23
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 22
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 claims description 19
- -1 Hexacyanoferrate (III) ion Chemical class 0.000 claims description 17
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 14
- 239000011149 active material Substances 0.000 claims description 14
- 235000013922 glutamic acid Nutrition 0.000 claims description 14
- 239000004220 glutamic acid Substances 0.000 claims description 14
- 150000002500 ions Chemical class 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- RXGJTUSBYWCRBK-UHFFFAOYSA-M 5-methylphenazinium methyl sulfate Chemical group COS([O-])(=O)=O.C1=CC=C2[N+](C)=C(C=CC=C3)C3=NC2=C1 RXGJTUSBYWCRBK-UHFFFAOYSA-M 0.000 claims description 11
- 239000011668 ascorbic acid Substances 0.000 claims description 11
- 235000010323 ascorbic acid Nutrition 0.000 claims description 11
- 229960005070 ascorbic acid Drugs 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 7
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 claims description 7
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 claims description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- MASUWVVNWALEEM-UHFFFAOYSA-M 1-methoxy-5-methylphenazin-5-ium;methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC=C2N=C3C(OC)=CC=CC3=[N+](C)C2=C1 MASUWVVNWALEEM-UHFFFAOYSA-M 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229950006238 nadide Drugs 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- UETZVSHORCDDTH-UHFFFAOYSA-N iron(2+);hexacyanide Chemical compound [Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] UETZVSHORCDDTH-UHFFFAOYSA-N 0.000 claims description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims 1
- 239000000243 solution Substances 0.000 description 42
- 238000005259 measurement Methods 0.000 description 39
- 239000000523 sample Substances 0.000 description 39
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 14
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000008363 phosphate buffer Substances 0.000 description 11
- AWDBHOZBRXWRKS-UHFFFAOYSA-N tetrapotassium;iron(6+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+6].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] AWDBHOZBRXWRKS-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 101000950981 Bacillus subtilis (strain 168) Catabolic NAD-specific glutamate dehydrogenase RocG Proteins 0.000 description 5
- 102000016901 Glutamate dehydrogenase Human genes 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 238000006911 enzymatic reaction Methods 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 238000000840 electrochemical analysis Methods 0.000 description 3
- 229960000907 methylthioninium chloride Drugs 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000012286 potassium permanganate Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WEGYGNROSJDEIW-UHFFFAOYSA-N 3-Acetylpyridine Chemical compound CC(=O)C1=CC=CN=C1 WEGYGNROSJDEIW-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940049906 glutamate Drugs 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ZYDGCYWJDWIJCS-UHFFFAOYSA-N 1-methoxyphenazine Chemical compound C1=CC=C2N=C3C(OC)=CC=CC3=NC2=C1 ZYDGCYWJDWIJCS-UHFFFAOYSA-N 0.000 description 1
- KPVQNXLUPNWQHM-RBEMOOQDSA-N 3-acetylpyridine adenine dinucleotide Chemical compound CC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 KPVQNXLUPNWQHM-RBEMOOQDSA-N 0.000 description 1
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007357 dehydrogenase reaction Methods 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005428 food component Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RSAZYXZUJROYKR-UHFFFAOYSA-N indophenol Chemical compound C1=CC(O)=CC=C1N=C1C=CC(=O)C=C1 RSAZYXZUJROYKR-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 229940101270 nicotinamide adenine dinucleotide (nad) Drugs 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 235000013555 soy sauce Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は電気分析方法に係わり、
電池セルを用いて電圧、電流、または、電気量の変化を
測定することで、目的の試料物質(化学種)の量を定量
する電気分析方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric analysis method,
The present invention relates to an electroanalysis method for quantifying the amount of a target sample substance (chemical species) by measuring a change in voltage, current, or amount of electricity using a battery cell.
【0002】[0002]
【従来の技術】電気分析方法を使用した測定において
は、定電圧または定電流下で試料物質に酸化還元などの
反応が起こる際の電気的な変化を測定することで、もと
の試料質量を定量する電気分解による方法が一般に知ら
れており、近年では導電性多孔質電極などを用いる測定
方法に応用されている。2. Description of the Related Art In a measurement using an electroanalytical method, the original mass of a sample is measured by measuring an electrical change when a reaction such as oxidation-reduction occurs on the sample material under a constant voltage or a constant current. A method based on electrolysis for quantification is generally known, and recently applied to a measurement method using a conductive porous electrode or the like.
【0003】イオン電極では、試料中に検出部である電
極を浸漬させ隔膜中を通過したイオンや電極膜と試料物
質から生成するイオンの間の平衡電位を電気的に測定す
る方法が一般に広く用いられている。導電性多孔質電極
を用いた方法では導電性の多孔質体に電解液を含浸させ
た検出室内で試料を直接電気分解して測定する方法 (特
開平1-195358号公報) などが知られている。しかし、特
開平1-195358号発明の方法では外部から電気エネルギー
を加えなければならないことや、測定装置の安定化のた
めに長時間が必要である。[0003] In the case of an ion electrode, a method of immersing an electrode serving as a detection unit in a sample and electrically measuring an equilibrium potential between ions passing through the diaphragm and ions generated from the electrode film and the sample substance is generally widely used. Have been. In the method using a conductive porous electrode, a method is known in which a sample is directly electrolyzed and measured in a detection chamber in which a conductive porous body is impregnated with an electrolytic solution (JP-A-1-195358). I have. However, in the method of Japanese Patent Application Laid-Open No. 1-195358, electric energy must be externally applied, and a long time is required for stabilizing the measuring device.
【0004】また、一般にメディエーターを介した反応
としては、脱水素酵素を用いた酵素反応系においてニコ
チンアミドアデニンジヌクレオチド (NAD) からニコ
チンアミドアデニンジヌクレオチド還元型 (NADH)
を生成する反応等にも利用されており、例えばグルタミ
ン酸脱水素酵素を用いて、グルタミン酸を定量するため
の比色法によるグルタミン酸測定キット (BMY社製)
などが市販されている。[0004] In general, as a reaction mediated by a mediator, nicotinamide adenine dinucleotide (NAD) is reduced to nicotinamide adenine dinucleotide (NADH) in an enzyme reaction system using a dehydrogenase.
