JPS58207752A - Information transmitter - Google Patents
Information transmitterInfo
- Publication number
- JPS58207752A JPS58207752A JP57091663A JP9166382A JPS58207752A JP S58207752 A JPS58207752 A JP S58207752A JP 57091663 A JP57091663 A JP 57091663A JP 9166382 A JP9166382 A JP 9166382A JP S58207752 A JPS58207752 A JP S58207752A
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- bps
- master station
- slave station
- station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 54
- 230000008054 signal transmission Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/02—Channels characterised by the type of signal
- H04L5/06—Channels characterised by the type of signal the signals being represented by different frequencies
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Communication Control (AREA)
Abstract
Description
【発明の詳細な説明】
本発明ね10列データを通信回線等を介して送受する変
復a装gI(以下、MODEMと略称する)の伝送速度
な可変にした情報伝送装置に関フる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an information transmission device with variable transmission speed of a modifier (hereinafter abbreviated as MODEM) for transmitting and receiving 10 columns of data via a communication line or the like.
従来、この種の情報伝送装置としてね第1図に示″f4
M−6伝送力式が公知と1亘いる。図において、1ね情
報伝送装置親局でコンビニーりや端末装置等に接Mさn
ており、内部に伝送速度bpscヒツト/秒) Of1
!l会1it (以”)、MODという)CHt用20
0bps、MOD2、e1m用200bps、MOD
3、及びCHn用200bps復調器(以T、DEMと
いう)4を装備し1いる。また、情報伝送ima局5t
=ticnz用200bps 、DEM6、CHm用2
00bpa 、OEM7−及びC)in用200bps
、MODBを有し、通信回路11によって伝送路が形
成さ一11″Cいる。但し上記t。Conventionally, as this type of information transmission device, the "f4" shown in FIG.
There is one known M-6 transmission force formula. In the figure, 1 is an information transmission device that connects to convenience stores, terminal devices, etc. at the master station.
Internal transmission rate bpsc (Hit/sec) Of1
! 1it (hereinafter referred to as MOD) 20 for CHt
0bps, MOD2, 200bps for e1m, MOD
3, and a 200 bps demodulator for CHn (hereinafter referred to as T, DEM) 4. In addition, information transmission ima station 5t
=200bps for ticnz, DEM6, 2 for CHm
00bpa, 200bps for OEM7- and C)in
, MODB, and a transmission path is formed by the communication circuit 11. However, the above t.
m 、ntj tsm−’qn + 1≦L + m
# n +≦6でろこの様に構成場nfc従来の情報伝
送装置において以下動作を説明する。コンピュータや端
末装置等から情報伝送装置子局1に入力さまた@旬tJ
C11を用200 bps、MOD2 、C0m用2
00bps、MOD3で2進の1流パルスを父流伯号の
搬送波多重41号−に賞詞して子局1から通信回線11
に個烏を送り込み伝送装置親局5でこf′I′fL受個
フる。情報伝送装置親局5でね受信した@月を内蔵のC
H1用200bpa、DEM6及びC)l tn用20
0bpa、DEM 7で、夫々2進のm Mfパルヌに
再び伽llIフる。データ通信での寮際のコードの送受
のやリカにね一定の手順がありこ1をプロトコルと呼ん
でいる1、このプロトコルね上位コンピュータとの通侶
手読を交換させるメツセージのツメ−マットや内容につ
いてソフトウェア上で変更フるもので、こ1をコントロ
ール符号として用いている。また、情報伝送装置親局5
から送信さtl;A:ff ン) 0−JLFJ′4E
3i、j内蔵(D C)i n用200bps。m, ntj tsm-'qn + 1≦L + m
The operation of a conventional information transmission device configured like this with #n+≦6 will be described below. Input from computer, terminal device, etc. to information transmission device slave station 1 @ShuntJ
200 bps for C11, MOD2, 2 for C0m
00 bps, MOD3, send a binary 1st pulse to the carrier wave multiplex number 41 of the parent station 1 and transmit it from the slave station 1 to the communication line 11.
