JPH0424282B2 - - Google Patents

Info

Publication number
JPH0424282B2
JPH0424282B2 JP60093936A JP9393685A JPH0424282B2 JP H0424282 B2 JPH0424282 B2 JP H0424282B2 JP 60093936 A JP60093936 A JP 60093936A JP 9393685 A JP9393685 A JP 9393685A JP H0424282 B2 JPH0424282 B2 JP H0424282B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
acid
tin
phosphonic acid
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60093936A
Other languages
Japanese (ja)
Other versions
JPS60239305A (en
Inventor
Jooji Hopukinzu Kuinchin
Neruson Burooningu Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMC Corp
Original Assignee
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Corp filed Critical FMC Corp
Publication of JPS60239305A publication Critical patent/JPS60239305A/en
Publication of JPH0424282B2 publication Critical patent/JPH0424282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/037Stabilisation by additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は過酸化水素25乃至35%を含む高純度過
酸化水素の安定剤系に関する。 過酸化水素は熱力学的に不安定であるが、純粋
の場合自然分解プロセスをうけない。しかし過酸
化水素は不均一系又は均一系触媒によつて分解を
うける。過酸化水素用に選ばれる安定剤系は過酸
化水素が接触されると予想される分解触媒の量と
性質による。例えば製造元によつて大貯槽に貯え
られた非常に純粋な濃過酸化水素は非常に僅かの
安定剤で十分である。しかし稀過酸化水素又は多
分触媒によつて汚染をうけた様な濃過酸化水素は
高濃度の安定剤を要する。 高純度過酸化水素の様な特殊用途、半導体工業
用又は化学試薬用の過酸化水素は非常に厳重な仕
様でなければならない。この様な用途においては
過酸化水素は普通の分解触媒で汚染されても分解
しない様に安定でなければならないが、また特定
の用途に合うよう可能な最少添加物を含まねばな
らない。一般に特定の過酸化水素はH2O2 25乃至
35重量%である。 大部分の過酸化水素安定化研究はアルミニウム
容器中で貯蔵又は輸送の濃溶液中の過酸化水素の
安定化について又は高濃度過酸化水素が鉄と銅並
びにカルシウム、マグネシウムとアルミニウムの
様な他の多価陽イオンの様な汚染物を含む普通の
水道水又は蒸留水のいづれかで稀釈される又はさ
れた場合についてなされている。この工業的組成
物の例は米国特許第3781409号、第3681022号、第
3383174号、第3701825号および第4061721号に開
示されている。これらの組成物は商業上出荷され
た代表的過酸化水素で、この分野で過酸化水素の
安定剤としてよく知られた有機ホスホン酸の様な
有機化合物で安定化されたものを含み添加錫化合
物も含んでいる場合も含まぬ場合もある。異なる
2つの安定剤系を混合することによる併合効果は
稀に付加的であり、結果は個々の安定剤成分の効
果の合計を超える場合もあれば、安定剤が互いに
帳消しにして安定効果が僅かであつたり全くない
場合がある。 過酸化水素の分解と安定化は1955年Schumbら
によつて「アメリカン・ケミカル・ソサエテイ・
モノグラフ・シリーズ」(American Chemical
Society Monograph Series)(ニユーヨーク市
ラインホルト出版社)のHydrogen Peroxide477
−546ページ(1955)および最近1981年のKirk−
Othmerの「エンサイクロペデイア・オブ・ケミ
カルテクノロジー」(Encyclopedia of Chemical
Technology)13巻3版(ニユーヨーク市ジヨン
ウイレー アンド サンズ)14−15ページ
(1981)に発表されており、両文献に参考のため
本明細書に加えておく。錫化合物は過酸化水素の
安定剤として有効と従来から知られており
Schumbらはその応用を詳細に発表している。85
%過酸化水素に対する最適酸化第2錫(Sn2O)
濃度はSchumbらによつて第2鉄0.1mg/当り
0.83mg/であると報告されている。必要な安定
剤量は過酸化水素濃度の増加と共に減少すること
はよく知られている。したがつてよりうすい過酸
化水素は85%過酸化水素に対しSchumbらによつ
て報告された量よりも高い錫量を必要とする。ア
ルミニウム金属とアルミニウムイオンが過酸化水
素を接触的に分解しないことはよく知られてい
る。しかしアルミニウムイオンの存在は過酸化水
素から錫安定剤を沈澱させる。Morrisらの米国
特許第3356457号は錫で安定化された過酸化水素
組成物中に最大0.2mg/のアルミニウムが存在
できるとしている。しかしホスフエート安定剤の
存在では錫で安定化された過酸化物は1mg/ま
でのアルミニウムイオンは許容しうる。 Iraniの米国特許第3234140号においてはホスホ
ン酸が約0.001乃至約5%の濃度である場合の過
酸化水素溶液の安定化剤としてトリス(メチレン
ホスホン酸)をあげている。Carnineらの米国特
許第3383174号はニトリロトリメチレンホスホン
酸ともいわれるアミノトリス(メチレンホスホン
酸)50乃至300mg/とナトリウムスタネートと
して加えられた錫10乃至150mg/の相乗的混合
物を発表している。Kibbelらの米国特許第
3861022号はナトリウムスタネートの様な可溶性
アルカリ金属塩の形の錫300mg/とアミノトリ
ス(メチレンホスホン酸)1250mg/を含む35%
過酸化水素組成物を発表している。Radimerら