Glutamic acid measurement kit (manufactured by BMY) using a colorimetric method for quantifying glutamic acid using, for example, glutamate dehydrogenase
Are commercially available.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記イオン電
極においては、隔膜中のイオン移動速度や、平衡に達す
るまでの応答速度が遅く測定に長時間を要すことや、測
定のたびに洗浄が必要であること等の問題があった。ま
た、電気分解を用いた電気分析法による測定に際して
は、目的とする試料物質の電気分解を行う為に、電極に
対して外部より一定の電圧を印加しておくか、または一
定の電流を通電しておく必要があるが、電圧印加時に、
両電極間が非平衡状態となり、いわゆる容量性電流が生
じる。したがって、目的とする試料物質を電気分解して
測定できるようになるまでには電圧を印加するたびごと
に長時間の安定化時間を要するといった大きな問題点が
ある。また定電圧発生装置や定電流発生装置が必要にな
るなど、装置自体が複雑になる問題点もある。However, in the above-mentioned ion electrode, the speed of ion movement in the diaphragm and the response speed until the equilibrium is reached are slow, and a long time is required for the measurement. There were problems such as necessity. In addition, when measuring by electroanalysis using electrolysis, apply a constant voltage to the electrodes or apply a constant current to the electrodes in order to perform the electrolysis of the target sample substance. It is necessary to keep
A non-equilibrium state is established between the two electrodes, and a so-called capacitive current is generated. Therefore, there is a large problem that a long stabilization time is required every time a voltage is applied before a target sample substance can be electrolyzed and measured. There is also a problem that the device itself becomes complicated, such as the need for a constant voltage generator or a constant current generator.
【0006】さらに、メディエーターを介した酵素反応
を利用して測定する方法においては、通常、酵素反応で
生成したNADHをさらにジアホラーゼ等で反応させ、
その後に吸光度を測定するといった煩雑な操作が必要で
あった。またこれら酵素を使用する場合、使用する酵素
などの保存性が悪く、冷蔵保存が必要であり、日常、常
温で使用する目的のセンサーなどには適用できず、実用
性に問題があった。更に、吸光度を測定する際、試料中
に着色物質が存在する時に正確な測定値が得られない等
の問題もある。[0006] In the method of measurement using an enzymatic reaction mediated by a mediator, NADH produced by the enzymatic reaction is usually further reacted with diaphorase or the like.
Thereafter, a complicated operation such as measuring the absorbance was required. In addition, when these enzymes are used, the preservability of the enzymes to be used is poor, and refrigerated storage is necessary. Therefore, they cannot be applied to sensors intended to be used at ordinary temperature at ordinary temperature, and there is a problem in practicality. Further, when measuring the absorbance, there is a problem that an accurate measurement value cannot be obtained when a coloring substance is present in the sample.
【0007】本発明は、前記の従来技術におけるこれら
問題点を解消し、外部からの電圧や電流等の電気エネル
ギーを必要とせず、しかも、簡便迅速に、測定すべき試
料物質の定量を行うことのできる電気分析方法を提供す
ることを目的とするものである。The present invention solves the above-mentioned problems in the prior art, and does not require external electric energy such as voltage or current, and simply, quickly and quantitatively determines a sample substance to be measured. It is an object of the present invention to provide an electric analysis method capable of performing the following.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、鋭意研究を重ねた結果、分析用電極
の作用極の構成成分と定量すべき試料物質との酸化還元
反応によって作用極と対極との間に電極化学ポテンシャ
ルの差に基づく電位差が生じ、その電位差によって発生
する電気量が試料物質の定量と密接に関連することを知
見し、また、両電極の構成成分を選択することで電極反
応が自発的にかつ迅速に進行することを見出し、本発明
を完成するに至った。Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have found that the redox reaction between the components of the working electrode of the analytical electrode and the sample substance to be quantified. A potential difference was created between the working electrode and the counter electrode based on the difference in electrode chemical potential, and it was found that the amount of electricity generated by the potential difference was closely related to the quantification of the sample substance, and the components of both electrodes were selected. As a result, they found that the electrode reaction spontaneously and rapidly progressed, and completed the present invention.
【0009】即ち、本発明は、試料物質を含有する液体
である作用極、ヘキサシアノ鉄(III)酸イオン、ヘキ
サシアノ鉄(II)酸イオン、過マンガン酸イオンまたは
これらの混合物からなる群から選択される電池活物質を
含有する液体である対極、及び両電極に接触するイオン
流通可能な隔膜から構成される電池セルを使用して、両
電極間に外部から電圧を印加することなく両電極間に発
生する電圧、電流または電気量の中の少なくとも1種以
上を測定し、試料物質を定量することを特徴とする試料
物質の電気分析方法である。That is, the present invention is selected from the group consisting of a working electrode which is a liquid containing a sample substance, hexacyanoferrate (III) ion, hexacyanoferrate (II) ion, permanganate ion or a mixture thereof. Using a battery cell composed of a counter electrode, which is a liquid containing a battery active material, and an ion-permeable diaphragm in contact with both electrodes, between the two electrodes without applying an external voltage between the two electrodes An electrical analysis method for a sample substance, characterized in that at least one or more of the generated voltage, current, and electric quantity are measured to quantify the sample substance.
【0010】更に、本発明は上記電池セルを用いて、N
ADHまたはその誘導体を指標としてグルタミン酸を測
定するグルタミン酸の電気分析方法である。更に、本発
明は上記電池セルにおいて、作用極に電解質を含ませ、
かつ対極の電池活物質にヘキサシアノ鉄(II)酸イオン
を使用した上記電池セルを用いて、過マンガン酸カリウ
ムを指標として化学的酸素要求量(COD)を測定する
CODの電気分析方法である。Further, the present invention provides an N-type battery using the above-mentioned battery cell.
This is an electroanalysis method of glutamic acid in which glutamic acid is measured using ADH or a derivative thereof as an index. Further, the present invention, in the above battery cell, including an electrolyte in the working electrode,
This is a COD electrical analysis method for measuring chemical oxygen demand (COD) using potassium permanganate as an index using the above-mentioned battery cell using hexacyanoferrate (II) ion as a battery active material of a counter electrode.
【0011】更に、本発明は、作用極に電解質を含ま
せ、かつ対極の電池活物質にヘキサシアノ鉄(II)酸イ
オンおよびヘキサシアノ鉄(III)酸イオンを使用した上
記電池セルを用いて、過マンガン酸カリウムを指標とし
てCODを測定するCODの電気分析方法である。更
に、本発明は上記電池セルにおいて、作用極に電解質お
よび/または3,7ビス(ジメチルアミノ)フェノチア
ジン−5−イウムクロライドを含ませ、かつ対極の電池
活物質にヘキサシアノ鉄(III)酸イオンを使用した上
記電池セルを用いて、アスコルビン酸を測定するアスコ
ルビン酸の電気分析方法である。Further, the present invention provides a battery using the above-mentioned battery cell in which an electrolyte is contained in a working electrode and hexacyanoferrate (II) ion and hexacyanoferrate (III) ion are used as a battery active material of a counter electrode. This is a COD electrical analysis method in which COD is measured using potassium manganate as an index. Further, the present invention provides the above battery cell, wherein the working electrode contains an electrolyte and / or 3,7 bis (dimethylamino) phenothiazine-5-ium chloride, and the counter electrode battery active material contains hexacyanoferrate (III) ion. An ascorbic acid electroanalytical method for measuring ascorbic acid using the above-mentioned battery cell using the above method.