The transmission device master station 5 sends an individual signal to f'I'fL and receives the signal f'I'fL. The data received by the master station 5 of the information transmission device is sent to the built-in C
200bpa for H1, 20 for DEM6 and C)l tn
At 0 bpa and DEM 7, respectively, the binary m Mf parnu returns again. There is a certain procedure for transmitting and receiving codes between dormitories during data communication, and this is called a protocol.1.This protocol is a message mat that allows the host computer to exchange handwritten messages with the host computer. The contents can be changed on the software, and this 1 is used as a control code. In addition, the information transmission device master station 5
Sent from tl;A:ffn) 0-JLFJ'4E
3i, j built-in (DC) 200bps for in.
M Ol) 8 カらtN @伝送Ml子、局1に送信
a1、内蔵のCHn用200bps、DEM4で受信さ
tする。M Ol) 8 From tN @Transmission Ml, sent to station 1 a1, received at 200 bps for built-in CHn, DEM4.
従来の情報伝送1iIiflillね以上の様に構成さ
nτいたので、ライン故障等特別の緊急事態が発生して
もn1足の手順で情報伝送装置子局から悄伸伝送装置親
局へ送信せざるを得す伝送速度が遅く々る等の太き力欠
点を有していた。Conventional Information Transmission 1iIifrill Since the configuration is nτ as described above, even if a special emergency situation such as a line failure occurs, there is no choice but to send information from the slave station of the information transmission device to the master station of the transmission device in n1 steps. However, it had disadvantages such as slow transmission speed.
従って、本発明ね上記の如き従来の大声を除去するため
に成さf″l7Icもので、高速伝送が要求さfする物
別事態が発生した場合にね外部から別の伝送指令信号を
入力することにより伝送速度の速いMODEMに目動切
換えし又迅速に伝送が可能力情報伝送装置を提供ブるこ
とを目的とする。Therefore, the present invention is designed to eliminate the conventional loud noise as described above, and when a special situation requiring high-speed transmission occurs, another transmission command signal is input from the outside. It is an object of the present invention to provide an information transmission device that allows for quick switching to a MODEM with a faster transmission speed and allows rapid transmission.
以下、本発明の一実施例を図につい″′C説明フる。An embodiment of the present invention will be explained below with reference to the drawings.
図中第1図と同一の部分ね同一の符号をもつ又図示した
第2図において、9ね情報伝送装置子局1内に3けた従
来のMODEMより高速伝送用Mt=なMUD、101
j情報伝送蝕I!ll親局5内に実装したDEM″′c
′ある。In the figure, the same parts as in FIG. 1 have the same symbols, and in FIG.
j Information transmission eclipse I! ll DEM''c installed in the master station 5
'be.
仄に本発明の動作につい゛(以T−説明)る。コンピュ
ータや端末袋藺等刀・ら情報伝送装置子局1に入力さn
fc(NMUCHz用200bps、MOD2、 □
及びC0m用200bps、MOD3に1って内列デー
タに俊調さnlI!I匍回線11に送出さnる。そして
情報伝送装置親局5にχ受信さする。そこで特別々事情
により高速伝送の必要が発生した場合にね故障!!牛伯
月や制御応答信号等でCll を川200bps、MO
D2 、C0m用200bps、MOD3やC0m用2
00bps、DEM4!りも伝送速度の速いMOD9に
自動切換えな杓い特別情報の迅速送イ目を可能とする。The operation of the present invention will now be briefly described. Computers, terminals, etc. are input to the information transmission device slave station 1.
fc (200bps for NMUCHz, MOD2, □
And 200bps for C0m, MOD3 is 1 and the inner row data is nlI! It is sent to the I-line line 11. Then, the information transmission device master station 5 receives χ. Therefore, if there is a need for high-speed transmission due to special circumstances, there will be a failure! ! CLL is 200bps, MO by Ushihakuzuki, control response signal, etc.
D2, 200bps for C0m, 2 for MOD3 and C0m
00bps, DEM4! It also enables rapid transmission of special information by automatically switching to MOD9, which has a faster transmission speed.
