TWI749437B - Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample - Google Patents
Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample Download PDFInfo
- Publication number
- TWI749437B TWI749437B TW108148694A TW108148694A TWI749437B TW I749437 B TWI749437 B TW I749437B TW 108148694 A TW108148694 A TW 108148694A TW 108148694 A TW108148694 A TW 108148694A TW I749437 B TWI749437 B TW I749437B
- Authority
- TW
- Taiwan
- Prior art keywords
- sample
- spectrum
- seafood
- identification analysis
- mobile device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0216—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using light concentrators or collectors or condensers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/26—Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2803—Investigating the spectrum using photoelectric array detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/12—Meat; Fish
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J2003/1226—Interference filters
- G01J2003/1234—Continuously variable IF [CVIF]; Wedge type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J2003/2866—Markers; Calibrating of scan
- G01J2003/2873—Storing reference spectrum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/022—Casings
- G01N2201/0221—Portable; cableless; compact; hand-held
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本發明係關於材料特性及識別,且特定言之係關於海產之分光特性。The present invention relates to material properties and identification, and specifically relates to the spectroscopic properties of seafood.
關於最大調查之一者之一最近公佈之報告旨在關於所揭示之海產欺詐之資料(在跨美國之城市中之飯店及雜貨店購買之三分之一海產物種被貼錯標籤)。由Oceana (一非盈利國際倡議團體)自2010年至2012年進行兩年時間研究,藉此自美國21個州中674個零售店之收集超過1200個樣本(2013年2月K. Warner、W. Timme、B. Lowell及M. Hirshfield之「Oceana Study Reveals Seafood Fraud Nationwide」報告)。對魚樣本執行DNA測試以正確識別魚類物種及發現貼錯標籤。類似結論可自關於打擊海產行銷中之欺詐及欺騙之一先前美國國會研究服務部報告(國會研究服務部報告書7-5700號,www.crs.gov,RL-34124 (2010))獲得。 用一低成本物種替代一更貴的魚類係非法的。此係因貨幣收益而激發犯罪者動機,導致負面經濟、健康及環境後果。消費者及誠實海產供應商被哄騙支付更高價格購買更低成本之非所要替代品。最常見替代及更昂貴魚之一者係通常用吳郭魚(tilapia)調換之紅鯛魚(red snapper)。此外,一些魚類替代品造成健康危害。例如,上文Oceana研究已判定超過90%之被廣告為白鮪魚(white tuna)之魚實際上為玉梭魚(escolar),該魚係含有已知導致胃腸問題之毒素之一蛇鯖魚類物種。最後,一些替代魚類可為一被過度捕撈或受脅物種。一此魚類係大西洋鱈魚,在相同研究中發現被用太平洋鱈魚調換。 供應鏈「自船至盤」係複雜的且未調整的,使得此等非法行為難以追蹤。打擊魚類欺詐需要跨整個供應鏈之魚類供應之可追溯性,且以及增加之檢驗。DNA測試檢驗係耗時的,且僅可在一取樣基礎上進行。DNA測試需要將魚類樣本拿到一實驗室且等待結果(一個程序可耗時幾天)。 Wong之美國專利第5,539,207號揭示一種藉由傅立葉轉換紅外(FT-IR)光譜學而識別人類或動物組織之方法。討論中之一組織之一中紅外光譜經量測且與已知組織之一紅外線光譜庫相比較,以找出一最接近匹配。一視覺比較或一型樣辨識演算法可用於匹配紅外線光譜。依此方式,可識別各種組織(且甚至正常組織或惡性(例如癌)組織)。 不利地,Wong之方法難以用於在現場條件中之海產辨識之目的。一FT-IR分光計係一複雜及巨大光學裝置。FT-IR分光計之核心模組(一掃描邁克生(Michelson)干涉儀)使用一精確可移動的較大光學鏡以執行一波長掃描。為使鏡穩定,使用一重光具座。歸因於諸多精確光學及機械組件,一FT-IR分光計需要實驗室條件,且需要由經訓練之人員頻繁重新校準及重新對準。一FT-IR分光計之使用由紅外線指紋之基本振動頻率呈現於電磁光譜之2.5微米至5微米區域中之事實指定。此等振動頻帶具有高解析度及高吸收位準,展現具有狹窄光譜頻帶之較強吸收。 Monro之美國專利第7,750,299號揭示一種用於主動生物測定光譜學之系統,其中由一頻率可調諧毫米波無線電發射器輻照一特定生物體之一DNA膜,且偵測由DNA膜傳輸及散射之無線電波。Monro教示不同DNA膜之無線電波散射光譜係不同的。因此,所傳輸或散射之無線電波光譜可偵測不同DNA膜,其可與不同魚類物種相關聯。依此方式,可識別一魚樣本之物種。 不利地,Monro之方法不能應用於魚樣本其等本身,此係因為來自非DNA組織之信號將壓過DNA信號。正因如此,魚樣本之DNA需被提取且形成為一膜。樣本準備係耗時的,且僅可在實驗室條件中進行。 Cole等人之美國專利第7,728,296號揭示用於使用兆赫(THz)輻射來偵測易爆材料之一裝置及方法。THz輻射佔據紅外線與毫米無線電波之間之頻率頻帶。諸多易爆材料具有THz頻域中之一唯一光譜訊符,因此給予高靈敏度非侵襲性遠端偵測爆炸物。不利地,THz輻射源係龐大的及昂貴的,限制保全關鍵應用(諸如在機場檢查站)之當前用途。 先前技術之方法及裝置不適合現場條件中之海產物種之識別之一目的。需要一種方法及系統,使得一食品藥物管理局(FDA)官員能夠執行一快速現場海產物種識別及特性化,協助官員決定是否採取一執法行動。個人(諸如飯店主廚、壽司連鎖店贊助人及魚市場客戶)亦將得益於快速驗證購買之海產物種之一可能性。One of the largest investigations recently published a report aimed at revealing information about seafood fraud (one-third of seafood purchased in restaurants and grocery stores in cities across the United States were mislabeled). Oceana (a non-profit international advocacy group) conducted a two-year study from 2010 to 2012, and collected more than 1,200 samples from 674 retail stores in 21 states in the United States (February 2013, K. Warner, W "Oceana Study Reveals Seafood Fraud Nationwide" report by Timme, B. Lowell and M. Hirshfield). Perform DNA testing on fish samples to correctly identify fish species and find mislabeling. Similar conclusions can be obtained from one of the previous US Congressional Research Services report on combating fraud and deception in seafood marketing (Congressional Research Services Report No. 7-5700, www.crs.gov, RL-34124 (2010)). It is illegal to replace a more expensive fish line with a low-cost species. This is because monetary gains motivate criminals, leading to negative economic, health, and environmental consequences. Consumers and honest seafood suppliers have been tricked into paying higher prices for lower-cost undesirable alternatives. One of the most common alternative and more expensive fish is the red snapper, which is usually replaced by tilapia. In addition, some fish substitutes cause health hazards. For example, the Oceana study above has determined that more than 90% of the fish advertised as white tuna are actually escolar, which contains one of the toxins known to cause gastrointestinal problems, snake mackerel Species. Finally, some alternative fish may be an overfished or threatened species. One fish is Atlantic cod, which was found to be replaced with Pacific cod in the same study. The supply chain "from ship to disk" is complex and unadjusted, making such illegal activities difficult to track. Fighting fish fraud requires traceability of fish supply across the entire supply chain and increased inspections. DNA testing is time-consuming and can only be performed on a sampling basis. DNA testing requires taking fish samples to a laboratory and waiting for the results (a procedure can take several days). Wong's US Patent No. 5,539,207 discloses a method for identifying human or animal tissues by Fourier Transform Infrared (FT-IR) spectroscopy. The mid-infrared spectrum of one of the tissues under discussion is measured and compared with an infrared spectrum library of known tissues to find a closest match. A visual comparison or a pattern recognition algorithm can be used to match the infrared spectrum. In this way, various tissues (and even normal tissues or malignant (e.g. cancer) tissues) can be identified. Disadvantageously, Wong's method is difficult to use for the purpose of seafood identification in field conditions. An FT-IR spectrometer is a complex and huge optical device. The core module of the FT-IR spectrometer (a scanning Michelson interferometer) uses a large, precise and movable optical mirror to perform a wavelength scan. To stabilize the mirror, use a heavy optical bench. Due to many precise optical and mechanical components, an FT-IR spectrometer requires laboratory conditions and requires frequent recalibration and realignment by trained personnel. The use of an FT-IR spectrometer is specified by the fact that the fundamental vibration frequency of infrared fingerprints is present in the 2.5 micron to 5 micron region of the electromagnetic spectrum. These vibration frequency bands have high resolution and high absorption levels, and exhibit strong absorption with narrow spectral bands. Monro's US Patent No. 7,750,299 discloses a system for active biometric spectroscopy, in which a frequency-tunable millimeter wave radio transmitter irradiates a DNA membrane of a specific organism, and detects transmission and scattering by the DNA membrane Of radio waves. Monro teaches that the radio wave scattering spectra of different DNA membranes are different. Therefore, the transmitted or scattered radio wave spectrum can detect different DNA membranes, which can be associated with different fish species. In this way, the species of a fish sample can be identified. Disadvantageously, Monro's method cannot be applied to fish samples themselves, because the signal from non-DNA tissue will overwhelm the DNA signal. Because of this, the DNA of the fish sample needs to be extracted and formed into a membrane. Sample preparation is time-consuming and can only be performed in laboratory conditions. US Patent No. 7,728,296 to Cole et al. discloses a device and method for detecting explosive materials using terahertz (THz) radiation. THz radiation occupies the frequency band between infrared and millimeter radio waves. Many explosive materials have one of the only spectral symbols in the THz frequency domain, thus giving high sensitivity and non-invasive remote detection of explosives. Disadvantageously, THz radiation sources are bulky and expensive, limiting their current use for critical applications such as airport checkpoints. The methods and devices of the prior art are not suitable for the purpose of identifying seafood species in the field conditions. There is a need for a method and system to enable a Food and Drug Administration (FDA) official to perform a rapid on-site seafood species identification and characterization to assist the official in deciding whether to take an enforcement action. Individuals (such as restaurant chefs, sushi chain patrons and fish market customers) will also benefit from the possibility of quickly verifying purchased seafood species.