【0012】試料物質は、電池活物質またはメディエー
ターと反応して電池活物質を生成する物質(化学種)で
あり、該試料物質が電池反応により、短時間に放電する
際に発生する電気エネルギーを測定し、その量を定量す
ることを要旨とする電気分析方法である。従って、従来
の外部から電気エネルギーを加えることで試料を電気分
解して定量する方法とは全く異なった原理に基づくもの
である。A sample substance is a substance (chemical species) that generates a battery active material by reacting with a battery active material or a mediator. The sample substance discharges electric energy generated when the sample substance is discharged in a short time by a battery reaction. This is an electrical analysis method whose main purpose is to measure and quantify the amount. Therefore, it is based on a completely different principle from the conventional method of electrolyzing and quantifying a sample by applying electric energy from the outside.
【0013】本発明において使用する作用極とは上記試
料物質を含有する電極であり、作用極中に電極液および
/またはメディエーターを含有することができる。電極
液は電解質溶液であればいずれでも良いが、例えば塩
酸、硫酸、塩化カリウム溶液またはリン酸緩衝液などが
用いられる。また、メディエーターとしては5−メチル
フェナジニウムメチルサルフェート(フェナジンメトサ
ルフェート)、1−メトキシ−5−メチルフェナジニウ
ムメチルサルフェート(メトキシフェナジンメトサルフ
ェート)、9−ジメチルアミノベンゾ〔α〕フェノキサ
ジン−7−イウムクロライド(メルドラブルー)または
3,7ビス(ジメチルアミノ)フェノチアジン−5−イ
ウムクロライド(メチレンブルー)及びそれらの塩類な
どが使用できる。The working electrode used in the present invention is an electrode containing the above-mentioned sample substance, and the working electrode can contain an electrode solution and / or a mediator. The electrode solution may be any electrolyte solution, for example, hydrochloric acid, sulfuric acid, potassium chloride solution or phosphate buffer solution. Examples of mediators include 5-methylphenazinium methyl sulfate (phenazine methosulfate), 1-methoxy-5-methylphenazinium methyl sulfate (methoxyphenazine methosulfate), and 9-dimethylaminobenzo [α] phenoxazine-7. -Ium chloride (Meldra blue) or 3,7 bis (dimethylamino) phenothiazine-5-ium chloride (methylene blue) and salts thereof can be used.
【0014】対極とはヘキサシアノ鉄(III)酸イオ
ン、ヘキサシアノ鉄(II)酸イオン、過マンガン酸イオ
ン及びこれらの混合物からなる群から選択される電池活
物質を含有する電極である。また、前記イオンとして
は、ヘキサシアノ鉄(III)酸カリウム、ヘキサシアノ
鉄(II)酸カリウムなどの塩類を電極液に溶解して解離
したイオンを使用することができる。両電極に接触する
イオン流通可能な隔膜としては、両電極内に含有する物
質が直接混合せずにイオンが通過できる材質であればい
ずれも使用することができるが、例えば、イオン交換膜
や、塩橋として用いる電解質を含む寒天ゲルなどが利用
できる。The counter electrode is an electrode containing a battery active material selected from the group consisting of hexacyanoferrate (III) ions, hexacyanoferrate (II) ions, permanganate ions and mixtures thereof. Further, as the ion, an ion obtained by dissolving a salt such as potassium hexacyanoferrate (III) or potassium hexacyanoferrate (II) in an electrode solution can be used. As the ion-permeable diaphragm in contact with both electrodes, any material can be used as long as the material contained in both electrodes can pass ions without directly mixing, for example, an ion-exchange membrane, An agar gel containing an electrolyte used as a salt bridge can be used.
【0015】本発明に使用する装置は、電極間に外部か
ら電圧を印加するなどの電圧発生装置等は不要であり、
検出器として、電圧計、電流計または電流積算計の中の
少なくとも1種以上があれば良く特に限定されるもので
はない。また、両電極には電気量などの測定の際に、電
池反応を迅速に遂行するためにカーボンや金属などの集
電効果の高い導電体を挿入して用いることもできる。例
えば、カーボンとしては通常市販されているものならい
ずれでもよくカーボンフェルトなどが使用できる。金属
としては導電性の高いものならいずれでも良く、例えば
金、白金、銀、鉛などが使用できる。The device used in the present invention does not require a voltage generator or the like for applying an external voltage between the electrodes.
The detector is not particularly limited as long as it has at least one of a voltmeter, an ammeter and a current integrator. In addition, a conductor having a high current collecting effect, such as carbon or metal, may be inserted into both electrodes to quickly perform a battery reaction when measuring the quantity of electricity or the like. For example, any commercially available carbon may be used, and carbon felt and the like can be used. Any metal may be used as long as it has high conductivity. For example, gold, platinum, silver, lead and the like can be used.
【0016】[0016]
【作用】本発明の構成と作用を説明する。溶液に溶存し
ている電気化学的に活性な物質(電気化学的活性種)は
それぞれ固有の電極電位を示す。そしてこれらの物質は
電極との間に電位差を生じ、外部から十分な電圧を印加
すれば電気分解することができる。この場合、片方の電
極では酸化反応が、他方の電極では還元反応が起こる。
これは電気分解の原理であり、電気エネルギーの化学エ
ネルギーへの変換と考えることができる。The structure and operation of the present invention will be described. Each electrochemically active substance (electrochemically active species) dissolved in the solution exhibits a unique electrode potential. These substances generate a potential difference between the electrodes, and can be electrolyzed by applying a sufficient voltage from the outside. In this case, an oxidation reaction occurs on one electrode and a reduction reaction occurs on the other electrode.
This is the principle of electrolysis and can be considered as the conversion of electrical energy into chemical energy.