の米国特許第3701825号はエチレンジアミンテト
ラ(メチレンホスホン酸)が過酸化水素安定化に
有効であると記載している。 Reillyらの米国特許第3387939号はアルミニウ
ム又は他の多価陽イオンによる錫安定剤の沈澱を
抑制するに少なくも20mg/のアルキデンホスホ
ン酸が必要であると発表している。Reillyらの特
許はまた最適安定性のためには必要ならば適当な
酸、例えば硝酸、硫酸、乳酸、くえん酸等を加え
て過酸化水素のPHを等価点まで調節することが好
ましいとしている。 化学試薬および半導体の様な多くの用途に対し
従来法によつて必要とされている高濃度安定剤の
使用は好ましくない。本発明は蒸発後の最大残渣
が20mg/であり2乃至35重量%の過酸化水素を
含む非常に純粋な過酸化水素溶液用のものであ
る。例えば試薬過酸化水素のACS(アメリカン・
ケミカル・ソサイエテイ)仕様は29.0乃至32.0%
の過酸化水素の蒸発後の最大残渣20mg/を要求
する。過酸化水素安定化に使われる錫化合物はカ
ルシウム、マグネシウムおよびアルミニウムの様
な用イオン並びに普通の分解触媒によつて凝固し
中和されるコロイド状粒子の形であることはよく
知られている。 ピロホスフエート、ホスフエートおよびサルフ
エートの様な陰イオンはコロイド状酸化第2錫の
安定性を改良すると知られている。しかし従来法
における臨界最少量であるこれら物質の量は、ホ
スフエートとしてのりん2mg/およびサルフエ
ート5mg/をこえてはいけないと指定されてい
るので試薬過酸化水素には使用できない。従来法
で臨界最少量とされていた使用量に比し安定剤量
をはるかに減少させることがかかる用途用の過酸
化水素にとつては不可欠なのである。 更に多くの過酸化水素使用者には8mm又はそれ
より細かい過器で過酸化水素を過することは
普通の方法である。この過は溶液中の粒状物質
を減少しまた適切に解膠しなければ溶液中にコロ
イド状である酸化錫をも減少する。 酸化錫はあとで重金属で汚染されなければ過酸
化水素の分解を防ぐに必要である。したがつて問
題は必要な酸化錫を、凝固しないし沈降又は過
で除去されないしまた同時に蒸発後最大残渣20
mg/の様な臨界的な仕様に適合する極微粒子と
して保つことである。 本発明により蒸発最大残渣20mg/をもち汚染
による分解から安定化された過酸化水素水溶液が
製造できる。上記水溶液は過酸化水素25乃至35重
量%、錫0.1乃至1.4mg/Kg、有機ホスホン酸とし
て加えられたホスフエート0.1乃至2.5mg/およ
びくえん酸0.1乃至5.5mg/Kgを含むことを特徴と
する。ホスホン酸とくえん酸は望む範囲内にPHを
調節する必要からいづれも遊離酸、アルカリ金属
又はアンモニウム塩として又は遊離酸と塩の混合
物として加えることができる。 通常錫はナトリウムスタネート3水化物又はカ
リウムスタネー3水化物の様なアルカリ金属スタ
ネートとして加えられる。しかし錫は酸化第2錫
ゲル又は他の適宜の形で加えることができる。錫
がアルカリ金属塩として加えられた場合そのPHを
望む範囲に調節するために多量の遊離ホスホン酸
およびヒドロキシカルボン酸が必要であることは
この当業者は容易に認めるであろう。 本発明の実施にどんな有機ホスホン酸でも使用
できる。このホスホン酸はアミノトリス−(メチ
レンホスホン酸)およびエチレンジアミンテトラ
−(メチレンホスホン酸)の様なN−オキサイド
に酸化されうる窒素をものもの又はアルキデンホ
スホン酸、例えば1−ヒドロキシエチル−1,1
−ジホスホン酸の様な酸化されえない窒素をもの
ものでもよい。 酸は緩衝剤としてまた過酸化水素組成物のPHを
最適範囲内に調節するに有利と知られている。米
国特許第3387939号は例えば硝酸、硫酸、乳酸お
よびくえん酸などどんな適当な酸もPH調節に使用
できると開示している。しかし従来技術は全体と
してくえん酸および(又は)塩が錫で安定化され
た過酸化水素組成物に安定剤又は溶液中にコロイ
ド状錫ゾルを保つ解膠剤のいづれかとして有効で
あるとは開示も示唆もしていない。 くえん酸が錫で安定化されまた蒸発後の最大残
渣20mg/をもつ25乃至35%過酸化水素溶液の安
定性改良に有効なことがはからずも発見されたの
である。その機構はわからないが、従来の過度に
安定化された過酸化水素水溶液に比べて本発明の
過酸化水素水溶液はH2O2純度が高いということ
に関係があるものと信じられる。例えばDavisら
の「ジヤーナル・オブ・ケミカル・ソサエテイ」
(J.Chem.Soc.)、(1953)1902−1906ページの
“よう化物で接触された過酸化水素とヒドラジン
の酸中での反応の動力学”は普通の“純”試薬中
にある金属不純物は過酸化水素とヒドラジンの反
応を接触するに十分であつたと記載している。エ
チレンジアミンテトラ酢酸2ナトリウム塩
(EDTA)0.002M(6.72mg/)添加は反応に及
ぼす触媒の効果を除去するに十分であつた。本発
明で蒸発後の最大残渣20mg/を含む25乃至35%
過酸化水素を用いた場合EDTAが過酸化水素安
定性にも過後保たれた錫量にも何の効果もない
ことがわかつた。全体として従来の文献からまた
Davisらの発表から特に過酸化水素溶液中の接触
反応は実質的に同じ純度でない限り比較できない
ことは明らかである。 例 比較例 錫濃度、ホスホン酸、無機ピロホスフエートお
よびアルミニウムの有無などの変数の影響を検べ
るため実験をした。測定した応答は錫保持量と過
酸化水素安定性である。このようなフアクトリア
ルな実験の設計は文献によく知られている。例え
ばニユーヨーク市ジヨンウイレアンドサン社から
のJonsonらの「スタデイツクス・アンド・エク
スペリメンタル・デザイン」(Statics and
Experimental Design)、2巻15章(1977)を参
照されたい。 安定化しない純過酸化水素をH2O2 約31重量
%に調節した。添加物;ナトリウムスタネート3
水化物としての錫、ニトリロトリス(メチレンホ
スホン酸)としてのホスホン酸、ナトリウム酸ピ
ロホスフエートとしてのピロホスフエートおよび
アルミニウムナイトレートとしてのアルミニウム
を加えた。0.22μm過器で過直後プラズマア
ーク分光分析によつて錫を測定した。過前の初
めの濃度に比べた錫濃度変化率を報告した。過酸
化水素を0.22μm過器で過し100℃24時間後
液試料中に保持された過酸化水素パーセントを測
定した。製造直後の試料と1日貯蔵後の試料につ
いて上記のとおり錫測定と安定性を測定した。濃
度を稀過酸化水素キログラム当りミリグラムとし
て報告した。(1mg/Kg=0.0001重量%) 実際の実験条件と結果は表にまとめてあり、