この際、情報伝送蝕iil親局5においてもDEMlo
に(F1号を目動的:二切換えてやる必要があるので、
(のDEMI O切換え前にCH1用200bps 、
MOD2 、C0m用200bps 、MOD3を介し
″CDEMIO切換え9s月を伝送する。At this time, DEMlo is also used in the information transmission master station 5.
(Since it is necessary to switch F1 to objective mode,
(200bps for CH1 before DEMIO switching,
MOD2, 200bps for C0m, transmits "CDEMIO switching 9s" via MOD3.
”!7’(、情報伝送装置親局5からのヨントロール杓
号(11I1.!I御伯刃)で情報伝送装置子局10M
UD9を現在使用中のMOD、CHt用200bps。``!7' (, information transmission device slave station 10M with Yontrol Dake number (11I1.!I Gohakuba) from information transmission device master station 5
MOD currently using UD9, 200 bps for CHt.
MOD2、及びCHm用200bps、MOD3からM
OD9に切換えてやることにより七の制御応答を迅速に
杓うことができる。200 bps for MOD2 and CHm, M from MOD3
By switching to OD9, the control response of 7 can be quickly obtained.
尚、上記の実施例り200bps、MODの場合につい
て歌明したが決しχζ1らに内矩さするものでり々(デ
ータ伝送速g1′を異にするMODEMの構成例につい
ても上記実施例と同様の効!41.を奏する。Although the above embodiment describes the case of 200bps MOD, it is not limited to χζ1, etc. (The configuration examples of MODEM with different data transmission speeds g1' are also similar to the above embodiment. Effect!41.
以上の様に本発明によt′1は、血判データを通佃回#
Pを介して送受)るM OD E Mの構成に通常の使
用状態における伝送速度エリ関連のMODEMを準備し
、200bpsの様に周波数多重可能力通常伝送におい
てりζlr+を利用し、緊急発牛肋に上記200bps
エリ晶速の伝送速度を有ブるMODEMに目動的に切換
えることにより、よりフレキシビリティに富んだ伝送速
度可変形の情報伝送会IIlを提供できる顕著力効果が
ある。As described above, according to the present invention, t'1 is the number of times #
In the configuration of MODEM (transmitted and received via above 200bps
By intentionally switching to a MODEM that has a transmission speed of the same crystal speed, there is a remarkable effect that a more flexible transmission speed variable information transmission system IIl can be provided.
第1図り従来の情報伝送袈lのシステム構成ブロック図
、第2図ね本発明の一実施例を示すシステム構成ブロッ
ク図である。
1.5・・・情報伝送装置子局、及び親局、2,3゜8
・・・名CH用200bps 、MOD、4.6.7・
・・名CH用200bps、DEM、9,10・・・高
速MOD、及びDEM。
々お、図中向 相餡ね向−又1」相当な分を小I代Pv
人 ム 野 伯 −(#1.o弓名)#!1図
fs z 図
手続補正!8−(自発)
特許庁長官り没
1、・ICf’1.の表示 11・顆間57−9
16634ij2、′)と明の名称
情報伝送@澹
:(、袖1にを4゛るh
=JGf’l−との関係 ′i−・許出願人住 所
′ 東京都丁−代U」区丸の内二丁ロ2番3号
名 称(601) 三菱電機株式会社代表者片山仁
八部
・11代理人
住 所 東京都千代田区丸の内二丁目2番3号
三菱電機株式会社内
氏 名(6699) 弁理1: 良 野 信
−(7JL!’<i’ (4(’、’、:、E)、T
+”、’、j’、”。
5、補正の対象
明11114!lの発明の詳細な説すjの欄6 補正の
内容
111明細書第3自m 20 ?−j目の[′2イン故
障J ’l!s別の緊急事態が発生して」とあるのを「
埃場桟蒸故障等の特別の緊急41態が発生しても↑^報
0−送氾嫡親局5から制御しくの応答を確認する場合で
、1と補正する。
121明細1第4貞第2杓目の「伝送速度が遅(’Iす
る。」とあるのを[迅速性、応答性が遅< 7Jる。J
と補止する。
以 」FIG. 1 is a system configuration block diagram of a conventional information transmission casing, and FIG. 2 is a system configuration block diagram showing an embodiment of the present invention. 1.5... Information transmission device slave station and master station, 2,3゜8
...200bps for name CH, MOD, 4.6.7・
・・200 bps for famous CH, DEM, 9, 10 ・・High speed MOD and DEM. 1, 1, 2, 3, 3, 3, 3, 1, 1
Person Muno Haku - (#1. o bow name) #! 1 figure fs z figure procedure correction! 8-(Voluntary) Commissioner of the Patent Office dies 1, ICf'1. Display 11. Intercondylar 57-9
16634ij2,') and Ming's name information transmission @澹: (, 4゛るh on sleeve 1 = JGf'l- Relationship with 'i-・Applicant's address' Marunouchi, Tokyo, Tokyo 2-2-3, 2-chome, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 11 Agent address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (6699) Patent attorney 1: Shin Yoshino
-(7JL!'<i'(4(',',:,E),T
+",',j',". 5. Correction target light 11114! Detailed explanation of the invention of l Column j 6 Contents of amendment 111 Specification No. 3 m 20 ? -jth ['2-in failure J 'l! sAnother emergency situation has occurred'' should be changed to ``Another emergency has occurred.''
Even if a special emergency 41 situation such as a dust tank failure occurs, it is corrected to 1 if a response such as control is confirmed from the sending/flooding master station 5. 121 Specification 1 No. 4, No. 2, "Transmission speed is slow ('I do.")
I am corrected. ”
Claims (1)
効データに変換しデータ伝送する情報伝送装置子局と、
前記情報伝送装置子局内に@偏し多重伝送5]能力伝送
速度の複数の子局内置114gw及び復調g置と、前記
情報伝送!i舗子局からの伝送データな送信する通信回
線と、前記通信回線により伝送さrt*伯角透受伯受信
情報伝送装置親局と、前記情報伝送装置親局内に装備し
た多m仮送可能々伝送速度を有し、前記情報伝送@置子
局内の複数の子局内渡II蝕璽及び復調装置と対応する
親局自模w4蝕智、及び変調装置と、前記子局内質−装
置、及び復調装置、更に親局自復調装置及びKPA蝕珈
より伝送速度の速い高速f調装置及び復調装置mを前@
d悄仰伝送装珈子局、及び親局に装備しデータの可変速
度伝送な可能としたことを髄悌とする1#報伝送鋏置〇an information transmission device slave station that converts transmission data from a computer, a mobile terminal, etc. into self-effect data and transmits the data;
In the information transmission device slave station, a plurality of slave stations 114gw and demodulation g having a capacity transmission rate of @biased multiplex transmission 5] and the information transmission! A communication line for transmitting data transmitted from the i-store slave station, a master station for receiving information transmitted through the communication line, and a master station for receiving information transmitted through the communication line, and a multi-meter provisional transmission device installed in the master station for the information transmitting apparatus. a master station self-transmission device and a modulation device corresponding to a plurality of slave station inter-transfer II modulation and demodulation devices in the information transmission@located slave station, and a modulation device, the slave station internal device, and A demodulator, a master station self-demodulator, a high-speed f modulator with a higher transmission speed than the KPA receiver, and a demodulator m are installed in front of the demodulator.
d. A 1# signal transmission scissors device equipped on the slave station and the master station to enable variable speed transmission of data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57091663A JPS58207752A (en) | 1982-05-27 | 1982-05-27 | Information transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57091663A JPS58207752A (en) | 1982-05-27 | 1982-05-27 | Information transmitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58207752A true JPS58207752A (en) | 1983-12-03 |
Family
ID=14032720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57091663A Pending JPS58207752A (en) | 1982-05-27 | 1982-05-27 | Information transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58207752A (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021509303A (en) * | 2017-12-28 | 2021-03-25 | エシコン エルエルシーEthicon LLC | Surgical system with preferred data transmission capability |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11696778B2 (en) | 2017-10-30 | 2023-07-11 | Cilag Gmbh International | Surgical dissectors configured to apply mechanical and electrical energy |
US11696760B2 (en) | 2017-12-28 | 2023-07-11 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11737668B2 (en) | 2017-12-28 | 2023-08-29 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US12133773B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US12144518B2 (en) | 2017-12-28 | 2024-11-19 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US12226166B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Surgical instrument with a sensing array |
US12226151B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Capacitive coupled return path pad with separable array elements |
US12295674B2 (en) | 2017-12-28 | 2025-05-13 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
-
1982
- 1982-05-27 JP JP57091663A patent/JPS58207752A/en active Pending
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
US12121255B2 (en) | 2017-10-30 | 2024-10-22 | Cilag Gmbh International | Electrical power output control based on mechanical forces |
US11696778B2 (en) | 2017-10-30 | 2023-07-11 | Cilag Gmbh International | Surgical dissectors configured to apply mechanical and electrical energy |
US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11925373B2 (en) | 2017-10-30 | 2024-03-12 | Cilag Gmbh International | Surgical suturing instrument comprising a non-circular needle |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11819231B2 (en) | 2017-10-30 | 2023-11-21 | Cilag Gmbh International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US12295674B2 (en) | 2017-12-28 | 2025-05-13 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US12256995B2 (en) | 2017-12-28 | 2025-03-25 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11864845B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Sterile field interactive control displays |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
US11737668B2 (en) | 2017-12-28 | 2023-08-29 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11918302B2 (en) | 2017-12-28 | 2024-03-05 | Cilag Gmbh International | Sterile field interactive control displays |
US12239320B2 (en) | 2017-12-28 | 2025-03-04 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US12226151B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Capacitive coupled return path pad with separable array elements |
US12226166B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US12207817B2 (en) | 2017-12-28 | 2025-01-28 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
US12193636B2 (en) | 2017-12-28 | 2025-01-14 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US12053159B2 (en) | 2017-12-28 | 2024-08-06 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11696760B2 (en) | 2017-12-28 | 2023-07-11 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
US12059124B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
JP2021509303A (en) * | 2017-12-28 | 2021-03-25 | エシコン エルエルシーEthicon LLC | Surgical system with preferred data transmission capability |
US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US12096985B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US12144518B2 (en) | 2017-12-28 | 2024-11-19 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US12133709B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US12133773B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US12121256B2 (en) | 2018-03-08 | 2024-10-22 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11844545B2 (en) | 2018-03-08 | 2023-12-19 | Cilag Gmbh International | Calcified vessel identification |
US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58207752A (en) | Information transmitter | |
GB2023972A (en) | Communicating speech and data | |
US5392283A (en) | Data communication protocol | |
JPH0241050A (en) | Communication equipment | |
JPH04286452A (en) | Data communication equipment | |
JP2904261B2 (en) | Digital wireless relay system | |
JPS5999846A (en) | Facsimile communication device | |
US1549821A (en) | Printing-telegraph system | |
US3818449A (en) | Communications processor system having time shared control devices and dialers | |
US2271625A (en) | Synchronizing system | |
JP3057187B2 (en) | Connection system between heterogeneous satellite systems | |
JPS58206259A (en) | Multi-address communication system having interruption function | |
JPS6319111B2 (en) | ||
JPS6024739A (en) | Radio circuit switching device | |
JPS6072366A (en) | Network controlling device provided with modem | |
JPH0140538B2 (en) | ||
JPS6135049A (en) | Remote maintenance system | |
JPS60149233A (en) | Remote control monitor system | |
GB1073607A (en) | Improvements in or relating to teleprinters | |
JPH0223775A (en) | Simultaneous transmission and reception facsimile equipment | |
JPH07110017B2 (en) | Mobile packet transmission device | |
JPS6115429A (en) | Radio selective call communication system | |
JPS5877349A (en) | Code error retransmitting system | |
JPS60261232A (en) | Switching device for mounting on satellite in ss-tdma satellite communication system | |
JPS63131768A (en) | Data communication equipment |