本發明之一目的係提供一種用於海產之現場分光特性之方法及裝置。 從技術觀點,較佳地執行給予容易生長、波長分離及電磁輻射偵測之波長帶分光量測。一近紅外光(NIR)頻帶(例如在0.7微米至2.5微米之間)滿足此條件。寬頻帶發光二極體及甚至小型白熾源可用於產生在此波長帶中之NIR光。各種光譜選擇性元件(例如薄膜干涉濾光器)可用於波長分離。光電二極體陣列可用於偵測NIR光。 儘管便於在光譜之NIR部分中工作,然先前技術已大部分聚焦於更長、更不技術友善波長帶,此係因為大部分有機化合物之特性分子鍵之主要振動頻率對應於比2.5微米(2500奈米)長之波長,迫使使用較重及龐大的設備以產生波長分散及偵測此等更長波長之輻射電磁。發明家已認識到多個振動頻率或所謂的泛音確實在技術便利NIR頻帶內,且因此,儘管此訊息歸因於一相對較低振幅及泛音之多個頻率而被隱藏,然生物物質識別資訊呈現於NIR光譜中。 當不易自一光譜獲得或視覺識別分光資訊時,進階資料處理及特徵或型樣提取及模型化技術(諸如主分量分析(PCA)、分類類比軟獨立模型化(SIMCA)、偏最小平方判别分析(PLS-DA)及支援向量機(SVM))可用於提取所需資訊。因此,多變數型樣辨識及資料迴歸實現使用一輕型及精巧NIR分光計以識別及特性化海產。 根據本發明,提供一種用於現場鑑別一海產之方法,其包括: (a)提供一可攜式NIR分光計; (b)使用步驟(a)之NIR分光計來獲得海產樣本之一反射光譜; (c)執行步驟(b)中所獲得之海產樣本之反射光譜之一多變數型樣辨識分析,以藉由比較反射光譜與對應於不同物種之海產之已知身份光譜之一光譜庫,而判定具有最相似光譜型樣之一匹配光譜;及 (d)基於帶有步驟(c)中所判定之最相似光譜型樣之匹配光譜而識別海產樣本。 此等型樣辨識演算法亦可產生識別結果之一可能性之一置信測度或一可能性估計。 根據本發明,進一步提供一種用於現場判定一海產樣本之鮮度之方法,其包括: (a)提供一可攜式NIR分光計; (b)使用步驟(a)之NIR分光計來獲得海產樣本之一反射光譜; (c)執行步驟(b)中所獲得之海產樣本之反射光譜之一多變數型樣辨識分析,以藉由比較反射光譜與對應於海產樣本之鮮度之已知身份光譜之一光譜庫,而判定具有一最相似光譜型樣之一匹配光譜,藉此提供海產樣本之鮮度之一定量量測。 可自海產樣本上之複數個位置獲得反射光譜,以減少海產樣本之表面紋理之影響。多變數迴歸分析可包含(例如)偏最小平方法(PLS)及支援向量迴歸(SVR)。 根據本發明,進一步提供一種用於現場鑑別一海產樣本之裝置,其包括: 一可攜式NIR分光計,其用於獲得海產樣本之一NIR反射光譜,及 一分析器,其操作上耦合至分光計且經組態用於執行海產樣本之反射光譜之一多變數型樣辨識分析,以藉由比較反射光譜與對應於不同物種之海產之已知身份光譜之一光譜庫,而判定具有一最相似光譜型樣之一匹配光譜,且基於帶有最相似光譜型樣之匹配光譜而識別海產樣本。 可攜式NIR分光計可包含耦合至一光偵測器陣列之一光譜橫向可變光學傳輸濾光器,導致一特別精巧及輕型結構。一行動通信器件可經組態以與NIR分光計通信,且執行由可攜式NIR分光計所獲得之反射光譜之多變數分析。此外,可在與行動器件通信之一遠端伺服器處執行至少一些資料分析及光譜型樣模型建置活動。 根據本發明之又一態樣,進一步提供安置於行動通信器件中且已將已知身份光譜庫編碼於其上之一永久性儲存媒體。One object of the present invention is to provide a method and device for on-site spectroscopic characteristics of seafood. From a technical point of view, it is better to perform wavelength band spectroscopy for easy growth, wavelength separation, and electromagnetic radiation detection. A near-infrared (NIR) frequency band (for example, between 0.7 micrometers and 2.5 micrometers) satisfies this condition. Broadband LEDs and even small incandescent sources can be used to generate NIR light in this wavelength band. Various spectrally selective elements (such as thin film interference filters) can be used for wavelength separation. The photodiode array can be used to detect NIR light. Although it is convenient to work in the NIR part of the spectrum, the previous technology has mostly focused on longer and less technology-friendly wavelength bands. This is because the main vibration frequency of the characteristic molecular bonds of most organic compounds corresponds to a frequency greater than 2.5 microns (2500 The long wavelength of nanometers necessitates the use of heavier and bulky equipment to generate wavelength dispersion and to detect these longer-wavelength electromagnetic radiation. The inventor has realized that multiple vibration frequencies or so-called overtones are indeed in the technically convenient NIR band, and therefore, although this information is hidden due to multiple frequencies of a relatively low amplitude and overtones, biometric identification information Appears in the NIR spectrum. When it is not easy to obtain or visually recognize spectroscopic information from a spectrum, advanced data processing and feature or pattern extraction and modeling techniques (such as principal component analysis (PCA), classification and analog soft independent modeling (SIMCA), partial least square discrimination) Analysis (PLS-DA) and Support Vector Machine (SVM)) can be used to extract the required information. Therefore, multi-variable type identification and data return realize the use of a lightweight and compact NIR spectrometer to identify and characterize seafood. According to the present invention, there is provided a method for identifying a seafood on site, which includes: (a) Provide a portable NIR spectrometer; (b) Use the NIR spectrometer of step (a) to obtain the reflectance spectrum of one of the seafood samples; (c) Perform a multi-variable type identification analysis of the reflectance spectra of the seafood samples obtained in step (b) to compare the reflectance spectra with a spectral library of known identification spectra corresponding to different species of seafood, and Determine the matching spectrum with one of the most similar spectral patterns; and (d) Identify the seafood sample based on the matching spectrum with the most similar spectrum pattern determined in step (c). These pattern recognition algorithms can also generate a confidence measure or a probability estimate of a possibility of the recognition result. According to the present invention, there is further provided a method for judging the freshness of a seafood sample on site, which includes: (a) Provide a portable NIR spectrometer; (b) Use the NIR spectrometer of step (a) to obtain the reflectance spectrum of one of the seafood samples; (c) Perform a multivariable type identification analysis of the reflectance spectrum of the seafood sample obtained in step (b) to compare the reflectance spectrum with a spectrum library of known identity spectra corresponding to the freshness of the seafood sample, and It is determined that there is a matching spectrum of the most similar spectrum pattern, thereby providing a quantitative measurement of the freshness of the seafood sample. The reflectance spectrum can be obtained from multiple positions on the seafood sample to reduce the influence of the surface texture of the seafood sample. Multivariate regression analysis can include, for example, partial least squares (PLS) and support vector regression (SVR). According to the present invention, there is further provided a device for identifying a seafood sample on site, which includes: A portable NIR spectrometer, which is used to obtain the NIR reflectance spectrum of one of the seafood samples, and An analyzer that is operatively coupled to a spectrometer and is configured to perform a multivariable type identification analysis of the reflectance spectrum of a seafood sample by comparing the reflectance spectrum with the known identification spectra of seafood corresponding to different species A spectrum library is determined to have a matching spectrum with the most similar spectrum pattern, and the seafood sample is identified based on the matching spectrum with the most similar spectrum pattern. The portable NIR spectrometer can include a spectral laterally variable optical transmission filter coupled to a light detector array, resulting in a particularly compact and lightweight structure. A mobile communication device can be configured to communicate with the NIR spectrometer and perform multivariate analysis of the reflection spectrum obtained by the portable NIR spectrometer. In addition, at least some data analysis and spectral pattern model building activities can be performed at a remote server that communicates with the mobile device. According to another aspect of the present invention, there is further provided a permanent storage medium which is installed in a mobile communication device and has a known identity spectrum library encoded on it.
