JP6519033B1 - Object detection device, object detection method, and design method of object detection device - Google Patents
Object detection device, object detection method, and design method of object detection device Download PDFInfo
- Publication number
- JP6519033B1 JP6519033B1 JP2018127086A JP2018127086A JP6519033B1 JP 6519033 B1 JP6519033 B1 JP 6519033B1 JP 2018127086 A JP2018127086 A JP 2018127086A JP 2018127086 A JP2018127086 A JP 2018127086A JP 6519033 B1 JP6519033 B1 JP 6519033B1
- Authority
- JP
- Japan
- Prior art keywords
- light
- laser beam
- object detection
- aperture
- projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 125
- 238000000034 method Methods 0.000 title claims description 29
- 238000013461 design Methods 0.000 title claims description 4
- 230000003287 optical effect Effects 0.000 claims abstract description 62
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 238000009792 diffusion process Methods 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 description 54
- 239000000463 material Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 16
- 239000012790 adhesive layer Substances 0.000 description 15
- 239000011162 core material Substances 0.000 description 14
- 230000005291 magnetic effect Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 230000004397 blinking Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/04—Systems determining the presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
- G01S17/26—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/085—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0018—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optics & Photonics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
【課題】 外部へ投光したレーザビームの、外部から入射する反射光を受光素子を用いて検出する場合に、簡易かつ安価に外乱光の影響を低減する。
【解決手段】 レーザビームを外部へ投光する投光部と、受光素子43と、外部からの入射光を受光素子43へ導く受光光学系と、上記レーザビームの投光タイミングと、受光素子43が出力する光検出信号のタイミングとに基づき、上記レーザビームの光路上の物体までの距離を検出する物体検出部とを備える物体検出装置において、上記受光光学系に、入射光を所定の焦点面上に結像させる集光レンズ42と、集光レンズ42の焦点面上に配置されたアパーチャー44とを設けた。
【選択図】 図20
PROBLEM TO BE SOLVED: To reduce the influence of disturbance light simply and inexpensively in the case where reflected light incident from the outside of a laser beam projected to the outside is detected using a light receiving element.
SOLUTION: A light projecting unit for projecting a laser beam to the outside, a light receiving element 43, a light receiving optical system for guiding incident light from the outside to the light receiving element 43, a light emitting timing of the laser beam, a light receiving element 43 And an object detection unit for detecting the distance to the object on the optical path of the laser beam based on the timing of the light detection signal output from the light source. A condenser lens 42 for forming an image on the upper side, and an aperture 44 disposed on the focal plane of the condenser lens 42 are provided.
[Selected figure] Figure 20
Description
この発明は、レーザ光を用いて該レーザ光の光路上の物体を検出する物体検出装置及び物体検出方法に関する。また、このような物体検出装置の設計方法にも関する。 The present invention relates to an object detection apparatus and an object detection method for detecting an object on the light path of a laser beam using a laser beam. The present invention also relates to a method of designing such an object detection apparatus.
従来から、レーザ光のパルスを外部へ照射し、物体により反射されて戻ってきたレーザ光を検出することにより、レーザ光の光路上にある物体及びその物体までの距離を検出する物体検出装置が知られている。このような物体検出装置は、ライダー(LiDAR:Light Detection and Ranging)と呼ばれる。
近年、ライダーは、自動車の自動運転の分野でも活用されるようになっている。外部の照明環境の影響を受けやすいカメラセンサーや、分解能が低いミリ波レーダーの欠点を補い、走行環境下の比較的小型の障害物を、精度よく検出するために、カメラセンサーやミリ波レーダーと併用する等である。
BACKGROUND ART Conventionally, an object detection apparatus that detects an object on the optical path of laser light and a distance to the object by irradiating a pulse of laser light to the outside and detecting the laser light reflected and returned by the object is disclosed. Are known. Such an object detection device is called a light detection and ranging (LiDAR).
In recent years, riders have come to be used in the field of automatic driving of automobiles. In order to compensate for the shortcomings of camera sensors that are susceptible to external lighting conditions and millimeter wave radars with low resolution, and to detect relatively small obstacles under driving environments with precision, camera sensors and millimeter wave radars It is combined use etc.
自動運転の分野に利用し得るライダーの例は、例えば特許文献1に記載されている。特許文献1に記載のライダーは、測定角度に合わせ、光源としての近赤外線レーザと受信機としての光検出素子がペアとして基板上に配置され、視野内の高分解能の距離情報を取り込むために、32セット又は64セットの光源−受信機ペアが用いられている。従って、装置が非常に高コストになる。 Examples of riders that can be used in the field of autonomous driving are described, for example, in US Pat. In order to capture high-resolution distance information in the field of view, the lidar described in Patent Document 1 arranges the near-infrared laser as the light source and the light detection element as the receiver as a pair on the substrate according to the measurement angle. 32 sets or 64 sets of light source-receiver pairs are used. Therefore, the cost of the device is very high.
また、別のライダーの例は、非特許文献1に記載されている。非特許文献1に記載のライダーは、それぞれ傾き角の異なる3つの面を持つポリゴンミラーを回転させ、そのポリゴンミラーでレーザビームを偏向することにより、垂直方向4.5°の視野角の範囲内にレーザビームを投射しつつ、物体からの反射光を、ポリゴンミラーの投射時と同じ面で反射して光検出素子に導いて検出する。 In addition, another rider's example is described in Non-Patent Document 1. The rider described in Non-Patent Document 1 rotates a polygon mirror having three planes with different inclination angles, and deflects the laser beam with the polygon mirror to obtain a viewing angle range of 4.5 ° in the vertical direction. The light reflected from the object is reflected on the same surface as that of the projection of the polygon mirror and guided to the light detection element for detection.
非特許文献1に記載のライダーでは、1つの受光素子で、垂直方向の複数の位置からの反射光を検出可能である。しかし、非特許文献1に記載のライダーでは、反射面毎に傾き角が異なるポリゴンミラーを用いることから、その重心の設計が難しく、この点でコストが高くなるという問題があった。また、ポリゴンミラーの高速回転を長時間続けると、摩擦による軸受けの発熱や摩耗が発生し、長時間使用の場合のメンテナンス性の点でも問題がある。
回転ミラーを用いたライダーについては非特許文献2にも記載があるが、この文献ではライダーの構成について詳細な説明はない。
In the lidar described in Non-Patent Document 1, one light receiving element can detect reflected light from a plurality of positions in the vertical direction. However, the rider described in Non-Patent Document 1 has a problem that it is difficult to design the center of gravity because a polygon mirror having different inclination angles for each reflection surface is used, and the cost becomes high in this respect. In addition, if the polygon mirror continues to rotate at high speed for a long time, the bearing generates heat and wear due to friction, and there is a problem in terms of maintainability when used for a long time.
A rider using a rotating mirror is also described in Non-Patent
ところで、ライダーにおける物体検出において、より遠距離で、より光反射率の低い物体を検出するためには、受光素子(光検出素子)の検出感度を上げ、より弱い反射光を検出できるようにするアプローチが考えられる。しかしながら、物体からの反射光を取り込むための光路からは、外乱光も入射してしまうため、受光素子の検出感度を上げると、物体からの反射光だけでなく外乱光の検出信号も大きくなり、外乱光を、物体からの反射光であると誤認してしまう可能性も高くなる。 By the way, in order to detect an object having a lower light reflectance at a longer distance in object detection in the lidar, the detection sensitivity of the light receiving element (light detecting element) is increased to enable detection of weaker reflected light. An approach can be considered. However, disturbance light is also incident from the light path for taking in the reflected light from the object, so if the detection sensitivity of the light receiving element is increased, not only the reflected light from the object but also the detection signal of the disturbance light becomes large. There is also a high possibility that the disturbance light is misidentified as the reflected light from the object.
そこで、従来は、照射するレーザビームの出力を上げることにより、反射光の強度も強くし、相対的に外乱光の影響を低減するアプローチが多く行われていた。しかし、このアプローチでは、高出力のレーザビームを生成するために装置が大型化し、高価になるし、路上において高出力のレーザビームを投射することには安全性の面でも問題があった。
なお、以上のような外乱光の問題は、レーザビームによる走査を前提とせず、1方向のみの物体を検出する場合にも同様に発生するものである。
Therefore, in the related art, many approaches have been taken to increase the intensity of the reflected light by increasing the output of the laser beam to be irradiated, and to relatively reduce the influence of disturbance light. However, in this approach, the apparatus becomes large and expensive in order to generate a high power laser beam, and there are problems in safety in projecting the high power laser beam on the road.
The problem of disturbance light as described above does not presuppose scanning by a laser beam, but occurs similarly when detecting an object in only one direction.
本発明は、このような事情に鑑みてなされたものであり、外部へ投光したレーザビームの、外部から入射する反射光を受光素子を用いて検出する場合に、簡易かつ安価に外乱光の影響を低減することを目的とする。 The present invention has been made in view of such circumstances, and it is simple and inexpensive to detect disturbance light of a laser beam projected to the outside, which is reflected from the outside using a light receiving element. Intended to reduce the impact.
以上の目的を達成するため、この発明の物体検出装置は、複数の発光点が配列されたレーザ光源と、上記複数の発光点が出力するレーザ光から、上記複数の発光点の配列方向に発散角を持つレーザビームを生成するレンズと、上記レーザビームと対応する1つのシリコンフォトマルチプライヤー(SiPM)である受光素子と、上記レーザビームを外部へ投光すると共に、その投光と同じ光軸で、外部から入射する入射光を導光し、上記受光素子へ導く光学系と、上記投光部によるレーザビームの投光方向を周期的に変動させる走査部と、上記レーザビームの投光タイミング及び投光方向と、上記受光素子が出力する光検出信号のタイミングとに基づき、上記レーザビームの光路上の物体までの距離及びその物体がある方向を検出する物体検出部とを備える物体検出装置であって、上記光学系が、上記入射光を上記レーザビームの投光光路から分離する光学素子と、上記光学素子により分離された入射光を所定の焦点面上に結像させる集光レンズと、上記集光レンズの焦点面上に配置されたアパーチャーを備え、上記発散角の大きさをα、上記アパーチャーの通光領域の、前記発散角と対応する方向の径をD、上記集光レンズから上記アパーチャーまでの距離をd、β=arctan(D/d)として、α≦βであるものである。 In order to achieve the above object, an object detection apparatus according to the present invention diverges in the arrangement direction of the plurality of light emitting points from a laser light source in which a plurality of light emitting points are arrayed and laser light output by the plurality of light emitting points. A lens for generating a laser beam having an angle, a light receiving element which is one silicon photomultiplier (SiPM) corresponding to the laser beam, and the laser beam is projected to the outside, and the same optical axis as the light projection An optical system for guiding incident light from the outside and guiding it to the light receiving element, a scanning unit for periodically changing the projection direction of the laser beam by the light projection unit, and a projection timing of the laser beam Object detection for detecting the distance to the object on the optical path of the laser beam and the direction in which the object is present, based on the light emission direction and the light detection signal output from the light receiving element An optical element, the optical system separating the incident light from the projection light path of the laser beam, and the incident light separated by the optical element on a predetermined focal plane A focusing lens for forming an image, and an aperture disposed on the focal plane of the focusing lens, wherein the divergence angle is α, and the diameter of the light passing region of the aperture in the direction corresponding to the divergence angle Where D is the distance from the focusing lens to the aperture, and β = arctan (D / d), where α ≦ β.
このような物体検出装置において、1≦β/α≦3であるとよい。
さらに、上記集光レンズを通過した光が、上記シリコンフォトマルチプライヤーの受光面の全域に入射するとよい。
さらに、上記アパーチャーと上記受光素子との間に光拡散部材を備えるとよい。
In such an object detection apparatus , it is preferable that 1 ≦ β / α ≦ 3.
Furthermore, it is preferable that the light passing through the condensing lens be incident on the entire light receiving surface of the silicon photomultiplier.
Furthermore, a light diffusion member may be provided between the aperture and the light receiving element.
また、この発明の物体検出方法は、複数の発光点が配列されたレーザ光源が出力するレーザ光にレンズを通過させて上記複数の発光点の配列方向に発散角を持つレーザビームを生成し、上記レーザビームを、走査部によりその投光方向を周期的に変動させながら外部へ投光すると共に、その投光と同じ光軸で、外部から入射する入射光を導光し、光学素子により、上記入射光を上記レーザビームの投光光路から分離して、その分離された入射光を集光レンズにより所定の焦点面上に結像させ、上記集光レンズの焦点面上に配置したアパーチャーであって、上記発散角の大きさをα、上記アパーチャーの通光領域の、上記発散角と対応する方向の径をD、上記集光レンズから上記アパーチャーまでの距離をd、β=arctan(D/d)として、α≦βであるアパーチャーにより、上記集光レンズにより集光された光を絞り、上記アパーチャーを通過した光を上記レーザビームと対応する1つのシリコンフォトマルチプライヤー(SiPM)である受光素子に入射させ、上記レーザビームの投光タイミング及び投光方向と、上記受光素子が出力する光検出信号のタイミングとに基づき、上記レーザビームの光路上の物体までの距離及びその物体がある方向を検出するものである。
また、この発明の物体検出装置の設計方法は、複数の発光点が配列されたレーザ光源と、上記複数の発光点が出力するレーザ光から、上記複数の発光点の配列方向に発散角を持つレーザビームを生成するレンズと、上記レーザビームと対応する1つのシリコンフォトマルチプライヤー(SiPM)である受光素子と、上記レーザビームを外部へ投光すると共に、該投光と同じ光軸で、外部から入射する入射光を導光し、上記受光素子へ導く光学系と、上記投光部によるレーザビームの投光方向を周期的に変動させる走査部と、上記レーザビームの投光タイミング及び投光方向と、上記受光素子が出力する光検出信号のタイミングとに基づき、上記レーザビームの光路上の物体までの距離及びその物体がある方向を検出する物体検出部とを備え、上記光学系が、上記入射光を上記レーザビームの投光光路から分離する光学素子と、上記光学素子により分離された入射光を所定の焦点面上に結像させる集光レンズと、上記集光レンズの焦点面上に配置されたアパーチャーとを備える物体検出装置を設計する設計方法であって、上記発散角の大きさαと、上記集光レンズから上記アパーチャーまでの距離dとに基づき、β=arctan(D/d)として、上記アパーチャーの通光領域の前記発散角と対応する方向の径Dを、α≦βとなるように定めるものである。
このような物体検出装置の設計方法において、上記径Dを、1≦β/α≦3になるように定めるとよい。
Further, according to the object detection method of the present invention, a laser beam emitted by a laser light source in which a plurality of light emitting points are arranged passes a lens to generate a laser beam having a diverging angle in the arrangement direction of the plurality of light emitting points. The laser beam is projected to the outside while periodically changing its projection direction by the scanning unit, and the incident light from the outside is guided with the same optical axis as the projection, and the optical element The incident light is separated from the projection light path of the laser beam, and the separated incident light is imaged on a predetermined focal plane by a condenser lens, and an aperture disposed on the focal plane of the condenser lens The diameter of the light passing region of the aperture in the direction corresponding to the divergence angle is D, the distance from the focusing lens to the aperture is d, β = arctan (D As α / d), α ≦ β By some aperture diaphragm the light condensed by the condenser lens to be incident light passing through the aperture on the light-receiving element is one of a silicon photomultiplier corresponding to the laser beam (SiPM), the laser beam The distance to the object on the optical path of the laser beam and the direction in which the object is located are detected based on the light emission timing and the light emission direction of the light emission element and the timing of the light detection signal output from the light receiving element.
