TWI749437B - Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample - Google Patents

Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample Download PDF

Info

Publication number
TWI749437B
TWI749437B TW108148694A TW108148694A TWI749437B TW I749437 B TWI749437 B TW I749437B TW 108148694 A TW108148694 A TW 108148694A TW 108148694 A TW108148694 A TW 108148694A TW I749437 B TWI749437 B TW I749437B
Authority
TW
Taiwan
Prior art keywords
sample
spectrum
seafood
identification analysis
mobile device
Prior art date
Application number
TW108148694A
Other languages
Chinese (zh)
Other versions
TW202014681A (en
Inventor
納達 A 歐布萊恩
查爾斯 A 荷斯
漢茲 W 希斯勒
昌孟 熊
Original Assignee
美商唯亞威方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商唯亞威方案公司 filed Critical 美商唯亞威方案公司
Publication of TW202014681A publication Critical patent/TW202014681A/en
Application granted granted Critical
Publication of TWI749437B publication Critical patent/TWI749437B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0216Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using light concentrators or collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/12Meat; Fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1234Continuously variable IF [CVIF]; Wedge type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • G01J2003/2873Storing reference spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A method and apparatus for field spectroscopic characterization of seafood is disclosed. A portable NIR spectrometer is connected to an analyzer configured for performing a multivariate analysis of reflection spectra to determine qualitatively the true identities or quantitatively the freshness of seafood samples.

Description

用於識別一海產樣本之方法及裝置與用於判定一海產樣本之鮮度之方法Method and device for identifying a seafood sample and method for judging the freshness of a seafood sample

本發明係關於材料特性及識別,且特定言之係關於海產之分光特性。The present invention relates to material properties and identification, and specifically relates to the spectroscopic properties of seafood.

關於最大調查之一者之一最近公佈之報告旨在關於所揭示之海產欺詐之資料(在跨美國之城市中之飯店及雜貨店購買之三分之一海產物種被貼錯標籤)。由Oceana (一非盈利國際倡議團體)自2010年至2012年進行兩年時間研究,藉此自美國21個州中674個零售店之收集超過1200個樣本(2013年2月K. Warner、W. Timme、B. Lowell及M. Hirshfield之「Oceana Study Reveals Seafood Fraud Nationwide」報告)。對魚樣本執行DNA測試以正確識別魚類物種及發現貼錯標籤。類似結論可自關於打擊海產行銷中之欺詐及欺騙之一先前美國國會研究服務部報告(國會研究服務部報告書7-5700號,www.crs.gov,RL-34124 (2010))獲得。 用一低成本物種替代一更貴的魚類係非法的。此係因貨幣收益而激發犯罪者動機,導致負面經濟、健康及環境後果。消費者及誠實海產供應商被哄騙支付更高價格購買更低成本之非所要替代品。最常見替代及更昂貴魚之一者係通常用吳郭魚(tilapia)調換之紅鯛魚(red snapper)。此外,一些魚類替代品造成健康危害。例如,上文Oceana研究已判定超過90%之被廣告為白鮪魚(white tuna)之魚實際上為玉梭魚(escolar),該魚係含有已知導致胃腸問題之毒素之一蛇鯖魚類物種。最後,一些替代魚類可為一被過度捕撈或受脅物種。一此魚類係大西洋鱈魚,在相同研究中發現被用太平洋鱈魚調換。 供應鏈「自船至盤」係複雜的且未調整的,使得此等非法行為難以追蹤。打擊魚類欺詐需要跨整個供應鏈之魚類供應之可追溯性,且以及增加之檢驗。DNA測試檢驗係耗時的,且僅可在一取樣基礎上進行。DNA測試需要將魚類樣本拿到一實驗室且等待結果(一個程序可耗時幾天)。 Wong之美國專利第5,539,207號揭示一種藉由傅立葉轉換紅外(FT-IR)光譜學而識別人類或動物組織之方法。討論中之一組織之一中紅外光譜經量測且與已知組織之一紅外線光譜庫相比較,以找出一最接近匹配。一視覺比較或一型樣辨識演算法可用於匹配紅外線光譜。依此方式,可識別各種組織(且甚至正常組織或惡性(例如癌)組織)。 不利地,Wong之方法難以用於在現場條件中之海產辨識之目的。一FT-IR分光計係一複雜及巨大光學裝置。FT-IR分光計之核心模組(一掃描邁克生(Michelson)干涉儀)使用一精確可移動的較大光學鏡以執行一波長掃描。為使鏡穩定,使用一重光具座。歸因於諸多精確光學及機械組件,一FT-IR分光計需要實驗室條件,且需要由經訓練之人員頻繁重新校準及重新對準。一FT-IR分光計之使用由紅外線指紋之基本振動頻率呈現於電磁光譜之2.5微米至5微米區域中之事實指定。此等振動頻帶具有高解析度及高吸收位準,展現具有狹窄光譜頻帶之較強吸收。 Monro之美國專利第7,750,299號揭示一種用於主動生物測定光譜學之系統,其中由一頻率可調諧毫米波無線電發射器輻照一特定生物體之一DNA膜,且偵測由DNA膜傳輸及散射之無線電波。Monro教示不同DNA膜之無線電波散射光譜係不同的。因此,所傳輸或散射之無線電波光譜可偵測不同DNA膜,其可與不同魚類物種相關聯。依此方式,可識別一魚樣本之物種。 不利地,Monro之方法不能應用於魚樣本其等本身,此係因為來自非DNA組織之信號將壓過DNA信號。正因如此,魚樣本之DNA需被提取且形成為一膜。樣本準備係耗時的,且僅可在實驗室條件中進行。 Cole等人之美國專利第7,728,296號揭示用於使用兆赫(THz)輻射來偵測易爆材料之一裝置及方法。THz輻射佔據紅外線與毫米無線電波之間之頻率頻帶。諸多易爆材料具有THz頻域中之一唯一光譜訊符,因此給予高靈敏度非侵襲性遠端偵測爆炸物。不利地,THz輻射源係龐大的及昂貴的,限制保全關鍵應用(諸如在機場檢查站)之當前用途。 先前技術之方法及裝置不適合現場條件中之海產物種之識別之一目的。需要一種方法及系統,使得一食品藥物管理局(FDA)官員能夠執行一快速現場海產物種識別及特性化,協助官員決定是否採取一執法行動。個人(諸如飯店主廚、壽司連鎖店贊助人及魚市場客戶)亦將得益於快速驗證購買之海產物種之一可能性。One of the largest investigations recently published a report aimed at revealing information about seafood fraud (one-third of seafood purchased in restaurants and grocery stores in cities across the United States were mislabeled). Oceana (a non-profit international advocacy group) conducted a two-year study from 2010 to 2012, and collected more than 1,200 samples from 674 retail stores in 21 states in the United States (February 2013, K. Warner, W "Oceana Study Reveals Seafood Fraud Nationwide" report by Timme, B. Lowell and M. Hirshfield). Perform DNA testing on fish samples to correctly identify fish species and find mislabeling. Similar conclusions can be obtained from one of the previous US Congressional Research Services report on combating fraud and deception in seafood marketing (Congressional Research Services Report No. 7-5700, www.crs.gov, RL-34124 (2010)). It is illegal to replace a more expensive fish line with a low-cost species. This is because monetary gains motivate criminals, leading to negative economic, health, and environmental consequences. Consumers and honest seafood suppliers have been tricked into paying higher prices for lower-cost undesirable alternatives. One of the most common alternative and more expensive fish is the red snapper, which is usually replaced by tilapia. In addition, some fish substitutes cause health hazards. For example, the Oceana study above has determined that more than 90% of the fish advertised as white tuna are actually escolar, which contains one of the toxins known to cause gastrointestinal problems, snake mackerel Species. Finally, some alternative fish may be an overfished or threatened species. One fish is Atlantic cod, which was found to be replaced with Pacific cod in the same study. The supply chain "from ship to disk" is complex and unadjusted, making such illegal activities difficult to track. Fighting fish fraud requires traceability of fish supply across the entire supply chain and increased inspections. DNA testing is time-consuming and can only be performed on a sampling basis. DNA testing requires taking fish samples to a laboratory and waiting for the results (a procedure can take several days). Wong's US Patent No. 5,539,207 discloses a method for identifying human or animal tissues by Fourier Transform Infrared (FT-IR) spectroscopy. The mid-infrared spectrum of one of the tissues under discussion is measured and compared with an infrared spectrum library of known tissues to find a closest match. A visual comparison or a pattern recognition algorithm can be used to match the infrared spectrum. In this way, various tissues (and even normal tissues or malignant (e.g. cancer) tissues) can be identified. Disadvantageously, Wong's method is difficult to use for the purpose of seafood identification in field conditions. An FT-IR spectrometer is a complex and huge optical device. The core module of the FT-IR spectrometer (a scanning Michelson interferometer) uses a large, precise and movable optical mirror to perform a wavelength scan. To stabilize the mirror, use a heavy optical bench. Due to many precise optical and mechanical components, an FT-IR spectrometer requires laboratory conditions and requires frequent recalibration and realignment by trained personnel. The use of an FT-IR spectrometer is specified by the fact that the fundamental vibration frequency of infrared fingerprints is present in the 2.5 micron to 5 micron region of the electromagnetic spectrum. These vibration frequency bands have high resolution and high absorption levels, and exhibit strong absorption with narrow spectral bands. Monro's US Patent No. 7,750,299 discloses a system for active biometric spectroscopy, in which a frequency-tunable millimeter wave radio transmitter irradiates a DNA membrane of a specific organism, and detects transmission and scattering by the DNA membrane Of radio waves. Monro teaches that the radio wave scattering spectra of different DNA membranes are different. Therefore, the transmitted or scattered radio wave spectrum can detect different DNA membranes, which can be associated with different fish species. In this way, the species of a fish sample can be identified. Disadvantageously, Monro's method cannot be applied to fish samples themselves, because the signal from non-DNA tissue will overwhelm the DNA signal. Because of this, the DNA of the fish sample needs to be extracted and formed into a membrane. Sample preparation is time-consuming and can only be performed in laboratory conditions. US Patent No. 7,728,296 to Cole et al. discloses a device and method for detecting explosive materials using terahertz (THz) radiation. THz radiation occupies the frequency band between infrared and millimeter radio waves. Many explosive materials have one of the only spectral symbols in the THz frequency domain, thus giving high sensitivity and non-invasive remote detection of explosives. Disadvantageously, THz radiation sources are bulky and expensive, limiting their current use for critical applications such as airport checkpoints. The methods and devices of the prior art are not suitable for the purpose of identifying seafood species in the field conditions. There is a need for a method and system to enable a Food and Drug Administration (FDA) official to perform a rapid on-site seafood species identification and characterization to assist the official in deciding whether to take an enforcement action. Individuals (such as restaurant chefs, sushi chain patrons and fish market customers) will also benefit from the possibility of quickly verifying purchased seafood species.