個々の変数の高水準と低水準に対する応答の第1
オーダー差異“応答差異”と全応答の合計“応答
合計”を示している。有意と思われるこの応答差
異は星印(*)で示されている。 “応答合計”とは錫濃度(i=1)の変化また
は過酸化水素安定性(i=2)の変化についての
全試験データ(表では16個の試験)の合計
(ΣYi)である。これら16個の測定値の平均は
=ΣYi/16である。 “応答差異”とは高(+)水準および低(−)
水準における平均値iからの応答値Yiの代数
差であり、次式に等しい。 応答差異=Σ[i−Yi(+)−Σ[i−Yi
(−)]応答合計および応答差異は周知の統計学的
設計値であり、それらの詳細はStatistics and
Experimental Design in Engineering and the
Physical Sciences; Vol.II、 secondedition
(Norman L. Johnson; Fred.C.Leone共
署;John Wiey & Sons、 1977年刊行)第
794〜801頁に記載されている。 表から初めの錫濃度は重要な変数ではない。
ホスホン酸とナトリウム酸ピロホスフエート濃度
は錫応答差異によつて有意な正の効果を示す。ア
ルミニウムは有意の負効果を示す。変数はいづれ
も安定性には有意の効果をもたなかつた。これは
どの試料も分解触媒を含まないと予想されてい
る。 実施例 1 上記の比較例と同様の実験を行つた。ただしこ
の実施例では独立変数として1mg/Kgの錫をカリ
ウムスタネート3水化物又はナトリウムスタネー
ト3水化物のいずれかとして加え、かつ実験を次
の成分すなわちエチレンジアミンテトラ酢酸
(EDTA)、ニトリロトリス(メチレンホスホン
酸)、およびくえん酸の存在下にまたは不在下に
行つた。更に各試料にアルミニウムナイトレート
としてアルミニウム0.5mg/Kgを加えた。結果は
表にまとめて示している。 ホスホン酸の存在が有意であると発見されたこ
とは予想されたが、ホスホン酸の効力が1日後に
減少することは予想されなかつた。これはホスホ
ン酸が分解されるだろうことを示唆している。ま
た上記Davisらの文献を考えるとEDTAの有無は
有意でないと予想されなかつた。しかしDavisら
の過酸化水素は蒸発残渣670mg/以上をもち蒸
発残渣20mg/以下の高純度過酸化水素ではなか
つたのである。 くえん酸の応答差異がホスホン酸のそれよりも
有意であるばかりでなくまた応答差異が時間と共
にあまり減少しなかつたことを認めるとは更に予
想もしなかつた。この認識は多量の蒸発残渣をも
つ過酸化水素溶液に効果をもつと知られていた
EDTAの応答差異の有意がないことを考えると
諒解することがむつかしい。 くえん酸の影響は従来技術がくえん酸を純度の
低い工業用過酸化水表溶液に酸性化剤として使う
に適していると考えている点で特に驚くべきもの
である。過酸化水素溶液中にゾルとして錫を保つ
こと又は安定化過酸化水素組成物中酸性化剤とし
て以外のその用途は現在まで発見されないままで
いる。
The present invention relates to a high purity hydrogen peroxide stabilizer system containing 25 to 35% hydrogen peroxide. Hydrogen peroxide is thermodynamically unstable, but when pure it is not subject to spontaneous decomposition processes. However, hydrogen peroxide is subject to decomposition by heterogeneous or homogeneous catalysts. The stabilizer system selected for hydrogen peroxide will depend on the amount and nature of the decomposition catalyst with which the hydrogen peroxide is expected to be contacted. For example, very pure concentrated hydrogen peroxide, stored in large tanks by the manufacturer, requires very little stabilizer. However, dilute hydrogen peroxide or concentrated hydrogen peroxide, perhaps contaminated by the catalyst, requires high concentrations of stabilizer. Hydrogen peroxide for special purposes such as high purity hydrogen peroxide, semiconductor industry or chemical reagents must meet very strict specifications. In such applications, the hydrogen peroxide must be stable so as not to decompose when contaminated with common decomposition catalysts, but must also contain the minimum possible additives to suit the particular application. In general, certain hydrogen peroxides are H 2 O 2 25 to
It is 35% by weight. Most hydrogen peroxide stabilization research has focused on the stabilization of hydrogen peroxide in concentrated solutions, storage or transportation in aluminum containers, or when high concentrations of hydrogen peroxide are present in other materials such as iron and copper as well as calcium, magnesium and aluminum. This has been done when diluted with either ordinary tap water or distilled water containing contaminants such as polyvalent cations. Examples of this technical composition are U.S. Pat.