In the method of designing an object detection apparatus according to the present invention, the laser light source in which a plurality of light emitting points are arranged and the laser light output from the plurality of light emitting points have a divergence angle in the arrangement direction of the plurality of light emitting points. A lens for generating a laser beam , a light receiving element which is one silicon photomultiplier (SiPM) corresponding to the laser beam, and the laser beam is projected to the outside, and the same optical axis as the projection is applied to the outside An optical system for guiding incident light incident from the light source to the light receiving element, a scanning unit for periodically changing the light projection direction of the laser beam by the light emitting unit, light projection timing and light emission of the laser beam An object detection unit for detecting the distance to the object on the optical path of the laser beam and the direction in which the object is located based on the direction and the timing of the light detection signal output from the light receiving element An optical element for separating the incident light from the projection light path of the laser beam; a condenser lens for forming the incident light separated by the optical element on a predetermined focal plane; A design method for designing an object detection device comprising an aperture arranged on a focal plane of a lens, the method comprising: β based on the size α of the divergence angle and the distance d from the focusing lens to the aperture As arctan (D / d), the diameter D in the direction corresponding to the divergence angle of the light transmission region of the aperture is determined so as to satisfy α ≦ β.
In such a method of designing an object detection apparatus, the diameter D may be set to satisfy 1 ≦ β / α ≦ 3.
また、この発明は、レーザビームの投光方向を周期的に変動させる走査を、小型かつ耐久性の高い構成で実現することを目的とした、別の物体検出装置、その制御方法及びプログラムも提供する。 The present invention also provides another object detection apparatus, control method and program therefor for the purpose of realizing scanning with a periodic variation in the projection direction of a laser beam with a small size and high durability. Do.
この物体検出装置は、レーザビームを外部へ投光する投光部と、上記投光部によるレーザビームの投光方向を周期的に変動させる走査部と、受光素子と、外部からの入射光を上記受光素子へ導く受光光学系と、上記レーザビームの投光タイミング及び投光方向と、上記受光素子が出力する光検出信号のタイミングとに基づき、上記レーザビームの光路上の物体までの距離及びその物体がある方向を検出する物体検出部とを備える物体検出装置であって、上記走査部は、折れ目を有する板材で形成されたねじりばねであって、上記折れ目により形成された直線状の突起部を備え、支持部材に固定されたねじりばねと、上記ねじりばねの一方の面に固定され、上記レーザビームを反射するミラーと、上記突起部を跨ぐように、上記ねじりばねの他方の面に固定され、上記突起部を跨いだ一方側にN極が、他方側にS極が位置する永久磁石と、上記永久磁石の上記ねじりばねと反対側に配置された駆動コイルと、上記駆動コイルと共通の芯材を有するセンシングコイルと、上記駆動コイルを囲む磁性体と、上記駆動コイルに周期的に電圧又は電流が変化する駆動信号を印加する駆動部とを備え、上記ミラーが、上記駆動信号の印加に応じて往復運動をするものである。 This object detection apparatus includes a light emitting unit that emits a laser beam to the outside, a scanning unit that periodically changes the light projection direction of the laser beam by the light emitting unit, a light receiving element, and incident light from the outside. The distance to the object on the optical path of the laser beam, based on the light receiving optical system leading to the light receiving element, the light projection timing and direction of the laser beam, and the timing of the light detection signal output from the light receiving element An object detection apparatus comprising: an object detection unit for detecting a direction in which the object is present, wherein the scanning unit is a torsion spring formed of a plate material having a fold, and a linear shape formed by the fold A torsion spring fixed to the support member, a mirror fixed to one surface of the torsion spring and reflecting the laser beam, and the torsion spring so as to straddle the projection. A permanent magnet having an N pole on one side across the projection and an S pole on the other side, a drive coil disposed on the opposite side of the permanent magnet from the torsion spring, and The mirror includes: a sensing coil having a core material common to the drive coil, a magnetic body surrounding the drive coil, and a drive unit for applying a drive signal having a voltage or current periodically changed to the drive coil, It reciprocates according to the application of the drive signal.
このような物体検出装置において、上記突起部の断面形状がV字型であるとよい。
さらに、上記駆動コイルの軸の一端が上記永久磁石のS極とN極の中間点と対向しているとよい。
さらに、上記磁性体の、上記永久磁石のN極及びS極と対向する端部は、上記駆動コイルの軸の上記永久磁石と対向する一端から該軸に沿った方向で見て、該N極と該S極とを結ぶ上記永久磁石の中心線よりも離れた位置にあるとよい。
さらに、上記センシングコイルに発生する電圧又は電流を検出する検出部と、上記検出部が検出した電圧又は電流のレベルに応じて、上記投光部が投光するレーザビームの点滅周期を制御する周期制御部とを備えるとよい。
さらに、上記周期制御部は、上記検出部が検出した電圧又は電流のレベルが、上記ミラーが上記往復駆動の経路の中央付近にあることを示す第1レベルである場合に、上記ミラーが上記往復駆動の経路の端部付近にあることを示す第2レベルである場合に比べて、上記点滅周期を短くするとよい。
In such an object detection apparatus, the cross-sectional shape of the protrusion may be V-shaped.
Furthermore, it is preferable that one end of the axis of the drive coil is opposed to the midpoint between the S pole and the N pole of the permanent magnet.
Further, the end of the magnetic body facing the N pole and the S pole of the permanent magnet is the N pole when viewed from the end of the axis of the drive coil facing the permanent magnet along the axis. It is preferable to be at a position farther than the center line of the permanent magnet connecting the two and the S pole.
Furthermore, a detection unit that detects a voltage or current generated in the sensing coil, and a cycle that controls the blinking cycle of the laser beam emitted by the light projection unit according to the level of the voltage or current detected by the detection unit. It is good to provide a control part.
Furthermore, when the level of the voltage or current detected by the detection unit is a first level indicating that the mirror is near the center of the path of the reciprocating drive, the cycle control unit causes the mirror to move back and forth It is preferable to shorten the blink cycle as compared to the case where the second level indicates that the drive path is near the end.
また、この発明の制御方法は、上記のいずれかの物体検出装置を制御する制御方法であって、上記センシングコイルに発生する電圧又は電流を検出し、該検出した電圧又は電流のレベルに応じて、上記投光部が投光するレーザビームの点滅周期を制御するものである。
このような制御方法において、上記センシングコイルに発生する電圧又は電流のレベルに応じて、該電圧又は電流のレベルが、上記ミラーが上記往復駆動の経路の中央付近にあることを示す第1レベルである場合に、上記ミラーが上記往復駆動の経路の端部付近にあることを示す第2レベルである場合に比べて、点滅の周期を短くするように、上記レーザビームの点滅周期を制御するとよい。
また、この発明のプログラムは、プロセッサにハードウエアを制御させて、上記のいずれかの制御方法を実行させるためのプログラムである。
A control method according to the present invention is a control method for controlling any one of the above object detection devices, which detects a voltage or current generated in the sensing coil and responds to the level of the detected voltage or current. And controlling the blinking period of the laser beam emitted by the light emitting unit.
In such a control method, depending on the level of the voltage or current generated in the sensing coil, the level of the voltage or current is a first level indicating that the mirror is near the center of the path of the reciprocating drive. In some cases, it is preferable to control the blinking period of the laser beam so as to shorten the blinking period as compared with the case where the mirror is at the second level indicating that the mirror is near the end of the reciprocating drive path. .
Also, a program according to the present invention is a program for causing a processor to control hardware to execute any of the control methods described above.
また、この発明は、レーザビームの投光方向を周期的に変動させる走査に利用可能な、往復駆動されるミラーを備えた可動子を、低コストで量産可能な構成で実現することを目的とした、可動子及びその製造方法も提供する。 Another object of the present invention is to realize a mover having a reciprocally driven mirror, which can be used for scanning to periodically change the projection direction of a laser beam, with a configuration that can be mass-produced at low cost. The invention also provides a mover and a method of manufacturing the same.
この可動子は、折れ目を有する板材で形成されたねじりばねであって、上記折れ目により形成された直線状の突起部と、上記突起部の中央付近に上記突起部を跨ぐように上記突起部と一体に形成された平面部とを備えるねじりばねと、上記平面部の、上記突起部が突出する側の第1面に固定された、上記突起部と同じ高さの第1スペーサと、上記第1スペーサの上記平面部と反対側に固定された第1部材と、上記平面部の、上記第1面と反対側の第2面に固定された第2部材とを備え、上記第1部材と上記第2部材の一方がミラーで、他方が磁石であり、上記磁石は、上記突起部を跨ぐように固定され、上記突起部を跨いだ一方側にN極が、他方側にS極が位置するものである。
このような可動子が、上記平面部と上記第2部材との間に第2スペーサを有し、上記第2部材は、上記第2スペーサを介して上記平面部に固定されているとよい。
The mover is a torsion spring formed of a plate material having a fold, and the protrusion is a linear protrusion formed by the fold and the protrusion so as to straddle the protrusion around the center of the protrusion. A torsion spring including a flat portion integrally formed with the first portion, and a first spacer of the same height as the protrusion fixed to the first surface of the flat portion on the side where the protrusion protrudes. A first member fixed to the side opposite to the flat surface portion of the first spacer, and a second member fixed to the second surface opposite to the first surface of the flat surface portion; One of the member and the second member is a mirror, and the other is a magnet, and the magnet is fixed so as to straddle the projection, and has an N pole on one side across the projection and an S pole on the other side. Is located.
It is preferable that such a mover have a second spacer between the flat portion and the second member, and the second member be fixed to the flat portion via the second spacer.
また、可動子の製造方法は、折れ目を有する板材で形成されたねじりばねであって、上記折れ目により形成された直線状の突起部と、上記突起部の中央付近に上記突起部を跨ぐように上記突起部と一体に形成された平面部とを備えるねじりばねにおける、上記平面部の上記突起部が突出する側の第1面に、上記突起部と同じ高さの第1スペーサを、接着又は圧着により、第3工程の加熱処理中にも固定を維持できるように固定する第1工程と、上記第1工程の後で、上記第1スペーサ上に加熱により溶融する接着層を介して第1部材を積層し、上記平面部の上記第1面と反対側の第2面上に第2部材を、加熱により溶融する接着層を介して積層した積層体を形成する第2工程であって、上記第1部材と上記第2部材の一方がミラーで、他方が磁石であり、上記磁石は、上記突起部を跨ぎ、上記突起部を跨いだ一方側にN極が、他方側にS極が位置するように積層される第2工程と、上記第2工程で形成した積層体に加熱処理を行い、上記第1スペーサに上記第1部材を固定すると共に上記平面部に上記第2部材を固定する上記第3工程とを備えるものである。 Further, the method of manufacturing the mover is a torsion spring formed of a plate material having a fold, and straddles the linear protrusion formed by the fold and the protrusion in the vicinity of the center of the protrusion. In a torsion spring including a flat portion integrally formed with the protrusion, a first spacer having the same height as the protrusion is provided on a first surface of the flat portion on the side where the protrusion protrudes. In the first step of fixing so as to be able to maintain fixation even during the heat treatment of the third step by adhesion or pressure bonding, and after the first step, via the adhesive layer melted by heating on the first spacer In a second step, a first member is stacked, and a second member is stacked on the second surface opposite to the first surface of the flat portion via an adhesive layer which is melted by heating. And one of the first member and the second member is a mirror, and the other is a mirror. The magnet is a stone, and the magnet straddles the protrusion, and is stacked in the second step such that the N pole is positioned on one side across the protrusion and the S pole is positioned on the other side, and the second step A heat treatment is performed on the formed laminate, and the third step of fixing the first member to the first spacer and fixing the second member to the flat portion is provided.
このような可動子の製造方法において、上記第1工程は、上記平面部の上記第2面に、接着又は圧着により、第2スペーサを、上記第3工程の加熱処理中にも固定を維持できるように固定する工程を含み、上記第2工程において、上記第2部材を、上記第2スペーサの上記平面部と反対側の面上に、上記加熱により溶融する接着層を介して積層し、上記第3工程において、上記第2部材を、上記第2スペーサを介して上記平面部に固定するとよい。 In the manufacturing method of such a mover, in the first step, the second spacer can be maintained fixed during the heat treatment in the third step by adhesion or pressure bonding to the second surface of the flat portion. In the second step, the second member is laminated on the surface of the second spacer opposite to the flat portion via the adhesive layer melted by the heating, In the third step, the second member may be fixed to the flat portion via the second spacer.
さらに、上記ねじりばねと、上記第1スペーサとを、それぞれ複数個連結され平面的に配列された状態で用意し、上記第1工程において、上記複数個のねじりばねと上記複数個の第1スペーサとを、それぞれ連結された状態で一括して固定し、上記第2工程において、上記複数個のねじりばねのそれぞれについて上記積層体を形成し、上記第3工程において、複数の上記積層体に一括して上記加熱処理を行って、連結された複数個の可動子を形成するとよい。 Further, a plurality of the torsion springs and the first spacers are prepared in a state of being connected in a plurality and connected in a planar manner, and in the first step, the plurality of torsion springs and the plurality of first spacers Are collectively fixed in a connected state, and in the second step, the laminate is formed for each of the plurality of torsion springs, and in the third step, collectively in the plurality of laminates. The heat treatment may be performed to form a plurality of coupled movers.