【0017】ところで、一般に電極酸化の起こる電位は
電極還元の起こる電位よりも貴な電位であることが多
く、この場合は外部から電圧を印加するなど、電気エネ
ルギーを与えなければ、電気分解が起こらず、従ってこ
のままの状態では電気分析を行うことは出来ない。しか
し、本発明者らは鋭意研究を重ねた結果、対極に電池活
物質としてヘキサシアノ鉄(III)酸イオン、ヘキサシ
アノ鉄(II)酸イオン、過マンガン酸イオン及びこれら
の混合物からなる群から選択される極めて貴な電位で電
極還元する物質を用い、作用極に電池活物質として還元
型5−メチルフェナジニウムメチルサルフェート、還元
型1−メトキシ−5−メチルフェナジニウムメチルサル
フェート、還元型9−ジメチルアミノベンゾ〔α〕フェ
ノキサジン−7−イウムクロライド、還元型3,7ビス
(ジメチルアミノ)フェノチアジン−5−イウムクロラ
イド、ヘキサシアノ鉄(II)酸イオンまたはアスコルビ
ン酸など、極めて卑な電位で電極酸化される物質を用
い、両電極間にイオンが通過できる隔膜を有する電池セ
ルとすることで、外部から電気エネルギーを加えること
無く、化学エネルギーが電気エネルギーに自発的かつ迅
速に変換されることを見いだした。即ち、試料物質の持
つ化学エネルギーを電池反応により発生する電気エネル
ギーとして測定することで試料物質を定量することので
きる電気分析方法を発明するに至った。In general, the potential at which electrode oxidation occurs is often higher than the potential at which electrode reduction occurs. In this case, unless electrical energy is applied, such as by applying an external voltage, electrolysis occurs. Therefore, electrical analysis cannot be performed in this state. However, the inventors of the present invention have conducted intensive studies, and as a result, have been selected from the group consisting of hexacyanoferrate (III) ion, hexacyanoferrate (II) ion, permanganate ion, and a mixture thereof as a battery active material at the counter electrode. A material that reduces the electrode at a very noble potential is used as a battery active material for the working electrode, and reduced 5-methylphenazinium methyl sulfate, reduced 1-methoxy-5-methylphenazinium methyl sulfate, reduced 9- Dimethylaminobenzo [α] phenoxazine-7-ium chloride, reduced 3,7bis (dimethylamino) phenothiazine-5-ium chloride, hexacyanoferrate (II) ion or ascorbic acid By using a material that can be oxidized, the battery cell has a diaphragm through which ions can pass between both electrodes. Without applying electrical energy from chemical energy it has been found to be spontaneously and rapidly converted into electrical energy. That is, the inventors have invented an electric analysis method capable of quantifying a sample substance by measuring the chemical energy of the sample substance as electric energy generated by a battery reaction.
【0018】例えば、作用極にフェナジンメトサルフェ
ート溶液、対極にヘキサシアノ鉄(III)酸カリウム溶
液を用いると、両極中の溶液に含まれるメディエーター
と電気化学的活性種のいずれも酸化型であるためそのま
までは反応は起こらない。しかし、ここで作用極にフェ
ナジンメトサルフェートを還元する物質、例えばNAD
Hやその誘導体を加えて還元を行うと、生成した還元型
フェナジンメトサルフェートの酸化は、対極のヘキサシ
アノ鉄(III)酸イオンの還元より卑な電位で起こるた
め、従って、両電極 (作用極と対極) 間に電気化学ポテ
ンシャルに基づく電位差が生じることになり、その結果
電池反応が起こり、対極の溶液が十分存在すれば、還元
型フェナジンメトサルフェートが全て酸化型になるまで
続く。そしてこの電池反応によって流れた電流を測定す
れば、フェナジンメトサルフェートを還元した還元剤の
量を定量することができる。即ち、NADH及びその誘
導体の定量をすることができる。For example, when a phenazine methosulfate solution is used for the working electrode and a potassium hexacyanoferrate (III) solution is used for the counter electrode, both the mediator and the electrochemically active species contained in the solutions in both electrodes are oxidized, so that they are used as they are. No reaction occurs. However, a substance that reduces phenazine methosulfate at the working electrode, for example, NAD
When H or a derivative thereof is added and reduction is performed, the oxidation of the resulting reduced phenazine methosulfate occurs at a potential lower than that of the reduction of the hexacyanoferrate (III) ion at the counter electrode. A potential difference based on the electrochemical potential occurs between the (counter electrode) and, as a result, a battery reaction occurs, and if there is a sufficient solution of the counter electrode, the reduction continues until all of the reduced phenazine methosulfate becomes the oxidized form. By measuring the current flowing through the battery reaction, the amount of the reducing agent that reduced phenazine methosulfate can be determined. That is, NADH and its derivatives can be quantified.
【0019】図1に示すのは本発明に使用される装置概
略図の例である。電池セル1は作用極2と対極3及び、
隔膜4として用いるイオン交換膜 (旭硝子製陽イオン交
換膜CMV) より構成され、白金線5を通して電流積算
計6 (日厚計測製NDCM−1) に接続されている。作
用極2、対極3に所定の電極液を入れ、被測定試料物質
を含む溶液をシリンジなどで一定量を作用極2に添加
し、前記原理に基づく電池反応を起こさせてその際流れ
る電気量を計測することにより試料中の被測定試料物質
を定量できる。FIG. 1 shows an example of a schematic diagram of an apparatus used in the present invention. The battery cell 1 has a working electrode 2 and a counter electrode 3, and
It is composed of an ion exchange membrane (Cation Exchange Membrane CMV manufactured by Asahi Glass Co., Ltd.) used as the diaphragm 4 and is connected to a current integrator 6 (NDCM-1 manufactured by Nissan Keisoku) through a platinum wire 5. A predetermined electrode solution is put into the working electrode 2 and the counter electrode 3, and a certain amount of the solution containing the sample substance to be measured is added to the working electrode 2 with a syringe or the like, and a battery reaction based on the above principle is caused to flow and the amount of electricity flowing at that time By measuring the measurement, the substance to be measured in the sample can be quantified.
【0020】[0020]
【実施例】以下、本発明を実施例により具体的に説明す
る。但し、本発明はこれら実施例によりその技術的範囲
が限定されるものではない。 (実施例1) メディエーターの選択 図1の装置を用い、NADHを測定する際に使用するメ
ディエーターの違いによる測定時間の差を計測した。The present invention will be described below in more detail with reference to examples. However, the technical scope of the present invention is not limited by these examples. (Example 1) Selection of mediator The difference in the measurement time due to the difference in the mediator used when measuring NADH was measured using the apparatus in Fig. 1.
【0021】作用極にメディエーターとして、ヘキサシ
アノ鉄(III) 酸カリウム、ビタミンK3、メチレンブル
ー、フェナジシメトサルフェート (以上和光純薬工業
製)、メトキシフェナジンメトサルフェート (同仁化学
研究所製) 、メルドラブルー(ナカライテスク製) を使
用した。各メディエーター0.1Mを、それぞれ0.1Mリ
ン酸緩衝溶液pH7.0に溶解して3mlとし、それぞれの溶
液を電極液に使用した。対極には0.1Mヘキサシアノ鉄
(III)酸カリウム溶液 (0.1Mリン酸緩衝液pH7.0の3
mlに溶解) を電極液として用いて、NADH (10-3M)
を試料物質とし、両電極間に外部より電圧を印加するこ
となく測定した。Potassium hexacyanoferrate (III), vitamin K 3 , methylene blue, phenazisimethosulphate (all manufactured by Wako Pure Chemical Industries), methoxyphenazine methsulphate (manufactured by Dojindo Laboratories), Meldora Blue (made by Nacalai Tesque) was used. Each mediator (0.1M) was dissolved in 0.1M phosphate buffer (pH 7.0) to make 3 ml, and each solution was used as an electrode solution. The counter electrode is a 0.1 M potassium hexacyanoferrate (III) solution (0.1 M phosphate buffer pH 7.0, 3
NADH (10 -3 M)
Was used as a sample substance, and measurement was performed without applying an external voltage between both electrodes.