本發明之一目的係提供一種用於海產之現場分光特性之方法及裝置。 從技術觀點,較佳地執行給予容易生長、波長分離及電磁輻射偵測之波長帶分光量測。一近紅外光(NIR)頻帶(例如在0.7微米至2.5微米之間)滿足此條件。寬頻帶發光二極體及甚至小型白熾源可用於產生在此波長帶中之NIR光。各種光譜選擇性元件(例如薄膜干涉濾光器)可用於波長分離。光電二極體陣列可用於偵測NIR光。 儘管便於在光譜之NIR部分中工作,然先前技術已大部分聚焦於更長、更不技術友善波長帶,此係因為大部分有機化合物之特性分子鍵之主要振動頻率對應於比2.5微米(2500奈米)長之波長,迫使使用較重及龐大的設備以產生波長分散及偵測此等更長波長之輻射電磁。發明家已認識到多個振動頻率或所謂的泛音確實在技術便利NIR頻帶內,且因此,儘管此訊息歸因於一相對較低振幅及泛音之多個頻率而被隱藏,然生物物質識別資訊呈現於NIR光譜中。 當不易自一光譜獲得或視覺識別分光資訊時,進階資料處理及特徵或型樣提取及模型化技術(諸如主分量分析(PCA)、分類類比軟獨立模型化(SIMCA)、偏最小平方判别分析(PLS-DA)及支援向量機(SVM))可用於提取所需資訊。因此,多變數型樣辨識及資料迴歸實現使用一輕型及精巧NIR分光計以識別及特性化海產。 根據本發明,提供一種用於現場鑑別一海產之方法,其包括: (a)提供一可攜式NIR分光計; (b)使用步驟(a)之NIR分光計來獲得海產樣本之一反射光譜; (c)執行步驟(b)中所獲得之海產樣本之反射光譜之一多變數型樣辨識分析,以藉由比較反射光譜與對應於不同物種之海產之已知身份光譜之一光譜庫,而判定具有最相似光譜型樣之一匹配光譜;及 (d)基於帶有步驟(c)中所判定之最相似光譜型樣之匹配光譜而識別海產樣本。 此等型樣辨識演算法亦可產生識別結果之一可能性之一置信測度或一可能性估計。 根據本發明,進一步提供一種用於現場判定一海產樣本之鮮度之方法,其包括: (a)提供一可攜式NIR分光計; (b)使用步驟(a)之NIR分光計來獲得海產樣本之一反射光譜; (c)執行步驟(b)中所獲得之海產樣本之反射光譜之一多變數型樣辨識分析,以藉由比較反射光譜與對應於海產樣本之鮮度之已知身份光譜之一光譜庫,而判定具有一最相似光譜型樣之一匹配光譜,藉此提供海產樣本之鮮度之一定量量測。 可自海產樣本上之複數個位置獲得反射光譜,以減少海產樣本之表面紋理之影響。多變數迴歸分析可包含(例如)偏最小平方法(PLS)及支援向量迴歸(SVR)。 根據本發明,進一步提供一種用於現場鑑別一海產樣本之裝置,其包括: 一可攜式NIR分光計,其用於獲得海產樣本之一NIR反射光譜,及 一分析器,其操作上耦合至分光計且經組態用於執行海產樣本之反射光譜之一多變數型樣辨識分析,以藉由比較反射光譜與對應於不同物種之海產之已知身份光譜之一光譜庫,而判定具有一最相似光譜型樣之一匹配光譜,且基於帶有最相似光譜型樣之匹配光譜而識別海產樣本。 可攜式NIR分光計可包含耦合至一光偵測器陣列之一光譜橫向可變光學傳輸濾光器,導致一特別精巧及輕型結構。一行動通信器件可經組態以與NIR分光計通信,且執行由可攜式NIR分光計所獲得之反射光譜之多變數分析。此外,可在與行動器件通信之一遠端伺服器處執行至少一些資料分析及光譜型樣模型建置活動。 根據本發明之又一態樣,進一步提供安置於行動通信器件中且已將已知身份光譜庫編碼於其上之一永久性儲存媒體。One object of the present invention is to provide a method and device for on-site spectroscopic characteristics of seafood. From a technical point of view, it is better to perform wavelength band spectroscopy for easy growth, wavelength separation, and electromagnetic radiation detection. A near-infrared (NIR) frequency band (for example, between 0.7 micrometers and 2.5 micrometers) satisfies this condition. Broadband LEDs and even small incandescent sources can be used to generate NIR light in this wavelength band. Various spectrally selective elements (such as thin film interference filters) can be used for wavelength separation. The photodiode array can be used to detect NIR light. Although it is convenient to work in the NIR part of the spectrum, the previous technology has mostly focused on longer and less technology-friendly wavelength bands. This is because the main vibration frequency of the characteristic molecular bonds of most organic compounds corresponds to a frequency greater than 2.5 microns (2500 The long wavelength of nanometers necessitates the use of heavier and bulky equipment to generate wavelength dispersion and to detect these longer-wavelength electromagnetic radiation. The inventor has realized that multiple vibration frequencies or so-called overtones are indeed in the technically convenient NIR band, and therefore, although this information is hidden due to multiple frequencies of a relatively low amplitude and overtones, biometric identification information Appears in the NIR spectrum. When it is not easy to obtain or visually recognize spectroscopic information from a spectrum, advanced data processing and feature or pattern extraction and modeling techniques (such as principal component analysis (PCA), classification and analog soft independent modeling (SIMCA), partial least square discrimination) Analysis (PLS-DA) and Support Vector Machine (SVM)) can be used to extract the required information. Therefore, multi-variable type identification and data return realize the use of a lightweight and compact NIR spectrometer to identify and characterize seafood. According to the present invention, there is provided a method for identifying a seafood on site, which includes: (a) Provide a portable NIR spectrometer; (b) Use the NIR spectrometer of step (a) to obtain the reflectance spectrum of one of the seafood samples; (c) Perform a multi-variable type identification analysis of the reflectance spectra of the seafood samples obtained in step (b) to compare the reflectance spectra with a spectral library of known identification spectra corresponding to different species of seafood, and Determine the matching spectrum with one of the most similar spectral patterns; and (d) Identify the seafood sample based on the matching spectrum with the most similar spectrum pattern determined in step (c). These pattern recognition algorithms can also generate a confidence measure or a probability estimate of a possibility of the recognition result. According to the present invention, there is further provided a method for judging the freshness of a seafood sample on site, which includes: (a) Provide a portable NIR spectrometer; (b) Use the NIR spectrometer of step (a) to obtain the reflectance spectrum of one of the seafood samples; (c) Perform a multivariable type identification analysis of the reflectance spectrum of the seafood sample obtained in step (b) to compare the reflectance spectrum with a spectrum library of known identity spectra corresponding to the freshness of the seafood sample, and It is determined that there is a matching spectrum of the most similar spectrum pattern, thereby providing a quantitative measurement of the freshness of the seafood sample. The reflectance spectrum can be obtained from multiple positions on the seafood sample to reduce the influence of the surface texture of the seafood sample. Multivariate regression analysis can include, for example, partial least squares (PLS) and support vector regression (SVR). According to the present invention, there is further provided a device for identifying a seafood sample on site, which includes: A portable NIR spectrometer, which is used to obtain the NIR reflectance spectrum of one of the seafood samples, and An analyzer that is operatively coupled to a spectrometer and is configured to perform a multivariable type identification analysis of the reflectance spectrum of a seafood sample by comparing the reflectance spectrum with the known identification spectra of seafood corresponding to different species A spectrum library is determined to have a matching spectrum with the most similar spectrum pattern, and the seafood sample is identified based on the matching spectrum with the most similar spectrum pattern. The portable NIR spectrometer can include a spectral laterally variable optical transmission filter coupled to a light detector array, resulting in a particularly compact and lightweight structure. A mobile communication device can be configured to communicate with the NIR spectrometer and perform multivariate analysis of the reflection spectrum obtained by the portable NIR spectrometer. In addition, at least some data analysis and spectral pattern model building activities can be performed at a remote server that communicates with the mobile device. According to another aspect of the present invention, there is further provided a permanent storage medium which is installed in a mobile communication device and has a known identity spectrum library encoded on it.

儘管結合各種實施例及實例來描述本教示,然不意欲本教示限於此等實施例。相反地,本教示包含各種替代物及等效物,如熟悉此項技術者將明白。 參考圖1,用於現場鑑別一海產樣本11之一裝置10包含用於獲得海產樣本11之一漫NIR反射光譜13 (信號功率P相對於波長λ)之一可攜式NIR分光計12。一分析器14經由一纜線15操作上耦合至分光計12。分析器14經組態以執行海產樣本11之反射光譜13之一多變數分析,從而判定對應於反射光譜13之至少一特性參數。分析器14經組態用以比較至少一參數與對應於海產樣本11之物種之一臨限值,用於判定海產樣本11之物種。可在分析器14之一顯示器16上顯示該等物種。至少一參數可包含兩個或兩個以上參數。兩個參數可用圖形表示為稱作Coomans圖之一XY圖上之一點。Coomans圖上之點之一位置表示採用反射光譜13之海產物種。將在下文進一步考量多變數迴歸/型樣辨識分析及Coomans圖。首先考量NIR分光計12之構造。 參考圖2,NIR分光計12包含一主體23、用於照明海產樣本11之白熾燈24、用於引導漫反射光36之一錐形光導管(TLP) 25、用於將反射光36分成個別波長之一橫向可變濾光器(LVF) 31及用於偵測個別波長之光學功率位準之一光偵測器陣列37。光偵測器陣列37形成於一CMOS處理晶片37A中且使用一光學透明黏著劑38來耦合至LVF 31。提供一電子板37B以支援及控制CMOS處理晶片37A。提供一選用按鈕21以起始光譜收集。光偵測器陣列37垂直對準於TLP 25之一縱向軸LA。 在操作中,白熾燈24照明海產樣本11。TLP 25收集漫反射光36且將其導引朝向LVF 31。LVF 31將漫反射光36分成個別波長,由光偵測器陣列31偵測該等個別波長。可藉由按下按鈕21或藉由來自分析器14之外部命令而開始量測循環。 精巧型NIR分光計12係藉由其之光偵測子總成29之構造而實現。參考圖3A,在XZ平面中展示光偵測子總成29。在圖3A中,光偵測子總成29如由圖2及圖3A之右側上之z軸之方向所指示而經180度翻轉。在圖3A中所示之較佳實施例中,光學透明黏著劑38將光偵測器陣列37直接耦合至LVF 31。光學透明黏著劑38必需:為事實上非導電或介電;藉由使用對偵測器陣列37之感應壓力或破壞力來達成良好黏附強度而為機械中性;光學相容以透射所要光譜含量;移除空氣對玻璃界面而產生之反射;及具有熱膨脹係數性質以在熱循環期間最小化至偵測器像素52之壓力。一不透明環氧樹脂22囊封LVF 31,促進移除雜散光且保護LVF 31免於濕度。一選用玻璃窗39被放置於LVF 31之頂部用於額外環境保護。 參考圖3B及圖3C,繪示LVF 31之操作。在其中波長被分散之YZ平面中展示LVF 31。LVF 31包含夾在楔形二向分光鏡33之間之一楔形間隔件32以形成一法布里-伯羅(Fabry-Perot)干涉計,在二向分光鏡33之間具有一橫向可變間隔。光學傳輸濾光器31之楔形形狀使得其之傳輸波長橫向可變,如使用箭頭34A、34B及34C分別指向在可變光學傳輸濾光器31下方所示之一傳輸光譜35 (圖3C)之個別傳輸高峰35A、35B及35C所示。在操作中,自海產樣本11所反射之多色光36照射於可變光學濾光器31上,可變光學濾光器31將多色光36分成使用箭頭34A至34C所示之個別光譜分量。NIR分光計12之波長範圍較佳地在700奈米至2500奈米之間,且更佳地在950奈米至1950奈米之間。 使用LVF 31及TLP 25允許相當減少NIR分光計12之尺寸之。NIR分光計12無任何移動部件用於波長掃描。通常小於100克之NIR分光計12之小重量允許將NIR分光計12直接放置於海產樣本11上。小重量及尺寸亦使得NIR分光計12 (例如)可容易在一海產檢驗員之一口袋中運送。在圖3D中繪示NIR分光計12之尺寸。NIR分光計12可容易手持,其中按鈕21經方便定位用於拇指操作。 NIR分光計之諸多變體當然係可能的。例如,可用寬頻發光二極體或LED替換白熾燈泡24。可用另一光學元件(諸如一光纖面板或一全像光束塑形器)替換TLP 25。可用另一適合波長選擇元件(諸如一小型繞射光柵、二向分光鏡之一陣列、一MEMS器件等等)替換LVF 31。 參考圖4A且進一步參考圖1,用於現場鑑別海產樣本11之一方法40包含提供上文所描述之可攜式NIR分光計12之一步驟41。在一步驟42中,使用NIR分光計12來獲得海產樣本11之反射光譜13。在一步驟43中,執行步驟海產樣本11之反射光譜13之一多變數型樣辨識分析,以藉由比較反射光譜13與對應於不同物種之海產之已知身份光譜之一光譜庫,而判定具有一最相似光譜型樣之一匹配光譜。最後,在一步驟44中,基於帶有先前步驟43中所判定之最相似光譜型樣之匹配光譜而識別海產樣本11。 文中,術語「匹配光譜」並非理所當然指示一精確匹配。代替性地,「匹配光譜」指示如與所量測之反射光譜13相比較,該光譜庫之攜載最相似光譜型樣之一身份光譜。因此,「匹配」並非為該等可獲得之匹配之精確的,僅為最接近匹配。可基於所使用之特定匹配評估方法而計算匹配之鄰近度。 執行多變數型樣辨識分析43以自反射光譜13提取海產物種資訊。歸因於特性分子鍵之振動頻率之許多泛音,反射光譜13可非常複雜,使得個別光譜高峰無法被視覺識別。根據本發明,執行多變數型樣分析43 (亦稱為「化學計量學分析」)以識別或鑑別海產樣本11之物種。 量測步驟42較佳地包含:在海產樣本11上之不同位置處執行重複光譜量測;及平均化重複量測,以減小所獲得之反射光譜對海產樣本11之一紋理之一相依性。反射光譜13之擴展相乘性散射校正(EMSC)可用於減小所量測之反射光譜13對海產樣本11之散射性質之相依性。 亦可使用其他已知統計方法來預處理反射光譜13,例如可在繼續進行多變數型樣辨識分析步驟43之前計算反射光譜13之標準正常變異(SNV)。可藉由執行反射光譜13之Savitzky–Golay濾光及計算反射光譜13之一第一及/或一第二導數以在多變數型樣辨識分析步驟43中考量,而考量反射光譜13中之光譜特徵之斜率及/或反曲。其他統計方法(諸如反射光譜13之逐一樣本正規化及/或逐一通道自動按比例調整)可用於促進多變數型樣辨識分析步驟43,及用於提供更穩定結果。 通常以兩個階段執行多變數型樣辨識分析43。舉例而言,參考圖4B且進一步參考圖1,首先執行一PCA步驟45,以定義需被識別之各海產類型之一校準模型。可在裝置10之一校準階段量測海產樣本11之前,預先完成PCA步驟45。在一第二步驟46中,分析所收集之反射光譜13與不同海產物種之校準模型之間之相似性。在所示實施例中,使用分類類比之軟獨立模型化(SIMCA)。由於SIMCA步驟46,判定兩個參數。此等兩個參數在一XY圖中被標繪(Coomans圖),其之不同區域對應於不同海產物種。在一些情況下僅需要一參數,且可比較此參數與PCA步驟45中所判定之一臨限值,以鑑別海產樣本11。可應用其他多變數型樣辨識分析方法。在下文「實驗驗證」部分中考量此等方法之實例。 鑑於經電腦化之行動通信器件(諸如智慧電話)激增,有利地使用一行動通信器件來執行多變數型樣辨識分析步驟43 (圖4A及圖4B)。參考圖5A且進一步參考圖1及圖4A,用於現場鑑別海產樣本11之一裝置50A類似於圖1之裝置10。圖5A之裝置50A中之一差異係:一行動通信器件54經組態以執行圖4A之方法40之多變數分析步驟43及識別步驟44。為此目的,行動通信裝置54可包含一永久性儲存媒體58,其將對應於海產之不同物種之已知身份光譜之光譜庫及/或電腦指令編碼於其上,用於執行多變數型樣辨識/資料減少分析步驟43。行動通信器件54可經由一無線鏈路59 (諸如Bluetooth™)或經由一有線(例如USB通信)耦合至NIR分光計12,用於將所獲得之反射光譜13傳送至行動通信器件54。 現轉向圖5B且進一步參考圖4A及圖5A,用於現場鑑別一海產樣本之一裝置50B類似於圖5A之裝置50A。圖5B之裝置50B包含經由至一基地台55 (其連接至網際網路52)之一RF通信鏈路56與行動通信器件54通信之一遠端伺服器57。在操作中,自行動器件54傳送反射光譜13至遠端伺服去57,且在遠端伺服器57處執行多變數型樣辨識分析(即,圖4A之方法40之步驟43)。多變數分析步驟43 (圖4A)之結果被傳送回至行動器件54 (圖5B),用於顯示給一使用者(未展示)。可由行動器件54或由遠端伺服器57 (圖5B)執行識別步驟44 (圖4A)。使用一遠端伺服器之運算能力使得不需要行動通信器件上之資源,且因此可加速海產識別之總體程序。 實驗驗證 執行諸多實驗以驗證相似外觀,但可使用NIR光譜學及多變數迴歸(化學計量學)分析之一組合來識別不同標價的魚類物種。參考圖6至圖8,使用三組不同魚類物種。第一組包含:一整條紅鯔魚60A及一整條鯔魚60B (圖6),皮和肉兩者(肉未被展示)。第二組包含:冬鱈魚皮71A;鱈魚皮71B;冬鱈魚肉72A;及鱈魚肉72B。第三組包含:幼鮭皮81A;歐鱒皮81B;幼鮭肉82A;及歐鱒肉82B。如自圖6至圖8之照片可見,甚至針對一海產專業人員(諸如一批發商或一廚師,更不必說一般大眾客戶),視覺判別整條魚及魚肉將相當具有挑戰性。在圖6至圖8中,「A」群組包含更昂貴物種60A、71A、72A、81A及82A,且「B」群組包含較不昂貴物種60B、71B、72B、81B及82B。因此,使用「B」物種來替代「A」物種可提供一實質經濟利益。 轉向圖9,用於本發明之實驗驗證中之一裝置90包含由美國加州苗必達(Milpitas, California, USA)之JDS Uniphase公司製造之微型NIR™ 1700分光計92。微型NIR分光計92在950奈米至1650奈米之一波長範圍中操作。微型NIR分光計92係一低成本、極精巧的可攜式分光計,其重60克且直徑上小於50毫米。分光計92在一漫反射中操作,且類似於圖3B之分光計12而建構,包含用於照明海產樣本11之一光源(未展示)、分散元件31、光偵測器陣列37及電子器件(未展示)(其等全部包含於可直接放置於一海產樣本91上之一較小可攜式封裝中)。分光計92由一纜線95連接至運行Unscrambler™多變數分析軟體(其由挪威奧斯陸(Oslo, Norway)之CAMO AS提供(版本9.6))之一膝上型電腦94。針對各光譜量測,已累積具有5毫秒積分時間之50個掃描,導致每反射光譜量測0.25秒之一總量測時間。 現參考圖10A及10B,流程圖100A及100B表示分別針對魚類樣本60A及60B;71A及71B;72A及72B;81A及81B;及82A及82B而執行之光譜獲取及PCA模型建立步驟。在步驟101A及101B中,將三種不同個別物種分別提供給各圖6至圖8之魚類樣本60A及60B;71A及71B;72A及72B;81A及81B;82A及82B。針對鯔魚60A及60B;冬鱈魚/鱈魚71A及71B;72A及72B;及幼鮭/歐鱒81A及81B;82A及82B配對,在步驟102A及102B中分別收集皮反射光譜;且在步驟103A及103B中分別收集肉反射光譜。在三塊之各者上之不同位置處獲得十個NIR反射光譜之一整體,導致圖6至圖8之各魚類樣本60A;60B;71A;71B;72A;72B;81A;;81B;82A及82B之三十個量測。使用擴展相乘性散射校正之一標準方法來校正光譜用於散射。 因此,已分別針對步驟104A及104B中之各魚皮類型60A及60B;71A及71B;81A及81B而獲得全部三十個光譜。已分別針對步驟105A及105B中之各魚肉類型72A及72B;82A及82B而獲得全部三十個光譜。已針對各自步驟106A、107A;及106B、107B中之各類型之三個樣本之各者而將光譜平均化成五組,導致針對各樣本之兩個平均光譜及針對各樣本類型之六個平均光譜,包含皮及肉。完成平均化,以減少所獲得之反射光譜對各自海產樣本60A、60B、71A、71B、72A、72B、81A、81B、82A及82B之一紋理一相依性。接著,已針對各自「A」及「B」樣本而在步驟108A、108B中建立PCA模型。執行一SIMCA分析以識別各魚類樣本之類型。該等結果依各魚類型之Coomans圖而呈現。 紅鯔魚/鯔魚配對 參考圖11且進一步參考圖6,紅鯔魚60A及鯔魚60B之反射光譜經展示為反射信號(任意單位)對在10900 cm-1 至6000 cm-1 之間之範圍中之波數(cm-1 )中之波數之相依性。在111展示包含各自紅鯔魚皮之六個光譜及鯔魚皮之六個光譜之十二個跡線。在112展示包含各自紅鯔魚肉之六個光譜及鯔魚肉之六個光譜之十二個跡線。可見紅鯔魚及鯔魚皮之光譜111彼此十分相似,且紅鯔魚及鯔魚肉之光譜112亦彼此十分相似,所以紅鯔魚之光譜視覺上無法與鯔魚之光譜區分(針對皮及肉兩者)。 轉向圖12且進一步參考圖10A及圖10B,呈現PCA分析步驟108A、108B (圖10B)之結果。在圖12中,紅鯔魚皮得分121A足以自鯔魚皮得分121B分離以允許容易識別,但在紅鯔魚肉得分122A與鯔魚肉得分122B之間未達成清楚分離。 現參考圖13A及13B,紅鯔魚/鯔魚配對之SIMCA分析之結果依5%顯著性之Coomans圖之形式呈現。圖13A展示紅鯔魚樣本識別之結果。灰色圈131A表示用於獲得紅鯔魚之身份光譜之校準紅鯔魚樣本(皮及肉);白色填充圈131B表示用於獲得鯔魚之身份光譜之校準鯔魚樣本(皮及肉);及填充(黑色)圈132表示測試樣本。全部四個黑色圈對應於一紅鯔魚皮樣本及一紅鯔魚肉樣本,各由兩個平均光譜表示。圖13B展示鯔魚樣本識別之結果。填充(黑色)圈133表示兩個測試樣本。全部八個黑色圈133對應於兩個鯔魚皮樣本及兩個鯔魚肉樣本,各由如上文所解釋之兩個平均光譜表示。 可藉由比較參數與一臨限值而使用兩個參數「至紅鯔魚之距離」及「至鯔魚之距離」之僅一者。例如,若使用「至鯔魚之距離」,則臨限值約為0.01。若使用「至紅鯔魚之距離」,則臨限值約為0.0008。自圖13A及圖13B可見,紅鯔魚(皮及肉兩者)皆可容易識別。因此,移除魚類樣本之皮將不允許一潛在違法犯罪者隱藏用鯔魚來替換紅鯔魚之一非法行為。 冬鱈魚/鱈魚配對 參考圖14且進一步參考圖7,冬鱈魚皮71A、冬鱈魚肉72A、鱈魚皮71B及鱈魚肉72B (圖7)之反射光譜經展示為反射信號(任意單位)對在10900 cm-1 至6000 cm-1 之間之範圍中之波數(cm-1 )中之波數之相依性。在141中展示包含冬鱈魚皮之六個光譜及鱈魚皮之六個光譜之十二個跡線。在142中展示包含各自冬鱈魚肉之六個光譜及鱈魚肉之六個光譜之十二個跡線。可見冬鱈魚及鱈魚皮之光譜141彼此十分相似,且冬鱈魚及鱈魚肉之光譜亦彼此十分相似,所以冬鱈魚之光譜視覺上無法與鱈魚之光譜區分(針對皮及肉樣本兩者)。 轉向圖15且進一步參考圖10A及圖10B,呈現PCA分析步驟108A、108B (圖10B)之結果。在圖15中,冬鱈魚皮得分151A顯得交替散佈有鱈魚皮得分151B,且冬鱈魚肉得分152A顯得交替散佈有鱈魚肉得分152B,所以在此階段無法完成清楚區分。 現參考圖16A及16B,冬鱈魚/鱈魚配對之SIMCA分析之結果依5%顯著性之Coomans圖之形式呈現。圖16A展示鱈魚樣本識別之結果。灰色圈161A表示用於獲得冬鱈魚之身份光譜之校準冬鱈魚樣本(皮及肉);白色填充圈161B表示用於獲得鱈魚之身份光譜之校準鱈魚樣本(皮及肉);及填充(黑色)圈162表示測試樣本。全部八個黑色圈對應於兩個鱈魚皮樣本及兩個鱈魚肉樣本,各由如上文所解釋之兩個平均光譜表示。圖16B展示冬鱈魚樣本識別之結果。填充(黑色)圈163表示一測試樣本。全部四個黑色圈163對應於一冬鱈魚皮樣本及一冬鱈魚肉樣本,各由兩個平均光譜表示。自圖16A及圖16B可見,冬鱈魚(皮及肉兩者)可容易識別且與鱈魚區分。 幼鮭/鮭魚配對 參考圖17且進一步參考圖8,幼鮭皮81A、幼鮭肉82A、歐鱒皮81B及歐鱒肉82B之反射光譜經展示為反射信號(任意單位)對在10900 cm-1 至6000 cm-1 之間之範圍中之波數(cm-1 )中之波數之相依性。在171中展示包含幼鮭皮之六個光譜及歐鱒皮之六個光譜之十二個跡線。在172中展示包含各自幼鮭肉之六個光譜及歐鱒肉之六個光譜之十二個跡線。可見幼鮭及歐鱒之皮光譜171彼此十分相似,且幼鮭及歐鱒之肉光譜172亦彼此十分相似,所以幼鮭之光譜視覺上無法與歐鱒之光譜區分(針對皮及肉樣本兩者)。 轉向圖18且進一步參考圖10A及圖10B,呈現PCA分析步驟108A、108B (圖10B)之結果。在圖18中,幼鮭皮得分181A顯得交替散佈有歐鱒皮得分181B,且幼鮭肉得分182A顯得交替散佈有歐鱒肉得分182B,所以在此階段無法完成清楚區分。 現參考圖19A及19B,幼鮭/歐鱒配對之SIMCA分析之結果依5%顯著性之Coomans圖之形式呈現。圖19A展示歐鱒樣本識別之結果。灰色圈191A表示用於獲得幼鮭之身份光譜之校準幼鮭樣本(皮及肉);白色填充圈191B表示用於獲得歐鱒之身份光譜之校準歐鱒樣本(皮及肉);及填充(黑色)圈192表示測試樣本。全部八個黑色圈對應於兩個歐鱒皮樣本及兩個歐鱒肉樣本,各由兩個平均光譜表示。圖19B展示幼鮭樣本識別之結果。填充(黑色)圈193表示兩個測試樣本。全部四個黑色圈193對應於兩個幼鮭皮樣本及兩個幼鮭肉樣本,各由兩個平均光譜表示。自圖19A及圖19B可見,幼鮭(皮及肉兩者)可容易識別且與歐鱒區分。 鯔魚(Meerbarbe)魚片鮮度 已執行鯔魚魚片之反射光譜之一數值研究,其中使用各種已知多變數分析方法以在鯔魚魚片(皮及無皮肉兩者)鮮度條件之間區分。 以下表1概述使用在一典型桌上型電腦上執行之鯔魚及紅鯔魚之替代匹配方法之成功預測率。光譜在被發送至多變數型樣分類其之前被自動按比例調整。基於藉由模型而執行預測之時間通常在毫秒之範圍內。當需要進行現場模型更新時,建立模型之時間可變為決定因數。在現場,使用點應用、量測之速度及獲得結果之速度越短越重要。另外,結果之準確度很重要。自表1,可見方法(諸如SVM (使用線性核心))在最短時間提供最佳準確度。 表1

Figure 108148694-A0304-0001
下文,僅簡單討論表1之數值方法,此係由於該等方法其等本身在技術中已知。該等方法之各者具有其之優點。在單純貝氏(Naïve Bayes)方法中,假定全部特彼此獨立,且結果可容易解釋。CART方法亦易於理解及解釋;然而,自數值資料集產生之樹可為複雜的,且該方法趨於具有過度擬合問題。TreeBagger分析及隨機森林分析方法通常基於非常好的結果,且該方法之「訓練」步驟相對較快。LIBLINEAR方法在區分海產物種及條件中非常有效率。使用線性核心之SVM方法(包含用於定量分析之支援向量分類(SVC)及用於定量分析之支援向量迴路歸(SVR))導致超過93%之預測成功率。在LDA方法中,假定全部類別具有相同協方差矩陣且經正常分佈,且判別函數始終為線性的。在QDA方法中,該等類別無需具有相同協方差矩陣,但仍假定正常分佈。偏最小平方(PLS)係一統計方法,其帶有一些關於主分量迴歸;而不是找出反應與獨立變數之間之最小方差之超平面,其藉由將所預測之變數及可觀察變數投影至一新空間而找出一線性迴歸模型。偏最小平方判別分析(PLS-DA)係當Y類目時使用之一變體。PLS-DA方法導致85%至87%之適度預測率。 結果展示:NaiveBayes、TreeBagger、SVM-linear、LDA、QDA、PLS-DA及SIMCA可出於使NIR反射光譜與海產樣本相關之目的而用於多變數分析中。所獲得之光譜之第一導數及第二導數亦可用於取代、或除了光譜之預處理之外,作為多變數分析之一輸入資料串(data strings)。 用於實施結合文中所揭示之態樣而描述之各種繪示性邏輯、邏輯區塊、模組及電路之硬體可使用一通用處理器、一數位信號處理器(DSP)、一專用積體電路(ASIC)、一場可程式化閘陣列(FPGA)或其他可程式化邏輯器件、離散閘或電晶體邏輯、離散硬體組件或經設計以執行文中所描述之功能之其之任何組合來實施或執行。一通用處理器可為一微處理器,但在替代實施例中,處理器可為任何習知處理器、控制器、微控制器或狀態機。一處理器亦可作為計算器件之一組合(例如一DSP及一微處理器、複數個微處理器、結合一DSP核心之一或多個微處理器或任何其他此組態之一組合)而實施。替代地,一些步驟或方法可由特定於一給定功能之電路執行。 已出於說明及描述之目的而呈現本發明之一或多個實施例之以上描述。不意欲詳盡或將本發明限於所揭示之精確形式。諸多修改及變動可能係鑑於以上教示。由隨附於此之申請專利範圍來限制本發明之範疇,而非意欲由此詳細描述限制本發明之範疇。Although the teaching is described in conjunction with various embodiments and examples, it is not intended that the teaching is limited to these embodiments. On the contrary, this teaching includes various alternatives and equivalents, as those familiar with the art will understand. 1, a device 10 for identifying a seafood sample 11 on site includes a portable NIR spectrometer 12 for obtaining a diffuse NIR reflectance spectrum 13 (signal power P relative to wavelength λ) of the seafood sample 11. An analyzer 14 is operatively coupled to the spectrometer 12 via a cable 15. The analyzer 14 is configured to perform a multivariate analysis of the reflection spectrum 13 of the seafood sample 11 to determine at least one characteristic parameter corresponding to the reflection spectrum 13. The analyzer 14 is configured to compare at least one parameter with a threshold value corresponding to a species of the seafood sample 11 for determining the species of the seafood sample 11. These species can be displayed on a display 16 of the analyzer 14. At least one parameter may include two or more parameters. The two parameters can be represented graphically as a point on an XY diagram called a Coomas diagram. One of the points on the Coomans diagram represents the seafood species using reflectance spectrum 13. We will further consider multivariate regression/pattern identification analysis and Coomas diagrams below. First consider the structure of the NIR spectrometer 12. 2, the NIR spectrometer 12 includes a main body 23, an incandescent lamp 24 for illuminating a seafood sample 11, a tapered light pipe (TLP) 25 for guiding the diffuse reflected light 36, and a tapered light pipe (TLP) 25 for dividing the reflected light 36 into individual parts. A laterally variable filter (LVF) 31 of wavelengths and a photodetector array 37 for detecting optical power levels of individual wavelengths. The photodetector array 37 is formed in a CMOS processing chip 37A and is coupled to the LVF 31 using an optically transparent adhesive 38. An electronic board 37B is provided to support and control the CMOS processing chip 37A. An optional button 21 is provided to start spectrum collection. The photodetector array 37 is vertically aligned with one of the longitudinal axis LA of the TLP 25. In operation, the incandescent lamp 24 illuminates the seafood sample 11. The TLP 25 collects the diffusely reflected light 36 and directs it toward the LVF 31. The LVF 31 divides the diffuse reflection light 36 into individual wavelengths, and the light detector array 31 detects the individual wavelengths. The measurement cycle can be started by pressing the button 21 or by an external command from the analyzer 14. The compact NIR spectrometer 12 is realized by the structure of its photodetector assembly 29. Referring to FIG. 3A, the photodetector sub-assembly 29 is shown in the XZ plane. In FIG. 3A, the photodetector subassembly 29 is turned over 180 degrees as indicated by the direction of the z-axis on the right side of FIGS. 2 and 3A. In the preferred embodiment shown in FIG. 3A, the optically transparent adhesive 38 directly couples the photodetector array 37 to the LVF 31. The optically transparent adhesive 38 must be: in fact non-conductive or dielectric; by using the induced pressure or destructive force to the detector array 37 to achieve good adhesion strength and be mechanically neutral; optically compatible to transmit the desired spectral content ; Remove the reflection of air on the glass interface; and have a thermal expansion coefficient property to minimize the pressure to the detector pixel 52 during the thermal cycle. An opaque epoxy resin 22 encapsulates the LVF 31, facilitating the removal of stray light and protecting the LVF 31 from humidity. An optional glass window 39 is placed on top of the LVF 31 for additional environmental protection. Referring to FIG. 3B and FIG. 3C, the operation of the LVF 31 is shown. The LVF 31 is shown in the YZ plane where the wavelengths are dispersed. The LVF 31 includes a wedge-shaped spacer 32 sandwiched between the wedge-shaped dichroic mirrors 33 to form a Fabry-Perot interferometer, with a laterally variable interval between the dichroic mirrors 33 . The wedge shape of the optical transmission filter 31 makes its transmission wavelength laterally variable. For example, arrows 34A, 34B, and 34C are used to point to a transmission spectrum 35 (FIG. 3C) shown below the variable optical transmission filter 31, respectively. The individual transmission peaks are shown in 35A, 35B and 35C. In operation, the multi-color light 36 reflected from the seafood sample 11 is irradiated on the variable optical filter 31, and the variable optical filter 31 divides the multi-color light 36 into individual spectral components indicated by arrows 34A to 34C. The wavelength range of the NIR spectrometer 12 is preferably between 700 nm and 2500 nm, and more preferably between 950 nm and 1950 nm. The use of LVF 31 and TLP 25 allows the size of the NIR spectrometer 12 to be reduced considerably. The NIR spectrometer 12 does not have any moving parts for wavelength scanning. The small weight of the NIR spectrometer 12, which is generally less than 100 grams, allows the NIR spectrometer 12 to be placed directly on the seafood sample 11. The small weight and size also make the NIR spectrometer 12 (for example) easy to transport in a pocket of a marine inspector. The size of the NIR spectrometer 12 is shown in FIG. 3D. The NIR spectrometer 12 can be easily hand-held, and the button 21 is conveniently positioned for thumb operation. Many variants of the NIR spectrometer are certainly possible. For example, the incandescent bulb 24 can be replaced with a broadband light-emitting diode or LED. The TLP 25 can be replaced with another optical element, such as a fiber optic panel or a holographic beam shaper. The LVF 31 can be replaced with another suitable wavelength selection element (such as a small diffraction grating, an array of dichroic mirrors, a MEMS device, etc.). Referring to FIG. 4A and further referring to FIG. 1, a method 40 for identifying a seafood sample 11 on site includes a step 41 of providing the portable NIR spectrometer 12 described above. In a step 42, the NIR spectrometer 12 is used to obtain the reflectance spectrum 13 of the seafood sample 11. In a step 43, a multivariable pattern identification analysis of the reflection spectrum 13 of the seafood sample 11 is performed to determine by comparing the reflection spectrum 13 with a spectrum library of known identification spectra corresponding to different species of seafood A matching spectrum with one of the most similar spectral patterns. Finally, in a step 44, the seafood sample 11 is identified based on the matching spectrum with the most similar spectral pattern determined in the previous step 43. In the text, the term "match spectrum" does not automatically indicate an exact match. Alternatively, the “matched spectrum” indicates that the spectrum library carries one of the most similar spectral patterns as an identity spectrum as compared with the measured reflectance spectrum 13. Therefore, "match" is not the exact match of the available matches, but only the closest match. The proximity of the match can be calculated based on the specific match evaluation method used. Perform multi-variable type identification analysis 43 to extract seafood species information from the reflectance spectrum 13. Due to the many overtones of the vibrational frequencies of the characteristic molecular bonds, the reflection spectrum 13 can be very complex, making individual peaks of the spectrum unable to be visually recognized. According to the present invention, a multivariate type analysis 43 (also referred to as “chemometric analysis”) is performed to identify or identify the species of the seafood sample 11. The measuring step 42 preferably includes: performing repeated spectral measurements at different positions on the seafood sample 11; and averaging the repeated measurements to reduce the dependence of the obtained reflection spectrum on a texture of the seafood sample 11 . The extended multiplicative scattering correction (EMSC) of the reflection spectrum 13 can be used to reduce the dependence of the measured reflection spectrum 13 on the scattering properties of the seafood sample 11. Other known statistical methods can also be used to preprocess the reflectance spectrum 13, for example, the standard normal variation (SNV) of the reflectance spectrum 13 can be calculated before proceeding to the step 43 of identifying and analyzing the multivariate pattern. The Savitzky-Golay filter of the reflection spectrum 13 can be performed and the first and/or a second derivative of the reflection spectrum 13 can be calculated to be considered in the multivariable pattern identification analysis step 43, and the spectrum in the reflection spectrum 13 can be considered Characteristic slope and/or recurve. Other statistical methods (such as sample-by-sample normalization of the reflectance spectrum 13 and/or channel-by-channel automatic scaling) can be used to facilitate the multi-variable pattern identification and analysis step 43, and to provide more stable results. The multi-variable pattern identification analysis 43 is usually performed in two stages. For example, referring to FIG. 4B and further referring to FIG. 1, a PCA step 45 is first performed to define a calibration model of each seafood type to be identified. The PCA step 45 can be completed in advance before the seafood sample 11 is measured in a calibration phase of the device 10. In a second step 46, the similarity between the collected reflectance spectrum 13 and the calibration model of different seafood species is analyzed. In the illustrated embodiment, Soft Independent Modeling of Classification Analogs (SIMCA) is used. Due to SIMCA step 46, two parameters are determined. These two parameters are plotted in an XY graph (Coomans graph), and different areas of it correspond to different seafood species. In some cases, only one parameter is needed, and this parameter can be compared with a threshold determined in step 45 of the PCA to identify the seafood sample 11. Other multi-variable pattern identification and analysis methods can be applied. Consider examples of these methods in the "Experimental Verification" section below. In view of the proliferation of computerized mobile communication devices (such as smart phones), it is advantageous to use a mobile communication device to perform the multi-variable pattern identification and analysis step 43 (FIG. 4A and FIG. 4B). Referring to FIG. 5A and further referring to FIGS. 1 and 4A, a device 50A for identifying a seafood sample 11 on site is similar to the device 10 of FIG. 1. One difference in the device 50A of FIG. 5A is that a mobile communication device 54 is configured to perform the multivariate analysis step 43 and the identification step 44 of the method 40 of FIG. 4A. For this purpose, the mobile communication device 54 may include a permanent storage medium 58, which encodes a spectral library and/or computer commands corresponding to the known identification spectra of different species of seafood on it for executing multivariable patterns. Identification/data reduction analysis step 43. The mobile communication device 54 can be coupled to the NIR spectrometer 12 via a wireless link 59 (such as Bluetooth™) or via a wire (such as USB communication) for transmitting the obtained reflection spectrum 13 to the mobile communication device 54. Turning now to FIG. 5B and further referring to FIGS. 4A and 5A, a device 50B for identifying a seafood sample on site is similar to the device 50A of FIG. 5A. The apparatus 50B of FIG. 5B includes a remote server 57 that communicates with the mobile communication device 54 via an RF communication link 56 to a base station 55 (which is connected to the Internet 52). In operation, the self-mobile device 54 transmits the reflection spectrum 13 to the remote servo 57, and performs the multivariable pattern identification analysis at the remote server 57 (ie, step 43 of the method 40 in FIG. 4A). The result of the multivariate analysis step 43 (FIG. 4A) is sent back to the mobile device 54 (FIG. 5B) for display to a user (not shown). The identification step 44 (FIG. 4A) can be performed by the mobile device 54 or by the remote server 57 (FIG. 5B). Using the computing power of a remote server eliminates the need for resources on mobile communication devices, and therefore speeds up the overall process of seafood identification. Experimental verification Many experiments are performed to verify similar appearance, but a combination of NIR spectroscopy and multivariate regression (chemometrics) analysis can be used to identify fish species with different prices. Referring to Figures 6 to 8, three groups of different fish species are used. The first group contains: a whole red mullet 60A and a whole mullet 60B (Figure 6), both skin and meat (the meat is not shown). The second group includes: winter cod skin 71A; cod skin 71B; winter cod meat 72A; and cod meat 72B. The third group includes: young salmon skin 81A; European trout skin 81B; young salmon meat 82A; and European trout 82B. As can be seen from the photos from Figure 6 to Figure 8, even for a seafood professional (such as a wholesaler or a chef, not to mention general public customers), visually distinguishing the whole fish and fish meat will be quite challenging. In FIGS. 6 to 8, the "A" group includes more expensive species 60A, 71A, 72A, 81A, and 82A, and the "B" group includes less expensive species 60B, 71B, 72B, 81B, and 82B. Therefore, the use of "B" species instead of "A" species can provide a substantial economic benefit. Turning to FIG. 9, one of the devices 90 used in the experimental verification of the present invention includes a miniature NIR™ 1700 spectrometer 92 manufactured by JDS Uniphase, Milpitas, California, USA. The miniature NIR spectrometer 92 operates in a wavelength range of 950 nm to 1650 nm. The miniature NIR spectrometer 92 is a low-cost, extremely compact and portable spectrometer, which weighs 60 grams and is less than 50 mm in diameter. The spectrometer 92 operates in a diffuse reflection and is constructed similarly to the spectrometer 12 of FIG. 3B, and includes a light source (not shown) for illuminating the seafood sample 11, a dispersion element 31, a photodetector array 37, and electronics (Not shown) (all of them are contained in a small portable package that can be placed directly on a seafood sample 91). The spectrometer 92 is connected by a cable 95 to a laptop 94 running Unscrambler™ multivariate analysis software (provided by CAMO AS of Oslo, Norway (version 9.6)). For each spectrum measurement, 50 scans with an integration time of 5 milliseconds have been accumulated, resulting in a total measurement time of one 0.25 second per reflection spectrum measurement. Referring now to FIGS. 10A and 10B, flowcharts 100A and 100B show the steps of spectrum acquisition and PCA model building performed for fish samples 60A and 60B; 71A and 71B; 72A and 72B; 81A and 81B; and 82A and 82B, respectively. In steps 101A and 101B, three different individual species are provided to the fish samples 60A and 60B; 71A and 71B; 72A and 72B; 81A and 81B; 82A and 82B in each of FIGS. 6 to 8 respectively. For mullet 60A and 60B; winter cod/cod 71A and 71B; 72A and 72B; and young salmon/European trout 81A and 81B; 82A and 82B pairs, collect skin reflectance spectra in steps 102A and 102B, respectively; and in step 103A And 103B collected meat reflectance spectra. Obtaining a whole of ten NIR reflection spectra at different positions on each of the three pieces, resulting in the fish samples 60A; 60B; 71A; 71B; 72A; 72B; 81A;; 81B; 82A and Figures 6 to 8 Thirty measurements of 82B. One of the standard methods of extended multiplicative scatter correction is used to correct the spectrum for scatter. Therefore, all thirty spectra have been obtained for each fish skin type 60A and 60B; 71A and 71B; 81A and 81B in steps 104A and 104B, respectively. All thirty spectra have been obtained for each fish type 72A and 72B; 82A and 82B in steps 105A and 105B, respectively. The spectra have been averaged into five groups for each of the three samples of each type in steps 106A, 107A; and 106B, 107B, resulting in two average spectra for each sample and six average spectra for each sample type , Including skin and meat. Averaging is completed to reduce the dependence of the obtained reflection spectrum on the texture of the respective seafood samples 60A, 60B, 71A, 71B, 72A, 72B, 81A, 81B, 82A, and 82B. Next, the PCA model has been established in steps 108A and 108B for the respective "A" and "B" samples. Perform a SIMCA analysis to identify the type of each fish sample. The results are presented according to the Coomas diagram of each fish type. Red mullet/mullet pairing Refer to Figure 11 and further to Figure 6, the reflectance spectra of red mullet 60A and mullet 60B are shown as a reflection signal (arbitrary unit) pair between 10900 cm -1 and 6000 cm -1 The dependence of the wave number in the range (cm -1 ). In 111, twelve traces including the six spectra of red mullet skin and the six spectra of mullet skin are displayed. At 112, twelve traces including the six spectra of red mullet flesh and the six spectra of mullet flesh are displayed. It can be seen that the spectrum 111 of red mullet and mullet skin are very similar to each other, and the spectrum 112 of red mullet and mullet meat are also very similar to each other, so the spectrum of red mullet and mullet cannot be visually distinguished from the spectrum of mullet (for skin and meat Both). Turning to FIG. 12 and further referring to FIGS. 10A and 10B, the results of the PCA analysis steps 108A, 108B (FIG. 10B) are presented. In FIG. 12, the red mullet skin score 121A is sufficient to separate from the mullet skin score 121B to allow easy identification, but a clear separation is not achieved between the red mullet flesh score 122A and the mullet flesh score 122B. Now referring to Figures 13A and 13B, the results of the SIMCA analysis of the red mullet/mullet pairing are presented in the form of a 5% significant Coomas graph. Figure 13A shows the result of red mullet sample identification. The gray circle 131A represents the calibration red mullet sample (skin and meat) used to obtain the identity spectrum of the red mullet; the white filled circle 131B represents the calibration mullet sample (skin and meat) used to obtain the identity spectrum of the mullet; and The filled (black) circle 132 represents the test sample. All four black circles correspond to a sample of red mullet skin and a sample of red mullet flesh, each represented by two average spectra. Figure 13B shows the result of identification of mullet samples. The filled (black) circle 133 represents two test samples. All eight black circles 133 correspond to two mullet skin samples and two mullet flesh samples, each represented by two average spectra as explained above. Only one of the two parameters "distance to red mullet" and "distance to mullet" can be used by comparing the parameter with a threshold value. For example, if the "distance to mullet" is used, the threshold is about 0.01. If the "distance to red mullet" is used, the threshold is about 0.0008. It can be seen from Figures 13A and 13B that the red mullet (both skin and meat) can be easily identified. Therefore, removing the skin of a fish sample will not allow a potential criminal to conceal an illegal act of replacing red mullet with mullet. For winter cod/cod pairing, refer to Figure 14 and further refer to Figure 7. The reflectance spectra of winter cod skin 71A, winter cod meat 72A, cod skin 71B, and cod meat 72B (Figure 7) are shown as a reflection signal (arbitrary unit) pair at 10900 The dependence of the wave number in the range between cm -1 and 6000 cm -1 (cm -1 ). In 141, twelve traces including the six spectra of winter cod skin and the six spectra of cod skin are displayed. In 142, twelve traces including the six spectra of the respective winter cod meat and the six spectra of the cod meat are displayed. It can be seen that the spectra 141 of winter cod and cod skin are very similar to each other, and the spectra of winter cod and cod meat are also very similar to each other, so the spectrum of winter cod is visually indistinguishable from that of cod (for both skin and meat samples). Turning to FIG. 15 and further referring to FIGS. 10A and 10B, the results of the PCA analysis steps 108A, 108B (FIG. 10B) are presented. In Figure 15, the winter cod skin score 151A appears alternately interspersed with the cod skin score 151B, and the winter cod meat score 152A appears alternately interspersed with the cod meat score 152B, so a clear distinction cannot be made at this stage. Referring now to Figures 16A and 16B, the results of the SIMCA analysis of winter cod/cod pairing are presented in the form of a 5% significant Coomas graph. Figure 16A shows the result of identification of cod samples. The gray circle 161A represents the calibration winter cod sample (skin and meat) used to obtain the identity spectrum of the winter cod; the white filling circle 161B represents the calibration cod sample (skin and meat) used to obtain the identity spectrum of the cod; and the filling (black) Circle 162 represents the test sample. All eight black circles correspond to two cod skin samples and two cod meat samples, each represented by two average spectra as explained above. Figure 16B shows the results of winter cod sample identification. The filled (black) circle 163 represents a test sample. All four black circles 163 correspond to a winter cod skin sample and a winter cod meat sample, each represented by two average spectra. It can be seen from Figure 16A and Figure 16B that winter cod (both skin and meat) can be easily identified and distinguished from cod. Juvenile salmon / Salmon pairing with reference to Figure 17 and further reference to Figure 8, parr skin 81A, juvenile salmon meat 82A, European trout skin 81B and European trout meat reflection spectrum by display 82B of the reflection signal (in arbitrary units) of the 10900 cm - The dependence of the wave number in the range of 1 to 6000 cm -1 (cm -1 ). In 171, twelve traces including six spectra of young salmon skin and six spectra of European trout skin are displayed. In 172, twelve traces including the six spectra of each young salmon meat and the six spectra of European trout meat are displayed. It can be seen that the skin spectra 171 of young salmon and European trout are very similar to each other, and the flesh spectrum 172 of young salmon and European trout are also very similar to each other, so the spectrum of young salmon cannot be visually distinguished from the spectra of European trout (for both skin and meat samples) By). Turning to FIG. 18 and further referring to FIGS. 10A and 10B, the results of the PCA analysis steps 108A, 108B (FIG. 10B) are presented. In Figure 18, the young salmon skin score 181A appears to be alternately interspersed with the European trout skin score 181B, and the young salmon meat score 182A appears to be alternately interspersed with the European trout score 182B, so a clear distinction cannot be completed at this stage. Now referring to Figures 19A and 19B, the results of the SIMCA analysis of the young salmon/European trout pairing are presented in the form of a 5% significant Coomas chart. Figure 19A shows the results of the identification of a trout sample. The gray circle 191A represents the calibration salmon sample (skin and meat) used to obtain the identification spectrum of the young salmon; the white filling circle 191B represents the calibration salmon sample (skin and meat) used to obtain the identification spectrum of the salmon; and the filling ( The black circle 192 represents the test sample. All eight black circles correspond to two European trout skin samples and two European trout meat samples, each represented by two average spectra. Figure 19B shows the results of the identification of the young salmon sample. The filled (black) circle 193 represents two test samples. All four black circles 193 correspond to two young salmon skin samples and two young salmon meat samples, each represented by two average spectra. It can be seen from Figure 19A and Figure 19B that young salmon (both skin and meat) can be easily identified and distinguished from European trout. The freshness of mullet (Meerbarbe) fillets has been performed on a numerical study of the reflectance spectra of mullet fillets, in which various known multivariate analysis methods are used to distinguish between the freshness conditions of mullet fillets (both skin and skinless meat). The following Table 1 summarizes the success prediction rate of the alternative matching method of mullet and red mullet executed on a typical desktop computer. The spectrum is automatically scaled before being sent to the multi-variable type classification. The time to perform prediction based on the model is usually in the range of milliseconds. When an on-site model update is required, the time to build the model can be used as a determining factor. In the field, the shorter the point-of-use application, the speed of measurement, and the speed of obtaining results, the more important. In addition, the accuracy of the results is very important. From Table 1, it can be seen that methods such as SVM (using a linear core) provide the best accuracy in the shortest time. Table 1
Figure 108148694-A0304-0001
In the following, only the numerical methods of Table 1 are briefly discussed, because these methods themselves are known in the art. Each of these methods has its advantages. In the Naïve Bayes method, all characteristics are assumed to be independent of each other, and the results can be easily interpreted. The CART method is also easy to understand and explain; however, the tree generated from a numerical data set can be complex, and the method tends to have an overfitting problem. TreeBagger analysis and random forest analysis methods are usually based on very good results, and the "training" step of the method is relatively fast. The LIBLINEAR method is very efficient in distinguishing seafood species and conditions. The use of linear core SVM methods (including support vector classification (SVC) for quantitative analysis and support vector loop regression (SVR) for quantitative analysis) resulted in a prediction success rate of over 93%. In the LDA method, it is assumed that all categories have the same covariance matrix and are normally distributed, and the discriminant function is always linear. In the QDA method, these categories do not need to have the same covariance matrix, but normal distribution is still assumed. Partial least squares (PLS) is a statistical method with some regressions on principal components; instead of finding the hyperplane of the minimum variance between the response and the independent variables, it uses the projection of the predicted variable and the observable variable To a new space and find a linear regression model. Partial Least Squares Discriminant Analysis (PLS-DA) is a variant used when the Y category is used. The PLS-DA method resulted in a moderate prediction rate of 85% to 87%. Results show: NaiveBayes, TreeBagger, SVM-linear, LDA, QDA, PLS-DA and SIMCA can be used in multivariate analysis for the purpose of correlating NIR reflectance spectra with seafood samples. The first derivative and the second derivative of the obtained spectrum can also be used in place of, or in addition to preprocessing of the spectrum, as one of the input data strings for multivariate analysis. The hardware used to implement various graphical logics, logic blocks, modules, and circuits described in combination with the aspects disclosed in the text can use a general-purpose processor, a digital signal processor (DSP), and a dedicated integrated body Circuit (ASIC), a programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of them designed to perform the functions described in the text are implemented Or execute. A general-purpose processor may be a microprocessor, but in alternative embodiments, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor can also be used as a combination of computing devices (for example, a DSP and a microprocessor, a plurality of microprocessors, a combination of one or more microprocessors of a DSP core, or any other combination of this configuration). Implement. Alternatively, some steps or methods can be performed by a circuit specific to a given function. The foregoing description of one or more embodiments of the present invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and changes may be based on the above teachings. The scope of the present invention is limited by the scope of the patent application attached hereto, and it is not intended to limit the scope of the present invention by this detailed description.

10:裝置 11:海產樣本 12:可攜式近紅外光(NIR)分光計 13:漫近紅外光(NIR)反射光譜 14:分析器 15:纜線 16:顯示器 21:按鈕 22:不透明環氧樹脂 23:主體 24:白熾燈/白熾燈泡 25:錐形光導管(TLP) 29:光偵測子總成 31:橫向可變濾光器(LVF)/分散元件 32:楔形間隔件 33:楔形二向分光鏡 34A:箭頭 34B:箭頭 34C:箭頭 35:傳輸光譜 35A:個別傳輸高峰 35B:個別傳輸高峰 35C:個別傳輸高峰 36:漫反射光/多色光 37:光偵測器陣列 37A:互補金氧半導體(CMOS)處理晶片 37B:電子板 38:光學透明黏著劑 39:選用玻璃窗 40:方法 41:步驟 42:量測步驟 43:多變數型樣辨識分析/資料減少分析步驟 44:識別步驟 45:主分量分析(PCA)步驟 46:第二步驟/分類類比之軟獨立模型化(SIMCA)步驟 50A:裝置 50B:裝置 52:偵測器像素/網際網路 54:行動通信器件 55:基地台 56:射頻(RF)通信鏈路 57:遠端伺服器 58:永久性儲存媒體 59:無線鏈路 60A:紅鯔魚/魚類樣本 60B:鯔魚/魚類樣本 71A:冬鱈魚皮 71B:鱈魚皮 72A:冬鱈魚肉 72B:鱈魚肉 81A:幼鮭皮 81B:歐鱒皮 82A:幼鮭肉 82B:歐鱒肉 90:裝置 91:海產樣本 92:微型NIR™ 1700分光計 94:膝上型電腦 95:纜線 100A:流程圖 100B:流程圖 101A:步驟 101B:步驟 102A:步驟 102B:步驟 103A:步驟 103B:步驟 104A:步驟 104B:步驟 105A:步驟 105B:步驟 106A:步驟 106B:步驟 107A:步驟 107B:步驟 108A:主分量分析(PCA)分析步驟 108B:主分量分析(PCA)分析步驟 111:光譜 112:光譜 121A:紅鯔魚皮得分 121B:鯔魚皮得分 122A:紅鯔魚肉得分 122B:鯔魚肉得分 131A:用於獲得紅鯔魚之身份光譜之校準紅鯔魚樣本(皮及肉) 131B:用於獲得鯔魚之身份光譜之校準鯔魚樣本(皮及肉)用於獲得鯔魚之身份光譜之校準鯔魚樣本(皮及肉) 132:測試樣本 133:鯔魚皮樣本及鯔魚肉樣本 141:冬鱈魚皮/鱈魚皮光譜 142:冬鱈魚肉/鱈魚肉光譜 151A:冬鱈魚皮得分 151B:鱈魚皮得分 152A:冬鱈魚肉得分 152B:鱈魚肉得分 161A:校準冬鱈魚樣本(皮及肉) 161B:校準鱈魚樣本(皮及肉) 162:測試樣本 163:測試樣本 171:幼鮭皮/歐鱒皮光譜 172:幼鮭肉/歐鱒肉光譜 181A:幼鮭皮得分 181B:歐鱒皮得分 182A:幼鮭肉得分 182B:歐鱒肉得分 191A:校準幼鮭樣本(皮及肉) 191B:校準歐鱒樣本(皮及肉) 192:測試樣本 193:測試樣本 λ:波長 LA:縱向軸 P:信號功率 XZ:平面 YZ:平面 z:軸10: device 11: Seafood samples 12: Portable near infrared light (NIR) spectrometer 13: Diffuse near infrared light (NIR) reflectance spectrum 14: Analyzer 15: Cable 16: display 21: Button 22: Opaque epoxy resin 23: main body 24: Incandescent lamp/Incandescent bulb 25: Tapered Light Pipe (TLP) 29: Light detection sub-assembly 31: Horizontal variable filter (LVF)/dispersion element 32: Wedge spacer 33: Wedge dichroic beam splitter 34A: Arrow 34B: Arrow 34C: Arrow 35: Transmission spectrum 35A: Individual transmission peak 35B: Individual transmission peak 35C: Individual transmission peak 36: Diffuse light/multicolor light 37: Light detector array 37A: Complementary Metal Oxide Semiconductor (CMOS) processing wafer 37B: Electronic board 38: Optically transparent adhesive 39: use glass windows 40: Method 41: Steps 42: Measurement steps 43: Multi-variable type identification analysis/data reduction analysis steps 44: identification steps 45: Principal Component Analysis (PCA) step 46: The second step/soft independent modeling (SIMCA) step of classification analogy 50A: device 50B: Device 52: Detector pixel/Internet 54: mobile communication device 55: base station 56: Radio Frequency (RF) Communication Link 57: remote server 58: Permanent storage media 59: wireless link 60A: Red mullet/fish sample 60B: Mullet/fish sample 71A: Winter Cod Skin 71B: Cod skin 72A: Winter Cod Meat 72B: Cod meat 81A: young salmon skin 81B: European trout skin 82A: young salmon 82B: European trout 90: device 91: Seafood samples 92: Mini NIR™ 1700 Spectrometer 94: laptop 95: Cable 100A: Flow chart 100B: Flow chart 101A: Step 101B: Step 102A: Step 102B: Step 103A: Step 103B: Steps 104A: Step 104B: Step 105A: Step 105B: Step 106A: Step 106B: Step 107A: Step 107B: Step 108A: Principal Component Analysis (PCA) analysis steps 108B: Principal Component Analysis (PCA) analysis steps 111: Spectrum 112: Spectrum 121A: Red mullet skin score 121B: Mullet skin score 122A: Red mullet score 122B: Mullet score 131A: Calibration red mullet sample (skin and meat) used to obtain the identity spectrum of red mullet 131B: Calibration mullet sample (skin and meat) used to obtain the identity spectrum of mullet 132: test sample 133: Mullet skin sample and mullet meat sample 141: Winter cod skin / cod skin spectrum 142: Winter cod meat / cod meat spectrum 151A: Winter cod skin score 151B: Cod skin score 152A: Winter Cod Meat Score 152B: Cod meat score 161A: Calibration winter cod sample (skin and meat) 161B: Calibration cod sample (skin and meat) 162: test sample 163: test sample 171: Young salmon skin/European trout skin spectrum 172: Young salmon meat/European trout meat spectrum 181A: Young salmon skin score 181B: European trout skin score 182A: Young salmon score 182B: European trout score 191A: Calibration young salmon sample (skin and meat) 191B: Calibration sample of European trout (skin and meat) 192: Test sample 193: test sample λ: wavelength LA: Longitudinal axis P: signal power XZ: plane YZ: plane z: axis

現將結合圖式描述例示性實施例,其中: 圖1係根據本發明用於現場鑑別一海產樣本之一裝置之一示意三維圖,圖中疊印有由該裝置量測之一NIR反射光譜; 圖2係圖1之裝置之一可攜式手持NIR分光計之一側視橫截面圖; 圖3A係圖2之可攜式NIR分光計之一光偵測子總成之一側視橫截面圖; 圖3B係用於圖3A之光偵測子總成中之一波長分散元件之一側視橫截面圖; 圖3C係圖3B之波長分離元件之一透射譜; 圖3D係圖2之可攜式手持NIR分光計之三維圖; 圖4A係根據本發明之用於現場鑑別一海產樣本之一方法之一流程圖; 圖4B係根據本發明之NIR光譜之一例示性多變數分析之一流程圖; 圖5A係本發明之裝置之一實施例之一示意圖,其中與NIR分光計無線通信之一可攜式器件用於分析由NIR分光計獲得之NIR光譜; 圖5B係本發明之裝置之另一實施例之一示意圖,其中可攜式器件用於將所量測之NIR光譜中繼至一遠端伺服器用於執行多變數分析; 圖6至圖8係本發明之實驗驗證中使用之待在包含紅鯔魚/鯔魚配對(圖6)、冬鱈魚/鱈魚配對(皮與肉,圖7)及幼鮭/歐鱒配對(皮與肉,圖8)之間區分之海產配對之彩色照片; 圖9係量測一鮭魚樣本之一NIR光譜之裝置之一原型之一彩色照片; 圖10A及圖10B係分別用於實驗驗證之更高及更低品質海產之資料收集及分析之流程圖; 圖11、圖14及圖17分別係紅鯔魚/鯔魚配對、冬天鱈魚/鱈魚配對及幼鮭/歐鱒配對之所量測之漫反射光譜; 圖12、15及18分別係紅鯔魚/鯔魚配對、冬鱈魚/鱈魚配對及幼鮭/歐鱒配對之所量測之主分量分析(PCA)模型之三維得分圖;及 圖13A、圖13B;圖16A、圖16B及圖19A、圖19B分別係紅鯔魚/鯔魚配對;冬鱈魚/鱈魚配對;及幼鮭/歐鱒配對之分類類比之軟獨立模型化(SIMCA)分析之Coomans圖。Illustrative embodiments will now be described in conjunction with the drawings, in which: Figure 1 is a schematic three-dimensional diagram of a device used to identify a seafood sample on site according to the present invention, in which a NIR reflectance spectrum measured by the device is overprinted in the figure; Figure 2 is a side cross-sectional view of a portable handheld NIR spectrometer of the device of Figure 1; Fig. 3A is a side cross-sectional view of a light detecting sub-assembly of the portable NIR spectrometer of Fig. 2; FIG. 3B is a side cross-sectional view of a wavelength dispersing element used in the light detecting sub-assembly of FIG. 3A; Figure 3C is a transmission spectrum of one of the wavelength separation elements of Figure 3B; Figure 3D is a three-dimensional view of the portable handheld NIR spectrometer of Figure 2; 4A is a flowchart of a method for identifying a seafood sample on site according to the present invention; 4B is a flowchart of an exemplary multivariate analysis of NIR spectra according to the present invention; FIG. 5A is a schematic diagram of an embodiment of the device of the present invention, in which a portable device wirelessly communicating with the NIR spectrometer is used to analyze the NIR spectrum obtained by the NIR spectrometer; 5B is a schematic diagram of another embodiment of the device of the present invention, in which a portable device is used to relay the measured NIR spectrum to a remote server for performing multivariate analysis; Figures 6 to 8 are examples of red mullet/mullet pairing (Figure 6), winter cod/cod pairing (skin and meat, Figure 7) and young salmon/European trout pairing to be used in the experimental verification of the present invention. Color photos of the seafood pairings distinguishing between skin and meat, Fig. 8); Figure 9 is a color photo of a prototype of a device for measuring the NIR spectrum of a salmon sample; Figures 10A and 10B are flowcharts of data collection and analysis of higher and lower quality seafood used for experimental verification, respectively; Figure 11, Figure 14 and Figure 17 are the measured diffuse reflectance spectra of red mullet/mullet pairing, winter cod/cod pairing and young salmon/European trout pairing respectively; Figures 12, 15 and 18 are the three-dimensional score graphs of the measured principal component analysis (PCA) model of red mullet/mullet pairing, winter cod/cod pairing and young salmon/Euro trout pairing; and Figure 13A, Figure 13B; Figure 16A, Figure 16B, Figure 19A, Figure 19B are red mullet/mullet pairing; winter cod/cod pairing; and young salmon/European trout pairing classification analogy soft independent modeling (SIMCA ) Analysis of the Coomans diagram.

10:裝置 10: device

11:海產樣本 11: Seafood samples

12:可攜式近紅外光(NIR)分光計 12: Portable near infrared light (NIR) spectrometer

13:漫近紅外光(NIR)反射光譜 13: Diffuse near infrared light (NIR) reflectance spectrum

14:分析器 14: Analyzer

15:纜線 15: Cable

16:顯示器 16: display

Claims (20)

一種用於提供關於一樣本之資訊之方法,該方法包括:藉由一行動器件接收該樣本之反射光譜;藉由該行動器件提供該反射光譜至一遠端伺服器;藉由該行動器件及從該遠端伺服器接收一多變數型樣辨識分析之一結果,該多變數型樣辨識分析係基於該反射光譜及與對應於不同海鮮物種之已知身份光譜藉由比較一距離參數與一臨限值而執行,該臨限值與該等不同海鮮物種之一海鮮物種相關聯;藉由該行動器件判定基於接收該多變數型樣辨識分析之該結果關於該樣本之該資訊;藉由該行動器件提供及用於顯示關於該樣本之該資訊。 A method for providing information about a sample, the method comprising: receiving a reflection spectrum of the sample by a mobile device; providing the reflection spectrum to a remote server by the mobile device; using the mobile device and A result of a multi-variable type identification analysis is received from the remote server. The multi-variable type identification analysis is based on the reflection spectrum and a known identification spectrum corresponding to different seafood species by comparing a distance parameter with a The threshold value is executed with the threshold value associated with one of the different seafood species; the mobile device determines the information about the sample based on the result of receiving the multivariable type identification analysis; by The mobile device provides and is used to display the information about the sample. 如請求項1之方法,其中接收該多變數型樣辨識分析之該結果包括:在該遠端伺服器基於執行該多變數型樣辨識分析而識別該樣本之後,接收該多變數型樣辨識分析之該結果。 For example, the method of claim 1, wherein receiving the result of the multi-variable pattern identification analysis includes: receiving the multi-variable pattern identification analysis after the remote server recognizes the sample based on executing the multi-variable pattern identification analysis The result. 如請求項1之方法,其中判定關於該樣本之該資訊包括:藉由該行動器件及在接收該多變數型樣辨識分析之該結果之後識別基於該多變數型樣辨識分析而識別該樣本;及基於識別該樣本而判定關於該樣本之該資訊。 For example, the method of claim 1, wherein determining the information about the sample includes: identifying the sample based on the multi-variable type identification analysis by the mobile device and after receiving the result of the multi-variable type identification analysis; And determine the information about the sample based on identifying the sample. 如請求項1之方法,其中該行動器件經由一無線鏈路從與該行動器件連結之一可攜式分光計接收該反射光譜。 The method of claim 1, wherein the mobile device receives the reflection spectrum from a portable spectrometer connected to the mobile device via a wireless link. 如請求項1之方法,其中提供該反射光譜至該遠端伺服器包括:經由至一基地台之一通信鏈路提供該反射光譜至該遠端伺服器。 The method of claim 1, wherein providing the reflection spectrum to the remote server includes: providing the reflection spectrum to the remote server via a communication link to a base station. 如請求項1之方法,其中該樣本為一海產樣本。 Such as the method of claim 1, wherein the sample is a seafood sample. 如請求項1之方法,其中關於該樣本之該資訊包含該樣本之一身分,及其中產生已知身份光譜之一光譜庫係基於收集用於該複數個樣本之至少一海產樣本之第一複數個光譜及在該第一複數個光譜上執行一操作以產生對應於該已知身分光譜之第二複數個光譜。 Such as the method of claim 1, wherein the information about the sample includes an identity of the sample, and a spectrum library in which the known identity spectrum is generated is based on the first plural number of at least one seafood sample collected for the plurality of samples Performing an operation on the first plurality of spectra to generate a second plurality of spectra corresponding to the known identity spectrum. 一種行動器件,其包括:一或多個記憶體;及一或多個處理器,其與該一或多個記憶體通信耦合,該一或多個處理器經組態以:從一分光計接收一樣本之一反射光譜;提供該反射光譜至一遠端伺服器; 從該遠端伺服器接收一多變數型樣辨識分析之一結果,該多變數型樣辨識分析係基於該反射光譜及與對應於不同海鮮物種之已知身份光譜藉由比較一距離參數與一臨限值而執行,該臨限值與該等不同海鮮物種之一海鮮物種相關聯;及提供基於接收該多變數型樣辨識分析之該結果關於該樣本之資訊以供顯示。 A mobile device includes: one or more memories; and one or more processors, which are communicatively coupled with the one or more memories, and the one or more processors are configured to: from a spectrometer Receive a reflection spectrum of a sample; provide the reflection spectrum to a remote server; A result of a multi-variable type identification analysis is received from the remote server. The multi-variable type identification analysis is based on the reflection spectrum and a known identification spectrum corresponding to different seafood species by comparing a distance parameter with a Implementation of the threshold value, the threshold value being associated with one of the different seafood species; and providing information about the sample based on the result of the multivariate type identification analysis received for display. 如請求項8之行動器件,其中當接收該多變數型樣辨識分析之該結果時,該一或多個處理器經組態以:在該遠端伺服器基於執行該多變數型樣辨識分析而識別該樣本之後,接收該多變數型樣辨識分析之該結果。 Such as the mobile device of claim 8, wherein when receiving the result of the multi-variable type identification analysis, the one or more processors are configured to: perform the multi-variable type identification analysis based on the remote server After identifying the sample, the result of the multivariable pattern identification analysis is received. 如請求項8之行動器件,其中該一多個處理器經進一步經組態以:在接收該多變數型樣辨識分析之該結果之後基於該多變數型樣辨識分析而識別該樣本。 Such as the mobile device of claim 8, wherein the one or more processors are further configured to: after receiving the result of the multi-variable type identification analysis, identify the sample based on the multi-variable type identification analysis. 如請求項8之行動器件,其中該行動器件與該分光計經由一無線鏈路連結,及其中該分光計為一可攜式分光計。 Such as the mobile device of claim 8, wherein the mobile device and the spectrometer are connected via a wireless link, and the spectrometer is a portable spectrometer. 如請求項8之行動器件,其中當提供該反射光譜至該遠端伺服器時,該一或多個處理器經組態以: 經由一基地台提供該反射光譜至該遠端伺服器。 Such as the mobile device of claim 8, wherein when providing the reflection spectrum to the remote server, the one or more processors are configured to: The reflection spectrum is provided to the remote server via a base station. 如請求項8之行動器件,其中該樣本為一海產樣本。 Such as the mobile device of claim 8, wherein the sample is a seafood sample. 如請求項8之行動器件,其中關於該樣本之該資訊包含該樣本之一身分,及其中產生已知身份光譜之一光譜庫係基於收集用於該複數個樣本之至少一海產樣本之第一複數個光譜及在該第一複數個光譜執行一操作以產生對應於該已知身分光譜之第二複數個光譜。 For example, the mobile device of claim 8, wherein the information about the sample includes an identity of the sample, and a spectrum library of known identity spectra generated therein is based on the first of at least one seafood sample collected for the plurality of samples A plurality of spectra and performing an operation on the first plurality of spectra to generate a second plurality of spectra corresponding to the known identity spectrum. 一種儲存指令之永久性電腦可讀取媒體,該等指令包括:一或多個指令,其在經由一或多個處理器執行時,使得該一或多個處理器:接收一樣本之一反射光譜;提供該反射光譜至一遠端伺服器;從該遠端伺服器接收基於一多變數型樣辨識分析之一結果,該多變數型樣辨識分析係基於該反射光譜及與對應於不同海鮮物種之已知身份光譜藉由比較一距離參數與一臨限值而執行,該臨限值與該等不同海鮮物種之一海鮮物種相關聯;及基於接收該多變數型樣辨識分析之該結果提供關於該樣本之資訊以供顯示。 A permanent computer-readable medium for storing instructions. The instructions include: one or more instructions, which when executed by one or more processors, cause the one or more processors to: receive a reflection from a sample Spectrum; provide the reflection spectrum to a remote server; receive a result from the remote server based on a multi-variable type identification analysis, the multi-variable type identification analysis is based on the reflection spectrum and corresponding to different seafood The known identity spectrum of the species is performed by comparing a distance parameter with a threshold value, the threshold value being associated with one of the different seafood species; and based on the result of receiving the multivariate type identification analysis Provide information about the sample for display. 如請求項15之永久性電腦可讀取媒體,其中使該一或多個處理器接收該多變數型樣辨識分析之該結果之該一或多個指令使該一或多個處理器:在該遠端伺服器基於執行該多變數型樣辨識分析而識別該樣本之後,接收該多變數型樣辨識分析之該結果。 For example, the permanent computer-readable medium of claim 15, wherein the one or more instructions that cause the one or more processors to receive the result of the multivariable pattern identification analysis cause the one or more processors to: After the remote server recognizes the sample based on executing the multi-variable pattern identification analysis, it receives the result of the multi-variable pattern identification analysis. 如請求項15之永久性電腦可讀取媒體,其中該一或多個指令在由該一或多個處理器執行時,進一步使該一或多個處理器:在接收該多變數型樣辨識分析之該結果之後,基於該多變數型樣辨識分析識別該樣本。 For example, the permanent computer-readable medium of claim 15, wherein when the one or more instructions are executed by the one or more processors, the one or more processors: After analyzing the result, the sample is identified based on the multi-variable pattern identification analysis. 如請求項15之永久性電腦可讀取媒體,其中已知身份光譜之一光譜庫的產生係基於收集用於該複數個樣本之至少一海產樣本之第一複數個光譜及在該第一複數個光譜上執行一操作以產生對應於該已知身分光譜之第二複數個光譜。 For example, the permanent computer readable medium of claim 15, wherein the generation of a spectrum library of known identity spectra is based on the first plurality of spectra collected for the plurality of samples of at least one seafood sample and the An operation is performed on each spectrum to generate a second plurality of spectra corresponding to the known identity spectrum. 如請求項15之永久性電腦可讀取媒體,其中該反射光譜係由一可攜式分光計接收。 For example, the permanent computer-readable medium of claim 15, wherein the reflection spectrum is received by a portable spectrometer. 如請求項19之永久性電腦可讀取媒體,其中該一或多個處理器包含於一行動器件中,該行動器件經由一有線鏈路連接至該可攜式分光計。 For example, the permanent computer readable medium of claim 19, wherein the one or more processors are included in a mobile device, and the mobile device is connected to the portable spectrometer via a wired link.
TW108148694A 2013-03-21 2014-03-20 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample TWI749437B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361804106P 2013-03-21 2013-03-21
US61/804,106 2013-03-21

Publications (2)

Publication Number Publication Date
TW202014681A TW202014681A (en) 2020-04-16
TWI749437B true TWI749437B (en) 2021-12-11

Family

ID=51659131

Family Applications (3)

Application Number Title Priority Date Filing Date
TW108148694A TWI749437B (en) 2013-03-21 2014-03-20 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample
TW107118926A TWI683093B (en) 2013-03-21 2014-03-20 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample
TW103110534A TWI629464B (en) 2013-03-21 2014-03-20 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW107118926A TWI683093B (en) 2013-03-21 2014-03-20 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample
TW103110534A TWI629464B (en) 2013-03-21 2014-03-20 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample

Country Status (6)

Country Link
US (3) US9316628B2 (en)
EP (1) EP2976605B1 (en)
CN (2) CN105190261B (en)
HK (2) HK1221010A1 (en)
TW (3) TWI749437B (en)
WO (1) WO2014165331A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012330761B2 (en) 2011-11-03 2016-01-21 Verifood Ltd. Low-cost spectrometry system for end-user food analysis
KR102089734B1 (en) * 2012-11-13 2020-03-16 비아비 솔루션즈 아이엔씨. Portable spectrometer
US9885655B2 (en) 2012-11-13 2018-02-06 Viavi Solutions Inc. Spectrometer with a relay lightpipe
TWI749437B (en) 2013-03-21 2021-12-11 美商唯亞威方案公司 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample
CN105593651B (en) 2013-08-02 2019-06-07 威利食品有限公司 Spectrometric system and method, spectroscopy equipment and system
CN106461461A (en) 2014-01-03 2017-02-22 威利食品有限公司 Spectrometry systems, methods, and applications
WO2016063284A2 (en) 2014-10-23 2016-04-28 Verifood, Ltd. Accessories for handheld spectrometer
WO2016125164A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system applications
WO2016125165A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system with visible aiming beam
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US10801964B2 (en) * 2015-07-30 2020-10-13 The Research Foundation For The State University Of New York Spectroscopic methods for body fluid age determination
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
WO2018015951A1 (en) 2016-07-20 2018-01-25 Verifood, Ltd. Accessories for handheld spectrometer
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
CN106560697A (en) * 2016-10-20 2017-04-12 中国计量大学 Method for identifying producing area of Wuyi rock tea through combination of near infrared spectroscopy and trace element detection
CN106560698A (en) * 2016-10-20 2017-04-12 中国计量大学 Identification method for producing area of plant based on multiple detection technologies
US10980484B2 (en) 2017-03-27 2021-04-20 Samsung Electronics Co., Ltd. Method of enabling feature extraction for glucose monitoring using near-infrared (NIR) spectroscopy
KR102491854B1 (en) 2017-09-29 2023-01-26 삼성전자주식회사 Spectrometer
DE102018103509B3 (en) * 2017-10-11 2018-12-13 Carl Zeiss Spectroscopy Gmbh Mobile ingredient analysis system as well as procedures for sample-correct measurement and user guidance with this
WO2019102400A1 (en) * 2017-11-22 2019-05-31 Cti Srl System and process for the recognition, characterization and classification of foods and nutrients in foods
KR20200095547A (en) * 2017-12-13 2020-08-10 트리나미엑스 게엠베하 Spectrometer devices and systems
CN108254324B (en) * 2017-12-18 2020-09-22 中国农业大学 Method and device for rapid detection of crab meat freshness
CN108489927A (en) * 2018-01-24 2018-09-04 仲恺农业工程学院 Fish origin tracing method, electronic equipment, storage medium and device
US10810408B2 (en) 2018-01-26 2020-10-20 Viavi Solutions Inc. Reduced false positive identification for spectroscopic classification
US11009452B2 (en) 2018-01-26 2021-05-18 Viavi Solutions Inc. Reduced false positive identification for spectroscopic quantification
US11656174B2 (en) 2018-01-26 2023-05-23 Viavi Solutions Inc. Outlier detection for spectroscopic classification
EP3561486A1 (en) 2018-04-27 2019-10-30 CERAGOS Electronics et Nature Portative optical system for detection of chemical substances at trace levels in foods and liquids
KR102627146B1 (en) 2018-07-20 2024-01-18 삼성전자주식회사 Apparatus and method for processing spectrum
EP3864384A4 (en) 2018-10-08 2022-06-29 Verifood Ltd. Accessories for optical spectrometers
JP7424607B2 (en) * 2019-09-30 2024-01-30 国立大学法人 奈良先端科学技術大学院大学 Plant sensing device and real-time plant monitoring system
CN110954499B (en) * 2019-11-20 2022-08-02 中国计量大学 Mixed identification method and system for producing areas of imported salmon
JP2023518078A (en) 2020-03-18 2023-04-27 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Communication system, monitoring system and related method
AU2021238642A1 (en) 2020-03-18 2022-10-06 Basf Se Communication system, monitoring system and related methods
JP7543824B2 (en) 2020-10-09 2024-09-03 セイコーエプソン株式会社 IMAGE ANALYSIS DEVICE, IMAGE ANALYSIS METHOD, AND IMAGE ANALYSIS PROGRAM
US20220397458A1 (en) * 2021-06-10 2022-12-15 Si-Ware Systems Mass screening biological detection solutions
TWI823135B (en) * 2021-08-27 2023-11-21 國立臺北科技大學 Remote function expansion system for spectrum sensing device
US20230101936A1 (en) * 2021-09-27 2023-03-30 Purdue Research Foundation Label-free food analysis and molecular detection
FR3127805B1 (en) 2021-10-01 2024-12-13 Plastri Method of identifying a material type in a target material
CN114460244A (en) * 2022-01-17 2022-05-10 上海海洋大学 Method for detecting texture of fugu obscurus
CN114460035A (en) * 2022-02-25 2022-05-10 广西小研人生物科技有限公司 A method for rapid detection of freshness of marine cephalopods
CN117969425B (en) * 2024-02-05 2025-03-18 烟台大学 Method for identifying bighead cod based on multispectral imaging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201028030A (en) * 2009-01-07 2010-07-16 Koninkl Philips Electronics Nv Intelligent controllable lighting networks and schemata therefore
TW201032220A (en) * 2008-10-24 2010-09-01 Qualcomm Inc Systems, methods, apparatus, and computer-readable media for coherence detection
TW201213971A (en) * 2010-01-11 2012-04-01 3M Innovative Properties Co Reflective display system with enhanced color gamut
TW201217999A (en) * 2010-06-30 2012-05-01 Koninkl Philips Electronics Nv Methods and apparatus for capturing ambience
US20140320858A1 (en) * 2011-11-03 2014-10-30 Verifood Ltd. Low-cost spectrometry system for end-user food analysis

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539207A (en) 1994-07-19 1996-07-23 National Research Council Of Canada Method of identifying tissue
US6560352B2 (en) * 1999-10-08 2003-05-06 Lumidigm, Inc. Apparatus and method of biometric identification or verification of individuals using optical spectroscopy
US6697654B2 (en) * 1999-07-22 2004-02-24 Sensys Medical, Inc. Targeted interference subtraction applied to near-infrared measurement of analytes
WO2001009587A1 (en) * 1999-07-28 2001-02-08 Marine Harvest Norway As Method and apparatus for determining quality properties of fish
WO2002069796A2 (en) * 2001-03-01 2002-09-12 University Of Massachusetts Correction of spectra for subject diversity
JP2004530875A (en) 2001-04-13 2004-10-07 カーギル、インコーポレイテッド Agricultural and / or food raw material evaluation methods, applications and products
GB2399626B (en) 2003-03-21 2006-04-05 Teraview Ltd Spectroscopy apparatus and associated technique
US7321791B2 (en) * 2003-09-23 2008-01-22 Cambridge Research And Instrumentation, Inc. Spectral imaging of deep tissue
US7420663B2 (en) * 2005-05-24 2008-09-02 Bwt Property Inc. Spectroscopic sensor on mobile phone
CA2611205C (en) * 2005-06-08 2014-11-25 Massachusetts Institute Of Technology Continuous, continental-shelf-scale monitoring of fish populations and behavior
WO2007000165A1 (en) 2005-06-27 2007-01-04 Sfk Technology A/S Online recording of wavelength absorption spectra in meat
US8437582B2 (en) * 2005-12-22 2013-05-07 Palo Alto Research Center Incorporated Transmitting light with lateral variation
US20070262257A1 (en) 2006-05-11 2007-11-15 Monro Donald M Passive biometric spectroscopy
US7750299B2 (en) 2006-09-06 2010-07-06 Donald Martin Monro Active biometric spectroscopy
CN100480680C (en) 2007-05-22 2009-04-22 浙江大学 Multiple spectrum meat freshness artificial intelligence measurement method and system
WO2009070459A1 (en) * 2007-11-30 2009-06-04 Jingyun Zhang Miniature spectrometers working with cellular phones and other portable electronic devices
GB0908027D0 (en) * 2009-05-08 2009-06-24 Zinir Ltd Spetrophotometer with no moving parts
CN101620178B (en) * 2009-06-19 2011-02-16 广东省药品检验所 Method for quickly detecting additive chemical component in Chinese patent medicine, health-care food or food based on near-infrared spectrum technique
CA2821275A1 (en) 2010-12-16 2012-06-21 Baxter International Inc. Real time monitoring and control of protein production processes using impedance spectroscopy
TWI749437B (en) 2013-03-21 2021-12-11 美商唯亞威方案公司 Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample
JP2015232543A (en) * 2014-05-15 2015-12-24 パナソニック株式会社 Fish freshness estimation method and freshness estimation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201032220A (en) * 2008-10-24 2010-09-01 Qualcomm Inc Systems, methods, apparatus, and computer-readable media for coherence detection
TW201028030A (en) * 2009-01-07 2010-07-16 Koninkl Philips Electronics Nv Intelligent controllable lighting networks and schemata therefore
TW201213971A (en) * 2010-01-11 2012-04-01 3M Innovative Properties Co Reflective display system with enhanced color gamut
TW201217999A (en) * 2010-06-30 2012-05-01 Koninkl Philips Electronics Nv Methods and apparatus for capturing ambience
US20140320858A1 (en) * 2011-11-03 2014-10-30 Verifood Ltd. Low-cost spectrometry system for end-user food analysis

Also Published As

Publication number Publication date
US20190353587A1 (en) 2019-11-21
HK1221010A1 (en) 2017-05-19
HK1249178A1 (en) 2018-10-26
US9316628B2 (en) 2016-04-19
TW201831868A (en) 2018-09-01
US20150204833A1 (en) 2015-07-23
EP2976605B1 (en) 2023-11-01
US10976246B2 (en) 2021-04-13
WO2014165331A1 (en) 2014-10-09
TW201504614A (en) 2015-02-01
EP2976605A1 (en) 2016-01-27
TWI629464B (en) 2018-07-11
EP2976605A4 (en) 2016-11-16
US10401284B2 (en) 2019-09-03
CN105190261A (en) 2015-12-23
US20160231237A1 (en) 2016-08-11
CN107884340A (en) 2018-04-06
CN105190261B (en) 2017-12-22
TW202014681A (en) 2020-04-16
TWI683093B (en) 2020-01-21
CN107884340B (en) 2022-04-01

Similar Documents

Publication Publication Date Title
TWI749437B (en) Method and apparatus for identifying a seafood sample and method for determining a freshness of a seafood sample
Rodriguez-Saona et al. Miniaturization of optical sensors and their potential for high-throughput screening of foods
He et al. Detection of adulteration in food based on nondestructive analysis techniques: A review
Lu et al. Innovative hyperspectral imaging-based techniques for quality evaluation of fruits and vegetables: A review
Pullanagari et al. Uncertainty assessment for firmness and total soluble solids of sweet cherries using hyperspectral imaging and multivariate statistics
Prieto et al. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products
Li et al. Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: a review
Schmutzler et al. Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy: A quick and sensitive method for on-site analyses of apples
Gullifa et al. Portable NIR spectroscopy: The route to green analytical chemistry
CN106662535B (en) Determine the equipment, system and method for the optical properties of jewel
Yu et al. Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system
Jahani et al. Novel application of near-infrared spectroscopy and chemometrics approach for detection of lime juice adulteration
He et al. Fast discrimination of apple varieties using Vis/NIR spectroscopy
Grazia Mignani et al. Dispersive raman spectroscopy for the nondestructive and rapid assessment of the quality of southern Italian honey types
WO2020130942A1 (en) A non-destructive system and method for determining the quality of chinese herb using terahertz time-domain spectroscopy
Huang et al. Recent Advances in Light Penetration Depth for Postharvest Quality Evaluation of Fruits and Vegetables
Vega-Castellote et al. NIR sensing technologies for the detection of fraud in nuts and nut products: a review
CN205215187U (en) Skin detecting system based on it is multispectral
CN118786338A (en) Spatially resolved NIR spectrometer
Arrobas et al. Raman spectroscopy for analyzing anthocyanins of lyophilized blueberries
Li et al. Nondestructive evaluation of agro-products by intelligent sensing techniques
Misal et al. Application of near-infrared spectrometer in agro-food analysis: A review
Hong et al. A Comparison between the Post-and Pre-dispersive Near Infrared Spectroscopy in Non-Destructive Brix Prediction Using Artificial Neural Network
Suhendar et al. Design of a Portable Spectrophotometer Based on Raspberry Pi for Tea Type Classification Using Machine Learning
McGunnigle Using near infrared measurement of water content<? A3B2 show [pmg: line-break justify=" yes"/]?> as a cue for detecting biological materials
OSZAR »