No. 3383174, No. 3701825 and No. 4061721. These compositions contain typical commercially available hydrogen peroxide stabilized with organic compounds such as organic phosphonic acids, which are well known in the art as hydrogen peroxide stabilizers, and contain added tin compounds. It may or may not include. The combined effect of mixing two different stabilizer systems is rarely additive, with the result exceeding the sum of the effects of the individual stabilizer components, or the stabilizers cancel each other out, resulting in only a small stabilizing effect. There may be cases where there is no problem or there may be none at all. The decomposition and stabilization of hydrogen peroxide was reported in 1955 by Schumb et al.
Monograph Series” (American Chemical
Society Monograph Series) (Reinhold Publishing, New York) Hydrogen Peroxide477
−546 pages (1955) and recently Kirk in 1981−
Othmer's Encyclopedia of Chemical Technology
Technology), Volume 13, 3rd Edition (John Whalley & Sons, New York), pages 14-15 (1981), and both documents are included herein for reference. Tin compounds have long been known to be effective as stabilizers for hydrogen peroxide.
Schumb et al. have published their application in detail. 85
Optimum tin oxide (Sn 2 O) for % hydrogen peroxide
The concentration was determined by Schumb et al. per 0.1 mg of ferric iron.
It is reported to be 0.83mg/. It is well known that the amount of stabilizer required decreases with increasing hydrogen peroxide concentration. Dilute hydrogen peroxide therefore requires higher amounts of tin than that reported by Schumb et al. for 85% hydrogen peroxide. It is well known that aluminum metal and aluminum ions do not catalytically decompose hydrogen peroxide. However, the presence of aluminum ions precipitates the tin stabilizer from the hydrogen peroxide. US Pat. No. 3,356,457 to Morris et al. states that up to 0.2 mg of aluminum can be present in a tin stabilized hydrogen peroxide composition. However, in the presence of a phosphate stabilizer, tin-stabilized peroxides can tolerate up to 1 mg/ml of aluminum ion. US Pat. No. 3,234,140 to Irani lists tris (methylene phosphonic acid) as a stabilizer for hydrogen peroxide solutions when the phosphonic acid is at a concentration of about 0.001 to about 5%. US Pat. No. 3,383,174 to Carnine et al. discloses a synergistic mixture of 50 to 300 mg of aminotris (methylene phosphonic acid), also known as nitrilotrimethylene phosphonic acid, and 10 to 150 mg of tin added as a sodium stannate. Kibbel et al. U.S. Patent No.
No. 3861022 contains 35% tin in the form of a soluble alkali metal salt such as sodium stannate and 1250 mg of aminotris (methylene phosphonic acid).