【0022】測定結果を表1に示すが、フェナジンメト
サルフェート、メトキシフェナジンメトサルフェート、
メルドラブルーをメディエーターに用いた場合の測定時
間は約30秒と非常に短時間であった。The measurement results are shown in Table 1. The results are shown in Table 1. Phenazine methosulfate, methoxyphenazine methosulfate,
The measurement time when Meldora Blue was used as a mediator was as short as about 30 seconds.
【0023】[0023]
【表1】 [Table 1]
【0024】(実施例2) NADHの測定 図1の装置を用い、作用極に0.1Mフェナジンメトサル
フェート溶液、対極に0.1Mヘキサシアノ鉄(III)酸
カリウム溶液(各0.1Mリン酸緩衝液pH7.0に溶解) 各
3mlづつを入れ、各種濃度のNADH溶液 (40mMリン酸
緩衝液pH7.0に溶解) の測定を行った。各10μL の試料
に対しての測定結果を図2に示したが、NADHの濃度
と電流積算計の測定値との間には良好な直線関係が得ら
れた。また、繰り返し再現性については、いずれの試料
の場合も、10回繰り返した時の変動係数(以下、CV値
とする)は2%以内であり優れた再現性を示した。ま
た、作用極と対極にカーボンフェルト(日本カーボン製
GF-20-5F)を挿入して同様に測定した結果、NADHの
濃度と電流積算計の測定値との間には良好な直線関係が
得られた。さらに、5×10-4M NADH溶液10μL を繰
り返し測定した結果、200 回以上安定して測定できた。
そのときのCV値は2%以内であった。Example 2 Measurement of NADH Using the apparatus shown in FIG. 1, a 0.1 M phenazine methosulfate solution was used for the working electrode, and a 0.1 M potassium hexacyanoferrate (III) solution (each 0.1 M phosphate buffer) was used for the counter electrode. (Dissolved in pH 7.0 solution) 3 ml each was added, and NADH solutions of various concentrations (dissolved in 40 mM phosphate buffer pH 7.0) were measured. The measurement results for each 10 μL sample are shown in FIG. 2, and a good linear relationship was obtained between the concentration of NADH and the value measured by the current integrator. Regarding the repetition reproducibility, the coefficient of variation (hereinafter referred to as CV value) after repeating 10 times was within 2% for all samples, showing excellent reproducibility. In addition, carbon felt (Nippon Carbon
GF-20-5F) was inserted and the same measurement was performed. As a result, a good linear relationship was obtained between the concentration of NADH and the value measured by the current integrator. Furthermore, as a result of repeatedly measuring 10 μL of the 5 × 10 −4 M NADH solution, the measurement was stably performed 200 times or more.
The CV value at that time was within 2%.
【0025】(実施例3) グルタミン酸脱水素酵素で
生成するNADHの定量によるグルタミン酸量測定 本発明者らが見いだした基質特異性と安定性に優れたグ
ルタミン酸脱水素酵素(特願平4-194245号発明) を用い
て本発明によるグルタミン酸の定量を行った。本酵素の
反応は以下の通りである。Example 3 Measurement of Glutamate Amount by Quantifying NADH Produced by Glutamate Dehydrogenase Glutamate dehydrogenase found by the present inventors and having excellent substrate specificity and stability (Japanese Patent Application No. 4-194245) ) Was used to determine the amount of glutamic acid according to the present invention. The reaction of this enzyme is as follows.
【0026】[0026]
【化1】 Embedded image
【0027】即ち、特願平4-194245号発明の実施例1記
載のグルタミン酸脱水素酵素含有溶液 (4U/ml 20mMリ
ン酸緩衝液pH7.0溶液) 10μL と、基質としてNAD+
を含む各種濃度のグルタミン酸ナトリウム溶液 (20mMリ
ン酸緩衝液pH7.0溶液、NAD+は20mg/ml含有)990μ
Lを30℃で3分間混合した溶液10μL を実施例2と同様
の条件で測定した。That is, 10 μL of the glutamate dehydrogenase-containing solution described in Example 1 of Japanese Patent Application No. 4-194245 (4 U / ml 20 mM phosphate buffer pH 7.0 solution) and NAD + as a substrate were used .
Sodium glutamate solution of various concentrations containing (20 mM phosphate buffer pH 7.0 solution, NAD + contains 20 mg / ml) 990 μ
10 μL of a solution obtained by mixing L at 30 ° C. for 3 minutes was measured under the same conditions as in Example 2.
【0028】図3に結果を示すが、NADHを指標とし
た測定値とグルタミン酸濃度の間には良好な直線関係が
得られた。同様にして市販醤油中のグルタミン酸含量を
測定し、アミノ酸分析計の測定値と比較した結果、アミ
ノ酸分析計 (日本電子製JLC−300) による測定値
は11.3g/L 、本発明による測定値は11.2g/L とよく
一致した。また、同じ試料についてグルタミン酸測定キ
ット (BMY社製) を用いて測定した結果は11.0g/L
であった。尚、測定時間はアミノ酸分析計が1試料に約
1.5時間、グルタミン酸測定キットが20分を要したのに
対し、本発明によれば約50秒(酵素反応時間を入れると
約4分)で測定でき、迅速測定が可能であった。FIG. 3 shows the results. A good linear relationship was obtained between the measured value using NADH as an index and the glutamic acid concentration. Similarly, the glutamic acid content in commercially available soy sauce was measured and compared with the measured value of the amino acid analyzer. As a result, the measured value by the amino acid analyzer (JLC-300 manufactured by JEOL Ltd.) was 11.3 g / L, and the measured value by the present invention was This was in good agreement with 11.2 g / L. The same sample was measured using a glutamic acid measurement kit (manufactured by BMY). The result was 11.0 g / L.
Met. The measurement time was about one sample for the amino acid analyzer.
According to the present invention, the measurement was performed in about 50 seconds (approximately 4 minutes including the enzyme reaction time), whereas the glutamic acid measurement kit required 20 minutes in 1.5 hours, and rapid measurement was possible.