あるいは、上記ねじりばねと、上記第1スペーサと、上記第2スペーサとを、それぞれ複数個連結され平面的に配列された状態で用意し、上記第1工程において、上記複数個のねじりばねと上記複数個の第1スペーサと上記複数個の第2スペーサとを、それぞれ連結された状態で一括して固定し、上記第2工程において、上記複数個のねじりばねのそれぞれについて上記積層体を形成し、上記第3工程において、複数の上記積層体に一括して上記加熱処理を行って、連結された複数個の可動子を形成するとよい。 Alternatively, a plurality of the torsion springs, the first spacers, and the second spacers may be prepared in a plurality of connected and arranged in a planar manner, and the plurality of torsion springs and the plurality of torsion springs may be prepared in the first step. The plurality of first spacers and the plurality of second spacers are collectively fixed in a connected state, and the laminate is formed for each of the plurality of torsion springs in the second step. In the third step, the plurality of stacks may be collectively subjected to the heat treatment to form a plurality of coupled movers.
また、上で装置、方法あるいはプログラム等として説明した発明は、その説明した態様のみならず、装置、システム、方法、プログラム、プログラムを記録した記録媒体等、任意の態様で実施することができる。 Further, the invention described above as an apparatus, method, program or the like can be implemented not only in the aspect described above but also in any form such as an apparatus, system, method, program, recording medium recording the program, and the like.
以上のような本発明の構成によれば、外部へ投光したレーザビームの、外部から入射する反射光を受光素子を用いて検出する場合に、簡易かつ安価に外乱光の影響を低減することができる。 According to the configuration of the present invention as described above, the influence of disturbance light can be reduced easily and inexpensively when using the light receiving element to detect the reflected light of the laser beam projected to the outside incident from the outside. Can.
この発明の実施形態について、図面を参照しながら説明する。
〔1.物体検出装置の全体構成(図1乃至図4)〕
まず、この発明の一実施形態である物体検出装置の全体構成について、図1及び図2を用い、主な構成要素をその機能に注目して区分して説明する。図1は、物体検出装置の主な構成要素をその機能に注目して区分して示すブロック図である。図2は、物体検出装置における物体検出の原理について説明するための図である。
Embodiments of the present invention will be described with reference to the drawings.
[1. Overall Configuration of Object Detection Device (FIGS. 1 to 4)]
First, the overall configuration of an object detection apparatus according to an embodiment of the present invention will be described by using FIG. 1 and FIG. FIG. 1 is a block diagram showing the main components of the object detection apparatus, focusing on its functions. FIG. 2 is a diagram for explaining the principle of object detection in the object detection apparatus.
この発明の一実施形態である物体検出装置10は、レーザビームを外部へ投光すると共に、外部の物体で反射されて戻ってくるレーザビームを検出し、その投光タイミングと反射光の検出タイミングとの差に基づき、レーザビームの光路上にある物体までの距離及びその物体がある方向を検出する装置である。この物体検出装置10は、図1に示すように、投光部20、走査部30、受光部40、フロントエンド回路51、TDC(時間−デジタル変換器:Time-to-Digital Converter)52、プロセッサ53、入出力部54を備える。
An
これらのうち投光部20は、レーザビームを外部へ投光するためのモジュールであり、LD(レーザダイオード)モジュール21、レーザ駆動回路22、投光光学系23を備える。
LDモジュール21は、レーザ駆動回路22から印加される駆動信号に応じてレーザ光を出力する発光部である。ここでは、複数の発光点を備えるものを用い、出力の強度を高めているが、発光点は1つであってもよい。レーザ光の波長に特に制約はないが、たとえば近赤外光のレーザ光を用いることが考えられる。
レーザ駆動回路22は、プロセッサ53から供給されるパラメータに従ったタイミングでLDモジュール21を点灯させるための駆動信号を生成し、LDモジュール21に印加するための回路である。LDモジュール21の点灯は、パルス波により間欠的に行う。
Among them, the light projecting unit 20 is a module for projecting a laser beam to the outside, and includes an LD (laser diode)
The
The
投光光学系23は、LDモジュール21が出力するレーザ光を平行光のビームにするための光学系であり、この実施形態では、LDモジュール21が備える複数の発光点の中心に焦点が位置する凸レンズによるコリメートレンズを用いている。
なお、投光光学系23により形成されたレーザビームL1は、受光部のミラー41の透孔41aを通過し、走査部30のミラー31により反射されて、出射光L2として物体検出装置10の外部へ出力される。
The projection
The laser beam L1 formed by the light projecting
次に、走査部30は、投光部20により出力されるレーザビームを偏向して、所定の視野(FOV:Field of View)70内を走査させるためのモジュールであり、ミラー31を有するアクチュエータ32を備える。アクチュエータ32は、レーザビームの光路上に設けたミラー31の向きを周期的に変動させることにより、レーザビームの投光方向を周期的に変動させる。
Next, the scanning unit 30 is a module for deflecting the laser beam output by the light emitting unit 20 to scan the inside of a predetermined field of view (FOV: Field of View) 70, and an
また、図1ではアクチュエータ32を1つしか示していないが、実際にはアクチュエータ32は図3及び図5に示すようにそれぞれ異なる軸を中心にミラーを揺動させる2つのアクチュエータ300,380で構成される。そして、アクチュエータ300は、主走査方向の走査を担当して主走査方向(Horizontal)走査線71aを形成し、アクチュエータ380は、主走査方向の走査の端部においてミラーの向きを変化させ、副走査方向(Vertical)走査線71bを形成すると共に、副走査方向の走査位置を調整する。
なお、LDモジュール21は間欠的に点灯するので、実際には走査線71は連続した線ではなくビームスポットの集合となる。
In addition, although only one
In addition, since the
次に、受光部40は、物体検出装置10の外部から入射する光を検出するためのモジュールであり、ミラー41、集光レンズ42、受光素子43、アパーチャー44を備える。この受光部40により検出したい光は、物体検出装置10から投光され外部の物体により反射されて戻ってくるレーザビームである。レーザビームは、物体面において乱反射されるが、そのうち投光時の光路と逆向きに反射された成分のみが、戻り光L3として物体検出装置10に戻る。この戻り光L3は、出射光L2とほぼ同じ経路を逆向きに進み、戻り光L4としてミラー41に到達する。
Next, the light receiving unit 40 is a module for detecting light incident from the outside of the
ミラー41は、投光部20から出力されるレーザビームを通過させるための透孔41aを備えると共に、戻り光L4を受光素子43へ導くための固定のミラーである。ミラー41の位置において、戻り光L4はレーザビームL1に比べると広がりが大きいため、透孔41aよりも広い範囲でミラー41に当たり、透孔41a以外の位置に当たる成分が、受光素子43へ向けて反射される。
The
集光レンズ42は、ミラー41で反射された戻り光L4を集光して所定の焦点面上に結像させるレンズである。
受光素子43は、所定の受光面上に当たった光の強度に応じた検出信号を出力する光検出素子である。この実施形態では、受光素子としてシリコンフォトマルチプライヤー(SiPM)を用いている。この点については後に詳述する。
アパーチャー44は、集光レンズ42の焦点面上に配置され、開口部以外の光を遮光する。このアパーチャー44の詳細な構成及びその意義についても、後述する。
以上のうちミラー41、集光レンズ42及びアパーチャー44が、受光光学系を構成する。
The
The
The
Among the above, the
次に、フロントエンド回路51は、受光素子43が出力する検出信号を、TDC52でのタイミング検出に適した波形に整形する回路である。
TDC52は、レーザ駆動回路22から供給される駆動信号と、フロントエンド回路51から供給される整形後の検出信号とに基づき、出射光となるレーザビームL1の点灯パルスのタイミングt0と、これと対応する戻り光L4のパルスのタイミングt1との時間差を示すデジタル出力を形成する回路である。
Next, the
The
出射光のパルスと、戻り光のパルスでは、光が光路上の物体に到達して戻ってくるのに要する時間だけの時間差があるので、その時間差Δtに基づき、図2に示すように物体検出装置10から物体までの距離sを、s=c(Δt)/2として求めることができる。cは光速である。なお、上記sは、正確には物体から受光素子43までの光路長である。
Since there is a time difference between the pulse of the emitted light and the pulse of the return light by the time required for the light to reach and return to the object on the optical path, the object detection is performed based on the time difference Δt as shown in FIG. The distance s from the
プロセッサ53は、図1に示した各部の動作を制御する制御部である。CPU、ROM、RAM等を備え、ソフトウエアを実行する汎用のコンピュータにより構成してもよいし、専用のハードウエアにより構成してもよいし、それらの組み合わせであってもよい。プロセッサ53は例えば、TDC52からの出力信号に基づく物体までの距離の算出、戻り光の検出時点での走査部30による走査のタイミング(出射光L2の投光方向)に基づく物体のある方向の算出を行う。また、後に詳述するが、走査部30におけるミラー31の向きに応じたLDモジュール21の点灯間隔の制御も行う。
The
入出力部54は、外部との間の情報の入出力を行うモジュールである。ここでいう情報の入出力には、外部の装置との間での有線あるいは無線による通信、ボタンやタッチパネル等を用いたユーザからの操作の受け付け、ディスプレイ、ランプ、スピーカ、バイブレータ等を用いたユーザへの情報の提示を含む。入出力部54が外部へ出力すべき情報としては、例えば、検出した物体に関する情報(距離や方向の生データでも、それらに基づき所定のサイズ、位置、移動速度等の物体を検出したことを示す情報でもよい)、物体検出装置10の動作状態や設定状態に関する情報が考えられる。入出力部54が外部から入力を受け付けるべき情報としては、例えば、物体検出装置10の動作の設定に関する情報が考えられる。
The input /
入出力部54による通信の相手としては、例えば自動運転システムを備えた自動車が考えられる。物体検出装置10が検出した物体の情報を自動運転システムに供給すれば、自動運転システムは、その情報を参照し、検出した物体を回避するような走行ルートを計画することができる。
なお、この発明を、物体検出装置10と、その通信相手の自動車やドローン、航空機等の装置とを含むシステムとして実施することも考えられる。
As a partner of the communication by the input /
It is also conceivable to implement the present invention as a system including the
次に、物体検出装置10の概略の構造について、図3及び図4を用いて説明する。図3は、物体検出装置の主な構成要素の構造を示す分解斜視図、図4は、物体検出装置の外観を示す斜視図である。
物体検出装置10は、図3及び図4に示すように、トップカバー61とリアカバー62を、2つのカバークリップ63,63により結合した外装を備える。また、トップカバー61は、出射光L2を通過させるための窓を備え、その窓には塵の侵入を防ぐための、出射光L2の波長において透明な保護材64が嵌められている。
Next, a schematic structure of the
As shown in FIGS. 3 and 4, the
これらの筐体の内側に、図1に示した各構成要素が格納されている。なお、図1に示したアクチュエータ32は、主走査方向の走査を担当するアクチュエータ300と、副走査方向の走査を担当するアクチュエータ380との、2つのアクチュエータとして示している。ミラー301は、アクチュエータ300が備えるミラーである。
また、ミラー48は、図1には示していないが、ミラー41と集光レンズ42の間にあって戻り光L4の向きを変えるための光学素子である。破線65は、物体検出装置10の視野(出射光L2による走査範囲)を示し、図1の視野70と対応する。レーザ駆動回路22、プロセッサ53等の回路やモジュール間の配線は、図を見やすくするため図3では図示を省略している。
以上で全体構成の説明を終え、以下、物体検出装置10のいくつかの構成要素について個別に説明する。
The components shown in FIG. 1 are stored inside these housings. The
Also, although not shown in FIG. 1, the
After the description of the overall configuration has been completed, the following will individually describe some of the components of the
〔2.ねじりばねを用いた揺動アクチュエータ(図5乃至図8B)〕
走査部30が、アクチュエータ300と380を備えることは既に述べたが、これらのうちアクチュエータ300は特徴的な構成を備えるので、次にこの点について説明する。
図5に、アクチュエータ300,380の概略の外観及び配置を、図3よりも拡大して示す。
[2. Swing actuator using a torsion spring (FIGS. 5 to 8B)]
Although it has already been described that the scanning unit 30 includes the
FIG. 5 shows the general appearance and arrangement of the
図5に示すように、アクチュエータ300とアクチュエータ380は、その構成が大きく異なる。
アクチュエータ380は、出射光L2の副走査方向の偏向のために用いるので、さほど高速な運動は要求されないことから、物理的な軸を中心にミラーを回転運動させるタイプのアクチュエータを用いている。このアクチュエータ380は、ミラー381を軸382に固定し、軸382をホルダ383に差し込んで回転可能に取り付けて構成されている。そして、ミラー381の裏側に配置された永久磁石及びコイルの作用により、コイルに印加された電圧に応じて、ミラー381が軸382の中心を回転軸384として回転し、所定の角度範囲を往復運動する。電圧の強度を調整することにより、ミラーを運動範囲内の所望の角度で停止させることも可能である。
このようなアクチュエータは、ガルバノミラーと呼ばれる。一般には、軸の一端に力を加えることにより軸の他端に取り付けられたミラーを回転させる構成が広く用いられているが、アクチュエータ380のように、軸に力を加える位置とミラーの取り付け位置が、軸の長手方向について同じ位置であっても、同様な原理での駆動が可能である。
As shown in FIG. 5, the
Since the
Such an actuator is called a galvano mirror. In general, a configuration in which a mirror attached to the other end of the shaft is rotated by applying a force to one end of the shaft is widely used, but like the
一方、アクチュエータ300は、出射光L2の主走査方向の偏向のために用いるので、高速な運動が要求され、またその高速な運動を長時間継続できる耐久性も求められる。そこで、アクチュエータ300としては、このような目的に合った新規なアクチュエータを用いている。
On the other hand, since the
その具体的な構成は図6乃至図8Aを用いて詳述するが、概略としては、アクチュエータ300は、ミラー301を、直線状の突起部を有するねじりばね302の一方の面に、突起部を跨ぐように固定し、ねじりばね302の端部を支持部材としてのトップヨーク314に固定して構成されている。そして、ねじりばね302の他方の面側に配置された永久磁石及びコイルの作用により、コイルに印加された電圧に応じて、ねじりばね302及びミラー301が、ねじりばね302の突起部の略中心に位置する回転軸304を中心に回転し、所定の角度範囲を往復運動する。
Although the specific configuration will be described in detail with reference to FIGS. 6 to 8A, generally, the
走査部30は、以上のアクチュエータ300,380により駆動されるミラー301,381によりレーザビームL1を反射し、偏向することにより、図1に示した走査線71上を走査する出射光L2を、外部へ投光することができる。
なお、副走査方向の偏向走査を行うアクチュエータとして、アクチュエータ300と同じ構造のものを用いることも、もちろん妨げられない。
The scanning unit 30 reflects the laser beam L1 by the
Of course, using an actuator having the same structure as that of the
次に、図6乃至図8Aを用いて、アクチュエータ300の構造と動作原理についてより詳細に説明する。図6は、アクチュエータ300を構成する部品の構造と、その組み立て工程の概略を示す分解斜視図であり、その最終工程において完成したアクチュエータ300の斜視図も含む。図7は、アクチュエータ300の可動子320を構成する部品の構造を示す分解斜視図である。図8Aは、図6の(d)に示したアクチュエータ300の一点鎖線で示す面における断面を、矢印M方向から見た断面図である。ただし、図を見やすくするため、図8Aにおいてコイルアッセンブリ313の図示は省略し、コイルの巻き方を模式的に示している。
Next, the structure and operation principle of the
アクチュエータ300は、図6の(a)に示すように、コアヨーク311、枠ヨーク312、コイルアッセンブリ313、トップヨーク314、可動子320を備える。
これらのうち枠ヨーク312とトップヨーク314は、コイルを囲む磁性体による外装を形成する。枠ヨーク312とトップヨーク314は、4組のねじ孔312b,314bを貫通する4本のねじ315により、内部にコイルアッセンブリ313を保持するように固定される。
The
Among these, the
コイルアッセンブリ313は、非磁性体によるボビン313aに、図8Aに示す駆動コイル316及び検出コイル317の2本のコイルを巻き、その外側を保護カバー313cで覆ったものである。ボビン313aの内部には、コア部311aを通すための挿通孔313bが設けられている。また、保護カバー313cは、外装に覆われない位置に、駆動コイル316へ駆動信号を印加するための端子と、センシングコイル317に発生する信号を出力するための端子とを備える。
コアヨーク311は、駆動コイル316及びセンシングコイル317のコアとなる、強磁性体によるコア部311aを備える。
The
The
これらの各部品は、図6の(b)に示すようにコアヨーク311のコア部311aを枠ヨーク312の挿通孔312aに挿入し、その後(c)に示すようにコイルアッセンブリ313の挿通孔313bにコア部311aを挿入してコイルアッセンブリ313の位置決めを行い、その後(d)に示すようにトップヨーク314と枠ヨーク312とをねじ314により固定して、一体化される。
In each of these parts, as shown in FIG. 6B, the
このとき、(a)から(b)の工程で、コア部311aを枠ヨーク312に固定し、(b)から(c)の工程で、コイルアッセンブリ313をコア部311a(及び枠ヨーク312)に固定する。この固定は、不図示のねじや溶接、または接着を用いて行ったり、挿入側の部材を受け入れ側のスペースよりも若干大きくして受け入れ位置へ圧入することにより行ったり、これらの組み合わせで行ったりすることが考えられる。
なお、図6の(b)及び(c)では、スペースの都合上、可動子320の図示は省略している。
At this time, the
In addition, in (b) and (c) of FIG. 6, illustration of the needle | mover 320 is abbreviate | omitted on account of space.
また、可動子320は、図7に示すように、ミラー301及びねじりばね302の他、永久磁石321と連結ホルダ323を備える。
これらのうちねじりばね302は、金属板をプレス加工又は折り加工等により折り曲げて形成したばねであり、その折れ目によって、V字型の断面を有する直線状の突起部302cを備える。また、突起部302cの中央付近には、突起部302cを跨ぐように両側に突出する平面部302bを備え、突起部302cの両端にはそれぞれ、突起部302cを跨ぐように両側に突出する平面部302aを備える。これらの突起部302cと平面部302a,302bは、全て一体であり、一枚の板状部材を折り曲げてこれらの各部を形成することにより、十分な強度を持ったねじりばね302を、低コストで形成することができる。
Further, as shown in FIG. 7, the mover 320 includes a
Among them, the
また、両端の平面部302aと平面部302bとは、自然状態では全て同一平面上に位置する。しかし、両端の平面部302aを同一平面上に固定した状態で平面部302bに対して突起部302cを中心に回転する力を加えると、突起部302cがねじれ、平面部302bは突起部302cを中心に回転移動する。力をかけるのをやめると、ばねの復元力により突起部302cのねじれが解消し、平面部302bは平面部302aと同一平面上に戻る。
また、永久磁石321は、平面部302bの、突起部302cと反対側の面に、突起部を跨いた一方側にN極321nが、他方側にS極321sが位置するように固定される。N極321nとS極321sの位置は、図と逆でも問題ない。
Further, the
The
永久磁石321と平面部302bとの間の固定は、連結ホルダ323にて、図8Aに示すように永久磁石321と平面部302bとを外側から挟み込むことにより行う。そして、連結ホルダ323と永久磁石321と平面部302bとを、相互に接着等して固定する。弾性を有する連結ホルダ323を用いて、その弾性力により固定することも考えられる。これらの組み合わせでもよい。また、アウトサート成形により、樹脂製の連結ホルダ323を、ねじりばね302上にねじりばね302と一体に形成することも考えられる。
図8Aは、平面部302bの中央付近を通り、突起部302cの長手方向に垂直な平面での断面図である。
Fixing between the
FIG. 8A is a cross-sectional view of a plane perpendicular to the longitudinal direction of the
ミラー301は、連結ホルダ323の、平面部302bと反対側の面に固定する。この固定は、接着により行う。接着剤は任意のものを用いてよいが、硬化収縮の少ないものが望ましい。
以上の可動子320は、図7に示した各部材を予め組み立てた後で、図6の(c)と(d)の間の工程で、トップヨーク314の可動子保持部314aに対して固定する。この固定は、可動子保持部314aに対して平面部302aを不図示のねじによりねじ止めして行ったり、平面部302aと可動子保持部314aとを接着あるいは溶接することにより行ったり、平面部302aを可動子保持部314aに設けたスリットに挿入して行ったり等、任意の方法で行うことができる。
The
The mover 320 described above is fixed to the
可動子320がトップヨーク314に固定された状態では、ねじりばね302の平面部302b及び永久磁石321は、トップヨーク314の開口部314cを通してコイルアッセンブリ313と対向する。より具体的には、図8Aに示すように、コイルアッセンブリ313内に設けられた駆動コイル316の軸の一端が、永久磁石321のN極321nとS極321sの中間点と対向する。永久磁石321から見ると、ねじりばね302と反対側に駆動コイル316が配置されていることになる。
With the mover 320 fixed to the
この状態で駆動コイル316に通電し、例えば永久磁石321と対向する側の端部がN極となると、永久磁石321のS極321sは駆動コイル316に引き寄せられ、N極321nは駆動コイル316と反発し、永久磁石321には、図8Aで見て時計回りに回転しようとする力が働く。その力はねじりばね302の平面部302bに伝わり、ねじりばね302は、突起部302cの断面の中心付近にある仮想的な回転軸304を中心に時計回りに回転してねじれる。これにつれて、平面部302bに固定されたミラー301も、回転軸304を中心に時計回りに回転する。
そして、駆動コイル316と永久磁石321の間に生じる磁力と、ねじりばね302の復元力とが釣り合う位置で回転が止まる。駆動コイル316に流す電流の強さを変えることにより、この回転の速さと停止位置を調整可能である。
In this state, when the
Then, the rotation stops at a position where the magnetic force generated between the
次に、永久磁石321及びミラー301が適当な位置まで時計回りに回転した状態で、駆動コイル316への通電方向を逆向きにすると、永久磁石321と対向する側の端部がS極となり、今度は永久磁石321のN極321nが駆動コイル316に引き寄せられ、S極321sが駆動コイル316と反発し、永久磁石321には、図8Aで見て反時計回りに回転しようとする力が働く。その力は時計回りの場合と同様にねじりばね302の平面部302bに伝わり、ねじりばね302は回転軸304を中心に反時計回りに回転して先ほどと逆向きにねじれる。これにつれて、平面部302bに固定されたミラー301も、回転軸304を中心に反時計回りに回転する。
Next, with the
駆動コイル316に印加する駆動信号の電圧又は電流の向きを定期的に反転させることにより、矢印Vで示すようにミラー301に上記の時計回り及び反時計回りの回転を交互に行わせ、回転軸304の廻りを所定の角度範囲で回転する往復運動をさせることができる。すなわち、ミラー301を、所定の移動経路上で揺動させることができる。そして、このことにより、図1を用いて説明した、主走査方向の走査に必要なレーザビームL1の周期的な偏向を実現することができる。
Periodically reversing the direction of the voltage or current of the drive signal applied to the
なお、ねじりばね302の寿命を考えると、揺動の範囲は自然状態に対して対称であることが望ましい。しかしこれは必須ではない。例えば、駆動コイル316に印加する電圧のオンオフを周期的に切り換えることにより、自然状態付近の位置を一端とする所定範囲での揺動を行うこともできる。駆動コイル316に印加する電圧又は電流を、適宜な範囲で周期的に変化させることにより、ねじりばね302の可動範囲内の任意の揺動範囲で、ミラー301を揺動させることができる。
In consideration of the life of the
いずれにせよ、このアクチュエータ300では、可動子320はその端部がトップヨーク314に固定されているが、実際に移動する平面部302b付近の部分は空中に浮いているため、揺動時に部品間の摩擦が発生せず、長時間連続で使用しても、発熱や摩耗が生じにくい。従って、高い耐久性を得ることができる。
また、コイルアッセンブリ313を磁性体のトップヨーク314及び枠ヨーク312で囲んでいるため、駆動コイル316に生じる磁力の漏れを防止し、高い駆動効率を得ることができる。ただし、このような磁性体の囲みを設けることは、必須ではない。
In any case, in this
Further, since the
また、図6及び図8Aに示すように、トップヨーク314の可動子保持部314aは、トップヨーク314の他の部分よりも薄肉としている。これは、永久磁石321を、トップヨークと枠ヨーク312とで構成される外装の内側に位置させ、駆動コイル316に生じる磁力を漏らさずに永久磁石321に伝えるためである。
駆動コイル316に生じる磁力を漏らさないためには、磁性体による外装の、永久磁石321のN極321n及びS極321sと対向する端部が、駆動コイル316の軸の永久磁石321と対向する一端からその軸に沿った方向(図8Aの上下方向)で見て、N極321nとS極321sとを結ぶ永久磁石321の中心線(図8Aに符号321xで示す)よりも離れた位置にあるとよい。
Further, as shown in FIGS. 6 and 8A, the
In order not to leak the magnetic force generated in the
この実施形態では、トップヨーク314の開口部314cに、両側から可動子320に向かって、かつ駆動コイル316から離れる方向(図8Aの上方向)に延びる突起314dを設けることにより、上記の磁力を漏らさないために構造を実現している。この構造により、駆動コイル316から可動子320へ大きな回転モーメントを与えることができ、ミラー301の揺動速度の高速化、及び/又は消費電力の低減を図ることができる。
In this embodiment, the magnetic force can be reduced by providing the
なお、図8Aのように可動子保持部314aを薄肉とすると、ミラー301がトップヨーク314に近接してしまうため、ミラー301とトップヨーク314との干渉によりミラー301の可動域が制約される可能性がある。
この点に対処するためには、図8Bに示すように、可動子保持部314aを他の部分よりも厚肉として、ミラー301をトップヨーク314から離すことが考えられる。この構成では、永久磁石321が、トップヨーク314の外側にはみ出してしまうこともあり得、これは磁力漏れの原因となり得る。しかしこの場合であっても、図8Bに示すように、突起314dを、その端部が中心線321xよりも図で上方に位置するように形成すれば、磁力漏れを防止し、揺動速度の高速化、及び/又は消費電力の低減を図ることができる。
When the
In order to cope with this point, as shown in FIG. 8B, it is conceivable to make the
また、ねじりばね302の材質は、例えばステンレスや、りん青銅とすることが考えられるが、その他、弾性ばねを形成可能な任意の材質を採用することができる。また、突起部302cの断面をV字型にしているのは、発明者らのシミュレーションにより、大きなばね定数が得られ、このことによりねじりばね302の共振周波数を高められることが見出されたためである。共振周波数が高いと、より小さい駆動電力で大きな走査角度が実現でき、望ましい。
しかし、断面の形状はV字型に限られることはなく、ねじりばねとして機能し得るのであれば、断面が角張ったn字型やU字型、またはM字型、W字型、開口部のない空芯薄壁閉断面など、他の形状であってもよい。
The material of the
However, the shape of the cross section is not limited to the V-shape, and if it can function as a torsion spring, the cross-section may be an n-shape, a U-shape, an M-shape, a W-shape or an opening There may be other shapes, such as no air core thin wall closed cross section.
なお、こうした直線状の突起部302cを有する構造は、平面構造のねじりばねに比べ、回転軸に直交する方向の剛性を高くすることができる。この剛性は、自動車内のような、常時振動する環境で安定した走査を行い、また揺動部の耐久性を確保する上で非常に有用である。
また、突起部302cを有するねじりばねは、立体形状であり、全体としての厚みが大きい。このため、板材を折り曲げて形成することは容易であるが、MEMS(Micro Electro Mechanical Systems)の技術を利用したウエーハープロセスで、十分な高さの突起部302cを有するねじりばねを形成することは、困難である。
In addition, the structure which has such
Moreover, the torsion spring which has the
また、駆動コイル316は、図8Aの例では自然状態で平面部302bに対して垂直な向きに配置しているが、軸の一端が、永久磁石321のN極321nとS極321sの中間点と対向していれば、向きは図8Aに示したものに限られない。例えば、軸を突起部302cと平行に配置しても、図8Aの構成の場合と同様なミラー301の揺動が可能である。
In the example of FIG. 8A, the
また、駆動コイル316を、コイルアッセンブリ313に収納したり、ボビンに巻いたりすることも必須ではなく、コア部311aに直接巻くことも妨げられない。
また、センシングコイル317は、図9乃至図15を用いて後述するレーザビームL1の点灯タイミング調整を行うために設けたものであり、この調整を行わないのであれば、不要である。
Further, it is not essential to accommodate the
The
また、図8A及び図8Bに示した例では、ねじりばね302の突起部302cが、ミラー301側に突出していたが、逆に永久磁石321側に突出していてもよい。すなわち、永久磁石321を、平面部302bの、突起部302cが突出する側の面に、連結ホルダ323と同様なホルダを介して設け、ミラー301を、その反対側の面に設けてもよい。この構成でも、図8A及び図8Bを用いて説明した構成の場合と同様に、ミラー301を、突起部302cの略中心に位置する回転軸を中心に揺動させることができる。
また、以上の他、永久磁石321に代えて、ミラーの駆動時に通電される電磁石を用いることも妨げられない。ただし、永久磁石321の方が、構造が単純で組み付け誤差が発生しにくく、余計なノイズを発生しない点で好ましい。
Moreover, in the example shown to FIG. 8A and FIG. 8B, although the
In addition to the above, using the electromagnet that is energized when driving the mirror in place of the
〔3.揺動アクチュエータが備える可動子の別の構成例及びその製造方法(図9乃至図11)〕
次に、上述したアクチュエータ300にて利用可能な可動子の別の構成例及びその製造方法について説明する。本項で説明する可動子330は、量産に適した構成のものである。
[3. Another configuration example of the mover provided in the swing actuator and a method of manufacturing the same (FIGS. 9 to 11).
Next, another configuration example of the mover usable in the
図9は、可動子330を構成する部品の構造と、その組み立て工程の概略を示す分解斜視図であり、その最終工程において完成した可動子330の斜視図も含む。図10は、図9の(c)に示した可動子330の一点鎖線で示す面における断面を、矢印N方向から見た断面図である。
可動子330は、図9の(a)に示すように、ねじりばね331、第1スペーサ332、第2スペーサ333、ミラー301及び永久磁石321を備える。ミラー301及び永久磁石321は、図7に示した可動子320を構成するものと同等なものである。
FIG. 9 is an exploded perspective view showing the structure of parts constituting the
As shown in FIG. 9A, the
ねじりばね331も、可動子320を構成するねじりばね302と同様な平面部331b及び突起部331cを備える。しかし、突起部331cの両端に設ける平面部331aは、平面部331bの外側を取り囲むように、相互に接続された一体の構成となっている。このようなねじりばね331は、金属の板材に対しプレスで打ち抜きと折り曲げの加工を同時に行うことにより、形成することができる。
The
第1スペーサ332は、主として、突起部331cを回避して平面部331b上に第1部材であるミラー301を取り付けることができるよう、平面部331bの、突起部331cが突出する側の面(第1面)に配置して、ミラー301の取り付け位置を突起部331cと同じ高さまでかさ上げするためのスペーサである。スペーサ部332bが、このかさ上げを担う、突起部331cと同じ高さのスペーサである。このスペーサ部332bは、ブリッジ332dにより、外周部332aと接続されている。
The
外周部332aは、ねじりばね331の平面部331aと同じ形に形成され、突起部331cと対応する位置に、突起部331cをカバーする突起部332cを備える。なお、外周部332aについてはスペースの確保は必ずしも必要ない。しかし、図11を用いて後述するような多数個同時製造の場合に、スペーサ部332bのみであると隣接する個体との距離が遠すぎて、ねじりばね331の各個体と対応するスペーサ部332bを一枚のシートに形成することが困難であるので、ブリッジ332dを支えるために、ねじりばね331の保護材の役割を兼ねて設けたものである。
なお、第1スペーサ332は、ねじりばね331及びミラー301の双方を固定可能な材質であれば、材質に特に制約はない。弾性を持つ必要もない。
The outer
The material of the
一方、第2スペーサ333は、主として、ねじりばね331がステンレス等の半田付けに適さない材質である場合に、平面部331bの、突起部331cが突出する側と反対側の面(第2面)に配置して、第2部材である永久磁石321を半田付けで平面部331bに固定するための土台として用いる。スペーサ部333bが、この土台の役割を担う。このスペーサ部333bは、ブリッジ333dにより、外周部333aと接続されている。
On the other hand, when the
外周部333aも、ねじりばね331の平面部331aと同じ形に形成され、突起部331cと対応する位置に、突起部331cの裏側をカバーする突起部333cを備える。外周部333aを設けた理由は、外周部332aの場合と同様である。
第2スペーサ333の材質は、ねじりばね331に固定可能かつ半田付けが可能な材質を用いる。例えば、ねじりばね331がステンレスであれば、りん青銅は、第2スペーサの材質として好適である。
The outer
The material of the
可動子330を製造する場合、以下の工程で行うとよい。
まず、図9の(b)に示すように、ねじりばね331の突起部331c側に第1スペーサ332を、突起部331cと反対側に第2スペーサ333を、後述の加熱工程でも固定を維持できるように、接着又は圧着により固定する。図10には、第1スペーサ332及び第2スペーサ333の接着に、それぞれ接着剤を用いた例を示しており、それらが接着剤341,342として示されている。ただし接着剤は、加熱工程で溶融しない耐熱性のものを用いる。あるいは、分子圧着法を用いてもよい。
なお、図10は、平面部332bの中央付近を通り、突起部332cの長手方向に垂直な平面での断面図である。また、部品間の接着に用いる部材を表記できるよう、接着層の厚さを実際よりもかなり強調して示している。
When manufacturing the
First, as shown in FIG. 9B, the
FIG. 10 is a cross-sectional view of a plane perpendicular to the longitudinal direction of the
次に、ダイシング等により、可動子330の完成品に不要なブリッジ332d及び333dを除去する。
その後、第1スペーサ332のうちスペーサ部332b上に、加熱により溶融する材質の接着層343を塗布し、その上にミラー301を配置する。スペーサ部331bが突起部331cと同じ高さであるので、突起部331cが障害とならずに、突起部331cを跨いでミラー301を配置することができる。図10では接着層343の分だけスペーサ部332bが突起部331cより若干低くなっているように見えるが、実際には接着層343は薄く、両者の高さに実質的な差はない。
接着層343としては、低融点ガラスペーストを用いることが望ましい。接着に加熱処理を要する場合、ミラー301を構成するガラスと接着剤とで収縮率が異なると、冷却時の収縮によりミラー301が歪んで走査の精度が低下することが考えられるが、低融点ガラスペーストであれば、これを避けられるためである。
Next, the
Thereafter, an
It is desirable to use a low melting point glass paste as the
また、第2スペーサ333のうちスペーサ部333b上にも、加熱により溶融する材質の接着層344を塗布し、その上(図10では下側)に永久磁石321を配置する。可動子320の場合と同様、突起部331cを跨いだ一方側にN極321nが、他方側にS極321sが位置するように配置する。接着層344としては、コストの観点でクリーム半田を用いることが望ましいが、これに限られることはない。また、永久磁石321としては、この後の加熱工程に耐えられるよう、ネオジムタイプではなく、サマリウムコバルトタイプの磁石を用いることが望ましい。
ミラー301と永久磁石321の配置が済んだ積層体は、外観としては図9の(c)に示す可動子330とほぼ共通である。
In addition, an
The laminated body in which the arrangement of the
最後に、この積層体を加熱処理することにより、接着層343,344を溶融させて、ミラー301と永久磁石321の固定を完了し、以上で可動子330が完成する。
可動子330は、可動子320の場合と同様に、図6及び図8A等に示したトップヨーク314上に固定して用いることができ、駆動コイル316への通電に応じて、ミラー301を揺動させることができる。なおこの場合、もちろん、トップヨーク314における可動子保持部314aは、可動子330の構造及び形状に合った構成とする。
Finally, the laminated layers are subjected to heat treatment to melt the
As in the case of the mover 320, the
以上の可動子330は、突起部はあるものの略平面状の部材を積層して接着し、また必要に応じてそれらを切断するのみで製造できるため、大量生産に適している。
ねじりばね331、第1スペーサ332及び第2スペーサ333を、それぞれ複数連結され平面的に配列された状態でシート状の部材として用意し、その状態で積層して固定することも可能である。
The above
It is also possible to prepare a plurality of torsion springs 331,
図11に、その積層して固定した状態を示す。
図11において、ねじりばね331、第1スペーサ332及び第2スペーサ333は、それぞれ1枚のシート上に3行4列に配列されている。なお、図11は、ブリッジ332d,333dはダイシングにより除去した状態で示している。
この状態の積層体に、接着層343,344を形成し、可動子330の各個体と対応するミラー301及び永久磁石321を配置する作業は、従来の表面実装(SMT)技術を用いた電子部品用の自動部品搭載機を利用すれば、非常に効率よく行うことができる。
FIG. 11 shows the stacked and fixed state.
In FIG. 11, the torsion springs 331, the
The work of forming
また、リフロー炉を用いれば、加熱処理も、従来広く用いられている装置を用いて容易に行うことができる。
図11では、一番左上側の個体にのみ、ミラー301(及び裏側に隠れた永久磁石321)を固定した状態を示しているが、全ての個体に、同時に同様な固定を行うことができる。そして、その後に各個体の可動子330を切り離すことができる。なお、可動子330の用途によっては、複数の可動子330を連結したまま利用することも妨げられない。
In addition, when a reflow furnace is used, heat treatment can also be easily performed using a conventionally widely used apparatus.
In FIG. 11, the mirror 301 (and the
以上の構成を採用すれば、アクチュエータ300に利用可能な可動子330を、従来用いられている電子部品の実装と同様な工程で、従来用いられている装置を利用して効率よく製造することができる。従って、低コストで可動子330を製造可能であり、アクチュエータ300のコストダウンにも資する。
なお、永久磁石321をねじりばね331に直接半田付け可能な場合には、第2スペーサ333を省略可能である。この場合、接着層344は、平面部331bの、突起部331cと反対側の面に直接形成し、その上に永久磁石321を配置すればよい。
If the above configuration is adopted, the
When the
また、可動子330においても、可動子320の場合と同様、平面部331bの、突起部331cが突出する側の面に第1部材として永久磁石321を設け、ミラー301を、第2部材としてその反対側の面に設けてもよい。この場合、第1スペーサ332上に永久磁石321を、第2スペーサ333上にミラー310を固定する点と、それに伴って各スペーサや使用する接着層の材質を入れ替える点以外は、以上説明してきた構造及び製造方法を、同様に適用可能である。
Also in the
〔4.主走査方向の走査位置に応じたビームの点灯間隔の制御(図12乃至図17)〕
次に、出射光L2の主走査方向の走査位置に応じた、ビームの点灯間隔の制御について説明する。なお、主走査方向の走査位置は、アクチュエータ300におけるミラー301の向きと対応するので、ここで説明する制御は、ミラー301の向きに応じた制御でもある。
[4. Control of the lighting interval of the beam according to the scanning position in the main scanning direction (FIGS. 12 to 17)
Next, control of the lighting interval of the beam according to the scanning position in the main scanning direction of the outgoing light L2 will be described. Since the scanning position in the main scanning direction corresponds to the direction of the
まず、アクチュエータ300によるミラー301の揺動動作の特徴について、図12乃至図14を用いて説明する。
図12は、ミラー301の走査角と走査角速度の絶対値との関係を示すグラフ、図13は、LDモジュール21の駆動信号の例を示す図、図14は、走査線上に形成される出射光L2によるスポットの例を示す図である。
First, features of the swinging operation of the
FIG. 12 is a graph showing the relationship between the scanning angle of the
発明者らの実験により、アクチュエータ300により揺動されるミラー301の移動速度は一定ではないことがわかっている。ミラー301は揺動経路の端部では停止し、他の部分では動いているので、移動速度に変動があるのは明らかだが、その速度は、図12に示すように、概ね揺動経路の端部に行くほど遅く、中央部に行くほど速くなっている。反時計回りに回転する際も時計回りに回転する際も、移動の向きが異なるのみで、同じ位置であれば速さはほぼ等しい。
According to the experiments of the inventors, it is known that the moving speed of the
そこで、図12では、揺動経路上の位置(回転角により表現し、「走査角」と呼ぶことにする)を横軸に、その位置での角速度の絶対値を縦軸に取って速度の変化を図示している。
このようにミラー301の回転速度に変動があるため、図13に示すような等間隔のパルスを有する駆動信号drv1によりLDモジュール21を駆動すると、走査線71上には、図14に示すような出射光L2のスポット72が形成されることになる。すなわち、主走査方向の中央部では粗く、端部では細かく分布するスポットが形成される。このため、物体の検出分解能も、中央部では端部よりも粗くなってしまう。
Therefore, in FIG. 12, the position on the rocking path (represented by the rotation angle and referred to as "scanning angle") is taken on the horizontal axis, and the absolute value of the angular velocity at that position is taken on the vertical axis. The change is illustrated.
Since the rotational speed of the
物体検出装置10の用途として障害物の検出を考えた場合、視野の中央付近の重要度が最も高いと考えられるため、この状態は好ましくない。
そこで、物体検出装置10には、ミラー301の走査角に応じてLDモジュール21の駆動信号のパルスの間隔を制御するための制御回路を設けている。
When the detection of an obstacle is considered as the application of the
Therefore, the
図15に、その制御回路の構成を示す。
図15に示す制御回路351は、周期制御部に該当し、大きく分けて、駆動コイル316の駆動制御、ミラー301の回転速度の検出、及びLDモジュール21の点灯間隔の制御に関する動作を行う。
FIG. 15 shows the configuration of the control circuit.
The
まず、駆動コイル316の駆動制御については、制御回路351は、駆動コイル316へ印加する駆動信号353を生成する駆動信号生成回路352に対し、アクチュエータ300に実行させる走査の範囲や周期の値を設定する。駆動信号生成回路352は、その設定された値に従い、適当な周期で変動する電圧の、適当なレベルの駆動信号353を生成してアクチュエータ300の駆動コイル316に印加する。このことにより、図8Aを用いて説明したように、アクチュエータ300にミラー301を揺動させることができる。
First, for drive control of the
次に、ミラー301の回転速度の検出については、検出回路354が、アクチュエータ300のセンシングコイル317に生じる誘導電圧を検出し、ADC(アナログデジタルコンバータ)355がリアルタイムでその電圧をデジタル値に変換し、その値を差分算出部357によって補正して制御回路351に供給する。制御回路351は、その電圧値に基づき、ミラー301の回転速度を算出する。センシングコイル317の巻数は、駆動コイル316と同じで、駆動コイル316と逆巻きにするとよいが、これに限られることはない。
Next, for detection of the rotational speed of the
ここで、ミラー301を揺動させる際、センシングコイル317には、2種類の要因による誘導起電力が発生する。
1つめの要因は、駆動コイル316に印加される駆動信号の電圧変動によって駆動コイル316が発生する磁界の強さ及び向きが変動することによる誘導起電力である。
2つ目の要因は、永久磁石321が揺動することによって生じる磁界の強さの変動による誘導起電力である。永久磁石321が図8Aを用いて説明したように揺動する場合、それによってセンシングコイル317内に生じる磁界の強さの変動速度は、概ね永久磁石321の回転角速度に比例すると考えることができる。永久磁石321の回転角速度は、すなわちミラー301の回転角速度でもあるので、2つめの要因で生じる誘導起電力の強さは、ミラー301の回転角速度に比例すると考えることができる。
Here, when the
The first factor is induced electromotive force due to fluctuation in the strength and direction of the magnetic field generated by the
The second factor is the induced electromotive force due to the fluctuation of the magnetic field strength caused by the swinging of the
相互誘導電圧パターン記憶部356及び差分算出部357は、以上のうち1つめの要因による誘導起電力分の値をADC355の出力から差し引くために設けたものである。
すなわち、相互誘導電圧パターン記憶部356は、アクチュエータ300において、永久磁石321を取り外した状態で駆動信号を駆動コイル316に印加した場合に相互誘導によりセンシングコイル317に生じる誘導電圧の電圧値の推移を、駆動信号の1周期分、駆動信号の位相と対応付けて記憶している。そして、駆動信号生成回路352は、ミラー301を揺動させるために駆動信号を駆動コイル316に印加する際、相互誘導電圧パターン記憶部356に対し、駆動信号の位相を示すタイミング信号を供給する。相互誘導電圧パターン記憶部356は、このタイミング信号に基づき、現在のタイミングと対応する電圧値を、差分算出部357へ供給する。
The mutual induction voltage
That is, in the
差分算出部357は、ADC355から供給される、実際にセンシングコイル317に生じている誘導電圧の値から、相互誘導電圧パターン記憶部356から供給される電圧値を、相互誘導の寄与分として減算し、その結果の差分を制御回路351へ供給する。
以上により、制御回路351へ、ミラー301の回転角速度に比例した誘導電圧の値を供給することができる。制御回路351へ供給される誘導電圧の変化を、ミラー301の揺動範囲の一端から他端まで半周期分の時間を横軸に取ってプロットすると、グラフ361に示すように、図12に示した回転角速度のグラフと概ね同様な形状になると考えられる。
The
As described above, it is possible to supply the value of the induced voltage proportional to the rotational angular velocity of the
制御回路351は、時刻tにおいて差分算出部357から供給される電圧値VR(t)に、予め求めて設定された比例定数Kを乗じて、ミラー301の角速度ω(t)を、ω(t)=K×VR(t)により求める。
Kの値は、例えば、半周期分のミラー301の回転角を他の手段で計測した値と、半周期分の電圧値VR(t)の積分値とを比較することにより求められる。
The
The value of K can be obtained, for example, by comparing the value obtained by measuring the rotation angle of the
また、制御回路351は、ω(t)を用いて、主走査方向の走査線71a上で所望の分解能が得られるようにLDモジュール21を点灯させるための点灯間隔Tを求めることができる。分解能をψ度とすると、T=π・(ψ/180)/ω(t)である。
制御回路351は、LDモジュール21の点灯間隔の制御を行うため、差分算出部357からの電圧値VR(t)の供給に応じて、リアルタイムで点灯間隔Tを求め、そのTの値を示すパルス幅変調信号をパルス発生器358へ供給する。
Further, the
In order to control the lighting interval of the
パルス発生器358は、そのパルス幅変調信号に従ってパルス幅変調を行い、間隔Tのパルスを有するタイミング信号を生成してレーザ駆動回路22に供給する。レーザ駆動回路22は、パルス発生器358から供給されるタイミング信号に含まれるパルスのタイミングでLDモジュール21を点灯させる駆動信号を生成して、LDモジュール21へ供給する。
The
制御回路351がパルス発生器358へ供給するパルス間隔を、グラフ361と同様に時間を横軸に取ってミラーの揺動範囲の一端から他端までの期間について示すと、グラフ362のようになる。すなわち、制御回路351は、センシングコイル317に発生する誘導電圧に応じて、ミラー301が揺動経路の中央付近にあってその誘導電圧が高いレベル(第1レベル)である場合に、ミラー301が揺動経路の端部付近にあってその誘導電圧が低いレベル(第2レベル)である場合に比べて、LDモジュール21の点滅周期を短くするような制御を行っていることになる。
The pulse interval supplied to the
その結果、レーザ駆動回路22が生成するLDモジュール21の駆動信号は、図16に示すdrv2のように、ミラー301の移動速度に応じて異なるパルス間隔のものになる。そして、このように点灯制御されたレーザビームL1を、ミラー301で偏向して得られるビームスポット72は、図17に示すように、主走査方向の走査線71a上に、その全長に亘って概ね等間隔で配列されることになる。そして、このことにより、物体検出装置10は、物体の検出を、その視野70内において概ね均等な分解能で行うことができる。
副走査方向については、主走査方向の1ライン分の走査を行う間ミラー351を静止させているため、上述のような問題は起こらず、点灯間隔の調整は不要である。
As a result, the drive signal of the
In the sub-scanning direction, since the
なお、上述した制御回路351は、プロセッサ53の一部として設けても、プロセッサ53と別に設けてもよい。また、制御回路351の機能は、専用のハードウエアによって実現しても、汎用のプロセッサにソフトウエアを実行させることにより実現しても、それらの組み合わせでもよい。
また、図15の例では、センシングコイル317に生じる誘導電圧の電圧値に基づき制御を行う例について説明したが、誘導電流の電流値を用いても、同様な制御が可能である。
The
Further, although the example of performing control based on the voltage value of the induced voltage generated in the
〔5.受光部40の構成(図18乃至図24)〕
次に、受光部40の構成の詳細について説明する。物体検出装置10は、受光部40において、集光レンズ42の焦点面上にアパーチャー44を設けた点に一つの特徴を有するので、この点を中心に説明する。
[5. Configuration of light receiving unit 40 (FIGS. 18 to 24)]
Next, the configuration of the light receiving unit 40 will be described in detail. The
まず、投光部20から投光されるレーザビームL1の性質について説明する。
図18は、投光部20から投光されるレーザビームの光路を模式的に示す図である。
投光部20のLDモジュール21は、図18に示すように複数の発光点21a1〜21a3を備えるものである。各発光点21a1〜21a3はそれぞれ、ある程度の広がりを持ったレーザ光B1〜B3を出力する。また、これらの発光点21a1〜21a3は、近接した位置に配列されるが、必然的にある程度の広がりをもって配置されることになる。もちろん、数は3つに限られない。
First, the nature of the laser beam L1 emitted from the light emitting unit 20 will be described.
FIG. 18 is a view schematically showing an optical path of a laser beam emitted from the light emitting unit 20. As shown in FIG.
The
一方、投光光学系23は、LDモジュール21が出力するレーザ光から平行光のビームを生成すべく設計される。例えば、投光光学系23を、いずれかの発光点(ここでは発光点21a2とする)が焦点に位置するような凸レンズで構成すると、その発光点が出力するレーザ光B2を、その凸レンズのパワーにより、凸レンズの光軸に沿って進む平行光のビームC2にすることができる。
On the other hand, the projection
しかし、焦点面上にあっても焦点とずれた位置にある発光点21a1,21a3が出力するレーザ光B1,B3は、凸レンズのパワーにより平行光にはなるものの、光軸に対して若干傾いた向きに進むビームC1,C3となってしまう。
従って、全体として、発光点21a1〜21a3が出力するレーザ光は、投光光学系23を通過すると、ほぼ平行光だが若干の広がりを持つレーザビームになる。この広がりの角度は、投光光学系23から十分離れた位置では一定とみなすことができ、その角度をレーザビームL1あるいは出射光L2の発散角αとする。
However, although the laser beams B1 and B3 output from the light emitting points 21a1 and 21a3 at positions deviated from the focal point are parallel light due to the power of the convex lens, they are slightly inclined with respect to the optical axis It will be beams C1 and C3 that move in the direction.
Therefore, as a whole, when the laser beams output from the light emitting points 21a1 to 21a3 pass through the light projecting
次に、受光部40に設けたアパーチャー44の詳細な構成及びその効果について説明する。
まず、この実施形態の物体検出装置10においては、受光部40に設ける受光素子43として、シリコンフォトマルチプライヤー(SiPM)を用いている。このSiPMは、ガイガーモードで動作するアバランシェフォトダイオード(APD)のアレイであり、光子1つから検出できるほどの高い検出感度と、高い増倍率、高速応答性、優れた時間分解能などを得られる。
Next, the detailed configuration of the
First, in the
一例として、一般的なAPDでは出力信号は入力信号(受光面に入射する光の強度)に対して約50倍の増幅率であるところ、浜松フォトニクス社が販売するMPPC(Multi-pixel Photon Counter:登録商標)では、約10万倍の増幅率を得ることができるものもある(https://www.hamamatsu.com/resources/pdf/ssd/Photodetector_lidar_kapd0005e.pdf)。
As an example, in a general APD, the output signal has an amplification factor of about 50 times that of the input signal (the intensity of light incident on the light receiving surface), and MPPC ( Multi- pixel Photon Counter) sold by Hamamatsu Photonics Some of the registered trademarks can obtain an amplification rate of about 100,000 times (https://www.hamamatsu.com/resources/pdf/ssd/Photodetector_lidar_kapd0005e. Pdf).
従って、SiPMを用いることにより、弱い戻り光L4でも検出することができるので、低い強度のレーザビームを用いて、遠方の、光反射率の低い物体も検出可能な物体検出装置を構成することができる。SiPMではAPDの2000倍程度の増幅率を得られるため、理論的には、SiPMを用いると、APDを用いる物体検出装置の場合に比べ、1/2000の出力のレーザビームを用いて、同程度の物体検出能力を得られることになる。 Therefore, by using SiPM, even weak return light L4 can be detected, so an object detection apparatus capable of detecting a distant object with low light reflectance can be configured using a low-intensity laser beam. it can. Since an amplification factor of about 2000 times that of APD can be obtained with SiPM, theoretically, using SiPM, the laser beam with an output of 1/2000 is equivalent to that of an object detection apparatus using APD. The object detection capability of
レーザビームの強度を増すためには、大型かつ高価な装置が必要となるため、レーザビームの強度が低くてよい点は、物体検出装置の小型化や低コスト化において大きなアドバンテージとなる。しかしながら、SiPMは、APDと比べ、受光面のサイズが大きくなってしまうため、単純にAPDをSiPMに置き換えると、外乱光の影響を受けやすくなるという問題がある。 In order to increase the intensity of the laser beam, a large and expensive apparatus is required. Therefore, the point that the intensity of the laser beam may be low is a great advantage in downsizing and cost reduction of the object detection device. However, since the size of the light receiving surface of SiPM is larger than that of APD, simply replacing APD with SiPM has the problem of being susceptible to disturbance light.
図19を用いて、この点について説明する。図19は、アパーチャー44がない場合の、集光レンズ42による戻り光L4の集光の光路を示す図である。
受光部40において、集光レンズ42は、入射する戻り光L4を、焦点面上に結像させるように設計される。ここでは焦点距離をfとする。なお、戻り光は、図18を用いて説明したように出射光が発散角αを有することに対応し、当該αの広がりを持つ視野範囲から物体検出装置10に戻ってくる。しかしここでは、一旦、戻り光L4は完全な平行光であるとみなす。
This point will be described with reference to FIG. FIG. 19 is a diagram showing an optical path of condensing the return light L4 by the condensing
In the light receiving unit 40, the
そうすると、光軸に沿って集光レンズ42へ入射する戻り光L4は、集光レンズ42の焦点に集光され、その後発散する。そして、受光素子43は、その受光面全域で戻り光L4を受けるために、焦点より先の、戻り光L4が受光面の幅D′に広がる位置に配置することが好ましい。このときの集光レンズ42から受光素子43までの距離をd′とする。受光素子43は焦点よりも手前に配置してもよく、このようにするとd′を小さくして装置を小型化できるが、外乱光の影響低減の観点からは、焦点よりも先に配置することが好ましい。
Then, the return light L4 incident on the condensing
ところで、物体検出装置10には、戻り光L4だけでなく、様々な方角からの外乱光も入射する。その一部は、戻り光L4と同じ又は近接した光路で受光部40に到達する。そして、集光レンズ42の中心を通る光は集光レンズ42を通過しても直進する性質を考慮すると、図19に破線で示す、視野角φの範囲の外乱光X(及びこれらに平行に集光レンズ42に入射する外乱光)は、受光素子43に入射してしまうことになる。このφの値は、φ=arctan(D′/d′)により、近似的に求めることができる。「arctan」は、アークタンジェントである。
By the way, not only the return light L4 but also disturbance light from various directions enters the
受光素子43としてAPDを用いる場合、受光面の有効直径は例えば0.08mm程度であるので、D′=50mmとすると、φ≒0.1度となり、極めて限られた範囲の外乱光しか受光素子43に入射しない。従って、外乱光Xが物体検出に及ぼす影響は限定的である。
しかし、受光素子43としてSiPMを用いる場合、受光面の有効直径は例えば1.3mm程度もあり、そうすると、D′=50mmの場合、φ≒1.5度であり、かなり広い視野角の外乱光が受光素子43に入射することになる。SiPMの感度が極めて高いこともあり、この状況では、太陽光が強い場合、外乱光Xにより受光素子43が飽和してしまい、戻り光L4が検出できず、測距もできなくなってしまう。
When APD is used as the
However, when SiPM is used as the
従って、図19の構成では、物体検出装置の受光素子としてSiPMを用いることは難しいという問題があった。
そこで、この実施形態においては、集光レンズ42の焦点面上にアパーチャー44を設けることにより、この問題を解決した。
Therefore, in the configuration of FIG. 19, there is a problem that it is difficult to use SiPM as the light receiving element of the object detection device.
Therefore, in this embodiment, this problem is solved by providing the
図20及び図21を用いて、この点について説明する。図20は、アパーチャー44がある場合の、集光レンズ42による戻り光L4の集光の光路を示す図である。図21は、アパーチャー44の通光領域の配置を示す図である。
アパーチャー44は、集光レンズ42の焦点面上に設けられ、戻り光L4を通過させるための通光領域(開口部)44aを有し、その他の部分は遮光領域44bである。
This point will be described with reference to FIGS. 20 and 21. FIG. 20 is a diagram showing an optical path of condensing of the return light L4 by the condensing
The
ここで、戻り光L4は、実際には広がり角αの視野範囲から戻ってくるため、集光レンズ42の収差を考慮しなかったとしても焦点の一点に結像されることはなく、近似的に直径がf・tanαのスポットとして焦点面上に結像される。従って、戻り光L4を全て通過させるためには、通光領域44aの直径Dも、最低限f・tanαだけ必要である。ただし、部品の組み付け誤差も考慮すると、直径Dは、最低限の値よりも少し大きい方がよい。
Here, since the return light L4 actually returns from the field of view range of the spread angle α, even if the aberration of the
一方、集光レンズ42からアパーチャー44までの距離をd(図20の例では集光レンズ42の焦点距離fと等しい)とすると、アパーチャー44の通光領域44aを通過する外乱光Xは、視野角がβ=arctan(D/d)の範囲となる。従って、Dがあまり大きすぎても外乱光の影響が大きくなる。
これらを考慮した発明者らのシミュレーションによれば、1≦β/α≦3となる範囲で通光領域44aの直径Dを定めると、外乱光の影響を抑えつつ、多少の組み付け誤差を許容可能で、歩留まりと信頼性の高い物体検出装置10を構成できる。
On the other hand, assuming that the distance from the focusing
According to the inventors' simulation in consideration of these, if the diameter D of the
以上のようなアパーチャー44を設けることにより、図22に破線で示すような、視野角βの範囲外からの外乱光を、アパーチャー44により遮光して、受光素子43に入射させないようにすることができる。図19に示した構成の場合と比べ、図23に示すように、集光レンズ42の光軸を中心に視野角φと視野角βの間の範囲から入射する外乱光Xを、アパーチャー44により遮光できるという捉え方もできる。一方で、視野角(発散角)αの範囲から入射する戻り光L4は、アパーチャー44を通過して受光素子43に入射するので、これを検出することができる。もちろん、アパーチャー44が視野角φよりさらに外側の外乱光を遮光して差支えない。
By providing the
そして、アパーチャー44の配置は、コストの点でも製造難易度の点でもさほど大きな影響があるものではない。従って、アパーチャー44により、簡易かつ安価に外乱光の影響を低減できると言える。そして、このことにより、SiPMの特性を活かし、上述したように低コストで検出感度のよい物体検出装置を構成することができる。ただし、SiPMを用いることは必須ではなく、本発明は、他の受光素子への外乱光の影響を低減するためにも当然適用可能である。
And, the arrangement of the
なお、図20の例ではアパーチャー44を集光レンズ42の焦点面上に設けたが、これは必須ではない。戻り光L4のスポットは焦点面上で最も小さくなるため、アパーチャー44を焦点面上に設けると、通光領域44aの径を小さくでき、外乱光の阻止に最も効果的であるが、多少焦点面からずれた位置に設けても、通光領域44aをその位置での戻り光L4のスポットに合ったサイズとすれば、ある程度の効果は得られる。また、焦点面からのずれが、通光領域44aの径にほとんど影響を与えない程度であれば、焦点面上に設けた場合と同一視できる。
Although the
また、図20では示していないが、受光部40において、戻り光L4を集光レンズ42に導くためのミラー41には、出射するレーザビームL1を通過させるための透孔41aが開いている。このため、透孔41aの部分では戻り光L4が反射されないので、このままでは、受光素子43に入射する戻り光L4のスポットは、透孔41aと対応する領域が暗いスポットとなってしまう。そうすると、暗い部分ではピークの検出信号が得られにくくなってしまうので、その分、受光素子43の実質的な検出感度が低下してしまうことになる。
Although not shown in FIG. 20, in the light receiving section 40, a through
そこで、図24に示すように、アパーチャー44と受光素子43との間に光拡散部材46を設け、戻り光L4を拡散して受光素子43に入射させるとよい。このようにすれば、受光素子43の受光面全体に戻り光L4を概ね均一に入射させることができ、検出感度の低下を防止できる。光拡散部材46としては、磨りガラスやホログラフィックディフューザーを用いることが考えられる。
Therefore, as shown in FIG. 24, it is preferable to provide a
〔6.その他の変形例〕
以上で実施形態の説明を終了するが、この発明において、物体検出装置の具体的な構成、具体的な動作の手順、各部のサイズその他のパラメータの値、部品の具体的な形状等は、実施形態で説明したものに限るものではない。
例えば、上述した実施形態における集光レンズ42や投光光学系23は、単一のレンズで構成するのみならず、複数のレンズのパワーを組み合わせて構成することも可能である。
[6. Other Modifications]
This is the end of the description of the embodiment, but in the present invention, the specific configuration of the object detection device, the specific operation procedure, the size of each part, the value of other parameters, the specific shape of parts, etc. It does not restrict to what was demonstrated by the form.
For example, the condensing
また、以上の各項目において説明した特徴は、それぞれ独立して装置やシステムに適用し得るものである。特に、受光部40や、アクチュエータ300、可動子320,330等は、単独で部品としても流通し得るものである。また、その用途も、物体検出装置に限られない。
また、上述した物体検出装置10は、人の手のひらに載る程度のサイズで構成可能であり、自動車に搭載して、自動運転のための障害物検出装置として用いるために好適なものであるが、その利用目的はこれに限られない。柱や壁等に固定して、定点観測に用いることもできる。
Also, the features described in the above items can be applied independently to the device or system. In particular, the light receiving unit 40, the
Further, the above-described
また、この発明のプログラムの実施形態は、1のコンピュータに、あるいは複数のコンピュータを協働させて、所要のハードウエアを制御させ、上述した実施形態における物体検出装置10における、LDモジュール21の発光タイミング調整機能を含む機能を実現させ、あるいは上述した実施形態にて説明した処理を実行させるためのプログラムである。
In addition, according to the embodiment of the program of the present invention, one computer or a plurality of computers cooperate with one another to control required hardware, and light emission of the
このようなプログラムは、はじめからコンピュータに備えるROMや他の不揮発性記憶媒体(フラッシュメモリ,EEPROM等)などに格納しておいてもよい。メモリカード、CD、DVD、ブルーレイディスク等の任意の不揮発性記録媒体に記録して提供することもできる。さらに、ネットワークに接続された外部装置からダウンロードし、コンピュータにインストールして実行させることも可能である。 Such a program may be stored in the ROM or other non-volatile storage medium (flash memory, EEPROM, etc.) provided in the computer from the beginning. It can also be provided by being recorded on any non-volatile recording medium such as a memory card, CD, DVD, Blu-ray disc and the like. Furthermore, it is possible to download it from an external device connected to the network, install it on a computer, and execute it.
また、以上説明してきた実施形態及び変形例の構成が、相互に矛盾しない限り任意に組み合わせて実施可能であり、また、一部のみを取り出して実施することができることは、勿論である。 Further, the configurations of the embodiments and the modifications described above can be implemented in any combination as long as they do not contradict each other, and it is a matter of course that only a part can be extracted and implemented.
10…物体検出装置、20…投光部、21…LDモジュール、22…レーザ駆動回路、23…投光光学系、30…走査部、31…ミラー、32…アクチュエータ、40…受光部、41,48…ミラー、42…集光レンズ、43…受光素子、44…アパーチャー、46…光拡散部材、51…フロントエンド回路、52…TDC、53…プロセッサ、54…入出力部、61…トップカバー、62…リアカバー、63…カバークリップ、64…保護材、70…視野、71…走査線、72…スポット、300,380…アクチュエータ、301,381…ミラー、304,384…回転軸、311…コアヨーク、312…枠ヨーク、313…コイルアッセンブリ、314…トップヨーク、315…ねじ、316…駆動コイル、317…センシングコイル、302,330…可動子、321…永久磁石、321s…S極、321n…N極、322,331…ねじりばね、323…連結ホルダ、332…第1スペーサ、333…第2スペーサ、341〜344…接着層、351…制御回路、352…駆動信号生成回路、353…駆動信号、354…検出回路、355…ADC、356…相互誘導電圧パターン記憶部、357…差分算出部、358…パルス発生器、382…軸、383…ホルダ、L1…レーザビーム、L2…出射光、L3,L4…戻り光
DESCRIPTION OF
Claims (7)
前記複数の発光点が出力するレーザ光から、前記複数の発光点の配列方向に発散角を持つレーザビームを生成するレンズと、
前記レーザビームと対応する1つのシリコンフォトマルチプライヤー(SiPM)である受光素子と、
前記レーザビームを外部へ投光すると共に、該投光と同じ光軸で、外部から入射する入射光を導光し、前記受光素子へ導く光学系と、
前記投光部によるレーザビームの投光方向を周期的に変動させる走査部と、
前記レーザビームの投光タイミング及び投光方向と、前記受光素子が出力する光検出信号のタイミングとに基づき、前記レーザビームの光路上の物体までの距離及びその物体がある方向を検出する物体検出部とを備える物体検出装置であって、
前記光学系が、
前記入射光を前記レーザビームの投光光路から分離する光学素子と、
前記光学素子により分離された入射光を所定の焦点面上に結像させる集光レンズと、
前記集光レンズの焦点面上に配置されたアパーチャーとを備え、
前記発散角の大きさをα、前記アパーチャーの通光領域の、前記発散角と対応する方向の径をD、前記集光レンズから前記アパーチャーまでの距離をd、β=arctan(D/d)として、α≦βであることを特徴とする物体検出装置。 A laser light source in which a plurality of light emitting points are arranged;
A lens for generating a laser beam having a divergence angle in the arrangement direction of the plurality of light emitting points from the laser light output from the plurality of light emitting points;
A light receiving element which is one silicon photomultiplier (SiPM) corresponding to the laser beam ;
An optical system that projects the laser beam to the outside and guides incident light that is incident from the outside along the same optical axis as the projection and guides it to the light receiving element;
A scanning unit that periodically changes a projection direction of the laser beam by the projection unit;
Object detection for detecting the distance to an object on the optical path of the laser beam and the direction of the object based on the light projection timing and light emission direction of the laser beam and the timing of the light detection signal output by the light receiving element An object detection apparatus comprising:
The optical system is
An optical element for separating the incident light from the light projection path of the laser beam;
A condenser lens for focusing incident light separated by the optical element on a predetermined focal plane;
And an aperture disposed on a focal plane of the condenser lens,
The size of the divergence angle is α, the diameter of the light passing region of the aperture in the direction corresponding to the divergence angle is D, and the distance from the focusing lens to the aperture is d, β = arctan (D / d) An object detection apparatus characterized in that α ≦ β.
1≦β/α≦3であることを特徴とする物体検出装置。 The object detection apparatus according to claim 1, wherein
An object detection apparatus characterized in that 1 ≦ β / α ≦ 3.
前記集光レンズを通過した光が、前記シリコンフォトマルチプライヤーの受光面の全域に入射することを特徴とする物体検出装置。 The object detection device according to claim 1 or 2, wherein
An object detection apparatus characterized in that the light having passed through the condenser lens is incident on the entire light receiving surface of the silicon photomultiplier.
前記アパーチャーと前記受光素子との間に光拡散部材を備えることを特徴とする物体検出装置。 The object detection device according to any one of claims 1 to 3, wherein
An object detection apparatus comprising a light diffusion member between the aperture and the light receiving element.
前記レーザビームを、走査部によりその投光方向を周期的に変動させながら外部へ投光すると共に、該投光と同じ光軸で、外部から入射する入射光を導光し、
光学素子により、前記入射光を前記レーザビームの投光光路から分離して、該分離された入射光を集光レンズにより所定の焦点面上に結像させ、
前記集光レンズの焦点面上に配置したアパーチャーであって、前記発散角の大きさをα、前記アパーチャーの通光領域の、前記発散角と対応する方向の径をD、前記集光レンズから前記アパーチャーまでの距離をd、β=arctan(D/d)として、α≦βであるアパーチャーにより、前記集光レンズにより集光された光を絞り、
前記アパーチャーを通過した光を、前記レーザビームと対応する1つのシリコンフォトマルチプライヤー(SiPM)である受光素子に入射させ、
前記レーザビームの投光タイミング及び投光方向と、前記受光素子が出力する光検出信号のタイミングとに基づき、前記レーザビームの光路上の物体までの距離及びその物体がある方向を検出することを特徴とする物体検出方法。 A laser beam output from a laser light source in which a plurality of light emitting points are arranged is allowed to pass through a lens to generate a laser beam having a divergence angle in the arrangement direction of the plurality of light emitting points;
The laser beam is projected to the outside while periodically changing its projection direction by the scanning unit, and light incident from the outside is guided along the same optical axis as the projection.
The optical element separates the incident light from the projection light path of the laser beam, and the separated incident light is imaged on a predetermined focal plane by a condenser lens.
An aperture disposed on the focal plane of the condenser lens, wherein the size of the divergence angle is α, the diameter of the light passing region of the aperture in the direction corresponding to the divergence angle is D, and the condenser lens Assuming that the distance to the aperture is d, β = arctan (D / d), the aperture focused by the focusing lens is narrowed by the aperture where α ≦ β,
The light having passed through the aperture is made incident on a light receiving element which is one silicon photomultiplier (SiPM) corresponding to the laser beam ,
Detecting the distance to the object on the optical path of the laser beam and the direction of the object based on the light projection timing and light emission direction of the laser beam and the timing of the light detection signal output from the light receiving element Object detection method to be characterized.
前記発散角の大きさαと、前記集光レンズから前記アパーチャーまでの距離dとに基づき、β=arctan(D/d)として、前記アパーチャーの通光領域の、前記発散角と対応する方向の径Dを、α≦βとなるように定めることを特徴とする物体検出装置の設計方法。 Corresponding a laser light source in which a plurality of light-emitting points are arranged, the plurality of laser beams emission point is output, and a lens to produce a laser beam having a divergence angle in the direction of arrangement of said plurality of light emitting points, and the laser beam A light receiving element which is one silicon photomultiplier (SiPM), and the laser beam is projected to the outside, and incident light from the outside is guided along the same optical axis as the light projection, and the light receiving element Optical system for guiding the light beam, a scanning unit for periodically changing the light projection direction of the laser beam by the light projection unit, a light emission timing and light projection direction of the laser beam, and a light detection signal output from the light receiving element And an object detection unit for detecting a distance to an object on the optical path of the laser beam and a direction in which the object is located based on the timing, and the optical system includes the laser beam An optical element separated from the light projection optical path, a condenser lens for forming an incident light separated by the optical element on a predetermined focal plane, and an aperture disposed on the focal plane of the condenser lens. A design method for designing an object detection apparatus comprising:
Based on the size α of the divergence angle and the distance d from the focusing lens to the aperture, β = arctan (D / d), in the direction corresponding to the divergence angle of the light passing area of the aperture A diameter D is determined so as to satisfy α ≦ β.
前記径Dを、1≦β/α≦3になるように定めることを特徴とすることを特徴とする物体検出装置の設計方法。 A method of designing an object detection apparatus according to claim 6, wherein
A method of designing an object detection apparatus characterized in that the diameter D is set so as to satisfy 1 ≦ β / α ≦ 3.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018127086A JP6519033B1 (en) | 2018-07-03 | 2018-07-03 | Object detection device, object detection method, and design method of object detection device |
US16/220,702 US10620314B2 (en) | 2018-07-03 | 2018-12-14 | Object detecting apparatus and method thereof |
US16/220,082 US10324184B1 (en) | 2018-07-03 | 2018-12-14 | Object detecting apparatus, object detecting method, and design method of object detecting apparatus |
DE102018133249.1A DE102018133249A1 (en) | 2018-07-03 | 2018-12-20 | Object detection device; Object detection method and design method for object detection device |
DE102018010211.5A DE102018010211A1 (en) | 2018-07-03 | 2018-12-20 | Object detection device and method therefor |
CN201811595754.0A CN109991619A (en) | 2018-07-03 | 2018-12-26 | The design method of article detection device, object detecting method and article detection device |
CN201811599238.5A CN110673161B (en) | 2018-07-03 | 2018-12-26 | Object detection device, object detection method thereof, and recording medium |
US16/807,897 US11275157B2 (en) | 2018-07-03 | 2020-03-03 | Object detecting apparatus, object detecting method, and design method of object detecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018127086A JP6519033B1 (en) | 2018-07-03 | 2018-07-03 | Object detection device, object detection method, and design method of object detection device |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018130804A Division JP6518959B1 (en) | 2018-07-10 | 2018-07-10 | Object detection apparatus, control method and program |
JP2019004230A Division JP2020008552A (en) | 2019-01-15 | 2019-01-15 | Object detection device, object detection method, control method, program, movable member, and manufacturing method of movable member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6519033B1 true JP6519033B1 (en) | 2019-05-29 |
JP2020008334A JP2020008334A (en) | 2020-01-16 |
Family
ID=66655758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018127086A Active JP6519033B1 (en) | 2018-07-03 | 2018-07-03 | Object detection device, object detection method, and design method of object detection device |
Country Status (4)
Country | Link |
---|---|
US (3) | US10324184B1 (en) |
JP (1) | JP6519033B1 (en) |
CN (2) | CN110673161B (en) |
DE (2) | DE102018010211A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022044317A1 (en) * | 2020-08-31 | 2022-03-03 | ||
WO2024048242A1 (en) * | 2022-09-02 | 2024-03-07 | 株式会社デンソー | Ranging device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11022792B2 (en) * | 2016-12-27 | 2021-06-01 | Intel Corporation | Coupling a magnet with a MEMS device |
JP6519033B1 (en) * | 2018-07-03 | 2019-05-29 | Dolphin株式会社 | Object detection device, object detection method, and design method of object detection device |
US11525896B2 (en) * | 2019-07-09 | 2022-12-13 | Microvision, Inc. | Scanning mirror system with attached magnet |
US11536952B2 (en) * | 2019-07-29 | 2022-12-27 | Microvision, Inc. | Scanning mirror system with attached coil |
JP7452044B2 (en) * | 2020-01-31 | 2024-03-19 | 株式会社デンソー | light detection device |
JP2021148587A (en) * | 2020-03-18 | 2021-09-27 | 株式会社リコー | Object detector and mobile body |
JP7427487B2 (en) * | 2020-03-24 | 2024-02-05 | キヤノン株式会社 | Optical devices, in-vehicle systems, and mobile devices |
CN112255617B (en) * | 2020-12-17 | 2021-06-22 | 上海思岚科技有限公司 | Can anti sunshine interference type laser scanning distancer |
US20220236413A1 (en) * | 2021-01-26 | 2022-07-28 | Omron Corporation | Laser scanner apparatus and method of operation |
US12007233B2 (en) * | 2021-03-04 | 2024-06-11 | Beijing Voyager Technology Co., Ltd. | Magnetic sensing for a scanning mirror in LiDAR system |
US12013261B2 (en) | 2021-05-21 | 2024-06-18 | Beijing Voyager Technology Co., Ltd. | Magnetic sensing for a galvanometer scanner using a hall sensor for LiDAR system |
EP4194890A1 (en) * | 2021-12-09 | 2023-06-14 | Pepperl+Fuchs SE | Optical sensor |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01276114A (en) | 1988-04-27 | 1989-11-06 | Murata Mfg Co Ltd | Actuator for driving optical element |
JP2644895B2 (en) | 1989-09-08 | 1997-08-25 | 松下技研株式会社 | Laser vision sensor |
JP3155331B2 (en) * | 1992-04-21 | 2001-04-09 | オリンパス光学工業株式会社 | Distance measuring device |
JPH07198845A (en) * | 1993-12-28 | 1995-08-01 | Nec Corp | Distance and image measuring apparatus |
JPH07199111A (en) | 1993-12-28 | 1995-08-04 | Olympus Optical Co Ltd | Actuator for scanning |
JP2982614B2 (en) * | 1994-06-20 | 1999-11-29 | 日本電気株式会社 | Image scanner device |
US5625183A (en) * | 1994-06-15 | 1997-04-29 | Nec Corporation | Rotary mirror scanner unit having optical angular displacement sensor |
JPH0772699A (en) * | 1994-08-22 | 1995-03-17 | Konica Corp | Color image forming method |
GB9714134D0 (en) * | 1997-07-05 | 1997-09-10 | Lumonics Ltd | Method and apparatus for actuating a shutter |
JP2000147122A (en) * | 1998-11-09 | 2000-05-26 | Nikon Corp | Light-wave distance meter |
JP2002096188A (en) * | 2000-09-21 | 2002-04-02 | Shinozaki Seisakusho:Kk | Laser beam machine and laser beam machining method |
US6831765B2 (en) | 2001-02-22 | 2004-12-14 | Canon Kabushiki Kaisha | Tiltable-body apparatus, and method of fabricating the same |
JP4164528B2 (en) | 2001-02-22 | 2008-10-15 | キヤノン株式会社 | Method for manufacturing structure including oscillator |
JP2004102267A (en) | 2002-08-21 | 2004-04-02 | Canon Inc | Rocking device, optical deflection device using rocking device, and image display device using optical deflection device, image forming apparatus, and method for manufacturing rocking device |
US6989614B2 (en) | 2002-08-21 | 2006-01-24 | Canon Kabushiki Kaisha | Oscillating device |
JP4088188B2 (en) * | 2003-04-07 | 2008-05-21 | セイコーエプソン株式会社 | projector |
US7787172B2 (en) * | 2003-11-01 | 2010-08-31 | Silicon Quest Kabushiki-Kaisha | Gamma correction for adjustable light source |
US8238223B2 (en) * | 2003-11-06 | 2012-08-07 | Panasonic Corporation | Deformable mirror, optical head, and optical recording and playback device |
JP2005345328A (en) * | 2004-06-04 | 2005-12-15 | Sharp Corp | Optical object discrimination device |
US7133061B2 (en) | 2004-06-14 | 2006-11-07 | Texas Instruments Incorporated | Multilaser bi-directional printer with an oscillating scanning mirror |
US7301608B1 (en) * | 2005-01-11 | 2007-11-27 | Itt Manufacturing Enterprises, Inc. | Photon-counting, non-imaging, direct-detect LADAR |
JP2008298520A (en) * | 2007-05-30 | 2008-12-11 | Nec Corp | Scanning distance measuring instrument |
JP2011095103A (en) * | 2009-10-29 | 2011-05-12 | Sony Corp | Distance-measuring apparatus |
CN102834765A (en) | 2010-03-24 | 2012-12-19 | 日本电气株式会社 | Magnetic force drive device, optical scanning device, and image display device |
WO2011132360A1 (en) * | 2010-04-23 | 2011-10-27 | コニカミノルタセンシング株式会社 | Optical system for measurements, and luminance colorimeter and colorimeter using same |
CN101846867B (en) * | 2010-04-30 | 2011-09-28 | 安阳工学院 | Laser projection device being driven by magnetic force to scan |
EP3786668A1 (en) | 2010-05-17 | 2021-03-03 | Velodyne Lidar, Inc. | High definition lidar system |
CN104160240B (en) * | 2012-02-15 | 2017-02-22 | 苹果公司 | Scanning depth engine |
JP5942225B2 (en) | 2012-02-27 | 2016-06-29 | ミツミ電機株式会社 | Actuator and optical scanning device |
JP6069628B2 (en) | 2012-12-03 | 2017-02-01 | 北陽電機株式会社 | Deflection device, optical scanning device, and scanning distance measuring device |
US9128190B1 (en) | 2013-03-06 | 2015-09-08 | Google Inc. | Light steering device with an array of oscillating reflective slats |
DE102014102420A1 (en) * | 2014-02-25 | 2015-08-27 | Sick Ag | Optoelectronic sensor and method for object detection in a surveillance area |
JP2015215405A (en) | 2014-05-08 | 2015-12-03 | 株式会社ニデック | Medical laser device |
JP2016133550A (en) | 2015-01-16 | 2016-07-25 | キヤノン株式会社 | Laser scanner device, laser scanning method and program |
WO2017095817A1 (en) | 2015-11-30 | 2017-06-08 | Luminar Technologies, Inc. | Lidar system with distributed laser and multiple sensor heads and pulsed laser for lidar system |
DE102016114995A1 (en) * | 2016-03-30 | 2017-10-05 | Triple-In Holding Ag | Apparatus and method for taking distance images |
US10605984B2 (en) * | 2016-12-01 | 2020-03-31 | Waymo Llc | Array of waveguide diffusers for light detection using an aperture |
US10422862B2 (en) * | 2016-12-13 | 2019-09-24 | Sensl Technologies Ltd. | LiDAR apparatus |
CN106814366B (en) * | 2017-03-23 | 2024-04-30 | 上海思岚科技有限公司 | Laser scanning range unit |
CN108169847A (en) * | 2018-03-13 | 2018-06-15 | 杭州艾芯智能科技有限公司 | A kind of large field of view scan imaging optical system |
JP6519033B1 (en) * | 2018-07-03 | 2019-05-29 | Dolphin株式会社 | Object detection device, object detection method, and design method of object detection device |
-
2018
- 2018-07-03 JP JP2018127086A patent/JP6519033B1/en active Active
- 2018-12-14 US US16/220,082 patent/US10324184B1/en active Active
- 2018-12-14 US US16/220,702 patent/US10620314B2/en active Active
- 2018-12-20 DE DE102018010211.5A patent/DE102018010211A1/en not_active Withdrawn
- 2018-12-20 DE DE102018133249.1A patent/DE102018133249A1/en not_active Withdrawn
- 2018-12-26 CN CN201811599238.5A patent/CN110673161B/en active Active
- 2018-12-26 CN CN201811595754.0A patent/CN109991619A/en active Pending
-
2020
- 2020-03-03 US US16/807,897 patent/US11275157B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022044317A1 (en) * | 2020-08-31 | 2022-03-03 | ||
WO2022044317A1 (en) * | 2020-08-31 | 2022-03-03 | 三菱電機株式会社 | Distance measurement device |
DE112020007572T5 (en) | 2020-08-31 | 2023-06-22 | Mitsubishi Electric Corporation | DISTANCE MEASUREMENT DEVICE |
JP7483016B2 (en) | 2020-08-31 | 2024-05-14 | 三菱電機株式会社 | Distance measuring device |
WO2024048242A1 (en) * | 2022-09-02 | 2024-03-07 | 株式会社デンソー | Ranging device |
Also Published As
Publication number | Publication date |
---|---|
DE102018133249A1 (en) | 2020-01-09 |
US10620314B2 (en) | 2020-04-14 |
CN110673161A (en) | 2020-01-10 |
US20200200902A1 (en) | 2020-06-25 |
US20200011974A1 (en) | 2020-01-09 |
CN109991619A (en) | 2019-07-09 |
DE102018010211A1 (en) | 2020-01-09 |
US10324184B1 (en) | 2019-06-18 |
CN110673161B (en) | 2023-04-18 |
JP2020008334A (en) | 2020-01-16 |
US11275157B2 (en) | 2022-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6519033B1 (en) | Object detection device, object detection method, and design method of object detection device | |
JP6830698B1 (en) | Actuators, optical scanning devices, and object detectors | |
EP3698169B1 (en) | Methods and apparatuses for scanning a lidar system in two dimensions | |
KR101709844B1 (en) | Apparatus and method for mapping | |
JP5872073B2 (en) | Optical scanning device and projector | |
EP1434161A1 (en) | Module for optical information reader | |
JPH07199103A (en) | Integrated scanner on common substrate | |
JP6685569B1 (en) | Optical scanning device, object detection device, optical scanning method, object detection method, and program | |
JP6541165B1 (en) | Optical scanning method, optical scanning device and object detection device | |
JP6521551B1 (en) | Object detection apparatus, control method and program | |
CN211698371U (en) | Driving mechanism | |
JP6521164B1 (en) | Object detection device | |
JP6518959B1 (en) | Object detection apparatus, control method and program | |
JP2022074195A (en) | Light detection device | |
JP2012226020A (en) | Distance measuring instrument | |
JP2021132416A (en) | Actuator, optical scanner and article detecting device | |
JP2020008552A (en) | Object detection device, object detection method, control method, program, movable member, and manufacturing method of movable member | |
JP2020194152A (en) | Actuators, optical scanning devices, and object detection devices | |
JP2006243225A (en) | Optical scanning device and image display device | |
JP7097647B1 (en) | Adjustment method and program of optical scanning device, object detection device, optical scanning device | |
JP6651111B1 (en) | Actuator, optical scanning device, and object detection device | |
JP7097648B1 (en) | Adjustment method and program of optical scanning device, object detection device, optical scanning device | |
JP2003076942A (en) | Vibrating mirror driving device and module for optical information reading device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180710 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180726 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180726 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20180911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190129 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190131 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6519033 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |