KR102095330B1 - Wide-field of view (fov) imaging devices with active foveation capability - Google Patents
Wide-field of view (fov) imaging devices with active foveation capability Download PDFInfo
- Publication number
- KR102095330B1 KR102095330B1 KR1020197028502A KR20197028502A KR102095330B1 KR 102095330 B1 KR102095330 B1 KR 102095330B1 KR 1020197028502 A KR1020197028502 A KR 1020197028502A KR 20197028502 A KR20197028502 A KR 20197028502A KR 102095330 B1 KR102095330 B1 KR 102095330B1
- Authority
- KR
- South Korea
- Prior art keywords
- forbidden
- imaging
- beam splitter
- wide
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
-
- H04N5/23238—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B25/00—Eyepieces; Magnifying glasses
- G02B25/001—Eyepieces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1066—Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/144—Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
- G03B37/02—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/45—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/698—Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
-
- H04N5/2258—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0145—Head-up displays characterised by optical features creating an intermediate image
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0149—Head-up displays characterised by mechanical features
- G02B2027/015—Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Lenses (AREA)
- Studio Devices (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Eyeglasses (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Instrument Panels (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
- Cameras In General (AREA)
- Liquid Crystal Display Device Control (AREA)
- Telescopes (AREA)
- Optical Elements Other Than Lenses (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
본 발명은 와이드 필드 오브 뷰 이미지 및 포비에이팅된 이미지를 캡처할 수 있는 포비에이팅된 이미징 시스템을 포함하며, 여기서 포비에이팅된 이미지는 와이드 필드 오브 뷰 이미지의 관심의 영역을 제어할 수 있다. The present invention includes a wide field of view image and a focused image system capable of capturing a focused image, wherein the focused image can control the region of interest of the wide field of view image. .
Description
관련된 출원들Related applications
[0001] 본 출원은 2012년 4월 5일 출원된 미국 가출원 번호 제61/620,581호 및 2012년 4월 5일 출원된 미국 가출원 번호 제61/620,574호를 우선권으로 주장하며, 상기 가출원들은 그 전체가 인용에 의해 본원에 포함된다. [0001] This application claims priority to U.S. Provisional Application No. 61 / 620,581 filed April 5, 2012 and U.S. Provisional Application No. 61 / 620,574 filed April 5, 2012, all of which are provisional applications. Is incorporated herein by reference.
발명의 분야Field of invention
[0002] 본 발명은 일반적으로 와이드-FOV(Field of View) 이미징 디바이스들에 관한 것으로, 보다 구체적으로는, 그러나 배타적이지 않게, 대형 FOV 및 훨씬 더 높은 해상도를 갖는 상기 대형 FOV 내부의 소형 FOV를 동시에 캡처할 수 있는 듀얼 해상도 와이드 FOV 이미징 시스템(dual resolution wide FOV imaging system)에 관한 것이다. [0002] The present invention relates generally to wide-field of view (FOV) imaging devices, and more specifically, but not exclusively, to a small FOV inside the large FOV and the large FOV with much higher resolution. It relates to a dual resolution wide FOV imaging system that can be captured simultaneously.
[0003] 고해상도, 와이드 FOV(field of view) 및 HDR(high dynamic range) 이미지들의 실시간 포착은 다수의 군사 및 민간 감시 애플리케이션들에서 필수적이다. 예를 들어, 충분한 해상도 및 프레임 레이트를 갖는 시스템은 객체의 신뢰할 수 있는 식별 및 특징화를 위해 하나 또는 다수의 관심의 객체들로 빠르게 줌(zoom)할 수 있으면서 매우 큰 동작 필드(예를 들어, 구형 또는 무료 반구형(complimentary hemispherical) 커버리지)에 걸쳐 동시에 모든 방향들에서 활동들을 모니터링할 수 있는 다수의 감시 애플리케이션들의 전방향 이미징 시스템(omnidirectional imaging system)에 대한 절박한 요구가 있다. 이러한 센서는 뛰어난 상황 인식들 및 충분한 세부사항 분해력 둘 다를 제공할 필요가 있다. 이러한 타입의 센서들은 이용 가능한 경우, 군사 및 상업 양자의 시장들내의 무수한 애플리케이션들을 발견할 수 있다. Real-time capture of high resolution, wide field of view (FOV) and high dynamic range (HDR) images is essential in many military and civil surveillance applications. For example, a system with sufficient resolution and frame rate can quickly zoom to one or multiple objects of interest for reliable identification and characterization of objects, while having very large motion fields (e.g., There is an urgent need for an omnidirectional imaging system of multiple surveillance applications that can monitor activities in all directions simultaneously over a spherical or complimentary hemispherical coverage. Such a sensor needs to provide both excellent situational awareness and sufficient detail resolution. Sensors of this type, if available, can find countless applications in both military and commercial markets.
[0004] 그러나, 광학 이미징 시스템을 설계할 때, 유한의 센서 분해능 및 데이터 대역폭은 최신 이미징 시스템에서 달성 가능한 공간적 해상도 및 FOV에 제한들을 부과한다. 고정된 수의 픽셀들을 갖는 대부분의 종래의 이미징 기법들에 대한 분해 전력과 FOV 간에 잘 알려진 고유한 트래이드 오프가 있는데: FOV가 더 넓을수록 분해 전력은 더 낮다. 1아크 분(arc minute)(~300 micro-rad) 각도 해상도(angular resolution)를 달성하기 위해 예로서 종래의 클러스터-기반 전방향 카메라들을 이용하면, 360°x 360°도의 구면 필드(spherical field)를 커버하기 위해 각각 상에서 5-메가 픽셀 센서를 갖는 적어도 50개의 소형 FOV 카메라들(예를 들어, FOV: 33° x 25°)을 요구하며, 이는 최소 250 메가 픽셀이 단일 구면 파노라마 이미지에 대해 캡처되고, 저장되고 전송되게 하여, 임의의 픽셀 손실 및 FOV 오버랩을 금지한다. 2 아크 초의 각도 해상도를 달성하기 위해서는 구면 필드를 커버하기 위해 수천개 단위의 엄청난 수의 카메라들을 요구한다. 그 결과, 카메라-클러스터-기반 시스템의 비용 및 크기는 다수의 검사 애플리케이션들에 대해 수락 가능하지 않을 것이며, 이는 수천개의 고해상도 카메라들을 통한 클러스터링(clustering)은 최신 데이터 관리 및 이미지 프로세싱 기술들에 어려운 과제들(great challenges)을 부과한다는 것을 언급하지 않게 한다. However, when designing an optical imaging system, finite sensor resolution and data bandwidth impose limitations on the spatial resolution and FOV achievable in modern imaging systems. There is a well-known unique trade-off between FOV and resolution power for most conventional imaging techniques with a fixed number of pixels: the wider the FOV, the lower the resolution power. Using conventional cluster-based omni-directional cameras as an example to achieve 1 arc minute (~ 300 micro-rad) angular resolution, a 360 ° x 360 ° spherical field Requires at least 50 miniature FOV cameras (e.g., FOV: 33 ° x 25 °) with a 5-megapixel sensor on each to cover a minimum of 250 megapixels captured for a single spherical panoramic image It is allowed to be saved, transmitted, and prevents any pixel loss and FOV overlap. Achieving an angular resolution of 2 arc seconds requires a huge number of cameras in thousands of units to cover the spherical field. As a result, the cost and size of a camera-cluster-based system will not be acceptable for many inspection applications, and clustering with thousands of high-resolution cameras is a challenge for modern data management and image processing technologies. Don't mention that it imposes great challenges.
[0005] 포비에이션(foveation) 기법들은 인간 시각계의 포비에이션 특성들과 유사하게 주변 영역의 이미징 능력을 손실함 없이 고해상도 센서를 이용하여 관심의 영역을 능동적으로 트래킹 및 캡처할 수 있다. 다양한 이미징 시스템들이 이미징 애플리케이션들에서 포비에이션 기법을 적용할 잠재성을 분석(explore)하기 위해 개발되었다. 예를 들어, Sandini 등은 인간 망막을 모방하도록 공간적-변동 해상도를 갖는 망막-유사 CMOS 센서를 개발하였다(G.Sandini, P.Questa, D.Scheffer 및 A.Mannucci, "A retina-like CMOS sensor and its applications" 센서 어레이 및 멀티채널 신호 프로세스에 관한 IEEE 워크숍의 보고서들(2000), pp.514-9). Martinez 및 Wick은 이미징 시스템의 와이드 FOV 내부의 포비에팅된 영역에서 수차들을 동적으로 보정하기 위해 액정 공간 광 변조기를 이용할 것을 제안하였다(T.Martinez, D.V.Wick 및 S.R.Restaino, "Foveated, wide field-of-view imaging system using a liquid crystal spatial light modulator", Opt. Express 8, 555-60 (2001); D.V.Wick, T.Martinez, S. R.Restaino 및 B.R.Stone, "Foveated imaging demonstration," Opt. Express 10, 60-5 (2002)). 상술된 접근법들은 주변 영역 및 포비에이팅된 영역 둘 다를 캡처하기 위해 단지 단일-센서만을 이용하며, 이는 시스템의 전체 정보 쓰루풋을 제한한다. 대안적으로, Hua 및 Liu는 2개의 별개의 센서들이 주변 영역 및 포비에이팅된 영역을 캡처하는데 이용되는 포비에이션 이미징 기술에 대한 듀얼-센서 접근법을 제안하였다(Hong Hua 및 Sheng Liu, "Dual-Sensor foveated imaging system," APPLIED OPTICS, Vol. 47, No.3, 317-327, 2008). 단일 센서 접근법에 비교하면, 듀얼 센서 접근법은 상이한 크기 및 상이한 해상도일 수 있는 2개의 상이한 센서들을 이용하며, 이는 저-비용 검출기들로 높은 정보 쓰루풋을 산출할 잠재성을 갖는다. 듀얼-센서 접근법의 주요한 단점은 시스템이 어포컬 시스템 구조(afocal system structure)를 이용하며, 이는 보통 대형 주변 FOV를 달성하기 위해 제한된 능력을 갖고 종종 벌키 시스템(bulky system)을 초래한다. [0005] Foveation techniques can actively track and capture a region of interest using a high-resolution sensor, without losing the imaging capability of the surrounding area, similar to the human vision system's forcing characteristics. Various imaging systems have been developed to explore the potential of applying the navigation technique in imaging applications. For example, Sandini et al. Developed retina-like CMOS sensors with spatial-variable resolution to mimic the human retina (G.Sandini, P.Questa, D.Scheffer and A.Mannucci, "A retina-like CMOS sensor and its applications "Reports of the IEEE Workshop on Sensor Arrays and Multichannel Signaling Processes (2000), pp.514-9. Martinez and Wick proposed using a liquid crystal spatial light modulator to dynamically correct aberrations in the foveed region inside the wide FOV of the imaging system (T.Martinez, DVWick and SRRestaino, "Foveated, wide field- of-view imaging system using a liquid crystal spatial light modulator ", Opt. Express 8, 555-60 (2001); DVWick, T.Martinez, SRRestaino and BRStone," Foveated imaging demonstration, "Opt. Express 10, 60-5 (2002)). The approaches described above use only a single-sensor to capture both the surrounding area and the focused area, which limits the overall information throughput of the system. Alternatively, Hua and Liu proposed a dual-sensor approach to the navigation imaging technique where two separate sensors are used to capture the surrounding area and the focused area (Hong Hua and Sheng Liu, "Dual- Sensor foveated imaging system, "APPLIED OPTICS, Vol. 47, No. 3, 317-327, 2008). Compared to the single sensor approach, the dual sensor approach uses two different sensors, which can be of different sizes and different resolutions, which has the potential to yield high information throughput with low-cost detectors. The main drawback of the dual-sensor approach is that the system uses an afocal system structure, which usually has limited ability to achieve large ambient FOV and often results in a bulky system.
[0006] 본 발명은 실시간으로 주위 공간의 와이드-FOV 비디오들을 획득하고 동시에 높은 프레임 레이트로 다수의 타겟들의 매우 고해상도의 고-배율 포비에이팅된 이미지들을 획득할 수 있는 듀얼-센서 와이드-FOV 포비에이팅된 이미징 기법에 관한 것이다. 적절한 해상도 및 프레임 레이트를 갖는 와이드-FOV비디오는 객체에 의한 임박한 위협들을 포착, 검출 및 트래킹하기 위해 주위 공간을 동시에 관찰할 수 있는 실시간 능력을 가능케 하는 반면에, 고해상도 포베이팅된 비디오들은 결정적인 타겟 인식 및 특징화를 가능케 하기 위해 상당히 더 높은 해상도를 갖는 와이드-FOV의 다수의 더 작은 부분들 상에서 실시간으로 포커싱된다. 포비에이팅된 뷰의 관심의 영역(ROI)은 와이드 FOV 이미지의 임의의 부분에 대해 실시간으로 스티어링될 수 있다. 이들 능력들은 인간 시각계의 검색, 트래킹 및 포비에이션 기능들과 유사하다. 포비에이션 능력을 와이드-FOV 이미징 시스템에 통합함으로써 본 발명은 높은 정규 해상도로 360°x 360°까지 와이드 뷰잉 필드를 캡처할 수 있다. [0006] The present invention is a dual-sensor wide-FOV fob that can acquire wide-FOV videos of the surrounding space in real time and at the same time obtain very high resolution, high-magnification, high-magnification, foveed images of multiple targets. It relates to an etched imaging technique. Wide-FOV video with the appropriate resolution and frame rate enables real-time ability to simultaneously observe the surrounding space to capture, detect and track impending threats by objects, while high-definition captured videos are critical target recognition And in real time on a number of smaller parts of a wide-FOV with significantly higher resolution to enable characterization. The region of interest (ROI) of the focused view can be steered in real time for any portion of the wide FOV image. These abilities are similar to the human visual system's search, tracking and navigation functions. By integrating the navigation capability into a wide-FOV imaging system, the present invention is capable of capturing a wide viewing field up to 360 ° x 360 ° with high normal resolution.
[0007] 본 발명은 통상적으로 2개의 서브시스템들, 즉 와이드-FOV 이미징 서브시스템 및 포비에이팅된 이미징 서브시스템을 포함하며; 2개의 서브시스템들은 하나의 시스템으로서 통합되고, 여기서 2개의 이미징 서브시스템들은 동일한 대물 렌즈를 공유하며, 이는 시스템 설계를 간결하고 경량이 되게 할 수 있다. 포비에이팅된 이미징 서브시스템의 정지부(stop)는 빔 분할기를 통해 와이드-FOV 이미징 서브시스템의 정지부와 광학적으로 결합된다. 본 발명에 있어서, 와이드-FOV 이미징 서브시스템은 와이드 뷰 필드를 캡처하는 반면에, 포비에이팅된 이미징 서브시스템은 상기 와이드 뷰 필드의 하나 또는 소수의 선택된 부분들을 캡처하고 정확한 타겟 인식을 가능케 하기 위해 매우 높은 해상도 비디오들을 산출한다. 최신 감시 시스템에 비해, 본 발명은 비교적 저비용, 간결함, 낮은 전력 소비, 낮은 데이터 대역폭 요구는 물론 FOV, 해상도 및 실시간 포착의 견지에서 타협되지 않은 고성능의 이점을 갖는다. [0007] The present invention typically includes two subsystems, a wide-FOV imaging subsystem and a focused imaging subsystem; The two subsystems are integrated as one system, where the two imaging subsystems share the same objective lens, which can make the system design simple and lightweight. The stop of the forensic imaging subsystem is optically coupled to the stop of the wide-FOV imaging subsystem through a beam splitter. In the present invention, the wide-FOV imaging subsystem captures a wide view field, while the fovied imaging subsystem captures one or a few selected portions of the wide view field and enables accurate target recognition. It produces very high resolution videos. Compared to modern surveillance systems, the present invention has the advantage of relatively low cost, simplicity, low power consumption, low data bandwidth requirements as well as uncompromised high performance in terms of FOV, resolution and real-time capture.
[0008] 본 발명의 대물 렌즈는 우산-유사 FOV를 캡처하기 위해 회전 대칭적 굴절 광학 엘리먼트들을 활용하거나 링-유사 파노라마 FOV를 캡처하기 위해 필연적 회전 대칭적 굴절 광학 엘리먼트들과 함께 커브드 미러를 활용할 수 있다. 본 발명의 스캐닝 미러는 2개의 틸팅 움직임들을 이용하여 와이드-FOV를 샘플링하도록 듀얼-축 스캐닝 미러일 수 있거나, 틸팅 및 회전의 결합된 움직임을 이용하여 와이드-FOV를 샘플링하기 위한 단일-축 스캐닝 미러일 수 있다. [0008] The objective lens of the present invention utilizes rotationally symmetrical refracting optical elements to capture an umbrella-like FOV or utilizes a curved mirror with inevitable rotationally symmetrical refracting optical elements to capture a ring-like panoramic FOV You can. The scanning mirror of the present invention can be a dual-axis scanning mirror to sample a wide-FOV using two tilting movements, or a single-axis scanning mirror for sampling a wide-FOV using a combined movement of tilting and rotation. Can be
[0009] 본 발명의 일 양상에서, 예시적인 시스템은 단일 유닛의 FOV보다 훨씬 더 큰 FOV를 달성하기 위해 다수의 와이드-FOV 포비에이팅된 이미징 유닛들을 통합할 수 있다. 통합된 시스템은 단일 관점 특성들을 가질 수 있거나 갖지 않을 수 있다. 단일 관점 특성이 요구될 때, 다중-면 미러는 단일 관점으로 통합된 시스템 내의 모든 이미징 유닛들의 관점을 가상으로 콜로케이팅하는데 이용될 수 있다. [0009] In one aspect of the present invention, an exemplary system may incorporate multiple wide-FOV forged imaging units to achieve a much larger FOV than that of a single unit. The integrated system may or may not have single viewpoint characteristics. When a single point of view characteristic is desired, a multi-plane mirror can be used to virtually collocate the point of view of all imaging units in the system integrated into a single point of view.
[0010] 본 발명의 예시적인 실시예들의 위의 요약 및 다음의 상세한 설명은 첨부 도면들과 함께 읽혀질 때 추가로 이해될 수 있다. The above summary and the following detailed description of exemplary embodiments of the invention may be further understood when read in conjunction with the accompanying drawings.
[0011] 도 1은 본 발명에 따라 예시적인 광학 시스템을 개략적으로 예시한다.
[0012] 도 2는 본 발명에 따라 이용되는 스캐닝 미러의 2개의 타입들의 움직임들을 개략적으로 예시한다.
[0013] 도 3은 본 발명에 따라 상술된 광학 시스템의 예시적인 설계를 개략적으로 예시한다.
[0014] 도 4는 커브드 미러 표면을 포함하는, 본 발명에 따라 상술된 광학 시스템의 다른 예시적인 설계를 개략적으로 예시한다.
[0015] 도 5는 본 발명에 따라 이미지 프로세싱 파이프라인의 예의 블록도를 도시한다.
[0016] 도 6은 본 발명에 따라 다수의 이미지 유닛들을 포함하는 예시적인 광학 시스템의 설계 레이아웃을 개략적으로 예시한다. 1 schematically illustrates an exemplary optical system in accordance with the present invention.
2 schematically illustrates the movements of two types of scanning mirrors used according to the invention.
3 schematically illustrates an exemplary design of the optical system described above in accordance with the present invention.
4 schematically illustrates another exemplary design of the optical system described above in accordance with the present invention, including a curved mirror surface.
[0015] FIG. 5 shows a block diagram of an example of an image processing pipeline in accordance with the present invention.
6 schematically illustrates a design layout of an exemplary optical system including multiple imaging units in accordance with the present invention.
[0017] 본 발명에 따른 실시예들은 첨부된 도면에 관하여 완전히 설명될 것이다. 설명은 본 발명의 이해를 제공하기 위해 제시된다. 그러나 본 발명은 이들 세부사항들 없이 실시될 수 있다는 것이 자명할 것이다. 또한, 본 발명은 다양한 형태들로 구현될 수 있다. 그러나 아래에서 설명되는 본 발명의 실시예들은 본 명세서에서 제시되는 실시예들로 제한되는 것으로서 해석되어선 안 된다. 오히려, 이들 실시예들, 도면들 및 예들은 예시적이며 본 발명을 모호하게 하는 것을 방지하도록 의도된다. Embodiments according to the present invention will be fully described with reference to the accompanying drawings. The description is presented to provide an understanding of the invention. However, it will be apparent that the present invention may be practiced without these details. In addition, the present invention can be implemented in various forms. However, the embodiments of the present invention described below should not be interpreted as being limited to the embodiments presented herein. Rather, these embodiments, figures and examples are exemplary and are intended to avoid obscuring the present invention.
[0018] 본 발명의 주요한 실시예는 와이드 필드 오브 뷰 이미지(wide field of view image) 및 포비에이팅된 이미지(foveated image)를 캡처할 수 있는 포비에이팅된 이미징 시스템(100)을 포함하고 상기 포비에이팅된 이미지는 상기 와이드 필드 오브 뷰 이미지의 관심의 제어 가능한 영역이고, 상기 시스템은,[0018] The main embodiment of the present invention includes a
a. 외부 장면을 향하고, 상기 외부 장면으로부터 인입하는 광을 수신하고 빔 분할기 상에 광을 포커싱하도록 구성된 대물 렌즈(110); a. An
b. 외부 장면으로부터의 인입하는 광을 와이드 필드 오브 뷰 이미징 경로(125) 및 포비에이팅된 이미징 경로(135)로 분할하도록 구성된 빔 분할기(120);b. A
c. 와이드 필드 오브 뷰 이미징 경로(125) 및c. Wide field of
d. 포비에이팅된 뷰 이미징 경로(135)를 포함하고,d. Includes a fovied
상기 와이드 필드 오브 뷰 이미징 경로는,The wide field of view imaging path,
i. 상기 빔 분할기(120)로부터 와이드 필드 오브 뷰 경로에서 수신되는 광의 양을 제한하는 제 1 정지부(127); i. A
ii. 정지부(127)로부터 광을 수신하고 와이드 필드 오브 뷰 이미징 센서 상에서 와이드 필드 뷰 이미지를 형성하도록 구성된 와이드 필드 오브 뷰 이미징 렌즈(130); ii. A wide field of
iii. 상기 와이드 필드 오브 뷰 이미징 렌즈(130)로부터 광을 수신하도록 구성된 와이드 필드 오브 뷰 이미징 센서(140)를 포함하고,iii. A wide field of
상기 포비에이팅된 뷰 이미징 경로는,The fovied view imaging path,
i. 상기 빔 분할기(120)로부터 상기 포비에이팅된 이미징 경로에서 수신되는 광의 양을 제한하는 제 2 정지부(137); i. A
ii. 상기 빔 분할기(120)로부터의 광을 반사하도록 제어될 수 있는 스캐닝 미러(150);ii. A
iii. 상기 스캐닝 미러(150)로부터, 상기 외부 장면의 관심의 영역과 연관되는 광의 부분을 수신하고 포비에이팅된 이미징 센서 상에서 포비에이팅된 이미지를 형성하도록 구성되는 포비에이팅된 이미징 렌즈(160);iii. A
iv. 상기 포비에이팅된 이미징 렌즈(160)로부터 광을 수신하도록 구성되는 포비에이팅된 이미징 센서(170)를 포함한다. iv. And a
[0019] 몇몇 실시예들에서, 외부 장면으로부터 인입하는 광은 대물 렌즈(110)를 통해 빔 분할기(120)로 전달되며, 여기서 빔 분할기(120)는 광을 2개의 광학 경로들, 즉 와이드 필드 오브 뷰 이미징 경로(125) 및 포비에이팅된 이미징 경로(135)로 분할한다. 와이드 필드 오브 뷰 경로에서, 광은 와이드 필드 오브 뷰 이미징 경로(wide field of view imaging path)(125)를 따라 와이드 필드 오브 뷰 이미징 렌즈(130)로 제 1 정지부(127)를 통해 전달된다. 렌즈는 와이드 필드 오브 뷰 이미징 센서(140) 상의 와이드 필드 오브 뷰 이미지를 포커싱한다. 포비에이팅된 뷰 이미징 경로 상에서, 광은 포비에이팅된 이미징 경로(135)를 따라 스캐닝 미러(150)로 제 2 정지부(137)를 통해 전달되며, 여기서 스캐닝 미러(150)는 빈 분할기(120)를 통해 포비에이팅된 이미징 렌즈(160) 쪽으로 관심의 영역을 반사한다. 스캐닝 미러(150)의 개구(aperture)는 빔 분할기(120)로부터 포비티드 이미징 경로(135)에서 수신되는 광의 양을 제한하도록 제 2 정지부(137)의 기능을 수행할 수 있다. 포비에이팅된 이미징 렌즈(160)는 포비에이팅된 이미징 센서(170) 상의 포비에이팅된 이미지를 포커싱한다. [0019] In some embodiments, light entering from an external scene is transmitted through the
[0020] 몇몇 실시예들에서, 대물 렌즈(110)는 시스템 전면 상에 배치된다. 대물 렌즈로부터 광을 수신하는 빔 분할기(120)는 대물 렌즈 가까이 배치된다. 빔 분할기(120)는 광을 2개의 광학 경로들, 즉 와이드 필드 오브 뷰 이미징 경로(125) 및 포비에이팅된 이미징 경로(135)로 분할한다. 제 1 정지부(127)는 와이드 필드 오브 뷰 이미징 경로(125)를 따라 빈 분할기(120)와 광학 통신하며, 제 2 정지부(137)는 포비에이팅된 이미징 경로(135)를 따라 빔 분할기(120)와 광학 통신한다. 스캐닝 미러(150)는 제 2 정지부(137)의 위치에 또는 근처에 배치되며, 여기서 이것은 포비에이팅된 이미징 경로(135)를 따라 빔 분할기(120)로부터 광을 수신하고, 광을 빔 분할기(120)로 다시 반사한다. 와이드 필드 오브 뷰 이미징 렌즈(130)는 와이드 필드 오브 뷰 이미징 경로(125)를 따라 제 1 정지부(127)를 향하도록 배치되며, 여기서 이것은 와이드 필드 오브 뷰 이미징 경로(125)를 따라 제 1 정지부(127)를 통해 빔 분할기(120)로부터 광을 수신한다. 포비에이팅된 이미징 렌즈(160)는 빔 분할기(120)를 향하도록 배치되며, 여기서 이것은 포비에이팅된 이미징 경로(135)를 따라 스캐닝 미러(150)로부터 반사된 빔 분할기(120)로부터의 광을 수신한다. 와이드 필드 오브 뷰 이미징 센서(140)는 와이드 필드 오브 뷰 이미징 렌즈(130)를 향하도록 배치된다. 포비에이팅된 이미징 센서(170)는 포비에이팅된 이미징 렌즈(160)를 향하도록 배치된다. 2개의 이미지들, 즉 와이드 필드 오브 뷰 이미지 및 그것 내의 관심의 영역 내의 고해상도 이미지가 센서들에 의해 레코딩된다. In some embodiments,
[0021] 몇몇 실시예들에서, 대물 렌즈(110)는 시스템의 전면에 위치된다. 빔 분할기(120)는 대물 렌즈와 대물 렌즈(110)를 향하는 정지부(137) 및 스캐닝 미러(150) 사이에 위치되어서, 그것은 대물 렌즈로부터 광을 수신하게 된다. 스캐닝 미러(150)는 빔 분할기 뒤에 위치되며, 그것은 빔 분할기(120)의 포비에이팅된 이미지 경로로부터 광을 수신하고 광을 빔 분할기(120)로 다시 반사한다. 와이드 필드 오브 뷰 이미징 렌즈(130)는 빔 분할기의 와이드 필드 오브 뷰 이미지 경로를 향하는 반면에, 포비에이팅된 이미징 렌즈(160)는 빔 분할기(120)의 포비에이팅된 이미지 광학 경로를 향한다. 와이드 필드 오브 뷰 이미징 센서(140)는 와이드-필드-오브-뷰 이미징 렌즈(130)를 향하고, 포비에이팅된 이미징 센서(170)는 포비에이팅된 이미징 렌즈(160)를 향한다.In some embodiments, the
[0022] 몇몇 실시예들에서, 외부 장면으로부터 인입하는 광은 대물 렌즈(110)를 통해 빔 분할기로 전달되며, 여기서 빔 분할기(120)는 광의 일 카피(copy)를 와이드 필드 오브 뷰 렌즈(130)로 그리고 광의 제 2 카피를 스캐닝 미러(150)로 전송한다. 스캐닝 미러(150)는 관심의 영역을 빔 분할기(120)에 다시 반사하고, 빔 분할기는 광을 포비에이팅된 이미징 렌즈(160)로 반사한다. 반면에, 와이드 필드 오브 뷰 이미징 렌즈(130)는 와이드 필드 오브 뷰 이미징 경로(125)의 광을 와이드 필드 오브 뷰 이미징 센서(140)로 투과한다. 포비에이팅된 이미징 렌즈(160)는 포비에이팅된 이미징 경로(135)의 광을 포비에이팅된 이미징 센서(170)로 투과한다. 따라서, 2개의 이미지들, 즉 와이드 필드 오프 뷰 이미지 및 그것 내의 관심의 영역의 고해상도 이미지가 센서들에 의해 레코딩된다. In some embodiments, light entering from an external scene is transmitted to the beam splitter through the
[0023] 도 1은 듀얼-센서 와이드-FOV 포비에이팅된 이미징 시스템에 대해 본 발명에 따른 예시적인 시스템 레이아웃(100)을 예시한다. 시스템은 2개의 서브시스템들: 와이드-FOV 이미징 서브시스템 및 포비에이팅된 이미징 서브시스템을 포함한다. 와이드-FOV 이미징 서브시스템은 대물 렌즈(110), 빔 분할기(120), 정지부(127), 와이드-FOV이미징 렌즈(130), 및 이미징 센서(140)를 포함한다. 포비에이팅된 이미징 서브시스템은 대물 렌즈(110), 빔 분할기(120), 스캐닝 미러(150), 정지부(137), 포비에이팅된 이미징 렌즈(160), 및 이미징 센서(170)를 포함한다. 이 예시적인 레이아웃(100)에서, 2개의 이미징 서브시스템들은 광학 경로(115)는 물론 동일한 대물 렌즈(110)를 공유한다. FOV(105) 내의 광은 대물 렌즈(110)에 의해 캡처된다. 광이 대물 렌즈(110)를 통과한 이후, 광학 경로(115)는 빔 분할기(120)에 의해 2개의 상이한 경로들; 와이드-FOV 이미징 경로(125) 및 포비에이팅된 이미징 경로(135)로 분할된다. 와이드-FOV 이미징 경로(125)에서, 와이드-FOV 이미징 렌즈(130)는 와이드-FOV 이미징 센서(140) 상에서 대물 렌즈(110)에 의해 캡처된 FOV(105) 내의 전체 시계(visual field)를 이미징한다. 포비에이팅된 이미징 경로(135)에서, 스캐닝 미러(150)는 정지부(137)의 위치에 또는 근처에 배치되고, 대물 렌즈(110)에 의해 캡처된 FOV(105) 내의 일부 광선들을 반사한다. 스캐닝 미러(150)를 관심의 방향 쪽으로 순간적으로 틸팅(tilting)함으로써, FOV(105)의 관심의 서브-FOV로부터의 광선들은 빔 분할기(120)로 재지향되고 포비에이팅된 이미징 렌즈(160) 쪽으로 반사되고 포비에이팅된 이미징 센서(170) 상에서 이미징된다. 1 illustrates an
[0024] 이 예시적인 레이아웃(100)에서, 대물 렌즈(110)는 연속적인 우산-유사 FOV 또는 거의-반구-형상 FOV, 또는 거의-구-형상 FOV를 캡처하기 위해 회전 대칭적 렌즈들(rotationally symmetric lenses)의 그룹일 수 있다. 대물 렌즈(110)는 링-유사 파노라마 FOV를 캡처하기 위해 필수적인 회전 대칭적 렌즈를 따른 커브드 미러 표면을 또한 포함할 수 있다. 커브드 미러는 대칭적 또는 비슷함을 갖거나 갖지 않는 구 미러, 포물선 미러, 쌍곡선 미러, 원뿔 미러, 타원 미러, 비구면 미러일 수 있다. 이미징 센서들(140 및 170)은 CCD(charge-couple device) 또는 CMOS(complementary metal-oxide-semiconductor) 또는 다른 타입의 광 감지 디바이스를 포함(그러나 이것으로 제한되지 않음)해서, 광자들을 전기 신호들로 변환하는 광 감지 유닛들(픽셀들)의 어레이를 포함하는 임의의 광 감지 디바이스일 수 있다. 스캐닝 미러(150)는 음성 코일 미러, 압전 미러, MEMS(Micro-Electro-Mechanical System) 미러 또는 다른 타입의 스캐닝 미러를 포함(그러나 이것으로 제한되지 않음)해서, 스캐닝 움직임이 전자적으로 제어될 수 있는 임의의 타입의 고속 이동 미러 디바이스일 수 있다. 스캐닝 미러(150)는 스캐닝 미러 제어기에 의해 제어될 수 있고, 상기 스캐닝 미러 제어기는 마이크로프로세서와 통신 가능한 전자적 인터페이스를 가질 수 있다. 빔 분할기(120)는 큐브 또는 플레이트의 형태일 수 있고, 비-편광된 빔 분할기 또는 편광됨 빔 분할기일 수 있다. 편광된 빔 분할기가 이용될 때, 1/4파 플레이트(quarter-wave plate)는 광 효율을 증가시키기 위해 빔 분할기와 함께 이용될 수 있다. 1/4파 플레이트는 빔 분할기(120)와 정지부(137) 사이의 공간에 위치될 수 있다. 부가적인 편광기들이 두 경로들 간의 크로스토크를 감소시키기 위해 포비에이팅된 이미징 경로(135) 및 와이드-FOV 이미징 경로(125) 둘 다에서 이용될 수 있다. In this
[0025] 본 발명의 이익들 중 하나로서, 본 발명은 하나의 통합된 시스템 내로 2개의 이미징 서브시스템들을 결합하며, 여기서 2개의 이미징 서브시스템은 동일한 대물 렌즈를 공유하며, 이는 시스템이 간결하고 경량이 되게 할 수 있다. 포비에이팅된 이미징 서브시스템의 정지부(137)는 빔 분할기(120)를 통해 와이드-FOV 이미징 서브시스템의 정지부(127)와 광학적으로 결합된다. 본 발명을 위해, 와이드-FOV 이미징 서브시스템은 와이드 뷰 필드를 캡처하는 반면에, 포비에이팅된 이미징 서브시스템은 상기 와이드 뷰 필드의 하나 또는 소수의 선택된 부분을 캡처하고 정확한 타겟 인식을 가능하게 하도록 매우 고해상도 비디오들을 산출한다. 최신 검사 시스템들에 비해, 본 발명은 비교적 저비용, 간결함, 낮은 전력 소비, 낮은 데이터 대역폭 요구는 물론 FOV, 해상도 및 실시간 포착의 견지에서 타협되지 않은 고성능의 이점을 갖는다. As one of the benefits of the present invention, the present invention combines two imaging subsystems into one integrated system, where the two imaging subsystems share the same objective lens, which makes the system compact and lightweight. You can do this. The
[0026] 본 발명의 일 양상에서, 스캐닝 미러는 도 2에서 예시된 바와 같이, X 및 Y 축들을 따른 틸팅 움직임들(253 및 254)을 통해 와이드-FOV를 연속적으로 샘플링하기 위한 듀얼 축 스캐닝 유닛(252)일 수 있다. 스캐닝 미러는 또한 미러가 Y축을 따른 틸트 움직임(257) 및 Z 축을 따른 회전 움직임(258)을 통해 와이드-FOV를 샘플링하는, 도 2b에서 도시된 바와 같이 z 축을 따라 회전하는 능력을 갖거나 회전 스테이지(256) 상에 장착된 단일축 스캐닝 유닛(255)일 수 있다. In one aspect of the present invention, the scanning mirror is a dual axis scanning unit for continuously sampling a wide-FOV through tilting
[0027] 종래 기술들에서의 듀얼 센서 접근법에 비해, 본 발명은, 광학 정지부가 정지부 앞에 있는 렌즈들의 그룹 및 정지부 뒤에 있는 렌즈들의 그룹을 갖는 이미징 시스템 내에 있는 정규 이미징 시스템 구조를 이용한다. 종래 기술의 어포컬 시스템에 비해 정규 이미징 시스템 구조를 이용하는 이점들은 다음과 같다:Compared to the dual sensor approach in the prior art, the present invention uses a regular imaging system structure within an imaging system with an optical stop having a group of lenses in front of the stop and a group of lenses behind the stop. Advantages of using a regular imaging system architecture over prior art apocalyptic systems include:
a. 정지부의 양 측에서 렌즈들을 이용함으로써 특정한 광학 수차들이 보정될 수 있다는 점에서 더 간결한 시스템 및 더 쉬운 설계를 허용함;a. Allowing a more compact system and easier design in that certain optical aberrations can be corrected by using lenses on both sides of the stop;
b. 간결함 폼 팩터를 유지하면서 어포컬 시스템의 것보다 훨씬 더 큰 FOV를 달성할 수 있음.b. Achieve a much larger FOV than that of an afocal system while maintaining a compact form factor.
[0028] 다른 중요한 양상에서, 본 발명은 각각 이미징 시스템 내부에 있고 빔 분할기를 통해 생성되고 와이드 필드 오브 뷰 및 포비에이팅된 뷰 광학 경로들에 위치되는 광학 결합 정지부들의 쌍을 이용한다. 종래 기술에서, 정지부는 어포컬 시스템의 입구에 배치되고, 어포컬 시스템을 통해 생성된 정지부의 이미지는 어포컬 시스템의 다른 측 상에 있다. [0028] In another important aspect, the present invention utilizes a pair of optically coupled stops, each located inside an imaging system and created through a beam splitter and located in wide field of view and foviated view optical paths. In the prior art, the stop is placed at the entrance of the afocal system, and the image of the stop created through the afocal system is on the other side of the afocal system.
[0029] 또 다른 중요한 양상은, 종래 기술에서, 스캐닝 미러는 X 및 Y 틸트 축을 통해서만 제어 가능하다는 것이다. 본 발명에서, 스캐닝 미러는 대신 X 또는 Y, 틸트 및 Z 회전을 이용하도록 또한 구성될 수 있다. Another important aspect is that, in the prior art, the scanning mirror is controllable only through the X and Y tilt axes. In the present invention, the scanning mirror can also be configured to use X or Y, tilt and Z rotation instead.
[0030] 도 3은 우산-유사 FOV(305)를 캡처하기 위해 회전 대칭적 렌즈만을 활용하는 본 발명의 예시적인 설계(300)를 개략적으로 예시한다. 이 예시적인 설계(300)에서, 대물 렌즈(310)는 평면-오목 렌즈 엘리먼트만을 포함한다. 3개의 엘리먼트 렌즈는 와이드-FOV(광시야) 이미징 렌즈(330)로서 이용된다. 광시야 이미징 렌즈(330)는 광시야 이미지를 확대하는 회전 대칭적 렌즈의 그룹일 수 있고, 광시야 이미징 렌즈(330)는 비구면 반사 또는 굴절 표면들을 포함할 수 있다. X 및 Y 양자의 방향들에서 스캐닝하는 듀얼-축 고-속 스캐닝 미러(350)가 FOV(305)에서 ROI(Region of Interest)를 샘플링하기 위해 정지부(337) 근처에 배치된다. 빔 분할기(320)는 와이어-그리드 타입 편광 빔 분할기이다. 1/4파 플레이트(380)는 빔 분할기(320)와 스캐닝 미러(350) 간에 배치되어 1/4 플레이트를 2번 통과한 이후 광의 편광을 변화시킨다. 예시적인 구현들 중 하나에서, 포비에이팅된(포비티드) 이미징 렌즈(360)는 접합된 더블릿(cemented doublet)을 이용할 수 있다. 포비티드 이미징 렌즈(360)는 포비티드 이미지를 확대하는 회전 대칭적 렌즈의 그룹일 수 있고, 포비티드 이미징 렌즈(360)는 비구면 반사 또는 굴절 표면들을 포함할 수 있다. 시스템 광학 성능을 추가로 개선하기 위해 더 많은 렌즈 엘리먼트들이 정지부들 전에 또는 뒤에 포비에이팅된 이미징 경로 및 와이드-FOV 이미징 경로 둘 다에서 부가될 수 있다. 3 schematically illustrates an
[0031] 도 4는 링-유사 파노라마 FOV(405)를 캡처하기 위해 커브드 미러를 활용하는 본 발명의 예시적인 설계(400)를 개략적으로 예시한다. 이 예시적인 설계(400)에서, 대물 렌즈(410)는 5개의 광학 엘리먼트들을 포함한다. 대물 렌즈(410)의 제 1 엘리먼트는 커브드 미러(412)이다. 커브드 미러(412)의 광학 표면은 표면 프로파일이 그의 회전 축(414)을 따라 1-디멘셔널 폴리노미얼 스위프(1-dimmentional polynomial swept) 360°에 의해 설명될 수 있다. 4-엘리먼트 렌즈는 와이드-FOV 이미징 렌즈(430)로서 이용된다. 단일-축 고속 스캐닝 미러(450)는 회전 스테이지 상에 장착되고, 도 2b와 관련하여 설명된 바와 같이 틸팅 움직임 및 회전 움직임을 통해 파노라마 FOV(405)를 스캐닝하도록 정지부(437) 근처에 배치된다. 빔 분할기(420)는 편광된 빔 분할기를 활용할 수 있다. 1/4파 플레이트(48)는 빔 분할기(420)와 스캐닝 미러(450) 간에 배치되어 1/4파 플레이트를 2번 통과한 이후 광의 편광을 변화시킨다. 예시적인 구현들 중 하나에서, 포비에이팅된 이미징 렌즈(460)는 접합된 더블릿을 이용할 수 있다. 시스템 광학 성능을 추가로 개선하기 위해, 더 많은 렌즈 엘리먼트들이 정지부들 전에 또는 뒤에 포비에이팅된 이미징 경로 및 와이드-FOV 이미징 경로 둘 다에서 부가될 수 있다. 4 schematically illustrates an
[0032] 도 5는 본 발명에 필요한 이미지 프로세싱 파이프라인의 예의 블록도를 도시한다. 우선, 이벤트/객체 검출 알고리즘은 ROI(region(s) of interest)를 발견하기 위해 와이드-FOV 이미지를 프로세싱할 필요가 있다. 관심의 영역이 식별되면, ROI의 위치(각도) 정보에 따른 신호는 포비에이팅된 이미징 센서를 이용하여 관심의 영역을 재샘플링하기 위해 고속 스캐닝 미러로 송신된다. 이미지 분석 알고리즘은 이어서 ROI에 관한 상세 정보를 수집하기 위해 포비에이팅된 이미지에 적용된다. 분석 결과는 영역을 트래킹하고 및/또는 추가 동작을 수행할 필요가 있는지를 결정할 것이다. 때때로, 하나 또는 소수의 이미지들이 ROI를 특징화하는데 충분하지 않을 수 있으면, 스캐닝 미러를 이용한 트래킹 외에, 파노라마 뷰에서 ROI를 계속 트래킹할 필요가 있다. [0032] FIG. 5 shows a block diagram of an example of an image processing pipeline required for the present invention. First, the event / object detection algorithm needs to process a wide-FOV image to discover the region (s) of interest (ROI). When the region of interest is identified, a signal according to the location (angle) information of the ROI is transmitted to a high-speed scanning mirror to resample the region of interest using a foviated imaging sensor. The image analysis algorithm is then applied to the fovied image to collect detailed information about the ROI. The results of the analysis will determine if there is a need to track areas and / or perform additional actions. Sometimes, if one or a few images may not be enough to characterize the ROI, in addition to tracking with a scanning mirror, it is necessary to continue tracking the ROI in the panoramic view.
[0033] 도 6은 연장하는 시스템 FOV를 위해 다수의 이미징 유닛들을 포함하는 예시적인 광학 시스템의 설계 레이아웃(600)을 개략적으로 예시한다. 예시적인 시스템은 단일 유닛의 FOV보다 더 큰 지정된 FOV를 캡처하기 위해 함께 클러스터링되는 적어도 2개의 와이드-FOV 포비에이팅된 이미징 디바이스들을 포함한다. 설계 레이아웃(600)에서, 4개의 와이드-FOV 포비에이팅된 이미징 디바이스들(682-688)이 전체 FOV를 360도로 연장하는데 이용된다. 이미지 유닛들은 그의 FOV가 서로 반대를 포인팅하는 채로 함께 장착된다. 시스템(600)의 전체 FOV에서 음영 스팟(blind spot)을 제거하기 위해 이미징 유닛들은 임의의 2개의 이웃하는 유닛들 간에 FOV 중첩이 존재하도록 하는 방식으로 장착되는 것이 바람직하다. 예로서 유닛들(682 및 684)을 이용하여, 유닛(682)의 FOV 경계(692)는, 이미징 유닛들로부터 특정한 거리 초과로 2개의 유닛들 간의 FOV 갭이 존재하지 않는 것을 보장하기 위해 이미징 유닛들로부의 상기 거리에서 유닛(684)의 FOV 경계(694)와 교차해야 한다. 6 schematically illustrates the design layout 600 of an exemplary optical system that includes multiple imaging units for an extended system FOV. The exemplary system includes at least two wide-FOV focused imaging devices clustered together to capture a specified FOV that is larger than a single unit's FOV. In design layout 600, four wide-FOV focused imaging devices 682-688 are used to extend the
[0034] 도 6과 관련된 본 발명의 일 양상에서, 도 6의 예시적인 시스템은 단일 관점을 보유하지 않는다. 단일 관점은 클러스터 내의 모든 이미징 유닛들이 공통 뷰잉 위치로부터 전체 시계를 유효하게 포착한다는 것을 의미하는 반면에, 다중-관점 클러스터 내의 이미징 유닛들은 변위된 뷰잉 위치들로부터 이미징 필드를 캡처한다. 특정한 애플리케이션에 대해, 전체 이미징 필드는 단일 관점으로부터 캡처되는 것이 바람직하다. 단일 관점 특성을 달성하기 위해 다중-면 미러는 단일 관점으로 클러스터 시스템 내의 모든 이미징 유닛들의 관점들을 가상으로 콜로케이트(co-locate)하는데 이용될 수 있다. [0034] In one aspect of the invention in connection with FIG. 6, the exemplary system of FIG. 6 does not have a single perspective. A single perspective means that all imaging units in a cluster effectively capture the entire field of view from a common viewing position, while imaging units in a multi-perspective cluster capture the imaging field from displaced viewing positions. For a particular application, it is desirable that the entire imaging field is captured from a single perspective. To achieve a single viewpoint characteristic, a multi-plane mirror can be used to virtually co-locate the viewpoints of all imaging units in a cluster system in a single viewpoint.
Claims (21)
상기 시스템은:
외부 장면을 향하고, 외부 장면으로부터 인입하는 광을 수신하고 빔 분할기 상에 상기 광을 집속하도록 구성된 대물 렌즈; 및
상기 외부 장면으로부터의 상기 인입하는 광을 광시야 이미징 경로 상의 제 1 부분 및 포비티드 이미징 경로 상의 제 2 부분으로 분할하도록 구성된 상기 빔 분할기를 포함하고,
상기 광시야 이미징 경로는:
상기 빔 분할기로부터 상기 광시야 이미징 경로에서 수신되는 상기 제 1 부분의 양을 제한하고, 상기 대물 렌즈로부터 분리된, 제 1 정지부; 및
상기 대물 렌즈와 상이하고, 상기 제 1 정지부로부터 상기 제 1 부분을 수신하고 광시야 이미징 센서 상에 광시야 이미지를 집속하도록 구성된 광시야 이미징 렌즈 - 상기 광시야 이미징 센서는 상기 광시야 이미징 렌즈로부터 집속된 상기 제 1 부분을 광시야 이미지로 레코드하도록 구성됨 -를 포함하고,
상기 포비티드 이미징 경로는:
상기 빔 분할기로부터 상기 포비티드 이미징 경로에서 수신되는 상기 제 2 부분을 제한하는 제 2 정지부;
X 및 Y 축에 대하여 틸팅(tilt)되고 상기 빔 분할기를 향하여 역으로 상기 빔 분할기로부터의 상기 제 2 부분 내에 선택된 관심 영역을 반사하도록 구성된 듀얼 축 이동식 미러(dual axis movable mirror)인 스캐닝 미러;
상기 스캐닝 미러에 의해 반사된 상기 제 2 부분을 지향하도록 구성되고, 상기 빔 분할기 상에 배치된 반사 표면; 및
상기 스캐닝 미러로부터, 상기 외부 장면의 관심 영역과 연관된, 상기 제 2 부분을 수신하고 포비티드 이미징 센서 상에 포비티드 이미지를 집속하도록 구성된 포비티드 이미징 렌즈 - 상기 포비티드 이미징 센서는 상기 포비티드 이미징 렌즈로부터의 상기 관심 영역을 고해상도 포비티드 이미지로 레코드하도록 구성됨 -를 포함하고,
상기 포비티드 이미징 시스템은 상기 광시야 이미지 내에서 상기 고해상도 포비티드 이미지를 획득하도록 구성된, 포비티드 이미징 시스템.A forbidden imaging system configured to capture a wide field of view image and a foveated image, wherein the forbidden image is a controllable region of interest of the wide field of view image,
The system is:
An objective lens configured to face the external scene, receive light entering from the external scene, and focus the light on a beam splitter; And
And the beam splitter configured to split the incoming light from the external scene into a first portion on a wide-field imaging path and a second portion on a forbidden imaging path,
The wide-field imaging path is:
A first stop, limiting the amount of the first portion received in the wide-field imaging path from the beam splitter, separated from the objective lens; And
A widefield imaging lens that is different from the objective lens and configured to receive the first portion from the first stop and focus the widefield image on the widefield imaging sensor, the widefield imaging sensor from the widefield imaging lens And configured to record the focused first portion as a wide field of view image,
The forbidden imaging path is:
A second stop limiting the second portion received in the forbidden imaging path from the beam splitter;
A scanning mirror that is a dual axis movable mirror tilted with respect to the X and Y axes and configured to reflect a selected region of interest in the second portion from the beam splitter towards the beam splitter;
A reflective surface configured to direct the second portion reflected by the scanning mirror and disposed on the beam splitter; And
A forbidden imaging lens configured to receive, from the scanning mirror, the second portion, associated with the region of interest of the external scene, and to focus the forbidden image on the forbidden imaging sensor, wherein the forbidden imaging sensor is the forbidden imaging lens And configured to record the region of interest from a high-resolution forbidden image.
Wherein the forbidden imaging system is configured to obtain the high resolution forbidden image within the wide field of view image.
상기 대물 렌즈는 상기 시스템 전면에 배치되고,
상기 빔 분할기는 대물 렌즈 가까이 배치되며 상기 대물 렌즈로부터 광을 수신하고,
상기 제 1 정지부는 상기 광시야 이미징 경로를 따라 상기 빔 분할기와 광학 통신하고,
상기 제 2 정지부는 상기 포비티드 이미징 경로를 따라 상기 빔 분할기와 광학 통신하고,
상기 스캐닝 미러는 상기 포비티드 이미징 경로에서 상기 제 2 정지부 바로 뒤에 배치되고, 상기 스캐닝 미러는 상기 포비티드 이미징 경로를 따라 상기 빔 분할기로부터 광을 수신하며 상기 광을 상기 빔 분할기에 역으로 반사하고,
상기 광시야 이미징 렌즈는 상기 광시야 이미징 경로를 따라 상기 제 1 정지부를 향하도록 배치되고, 상기 광시야 이미징 렌즈는 상기 광시야 이미징 경로를 따라 상기 제 1 정지부를 통해 상기 빔 분할기로부터 광을 수신하고,
상기 포비티드 이미징 렌즈는 상기 빔 분할기를 향하도록 배치되고, 상기 포비티드 이미징 렌즈는 상기 포비티드 이미징 경로를 따라 상기 스캐닝 미러로부터 반사되는 상기 빔 분할기로부터의 광을 수신하고,
상기 광시야 이미징 센서는 상기 광시야 이미징 렌즈를 향하도록 배치되며, 그리고
상기 포비티드 이미징 센서는 상기 포비티드 이미징 렌즈를 향하도록 배치되는,
포비티드 이미징 시스템.According to claim 1,
The objective lens is disposed in front of the system,
The beam splitter is disposed near the objective lens and receives light from the objective lens,
The first stop is in optical communication with the beam splitter along the wide field imaging path,
The second stop is in optical communication with the beam splitter along the forbidden imaging path,
The scanning mirror is disposed immediately behind the second stop in the forbidden imaging path, the scanning mirror receives light from the beam splitter along the forbidden imaging path and reflects the light back to the beam splitter ,
The wide-field imaging lens is arranged to face the first stop along the wide-field imaging path, and the wide-field imaging lens receives light from the beam splitter through the first stop along the wide-field imaging path and ,
The forbidden imaging lens is arranged to face the beam splitter, the forbidden imaging lens receives light from the beam splitter reflected from the scanning mirror along the forbidden imaging path,
The wide-field imaging sensor is arranged to face the wide-field imaging lens, and
The forbidden imaging sensor is arranged to face the forbidden imaging lens,
Forbidden imaging system.
상기 대물 렌즈는 실질적으로 반구 형상인(hemispherical shaped) 시야를 캡처하기 위한 회전 대칭적 렌즈들의 그룹인,
포비티드 이미징 시스템.The method of claim 1 or 2,
The objective lens is a group of rotationally symmetrical lenses for capturing a substantially hemispherical shaped field of view,
Forbidden imaging system.
상기 대물 렌즈는 실질적으로 고리 형상인(ring shaped) 시야를 캡처하기 위해, 곡면 미러(curved mirror)를 필요한 회전 대칭적 굴절 광학 엘리먼트들과 함께 활용하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The objective lens utilizes a curved mirror with the necessary rotationally symmetric refractive optical elements to capture a substantially ring shaped field of view,
Forbidden imaging system.
상기 이미징 센서들은 광자들을 전자 신호들로 변환하는 광 감지 유닛들(픽셀들)의 어레이를 포함하는 광 감지 디바이스이고, 상기 광 감지 디바이스는 CCD(charge-couple device) 또는 CMOS(complementary metal-oxide-semiconductor)를 포함하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The imaging sensors are photo-sensing devices that include an array of photo-sensing units (pixels) that convert photons into electronic signals, the photo-sensing device being a charge-couple device (CCD) or a complementary metal-oxide-CMOS. semiconductor),
Forbidden imaging system.
상기 스캐닝 미러는 전자적으로 제어되는 스캐닝 움직임을 가지고, 상기 스캐닝 미러는 음성 코일 미러, 압전 미러, 또는 MEMS(Micro-Electro-Mechanical System) 미러를 포함하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The scanning mirror has an electronically controlled scanning movement, and the scanning mirror includes a voice coil mirror, a piezoelectric mirror, or a MEMS (Micro-Electro-Mechanical System) mirror,
Forbidden imaging system.
상기 스캐닝 미러는 X 및 Y 축들을 따르는 틸팅 움직임들을 통해 상기 광시야를 연속적으로 샘플링하는 듀얼 축 스캐닝 유닛(dual axis scanning unit)인,
포비티드 이미징 시스템.The method of claim 1 or 2,
The scanning mirror is a dual axis scanning unit that continuously samples the wide field of view through tilting movements along the X and Y axes.
Forbidden imaging system.
상기 스캐닝 미러는 단일 축 회전 스캐닝 유닛이고, 상기 스캐닝 미러는 상기 Y 축을 따르는 틸트 움직임 및 X 축 및 상기 Y 축에 직교하는 Z 축을 따르는 회전 움직임을 통해 상기 광시야를 샘플링하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The scanning mirror is a single axis rotational scanning unit, and the scanning mirror samples the wide field of view through a tilt motion along the Y axis and a rotational motion along the X axis and the Z axis orthogonal to the Y axis,
Forbidden imaging system.
상기 스캐닝 미러의 개구(aperture)는 상기 빔 분할기로부터 상기 포비티드 이미징 경로에서 수신되는 광의 양을 제한하도록 상기 제 2 정지부의 기능을 수행하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The aperture of the scanning mirror performs the function of the second stop to limit the amount of light received in the forbidden imaging path from the beam splitter,
Forbidden imaging system.
상기 빔 분할기는 육면체(cube), 또는 플레이트(plate)의 형태이고, 비-편광된 빔 분할기 또는 편광된 빔 분할기인,
포비티드 이미징 시스템.The method of claim 1 or 2,
The beam splitter is in the form of a cube, or plate, and is a non-polarized beam splitter or a polarized beam splitter,
Forbidden imaging system.
상기 빔 분할기는 편광된 빔 분할기이고, 1/4파 플레이트(quarter-wave plate)가 광 효율을 증가시키기 위해 상기 빔 분할기와 함께 이용되고, 상기 1/4파 플레이트는 상기 빔 분할기와 상기 스캐닝 미러의 사이에 위치되는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The beam splitter is a polarized beam splitter, a quarter-wave plate is used with the beam splitter to increase light efficiency, and the quarter wave plate is the beam splitter and the scanning mirror Is located between,
Forbidden imaging system.
상기 포비티드 이미징 경로 및 상기 광시야 이미징 경로 둘 다에서 부가적인 편광기들이 이용되어 이 두 경로들 간의 혼선(crosstalk)을 감소시키는,
포비티드 이미징 시스템.The method of claim 1 or 2,
Additional polarizers are used in both the forbidden imaging path and the wide field imaging path to reduce crosstalk between the two paths,
Forbidden imaging system.
상기 포비티드 이미징 렌즈는 상기 포비티드 이미지를 확대하는 회전 대칭적 렌즈들의 그룹인,
포비티드 이미징 시스템.The method of claim 1 or 2,
The forbidden imaging lens is a group of rotationally symmetric lenses that magnify the forbidden image,
Forbidden imaging system.
상기 포비티드 이미징 렌즈는 비구면 반사 또는 굴절 표면들을 포함하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The forbidden imaging lens comprises aspheric reflective or refractive surfaces,
Forbidden imaging system.
상기 광시야 이미징 렌즈는 상기 광시야 이미지를 확대하는 회전 대칭적 렌즈들의 그룹인,
포비티드 이미징 시스템.The method of claim 1 or 2,
The wide field of view imaging lens is a group of rotationally symmetric lenses that enlarge the wide field of view image,
Forbidden imaging system.
상기 광시야 이미징 렌즈는 비구면 반사 또는 굴절 표면들을 포함하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The wide field of view imaging lens comprises aspheric reflective or refractive surfaces,
Forbidden imaging system.
제 1 항 또는 제 2 항에 따른 적어도 두 개의 포비티드 이미징 시스템들을 포함하고,
상기 적어도 두 개의 포비티드 이미징 시스템들은 단일 포비티드 이미징 시스템의 광시야보다 더 큰 지정된 광시야를 캡처하기 위해 함께 클러스터링(cluster)된,
다중 포비티드 이미징 시스템.As a multi-ported imaging system,
It comprises at least two forbidden imaging systems according to claim 1 or 2,
The at least two forbidden imaging systems are clustered together to capture a specified wide field of view larger than the wide field of view of a single forbidden imaging system,
Multiple forbidden imaging systems.
상기 적어도 두 개의 포비티드 이미징 시스템들은 광시야 갭(gap) 없이 다중 관점들에 배치되어 연속적인 광시야 이미지를 캡처하도록 하는,
다중 포비티드 이미징 시스템.The method of claim 17,
The at least two forbidden imaging systems are arranged in multiple viewpoints without a wide field of view gap to capture a continuous wide field of view image,
Multiple forbidden imaging systems.
상기 적어도 두 개의 포비티드 이미징 시스템들은 다중-면 미러를 통해 공통 가상 관점에서 함께 배치(co-locate)되는,
다중 포비티드 이미징 시스템.The method of claim 17,
The at least two forbidden imaging systems are co-located from a common virtual point of view through a multi-plane mirror,
Multiple forbidden imaging systems.
상기 스캐닝 미러는 스캐닝 미러 제어기에 의해 제어되고, 상기 스캐닝 미러 제어기는 마이크로프로세서와 통신 가능한 전자적 인터페이스를 가지는,
포비티드 이미징 시스템.The method of claim 1 or 2,
The scanning mirror is controlled by a scanning mirror controller, the scanning mirror controller having an electronic interface capable of communicating with a microprocessor,
Forbidden imaging system.
상기 광시야 이미지 내에서, 상기 포비티드 이미지의 타겟 영역을 제어하는 방법과 결합되고, 상기 방법은:
a. 상기 광시야 이미징 센서로부터 이미지들을 수신하는 단계;
b. 타겟 관심 영역을 검출하는 단계;
c. 상기 타겟 관심 영역에서 상기 스캐닝 미러를 포인팅하는 것에 상응하는, 고속 스캐닝 미러 제어를 위한 명령들을 생성하는 단계;
d. 상기 포비티드 이미징 센서로부터 이미지들을 수신하는 단계; 및
e. 상기 포비티드 이미지에서 객체를 특징화하는 단계
를 포함하는,
포비티드 이미징 시스템.The method of claim 1 or 2,
Within the wide field of view image, it is combined with a method of controlling a target area of the forbidden image, the method comprising:
a. Receiving images from the wide-field imaging sensor;
b. Detecting a target region of interest;
c. Generating instructions for controlling a high-speed scanning mirror, corresponding to pointing the scanning mirror in the target region of interest;
d. Receiving images from the forbidden imaging sensor; And
e. Characterizing the object in the forbidden image
Containing,
Forbidden imaging system.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261620574P | 2012-04-05 | 2012-04-05 | |
US201261620581P | 2012-04-05 | 2012-04-05 | |
US61/620,574 | 2012-04-05 | ||
US61/620,581 | 2012-04-05 | ||
PCT/US2013/035293 WO2013152205A1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187009611A Division KR102028732B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207008629A Division KR102223290B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190112218A KR20190112218A (en) | 2019-10-02 |
KR102095330B1 true KR102095330B1 (en) | 2020-03-31 |
Family
ID=49301051
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197028502A Active KR102095330B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020147031167A Active KR102022719B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020217030170A Active KR102404537B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020217005871A Active KR102306729B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020187009611A Active KR102028732B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020207008629A Active KR102223290B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020187009715A Active KR102124350B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020187009706A Active KR102129330B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020207034778A Active KR102345444B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020187009709A Active KR102099156B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020147031031A Active KR102188748B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
Family Applications After (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147031167A Active KR102022719B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020217030170A Active KR102404537B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020217005871A Active KR102306729B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020187009611A Active KR102028732B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020207008629A Active KR102223290B1 (en) | 2012-04-05 | 2013-04-04 | Wide-field of view (fov) imaging devices with active foveation capability |
KR1020187009715A Active KR102124350B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020187009706A Active KR102129330B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020207034778A Active KR102345444B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020187009709A Active KR102099156B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
KR1020147031031A Active KR102188748B1 (en) | 2012-04-05 | 2013-04-05 | Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability |
Country Status (12)
Country | Link |
---|---|
US (14) | US9851563B2 (en) |
EP (5) | EP3608717B1 (en) |
JP (9) | JP6176747B2 (en) |
KR (11) | KR102095330B1 (en) |
CN (5) | CN104541201B (en) |
AU (4) | AU2013243380B2 (en) |
BR (2) | BR112014024941A2 (en) |
CA (4) | CA2869781C (en) |
IL (6) | IL300033B2 (en) |
NZ (6) | NZ725322A (en) |
RU (2) | RU2015156050A (en) |
WO (2) | WO2013152205A1 (en) |
Families Citing this family (502)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US9158116B1 (en) | 2014-04-25 | 2015-10-13 | Osterhout Group, Inc. | Temple and ear horn assembly for headworn computer |
US20150277120A1 (en) | 2014-01-21 | 2015-10-01 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9366867B2 (en) | 2014-07-08 | 2016-06-14 | Osterhout Group, Inc. | Optical systems for see-through displays |
US9400390B2 (en) | 2014-01-24 | 2016-07-26 | Osterhout Group, Inc. | Peripheral lighting for head worn computing |
US9952664B2 (en) | 2014-01-21 | 2018-04-24 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9715112B2 (en) | 2014-01-21 | 2017-07-25 | Osterhout Group, Inc. | Suppression of stray light in head worn computing |
US20150205111A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Optical configurations for head worn computing |
US9965681B2 (en) | 2008-12-16 | 2018-05-08 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9229233B2 (en) | 2014-02-11 | 2016-01-05 | Osterhout Group, Inc. | Micro Doppler presentations in head worn computing |
US9298007B2 (en) | 2014-01-21 | 2016-03-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
US9274349B2 (en) | 2011-04-07 | 2016-03-01 | Digilens Inc. | Laser despeckler based on angular diversity |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
US20140204455A1 (en) | 2011-08-24 | 2014-07-24 | Milan Momcilo Popovich | Wearable data display |
US20150010265A1 (en) | 2012-01-06 | 2015-01-08 | Milan, Momcilo POPOVICH | Contact image sensor using switchable bragg gratings |
KR102095330B1 (en) * | 2012-04-05 | 2020-03-31 | 매직 립, 인코포레이티드 | Wide-field of view (fov) imaging devices with active foveation capability |
CN106125308B (en) | 2012-04-25 | 2019-10-25 | 罗克韦尔柯林斯公司 | Device and method for displaying images |
US9456744B2 (en) | 2012-05-11 | 2016-10-04 | Digilens, Inc. | Apparatus for eye tracking |
US9933684B2 (en) * | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
WO2014113455A1 (en) | 2013-01-15 | 2014-07-24 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer readable media for generating an augmented scene display |
WO2014188149A1 (en) | 2013-05-20 | 2014-11-27 | Milan Momcilo Popovich | Holographic waveguide eye tracker |
US10228561B2 (en) * | 2013-06-25 | 2019-03-12 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism and gaze-detection light |
US9625723B2 (en) * | 2013-06-25 | 2017-04-18 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism |
WO2015015138A1 (en) | 2013-07-31 | 2015-02-05 | Milan Momcilo Popovich | Method and apparatus for contact image sensing |
WO2015095737A2 (en) | 2013-12-19 | 2015-06-25 | The University Of North Carolina At Chapel Hill | Optical see-through near-eye display using point light source backlight |
US10191279B2 (en) | 2014-03-17 | 2019-01-29 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9829707B2 (en) | 2014-08-12 | 2017-11-28 | Osterhout Group, Inc. | Measuring content brightness in head worn computing |
US9810906B2 (en) | 2014-06-17 | 2017-11-07 | Osterhout Group, Inc. | External user interface for head worn computing |
US11103122B2 (en) | 2014-07-15 | 2021-08-31 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9448409B2 (en) | 2014-11-26 | 2016-09-20 | Osterhout Group, Inc. | See-through computer display systems |
US9529195B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9575321B2 (en) | 2014-06-09 | 2017-02-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9746686B2 (en) | 2014-05-19 | 2017-08-29 | Osterhout Group, Inc. | Content position calibration in head worn computing |
US9299194B2 (en) | 2014-02-14 | 2016-03-29 | Osterhout Group, Inc. | Secure sharing in head worn computing |
US10684687B2 (en) | 2014-12-03 | 2020-06-16 | Mentor Acquisition One, Llc | See-through computer display systems |
US10649220B2 (en) | 2014-06-09 | 2020-05-12 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
US9841599B2 (en) | 2014-06-05 | 2017-12-12 | Osterhout Group, Inc. | Optical configurations for head-worn see-through displays |
US9594246B2 (en) | 2014-01-21 | 2017-03-14 | Osterhout Group, Inc. | See-through computer display systems |
US10254856B2 (en) | 2014-01-17 | 2019-04-09 | Osterhout Group, Inc. | External user interface for head worn computing |
US9366868B2 (en) | 2014-09-26 | 2016-06-14 | Osterhout Group, Inc. | See-through computer display systems |
US9939934B2 (en) | 2014-01-17 | 2018-04-10 | Osterhout Group, Inc. | External user interface for head worn computing |
US20150277118A1 (en) | 2014-03-28 | 2015-10-01 | Osterhout Group, Inc. | Sensor dependent content position in head worn computing |
US20150228119A1 (en) | 2014-02-11 | 2015-08-13 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US11227294B2 (en) | 2014-04-03 | 2022-01-18 | Mentor Acquisition One, Llc | Sight information collection in head worn computing |
US9671613B2 (en) | 2014-09-26 | 2017-06-06 | Osterhout Group, Inc. | See-through computer display systems |
US20160019715A1 (en) | 2014-07-15 | 2016-01-21 | Osterhout Group, Inc. | Content presentation in head worn computing |
US9310610B2 (en) | 2014-01-21 | 2016-04-12 | Osterhout Group, Inc. | See-through computer display systems |
US11892644B2 (en) | 2014-01-21 | 2024-02-06 | Mentor Acquisition One, Llc | See-through computer display systems |
US12105281B2 (en) | 2014-01-21 | 2024-10-01 | Mentor Acquisition One, Llc | See-through computer display systems |
US9811152B2 (en) | 2014-01-21 | 2017-11-07 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US20150206173A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9753288B2 (en) | 2014-01-21 | 2017-09-05 | Osterhout Group, Inc. | See-through computer display systems |
US12093453B2 (en) | 2014-01-21 | 2024-09-17 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US9766463B2 (en) | 2014-01-21 | 2017-09-19 | Osterhout Group, Inc. | See-through computer display systems |
US9529199B2 (en) | 2014-01-21 | 2016-12-27 | Osterhout Group, Inc. | See-through computer display systems |
US9615742B2 (en) | 2014-01-21 | 2017-04-11 | Osterhout Group, Inc. | Eye imaging in head worn computing |
US9651784B2 (en) | 2014-01-21 | 2017-05-16 | Osterhout Group, Inc. | See-through computer display systems |
US11737666B2 (en) | 2014-01-21 | 2023-08-29 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
US11669163B2 (en) | 2014-01-21 | 2023-06-06 | Mentor Acquisition One, Llc | Eye glint imaging in see-through computer display systems |
US20150205135A1 (en) | 2014-01-21 | 2015-07-23 | Osterhout Group, Inc. | See-through computer display systems |
US11487110B2 (en) | 2014-01-21 | 2022-11-01 | Mentor Acquisition One, Llc | Eye imaging in head worn computing |
US9494800B2 (en) | 2014-01-21 | 2016-11-15 | Osterhout Group, Inc. | See-through computer display systems |
US9846308B2 (en) | 2014-01-24 | 2017-12-19 | Osterhout Group, Inc. | Haptic systems for head-worn computers |
US9852545B2 (en) | 2014-02-11 | 2017-12-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US9401540B2 (en) | 2014-02-11 | 2016-07-26 | Osterhout Group, Inc. | Spatial location presentation in head worn computing |
US12112089B2 (en) | 2014-02-11 | 2024-10-08 | Mentor Acquisition One, Llc | Spatial location presentation in head worn computing |
CN103901615B (en) * | 2014-03-14 | 2016-05-25 | 北京理工大学 | Little recessed imaging optical system |
US10430985B2 (en) | 2014-03-14 | 2019-10-01 | Magic Leap, Inc. | Augmented reality systems and methods utilizing reflections |
US11138793B2 (en) | 2014-03-14 | 2021-10-05 | Magic Leap, Inc. | Multi-depth plane display system with reduced switching between depth planes |
US20160187651A1 (en) | 2014-03-28 | 2016-06-30 | Osterhout Group, Inc. | Safety for a vehicle operator with an hmd |
US10529359B2 (en) | 2014-04-17 | 2020-01-07 | Microsoft Technology Licensing, Llc | Conversation detection |
US9922667B2 (en) | 2014-04-17 | 2018-03-20 | Microsoft Technology Licensing, Llc | Conversation, presence and context detection for hologram suppression |
US20150309534A1 (en) | 2014-04-25 | 2015-10-29 | Osterhout Group, Inc. | Ear horn assembly for headworn computer |
US10853589B2 (en) | 2014-04-25 | 2020-12-01 | Mentor Acquisition One, Llc | Language translation with head-worn computing |
US9672210B2 (en) | 2014-04-25 | 2017-06-06 | Osterhout Group, Inc. | Language translation with head-worn computing |
US9423842B2 (en) | 2014-09-18 | 2016-08-23 | Osterhout Group, Inc. | Thermal management for head-worn computer |
US9651787B2 (en) | 2014-04-25 | 2017-05-16 | Osterhout Group, Inc. | Speaker assembly for headworn computer |
US20160137312A1 (en) | 2014-05-06 | 2016-05-19 | Osterhout Group, Inc. | Unmanned aerial vehicle launch system |
CN104102018B (en) * | 2014-05-08 | 2016-10-05 | 北京理工大学 | Double small recessed local high resolution imaging system |
CN104007559B (en) * | 2014-05-08 | 2017-05-17 | 北京理工大学 | Foveated imaging system with partial super-resolution scanning function |
US10663740B2 (en) | 2014-06-09 | 2020-05-26 | Mentor Acquisition One, Llc | Content presentation in head worn computing |
WO2016020632A1 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Method for holographic mastering and replication |
WO2016042283A1 (en) | 2014-09-19 | 2016-03-24 | Milan Momcilo Popovich | Method and apparatus for generating input images for holographic waveguide displays |
EP3198192A1 (en) | 2014-09-26 | 2017-08-02 | Milan Momcilo Popovich | Holographic waveguide opticaltracker |
WO2016054079A1 (en) | 2014-09-29 | 2016-04-07 | Zyomed Corp. | Systems and methods for blood glucose and other analyte detection and measurement using collision computing |
JP6863896B2 (en) | 2014-09-29 | 2021-04-21 | マジック リープ,インコーポレイティド | Structure and method to output light of different wavelengths from the waveguide |
US9684172B2 (en) | 2014-12-03 | 2017-06-20 | Osterhout Group, Inc. | Head worn computer display systems |
USD743963S1 (en) | 2014-12-22 | 2015-11-24 | Osterhout Group, Inc. | Air mouse |
USD751552S1 (en) | 2014-12-31 | 2016-03-15 | Osterhout Group, Inc. | Computer glasses |
USD753114S1 (en) | 2015-01-05 | 2016-04-05 | Osterhout Group, Inc. | Air mouse |
KR102329295B1 (en) | 2015-01-09 | 2021-11-19 | 삼성디스플레이 주식회사 | Head mounted display device |
WO2016113534A1 (en) | 2015-01-12 | 2016-07-21 | Milan Momcilo Popovich | Environmentally isolated waveguide display |
EP3245551B1 (en) | 2015-01-12 | 2019-09-18 | DigiLens Inc. | Waveguide light field displays |
US10105049B2 (en) | 2015-01-16 | 2018-10-23 | Massachusetts Institute Of Technology | Methods and apparatus for anterior segment ocular imaging |
US10330777B2 (en) | 2015-01-20 | 2019-06-25 | Digilens Inc. | Holographic waveguide lidar |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
CN105988763B (en) * | 2015-02-15 | 2019-10-29 | 联想(北京)有限公司 | A kind of information processing method and device |
US10878775B2 (en) | 2015-02-17 | 2020-12-29 | Mentor Acquisition One, Llc | See-through computer display systems |
US20160239985A1 (en) | 2015-02-17 | 2016-08-18 | Osterhout Group, Inc. | See-through computer display systems |
WO2016146963A1 (en) | 2015-03-16 | 2016-09-22 | Popovich, Milan, Momcilo | Waveguide device incorporating a light pipe |
NZ773811A (en) | 2015-03-16 | 2022-07-01 | Magic Leap Inc | Methods and systems for diagnosing and treating presbyopia |
GB2536650A (en) | 2015-03-24 | 2016-09-28 | Augmedics Ltd | Method and system for combining video-based and optic-based augmented reality in a near eye display |
JP2016180955A (en) * | 2015-03-25 | 2016-10-13 | 株式会社ソニー・インタラクティブエンタテインメント | Head-mounted display, display control method, and position control method |
CN106154640B (en) * | 2015-03-31 | 2020-02-21 | 联想(北京)有限公司 | Display module and electronic device |
US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
US10274728B2 (en) | 2015-05-18 | 2019-04-30 | Facebook Technologies, Llc | Stacked display panels for image enhancement |
EP3792682B1 (en) | 2015-06-15 | 2023-08-09 | Magic Leap, Inc. | Display system with optical elements for in-coupling multiplexed light streams |
US9977493B2 (en) | 2015-06-17 | 2018-05-22 | Microsoft Technology Licensing, Llc | Hybrid display system |
US10222619B2 (en) | 2015-07-12 | 2019-03-05 | Steven Sounyoung Yu | Head-worn image display apparatus for stereoscopic microsurgery |
US10139966B2 (en) | 2015-07-22 | 2018-11-27 | Osterhout Group, Inc. | External user interface for head worn computing |
EP3338251B1 (en) | 2015-08-18 | 2023-01-25 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
IL283014B (en) | 2015-08-21 | 2022-07-01 | Magic Leap Inc | Assessment of eyelid shape |
CN108135469B (en) | 2015-08-21 | 2021-03-09 | 奇跃公司 | Eyelid shape estimation using eye pose measurements |
KR20170060122A (en) | 2015-09-03 | 2017-05-31 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Camera |
KR102351060B1 (en) | 2015-09-16 | 2022-01-12 | 매직 립, 인코포레이티드 | Mixing Head Pose of Audio Files |
WO2017053874A1 (en) * | 2015-09-23 | 2017-03-30 | Datalogic ADC, Inc. | Imaging systems and methods for tracking objects |
CN108351527B (en) | 2015-09-23 | 2024-06-18 | 奇跃公司 | Eye imaging using off-axis imagers |
CN108474945B (en) | 2015-10-05 | 2021-10-01 | 迪吉伦斯公司 | Waveguide display |
WO2017066296A1 (en) | 2015-10-16 | 2017-04-20 | Magic Leap, Inc. | Eye pose identification using eye features |
IL258705B (en) | 2015-10-20 | 2022-07-01 | Magic Leap Inc | Selection of virtual objects in three-dimensional space |
CN108474737B (en) | 2015-11-04 | 2021-04-06 | 奇跃公司 | Light field display metrics |
US11231544B2 (en) | 2015-11-06 | 2022-01-25 | Magic Leap, Inc. | Metasurfaces for redirecting light and methods for fabricating |
CN105404005A (en) * | 2015-12-10 | 2016-03-16 | 合肥虔视光电科技有限公司 | Head-mounted display for augmented reality |
EP4273616A3 (en) | 2016-01-07 | 2024-01-10 | Magic Leap, Inc. | Virtual and augmented reality systems and methods having unequal numbers of component color images distributed across depth planes |
CN118605029A (en) | 2016-01-19 | 2024-09-06 | 奇跃公司 | Augmented reality system and method using images |
WO2017127366A1 (en) | 2016-01-19 | 2017-07-27 | Magic Leap, Inc. | Eye image collection, selection, and combination |
WO2017127494A1 (en) | 2016-01-22 | 2017-07-27 | Corning Incorporated | Wide field personal display |
CN114063311B (en) | 2016-01-29 | 2024-11-26 | 奇跃公司 | Display of 3D images |
US10459230B2 (en) | 2016-02-02 | 2019-10-29 | Disney Enterprises, Inc. | Compact augmented reality / virtual reality display |
EP3398007B1 (en) | 2016-02-04 | 2024-09-11 | DigiLens, Inc. | Waveguide optical tracker |
IL302656B2 (en) | 2016-02-11 | 2024-10-01 | Magic Leap Inc | Multi-depth planar display system with limited change between depth planes |
US10850116B2 (en) | 2016-12-30 | 2020-12-01 | Mentor Acquisition One, Llc | Head-worn therapy device |
US10591728B2 (en) | 2016-03-02 | 2020-03-17 | Mentor Acquisition One, Llc | Optical systems for head-worn computers |
US10302957B2 (en) | 2016-02-24 | 2019-05-28 | Magic Leap, Inc. | Polarizing beam splitter with low light leakage |
NZ745229A (en) | 2016-02-24 | 2019-12-20 | Magic Leap Inc | Low profile interconnect for light emitter |
JP6843876B2 (en) | 2016-02-26 | 2021-03-17 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Display system with multiple optical pipes for multiple light emitters |
JP7007283B2 (en) | 2016-02-26 | 2022-01-24 | マジック リープ, インコーポレイテッド | Light output system with reflectors and lenses for very spatially uniform light output |
US10667981B2 (en) | 2016-02-29 | 2020-06-02 | Mentor Acquisition One, Llc | Reading assistance system for visually impaired |
CA3014765A1 (en) | 2016-02-29 | 2017-09-08 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
CN109073898A (en) | 2016-03-01 | 2018-12-21 | 奇跃公司 | For by the reflex switch equipment of the light input waveguide of different wave length |
US9880441B1 (en) | 2016-09-08 | 2018-01-30 | Osterhout Group, Inc. | Electrochromic systems for head-worn computer systems |
US9826299B1 (en) | 2016-08-22 | 2017-11-21 | Osterhout Group, Inc. | Speaker systems for head-worn computer systems |
CN114690881A (en) | 2016-03-04 | 2022-07-01 | 奇跃公司 | Display system for reducing power consumption and method for reducing power consumption of display system |
CA3016189A1 (en) | 2016-03-07 | 2017-09-14 | Magic Leap, Inc. | Blue light adjustment for biometric security |
KR102530558B1 (en) * | 2016-03-16 | 2023-05-09 | 삼성전자주식회사 | See-through type display apparatus |
EP3979106A1 (en) | 2016-03-22 | 2022-04-06 | Magic Leap, Inc. | Head mounted display system configured to exchange biometric information |
CN105744132B (en) * | 2016-03-23 | 2020-01-03 | 捷开通讯(深圳)有限公司 | Optical lens accessory for panoramic image shooting |
JP6895451B2 (en) | 2016-03-24 | 2021-06-30 | ディジレンズ インコーポレイテッド | Methods and Devices for Providing Polarized Selective Holography Waveguide Devices |
NZ746514A (en) | 2016-03-25 | 2020-03-27 | Magic Leap Inc | Virtual and augmented reality systems and methods |
US9554738B1 (en) | 2016-03-30 | 2017-01-31 | Zyomed Corp. | Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing |
WO2017172982A1 (en) | 2016-03-31 | 2017-10-05 | Magic Leap, Inc. | Interactions with 3d virtual objects using poses and multiple-dof controllers |
US10539763B2 (en) * | 2016-03-31 | 2020-01-21 | Sony Corporation | Optical system, electronic device, camera, method and computer program |
US10824253B2 (en) | 2016-05-09 | 2020-11-03 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US10466491B2 (en) | 2016-06-01 | 2019-11-05 | Mentor Acquisition One, Llc | Modular systems for head-worn computers |
US10684478B2 (en) | 2016-05-09 | 2020-06-16 | Mentor Acquisition One, Llc | User interface systems for head-worn computers |
US9910284B1 (en) | 2016-09-08 | 2018-03-06 | Osterhout Group, Inc. | Optical systems for head-worn computers |
AU2017246901B2 (en) | 2016-04-08 | 2022-06-02 | Magic Leap, Inc. | Augmented reality systems and methods with variable focus lens elements |
CN109154717B (en) | 2016-04-11 | 2022-05-13 | 迪吉伦斯公司 | Holographic Waveguide Devices for Structured Light Projection |
US10001648B2 (en) | 2016-04-14 | 2018-06-19 | Disney Enterprises, Inc. | Occlusion-capable augmented reality display using cloaking optics |
CN109313509B (en) | 2016-04-21 | 2022-01-07 | 奇跃公司 | Visual halo around the field of vision |
US9726896B2 (en) | 2016-04-21 | 2017-08-08 | Maximilian Ralph Peter von und zu Liechtenstein | Virtual monitor display technique for augmented reality environments |
CN114699751A (en) | 2016-04-26 | 2022-07-05 | 奇跃公司 | Electromagnetic tracking using augmented reality systems |
US10527851B2 (en) | 2016-05-06 | 2020-01-07 | Magic Leap, Inc. | Metasurfaces with asymmetric gratings for redirecting light and methods for fabricating |
CN115177208A (en) | 2016-05-09 | 2022-10-14 | 奇跃公司 | Augmented reality system and method for user health analysis |
US9922464B2 (en) * | 2016-05-10 | 2018-03-20 | Disney Enterprises, Inc. | Occluded virtual image display |
CA3023539A1 (en) | 2016-05-12 | 2017-11-16 | Magic Leap, Inc. | Distributed light manipulation over imaging waveguide |
CN115185366A (en) | 2016-05-20 | 2022-10-14 | 奇跃公司 | Context awareness for user interface menus |
US10430988B2 (en) | 2016-06-03 | 2019-10-01 | Facebook Technologies, Llc | Facial animation using facial sensors within a head-mounted display |
US9959678B2 (en) * | 2016-06-03 | 2018-05-01 | Oculus Vr, Llc | Face and eye tracking using facial sensors within a head-mounted display |
CA3025936A1 (en) | 2016-06-03 | 2017-12-07 | Magic Leap, Inc. | Augmented reality identity verification |
CA3026872A1 (en) | 2016-06-10 | 2017-12-14 | Magic Leap, Inc. | Integrating point source for texture projecting bulb |
EP3472828B1 (en) | 2016-06-20 | 2022-08-10 | Magic Leap, Inc. | Augmented reality display system for evaluation and modification of neurological conditions, including visual processing and perception conditions |
AU2017291131B2 (en) | 2016-06-30 | 2022-03-31 | Magic Leap, Inc. | Estimating pose in 3D space |
US9996984B2 (en) | 2016-07-05 | 2018-06-12 | Disney Enterprises, Inc. | Focus control for virtual objects in augmented reality (AR) and virtual reality (VR) displays |
EP3484343B1 (en) | 2016-07-14 | 2024-01-10 | Magic Leap, Inc. | Iris boundary estimation using cornea curvature |
EP3485425B1 (en) | 2016-07-14 | 2023-08-23 | Magic Leap, Inc. | Deep neural network for iris identification |
CN117770757A (en) | 2016-07-25 | 2024-03-29 | 奇跃公司 | Light field processor system |
JP7182538B2 (en) | 2016-07-25 | 2022-12-02 | マジック リープ, インコーポレイテッド | Imaging Modification, Display, and Visualization Using Augmented Reality and Virtual Reality Eyewear |
WO2018022891A1 (en) | 2016-07-29 | 2018-02-01 | Magic Leap, Inc. | Secure exchange of cryptographically signed records |
WO2018031621A1 (en) | 2016-08-11 | 2018-02-15 | Magic Leap, Inc. | Automatic placement of a virtual object in a three-dimensional space |
WO2018031745A1 (en) | 2016-08-12 | 2018-02-15 | Magic Leap, Inc. | Word flow annotation |
IL247360B (en) * | 2016-08-18 | 2021-09-30 | Veeride Ltd | Augmented reality apparatus and method |
US10108013B2 (en) | 2016-08-22 | 2018-10-23 | Microsoft Technology Licensing, Llc | Indirect-view augmented reality display system |
JP7035019B2 (en) | 2016-08-22 | 2022-03-14 | マジック リープ, インコーポレイテッド | Nano lattice method and equipment |
KR102439771B1 (en) | 2016-08-22 | 2022-09-02 | 매직 립, 인코포레이티드 | Augmented reality display device with deep learning sensors |
US10690936B2 (en) | 2016-08-29 | 2020-06-23 | Mentor Acquisition One, Llc | Adjustable nose bridge assembly for headworn computer |
EP3979050A1 (en) | 2016-09-13 | 2022-04-06 | Magic Leap, Inc. | Sensory eyewear |
CN109863435B (en) | 2016-09-21 | 2021-03-09 | 奇跃公司 | Systems and methods for optical systems with exit pupil expanders |
US10330935B2 (en) | 2016-09-22 | 2019-06-25 | Apple Inc. | Predictive, foveated virtual reality system |
EP4455840A3 (en) | 2016-09-22 | 2025-01-01 | Magic Leap, Inc. | Augmented reality spectroscopy |
KR102357876B1 (en) | 2016-09-26 | 2022-01-28 | 매직 립, 인코포레이티드 | Calibration of Magnetic and Optical Sensors in Virtual Reality or Augmented Reality Display Systems |
CN110023814B (en) | 2016-09-28 | 2022-01-11 | 奇跃公司 | Face model capture by wearable device |
RU2016138608A (en) | 2016-09-29 | 2018-03-30 | Мэджик Лип, Инк. | NEURAL NETWORK FOR SEGMENTING THE EYE IMAGE AND ASSESSING THE QUALITY OF THE IMAGE |
WO2018064502A1 (en) * | 2016-09-30 | 2018-04-05 | Visbit Inc. | View-optimized light field image and video streaming |
CN110073359B (en) | 2016-10-04 | 2023-04-04 | 奇跃公司 | Efficient data placement for convolutional neural networks |
KR102269065B1 (en) | 2016-10-05 | 2021-06-24 | 매직 립, 인코포레이티드 | Periocular Testing for Mixed Reality Correction |
USD840395S1 (en) | 2016-10-17 | 2019-02-12 | Osterhout Group, Inc. | Head-worn computer |
CA3039990A1 (en) | 2016-10-21 | 2018-04-26 | Magic Leap, Inc. | System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views |
JP6913164B2 (en) | 2016-11-11 | 2021-08-04 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Full facial image peri-eye and audio composition |
AU2017361061B2 (en) | 2016-11-15 | 2022-02-03 | Magic Leap, Inc. | Deep learning system for cuboid detection |
US10860070B2 (en) | 2016-11-16 | 2020-12-08 | Magic Leap, Inc. | Thermal management systems for wearable components |
US11067860B2 (en) | 2016-11-18 | 2021-07-20 | Magic Leap, Inc. | Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same |
EP3542216A4 (en) | 2016-11-18 | 2020-10-07 | Magic Leap, Inc. | Multilayer liquid crystal diffractive gratings for redirecting light of wide incident angle ranges |
WO2018094093A1 (en) | 2016-11-18 | 2018-05-24 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
WO2018094079A1 (en) | 2016-11-18 | 2018-05-24 | Magic Leap, Inc. | Spatially variable liquid crystal diffraction gratings |
EP3548939A4 (en) | 2016-12-02 | 2020-11-25 | DigiLens Inc. | WAVE GUIDE DEVICE WITH UNIFORM OUTPUT LIGHTING |
JP7112399B2 (en) | 2016-12-05 | 2022-08-03 | マジック リープ, インコーポレイテッド | Virtual User Input Control in Mixed Reality Environment |
US10531220B2 (en) | 2016-12-05 | 2020-01-07 | Magic Leap, Inc. | Distributed audio capturing techniques for virtual reality (VR), augmented reality (AR), and mixed reality (MR) systems |
KR102656425B1 (en) * | 2016-12-07 | 2024-04-12 | 삼성전자주식회사 | Electronic apparatus and method for displaying an image |
EP4002000B1 (en) | 2016-12-08 | 2025-02-19 | Magic Leap, Inc. | Diffractive devices based on cholesteric liquid crystal |
US10664049B2 (en) | 2016-12-09 | 2020-05-26 | Nvidia Corporation | Systems and methods for gaze tracking |
JP7071363B2 (en) | 2016-12-13 | 2022-05-18 | マジック リープ, インコーポレイテッド | Augmented reality and virtual reality eyewear, systems, and methods for delivering polarization and determining glucose levels. |
CN116778120A (en) | 2016-12-13 | 2023-09-19 | 奇跃公司 | Augmented reality display system |
IL301448B2 (en) | 2016-12-14 | 2024-08-01 | Magic Leap Inc | Patterning of liquid crystals using soft-imprint replication of surface alignment patterns |
US10088686B2 (en) | 2016-12-16 | 2018-10-02 | Microsoft Technology Licensing, Llc | MEMS laser scanner having enlarged FOV |
EP4535345A3 (en) | 2016-12-22 | 2025-05-21 | Magic Leap, Inc. | Systems and methods for manipulating light from ambient light sources |
US10371896B2 (en) * | 2016-12-22 | 2019-08-06 | Magic Leap, Inc. | Color separation in planar waveguides using dichroic filters |
US10746999B2 (en) | 2016-12-28 | 2020-08-18 | Magic Leap, Inc. | Dual depth exit pupil expander |
CN117251053A (en) | 2016-12-29 | 2023-12-19 | 奇跃公司 | Automatic control of wearable display device based on external conditions |
CN106773054A (en) * | 2016-12-29 | 2017-05-31 | 北京乐动卓越科技有限公司 | A kind of device and method for realizing that augmented reality is interactive |
US10825010B2 (en) * | 2016-12-30 | 2020-11-03 | Datalogic Usa, Inc. | Self-checkout with three dimensional scanning |
USD864959S1 (en) | 2017-01-04 | 2019-10-29 | Mentor Acquisition One, Llc | Computer glasses |
KR102779144B1 (en) | 2017-01-05 | 2025-03-10 | 매직 립, 인코포레이티드 | Patterning of high refractive index glasses by plasma etching |
WO2018129398A1 (en) | 2017-01-05 | 2018-07-12 | Digilens, Inc. | Wearable heads up displays |
CN110431636A (en) | 2017-01-11 | 2019-11-08 | 奇跃公司 | Medical assistant |
EP4250242A3 (en) | 2017-01-23 | 2023-11-29 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
CA3051414A1 (en) | 2017-01-27 | 2018-08-02 | Magic Leap, Inc. | Diffraction gratings formed by metasurfaces having differently oriented nanobeams |
JP7155129B2 (en) | 2017-01-27 | 2022-10-18 | マジック リープ, インコーポレイテッド | Antireflection coating for metasurfaces |
US10298840B2 (en) | 2017-01-31 | 2019-05-21 | Microsoft Technology Licensing, Llc | Foveated camera for video augmented reality and head mounted display |
US10504397B2 (en) | 2017-01-31 | 2019-12-10 | Microsoft Technology Licensing, Llc | Curved narrowband illuminant display for head mounted display |
US11187909B2 (en) | 2017-01-31 | 2021-11-30 | Microsoft Technology Licensing, Llc | Text rendering by microshifting the display in a head mounted display |
US10354140B2 (en) | 2017-01-31 | 2019-07-16 | Microsoft Technology Licensing, Llc | Video noise reduction for video augmented reality system |
US9983412B1 (en) | 2017-02-02 | 2018-05-29 | The University Of North Carolina At Chapel Hill | Wide field of view augmented reality see through head mountable display with distance accommodation |
US11287292B2 (en) | 2017-02-13 | 2022-03-29 | Lockheed Martin Corporation | Sensor system |
US11347054B2 (en) | 2017-02-16 | 2022-05-31 | Magic Leap, Inc. | Systems and methods for augmented reality |
AU2018224118A1 (en) | 2017-02-23 | 2019-08-22 | Magic Leap, Inc. | Variable-focus virtual image devices based on polarization conversion |
KR102578084B1 (en) | 2017-03-14 | 2023-09-12 | 매직 립, 인코포레이티드 | Waveguides with light absorbing films and processes for forming the same |
CN117893680B (en) | 2017-03-17 | 2025-04-29 | 奇跃公司 | Room layout estimation methods and techniques |
WO2018175653A1 (en) | 2017-03-21 | 2018-09-27 | Magic Leap, Inc. | Display system with spatial light modulator illumination for divided pupils |
JP7198766B2 (en) | 2017-03-21 | 2023-01-04 | マジック リープ, インコーポレイテッド | Depth Sensing Techniques for Virtual, Augmented, and Mixed Reality Systems |
EP3602173A4 (en) | 2017-03-21 | 2021-01-13 | Magic Leap, Inc. | Stacked waveguides having different diffraction gratings for combined field of view |
WO2018175343A1 (en) | 2017-03-21 | 2018-09-27 | Magic Leap, Inc. | Eye-imaging apparatus using diffractive optical elements |
CA3056899C (en) | 2017-03-21 | 2023-09-19 | Magic Leap, Inc. | Low-profile beam splitter |
US11187900B2 (en) | 2017-03-21 | 2021-11-30 | Magic Leap, Inc. | Methods, devices, and systems for illuminating spatial light modulators |
CN114578562A (en) | 2017-03-22 | 2022-06-03 | 奇跃公司 | Depth-based foveated rendering for display systems |
US10891488B2 (en) | 2017-03-30 | 2021-01-12 | Hrl Laboratories, Llc | System and method for neuromorphic visual activity classification based on foveated detection and contextual filtering |
US10417975B2 (en) | 2017-04-03 | 2019-09-17 | Microsoft Technology Licensing, Llc | Wide field of view scanning display |
US10921593B2 (en) | 2017-04-06 | 2021-02-16 | Disney Enterprises, Inc. | Compact perspectively correct occlusion capable augmented reality displays |
US10499021B2 (en) | 2017-04-11 | 2019-12-03 | Microsoft Technology Licensing, Llc | Foveated MEMS scanning display |
AU2018256202A1 (en) | 2017-04-18 | 2019-11-07 | Magic Leap, Inc. | Waveguides having reflective layers formed by reflective flowable materials |
WO2018195099A1 (en) | 2017-04-19 | 2018-10-25 | Magic Leap, Inc. | Multimodal task execution and text editing for a wearable system |
EP4414951A3 (en) | 2017-04-27 | 2024-11-13 | Magic Leap, Inc. | Light-emitting user input device |
EP3625658B1 (en) | 2017-05-19 | 2024-10-09 | Magic Leap, Inc. | Keyboards for virtual, augmented, and mixed reality display systems |
KR20240064048A (en) | 2017-05-22 | 2024-05-10 | 매직 립, 인코포레이티드 | Pairing with companion device |
JP7319927B2 (en) | 2017-05-30 | 2023-08-02 | マジック リープ, インコーポレイテッド | Power supply assembly with fan assembly for electronic devices |
CA3065131A1 (en) | 2017-05-31 | 2018-12-06 | Magic Leap, Inc. | Eye tracking calibration techniques |
CN111052720B (en) | 2017-06-12 | 2024-09-20 | 奇跃公司 | Augmented reality display with multi-element adaptive lens to alter depth plane |
US10810773B2 (en) * | 2017-06-14 | 2020-10-20 | Dell Products, L.P. | Headset display control based upon a user's pupil state |
CN107065196B (en) | 2017-06-16 | 2019-03-15 | 京东方科技集团股份有限公司 | A kind of augmented reality display device and augmented reality display methods |
KR102314789B1 (en) | 2017-06-29 | 2021-10-20 | 에스케이텔레콤 주식회사 | Apparatus for displaying augmented reality contents |
US10338400B2 (en) | 2017-07-03 | 2019-07-02 | Holovisions LLC | Augmented reality eyewear with VAPE or wear technology |
US10859834B2 (en) | 2017-07-03 | 2020-12-08 | Holovisions | Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear |
US10908680B1 (en) | 2017-07-12 | 2021-02-02 | Magic Leap, Inc. | Pose estimation using electromagnetic tracking |
CN107167921B (en) * | 2017-07-18 | 2020-01-21 | 京东方科技集团股份有限公司 | Display device |
US10422995B2 (en) | 2017-07-24 | 2019-09-24 | Mentor Acquisition One, Llc | See-through computer display systems with stray light management |
US10578869B2 (en) | 2017-07-24 | 2020-03-03 | Mentor Acquisition One, Llc | See-through computer display systems with adjustable zoom cameras |
US11409105B2 (en) | 2017-07-24 | 2022-08-09 | Mentor Acquisition One, Llc | See-through computer display systems |
AU2018308418A1 (en) | 2017-07-26 | 2020-01-16 | Magic Leap, Inc. | Training a neural network with representations of user interface devices |
CA3068612A1 (en) | 2017-07-28 | 2019-01-31 | Magic Leap, Inc. | Fan assembly for displaying an image |
US10969584B2 (en) | 2017-08-04 | 2021-04-06 | Mentor Acquisition One, Llc | Image expansion optic for head-worn computer |
US10976551B2 (en) | 2017-08-30 | 2021-04-13 | Corning Incorporated | Wide field personal display device |
US10521661B2 (en) | 2017-09-01 | 2019-12-31 | Magic Leap, Inc. | Detailed eye shape model for robust biometric applications |
CN111033524A (en) | 2017-09-20 | 2020-04-17 | 奇跃公司 | Personalized neural network for eye tracking |
CA3075096A1 (en) | 2017-09-21 | 2019-03-28 | Magic Leap, Inc. | Augmented reality display with waveguide configured to capture images of eye and/or environment |
CN119535794A (en) | 2017-09-27 | 2025-02-28 | 奇跃公司 | Near-eye 3D display with separated phase and amplitude modulators |
US10867368B1 (en) | 2017-09-29 | 2020-12-15 | Apple Inc. | Foveated image capture for power efficient video see-through |
WO2019075231A1 (en) | 2017-10-11 | 2019-04-18 | Magic Leap, Inc. | Augmented reality display comprising eyepiece having a transparent emissive display |
CN111386495B (en) | 2017-10-16 | 2022-12-09 | 迪吉伦斯公司 | System and method for multiplying image resolution of a pixelated display |
JP7181928B2 (en) | 2017-10-26 | 2022-12-01 | マジック リープ, インコーポレイテッド | A Gradient Normalization System and Method for Adaptive Loss Balancing in Deep Multitasking Networks |
IL308526A (en) | 2017-10-26 | 2024-01-01 | Magic Leap Inc | Broadband adjustable lens assembly for augmented reality display |
CN111480110A (en) | 2017-10-26 | 2020-07-31 | 奇跃公司 | Augmented reality display with liquid crystal variable focusing elements and roll-to-roll method and apparatus for forming such a display |
CN111480181B (en) | 2017-10-27 | 2024-12-24 | 奇跃公司 | Virtual markings for augmented reality systems |
US11048978B2 (en) | 2017-11-14 | 2021-06-29 | Magic Leap, Inc. | Meta-learning for multi-task learning for neural networks |
EP3724712A4 (en) | 2017-12-11 | 2021-08-04 | Magic Leap, Inc. | WAVE GUIDE LIGHTING |
KR20230158638A (en) | 2017-12-14 | 2023-11-20 | 매직 립, 인코포레이티드 | Contextual-based rendering of virtual avatars |
US10943120B2 (en) | 2017-12-15 | 2021-03-09 | Magic Leap, Inc. | Enhanced pose determination for display device |
JP7407111B2 (en) | 2017-12-15 | 2023-12-28 | マジック リープ, インコーポレイテッド | Eyepiece for augmented reality display system |
CN108267856A (en) * | 2017-12-21 | 2018-07-10 | 成都理想境界科技有限公司 | A kind of augmented reality wears display equipment |
CN108072978A (en) * | 2017-12-21 | 2018-05-25 | 成都理想境界科技有限公司 | A kind of augmented reality wears display device |
TWI647485B (en) * | 2018-01-03 | 2019-01-11 | 國立交通大學 | Head-mounted virtual object imaging device |
US11656466B2 (en) * | 2018-01-03 | 2023-05-23 | Sajjad A. Khan | Spatio-temporal multiplexed single panel based mutual occlusion capable head mounted display system and method |
IL300959A (en) | 2018-01-04 | 2023-04-01 | Magic Leap Inc | Optical elements based on polymeric structures incorporating inorganic materials |
WO2019135837A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Systems and methods for manufacturing waveguide cells |
US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
CN111566571B (en) | 2018-01-08 | 2022-05-13 | 迪吉伦斯公司 | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
IL275824B2 (en) | 2018-01-17 | 2024-08-01 | Magic Leap Inc | Display systems and methods for determining registration between a display and a user's eyes |
JP7390297B2 (en) | 2018-01-17 | 2023-12-01 | マジック リープ, インコーポレイテッド | Eye rotation center determination, depth plane selection, and rendering camera positioning within the display system |
CN111869205B (en) | 2018-01-19 | 2022-06-10 | Pcms控股公司 | Multiple focal planes with varying positions |
CN111566661B (en) * | 2018-01-30 | 2023-11-17 | 赫尔实验室有限公司 | Systems, methods, computer-readable media for visual activity classification |
US10540941B2 (en) | 2018-01-30 | 2020-01-21 | Magic Leap, Inc. | Eclipse cursor for mixed reality displays |
US11567627B2 (en) | 2018-01-30 | 2023-01-31 | Magic Leap, Inc. | Eclipse cursor for virtual content in mixed reality displays |
US20190250407A1 (en) * | 2018-02-15 | 2019-08-15 | Microsoft Technology Licensing, Llc | See-through relay for a virtual reality and a mixed environment display device |
US10735649B2 (en) | 2018-02-22 | 2020-08-04 | Magic Leap, Inc. | Virtual and augmented reality systems and methods using display system control information embedded in image data |
US11074748B2 (en) | 2018-02-27 | 2021-07-27 | Magic Leap, Inc. | Matching meshes for virtual avatars |
CN111936912A (en) | 2018-02-28 | 2020-11-13 | 奇跃公司 | Head scan alignment using eye registration |
JP7081473B2 (en) * | 2018-03-02 | 2022-06-07 | 株式会社リコー | Imaging optical system, imaging system and imaging device |
JP7303818B2 (en) | 2018-03-05 | 2023-07-05 | マジック リープ, インコーポレイテッド | Display system with low latency pupil tracker |
WO2019173390A1 (en) | 2018-03-07 | 2019-09-12 | Magic Leap, Inc. | Adaptive lens assemblies including polarization-selective lens stacks for augmented reality display |
KR102345492B1 (en) | 2018-03-07 | 2021-12-29 | 매직 립, 인코포레이티드 | Visual tracking of peripheral devices |
AU2019236460B2 (en) | 2018-03-12 | 2024-10-03 | Magic Leap, Inc. | Tilting array based display |
CN112136073A (en) | 2018-03-14 | 2020-12-25 | 奇跃公司 | Display system and method for editing content for increased viewing comfort |
WO2019177870A1 (en) | 2018-03-15 | 2019-09-19 | Magic Leap, Inc. | Animating virtual avatar facial movements |
EP3765897B1 (en) | 2018-03-16 | 2024-01-17 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
WO2019178566A1 (en) | 2018-03-16 | 2019-09-19 | Magic Leap, Inc. | Depth based foveated rendering for display systems |
WO2019177869A1 (en) | 2018-03-16 | 2019-09-19 | Magic Leap, Inc. | Facial expressions from eye-tracking cameras |
US11480467B2 (en) | 2018-03-21 | 2022-10-25 | Magic Leap, Inc. | Augmented reality system and method for spectroscopic analysis |
EP4266113A3 (en) | 2018-03-23 | 2023-12-27 | InterDigital VC Holdings, Inc. | Multifocal plane based method to produce stereoscopic viewpoints in a dibr system (mfp-dibr) |
JP7349445B2 (en) | 2018-04-02 | 2023-09-22 | マジック リープ, インコーポレイテッド | Waveguides with integrated optical elements and methods for making the same |
US11886000B2 (en) | 2018-04-02 | 2024-01-30 | Magic Leap, Inc. | Waveguides having integrated spacers, waveguides having edge absorbers, and methods for making the same |
WO2019195186A1 (en) | 2018-04-02 | 2019-10-10 | Magic Leap, Inc. | Hybrid polymer waveguide and methods for making the same |
US11276219B2 (en) | 2018-04-16 | 2022-03-15 | Magic Leap, Inc. | Systems and methods for cross-application authoring, transfer, and evaluation of rigging control systems for virtual characters |
WO2019204765A1 (en) | 2018-04-19 | 2019-10-24 | Magic Leap, Inc. | Systems and methods for operating a display system based on user perceptibility |
WO2019209431A1 (en) | 2018-04-23 | 2019-10-31 | Magic Leap, Inc. | Avatar facial expression representation in multidimensional space |
WO2019212698A1 (en) | 2018-05-01 | 2019-11-07 | Magic Leap, Inc. | Avatar animation using markov decision process policies |
EP3787543A4 (en) | 2018-05-02 | 2022-01-19 | Augmedics Ltd. | Registration of a fiducial marker for an augmented reality system |
US11308673B2 (en) | 2018-05-03 | 2022-04-19 | Magic Leap, Inc. | Using three-dimensional scans of a physical subject to determine positions and/or orientations of skeletal joints in the rigging for a virtual character |
WO2019222401A2 (en) | 2018-05-17 | 2019-11-21 | Magic Leap, Inc. | Gradient adversarial training of neural networks |
US11282255B2 (en) | 2018-05-21 | 2022-03-22 | Magic Leap, Inc. | Generating textured polygon strip hair from strand-based hair for a virtual character |
EP3797404A4 (en) | 2018-05-22 | 2022-02-16 | Magic Leap, Inc. | Skeletal systems for animating virtual avatars |
US11210835B2 (en) | 2018-05-22 | 2021-12-28 | Magic Leap, Inc. | Computer generated hair groom transfer tool |
WO2019226691A1 (en) | 2018-05-22 | 2019-11-28 | Magic Leap, Inc. | Transmodal input fusion for a wearable system |
WO2019226865A1 (en) | 2018-05-25 | 2019-11-28 | Magic Leap, Inc. | Compression of dynamic unstructured point clouds |
WO2019232075A1 (en) | 2018-06-01 | 2019-12-05 | Magic Leap, Inc. | Compression of dynamic unstructured point clouds |
US11157159B2 (en) | 2018-06-07 | 2021-10-26 | Magic Leap, Inc. | Augmented reality scrollbar |
CN112567289A (en) | 2018-06-15 | 2021-03-26 | 奇跃公司 | Wide field of view polarization switch and method of making liquid crystal optical element with pre-tilt |
JP7336470B2 (en) | 2018-06-15 | 2023-08-31 | マジック リープ, インコーポレイテッド | Wide-field polarization switch using liquid crystal optical element with pretilt angle |
US10986270B2 (en) | 2018-06-18 | 2021-04-20 | Magic Leap, Inc. | Augmented reality display with frame modulation functionality |
US11624909B2 (en) | 2018-06-18 | 2023-04-11 | Magic Leap, Inc. | Head-mounted display systems with power saving functionality |
US11694435B2 (en) | 2018-06-18 | 2023-07-04 | Magic Leap, Inc. | Systems and methods for temporarily disabling user control interfaces during attachment of an electronic device |
JP7411585B2 (en) * | 2018-06-18 | 2024-01-11 | マジック リープ, インコーポレイテッド | Centralized rendering |
WO2020005757A1 (en) | 2018-06-26 | 2020-01-02 | Magic Leap, Inc. | Waypoint creation in map detection |
US12154295B2 (en) | 2018-07-02 | 2024-11-26 | Magic Leap, Inc. | Methods and systems for interpolation of disparate inputs |
EP3818530A4 (en) | 2018-07-02 | 2022-03-30 | Magic Leap, Inc. | Methods and systems for interpolation of disparate inputs |
WO2020010018A1 (en) | 2018-07-05 | 2020-01-09 | Pcms Holdings, Inc. | Method and system for near-eye focal plane overlays for 3d perception of content on 2d displays |
JP7407748B2 (en) | 2018-07-05 | 2024-01-04 | マジック リープ, インコーポレイテッド | Waveguide-based illumination for head-mounted display systems |
WO2020018938A1 (en) | 2018-07-19 | 2020-01-23 | Magic Leap, Inc. | Content interaction driven by eye metrics |
US11320899B2 (en) | 2018-07-23 | 2022-05-03 | Magic Leap, Inc. | Deep predictor recurrent neural network for head pose prediction |
WO2020023303A1 (en) | 2018-07-23 | 2020-01-30 | Magic Leap, Inc. | Coexistence interference avoidance between two different radios operating in the same band |
USD930614S1 (en) | 2018-07-24 | 2021-09-14 | Magic Leap, Inc. | Totem controller having an illumination region |
WO2020023404A1 (en) | 2018-07-24 | 2020-01-30 | Magic Leap, Inc. | Flicker mitigation when toggling eyepiece display illumination in augmented reality systems |
JP7456995B2 (en) | 2018-07-24 | 2024-03-27 | マジック リープ, インコーポレイテッド | Display system and method for determining vertical alignment between left and right displays and a user's eyes |
CN112703437A (en) | 2018-07-24 | 2021-04-23 | 奇跃公司 | Diffractive optical element with reduced light loss due to bounce and related systems and methods |
USD918176S1 (en) | 2018-07-24 | 2021-05-04 | Magic Leap, Inc. | Totem controller having an illumination region |
WO2020023491A1 (en) | 2018-07-24 | 2020-01-30 | Magic Leap, Inc. | Thermal management system for electronic device |
USD924204S1 (en) | 2018-07-24 | 2021-07-06 | Magic Leap, Inc. | Totem controller having an illumination region |
US11567336B2 (en) | 2018-07-24 | 2023-01-31 | Magic Leap, Inc. | Display systems and methods for determining registration between display and eyes of user |
WO2020023779A1 (en) | 2018-07-25 | 2020-01-30 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
WO2020023788A1 (en) | 2018-07-27 | 2020-01-30 | Magic Leap, Inc. | Pose space dimensionality reduction for pose space deformation of a virtual character |
JP7443332B2 (en) | 2018-08-03 | 2024-03-05 | マジック リープ, インコーポレイテッド | Depth plane selection for multi-depth plane display systems with user categorization |
US11002971B1 (en) * | 2018-08-24 | 2021-05-11 | Apple Inc. | Display device with mechanically adjustable optical combiner |
US11103763B2 (en) | 2018-09-11 | 2021-08-31 | Real Shot Inc. | Basketball shooting game using smart glasses |
US11141645B2 (en) | 2018-09-11 | 2021-10-12 | Real Shot Inc. | Athletic ball game using smart glasses |
USD950567S1 (en) | 2018-09-18 | 2022-05-03 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
USD955396S1 (en) | 2018-09-18 | 2022-06-21 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
USD934872S1 (en) | 2018-09-18 | 2021-11-02 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
USD934873S1 (en) | 2018-09-18 | 2021-11-02 | Magic Leap, Inc. | Mobile computing support system having an illumination region |
TWI857974B (en) | 2018-09-25 | 2024-10-11 | 美商蘋果公司 | Camera, computing device, and lens system |
US11733523B2 (en) | 2018-09-26 | 2023-08-22 | Magic Leap, Inc. | Diffractive optical elements with optical power |
CN113168008A (en) | 2018-09-26 | 2021-07-23 | 奇跃公司 | Glasses with pinhole and slit cameras |
US10861240B1 (en) * | 2018-09-26 | 2020-12-08 | Facebook Technologies, Llc | Virtual pupil camera in head mounted display |
US11157090B2 (en) | 2018-10-26 | 2021-10-26 | Magic Leap, Inc. | Ambient electromagnetic distortion correction for electromagnetic tracking |
EP3881232A4 (en) | 2018-11-15 | 2022-08-10 | Magic Leap, Inc. | Deep neural network pose estimation system |
US11237393B2 (en) | 2018-11-20 | 2022-02-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
US10939977B2 (en) | 2018-11-26 | 2021-03-09 | Augmedics Ltd. | Positioning marker |
US11766296B2 (en) | 2018-11-26 | 2023-09-26 | Augmedics Ltd. | Tracking system for image-guided surgery |
EP3887925B1 (en) | 2018-11-30 | 2025-01-15 | Magic Leap, Inc. | Multi-modal hand location and orientation for avatar movement |
WO2020139752A1 (en) | 2018-12-28 | 2020-07-02 | Magic Leap, Inc. | Variable pixel density display system with mechanically-actuated image projector |
WO2020139754A1 (en) | 2018-12-28 | 2020-07-02 | Magic Leap, Inc. | Augmented and virtual reality display systems with shared display for left and right eyes |
US20200225471A1 (en) | 2019-01-14 | 2020-07-16 | Digilens Inc. | Holographic Waveguide Display with Light Control Layer |
WO2020154524A1 (en) | 2019-01-25 | 2020-07-30 | Magic Leap, Inc. | Eye-tracking using images having different exposure times |
JP7268372B2 (en) * | 2019-01-31 | 2023-05-08 | 株式会社リコー | Imaging device |
JP7672980B2 (en) | 2019-02-01 | 2025-05-08 | マジック リープ, インコーポレイテッド | Series-intercoupled optical elements |
EP3924759A4 (en) | 2019-02-15 | 2022-12-28 | Digilens Inc. | METHODS AND APPARATUS FOR MAKING A HOLOGRAPHIC WAVEGUIDE DISPLAY WITH INTEGRATED GRIDINGS |
US20220283377A1 (en) | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
JP7518844B2 (en) | 2019-02-28 | 2024-07-18 | マジック リープ, インコーポレイテッド | Display system and method for providing variable accommodation cues using multiple intrapupillary parallax views formed by a light emitter array - Patents.com |
JP2022524333A (en) | 2019-03-12 | 2022-05-02 | マジック リープ, インコーポレイテッド | How to Process Display Devices with Patterned Lithium Transition Metal Oxides |
WO2020186113A1 (en) | 2019-03-12 | 2020-09-17 | Digilens Inc. | Holographic waveguide backlight and related methods of manufacturing |
JP7498191B2 (en) | 2019-03-12 | 2024-06-11 | マジック リープ, インコーポレイテッド | Waveguide with high refractive index material and method for fabricating same |
US11435584B2 (en) * | 2019-03-13 | 2022-09-06 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Large field of view see through head mounted display having magnified curved intermediate image |
EP3942227A4 (en) | 2019-03-20 | 2022-12-07 | Magic Leap, Inc. | LIGHT COLLECTION SYSTEM |
EP3942228A4 (en) | 2019-03-20 | 2022-12-21 | Magic Leap, Inc. | EYE LIGHTING SYSTEM |
US10554940B1 (en) | 2019-03-29 | 2020-02-04 | Razmik Ghazaryan | Method and apparatus for a variable-resolution screen |
US10466489B1 (en) | 2019-03-29 | 2019-11-05 | Razmik Ghazaryan | Methods and apparatus for a variable-resolution screen |
US11284053B2 (en) | 2019-03-29 | 2022-03-22 | Razmik Ghazaryan | Head-mounted display and projection screen |
EP4439255A3 (en) | 2019-04-15 | 2024-12-18 | Magic Leap, Inc. | Sensor fusion for electromagnetic tracking |
US11800205B2 (en) * | 2019-04-18 | 2023-10-24 | University Of Florida Research Foundation, Incorporated | Fast foveation camera and controlling algorithms |
CN110913096A (en) * | 2019-05-05 | 2020-03-24 | 华为技术有限公司 | Camera module and electronic equipment |
JP7313478B2 (en) | 2019-05-05 | 2023-07-24 | 華為技術有限公司 | Compact camera module, terminal device, imaging method, and imaging apparatus |
WO2020236827A1 (en) | 2019-05-20 | 2020-11-26 | Magic Leap, Inc. | Systems and techniques for estimating eye pose |
TWI707193B (en) * | 2019-05-22 | 2020-10-11 | 財團法人國家實驗研究院 | Focal plane assembly of remote sensing satellite and image processing method thereof |
US11624919B2 (en) | 2019-05-24 | 2023-04-11 | Magic Leap, Inc. | Variable focus assemblies |
WO2020243169A1 (en) | 2019-05-28 | 2020-12-03 | Magic Leap, Inc. | Thermal management system for portable electronic devices |
USD962981S1 (en) | 2019-05-29 | 2022-09-06 | Magic Leap, Inc. | Display screen or portion thereof with animated scrollbar graphical user interface |
CN114207492A (en) | 2019-06-07 | 2022-03-18 | 迪吉伦斯公司 | Waveguide with transmission grating and reflection grating and method for producing the same |
WO2020257469A1 (en) | 2019-06-20 | 2020-12-24 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
CN114270312A (en) | 2019-06-21 | 2022-04-01 | 奇跃公司 | Security authorization via modal window |
CN114341687A (en) | 2019-06-24 | 2022-04-12 | 奇跃公司 | Waveguides with integrated spacers and related systems and methods |
US11029805B2 (en) | 2019-07-10 | 2021-06-08 | Magic Leap, Inc. | Real-time preview of connectable objects in a physically-modeled virtual space |
JP7591551B2 (en) | 2019-07-16 | 2024-11-28 | マジック リープ, インコーポレイテッド | Determining eye rotation center using one or more eye tracking cameras |
EP3999883A4 (en) | 2019-07-19 | 2023-08-30 | Magic Leap, Inc. | Method of fabricating diffraction gratings |
EP3999884A4 (en) | 2019-07-19 | 2023-08-30 | Magic Leap, Inc. | Display device having diffraction gratings with reduced polarization sensitivity |
US11740458B2 (en) | 2019-07-26 | 2023-08-29 | Microsoft Technology Licensing, Llc | Projection device and projection method for head mounted display based on rotary MEMS fast scanner |
US12178666B2 (en) | 2019-07-29 | 2024-12-31 | Augmedics Ltd. | Fiducial marker |
US11980506B2 (en) | 2019-07-29 | 2024-05-14 | Augmedics Ltd. | Fiducial marker |
EP4004646A4 (en) | 2019-07-29 | 2023-09-06 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
EP4005147A4 (en) | 2019-07-31 | 2023-08-02 | Magic Leap, Inc. | User data management for augmented reality using a distributed ledger |
CN114174791B (en) * | 2019-08-07 | 2024-12-20 | 安捷伦科技有限公司 | Optical imaging performance testing system and method |
WO2021041949A1 (en) | 2019-08-29 | 2021-03-04 | Digilens Inc. | Evacuating bragg gratings and methods of manufacturing |
US11614573B2 (en) | 2019-09-11 | 2023-03-28 | Magic Leap, Inc. | Display device with diffraction grating having reduced polarization sensitivity |
WO2021051068A1 (en) | 2019-09-13 | 2021-03-18 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Pupil matched occlusion-capable optical see-through head-mounted display |
US11610290B2 (en) * | 2019-09-24 | 2023-03-21 | Rockwell Collins, Inc. | Point source detection |
CN114766038A (en) | 2019-09-27 | 2022-07-19 | 奇跃公司 | Individual views in a shared space |
US11933949B2 (en) * | 2019-09-27 | 2024-03-19 | Apple Inc. | Freeform folded optical system |
US11176757B2 (en) | 2019-10-02 | 2021-11-16 | Magic Leap, Inc. | Mission driven virtual character for user interaction |
US11276246B2 (en) | 2019-10-02 | 2022-03-15 | Magic Leap, Inc. | Color space mapping for intuitive surface normal visualization |
JP7483270B2 (en) | 2019-10-12 | 2024-05-15 | 国立大学法人 奈良先端科学技術大学院大学 | See-through display device |
US11493989B2 (en) | 2019-11-08 | 2022-11-08 | Magic Leap, Inc. | Modes of user interaction |
USD982593S1 (en) | 2019-11-08 | 2023-04-04 | Magic Leap, Inc. | Portion of a display screen with animated ray |
CN114641713A (en) | 2019-11-08 | 2022-06-17 | 奇跃公司 | Supersurface with light redirecting structures comprising multiple materials and method of manufacture |
CN114945947A (en) | 2019-11-18 | 2022-08-26 | 奇跃公司 | Universal world mapping and positioning |
KR102244445B1 (en) * | 2019-11-22 | 2021-04-26 | 인하대학교 산학협력단 | Apparatus and method for occlusion capable near-eye display for augmented reality using single dmd |
WO2021102165A1 (en) | 2019-11-22 | 2021-05-27 | Magic Leap, Inc. | Method and system for patterning a liquid crystal layer |
US12094139B2 (en) | 2019-11-22 | 2024-09-17 | Magic Leap, Inc. | Systems and methods for enhanced depth determination using projection spots |
WO2021108327A1 (en) | 2019-11-26 | 2021-06-03 | Magic Leap, Inc. | Enhanced eye tracking for augmented or virtual reality display systems |
JP7615143B2 (en) | 2019-12-06 | 2025-01-16 | マジック リープ, インコーポレイテッド | Dynamic Browser Stages |
JP7569856B2 (en) | 2019-12-06 | 2024-10-18 | マジック リープ, インコーポレイテッド | Encoding a stereo splash screen in a still image |
USD952673S1 (en) | 2019-12-09 | 2022-05-24 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD940189S1 (en) | 2019-12-09 | 2022-01-04 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD941353S1 (en) | 2019-12-09 | 2022-01-18 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD941307S1 (en) | 2019-12-09 | 2022-01-18 | Magic Leap, Inc. | Portion of a display screen with graphical user interface for guiding graphics |
USD940749S1 (en) | 2019-12-09 | 2022-01-11 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
USD940748S1 (en) | 2019-12-09 | 2022-01-11 | Magic Leap, Inc. | Portion of a display screen with transitional graphical user interface for guiding graphics |
US11288876B2 (en) | 2019-12-13 | 2022-03-29 | Magic Leap, Inc. | Enhanced techniques for volumetric stage mapping based on calibration object |
US11382712B2 (en) | 2019-12-22 | 2022-07-12 | Augmedics Ltd. | Mirroring in image guided surgery |
CN111077679A (en) * | 2020-01-23 | 2020-04-28 | 福州贝园网络科技有限公司 | Intelligent glasses display and imaging method thereof |
US11340695B2 (en) | 2020-01-24 | 2022-05-24 | Magic Leap, Inc. | Converting a 2D positional input into a 3D point in space |
JP7496424B2 (en) | 2020-01-24 | 2024-06-06 | マジック リープ, インコーポレイテッド | Navigate and interact with content using a single controller |
US11380072B2 (en) | 2020-01-27 | 2022-07-05 | Magic Leap, Inc. | Neutral avatars |
US11574424B2 (en) | 2020-01-27 | 2023-02-07 | Magic Leap, Inc. | Augmented reality map curation |
JP7538871B2 (en) | 2020-01-27 | 2024-08-22 | マジック リープ, インコーポレイテッド | Improved State Control for Anchor-Based Cross-Reality Applications |
USD948562S1 (en) | 2020-01-27 | 2022-04-12 | Magic Leap, Inc. | Portion of a display screen with avatar |
USD949200S1 (en) | 2020-01-27 | 2022-04-19 | Magic Leap, Inc. | Portion of a display screen with a set of avatars |
USD948574S1 (en) | 2020-01-27 | 2022-04-12 | Magic Leap, Inc. | Portion of a display screen with a set of avatars |
WO2021154437A1 (en) | 2020-01-27 | 2021-08-05 | Magic Leap, Inc. | Gaze timer based augmentation of functionality of a user input device |
USD936704S1 (en) | 2020-01-27 | 2021-11-23 | Magic Leap, Inc. | Portion of a display screen with avatar |
CN115039012A (en) | 2020-01-31 | 2022-09-09 | 奇跃公司 | Augmented and virtual reality display system for eye assessment |
CN115087905A (en) | 2020-02-10 | 2022-09-20 | 奇跃公司 | Body-centric content positioning relative to three-dimensional containers in a mixed reality environment |
US11709363B1 (en) | 2020-02-10 | 2023-07-25 | Avegant Corp. | Waveguide illumination of a spatial light modulator |
JP2023517281A (en) | 2020-02-14 | 2023-04-25 | マジック リープ, インコーポレイテッド | Virtual Object Movement Velocity Curves for Virtual and Augmented Reality Display Systems |
CN115151784A (en) | 2020-02-26 | 2022-10-04 | 奇跃公司 | Programmed electron beam lithography |
CN115190837A (en) | 2020-02-28 | 2022-10-14 | 奇跃公司 | Method of manufacturing a mold for forming an eyepiece with an integral spacer |
US11262588B2 (en) | 2020-03-10 | 2022-03-01 | Magic Leap, Inc. | Spectator view of virtual and physical objects |
US11474358B2 (en) | 2020-03-20 | 2022-10-18 | Magic Leap, Inc. | Systems and methods for retinal imaging and tracking |
US11940639B2 (en) | 2020-03-25 | 2024-03-26 | Magic Leap, Inc. | Optical device with one-way mirror |
EP4127822A4 (en) | 2020-04-03 | 2024-06-26 | Magic Leap, Inc. | Wearable display systems with nanowire led micro-displays |
EP4127878A4 (en) | 2020-04-03 | 2024-07-17 | Magic Leap, Inc. | AVATAR ADJUSTMENT FOR OPTIMAL GAZE DISTINCTION |
US11994687B2 (en) | 2020-05-13 | 2024-05-28 | President And Fellows Of Harvard College | Meta-optics for virtual reality and augmented reality systems |
WO2021237115A1 (en) | 2020-05-22 | 2021-11-25 | Magic Leap, Inc. | Augmented and virtual reality display systems with correlated in-coupling and out-coupling optical regions |
CN115668106A (en) | 2020-06-05 | 2023-01-31 | 奇跃公司 | Enhanced eye tracking techniques based on image neural network analysis |
US11389252B2 (en) | 2020-06-15 | 2022-07-19 | Augmedics Ltd. | Rotating marker for image guided surgery |
CN111580280B (en) * | 2020-06-16 | 2022-10-28 | 京东方科技集团股份有限公司 | See-through head mounted display |
JP7545564B2 (en) | 2020-07-15 | 2024-09-04 | マジック リープ, インコーポレイテッド | Eye Tracking Using an Aspheric Corneal Model |
WO2022032198A1 (en) | 2020-08-07 | 2022-02-10 | Magic Leap, Inc. | Tunable cylindrical lenses and head-mounted display including the same |
US12239385B2 (en) | 2020-09-09 | 2025-03-04 | Augmedics Ltd. | Universal tool adapter |
KR20230112611A (en) | 2020-09-29 | 2023-07-27 | 아브간트 코포레이션 | Structure to illuminate the display panel |
US12222499B2 (en) | 2020-12-21 | 2025-02-11 | Digilens Inc. | Eye glow suppression in waveguide based displays |
JP2024508926A (en) | 2021-03-05 | 2024-02-28 | ディジレンズ インコーポレイテッド | Vacuum periodic structure and manufacturing method |
JP2022144057A (en) * | 2021-03-18 | 2022-10-03 | 株式会社Jvcケンウッド | Display device, display method, and program |
TWI775392B (en) * | 2021-04-20 | 2022-08-21 | 宏碁股份有限公司 | Augmented reality glasses |
US11936975B2 (en) | 2021-05-12 | 2024-03-19 | Nio Technology (Anhui) Co., Ltd. | Combined computer vision and human vision camera system |
KR20240025624A (en) * | 2021-06-25 | 2024-02-27 | 가부시키가이샤 니콘 | Imaging device and light receiving device |
US11896445B2 (en) | 2021-07-07 | 2024-02-13 | Augmedics Ltd. | Iliac pin and adapter |
US12150821B2 (en) | 2021-07-29 | 2024-11-26 | Augmedics Ltd. | Rotating marker and adapter for image-guided surgery |
US12164110B2 (en) * | 2021-08-17 | 2024-12-10 | Texas Instruments Incorporated | Compact near eye display engine |
US12242056B2 (en) * | 2021-08-17 | 2025-03-04 | Texas Instruments Incorporated | Compact near eye display engine |
US20230057495A1 (en) * | 2021-08-18 | 2023-02-23 | Advanced Neuromodulation Systems, Inc. | Systems and methods for providing digital health services |
US20230057977A1 (en) * | 2021-08-20 | 2023-02-23 | Immervision, Inc. | Dual field of view optical system |
US11417069B1 (en) * | 2021-10-05 | 2022-08-16 | Awe Company Limited | Object and camera localization system and localization method for mapping of the real world |
EP4460723A1 (en) * | 2022-01-07 | 2024-11-13 | Arizona Board of Regents on behalf of the University of Arizona | Occlusion-capable optical viewing device and associated method |
US11662591B1 (en) * | 2022-07-01 | 2023-05-30 | Brelyon Inc. | Display systems and imaging systems with dynamically controllable optical path lengths |
US12298511B2 (en) | 2022-07-01 | 2025-05-13 | Brelyon Inc. | Display and imaging systems with 1D-1D optical surfaces for stereoscopic and monocular depth programming |
CN115220238B (en) * | 2022-07-12 | 2024-06-28 | 李宪亭 | Myopia prevention and control structure and myopia prevention and control equipment |
WO2024057210A1 (en) | 2022-09-13 | 2024-03-21 | Augmedics Ltd. | Augmented reality eyewear for image-guided medical intervention |
US11776206B1 (en) | 2022-12-23 | 2023-10-03 | Awe Company Limited | Extended reality system and extended reality method with two-way digital interactive digital twins |
US12196957B2 (en) | 2023-03-02 | 2025-01-14 | United States Of America, As Represented By The Secretary Of The Army | Dual-function optic for near-to-eye display and camera |
WO2025015151A1 (en) * | 2023-07-13 | 2025-01-16 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Perceptual-driven foveated optical see-through head-mounted displays |
JP2025037791A (en) * | 2023-09-06 | 2025-03-18 | ウェイモ エルエルシー | Foveated imaging device for automotive applications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004153605A (en) | 2002-10-31 | 2004-05-27 | Victor Co Of Japan Ltd | Image pickup device and system for transmitting pick-up image |
US20090080695A1 (en) | 2007-09-24 | 2009-03-26 | New Span Opto-Technology, Inc. | Electro-optical Foveated Imaging and Tracking System |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909121A (en) * | 1974-06-25 | 1975-09-30 | Mesquita Cardoso Edgar Antonio | Panoramic photographic methods |
US4026641A (en) * | 1975-12-30 | 1977-05-31 | The United States Of America As Represented By The Secretary Of The Army | Toric reflector display |
JPS54128217A (en) * | 1978-03-29 | 1979-10-04 | Olympus Optical Co Ltd | Pickup device |
JPS57171314A (en) | 1981-04-15 | 1982-10-21 | Mitsubishi Electric Corp | Optical branching and coupling circuit |
KR940010879B1 (en) * | 1989-07-28 | 1994-11-19 | 캐논 가부시끼가이샤 | Image forming apparatus |
US5136183A (en) | 1990-06-27 | 1992-08-04 | Advanced Micro Devices, Inc. | Integrated comparator circuit |
US5307203A (en) * | 1990-12-06 | 1994-04-26 | Tandem Scanning Corporation | Confocal tandem scanning reflected light microscope |
US5135183A (en) | 1991-09-23 | 1992-08-04 | Hughes Aircraft Company | Dual-image optoelectronic imaging apparatus including birefringent prism arrangement |
CA2084111A1 (en) * | 1991-12-17 | 1993-06-18 | William E. Nelson | Virtual display device and method of use |
US5406415A (en) * | 1992-09-22 | 1995-04-11 | Kelly; Shawn L. | Imaging system for a head-mounted display |
US5386313A (en) | 1993-03-11 | 1995-01-31 | Szegedi; Nicholas J. | Reflective magneto-optic spatial light modulator assembly |
JPH0792426A (en) * | 1993-09-24 | 1995-04-07 | Sony Corp | Visual device |
JP3320252B2 (en) * | 1995-04-24 | 2002-09-03 | キヤノン株式会社 | Reflection type optical system and imaging apparatus using the same |
US6347744B1 (en) * | 1995-10-10 | 2002-02-19 | Symbol Technologies, Inc. | Retroreflective scan module for electro-optical readers |
JPH09166759A (en) * | 1995-12-18 | 1997-06-24 | Olympus Optical Co Ltd | Picture display device |
JP3222052B2 (en) * | 1996-01-11 | 2001-10-22 | 株式会社東芝 | Optical scanning device |
JPH1068899A (en) * | 1996-08-26 | 1998-03-10 | Asahi Optical Co Ltd | Cascade scanning optical system |
US6204974B1 (en) | 1996-10-08 | 2001-03-20 | The Microoptical Corporation | Compact image display system for eyeglasses or other head-borne frames |
JP3924348B2 (en) * | 1996-11-05 | 2007-06-06 | オリンパス株式会社 | Image display device |
JPH10197796A (en) * | 1996-12-27 | 1998-07-31 | Olympus Optical Co Ltd | Finder optical system |
US6377229B1 (en) * | 1998-04-20 | 2002-04-23 | Dimensional Media Associates, Inc. | Multi-planar volumetric display system and method of operation using three-dimensional anti-aliasing |
US6466185B2 (en) | 1998-04-20 | 2002-10-15 | Alan Sullivan | Multi-planar volumetric display system and method of operation using psychological vision cues |
JP2000267038A (en) | 1999-03-12 | 2000-09-29 | Mr System Kenkyusho:Kk | Picture observation device |
JP2000105348A (en) * | 1998-07-27 | 2000-04-11 | Mr System Kenkyusho:Kk | Picture observation device |
US6215532B1 (en) | 1998-07-27 | 2001-04-10 | Mixed Reality Systems Laboratory Inc. | Image observing apparatus for observing outside information superposed with a display image |
JP4100531B2 (en) * | 1998-08-11 | 2008-06-11 | 株式会社東京大学Tlo | Information presentation method and apparatus |
JP2000171750A (en) * | 1998-12-03 | 2000-06-23 | Sony Corp | Head-mounted display, display method and provision medium |
JP2000227554A (en) * | 1999-02-05 | 2000-08-15 | Olympus Optical Co Ltd | Image-formation optical system |
JP2000330025A (en) * | 1999-05-19 | 2000-11-30 | Olympus Optical Co Ltd | Image formation optical system using louver |
MXPA02007705A (en) * | 2000-02-11 | 2004-09-10 | Primex Ltd | Optical beam splitter unit and binocular display device containing such a unit. |
AU4082801A (en) * | 2000-03-16 | 2001-09-24 | Lee Scott Friend | Imaging apparatus |
AU5664401A (en) * | 2000-06-05 | 2001-12-17 | Lumus Ltd | Substrate-guided optical beam expander |
US20020000951A1 (en) * | 2000-06-26 | 2002-01-03 | Richards Angus Duncan | Display device enhancements |
US8042947B1 (en) * | 2000-10-07 | 2011-10-25 | Metaio Gmbh | Information system |
US6457834B1 (en) * | 2001-01-24 | 2002-10-01 | Scram Technologies, Inc. | Optical system for display panel |
EP1231780A3 (en) * | 2001-02-07 | 2004-01-14 | Sony Corporation | Image pickup apparatus |
JP2002244074A (en) * | 2001-02-15 | 2002-08-28 | Mixed Reality Systems Laboratory Inc | Picture display device |
FR2826221B1 (en) | 2001-05-11 | 2003-12-05 | Immervision Internat Pte Ltd | METHOD FOR OBTAINING AND DISPLAYING A VARIABLE RESOLUTION DIGITAL PANORAMIC IMAGE |
US7009773B2 (en) | 2001-05-23 | 2006-03-07 | Research Foundation Of The University Of Central Florida, Inc. | Compact microlenslet arrays imager |
CN1316286C (en) * | 2001-06-21 | 2007-05-16 | 皇家菲利浦电子有限公司 | Display device |
US6593561B2 (en) * | 2001-06-22 | 2003-07-15 | Litton Systems, Inc. | Method and system for gathering image data using multiple sensors |
US7940299B2 (en) * | 2001-08-09 | 2011-05-10 | Technest Holdings, Inc. | Method and apparatus for an omni-directional video surveillance system |
US6473241B1 (en) * | 2001-11-27 | 2002-10-29 | The United States Of America As Represented By The Secretary Of The Air Force | Wide field-of-view imaging system using a reflective spatial light modulator |
US7084904B2 (en) * | 2002-09-30 | 2006-08-01 | Microsoft Corporation | Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time |
US7427996B2 (en) * | 2002-10-16 | 2008-09-23 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
JP2004170386A (en) * | 2002-10-28 | 2004-06-17 | Seiko Epson Corp | Inspection device and inspection method, droplet discharge device and droplet discharge method, device and electronic apparatus |
GB0228089D0 (en) * | 2002-12-02 | 2003-01-08 | Seos Ltd | Dynamic range enhancement of image display apparatus |
JP4288939B2 (en) * | 2002-12-05 | 2009-07-01 | ソニー株式会社 | Imaging device |
JP4304973B2 (en) * | 2002-12-10 | 2009-07-29 | ソニー株式会社 | Imaging device |
US6870653B2 (en) * | 2003-01-31 | 2005-03-22 | Eastman Kodak Company | Decoupled alignment axis for fold mirror adjustment |
US7542090B1 (en) * | 2003-03-21 | 2009-06-02 | Aerodyne Research, Inc. | System and method for high-resolution with a small-format focal-plane array using spatial modulation |
US20050117015A1 (en) * | 2003-06-26 | 2005-06-02 | Microsoft Corp. | Foveated panoramic camera system |
US7336299B2 (en) * | 2003-07-03 | 2008-02-26 | Physical Optics Corporation | Panoramic video system with real-time distortion-free imaging |
JP2005094417A (en) * | 2003-09-18 | 2005-04-07 | Sony Corp | Imaging device |
CN100437200C (en) * | 2003-12-12 | 2008-11-26 | 海德佩(巴巴多斯)公司 | Optical device for head-wearing display device |
DE10359691A1 (en) * | 2003-12-18 | 2005-07-14 | Carl Zeiss | Observation system and procedure |
EP1580586B1 (en) * | 2004-03-25 | 2008-06-11 | Olympus Corporation | Scanning confocal microscope |
KR100491271B1 (en) * | 2004-04-30 | 2005-05-25 | 주식회사 나노포토닉스 | Panoramic mirror and imaging system using the same |
US20070182812A1 (en) * | 2004-05-19 | 2007-08-09 | Ritchey Kurtis J | Panoramic image-based virtual reality/telepresence audio-visual system and method |
US7639208B1 (en) | 2004-05-21 | 2009-12-29 | University Of Central Florida Research Foundation, Inc. | Compact optical see-through head-mounted display with occlusion support |
JP4143571B2 (en) | 2004-06-15 | 2008-09-03 | Nec液晶テクノロジー株式会社 | Liquid crystal display |
EP1779081A4 (en) * | 2004-08-03 | 2012-05-09 | Silverbrook Res Pty Ltd | Electronic stylus |
US20060055811A1 (en) * | 2004-09-14 | 2006-03-16 | Frtiz Bernard S | Imaging system having modules with adaptive optical elements |
US7532771B2 (en) * | 2004-11-12 | 2009-05-12 | Microsoft Corporation | Image processing system for digital collage |
JP4689266B2 (en) * | 2004-12-28 | 2011-05-25 | キヤノン株式会社 | Image display device |
US7884947B2 (en) | 2005-01-20 | 2011-02-08 | Zygo Corporation | Interferometry for determining characteristics of an object surface, with spatially coherent illumination |
US20070002131A1 (en) * | 2005-02-15 | 2007-01-04 | Ritchey Kurtis J | Dynamic interactive region-of-interest panoramic/three-dimensional immersive communication system and method |
DE102005012763A1 (en) | 2005-03-19 | 2006-09-21 | Diehl Bgt Defence Gmbh & Co. Kg | Wide-angle lens |
US7023628B1 (en) * | 2005-04-05 | 2006-04-04 | Alex Ning | Compact fisheye objective lens |
JP5286638B2 (en) | 2005-05-30 | 2013-09-11 | コニカミノルタ株式会社 | Video display device and head mounted display |
EP1798587B1 (en) * | 2005-12-15 | 2012-06-13 | Saab Ab | Head-up display |
ATE434200T1 (en) * | 2005-12-29 | 2009-07-15 | Fiat Ricerche | OPTICAL SYSTEM FOR IMAGE TRANSMISSION, ESPECIALLY FOR HEAD-MOUNTED PROJECTION DEVICES |
CN101021669A (en) * | 2006-02-13 | 2007-08-22 | 耿忠 | Whole-view field imaging and displaying method and system |
US20100045773A1 (en) * | 2007-11-06 | 2010-02-25 | Ritchey Kurtis J | Panoramic adapter system and method with spherical field-of-view coverage |
CN100526936C (en) * | 2006-03-09 | 2009-08-12 | 比亚迪股份有限公司 | Optical imaging system for helmet display |
JP2007248545A (en) * | 2006-03-14 | 2007-09-27 | Konica Minolta Holdings Inc | Video display device and video display system |
US20080097347A1 (en) | 2006-09-22 | 2008-04-24 | Babak Arvanaghi | Bendable needle assembly |
US8072482B2 (en) * | 2006-11-09 | 2011-12-06 | Innovative Signal Anlysis | Imaging system having a rotatable image-directing device |
CN101029968A (en) * | 2007-04-06 | 2007-09-05 | 北京理工大学 | Optical perspective helmet display device of addressing light-ray shielding mechanism |
EP2142953B1 (en) * | 2007-04-22 | 2019-06-05 | Lumus Ltd | A collimating optical device and system |
US7589901B2 (en) * | 2007-07-10 | 2009-09-15 | Microvision, Inc. | Substrate-guided relays for use with scanned beam light sources |
KR100882011B1 (en) * | 2007-07-29 | 2009-02-04 | 주식회사 나노포토닉스 | Method and apparatus for obtaining omnidirectional image using rotationally symmetrical wide angle lens |
JP2009122379A (en) * | 2007-11-14 | 2009-06-04 | Canon Inc | Optical device, control method thereof, imaging device and program |
JP5201957B2 (en) | 2007-11-21 | 2013-06-05 | キヤノン株式会社 | Imaging device |
JP5153351B2 (en) * | 2008-01-18 | 2013-02-27 | キヤノン株式会社 | Zoom lens and optical apparatus having the same |
EP2138886A3 (en) | 2008-06-25 | 2011-10-05 | Samsung Electronics Co., Ltd. | Compact virtual display |
US7952783B2 (en) | 2008-09-22 | 2011-05-31 | Microvision, Inc. | Scanning mirror control |
CN102265124A (en) | 2008-11-04 | 2011-11-30 | 威廉马什赖斯大学 | image mapping spectrometer |
US20110164108A1 (en) * | 2009-12-30 | 2011-07-07 | Fivefocal Llc | System With Selective Narrow FOV and 360 Degree FOV, And Associated Methods |
JP2013521576A (en) * | 2010-02-28 | 2013-06-10 | オスターハウト グループ インコーポレイテッド | Local advertising content on interactive head-mounted eyepieces |
US20110213664A1 (en) | 2010-02-28 | 2011-09-01 | Osterhout Group, Inc. | Local advertising content on an interactive head-mounted eyepiece |
US8743199B2 (en) * | 2010-03-09 | 2014-06-03 | Physical Optics Corporation | Omnidirectional imaging optics with 360°-seamless telescopic resolution |
WO2012037290A2 (en) | 2010-09-14 | 2012-03-22 | Osterhout Group, Inc. | Eyepiece with uniformly illuminated reflective display |
US8941559B2 (en) | 2010-09-21 | 2015-01-27 | Microsoft Corporation | Opacity filter for display device |
JP2012252091A (en) | 2011-06-01 | 2012-12-20 | Sony Corp | Display apparatus |
US9071742B2 (en) * | 2011-07-17 | 2015-06-30 | Ziva Corporation | Optical imaging with foveation |
AU2011204946C1 (en) * | 2011-07-22 | 2012-07-26 | Microsoft Technology Licensing, Llc | Automatic text scrolling on a head-mounted display |
US9256117B2 (en) * | 2011-10-07 | 2016-02-09 | L-3 Communications Cincinnati Electronics Corporation | Panoramic imaging systems comprising rotatable mirrors for image stabilization |
KR102095330B1 (en) * | 2012-04-05 | 2020-03-31 | 매직 립, 인코포레이티드 | Wide-field of view (fov) imaging devices with active foveation capability |
KR20140118770A (en) | 2013-03-27 | 2014-10-08 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Display device |
US9494792B2 (en) | 2013-07-30 | 2016-11-15 | Global Oled Technology Llc | Local seal for encapsulation of electro-optical element on a flexible substrate |
US20160077345A1 (en) | 2014-09-17 | 2016-03-17 | Michael Bohan | Eliminating Binocular Rivalry in Monocular Displays |
EP3163379B1 (en) * | 2015-10-28 | 2019-10-16 | Samsung Electronics Co., Ltd. | See-through holographic display apparatus |
WO2020045338A1 (en) | 2018-08-30 | 2020-03-05 | 三井化学東セロ株式会社 | Release film |
-
2013
- 2013-04-04 KR KR1020197028502A patent/KR102095330B1/en active Active
- 2013-04-04 NZ NZ725322A patent/NZ725322A/en unknown
- 2013-04-04 KR KR1020147031167A patent/KR102022719B1/en active Active
- 2013-04-04 BR BR112014024941A patent/BR112014024941A2/en not_active IP Right Cessation
- 2013-04-04 KR KR1020217030170A patent/KR102404537B1/en active Active
- 2013-04-04 CA CA2869781A patent/CA2869781C/en active Active
- 2013-04-04 CN CN201380029492.0A patent/CN104541201B/en active Active
- 2013-04-04 CN CN201810181619.5A patent/CN108391033B/en active Active
- 2013-04-04 RU RU2015156050A patent/RU2015156050A/en not_active Application Discontinuation
- 2013-04-04 EP EP19193685.5A patent/EP3608717B1/en active Active
- 2013-04-04 JP JP2015504728A patent/JP6176747B2/en active Active
- 2013-04-04 EP EP13772991.9A patent/EP2841991B1/en active Active
- 2013-04-04 KR KR1020217005871A patent/KR102306729B1/en active Active
- 2013-04-04 CA CA3111134A patent/CA3111134A1/en not_active Abandoned
- 2013-04-04 NZ NZ700887A patent/NZ700887A/en unknown
- 2013-04-04 KR KR1020187009611A patent/KR102028732B1/en active Active
- 2013-04-04 AU AU2013243380A patent/AU2013243380B2/en active Active
- 2013-04-04 KR KR1020207008629A patent/KR102223290B1/en active Active
- 2013-04-04 US US13/856,847 patent/US9851563B2/en active Active
- 2013-04-04 WO PCT/US2013/035293 patent/WO2013152205A1/en active Application Filing
- 2013-04-05 EP EP13817261.4A patent/EP2834699B1/en active Active
- 2013-04-05 CN CN201711317271.XA patent/CN107976818B/en active Active
- 2013-04-05 IL IL300033A patent/IL300033B2/en unknown
- 2013-04-05 KR KR1020187009715A patent/KR102124350B1/en active Active
- 2013-04-05 JP JP2015504750A patent/JP6126682B2/en active Active
- 2013-04-05 US US13/857,656 patent/US9547174B2/en active Active
- 2013-04-05 IL IL308962A patent/IL308962A/en unknown
- 2013-04-05 KR KR1020187009706A patent/KR102129330B1/en active Active
- 2013-04-05 KR KR1020207034778A patent/KR102345444B1/en active Active
- 2013-04-05 NZ NZ724344A patent/NZ724344A/en unknown
- 2013-04-05 NZ NZ740631A patent/NZ740631A/en unknown
- 2013-04-05 EP EP20206176.8A patent/EP3796071B1/en active Active
- 2013-04-05 CN CN201711317230.0A patent/CN107843988B/en active Active
- 2013-04-05 WO PCT/US2013/035486 patent/WO2014011266A2/en active Application Filing
- 2013-04-05 CA CA3138549A patent/CA3138549A1/en active Pending
- 2013-04-05 AU AU2013289157A patent/AU2013289157B2/en active Active
- 2013-04-05 NZ NZ725339A patent/NZ725339A/en unknown
- 2013-04-05 KR KR1020187009709A patent/KR102099156B1/en active Active
- 2013-04-05 KR KR1020147031031A patent/KR102188748B1/en active Active
- 2013-04-05 BR BR112014024945-8A patent/BR112014024945A2/en not_active IP Right Cessation
- 2013-04-05 CN CN201380029550.XA patent/CN104937475B/en active Active
- 2013-04-05 NZ NZ700898A patent/NZ700898A/en unknown
- 2013-04-05 CA CA2874576A patent/CA2874576C/en active Active
- 2013-04-05 EP EP24154095.4A patent/EP4339690A3/en active Pending
-
2015
- 2015-12-22 RU RU2015154980A patent/RU2015154980A/en not_active Application Discontinuation
-
2016
- 2016-09-27 US US15/277,887 patent/US9726893B2/en active Active
-
2017
- 2017-03-10 AU AU2017201669A patent/AU2017201669B2/en active Active
- 2017-04-07 JP JP2017076771A patent/JP6434076B2/en active Active
- 2017-05-15 AU AU2017203227A patent/AU2017203227B2/en active Active
- 2017-05-26 US US15/607,335 patent/US9874752B2/en active Active
- 2017-06-20 JP JP2017120476A patent/JP6322753B2/en active Active
- 2017-11-13 US US15/811,543 patent/US10061130B2/en active Active
- 2017-12-06 US US15/833,945 patent/US10048501B2/en active Active
-
2018
- 2018-04-09 JP JP2018074580A patent/JP2018139421A/en not_active Withdrawn
- 2018-05-11 US US15/977,593 patent/US10175491B2/en active Active
- 2018-06-12 US US16/006,717 patent/US10162184B2/en active Active
- 2018-08-15 IL IL261165A patent/IL261165B/en active IP Right Grant
- 2018-09-25 US US16/141,730 patent/US20190018249A1/en not_active Abandoned
- 2018-11-07 JP JP2018209499A patent/JP6768046B2/en active Active
- 2018-11-20 US US16/196,886 patent/US10451883B2/en active Active
-
2019
- 2019-09-02 US US16/558,241 patent/US10901221B2/en active Active
-
2020
- 2020-06-25 IL IL275662A patent/IL275662B/en unknown
- 2020-09-18 JP JP2020157204A patent/JP6944578B2/en active Active
- 2020-12-18 US US17/127,316 patent/US11656452B2/en active Active
-
2021
- 2021-06-20 IL IL284204A patent/IL284204B/en unknown
- 2021-09-10 JP JP2021147476A patent/JP7216165B2/en active Active
-
2022
- 2022-04-06 IL IL292007A patent/IL292007B2/en unknown
-
2023
- 2023-01-19 JP JP2023006331A patent/JP7527415B2/en active Active
- 2023-04-04 US US18/295,685 patent/US12147026B2/en active Active
-
2024
- 2024-10-07 US US18/908,422 patent/US20250028166A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004153605A (en) | 2002-10-31 | 2004-05-27 | Victor Co Of Japan Ltd | Image pickup device and system for transmitting pick-up image |
US20090080695A1 (en) | 2007-09-24 | 2009-03-26 | New Span Opto-Technology, Inc. | Electro-optical Foveated Imaging and Tracking System |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102095330B1 (en) | Wide-field of view (fov) imaging devices with active foveation capability | |
US7973834B2 (en) | Electro-optical foveated imaging and tracking system | |
WO2013122669A1 (en) | Multi-plenoptic system with image stacking and method for wide field-of-regard high-resolution imaging | |
WO2006050430A2 (en) | Optical tracking system using variable focal length lens | |
US8203596B1 (en) | Panoramic imaging system with dual imagers | |
EP3533216B1 (en) | An optical arrangement for focusing images of a three-dimensional space from different divergent perspectives onto a camera sensor | |
Liu et al. | Design of a foveated imaging system using a two-axis MEMS mirror |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
PA0104 | Divisional application for international application |
Comment text: Divisional Application for International Patent Patent event code: PA01041R01D Patent event date: 20190927 Application number text: 1020187009611 Filing date: 20180404 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20191014 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20200115 |
|
A107 | Divisional application of patent | ||
GRNT | Written decision to grant | ||
PA0104 | Divisional application for international application |
Comment text: Divisional Application for International Patent Patent event code: PA01041R01D Patent event date: 20200325 Application number text: 1020187009611 Filing date: 20180404 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20200325 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20200325 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20240226 Start annual number: 5 End annual number: 5 |