【0029】さらに、本実施例において、使用する酵素
は通常用いられる固定化法により作用電極中に固定化し
て使用することも可能であった。 (実施例4) グルタミン酸脱水素酵素で生成するNA
DH誘導体の定量によるグルタミン酸量測定 グルタミン酸脱水素酵素反応の補酵素として3−アセチ
ルピリジンNAD(シグマ社製)を用い、酵素反応を50
℃で20分間行った以外は実施例3と同じ条件で測定を行
ったところ、酵素反応で生成する3−アセチルピリジン
NADHを指標とした本発明による測定値とグルタミン
酸濃度の間には良好な直線関係が得られた。また測定時
間は約30秒と非常に短時間で測定可能であった。Further, in this example, the enzyme used could be immobilized in the working electrode by a commonly used immobilization method. Example 4 NA Generated by Glutamate Dehydrogenase
Measurement of Glutamate Amount by Quantification of DH Derivative Using 3-acetylpyridine NAD (manufactured by Sigma) as a coenzyme for glutamate dehydrogenase reaction, 50
The measurement was performed under the same conditions as in Example 3 except that the measurement was performed at 20 ° C. for 20 minutes. A good linear relationship was found between the measured value according to the present invention using 3-acetylpyridine NADH generated by the enzyme reaction as an index and the glutamic acid concentration. The relationship was obtained. The measurement time was as short as about 30 seconds.
【0030】(実施例5) 化学的酸素要求量(CO
D)の測定(1) 図1の装置を用い、作用極に0.1M塩化カルシウムを含
有する1N塩酸溶液3mlを電極液として使用し、対極に
電池活物質となる0.01Mヘキサシアノ鉄(II)酸カリウ
ムと0.1 M塩化カリウムを含有する1N塩酸溶液3mlを
電極液として入れ、各種試料のCODを測定した。Example 5 Chemical oxygen demand (CO
D) Measurement (1) Using the apparatus of FIG. 1, 3 ml of a 1N hydrochloric acid solution containing 0.1 M calcium chloride was used as a working electrode as an electrode solution, and 0.01 M hexacyanoferrate (II) as a battery active material was used as a counter electrode. 3 ml of a 1N hydrochloric acid solution containing potassium and 0.1 M potassium chloride was placed as an electrode solution, and the COD of each sample was measured.
【0031】試料としては、愛知県半田市の工場排水2
種類(A,B)、同下水処理水2種類(C,D)および
グルコース標準液(JISK8824記載)1mgO /L 、10mgO
/Lを用いた。測定は次の通り行った。ねじ付き試験管
(内容量10ml)に各試料2ml、47%硫酸0.4 ml、N/40
過マンガン酸カリウム0.2 mlをこの順に入れ混合し、密
栓した。5分間加熱したのち、室温まで冷却しこの混合
溶液の10μL を上記装置の作用極にシリンジで添加し測
定した。As a sample, a wastewater from a factory in Handa City, Aichi Prefecture 2
Type (A, B), 2 types of sewage treated water (C, D) and glucose standard solution (described in JIS K8824) 1 mgO / L, 10 mgO
/ L was used. The measurement was performed as follows. 2 ml of each sample, 0.4 ml of 47% sulfuric acid, N / 40
0.2 ml of potassium permanganate was added in this order, mixed, and sealed. After heating for 5 minutes, the mixture was cooled to room temperature, and 10 μL of this mixed solution was added to the working electrode of the above-mentioned apparatus with a syringe to measure.
【0032】その結果を、同じ試料についてJISK0102記
載の方法で測定した値と比較した結果を表2に示すが、
両者の測定値は良く一致した。測定に要した時間は約30
秒と短時間で、試料も微量で測定ができた。また、本実
施例の作用極と対極にカーボンフェルト(日本カーボン
製GF-20-5F)を挿入して同条件で測定したところ、前記
と同様な測定ができた。Table 2 shows the results of comparing the results with values measured by the method described in JISK0102 for the same sample.
Both measured values agreed well. Approximately 30 minutes
In a short period of time, a small amount of sample could be measured. When carbon felt (GF-20-5F manufactured by Nippon Carbon Co., Ltd.) was inserted into the working electrode and the counter electrode of this example, and the measurement was performed under the same conditions, the same measurement as described above was performed.
【0033】[0033]
【表2】 [Table 2]
【0034】(実施例6) 化学的酸素要求量(CO
D)の測定(2) 図1の装置を用い、作用極に1.5N硫酸溶液3mlを電極
液として使用し、対極に電池活物質となる0.02Mヘキサ
シアノ鉄(II)酸カリウムおよび0.02Mヘキサシアノ鉄(I
II)酸カリウムを含有する1.2N硫酸溶液3mlを電極液と
して入れ、各種試料のCODを測定した。試料として
は、埼玉県浦和市の浄化槽排水2種類(A,B)、同事
務所排水2種類(C,D)およびグルコース標準液(JI
SK8824記載)1mgO/L, 10mgO/Lを用いた。Example 6 Chemical oxygen demand (CO
D) Measurement (2) Using the apparatus shown in FIG. 1, 3 ml of a 1.5 N sulfuric acid solution was used as an electrode solution for the working electrode, and 0.02 M potassium hexacyanoferrate (II) and 0.02 M hexacyanoferron which were battery active materials were used as counter electrodes. (I
II) 3 ml of a 1.2N sulfuric acid solution containing potassium acid was added as an electrode solution, and the COD of each sample was measured. As samples, two types of wastewater from septic tanks (A, B), two types of wastewater from office (C, D) and glucose standard solution (JI
SK8824) 1 mgO / L and 10 mgO / L were used.
【0035】測定は、次の通り行った。ネジ付き試験管
(内容量10ml) に各種試料2ml、47%硫酸0.4ml、1M
硝酸銀溶液0.2ml、N/40過マンガン酸カリウム0.2mlを
この順に入れ混合し、密栓した。5分間加熱した後、水
で冷却しこの混合溶液の10μLを上記装置の作用極にシ
リンジで添加し測定した。The measurement was performed as follows. 2 ml of various samples, 0.4 ml of 47% sulfuric acid, 1M
0.2 ml of silver nitrate solution and 0.2 ml of N / 40 potassium permanganate were added in this order, mixed, and sealed. After heating for 5 minutes, the mixture was cooled with water, and 10 μL of this mixed solution was added to the working electrode of the above-mentioned apparatus with a syringe and measured.
【0036】同じ試料についてJISK0102記載の方法で測
定した値と比較した結果を表3に示すが、両者の測定値
は良く一致した。測定に要した時間は約30秒と短時間
で、試料も微量で測定できた。また、本実施例の作用極
と対極にカーボンフェルト(日本カーボン製GF-20-5F)
を挿入して同条件で測定したところ、前記と同様な測定
ができた。Table 3 shows the results of comparison of the same sample with values measured by the method described in JIS K0102, and the measured values of the two samples agreed well. The time required for the measurement was as short as about 30 seconds, and a small amount of the sample could be measured. In addition, carbon felt (GF-20-5F made by Nippon Carbon Co., Ltd.)