儘管結合各種實施例及實例來描述本教示,然不意欲本教示限於此等實施例。相反地,本教示包含各種替代物及等效物,如熟悉此項技術者將明白。
參考圖1,用於現場鑑別一海產樣本11之一裝置10包含用於獲得海產樣本11之一漫NIR反射光譜13 (信號功率P相對於波長λ)之一可攜式NIR分光計12。一分析器14經由一纜線15操作上耦合至分光計12。分析器14經組態以執行海產樣本11之反射光譜13之一多變數分析,從而判定對應於反射光譜13之至少一特性參數。分析器14經組態用以比較至少一參數與對應於海產樣本11之物種之一臨限值,用於判定海產樣本11之物種。可在分析器14之一顯示器16上顯示該等物種。至少一參數可包含兩個或兩個以上參數。兩個參數可用圖形表示為稱作Coomans圖之一XY圖上之一點。Coomans圖上之點之一位置表示採用反射光譜13之海產物種。將在下文進一步考量多變數迴歸/型樣辨識分析及Coomans圖。首先考量NIR分光計12之構造。
參考圖2,NIR分光計12包含一主體23、用於照明海產樣本11之白熾燈24、用於引導漫反射光36之一錐形光導管(TLP) 25、用於將反射光36分成個別波長之一橫向可變濾光器(LVF) 31及用於偵測個別波長之光學功率位準之一光偵測器陣列37。光偵測器陣列37形成於一CMOS處理晶片37A中且使用一光學透明黏著劑38來耦合至LVF 31。提供一電子板37B以支援及控制CMOS處理晶片37A。提供一選用按鈕21以起始光譜收集。光偵測器陣列37垂直對準於TLP 25之一縱向軸LA。
在操作中,白熾燈24照明海產樣本11。TLP 25收集漫反射光36且將其導引朝向LVF 31。LVF 31將漫反射光36分成個別波長,由光偵測器陣列31偵測該等個別波長。可藉由按下按鈕21或藉由來自分析器14之外部命令而開始量測循環。
精巧型NIR分光計12係藉由其之光偵測子總成29之構造而實現。參考圖3A,在XZ平面中展示光偵測子總成29。在圖3A中,光偵測子總成29如由圖2及圖3A之右側上之z軸之方向所指示而經180度翻轉。在圖3A中所示之較佳實施例中,光學透明黏著劑38將光偵測器陣列37直接耦合至LVF 31。光學透明黏著劑38必需:為事實上非導電或介電;藉由使用對偵測器陣列37之感應壓力或破壞力來達成良好黏附強度而為機械中性;光學相容以透射所要光譜含量;移除空氣對玻璃界面而產生之反射;及具有熱膨脹係數性質以在熱循環期間最小化至偵測器像素52之壓力。一不透明環氧樹脂22囊封LVF 31,促進移除雜散光且保護LVF 31免於濕度。一選用玻璃窗39被放置於LVF 31之頂部用於額外環境保護。
參考圖3B及圖3C,繪示LVF 31之操作。在其中波長被分散之YZ平面中展示LVF 31。LVF 31包含夾在楔形二向分光鏡33之間之一楔形間隔件32以形成一法布里-伯羅(Fabry-Perot)干涉計,在二向分光鏡33之間具有一橫向可變間隔。光學傳輸濾光器31之楔形形狀使得其之傳輸波長橫向可變,如使用箭頭34A、34B及34C分別指向在可變光學傳輸濾光器31下方所示之一傳輸光譜35 (圖3C)之個別傳輸高峰35A、35B及35C所示。在操作中,自海產樣本11所反射之多色光36照射於可變光學濾光器31上,可變光學濾光器31將多色光36分成使用箭頭34A至34C所示之個別光譜分量。NIR分光計12之波長範圍較佳地在700奈米至2500奈米之間,且更佳地在950奈米至1950奈米之間。
使用LVF 31及TLP 25允許相當減少NIR分光計12之尺寸之。NIR分光計12無任何移動部件用於波長掃描。通常小於100克之NIR分光計12之小重量允許將NIR分光計12直接放置於海產樣本11上。小重量及尺寸亦使得NIR分光計12 (例如)可容易在一海產檢驗員之一口袋中運送。在圖3D中繪示NIR分光計12之尺寸。NIR分光計12可容易手持,其中按鈕21經方便定位用於拇指操作。
NIR分光計之諸多變體當然係可能的。例如,可用寬頻發光二極體或LED替換白熾燈泡24。可用另一光學元件(諸如一光纖面板或一全像光束塑形器)替換TLP 25。可用另一適合波長選擇元件(諸如一小型繞射光柵、二向分光鏡之一陣列、一MEMS器件等等)替換LVF 31。
參考圖4A且進一步參考圖1,用於現場鑑別海產樣本11之一方法40包含提供上文所描述之可攜式NIR分光計12之一步驟41。在一步驟42中,使用NIR分光計12來獲得海產樣本11之反射光譜13。在一步驟43中,執行步驟海產樣本11之反射光譜13之一多變數型樣辨識分析,以藉由比較反射光譜13與對應於不同物種之海產之已知身份光譜之一光譜庫,而判定具有一最相似光譜型樣之一匹配光譜。最後,在一步驟44中,基於帶有先前步驟43中所判定之最相似光譜型樣之匹配光譜而識別海產樣本11。
文中,術語「匹配光譜」並非理所當然指示一精確匹配。代替性地,「匹配光譜」指示如與所量測之反射光譜13相比較,該光譜庫之攜載最相似光譜型樣之一身份光譜。因此,「匹配」並非為該等可獲得之匹配之精確的,僅為最接近匹配。可基於所使用之特定匹配評估方法而計算匹配之鄰近度。
執行多變數型樣辨識分析43以自反射光譜13提取海產物種資訊。歸因於特性分子鍵之振動頻率之許多泛音,反射光譜13可非常複雜,使得個別光譜高峰無法被視覺識別。根據本發明,執行多變數型樣分析43 (亦稱為「化學計量學分析」)以識別或鑑別海產樣本11之物種。
量測步驟42較佳地包含:在海產樣本11上之不同位置處執行重複光譜量測;及平均化重複量測,以減小所獲得之反射光譜對海產樣本11之一紋理之一相依性。反射光譜13之擴展相乘性散射校正(EMSC)可用於減小所量測之反射光譜13對海產樣本11之散射性質之相依性。
亦可使用其他已知統計方法來預處理反射光譜13,例如可在繼續進行多變數型樣辨識分析步驟43之前計算反射光譜13之標準正常變異(SNV)。可藉由執行反射光譜13之Savitzky–Golay濾光及計算反射光譜13之一第一及/或一第二導數以在多變數型樣辨識分析步驟43中考量,而考量反射光譜13中之光譜特徵之斜率及/或反曲。其他統計方法(諸如反射光譜13之逐一樣本正規化及/或逐一通道自動按比例調整)可用於促進多變數型樣辨識分析步驟43,及用於提供更穩定結果。
通常以兩個階段執行多變數型樣辨識分析43。舉例而言,參考圖4B且進一步參考圖1,首先執行一PCA步驟45,以定義需被識別之各海產類型之一校準模型。可在裝置10之一校準階段量測海產樣本11之前,預先完成PCA步驟45。在一第二步驟46中,分析所收集之反射光譜13與不同海產物種之校準模型之間之相似性。在所示實施例中,使用分類類比之軟獨立模型化(SIMCA)。由於SIMCA步驟46,判定兩個參數。此等兩個參數在一XY圖中被標繪(Coomans圖),其之不同區域對應於不同海產物種。在一些情況下僅需要一參數,且可比較此參數與PCA步驟45中所判定之一臨限值,以鑑別海產樣本11。可應用其他多變數型樣辨識分析方法。在下文「實驗驗證」部分中考量此等方法之實例。
鑑於經電腦化之行動通信器件(諸如智慧電話)激增,有利地使用一行動通信器件來執行多變數型樣辨識分析步驟43 (圖4A及圖4B)。參考圖5A且進一步參考圖1及圖4A,用於現場鑑別海產樣本11之一裝置50A類似於圖1之裝置10。圖5A之裝置50A中之一差異係:一行動通信器件54經組態以執行圖4A之方法40之多變數分析步驟43及識別步驟44。為此目的,行動通信裝置54可包含一永久性儲存媒體58,其將對應於海產之不同物種之已知身份光譜之光譜庫及/或電腦指令編碼於其上,用於執行多變數型樣辨識/資料減少分析步驟43。行動通信器件54可經由一無線鏈路59 (諸如Bluetooth™)或經由一有線(例如USB通信)耦合至NIR分光計12,用於將所獲得之反射光譜13傳送至行動通信器件54。
現轉向圖5B且進一步參考圖4A及圖5A,用於現場鑑別一海產樣本之一裝置50B類似於圖5A之裝置50A。圖5B之裝置50B包含經由至一基地台55 (其連接至網際網路52)之一RF通信鏈路56與行動通信器件54通信之一遠端伺服器57。在操作中,自行動器件54傳送反射光譜13至遠端伺服去57,且在遠端伺服器57處執行多變數型樣辨識分析(即,圖4A之方法40之步驟43)。多變數分析步驟43 (圖4A)之結果被傳送回至行動器件54 (圖5B),用於顯示給一使用者(未展示)。可由行動器件54或由遠端伺服器57 (圖5B)執行識別步驟44 (圖4A)。使用一遠端伺服器之運算能力使得不需要行動通信器件上之資源,且因此可加速海產識別之總體程序。
實驗驗證
執行諸多實驗以驗證相似外觀,但可使用NIR光譜學及多變數迴歸(化學計量學)分析之一組合來識別不同標價的魚類物種。參考圖6至圖8,使用三組不同魚類物種。第一組包含:一整條紅鯔魚60A及一整條鯔魚60B (圖6),皮和肉兩者(肉未被展示)。第二組包含:冬鱈魚皮71A;鱈魚皮71B;冬鱈魚肉72A;及鱈魚肉72B。第三組包含:幼鮭皮81A;歐鱒皮81B;幼鮭肉82A;及歐鱒肉82B。如自圖6至圖8之照片可見,甚至針對一海產專業人員(諸如一批發商或一廚師,更不必說一般大眾客戶),視覺判別整條魚及魚肉將相當具有挑戰性。在圖6至圖8中,「A」群組包含更昂貴物種60A、71A、72A、81A及82A,且「B」群組包含較不昂貴物種60B、71B、72B、81B及82B。因此,使用「B」物種來替代「A」物種可提供一實質經濟利益。