A hydrogen peroxide composition has been announced. US Pat. No. 3,701,825 to Radimer et al. describes ethylenediaminetetra (methylene phosphonic acid) as effective in stabilizing hydrogen peroxide. US Pat. No. 3,387,939 to Reilly et al. discloses that at least 20 mg/alkydenephosphonic acid is required to inhibit precipitation of tin stabilizers by aluminum or other polyvalent cations. The Reilly et al. patent also states that for optimal stability, it is preferred to adjust the pH of the hydrogen peroxide to an equivalence point by adding a suitable acid, such as nitric acid, sulfuric acid, lactic acid, citric acid, etc., if necessary. The use of high concentrations of stabilizers required by conventional methods for many applications such as chemical reagents and semiconductors is undesirable. The present invention is for very pure hydrogen peroxide solutions containing 2 to 35% by weight hydrogen peroxide with a maximum residue after evaporation of 20 mg/ml. For example, the reagent hydrogen peroxide ACS (American
Chemical Society) specifications are 29.0 to 32.0%
A maximum residue after evaporation of hydrogen peroxide of 20 mg/ml is required. It is well known that the tin compounds used in hydrogen peroxide stabilization are in the form of colloidal particles that are coagulated and neutralized by active ions such as calcium, magnesium and aluminum and common decomposition catalysts. Anions such as pyrophosphate, phosphate and sulfate are known to improve the stability of colloidal tin oxide. However, the critical minimum amounts of these substances in conventional methods are specified not to exceed 2 mg of phosphorus as phosphate and 5 mg of sulfate, so they cannot be used in the reagent hydrogen peroxide. It is essential for hydrogen peroxide for such applications to reduce the amount of stabilizer far below the critical minimum amount used in conventional methods. Additionally, it is common practice for many hydrogen peroxide users to strain the hydrogen peroxide through an 8 mm or finer strainer. This filtration reduces particulate matter in the solution and also reduces tin oxide, which is colloidal in the solution if not properly peptized. Tin oxide is necessary to prevent hydrogen peroxide from decomposing unless it is later contaminated with heavy metals. Therefore, the problem is that the necessary tin oxide is not removed by coagulation, precipitation or filtration, and at the same time the maximum residue after evaporation is 20
The goal is to keep it as an ultrafine particle that meets critical specifications such as mg/mg. According to the present invention, an aqueous hydrogen peroxide solution can be produced which has a maximum evaporation residue of 20 mg/ml and is stabilized from decomposition due to contamination. The aqueous solution is characterized by containing 25 to 35% by weight of hydrogen peroxide, 0.1 to 1.4 mg/Kg of tin, 0.1 to 2.5 mg/Kg of phosphate added as an organic phosphonic acid, and 0.1 to 5.5 mg/Kg of citric acid. Phosphonic acid and citric acid can be added either as free acids, alkali metal or ammonium salts, or as mixtures of free acids and salts, depending on the need to adjust the pH within the desired range. Usually tin is added as an alkali metal stannate, such as sodium stannate trihydrate or potassium stannate trihydrate. However, tin can be added in the form of a stannic oxide gel or in any other suitable form. Those skilled in the art will readily recognize that when tin is added as an alkali metal salt, large amounts of free phosphonic acid and hydroxycarboxylic acid are required to adjust the PH to the desired range. Any organic phosphonic acid can be used in the practice of this invention. The phosphonic acids are those containing nitrogen which can be oxidized to N-oxides such as aminotris-(methylenephosphonic acid) and ethylenediaminetetra-(methylenephosphonic acid) or alkydenphosphonic acids such as 1-hydroxyethyl-1,1
- It may also contain nitrogen that cannot be oxidized, such as diphosphonic acid. Acids are known to be useful as buffering agents and for adjusting the pH of hydrogen peroxide compositions within an optimal range. US Pat. No. 3,387,939 discloses that any suitable acid can be used for pH adjustment, such as nitric, sulfuric, lactic and citric acids. However, the prior art generally does not disclose that citric acid and/or salts are effective in tin-stabilized hydrogen peroxide compositions either as a stabilizer or as a peptizer to keep the colloidal tin sol in solution. I haven't even suggested it. It was unexpectedly discovered that citric acid is stabilized with tin and is effective in improving the stability of 25-35% hydrogen peroxide solutions with a maximum residue of 20 mg/ml after evaporation. Although the mechanism is not known, it is believed that it is related to the fact that the hydrogen peroxide aqueous solution of the present invention has a higher H 2 O 2 purity than the conventional excessively stabilized hydrogen peroxide aqueous solution. For example, "Journal of Chemical Society" by Davis et al.
(J.Chem.Soc.), (1953) pp. 1902-1906, “Kinetics of the Reaction of Hydrogen Peroxide and Hydrazine Contacted with Iodide in Acid” It is stated that the impurities were sufficient to contact the reaction between hydrogen peroxide and hydrazine. Addition of 0.002M (6.72 mg/) of ethylenediaminetetraacetic acid disodium salt (EDTA) was sufficient to eliminate the effect of the catalyst on the reaction. 25 to 35% with maximum residue after evaporation of 20mg/in the present invention
When hydrogen peroxide was used, it was found that EDTA had no effect on hydrogen peroxide stability or on the amount of tin retained after aging. Overall, from the previous literature,
It is clear from the publication by Davis et al. that catalytic reactions, especially in hydrogen peroxide solutions, cannot be compared unless they are of substantially the same purity. EXAMPLE COMPARATIVE EXAMPLE An experiment was conducted to examine the effects of variables such as tin concentration, phosphonic acid, inorganic pyrophosphate, and the presence or absence of aluminum. The measured responses are tin retention and hydrogen peroxide stability. Such factorial experimental designs are well known in the literature. For example, Jonson et al., from John Wille & Son, New York, published a book entitled "Statistics and Experimental Design."
Experimental Design), Volume 2, Chapter 15 (1977). Pure unstabilized hydrogen peroxide was adjusted to approximately 31% by weight H2O2 . Additive; Sodium Stanate 3
Tin as hydrate, phosphonic acid as nitrilotris (methylene phosphonic acid), pyrophosphate as sodium acid pyrophosphate and aluminum as aluminum nitrate were added. Tin was measured by plasma arc spectroscopy immediately after filtration using a 0.22 μm filter. The rate of change in tin concentration compared to the initial concentration was reported. Hydrogen peroxide was passed through a 0.22 μm filter, and after 24 hours at 100° C., the percentage of hydrogen peroxide retained in the liquid sample was measured. The tin measurement and stability were measured as described above for the sample immediately after production and the sample after storage for one day. Concentrations were reported as milligrams per kilogram of dilute hydrogen peroxide. (1mg/Kg=0.0001% by weight) The actual experimental conditions and results are summarized in the table.
The first response to high and low levels of individual variables.
It shows the order difference "response difference" and the sum of all responses "response total". This response difference that appears to be significant is indicated by an asterisk (*). "Response sum" is the sum (ΣYi) of all test data (16 tests in the table) for changes in tin concentration (i=1) or hydrogen peroxide stability (i=2). The average of these 16 measurements is =ΣYi/16. “Response difference” refers to high (+) and low (−) levels.
It is the algebraic difference of the response value Yi from the average value i at the level, and is equal to the following equation. Response difference = Σ[i-Yi(+)-Σ[i-Yi
(−)] The total response and the response difference are well-known statistical design values, and their details can be found in Statistics and
Experimental Design in Engineering and the
Physical Sciences; Vol.II, second edition
(Norman L. Johnson; co-signed by Fred. C. Leone; published by John Wiey & Sons, 1977) No.
It is described on pages 794-801. The initial tin concentration from the table is not an important variable.
Phosphonate and sodium acid pyrophosphate concentrations show a significant positive effect on tin response differences. Aluminum shows a significant negative effect. None of the variables had a significant effect on stability. This is expected since none of the samples contain cracking catalyst. Example 1 An experiment similar to the above comparative example was conducted. However, in this example, 1 mg/Kg of tin was added as an independent variable as either potassium stannate trihydrate or sodium stannate trihydrate, and the experiment was conducted using the following components: ethylenediaminetetraacetic acid (EDTA), nitrilotris ( methylene phosphonic acid), and citric acid in the presence or absence. Furthermore, 0.5 mg/Kg of aluminum was added as aluminum nitrate to each sample. The results are summarized in a table. Although it was expected that the presence of phosphonic acid was found to be significant, it was not expected that the efficacy of phosphonic acid would decrease after one day. This suggests that the phosphonic acid will be degraded. Furthermore, considering the above-mentioned literature by Davis et al., it was not expected that the presence or absence of EDTA would be insignificant. However, the hydrogen peroxide of Davis et al. had an evaporation residue of 670 mg or more and was not a high-purity hydrogen peroxide with an evaporation residue of 20 mg or less. It was further unexpected to find that not only was the response difference for citric acid more significant than that for phosphonic acid, but also that the response difference did not decrease significantly over time. This recognition was known to be effective for hydrogen peroxide solutions with large amounts of evaporation residue.
This is difficult to understand considering the non-significant difference in response to EDTA. The effect of citric acid is particularly surprising in that the prior art considers citric acid suitable for use as an acidifying agent in low purity industrial aqueous peroxide solutions. Its use other than maintaining tin as a sol in hydrogen peroxide solutions or as an acidifying agent in stabilized hydrogen peroxide compositions has remained undiscovered to date.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 錫0.1乃至1.4mg/Kg、有機ホスホン酸として
加えられたホスフエート0.1乃至2.5mg/Kgおよび
くえん酸0.1乃至5.5mg/Kgを含むことを特徴とす
る蒸発における最大残渣20mg/を示す様に多価
陽イオンの存在下の分解に対し安定化された過酸
化水素25乃至35%水溶液。 2 有機ホスホン酸がアミノトリス(メチレンホ
スホン酸)である特許請求の範囲第1項に記載の
水溶液。 3 有機ホスホン酸がエチレンジアミンテトラ−
(メチレンホスホン酸)である特許請求の範囲第
1項に記載の水溶液。 4 有機ホスホン酸が1−ヒドロキシ−1,1−
ジホスホン酸である特許請求の範囲第1項に記載
の水溶液。
[Claims] 1 Maximum residue on evaporation of 20 mg, characterized in that it contains 0.1 to 1.4 mg/Kg of tin, 0.1 to 2.5 mg/Kg of phosphate added as organic phosphonic acid and 0.1 to 5.5 mg/Kg of citric acid. A 25-35% aqueous solution of hydrogen peroxide stabilized against decomposition in the presence of polyvalent cations as indicated by /. 2. The aqueous solution according to claim 1, wherein the organic phosphonic acid is aminotris (methylenephosphonic acid). 3 Organic phosphonic acid is ethylenediaminetetra-
The aqueous solution according to claim 1, which is (methylenephosphonic acid). 4 Organic phosphonic acid is 1-hydroxy-1,1-
The aqueous solution according to claim 1, which is diphosphonic acid.
JP60093936A 1984-05-03 1985-05-02 Stabilization of high purity hydrogen peroxide Granted JPS60239305A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/606,784 US4534945A (en) 1984-05-03 1984-05-03 Stabilization of high purity hydrogen peroxide
US606784 2000-06-28

Publications (2)

Publication Number Publication Date
JPS60239305A JPS60239305A (en) 1985-11-28
JPH0424282B2 true JPH0424282B2 (en) 1992-04-24

Family

ID=24429436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093936A Granted JPS60239305A (en) 1984-05-03 1985-05-02 Stabilization of high purity hydrogen peroxide

Country Status (5)

Country Link
US (1) US4534945A (en)
JP (1) JPS60239305A (en)
CA (1) CA1224910A (en)
ES (1) ES542738A0 (en)
MX (1) MX163046B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8813889D0 (en) * 1988-06-11 1988-07-13 Micro Image Technology Ltd Solutions of permonosulphuric acid
GB8908210D0 (en) * 1989-04-12 1989-05-24 Interox Chemicals Ltd Purification of hydrogen peroxide
US5139788A (en) * 1989-10-17 1992-08-18 Ecolab Inc. Noncontaminating antimicrobial composition
US4981662A (en) * 1990-06-01 1991-01-01 Fmc Corporation Stabilized hydrogen peroxide
US5078672A (en) * 1990-08-27 1992-01-07 Fmc Corporation Tin (II) stabilizer for hydrogen peroxide
CA2059841A1 (en) * 1991-01-24 1992-07-25 Ichiro Hayashida Surface treating solutions and cleaning method
US5217710A (en) * 1992-03-05 1993-06-08 Chesebrough-Pond's Usa Co. Stabilized peroxide gels containing fluoride
US5436008A (en) * 1992-12-11 1995-07-25 Ecolab Inc. Sanitizing compositions
US5409713A (en) * 1993-03-17 1995-04-25 Ecolab Inc. Process for inhibition of microbial growth in aqueous transport streams
US5683724A (en) * 1993-03-17 1997-11-04 Ecolab Inc. Automated process for inhibition of microbial growth in aqueous food transport or process streams
US6302968B1 (en) 1994-04-19 2001-10-16 Ecolab Inc. Precarboxylic acid rinse method
US5578134A (en) * 1994-04-19 1996-11-26 Ecolab Inc. Method of sanitizing and destaining tableware
US6257253B1 (en) 1994-04-19 2001-07-10 Ecolab Inc. Percarboxylic acid rinse method
SE9604413D0 (en) * 1996-11-29 1996-11-29 Eka Chemicals Ab Chemical composition
SG78297A1 (en) * 1997-06-19 2001-02-20 Mitsubishi Gas Chemical Co Stabilized aqueous solution of hydrogen peroxide
US6071541A (en) * 1998-07-31 2000-06-06 Murad; Howard Pharmaceutical compositions and methods for managing skin conditions
US6673374B2 (en) 1998-07-31 2004-01-06 Howard Murad Pharmaceutical compositions and methods for managing skin conditions
US7722847B2 (en) * 2002-09-30 2010-05-25 Evonik Degussa Gmbh Aqueous hydrogen peroxide solutions and method of making same
WO2008085203A2 (en) * 2006-12-29 2008-07-17 Prodea Systems, Inc. Presence status notification from digital endpoint devices through a multi-services gateway device at the user premises
ES2819029T3 (en) * 2010-01-12 2021-04-14 Arkema Inc Hydrogen Peroxide Compositions and Their Uses
US20140308162A1 (en) 2013-04-15 2014-10-16 Ecolab Usa Inc. Peroxycarboxylic acid based sanitizing rinse additives for use in ware washing
US9752105B2 (en) 2012-09-13 2017-09-05 Ecolab Usa Inc. Two step method of cleaning, sanitizing, and rinsing a surface
WO2015078830A1 (en) * 2013-11-26 2015-06-04 Solvay Sa Aqueous solution suitable for the chemical sterilization of packaging materials, process for its preparation and its use
US10039696B2 (en) * 2015-10-29 2018-08-07 Aphex Biocleanse Systems, Inc. Highly protonated hydronium and peroxymonosulfuric acid as a sanitizing solution
KR20230017922A (en) * 2017-01-31 2023-02-06 미츠비시 가스 가가쿠 가부시키가이샤 Hydrogen peroxide aqueous solution for disinfection
JP2019093335A (en) * 2017-11-22 2019-06-20 三菱瓦斯化学株式会社 Aqueous hydrogen peroxide solution for water purification

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US946529A (en) * 1908-04-13 1910-01-18 Joseph Arndts Method of making durable solutions of peroxid of hydrogen.
US1002854A (en) * 1910-07-14 1911-09-12 Roessler & Hasslacher Chemical Stable hydrogen peroxid.
US1128637A (en) * 1914-09-04 1915-02-16 James A Trimble Hydrogen-peroxid solution.
US2426154A (en) * 1942-04-01 1947-08-19 Du Pont Stabilization of peroxide solutions
DE1121594B (en) * 1960-07-07 1962-01-11 Henkel & Cie Gmbh Process for the production of liquid, storage-stable concentrates containing active oxygen
US3234140A (en) * 1964-06-05 1966-02-08 Monsanto Co Stabilization of peroxy solutions
US3383174A (en) * 1965-04-07 1968-05-14 Fmc Corp Stabilization of hydrogen peroxide
US3387939A (en) * 1966-07-06 1968-06-11 Du Pont Stannate stabilizer compositions containing an alkylidene diphosphonic acid, their preparation and hydrogen peroxide solutions stabilized therewith
US3681022A (en) * 1970-05-01 1972-08-01 Fmc Corp Manufacture of stable hydrogen peroxide solutions
US3687627A (en) * 1970-06-25 1972-08-29 Du Pont Stabilized hydrogen peroxide solutions
US3701825A (en) * 1970-10-23 1972-10-31 Fmc Corp Stabilization of hydrogen peroxide with ethylenediamine tetra (methylenephosphonic acid)
DE2109495C3 (en) * 1971-03-01 1975-12-04 Varta Batterie Ag, 3000 Hannover Process for increasing the service life of the catalysts of H deep 2 O deep 2 decomposers
BE791457A (en) * 1971-11-18 1973-05-16 Du Pont STABILIZED ACID SOLUTIONS OF OXYGENATED WATER
US3781409A (en) * 1972-02-28 1973-12-25 Fmc Corp Stabilization of hydrogen peroxide
US3864271A (en) * 1972-12-04 1975-02-04 Du Pont Stabilized acidic hydrogen peroxide solutions
BE818616A (en) * 1973-08-30 1975-02-10 STABILIZED AQUEOUS SOLUTIONS OF HYDROGEN PEROXIDE
US4061721A (en) * 1975-11-28 1977-12-06 Ppg Industries, Inc. Hydrogen peroxide stabilization with phenylphosphonic acids
CA1205275A (en) * 1982-06-14 1986-06-03 Kenneth J. Radimer Stabilization of high purity hydrogen peroxide

Also Published As

Publication number Publication date
US4534945A (en) 1985-08-13
JPS60239305A (en) 1985-11-28
ES8603341A1 (en) 1985-12-16
CA1224910A (en) 1987-08-04
ES542738A0 (en) 1985-12-16
MX163046B (en) 1991-08-05

Similar Documents

Publication Publication Date Title
JPH0424282B2 (en)
EP0009839B1 (en) Alkaline aqueous hydrogen peroxide solutions stabilised against decomposition
US3387939A (en) Stannate stabilizer compositions containing an alkylidene diphosphonic acid, their preparation and hydrogen peroxide solutions stabilized therewith
US3701825A (en) Stabilization of hydrogen peroxide with ethylenediamine tetra (methylenephosphonic acid)
US3383174A (en) Stabilization of hydrogen peroxide
Nicoll et al. Stability of dilute alkaline solutions of hydrogen peroxide
EP0504741B1 (en) A method for producing hydrogen peroxide
US4070442A (en) Stabilized hydrogen peroxide
US3681022A (en) Manufacture of stable hydrogen peroxide solutions
EP0426949B1 (en) Stabilisation of concentrated hydrogen peroxide solutions
US4401509A (en) Composition and process for printed circuit etching using a sulfuric acid solution containing hydrogen peroxide
EP0049808B1 (en) Method of stabilizing hydrogen peroxide solutions
US5767308A (en) Percarboxylic acid solutions with improved stability when in contact with stainless steel and process for producing said percarboxylic acid solutions
US4981662A (en) Stabilized hydrogen peroxide
JPS6257566B2 (en)
US3781409A (en) Stabilization of hydrogen peroxide
CA2144468C (en) Method of producing chlorine dioxide
CA1205275A (en) Stabilization of high purity hydrogen peroxide
JPH0660004B2 (en) Stabilizer for hydrogen peroxide tin (II)
US3053634A (en) Stabilization of hydrogen peroxide
Schumb Stabilization of concentrated solutions of hydrogen peroxide
US3333925A (en) Stannate type stabilizer compositions and preparation thereof
JPS6257567B2 (en)
JP3919411B2 (en) Method for producing equilibrium peracetic acid composition having excellent stability
EP0885840B1 (en) Stabilized aqueous solution of hydrogen peroxide
OSZAR »