Was measured under the same conditions, and the same measurement as described above was performed.
【0037】[0037]
【表3】 [Table 3]
【0038】(実施例7) アスコルビン酸の測定 図1の装置を用い、作用極に10mMメチレンブルー溶液
(0.4Mリン酸緩衝液pH 5.0に溶解)3ml、対極に0.4Mヘ
キサシアノ鉄(III)酸カリウム溶液(0.4Mリン酸緩衝
液pH 7.3)3mlを電極液として入れ、1〜200 mg/100
mlの各種濃度のアスコルビン酸溶液の測定を行った結
果、アスコルビン酸溶液の各濃度と本発明による電気量
測定値の間には良好な直線関係が得られた。なお、その
際の試料物質量は5μLと微量であり、測定時間は約40
秒と迅速であり、同じ試料を繰り返し測定したときのC
V値は2%以下ときわめて安定したものであった。Example 7 Measurement of Ascorbic Acid Using the apparatus shown in FIG. 1, 3 ml of a 10 mM methylene blue solution (dissolved in 0.4 M phosphate buffer, pH 5.0) was used for the working electrode, and 0.4 M potassium hexacyanoferrate (III) was used for the counter electrode. 3 ml of a solution (0.4 M phosphate buffer, pH 7.3) was added as an electrode solution, and 1 to 200 mg / 100
As a result of measurement of ascorbic acid solutions having various concentrations of ml, a good linear relationship was obtained between each concentration of the ascorbic acid solution and the measured value of electricity according to the present invention. The amount of the sample substance at that time was as small as 5 μL, and the measurement time was about 40 μL.
Seconds and the C
The V value was very stable at 2% or less.
【0039】また、作用極の電極液にpH 5.0の0.4Mリ
ン酸緩衝液を使用しても同様に測定できた。更に、作用
極と対極中にカーボンフェルト(日本カーボン製GF-20-
5F)を挿入した電極を用いても同様な測定結果が得られ
た。 (実施例8) 各種市販食品中のアスコルビン酸の測定 図1の装置を用い、作用極にpH 5.0の0.4Mリン酸緩衝
液3mlを電極液として使用し、対極に0.1Mヘキサシアノ
鉄(III)酸カリウム溶液3ml(O.4Mリン酸緩衝液pH
7.3)を電極液として入れ、各種市販食品中のアスコル
ビン酸の測定を行った。また、同じ試料についてインド
フェノール滴定法およびHPLC法(高速液体クロマト
グラフ法)(社団法人日本食品衛生協会発行、食品衛生
検査指針1989年版361〜363頁)による測定を行い各々を
比較した結果、表4に示すように良く一致した測定結果
が得られた。Further, the same measurement was possible even when a 0.4 M phosphate buffer of pH 5.0 was used as the electrode solution of the working electrode. In addition, carbon felt (GF-20- made by Nippon Carbon Co., Ltd.)
Similar measurement results were obtained using the electrode into which 5F) was inserted. Example 8 Measurement of Ascorbic Acid in Various Commercial Foods Using the apparatus of FIG. 1, 3 ml of 0.4 M phosphate buffer at pH 5.0 was used as the working electrode as the electrode solution, and 0.1 M hexacyanoiron (III) was used as the counter electrode. 3 ml of potassium acid solution (0.4 M phosphate buffer pH
7.3) was used as an electrode solution, and ascorbic acid in various commercial foods was measured. In addition, the same sample was measured by indophenol titration method and HPLC method (high-performance liquid chromatography method) (published by the Japan Food Sanitation Association, Food Sanitation Inspection Guideline 1989, pages 361 to 363), and the results were compared. As shown in FIG. 4, well-matched measurement results were obtained.
【0040】[0040]
【表4】 [Table 4]
【0041】[0041]
【発明の効果】本発明は、外部より電圧等の電気エネル
ギーを加えることなく迅速に試料物質を定量する電気分
析方法を提供し、グルタミン酸やアスコルビン酸などの
食品成分分析や、CODなどの水質分析など、産業上極
めて有用である。The present invention provides an electroanalytical method for quickly quantifying a sample substance without applying electric energy such as voltage from the outside, and analyzing food components such as glutamic acid and ascorbic acid and water quality analysis such as COD. It is extremely useful in industry.
【図1】本発明方法の実施に使用する装置を示す図であ
る。FIG. 1 is a diagram showing an apparatus used to carry out the method of the present invention.
【図2】NADH濃度と測定値との関係を示すグラフで
ある。FIG. 2 is a graph showing the relationship between NADH concentration and measured values.
【図3】グルタミン酸濃度と測定値との関係を示すグラ
フである。FIG. 3 is a graph showing a relationship between a glutamic acid concentration and a measured value.
1 電池セル 2 作用極 3 対極 4 隔膜 5 白金線 6 電流積算計 Reference Signs List 1 battery cell 2 working electrode 3 counter electrode 4 diaphragm 5 platinum wire 6 current integrator
フロントページの続き (56)参考文献 特開 平2−213762(JP,A) 実開 昭59−124351(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01N 27/28 Continuation of the front page (56) References JP-A-2-213762 (JP, A) JP-A-59-124351 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27 / 416 G01N 27/28
Claims (7)
ヘキサシアノ鉄(III)酸イオン、ヘキサシアノ鉄(I
I)酸イオン、過マンガン酸イオンまたはこれらの混合
物からなる群から選択される電池活物質を含有する液体
である対極、及び両電極に接触するイオン流通可能な隔
膜から構成される電池セルを使用して、両電極間に外部
から電圧を印加することなく両電極間に発生する電圧、
電流または電気量の中の少なくとも1種以上を測定し、
試料物質を定量することを特徴とする試料物質の電気分
析方法。A working electrode which is a liquid containing a sample substance;
Hexacyanoferrate (III) ion, hexacyanoferrate (I
I) A battery cell comprising a counter electrode which is a liquid containing a battery active material selected from the group consisting of acid ions, permanganate ions or a mixture thereof, and an ion-permeable diaphragm in contact with both electrodes A voltage generated between the electrodes without applying an external voltage between the electrodes,
Measuring at least one of electric current or electric quantity,
An electrical analysis method for a sample substance, which comprises quantifying the sample substance.
ーターを含有することを特徴とする請求項1記載の電気
分析方法。2. The method according to claim 1, wherein the working electrode contains an electrode solution and / or a mediator.