轉向圖9,用於本發明之實驗驗證中之一裝置90包含由美國加州苗必達(Milpitas, California, USA)之JDS Uniphase公司製造之微型NIR™ 1700分光計92。微型NIR分光計92在950奈米至1650奈米之一波長範圍中操作。微型NIR分光計92係一低成本、極精巧的可攜式分光計,其重60克且直徑上小於50毫米。分光計92在一漫反射中操作,且類似於圖3B之分光計12而建構,包含用於照明海產樣本11之一光源(未展示)、分散元件31、光偵測器陣列37及電子器件(未展示)(其等全部包含於可直接放置於一海產樣本91上之一較小可攜式封裝中)。分光計92由一纜線95連接至運行Unscrambler™多變數分析軟體(其由挪威奧斯陸(Oslo, Norway)之CAMO AS提供(版本9.6))之一膝上型電腦94。針對各光譜量測,已累積具有5毫秒積分時間之50個掃描,導致每反射光譜量測0.25秒之一總量測時間。
現參考圖10A及10B,流程圖100A及100B表示分別針對魚類樣本60A及60B;71A及71B;72A及72B;81A及81B;及82A及82B而執行之光譜獲取及PCA模型建立步驟。在步驟101A及101B中,將三種不同個別物種分別提供給各圖6至圖8之魚類樣本60A及60B;71A及71B;72A及72B;81A及81B;82A及82B。針對鯔魚60A及60B;冬鱈魚/鱈魚71A及71B;72A及72B;及幼鮭/歐鱒81A及81B;82A及82B配對,在步驟102A及102B中分別收集皮反射光譜;且在步驟103A及103B中分別收集肉反射光譜。在三塊之各者上之不同位置處獲得十個NIR反射光譜之一整體,導致圖6至圖8之各魚類樣本60A;60B;71A;71B;72A;72B;81A;;81B;82A及82B之三十個量測。使用擴展相乘性散射校正之一標準方法來校正光譜用於散射。
因此,已分別針對步驟104A及104B中之各魚皮類型60A及60B;71A及71B;81A及81B而獲得全部三十個光譜。已分別針對步驟105A及105B中之各魚肉類型72A及72B;82A及82B而獲得全部三十個光譜。已針對各自步驟106A、107A;及106B、107B中之各類型之三個樣本之各者而將光譜平均化成五組,導致針對各樣本之兩個平均光譜及針對各樣本類型之六個平均光譜,包含皮及肉。完成平均化,以減少所獲得之反射光譜對各自海產樣本60A、60B、71A、71B、72A、72B、81A、81B、82A及82B之一紋理一相依性。接著,已針對各自「A」及「B」樣本而在步驟108A、108B中建立PCA模型。執行一SIMCA分析以識別各魚類樣本之類型。該等結果依各魚類型之Coomans圖而呈現。
紅鯔魚/鯔魚配對
參考圖11且進一步參考圖6,紅鯔魚60A及鯔魚60B之反射光譜經展示為反射信號(任意單位)對在10900 cm-1
至6000 cm-1
之間之範圍中之波數(cm-1
)中之波數之相依性。在111展示包含各自紅鯔魚皮之六個光譜及鯔魚皮之六個光譜之十二個跡線。在112展示包含各自紅鯔魚肉之六個光譜及鯔魚肉之六個光譜之十二個跡線。可見紅鯔魚及鯔魚皮之光譜111彼此十分相似,且紅鯔魚及鯔魚肉之光譜112亦彼此十分相似,所以紅鯔魚之光譜視覺上無法與鯔魚之光譜區分(針對皮及肉兩者)。
轉向圖12且進一步參考圖10A及圖10B,呈現PCA分析步驟108A、108B (圖10B)之結果。在圖12中,紅鯔魚皮得分121A足以自鯔魚皮得分121B分離以允許容易識別,但在紅鯔魚肉得分122A與鯔魚肉得分122B之間未達成清楚分離。
現參考圖13A及13B,紅鯔魚/鯔魚配對之SIMCA分析之結果依5%顯著性之Coomans圖之形式呈現。圖13A展示紅鯔魚樣本識別之結果。灰色圈131A表示用於獲得紅鯔魚之身份光譜之校準紅鯔魚樣本(皮及肉);白色填充圈131B表示用於獲得鯔魚之身份光譜之校準鯔魚樣本(皮及肉);及填充(黑色)圈132表示測試樣本。全部四個黑色圈對應於一紅鯔魚皮樣本及一紅鯔魚肉樣本,各由兩個平均光譜表示。圖13B展示鯔魚樣本識別之結果。填充(黑色)圈133表示兩個測試樣本。全部八個黑色圈133對應於兩個鯔魚皮樣本及兩個鯔魚肉樣本,各由如上文所解釋之兩個平均光譜表示。
可藉由比較參數與一臨限值而使用兩個參數「至紅鯔魚之距離」及「至鯔魚之距離」之僅一者。例如,若使用「至鯔魚之距離」,則臨限值約為0.01。若使用「至紅鯔魚之距離」,則臨限值約為0.0008。自圖13A及圖13B可見,紅鯔魚(皮及肉兩者)皆可容易識別。因此,移除魚類樣本之皮將不允許一潛在違法犯罪者隱藏用鯔魚來替換紅鯔魚之一非法行為。
冬鱈魚/鱈魚配對
參考圖14且進一步參考圖7,冬鱈魚皮71A、冬鱈魚肉72A、鱈魚皮71B及鱈魚肉72B (圖7)之反射光譜經展示為反射信號(任意單位)對在10900 cm-1
至6000 cm-1
之間之範圍中之波數(cm-1
)中之波數之相依性。在141中展示包含冬鱈魚皮之六個光譜及鱈魚皮之六個光譜之十二個跡線。在142中展示包含各自冬鱈魚肉之六個光譜及鱈魚肉之六個光譜之十二個跡線。可見冬鱈魚及鱈魚皮之光譜141彼此十分相似,且冬鱈魚及鱈魚肉之光譜亦彼此十分相似,所以冬鱈魚之光譜視覺上無法與鱈魚之光譜區分(針對皮及肉樣本兩者)。
轉向圖15且進一步參考圖10A及圖10B,呈現PCA分析步驟108A、108B (圖10B)之結果。在圖15中,冬鱈魚皮得分151A顯得交替散佈有鱈魚皮得分151B,且冬鱈魚肉得分152A顯得交替散佈有鱈魚肉得分152B,所以在此階段無法完成清楚區分。
現參考圖16A及16B,冬鱈魚/鱈魚配對之SIMCA分析之結果依5%顯著性之Coomans圖之形式呈現。圖16A展示鱈魚樣本識別之結果。灰色圈161A表示用於獲得冬鱈魚之身份光譜之校準冬鱈魚樣本(皮及肉);白色填充圈161B表示用於獲得鱈魚之身份光譜之校準鱈魚樣本(皮及肉);及填充(黑色)圈162表示測試樣本。全部八個黑色圈對應於兩個鱈魚皮樣本及兩個鱈魚肉樣本,各由如上文所解釋之兩個平均光譜表示。圖16B展示冬鱈魚樣本識別之結果。填充(黑色)圈163表示一測試樣本。全部四個黑色圈163對應於一冬鱈魚皮樣本及一冬鱈魚肉樣本,各由兩個平均光譜表示。自圖16A及圖16B可見,冬鱈魚(皮及肉兩者)可容易識別且與鱈魚區分。
幼鮭/鮭魚配對
參考圖17且進一步參考圖8,幼鮭皮81A、幼鮭肉82A、歐鱒皮81B及歐鱒肉82B之反射光譜經展示為反射信號(任意單位)對在10900 cm-1
至6000 cm-1
之間之範圍中之波數(cm-1
)中之波數之相依性。在171中展示包含幼鮭皮之六個光譜及歐鱒皮之六個光譜之十二個跡線。在172中展示包含各自幼鮭肉之六個光譜及歐鱒肉之六個光譜之十二個跡線。可見幼鮭及歐鱒之皮光譜171彼此十分相似,且幼鮭及歐鱒之肉光譜172亦彼此十分相似,所以幼鮭之光譜視覺上無法與歐鱒之光譜區分(針對皮及肉樣本兩者)。
轉向圖18且進一步參考圖10A及圖10B,呈現PCA分析步驟108A、108B (圖10B)之結果。在圖18中,幼鮭皮得分181A顯得交替散佈有歐鱒皮得分181B,且幼鮭肉得分182A顯得交替散佈有歐鱒肉得分182B,所以在此階段無法完成清楚區分。
現參考圖19A及19B,幼鮭/歐鱒配對之SIMCA分析之結果依5%顯著性之Coomans圖之形式呈現。圖19A展示歐鱒樣本識別之結果。灰色圈191A表示用於獲得幼鮭之身份光譜之校準幼鮭樣本(皮及肉);白色填充圈191B表示用於獲得歐鱒之身份光譜之校準歐鱒樣本(皮及肉);及填充(黑色)圈192表示測試樣本。全部八個黑色圈對應於兩個歐鱒皮樣本及兩個歐鱒肉樣本,各由兩個平均光譜表示。圖19B展示幼鮭樣本識別之結果。填充(黑色)圈193表示兩個測試樣本。全部四個黑色圈193對應於兩個幼鮭皮樣本及兩個幼鮭肉樣本,各由兩個平均光譜表示。自圖19A及圖19B可見,幼鮭(皮及肉兩者)可容易識別且與歐鱒區分。
鯔魚(Meerbarbe)魚片鮮度
已執行鯔魚魚片之反射光譜之一數值研究,其中使用各種已知多變數分析方法以在鯔魚魚片(皮及無皮肉兩者)鮮度條件之間區分。
以下表1概述使用在一典型桌上型電腦上執行之鯔魚及紅鯔魚之替代匹配方法之成功預測率。光譜在被發送至多變數型樣分類其之前被自動按比例調整。基於藉由模型而執行預測之時間通常在毫秒之範圍內。當需要進行現場模型更新時,建立模型之時間可變為決定因數。在現場,使用點應用、量測之速度及獲得結果之速度越短越重要。另外,結果之準確度很重要。自表1,可見方法(諸如SVM (使用線性核心))在最短時間提供最佳準確度。
表1
10:裝置 11:海產樣本 12:可攜式近紅外光(NIR)分光計 13:漫近紅外光(NIR)反射光譜 14:分析器 15:纜線 16:顯示器 21:按鈕 22:不透明環氧樹脂 23:主體 24:白熾燈/白熾燈泡 25:錐形光導管(TLP) 29:光偵測子總成 31:橫向可變濾光器(LVF)/分散元件 32:楔形間隔件 33:楔形二向分光鏡 34A:箭頭 34B:箭頭 34C:箭頭 35:傳輸光譜 35A:個別傳輸高峰 35B:個別傳輸高峰 35C:個別傳輸高峰 36:漫反射光/多色光 37:光偵測器陣列 37A:互補金氧半導體(CMOS)處理晶片 37B:電子板 38:光學透明黏著劑 39:選用玻璃窗 40:方法 41:步驟 42:量測步驟 43:多變數型樣辨識分析/資料減少分析步驟 44:識別步驟 45:主分量分析(PCA)步驟 46:第二步驟/分類類比之軟獨立模型化(SIMCA)步驟 50A:裝置 50B:裝置 52:偵測器像素/網際網路 54:行動通信器件 55:基地台 56:射頻(RF)通信鏈路 57:遠端伺服器 58:永久性儲存媒體 59:無線鏈路 60A:紅鯔魚/魚類樣本 60B:鯔魚/魚類樣本 71A:冬鱈魚皮 71B:鱈魚皮 72A:冬鱈魚肉 72B:鱈魚肉 81A:幼鮭皮 81B:歐鱒皮 82A:幼鮭肉 82B:歐鱒肉 90:裝置 91:海產樣本 92:微型NIR™ 1700分光計 94:膝上型電腦 95:纜線 100A:流程圖 100B:流程圖 101A:步驟 101B:步驟 102A:步驟 102B:步驟 103A:步驟 103B:步驟 104A:步驟 104B:步驟 105A:步驟 105B:步驟 106A:步驟 106B:步驟 107A:步驟 107B:步驟 108A:主分量分析(PCA)分析步驟 108B:主分量分析(PCA)分析步驟 111:光譜 112:光譜 121A:紅鯔魚皮得分 121B:鯔魚皮得分 122A:紅鯔魚肉得分 122B:鯔魚肉得分 131A:用於獲得紅鯔魚之身份光譜之校準紅鯔魚樣本(皮及肉) 131B:用於獲得鯔魚之身份光譜之校準鯔魚樣本(皮及肉)用於獲得鯔魚之身份光譜之校準鯔魚樣本(皮及肉) 132:測試樣本 133:鯔魚皮樣本及鯔魚肉樣本 141:冬鱈魚皮/鱈魚皮光譜 142:冬鱈魚肉/鱈魚肉光譜 151A:冬鱈魚皮得分 151B:鱈魚皮得分 152A:冬鱈魚肉得分 152B:鱈魚肉得分 161A:校準冬鱈魚樣本(皮及肉) 161B:校準鱈魚樣本(皮及肉) 162:測試樣本 163:測試樣本 171:幼鮭皮/歐鱒皮光譜 172:幼鮭肉/歐鱒肉光譜 181A:幼鮭皮得分 181B:歐鱒皮得分 182A:幼鮭肉得分 182B:歐鱒肉得分 191A:校準幼鮭樣本(皮及肉) 191B:校準歐鱒樣本(皮及肉) 192:測試樣本 193:測試樣本 λ:波長 LA:縱向軸 P:信號功率 XZ:平面 YZ:平面 z:軸10: device 11: Seafood samples 12: Portable near infrared light (NIR) spectrometer 13: Diffuse near infrared light (NIR) reflectance spectrum 14: Analyzer 15: Cable 16: display 21: Button 22: Opaque epoxy resin 23: main body 24: Incandescent lamp/Incandescent bulb 25: Tapered Light Pipe (TLP) 29: Light detection sub-assembly 31: Horizontal variable filter (LVF)/dispersion element 32: Wedge spacer 33: Wedge dichroic beam splitter 34A: Arrow 34B: Arrow 34C: Arrow 35: Transmission spectrum 35A: Individual transmission peak 35B: Individual transmission peak 35C: Individual transmission peak 36: Diffuse light/multicolor light 37: Light detector array 37A: Complementary Metal Oxide Semiconductor (CMOS) processing wafer 37B: Electronic board 38: Optically transparent adhesive 39: use glass windows 40: Method 41: Steps 42: Measurement steps 43: Multi-variable type identification analysis/data reduction analysis steps 44: identification steps 45: Principal Component Analysis (PCA) step 46: The second step/soft independent modeling (SIMCA) step of classification analogy 50A: device 50B: Device 52: Detector pixel/Internet 54: mobile communication device 55: base station 56: Radio Frequency (RF) Communication Link 57: remote server 58: Permanent storage media 59: wireless link 60A: Red mullet/fish sample 60B: Mullet/fish sample 71A: Winter Cod Skin 71B: Cod skin 72A: Winter Cod Meat 72B: Cod meat 81A: young salmon skin 81B: European trout skin 82A: young salmon 82B: European trout 90: device 91: Seafood samples 92: Mini NIR™ 1700 Spectrometer 94: laptop 95: Cable 100A: Flow chart 100B: Flow chart 101A: Step 101B: Step 102A: Step 102B: Step 103A: Step 103B: Steps 104A: Step 104B: Step 105A: Step 105B: Step 106A: Step 106B: Step 107A: Step 107B: Step 108A: Principal Component Analysis (PCA) analysis steps 108B: Principal Component Analysis (PCA) analysis steps 111: Spectrum 112: Spectrum 121A: Red mullet skin score 121B: Mullet skin score 122A: Red mullet score 122B: Mullet score 131A: Calibration red mullet sample (skin and meat) used to obtain the identity spectrum of red mullet 131B: Calibration mullet sample (skin and meat) used to obtain the identity spectrum of mullet 132: test sample 133: Mullet skin sample and mullet meat sample 141: Winter cod skin / cod skin spectrum 142: Winter cod meat / cod meat spectrum 151A: Winter cod skin score 151B: Cod skin score 152A: Winter Cod Meat Score 152B: Cod meat score 161A: Calibration winter cod sample (skin and meat) 161B: Calibration cod sample (skin and meat) 162: test sample 163: test sample 171: Young salmon skin/European trout skin spectrum 172: Young salmon meat/European trout meat spectrum 181A: Young salmon skin score 181B: European trout skin score 182A: Young salmon score 182B: European trout score 191A: Calibration young salmon sample (skin and meat) 191B: Calibration sample of European trout (skin and meat) 192: Test sample 193: test sample λ: wavelength LA: Longitudinal axis P: signal power XZ: plane YZ: plane z: axis
現將結合圖式描述例示性實施例,其中: 圖1係根據本發明用於現場鑑別一海產樣本之一裝置之一示意三維圖,圖中疊印有由該裝置量測之一NIR反射光譜; 圖2係圖1之裝置之一可攜式手持NIR分光計之一側視橫截面圖; 圖3A係圖2之可攜式NIR分光計之一光偵測子總成之一側視橫截面圖; 圖3B係用於圖3A之光偵測子總成中之一波長分散元件之一側視橫截面圖; 圖3C係圖3B之波長分離元件之一透射譜; 圖3D係圖2之可攜式手持NIR分光計之三維圖; 圖4A係根據本發明之用於現場鑑別一海產樣本之一方法之一流程圖; 圖4B係根據本發明之NIR光譜之一例示性多變數分析之一流程圖; 圖5A係本發明之裝置之一實施例之一示意圖,其中與NIR分光計無線通信之一可攜式器件用於分析由NIR分光計獲得之NIR光譜; 圖5B係本發明之裝置之另一實施例之一示意圖,其中可攜式器件用於將所量測之NIR光譜中繼至一遠端伺服器用於執行多變數分析; 圖6至圖8係本發明之實驗驗證中使用之待在包含紅鯔魚/鯔魚配對(圖6)、冬鱈魚/鱈魚配對(皮與肉,圖7)及幼鮭/歐鱒配對(皮與肉,圖8)之間區分之海產配對之彩色照片; 圖9係量測一鮭魚樣本之一NIR光譜之裝置之一原型之一彩色照片; 圖10A及圖10B係分別用於實驗驗證之更高及更低品質海產之資料收集及分析之流程圖; 圖11、圖14及圖17分別係紅鯔魚/鯔魚配對、冬天鱈魚/鱈魚配對及幼鮭/歐鱒配對之所量測之漫反射光譜; 圖12、15及18分別係紅鯔魚/鯔魚配對、冬鱈魚/鱈魚配對及幼鮭/歐鱒配對之所量測之主分量分析(PCA)模型之三維得分圖;及 圖13A、圖13B;圖16A、圖16B及圖19A、圖19B分別係紅鯔魚/鯔魚配對;冬鱈魚/鱈魚配對;及幼鮭/歐鱒配對之分類類比之軟獨立模型化(SIMCA)分析之Coomans圖。Illustrative embodiments will now be described in conjunction with the drawings, in which: Figure 1 is a schematic three-dimensional diagram of a device used to identify a seafood sample on site according to the present invention, in which a NIR reflectance spectrum measured by the device is overprinted in the figure; Figure 2 is a side cross-sectional view of a portable handheld NIR spectrometer of the device of Figure 1; Fig. 3A is a side cross-sectional view of a light detecting sub-assembly of the portable NIR spectrometer of Fig. 2; FIG. 3B is a side cross-sectional view of a wavelength dispersing element used in the light detecting sub-assembly of FIG. 3A; Figure 3C is a transmission spectrum of one of the wavelength separation elements of Figure 3B; Figure 3D is a three-dimensional view of the portable handheld NIR spectrometer of Figure 2; 4A is a flowchart of a method for identifying a seafood sample on site according to the present invention; 4B is a flowchart of an exemplary multivariate analysis of NIR spectra according to the present invention; FIG. 5A is a schematic diagram of an embodiment of the device of the present invention, in which a portable device wirelessly communicating with the NIR spectrometer is used to analyze the NIR spectrum obtained by the NIR spectrometer; 5B is a schematic diagram of another embodiment of the device of the present invention, in which a portable device is used to relay the measured NIR spectrum to a remote server for performing multivariate analysis; Figures 6 to 8 are examples of red mullet/mullet pairing (Figure 6), winter cod/cod pairing (skin and meat, Figure 7) and young salmon/European trout pairing to be used in the experimental verification of the present invention. Color photos of the seafood pairings distinguishing between skin and meat, Fig. 8); Figure 9 is a color photo of a prototype of a device for measuring the NIR spectrum of a salmon sample; Figures 10A and 10B are flowcharts of data collection and analysis of higher and lower quality seafood used for experimental verification, respectively; Figure 11, Figure 14 and Figure 17 are the measured diffuse reflectance spectra of red mullet/mullet pairing, winter cod/cod pairing and young salmon/European trout pairing respectively; Figures 12, 15 and 18 are the three-dimensional score graphs of the measured principal component analysis (PCA) model of red mullet/mullet pairing, winter cod/cod pairing and young salmon/Euro trout pairing; and Figure 13A, Figure 13B; Figure 16A, Figure 16B, Figure 19A, Figure 19B are red mullet/mullet pairing; winter cod/cod pairing; and young salmon/European trout pairing classification analogy soft independent modeling (SIMCA ) Analysis of the Coomans diagram.
10:裝置 10: device
11:海產樣本 11: Seafood samples
12:可攜式近紅外光(NIR)分光計 12: Portable near infrared light (NIR) spectrometer
13:漫近紅外光(NIR)反射光譜 13: Diffuse near infrared light (NIR) reflectance spectrum
14:分析器 14: Analyzer
15:纜線 15: Cable
16:顯示器 16: display
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361804106P | 2013-03-21 | 2013-03-21 | |
US61/804,106 | 2013-03-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202014681A TW202014681A (en) | 2020-04-16 |
TWI749437B true TWI749437B (en) | 2021-12-11 |
Family
ID=51659131
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108148694A TWI749437B (en) | 2013-03-21 | 2014-03-20 | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample |
TW107118926A TWI683093B (en) | 2013-03-21 | 2014-03-20 | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample |
TW103110534A TWI629464B (en) | 2013-03-21 | 2014-03-20 | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107118926A TWI683093B (en) | 2013-03-21 | 2014-03-20 | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample |
TW103110534A TWI629464B (en) | 2013-03-21 | 2014-03-20 | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample |
Country Status (6)
Country | Link |
---|---|
US (3) | US9316628B2 (en) |
EP (1) | EP2976605B1 (en) |
CN (2) | CN105190261B (en) |
HK (2) | HK1221010A1 (en) |
TW (3) | TWI749437B (en) |
WO (1) | WO2014165331A1 (en) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2012330761B2 (en) | 2011-11-03 | 2016-01-21 | Verifood Ltd. | Low-cost spectrometry system for end-user food analysis |
KR102089734B1 (en) * | 2012-11-13 | 2020-03-16 | 비아비 솔루션즈 아이엔씨. | Portable spectrometer |
US9885655B2 (en) | 2012-11-13 | 2018-02-06 | Viavi Solutions Inc. | Spectrometer with a relay lightpipe |
TWI749437B (en) | 2013-03-21 | 2021-12-11 | 美商唯亞威方案公司 | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample |
CN105593651B (en) | 2013-08-02 | 2019-06-07 | 威利食品有限公司 | Spectrometric system and method, spectroscopy equipment and system |
CN106461461A (en) | 2014-01-03 | 2017-02-22 | 威利食品有限公司 | Spectrometry systems, methods, and applications |
WO2016063284A2 (en) | 2014-10-23 | 2016-04-28 | Verifood, Ltd. | Accessories for handheld spectrometer |
WO2016125164A2 (en) | 2015-02-05 | 2016-08-11 | Verifood, Ltd. | Spectrometry system applications |
WO2016125165A2 (en) | 2015-02-05 | 2016-08-11 | Verifood, Ltd. | Spectrometry system with visible aiming beam |
US10066990B2 (en) | 2015-07-09 | 2018-09-04 | Verifood, Ltd. | Spatially variable filter systems and methods |
US10801964B2 (en) * | 2015-07-30 | 2020-10-13 | The Research Foundation For The State University Of New York | Spectroscopic methods for body fluid age determination |
US10203246B2 (en) | 2015-11-20 | 2019-02-12 | Verifood, Ltd. | Systems and methods for calibration of a handheld spectrometer |
WO2018015951A1 (en) | 2016-07-20 | 2018-01-25 | Verifood, Ltd. | Accessories for handheld spectrometer |
US10791933B2 (en) | 2016-07-27 | 2020-10-06 | Verifood, Ltd. | Spectrometry systems, methods, and applications |
CN106560697A (en) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | Method for identifying producing area of Wuyi rock tea through combination of near infrared spectroscopy and trace element detection |
CN106560698A (en) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | Identification method for producing area of plant based on multiple detection technologies |
US10980484B2 (en) | 2017-03-27 | 2021-04-20 | Samsung Electronics Co., Ltd. | Method of enabling feature extraction for glucose monitoring using near-infrared (NIR) spectroscopy |
KR102491854B1 (en) | 2017-09-29 | 2023-01-26 | 삼성전자주식회사 | Spectrometer |
DE102018103509B3 (en) * | 2017-10-11 | 2018-12-13 | Carl Zeiss Spectroscopy Gmbh | Mobile ingredient analysis system as well as procedures for sample-correct measurement and user guidance with this |
WO2019102400A1 (en) * | 2017-11-22 | 2019-05-31 | Cti Srl | System and process for the recognition, characterization and classification of foods and nutrients in foods |
KR20200095547A (en) * | 2017-12-13 | 2020-08-10 | 트리나미엑스 게엠베하 | Spectrometer devices and systems |
CN108254324B (en) * | 2017-12-18 | 2020-09-22 | 中国农业大学 | Method and device for rapid detection of crab meat freshness |
CN108489927A (en) * | 2018-01-24 | 2018-09-04 | 仲恺农业工程学院 | Fish origin tracing method, electronic equipment, storage medium and device |
US10810408B2 (en) | 2018-01-26 | 2020-10-20 | Viavi Solutions Inc. | Reduced false positive identification for spectroscopic classification |
US11009452B2 (en) | 2018-01-26 | 2021-05-18 | Viavi Solutions Inc. | Reduced false positive identification for spectroscopic quantification |
US11656174B2 (en) | 2018-01-26 | 2023-05-23 | Viavi Solutions Inc. | Outlier detection for spectroscopic classification |
EP3561486A1 (en) | 2018-04-27 | 2019-10-30 | CERAGOS Electronics et Nature | Portative optical system for detection of chemical substances at trace levels in foods and liquids |
KR102627146B1 (en) | 2018-07-20 | 2024-01-18 | 삼성전자주식회사 | Apparatus and method for processing spectrum |
EP3864384A4 (en) | 2018-10-08 | 2022-06-29 | Verifood Ltd. | Accessories for optical spectrometers |
JP7424607B2 (en) * | 2019-09-30 | 2024-01-30 | 国立大学法人 奈良先端科学技術大学院大学 | Plant sensing device and real-time plant monitoring system |
CN110954499B (en) * | 2019-11-20 | 2022-08-02 | 中国计量大学 | Mixed identification method and system for producing areas of imported salmon |
JP2023518078A (en) | 2020-03-18 | 2023-04-27 | トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Communication system, monitoring system and related method |
AU2021238642A1 (en) | 2020-03-18 | 2022-10-06 | Basf Se | Communication system, monitoring system and related methods |
JP7543824B2 (en) | 2020-10-09 | 2024-09-03 | セイコーエプソン株式会社 | IMAGE ANALYSIS DEVICE, IMAGE ANALYSIS METHOD, AND IMAGE ANALYSIS PROGRAM |
US20220397458A1 (en) * | 2021-06-10 | 2022-12-15 | Si-Ware Systems | Mass screening biological detection solutions |
TWI823135B (en) * | 2021-08-27 | 2023-11-21 | 國立臺北科技大學 | Remote function expansion system for spectrum sensing device |
US20230101936A1 (en) * | 2021-09-27 | 2023-03-30 | Purdue Research Foundation | Label-free food analysis and molecular detection |
FR3127805B1 (en) | 2021-10-01 | 2024-12-13 | Plastri | Method of identifying a material type in a target material |
CN114460244A (en) * | 2022-01-17 | 2022-05-10 | 上海海洋大学 | Method for detecting texture of fugu obscurus |
CN114460035A (en) * | 2022-02-25 | 2022-05-10 | 广西小研人生物科技有限公司 | A method for rapid detection of freshness of marine cephalopods |
CN117969425B (en) * | 2024-02-05 | 2025-03-18 | 烟台大学 | Method for identifying bighead cod based on multispectral imaging system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201028030A (en) * | 2009-01-07 | 2010-07-16 | Koninkl Philips Electronics Nv | Intelligent controllable lighting networks and schemata therefore |
TW201032220A (en) * | 2008-10-24 | 2010-09-01 | Qualcomm Inc | Systems, methods, apparatus, and computer-readable media for coherence detection |
TW201213971A (en) * | 2010-01-11 | 2012-04-01 | 3M Innovative Properties Co | Reflective display system with enhanced color gamut |
TW201217999A (en) * | 2010-06-30 | 2012-05-01 | Koninkl Philips Electronics Nv | Methods and apparatus for capturing ambience |
US20140320858A1 (en) * | 2011-11-03 | 2014-10-30 | Verifood Ltd. | Low-cost spectrometry system for end-user food analysis |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5539207A (en) | 1994-07-19 | 1996-07-23 | National Research Council Of Canada | Method of identifying tissue |
US6560352B2 (en) * | 1999-10-08 | 2003-05-06 | Lumidigm, Inc. | Apparatus and method of biometric identification or verification of individuals using optical spectroscopy |
US6697654B2 (en) * | 1999-07-22 | 2004-02-24 | Sensys Medical, Inc. | Targeted interference subtraction applied to near-infrared measurement of analytes |
WO2001009587A1 (en) * | 1999-07-28 | 2001-02-08 | Marine Harvest Norway As | Method and apparatus for determining quality properties of fish |
WO2002069796A2 (en) * | 2001-03-01 | 2002-09-12 | University Of Massachusetts | Correction of spectra for subject diversity |
JP2004530875A (en) | 2001-04-13 | 2004-10-07 | カーギル、インコーポレイテッド | Agricultural and / or food raw material evaluation methods, applications and products |
GB2399626B (en) | 2003-03-21 | 2006-04-05 | Teraview Ltd | Spectroscopy apparatus and associated technique |
US7321791B2 (en) * | 2003-09-23 | 2008-01-22 | Cambridge Research And Instrumentation, Inc. | Spectral imaging of deep tissue |
US7420663B2 (en) * | 2005-05-24 | 2008-09-02 | Bwt Property Inc. | Spectroscopic sensor on mobile phone |
CA2611205C (en) * | 2005-06-08 | 2014-11-25 | Massachusetts Institute Of Technology | Continuous, continental-shelf-scale monitoring of fish populations and behavior |
WO2007000165A1 (en) | 2005-06-27 | 2007-01-04 | Sfk Technology A/S | Online recording of wavelength absorption spectra in meat |
US8437582B2 (en) * | 2005-12-22 | 2013-05-07 | Palo Alto Research Center Incorporated | Transmitting light with lateral variation |
US20070262257A1 (en) | 2006-05-11 | 2007-11-15 | Monro Donald M | Passive biometric spectroscopy |
US7750299B2 (en) | 2006-09-06 | 2010-07-06 | Donald Martin Monro | Active biometric spectroscopy |
CN100480680C (en) | 2007-05-22 | 2009-04-22 | 浙江大学 | Multiple spectrum meat freshness artificial intelligence measurement method and system |
WO2009070459A1 (en) * | 2007-11-30 | 2009-06-04 | Jingyun Zhang | Miniature spectrometers working with cellular phones and other portable electronic devices |
GB0908027D0 (en) * | 2009-05-08 | 2009-06-24 | Zinir Ltd | Spetrophotometer with no moving parts |
CN101620178B (en) * | 2009-06-19 | 2011-02-16 | 广东省药品检验所 | Method for quickly detecting additive chemical component in Chinese patent medicine, health-care food or food based on near-infrared spectrum technique |
CA2821275A1 (en) | 2010-12-16 | 2012-06-21 | Baxter International Inc. | Real time monitoring and control of protein production processes using impedance spectroscopy |
TWI749437B (en) | 2013-03-21 | 2021-12-11 | 美商唯亞威方案公司 | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample |
JP2015232543A (en) * | 2014-05-15 | 2015-12-24 | パナソニック株式会社 | Fish freshness estimation method and freshness estimation apparatus |
-
2014
- 2014-03-20 TW TW108148694A patent/TWI749437B/en active
- 2014-03-20 TW TW107118926A patent/TWI683093B/en active
- 2014-03-20 EP EP14779143.8A patent/EP2976605B1/en active Active
- 2014-03-20 TW TW103110534A patent/TWI629464B/en active
- 2014-03-20 WO PCT/US2014/031369 patent/WO2014165331A1/en active Application Filing
- 2014-03-20 CN CN201480017241.5A patent/CN105190261B/en active Active
- 2014-03-20 CN CN201711155221.6A patent/CN107884340B/en active Active
- 2014-03-21 US US14/222,216 patent/US9316628B2/en active Active
-
2016
- 2016-04-18 US US15/131,654 patent/US10401284B2/en active Active
- 2016-07-27 HK HK16108979.0A patent/HK1221010A1/en unknown
-
2018
- 2018-07-04 HK HK18108676.4A patent/HK1249178A1/en unknown
-
2019
- 2019-07-31 US US16/527,712 patent/US10976246B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201032220A (en) * | 2008-10-24 | 2010-09-01 | Qualcomm Inc | Systems, methods, apparatus, and computer-readable media for coherence detection |
TW201028030A (en) * | 2009-01-07 | 2010-07-16 | Koninkl Philips Electronics Nv | Intelligent controllable lighting networks and schemata therefore |
TW201213971A (en) * | 2010-01-11 | 2012-04-01 | 3M Innovative Properties Co | Reflective display system with enhanced color gamut |
TW201217999A (en) * | 2010-06-30 | 2012-05-01 | Koninkl Philips Electronics Nv | Methods and apparatus for capturing ambience |
US20140320858A1 (en) * | 2011-11-03 | 2014-10-30 | Verifood Ltd. | Low-cost spectrometry system for end-user food analysis |
Also Published As
Publication number | Publication date |
---|---|
US20190353587A1 (en) | 2019-11-21 |
HK1221010A1 (en) | 2017-05-19 |
HK1249178A1 (en) | 2018-10-26 |
US9316628B2 (en) | 2016-04-19 |
TW201831868A (en) | 2018-09-01 |
US20150204833A1 (en) | 2015-07-23 |
EP2976605B1 (en) | 2023-11-01 |
US10976246B2 (en) | 2021-04-13 |
WO2014165331A1 (en) | 2014-10-09 |
TW201504614A (en) | 2015-02-01 |
EP2976605A1 (en) | 2016-01-27 |
TWI629464B (en) | 2018-07-11 |
EP2976605A4 (en) | 2016-11-16 |
US10401284B2 (en) | 2019-09-03 |
CN105190261A (en) | 2015-12-23 |
US20160231237A1 (en) | 2016-08-11 |
CN107884340A (en) | 2018-04-06 |
CN105190261B (en) | 2017-12-22 |
TW202014681A (en) | 2020-04-16 |
TWI683093B (en) | 2020-01-21 |
CN107884340B (en) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI749437B (en) | Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample | |
Rodriguez-Saona et al. | Miniaturization of optical sensors and their potential for high-throughput screening of foods | |
He et al. | Detection of adulteration in food based on nondestructive analysis techniques: A review | |
Lu et al. | Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: A review | |
Pullanagari et al. | Uncertainty assessment for firmness and total soluble solids of sweet cherries using hyperspectral imaging and multivariate statistics | |
Prieto et al. | A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products | |
Li et al. | Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: a review | |
Schmutzler et al. | Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy: A quick and sensitive method for on-site analyses of apples | |
Gullifa et al. | Portable NIR spectroscopy: The route to green analytical chemistry | |
CN106662535B (en) | Determine the equipment, system and method for the optical properties of jewel | |
Yu et al. | Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system | |
Jahani et al. | Novel application of near-infrared spectroscopy and chemometrics approach for detection of lime juice adulteration | |
He et al. | Fast discrimination of apple varieties using Vis/NIR spectroscopy | |
Grazia Mignani et al. | Dispersive raman spectroscopy for the nondestructive and rapid assessment of the quality of southern Italian honey types | |
WO2020130942A1 (en) | A non-destructive system and method for determining the quality of chinese herb using terahertz time-domain spectroscopy | |
Huang et al. | Recent Advances in Light Penetration Depth for Postharvest Quality Evaluation of Fruits and Vegetables | |
Vega-Castellote et al. | NIR sensing technologies for the detection of fraud in nuts and nut products: a review | |
CN205215187U (en) | Skin detecting system based on it is multispectral | |
CN118786338A (en) | Spatially resolved NIR spectrometer | |
Arrobas et al. | Raman spectroscopy for analyzing anthocyanins of lyophilized blueberries | |
Li et al. | Nondestructive evaluation of agro-products by intelligent sensing techniques | |
Misal et al. | Application of near-infrared spectrometer in agro-food analysis: A review | |
Hong et al. | A Comparison between the Post-and Pre-dispersive Near Infrared Spectroscopy in Non-Destructive Brix Prediction Using Artificial Neural Network | |
Suhendar et al. | Design of a Portable Spectrophotometer Based on Raspberry Pi for Tea Type Classification Using Machine Learning | |
McGunnigle | Using near infrared measurement of water content<? A3B2 show [pmg: line-break justify=" yes"/]?> as a cue for detecting biological materials |