ウムメチルサルフェート、1−メトキシ−5−メチル−
フェナジニウムメチルサルフェート、9−ジメチルアミ
ノベンゾ〔α〕フェノキサジン−7−イウムクロライ
ド、3,7ビス(ジメチルアミノ)フェノチアジン−5
−イウムクロライド、およびこれらの塩類の少なくとも
1種以上からなることを特徴とする請求項2記載の電気
分析方法。3. The method according to claim 1, wherein the mediator is 5-methylphenazinium methyl sulfate, 1-methoxy-5-methyl-
Phenazinium methyl sulfate, 9-dimethylaminobenzo [α] phenoxazine-7-ium chloride, 3,7bis (dimethylamino) phenothiazine-5
3. The method according to claim 2, wherein the method comprises at least one of -ium chloride and salts thereof.
チンアミドアデニンジヌクレオチド、またはその誘導体
を指標としてグルタミン酸を測定することを特徴とする
グルタミン酸の電気分析方法。4. An electrical analysis method for glutamic acid, comprising using the battery cell according to claim 1 to measure glutamic acid using nicotinamide adenine dinucleotide or a derivative thereof as an index.
池活物質にヘキサシアノ鉄(II)酸イオンを使用した請
求項1記載の電池セルを用いて、過マンガン酸カリウム
を指標として化学的酸素要求量を測定する化学的酸素要
求量の電気分析方法。5. The method according to claim 1, wherein the working electrode contains an electrolyte, and hexacyanoferrate (II) ion is used as a battery active material of the counter electrode. An electrical analysis method for chemical oxygen demand that measures oxygen demand.
るものまたは硫酸であることを特徴とする請求項5記載
の化学的酸素要求量の電気分析方法。6. The method according to claim 5, wherein the electrolyte comprises hydrochloric acid and potassium chloride or sulfuric acid.
ス(ジメチルアミノ)フェノチアジン−5−イウムクロ
ライドを含ませ、かつ対極の電池活物質にヘキサシアノ
鉄(III)酸イオンを使用した請求項1記載の電池セル
を用いてアスコルビン酸を測定することを特徴とするア
スコルビン酸の電気分析方法。7. The method according to claim 1, wherein the working electrode contains an electrolyte and / or 3,7 bis (dimethylamino) phenothiazine-5-ium chloride, and hexacyanoferrate (III) ion is used as a counter electrode battery active material. A method for analyzing ascorbic acid, comprising measuring ascorbic acid using the battery cell according to 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05222527A JP3093086B2 (en) | 1992-10-28 | 1993-09-07 | Electric analysis method using battery cells |
EP93308586A EP0600607A3 (en) | 1992-10-28 | 1993-10-28 | Coulometric analysis method and a device therefor. |
US08/511,476 US5726565A (en) | 1992-10-28 | 1995-08-04 | Coulometric analysis method and a device therefor |
US08/957,393 US5909114A (en) | 1992-10-28 | 1997-10-23 | Coulometric analysis method and a device therefor |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29015692 | 1992-10-28 | ||
JP4-290156 | 1992-10-28 | ||
JP5-30928 | 1993-02-19 | ||
JP3092893 | 1993-02-19 | ||
JP05222527A JP3093086B2 (en) | 1992-10-28 | 1993-09-07 | Electric analysis method using battery cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06300734A JPH06300734A (en) | 1994-10-28 |
JP3093086B2 true JP3093086B2 (en) | 2000-10-03 |
Family
ID=27287142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05222527A Expired - Fee Related JP3093086B2 (en) | 1992-10-28 | 1993-09-07 | Electric analysis method using battery cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3093086B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5361787B2 (en) * | 2010-04-19 | 2013-12-04 | 協立電機株式会社 | Trace substance detector |
JP5361786B2 (en) * | 2010-04-19 | 2013-12-04 | 協立電機株式会社 | Trace substance detector |
JP5631622B2 (en) * | 2010-04-19 | 2014-11-26 | 協立電機株式会社 | Trace substance detector |
JP2014194411A (en) * | 2013-02-28 | 2014-10-09 | Aisin Seiki Co Ltd | Modified electrode, method of manufacturing the modified electrode, bio battery including the modified electrode, and bio sensor |
CZ304464B6 (en) * | 2013-03-27 | 2014-05-14 | Masarykova Univerzita | Current electroanalysis apparatus |
JP6713364B2 (en) * | 2016-07-20 | 2020-06-24 | アークレイ株式会社 | Ascorbic acid responsive electrode and biosensor |
-
1993
- 1993-09-07 JP JP05222527A patent/JP3093086B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06300734A (en) | 1994-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5909114A (en) | Coulometric analysis method and a device therefor | |
Ikariyama et al. | Polypyrrole electrode as a detector for electroinactive anions by flow injection analysis | |
Abbaspour et al. | Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films | |
Garjonyte et al. | Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates | |
US4356074A (en) | Substrate specific galactose oxidase enzyme electrodes | |
Stein et al. | The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor | |
Cox et al. | Voltammetric reduction and determination of hydrogen peroxide at an electrode modified with a film containing palladium and iridium | |
Suzuki et al. | Ethanol and lactic acid sensors using electrodes coated with dehydrogenase—Collagen membranes | |
Tizzard et al. | MICREDOX: application for rapid biotoxicity assessment | |
Zen et al. | Voltammetric determination of serotonin in human blood using a chemically modified electrode | |
Vasjari et al. | Amino acid determination using screen-printed electrochemical sensors | |
Adeloju et al. | Polypyrrole‐based amperometric biosensor for sulfite determination | |
Durliat et al. | Investigation of electron transfer between platinum and large biological molecules by thin-layer spectroelectrochemistry | |
JP3093086B2 (en) | Electric analysis method using battery cells | |
Saurina et al. | Potentiometric biosensor for lysine analysis based on a chemically immobilized lysine oxidase membrane | |
Cai et al. | Simultaneous determination of uric acid, xanthine and hypoxanthine with an electrochemically pretreated carbon paste electrode | |
Chiang et al. | Amperometric detection of cholesterol using an indirect electrochemical oxidation method | |
Blaedel et al. | Characteristics of a rotated porous flow-through electrode | |
de Queiroz et al. | Real time monitoring of in situ generated hydrogen peroxide in electrochemical advanced oxidation reactors using an integrated Pt microelectrode | |
Baoxian et al. | Determination of the neurotransmitter-norepinephrine in the presence of ascorbic acid using carbon fiber microelectrodes activated by potentiostat | |
Baldo et al. | Lead and copper deposition from dilute solutions onto carbon disc microelectrodes. Assessment of quantification procedures by anodic stripping voltammetry | |
Gong et al. | Electrocatalytic and analytical responses of 10-methylphenothiazine toward reduced glutathione | |
Mazloum-Ardakani et al. | Investigation of electrochemistry behavior of hydroxylamine at glassy carbon electrode by indigocarmine | |
JPH04121652A (en) | Biosensor | |
Shankaran et al. | Mechanically immobilized copper hexacyanoferrate modified electrode for electrocatalysis and amperometric determination of glutathione |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |