TWI772991B - Braiding path generation method and device, and dynamic correction method and braiding system - Google Patents

Braiding path generation method and device, and dynamic correction method and braiding system Download PDF

Info

Publication number
TWI772991B
TWI772991B TW109142364A TW109142364A TWI772991B TW I772991 B TWI772991 B TW I772991B TW 109142364 A TW109142364 A TW 109142364A TW 109142364 A TW109142364 A TW 109142364A TW I772991 B TWI772991 B TW I772991B
Authority
TW
Taiwan
Prior art keywords
target
coverage
knitting
path
core
Prior art date
Application number
TW109142364A
Other languages
Chinese (zh)
Other versions
TW202223625A (en
Inventor
黃一萍
黎尚昆
李奕嶒
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW109142364A priority Critical patent/TWI772991B/en
Priority to US17/316,995 priority patent/US11560657B2/en
Publication of TW202223625A publication Critical patent/TW202223625A/en
Application granted granted Critical
Publication of TWI772991B publication Critical patent/TWI772991B/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C3/00Braiding or lacing machines
    • D04C3/40Braiding or lacing machines for making tubular braids by circulating strand supplies around braiding centre at equal distances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C3/00Braiding or lacing machines
    • D04C3/48Auxiliary devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Golf Clubs (AREA)
  • Prostheses (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A braiding path generation method includes the following steps. Firstly, a kernel model is received. Then, one of an outer diameter of the kernel model is obtained. Then, a target braiding angle is obtained according to a target coverage and the outer diameter of the kernel model. Then, a braiding simulation path is generated according to the target braiding angle.

Description

編織路徑生成方法與裝置以及動態修正方法與編織系統Knitting path generation method and device, dynamic correction method and knitting system

本揭露是有關於一種路徑生成方法及應用其之路徑生成裝置以及動態修正方法及應用其之系統,且特別是有關於一種編織路徑生成方法與應用其之編織路徑生成裝置以及編織動態修正方法與應用其之編織系統。The present disclosure relates to a path generation method, a path generation device using the same, a dynamic correction method, and a system using the same, and more particularly, to a knitting path generation method, a knitting path generation device using the same, and a knitting dynamic correction method and system. Apply its knitting system.

編織系統係以線材編織於內核上,使內核的外表面覆蓋有線材,進而製作編織產品或增加產品的強度。然而,對於變截面的內核來說,其線材的覆蓋率通常較難控制在一預期範圍內,如此可能導致最終產品的強度不均的問題。因此,如何提出一種能改善前述線材覆蓋率控制不佳的技術是本技術領域業者努力的目標之一。The braiding system is woven on the inner core with wires, so that the outer surface of the inner core is covered with wires, so as to make braided products or increase the strength of the products. However, for the core with variable cross-section, it is usually difficult to control the coverage of the wire within an expected range, which may lead to the problem of uneven strength of the final product. Therefore, how to propose a technology that can improve the aforementioned poor control of wire coverage is one of the goals of those skilled in the art.

本揭露係有關於一種編織路徑生成方法與應用其之編織路徑生成裝置以及編織動態修正方法與應用其之編織系統,可改善前述習知問題。The present disclosure relates to a knitting path generation method and a knitting path generation device using the same, a knitting dynamic correction method and a knitting system using the same, which can improve the above-mentioned conventional problems.

本揭露一實施例提出一種編織路徑生成方法。編織路徑生成方法包括以下步驟:接收一內核模型;取得內核模型之一外徑;依據一目標覆蓋率及內核模型之外徑,取得一目標編織角度;以及,依據目標編織角度,生成一編織模擬路徑。An embodiment of the present disclosure provides a method for generating a weaving path. The method for generating a knitting path includes the following steps: receiving a kernel model; obtaining an outer diameter of the kernel model; obtaining a target knitting angle according to a target coverage ratio and the outer diameter of the kernel model; and generating a knitting simulation according to the target knitting angle path.

本揭露另一實施例提出一種編織動態修正方法。編織動態修正方法包括以下步驟:依據前述之一編織模擬路徑,以一第一運轉參數驅動一內核運動;依據編織模擬路徑,以一第二運轉參數驅動複數條線材編織於一內核上;取得編織於內核上的此些線材的一實際覆蓋率;判斷實際覆蓋率是否符合一目標覆蓋率;當實際覆蓋率未符合目標覆蓋率,依據實際覆蓋率,取得此些線材的一實際編織角度;依據實際編織角度,取得調整後之第一運轉參數及第二運轉參數;以調整後第一運轉參數,驅動一內核運動;以及,以調整後第二運轉參數,驅動此些線材編織於內核上。Another embodiment of the present disclosure provides a knitting dynamic correction method. The weaving dynamic correction method includes the following steps: according to one of the aforementioned weaving simulation paths, driving a core to move with a first operation parameter; according to the weaving simulation path, driving a plurality of wires to weave on a core with a second operation parameter; obtaining the weaving an actual coverage of the wires on the core; determine whether the actual coverage meets a target coverage; when the actual coverage does not meet the target coverage, obtain an actual braiding angle of the wires according to the actual coverage; The actual braiding angle is obtained by obtaining the adjusted first operation parameter and the second operation parameter; using the adjusted first operation parameter to drive a core to move; and using the adjusted second operation parameter to drive the wires to weave on the core.

本揭露另一實施例提出一種編織路徑生成裝置。編織路徑生成裝置括一內核模型接收器及一路徑生成器。內核模型接收器用以接收一內核模型。路徑生成器用以:取得內核模型之一外徑;依據一目標覆蓋率及內核模型之外徑,取得一目標編織角度;以及,依據目標編織角度,生成一編織模擬路徑。Another embodiment of the present disclosure provides an apparatus for generating a knitting path. The weaving path generating device includes a kernel model receiver and a path generator. The kernel model receiver is used for receiving a kernel model. The path generator is used for: obtaining an outer diameter of the kernel model; obtaining a target weaving angle according to a target coverage ratio and the outer diameter of the kernel model; and generating a weaving simulation path according to the target weaving angle.

本揭露另一實施例提出一種編織系統。編織系統包括一驅動裝置及一控制器。驅動裝置用以:依據一編織模擬路徑,以一第一運轉參數驅動一內核運動;及,依據編織模擬路徑,以一第二運轉參數驅動數條線材編織於內核上。控制器用以:取得編織於內核上的此些線材的一實際覆蓋率;判斷實際覆蓋率是否符合一目標覆蓋率;當實際覆蓋率未符合目標覆蓋率,依據實際覆蓋率,取得此些線材的一實際編織角度;及,依據實際編織角度,取得調整後之第一運轉參數及第二運轉參數。驅動裝置更用以:以調整後第一運轉參數,驅動內核運動;及,以調整後第二運轉參數,驅動此些線材編織於內核上。Another embodiment of the present disclosure provides a knitting system. The knitting system includes a driving device and a controller. The driving device is used for: driving a core to move with a first operation parameter according to a weaving simulation path; and driving a plurality of wires to weave on the core with a second operation parameter according to the weaving simulation path. The controller is used for: obtaining an actual coverage of the wires braided on the core; judging whether the actual coverage meets a target coverage; when the actual coverage does not meet the target coverage, obtain the actual coverage of the wires according to the actual coverage. an actual knitting angle; and, according to the actual knitting angle, obtaining the adjusted first operation parameter and the second operation parameter. The driving device is further used for: driving the inner core to move with the adjusted first operating parameter; and driving the wires to weave on the inner core with the adjusted second operating parameter.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above-mentioned and other aspects of the present disclosure, the following embodiments are given and described in detail with the accompanying drawings as follows:

請參照第1~2圖,第1圖繪示依照本揭露一實施例之編織路徑生成裝置100的示意圖,而第2圖繪示依照本揭露一實施例之使用線材之製程的編織(braiding)系統200的局部示意圖。Please refer to FIGS. 1 to 2. FIG. 1 illustrates a schematic diagram of a braiding path generating apparatus 100 according to an embodiment of the present disclosure, and FIG. 2 illustrates braiding according to an embodiment of the disclosure using a wire process. A partial schematic diagram of system 200 .

編織路徑生成裝置100包括內核模型接收器110及路徑生成器120。內核模型接收器110及/或路徑生成器120例如是採用半導體製程所形成的實體電路,例如是半導體晶片、半導體封裝件或其它種類電路元件。在一實施例中,內核模型接收器110與路徑生成器120可整合成一單一元件,或者內核模型接收器110與路徑生成器120中至少一者可整合至一處理器(processor)或控制器,如第2圖之編織系統200的控制器220。在一實施例中,內核模型接收器110例如是一通用串行總線(Universal Serial Bus, USB);或者,內核模型接收器110例如是一無線通訊單元,其採用無線通訊技術接收內核模型10A。The weaving path generating apparatus 100 includes a kernel model receiver 110 and a path generator 120 . The kernel model receiver 110 and/or the path generator 120 is, for example, a physical circuit formed by a semiconductor process, such as a semiconductor chip, a semiconductor package or other types of circuit elements. In one embodiment, the kernel model receiver 110 and the path generator 120 may be integrated into a single component, or at least one of the kernel model receiver 110 and the path generator 120 may be integrated into a processor or controller, The controller 220 of the knitting system 200 shown in FIG. 2 is shown. In one embodiment, the kernel model receiver 110 is, for example, a Universal Serial Bus (USB); or, the kernel model receiver 110 is, for example, a wireless communication unit that uses wireless communication technology to receive the kernel model 10A.

如第2圖所示,編織系統200包括驅動裝置210、控制器(controller)220及覆蓋率偵測器230。控制器220例如是採用半導體製程包覆的電路(circuit)結構,其例如是半導體晶片、半導體封裝件或其它種類電路元件。覆蓋率偵測器230例如是攝像器。As shown in FIG. 2 , the knitting system 200 includes a driving device 210 , a controller 220 and a coverage detector 230 . The controller 220 is, for example, a circuit structure covered by a semiconductor process, such as a semiconductor chip, a semiconductor package or other types of circuit components. The coverage detector 230 is, for example, a camera.

如第2圖所示,驅動裝置210包含外環211、數個傳輸齒輪212、數個線軸213及機械手臂214。傳輸齒輪212可自轉地配置在外環211的內側面。各線軸213纏繞有一線材20,線材20可提供內核10B編織之用。線材20由數股絲束(未繪示)纏繞而成。線軸213嚙合於傳輸齒輪212。當傳輸齒輪212自轉時,可驅動所有的線軸213公轉,如繞Z軸向公轉。線軸213在公轉過程中,線材20受到拉動而編織於內核10B上。驅動裝置210用以:(1). 以第一運轉參數S1,驅動一內核10B運動;以及,(2). 以第二運轉參數S2,驅動線材20編織於內核10B上。在一實施例中,第一運轉參數S1例如是內核10B的進給速度V,例如是沿Z軸向的速度,而第二運轉參數S2例如是傳輸齒輪212的轉速

Figure 02_image001
。機械手臂214以第一運轉參數S1動內核10B運動,可使線材20編織於內核10B的不同區域上。此外,機械手臂214例如是具有六個自由度,例如沿X、Y、Z軸向平移及繞X、Y、Z軸向轉動等六個自由度。多個自由度的機械手臂214可驅動不同幾何形狀或幾何形狀複雜的內核10B運動,以增加最終編織成品的多樣性 As shown in FIG. 2 , the driving device 210 includes an outer ring 211 , several transmission gears 212 , several bobbins 213 and a robotic arm 214 . The transmission gear 212 is arranged on the inner surface of the outer ring 211 so as to be rotatable. Each bobbin 213 is wound with a wire 20, and the wire 20 can be used for braiding the inner core 10B. The wire 20 is formed by winding several strands (not shown). The spool 213 is engaged with the transmission gear 212 . When the transmission gear 212 rotates, it can drive all the spools 213 to revolve, for example, to revolve around the Z-axis. During the revolving process of the bobbin 213, the wire 20 is pulled and woven on the inner core 10B. The driving device 210 is used to: (1) drive a core 10B to move with the first operating parameter S1; and (2). use the second operating parameter S2 to drive the wire 20 to be woven on the core 10B. In one embodiment, the first operating parameter S1 is, for example, the feed speed V of the core 10B, for example, the speed along the Z-axis, and the second operating parameter S2 is, for example, the rotational speed of the transmission gear 212 .
Figure 02_image001
. The robotic arm 214 moves the inner core 10B with the first operating parameter S1, so that the wire 20 can be woven on different regions of the inner core 10B. In addition, the robotic arm 214 has, for example, six degrees of freedom, such as translation along the X, Y, and Z axes and rotation around the X, Y, and Z axes. The multi-degree-of-freedom robotic arm 214 can drive the movement of the kernels 10B with different or complex geometries to increase the variety of the final knitted product

請參見第1圖,內核模型接收器110用以接收內核模型10A。內核模型10A例如是三維繪圖軟體所建置的數位模型。路徑生成器120用以:(1). 接收一內核模型10A;(2). 取得內核模型10A之外徑資訊D(s);(3). 依據一目標覆蓋率K及內核模型10A之外徑資訊D(s),取得一目標編織角度

Figure 02_image003
;(4).  依據目標編織角度
Figure 02_image005
,生成一編織模擬路徑P1。本揭露實施例以目標覆蓋率K做為編織目標決定目標編織角度
Figure 02_image003
,而生成編織模擬路徑P1,使最終編織成品的實際覆蓋率符合要求,例如是符合目標覆蓋率K。 Referring to FIG. 1, the kernel model receiver 110 is used for receiving the kernel model 10A. The kernel model 10A is, for example, a digital model created by a three-dimensional drawing software. The path generator 120 is used to: (1) receive a kernel model 10A; (2) obtain the outer diameter information D(s) of the kernel model 10A; (3). Path information D(s), get a target weaving angle
Figure 02_image003
; (4). According to the target weaving angle
Figure 02_image005
, generate a weaving simulation path P1. In the embodiment of the present disclosure, the target coverage rate K is used as the knitting target to determine the target knitting angle
Figure 02_image003
, and generate the weaving simulation path P1, so that the actual coverage of the final braided product meets the requirements, for example, the target coverage K.

編織模擬路徑P1生成後,路徑生成器120可輸出編織模擬路徑P1至編織系統200。編織系統200依據編織模擬路徑P1編織內核10B,而形成最終編織成品。After the knitting simulation path P1 is generated, the path generator 120 may output the knitting simulation path P1 to the knitting system 200 . The knitting system 200 knits the inner core 10B according to the knitting simulation path P1 to form the final knitted product.

以產品類別來說,內核10B例如是交通裝置的部件(如飛機機架、車輛機架、腳踏車機架等)、運動器材的部件(如羽球拍、曲棍球柄、泛舟船槳等)、民生類用品的部件(如液化石油氣瓶、氫氣瓶、氧氣瓶、高壓礙子與高壓管材)等需要高強度(但不限定)的產品。線材20例如是複合材料,如碳纖維、玻璃纖維等質輕且高強度的線材。在完成內核10B的線材編織作業後,可將編織有線材20的內核10B進行高溫烘烤。線材20係由線體(支材)與樹脂(基材)所組成,線材20包覆於內核10B後,需經由高溫烘烤使樹脂先融化後,再與線體結合成具耐高應力複合材料。In terms of product categories, the core 10B is, for example, components of transportation devices (such as aircraft racks, vehicle racks, bicycle racks, etc.), components of sports equipment (such as badminton rackets, hockey handles, rafting paddles, etc.), and livelihood products. Parts of supplies (such as liquefied petroleum gas cylinders, hydrogen cylinders, oxygen cylinders, high-pressure barriers and high-pressure pipes) require high-strength (but not limited) products. The wire 20 is, for example, a composite material, such as carbon fiber, glass fiber and other light-weight and high-strength wires. After the wire braiding operation of the inner core 10B is completed, the inner core 10B of the braided wire 20 may be baked at a high temperature. The wire 20 is composed of a wire body (branch) and a resin (substrate). After the wire 20 is coated on the inner core 10B, it needs to be baked at a high temperature to melt the resin first, and then combine with the wire body to form a composite with high stress resistance. Material.

請參照第3~5圖,第3圖繪示第1圖之編織路徑生成裝置100之編織路徑生成方法流程圖,第4圖繪示依照本揭露另一實施例之內核模型10A的示意圖,而第5圖繪示依照本揭露另一實施例之內核模型10A的示意圖。以下係以第3圖之流程圖進一步說明編織模擬路徑P1的生成方法。Please refer to FIGS. 3 to 5. FIG. 3 shows a flowchart of a knitting path generating method of the knitting path generating apparatus 100 of FIG. 1, FIG. 4 shows a schematic diagram of a kernel model 10A according to another embodiment of the present disclosure, and FIG. 5 is a schematic diagram of a kernel model 10A according to another embodiment of the present disclosure. The method for generating the knitting simulation path P1 will be further described below with reference to the flowchart of FIG. 3 .

在步驟S110中,內核模型接收器110接收內核模型10A。內核模型10A例如是三維繪圖軟體所建置的數位模型(3D 數位電子檔)。In step S110, the kernel model receiver 110 receives the kernel model 10A. The kernel model 10A is, for example, a digital model (3D digital electronic file) created by a three-dimensional drawing software.

在步驟S120中,路徑生成器120分析內核模型10A,以取得內核模型10A之外徑資訊D(s)。D(s)包含內核模型10A沿s方向變化的外徑值,其中s為內核10B的延伸方向。例如,如第4圖所示,內核模型10A的截面沿內核模型10A的延伸方向s係可改變的,其中延伸方向s為直線方向。內核10B具有第一外徑D1及第二外徑D2,第一外徑D1與第二外徑D2相異。在另一實施例中,如第5圖所示,內核模型10A’的截面沿內核模型10A’的延伸方向s係可改變的,其中延伸方向s為曲線方向。前述的曲線例如是圓弧線、橢圓線或直線與曲線的組合線。內核模型10A’具有第一外徑D1’及第二外徑D2’,第二外徑D2’為內核模型10A’之轉折處的外徑,而第一外徑D1’為內核模型10A’之彎部10A1’的外徑,其中第二外徑D2’大於第一外徑D1’。本揭露實施例之內核模型的幾何型態不受第4及5圖所限制。In step S120, the path generator 120 analyzes the kernel model 10A to obtain the outer diameter information D(s) of the kernel model 10A. D(s) contains the value of the outer diameter of the kernel model 10A that varies in the direction of s, where s is the extension direction of the kernel 10B. For example, as shown in FIG. 4, the cross section of the inner core model 10A can be changed along the extension direction s of the inner core model 10A, wherein the extension direction s is a linear direction. The inner core 10B has a first outer diameter D1 and a second outer diameter D2, and the first outer diameter D1 and the second outer diameter D2 are different. In another embodiment, as shown in FIG. 5, the cross section of the inner core model 10A' is changeable along the extension direction s of the inner core model 10A', wherein the extension direction s is a curvilinear direction. The aforementioned curve is, for example, a circular arc, an ellipse, or a combination of a straight line and a curved line. The inner core model 10A' has a first outer diameter D1' and a second outer diameter D2', the second outer diameter D2' is the outer diameter of the turning point of the inner core model 10A', and the first outer diameter D1' is the outer diameter of the inner core model 10A' The outer diameter of the bent portion 10A1', wherein the second outer diameter D2' is larger than the first outer diameter D1'. The geometry of the kernel model of the disclosed embodiment is not limited by FIGS. 4 and 5 .

在步驟S130中,路徑生成器120依據目標覆蓋率K及內核模型10A之外徑資訊D(s),取得目標編織角度

Figure 02_image006
。 In step S130, the path generator 120 obtains the target weaving angle according to the target coverage K and the outer diameter information D(s) of the kernel model 10A
Figure 02_image006
.

在一實施例中,目標編織角度

Figure 02_image008
依據下式(1)完成,其中d為線材20之絲束的線徑d,C為線軸213的數量,N為一條線材20之數條絲束的數量,K為目標覆蓋率,
Figure 02_image009
為傳輸齒輪212的轉速。 In one embodiment, the target braid angle
Figure 02_image008
It is completed according to the following formula (1), wherein d is the wire diameter d of the tow of the wire rod 20, C is the number of spools 213, N is the number of tow of a wire rod 20, and K is the target coverage rate,
Figure 02_image009
is the rotational speed of the transmission gear 212 .

Figure 02_image010
Figure 02_image010

由式(1)可知,路徑生成器120係依據目標覆蓋率K、內核模型10A之外徑資訊D(s)、絲束數量N、線軸數量C、絲束的線徑d,取得線材20編織於內核10B上的目標編織角度

Figure 02_image012
,目標編織角度
Figure 02_image012
可能隨s的位置而變。 It can be seen from equation (1) that the path generator 120 obtains the braiding of the wire 20 according to the target coverage K, the outer diameter information D(s) of the kernel model 10A, the number of tows N, the number of spools C, and the diameter d of the tow. Target weave angle on core 10B
Figure 02_image012
, the target braiding angle
Figure 02_image012
May vary with the position of s.

然後,路徑生成器120依據目標編織角度

Figure 02_image013
,計算滿足目標編織角度
Figure 02_image015
所需的第一運轉參數S1及第二運轉參數S2。例如,路徑生成器120可依據下式(2)決定內核的進給速度V(第一運轉參數)及傳輸齒輪212的轉速
Figure 02_image016
,其中進給速度V及傳輸齒輪212的轉速
Figure 02_image016
可能隨s的位置而變。 Then, the path generator 120 according to the target knitting angle
Figure 02_image013
, calculate to meet the target weaving angle
Figure 02_image015
Required first operating parameter S1 and second operating parameter S2. For example, the path generator 120 may determine the feed speed V (the first operating parameter) of the core and the rotational speed of the transmission gear 212 according to the following formula (2).
Figure 02_image016
, where the feed speed V and the rotational speed of the transmission gear 212
Figure 02_image016
May vary with the position of s.

Figure 02_image017
Figure 02_image017

在步驟S140中,路徑生成器120依據目標編織角度

Figure 02_image019
、第一運轉參數S1及第二運轉參數S2,模擬編織製程,並生成編織模擬路徑P1。 In step S140, the path generator 120 according to the target knitting angle
Figure 02_image019
, the first operation parameter S1 and the second operation parameter S2, simulate the knitting process, and generate a knitting simulation path P1.

由於本揭露實施例之編織系統200係以目標覆蓋率K做為編織目標而決定目標編織角度

Figure 02_image020
,因此適用於一變截面之內核模型,如第4圖所示之內核模型10A、第5圖所示之內核模型10A’或其它幾何型態之變截面內核模型。本文的「變截面」意指內核10B的數個橫截面的數個外徑彼此相異。 Since the knitting system 200 of the disclosed embodiment takes the target coverage K as the knitting target, the target knitting angle is determined
Figure 02_image020
, so it is suitable for a variable-section kernel model, such as the kernel model 10A shown in Fig. 4, the kernel model 10A' shown in Fig. 5, or a variable-section kernel model of other geometric types. "Variable cross-section" herein means that the several outer diameters of several cross-sections of the inner core 10B are different from each other.

請參照第6圖,其繪示第2圖之編織系統200的動態修正方法流程圖。編織系統200在實際編織製程中,可監控編織狀況且動態修正不符預期的覆蓋率,使最終產品的覆蓋率較為平均。Please refer to FIG. 6 , which shows a flow chart of the dynamic correction method of the knitting system 200 of FIG. 2 . In the actual weaving process, the weaving system 200 can monitor the weaving condition and dynamically correct the coverage rate that is not as expected, so that the coverage rate of the final product is relatively average.

在步驟S210中,如第2圖所示,控制器220控制驅動裝置210以一第一運轉參數S1驅動內核10B運動。例如,控制器220控制驅動裝置210之機械手臂214於內核10B沿延伸方向s的一位置s1,以一第一運轉參數S1(例如,內核10B的進給速度V)驅動內核10B運動。本揭露不限定位置s1的具體位置,其可以是沿延伸方向s的任意所欲分析的位置。In step S210, as shown in FIG. 2, the controller 220 controls the driving device 210 to drive the core 10B to move with a first operating parameter S1. For example, the controller 220 controls the robot arm 214 of the driving device 210 to drive the core 10B to move at a position s1 of the core 10B along the extending direction s with a first operating parameter S1 (eg, the feed speed V of the core 10B). The present disclosure does not limit the specific position of the position s1, which can be any position along the extension direction s to be analyzed.

在步驟S220中,如第2圖所示,控制器220控制驅動裝置210以一第二運轉參數S2驅動數條線材20編織於內核10B上。例如,控制器220控制驅動裝置210之傳輸齒輪212以一第二運轉參數S2(例如,轉速

Figure 02_image016
)驅動數條線材20編織於內核10B上,例如是編織於內核10B沿延伸方向s的位置s1。 In step S220 , as shown in FIG. 2 , the controller 220 controls the driving device 210 to drive the plurality of wires 20 to weave on the inner core 10B with a second operating parameter S2 . For example, the controller 220 controls the transmission gear 212 of the driving device 210 to have a second operating parameter S2 (eg, the rotational speed
Figure 02_image016
) to drive several wires 20 to be braided on the inner core 10B, for example, at the position s1 of the inner core 10B along the extending direction s.

在步驟S230中,取得編織於內核10B上的此些線材20的實際覆蓋率K’。 例如,取得編織於內核10B之位置s1的線材20的實際覆蓋率K’。取得實際覆蓋率K’的其中一方法例如是:覆蓋率偵測器230擷取內核10B之編織影像M1,然後控制器220分析編織影像M1,以取得編織影像M1中編織於內核10B上線材20的實際覆蓋率K’。如第2圖之放大圖所示,覆蓋率可定義為內核10B的一區域R1的面積與線材20覆蓋的網格面積的比率。控制器220可採用影像分析技術,分析編織影像M1中內核10B的區域R1中,該區域的面積與該區域中未受到線材20覆蓋的網格面積的比率,而取得實際覆蓋率K’。In step S230, the actual coverage K' of the wires 20 braided on the inner core 10B is obtained. For example, the actual coverage K' of the wire 20 braided at the position s1 of the inner core 10B is obtained. One of the methods for obtaining the actual coverage K′ is, for example, the coverage detector 230 captures the braided image M1 of the core 10B, and then the controller 220 analyzes the braided image M1 to obtain the wire 20 woven on the core 10B in the braided image M1 The actual coverage K'. As shown in the enlarged view of FIG. 2 , the coverage can be defined as the ratio of the area of a region R1 of the inner core 10B to the mesh area covered by the wire 20 . The controller 220 can use the image analysis technology to analyze the ratio of the area of the inner core 10B in the area R1 of the woven image M1 to the area of the mesh not covered by the wire 20 in the area to obtain the actual coverage rate K'.

在步驟S240中,控制器220判斷實際覆蓋率K’是否符合目標覆蓋率K。當實際覆蓋率K’未符合目標覆蓋率K,流程進入步驟S250;當實際覆蓋率K’符合目標覆蓋率K,流程回到步驟S210,編織系統200繼續依據編織模擬路徑P1驅動線材20編織於內核10B中沿延伸方向s的下一個位置上。In step S240, the controller 220 determines whether the actual coverage rate K' meets the target coverage rate K. When the actual coverage ratio K' does not meet the target coverage ratio K, the process proceeds to step S250; when the actual coverage ratio K' meets the target coverage ratio K, the process returns to step S210, and the braiding system 200 continues to drive the wire 20 to weave in the braiding simulation path P1 according to the braiding simulation path P1. At the next position along the extension direction s in the inner core 10B.

在一實施例中,當實際覆蓋率K’與目標覆蓋率K之間的誤差大於一預設誤差時,控制器220判斷實際覆蓋率K’未符合目標覆蓋率K。反之,當實際覆蓋率K’與目標覆蓋率K之間的誤差不大於此預設誤差時,控制器220判斷實際覆蓋率K’符合目標覆蓋率K。In one embodiment, when the error between the actual coverage rate K' and the target coverage rate K is greater than a predetermined error, the controller 220 determines that the actual coverage rate K' does not meet the target coverage rate K. Conversely, when the error between the actual coverage rate K' and the target coverage rate K is not greater than the preset error, the controller 220 determines that the actual coverage rate K' conforms to the target coverage rate K.

在步驟S250中,控制器220依據實際覆蓋率K’,取得此些線材20的一實際編織角度

Figure 02_image021
。由於覆蓋率與編織角度係一對一的對應關係,因此若實際覆蓋率K’未符合目標覆蓋率K,表示實際編織角度
Figure 02_image021
也未符合目標編織角度
Figure 02_image023
,對應地實際編織角度
Figure 02_image021
需要加以調整,以儘可能地將實際編織角度
Figure 02_image021
修正至對應的目標編織角度
Figure 02_image025
。實際編織角度
Figure 02_image021
未符合目標編織角度的原因可能是:機械手臂214實際施以的第一運轉參數S1與編織模擬路徑P1中對應的第一運轉參數S1的差異大於一誤差範圍且/或傳輸齒輪212實際施以的第二運轉參數S2與編織模擬路徑P1中對應的第二運轉參數S2的差異大於一誤差範圍。因此,只要取得目標覆蓋率
Figure 02_image025
所對應的第一運轉參數S1及第二運轉參數S2,並據以控制驅動裝置210,便能即時動態修正不符預期的覆蓋率。 In step S250, the controller 220 obtains an actual braiding angle of the wires 20 according to the actual coverage ratio K'
Figure 02_image021
. Since there is a one-to-one correspondence between the coverage ratio and the knitting angle, if the actual coverage ratio K' does not meet the target coverage ratio K, it means the actual knitting angle
Figure 02_image021
Also does not meet the target weave angle
Figure 02_image023
, corresponding to the actual weaving angle
Figure 02_image021
need to be adjusted to match the actual braid angle as closely as possible
Figure 02_image021
Corrected to the corresponding target weaving angle
Figure 02_image025
. Actual weaving angle
Figure 02_image021
The reason for not meeting the target knitting angle may be: the difference between the first operation parameter S1 actually applied by the robot arm 214 and the corresponding first operation parameter S1 in the knitting simulation path P1 is greater than an error range and/or the transmission gear 212 actually applies The difference between the second operation parameter S2 of , and the corresponding second operation parameter S2 in the knitting simulation path P1 is greater than an error range. Therefore, as long as the target coverage is achieved
Figure 02_image025
The corresponding first operation parameter S1 and the second operation parameter S2 are controlled accordingly, and the driving device 210 can be controlled accordingly, so that the coverage ratio that does not meet the expectations can be dynamically corrected in real time.

在步驟S260中,控制器220依據實際編織角度

Figure 02_image027
,取得調整後之第一運轉參數S1及第二運轉參數S2。取得方法例如是,控制器220可查詢來自於編織路徑生成裝置100的編織模擬路徑P1中對應位置s1的第一運轉參數S1及第二運轉參數S2,並以所查之第一運轉參數S1及第二運轉參數S2分別做為調整後之第一運轉參數S1’及第二運轉參數S2’。 In step S260, the controller 220 according to the actual knitting angle
Figure 02_image027
, and obtain the adjusted first operation parameter S1 and second operation parameter S2. The obtaining method is, for example, that the controller 220 can query the first operation parameter S1 and the second operation parameter S2 of the corresponding position s1 in the knitting simulation path P1 from the knitting path generation device 100, and use the checked first operation parameter S1 and the second operation parameter S2. The second operation parameter S2 is used as the adjusted first operation parameter S1' and the second operation parameter S2', respectively.

在步驟S270中,控制器220以調整後第一運轉參數S1’,驅動內核10B運動。In step S270, the controller 220 drives the core 10B to move according to the adjusted first operating parameter S1'.

在步驟S280中,控制器220以調整後第二運轉參數S2’,驅動此些線材20編織於內核10B上。In step S280, the controller 220 drives the wires 20 to weave on the inner core 10B with the adjusted second operating parameter S2'.

然後,流程回到步驟S230,編織系統200繼續於實際編織製程中,持續監控且動態修正內核10B的編織異常。Then, the process returns to step S230, and the knitting system 200 continues to monitor and dynamically correct the knitting abnormality of the core 10B in the actual knitting process.

綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。To sum up, although the present disclosure has been disclosed above with embodiments, it is not intended to limit the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure pertains can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the scope of protection of the present disclosure should be determined by the scope of the appended patent application.

10A, 10A’ : 內核模型 10A1’ : 彎部 10B : 內核 20: 線材 100: 編織路徑生成裝置 110: 內核模型接收器 120: 路徑生成器 200: 編織系統 210: 驅動裝置 211: 外環 212: 傳輸齒輪 213: 線軸 214: 機械手臂 220: 控制器 230: 覆蓋率偵測器 C: 線軸數量 d: 線徑 D(s): 外徑資訊 D1, D1’ : 第一外徑 D2, D2’ : 第二外徑 N: 絲束數量 K: 目標覆蓋率 K’ : 實際覆蓋率 P1: 編織模擬路徑 S1: 第一運轉參數 S2: 第二運轉參數 s: 延伸方向 s1: 位置 R1 : 區域 S110~S140, S210~S280: 步驟 V: 進給速度

Figure 02_image016
: 轉速
Figure 02_image028
: 目標編織角度
Figure 02_image029
: 實際編織角度 10A, 10A' : Kernel Model 10A1' : Bend 10B : Kernel 20 : Wire 100 : Braided Path Generation Device 110 : Kernel Model Receiver 120 : Path Generator 200 : Braided System 210 : Drive Device 211 : Outer Ring 212 : Transmission Gear 213: Spool 214: Robot Arm 220: Controller 230: Coverage Detector C: Number of Spools d: Wire Diameter D(s): Outer Diameter Information D1, D1' : First Outer Diameter D2, D2' : No. 1 2. Outer diameter N: Number of tows K: Target coverage K' : Actual coverage P1: Weaving simulation path S1: First operation parameter S2: Second operation parameter s: Extension direction s1: Position R1: Area S110~S140, S210~S280: Step V: Feed rate
Figure 02_image016
: Rotating speed
Figure 02_image028
: Target knitting angle
Figure 02_image029
: Actual knitting angle

第1圖繪示依照本揭露一實施例之編織路徑生成裝置的示意圖。 第2圖繪示依照本揭露一實施例之使用線材之製程的編織系統的局部示意圖。 第3圖繪示第1圖之編織路徑生成裝置之編織路徑生成方法流程圖。 第4圖繪示依照本揭露另一實施例之內核模型的示意圖。 第5圖繪示依照本揭露另一實施例之內核模型的示意圖。 第6圖繪示第2圖之編織系統的動態修正方法流程圖。 FIG. 1 is a schematic diagram of a knitting path generating apparatus according to an embodiment of the present disclosure. FIG. 2 is a partial schematic diagram of a braiding system using a wire process according to an embodiment of the present disclosure. FIG. 3 is a flowchart of a method for generating a knitting path of the knitting path generating device of FIG. 1 . FIG. 4 is a schematic diagram of a kernel model according to another embodiment of the present disclosure. FIG. 5 is a schematic diagram of a kernel model according to another embodiment of the present disclosure. FIG. 6 is a flow chart of the dynamic correction method of the knitting system of FIG. 2 .

S110~S140: 步驟S110~S140: Steps

Claims (12)

一種編織路徑生成方法,包括: 接收一內核模型; 取得該內核模型之一外徑資訊; 依據一目標覆蓋率及該內核模型之該外徑資訊,取得一目標編織角度;以及 依據該目標編織角度,生成一編織模擬路徑。 A knitting path generation method, comprising: receive a kernel model; obtain information on an outer diameter of the kernel model; obtaining a target braiding angle according to a target coverage and the outer diameter information of the kernel model; and According to the target knitting angle, a knitting simulation path is generated. 如請求項1所述之編織路徑生成方法,其中於取得該目標編織角度之步驟中,該目標編織角度依據下式完成:
Figure 03_image030
; 其中, N為一線材之複數條絲束的數目,d為各該絲束的線徑,C為該編織系統之複數個線軸的數目,其中各該線軸纏繞有一條該線材,
Figure 03_image032
為該目標編織角度,K為該目標覆蓋率,而D(s)為該內核模型隨s變化的外徑資訊,其中s為該內核模型的延伸方向。
The method for generating a knitting path according to claim 1, wherein in the step of obtaining the target knitting angle, the target knitting angle is completed according to the following formula:
Figure 03_image030
; wherein, N is the number of a plurality of tows of a single wire, d is the wire diameter of each tow, C is the number of a plurality of spools of the braiding system, and each of the spools is wound with one of the wires,
Figure 03_image032
For the target weaving angle, K is the target coverage, and D(s) is the outer diameter information of the kernel model as a function of s, where s is the extension direction of the kernel model.
如請求項1所述之編織路徑生成方法,其中該內核模型為變截面內核模型。The weaving path generation method as claimed in claim 1, wherein the kernel model is a variable-section kernel model. 一種編織動態修正方法,包括: 依據一編織模擬路徑,以一第一運轉參數驅動一內核運動; 依據該編織模擬路徑,以一第二運轉參數驅動複數條線材編織於該內核上; 取得編織於該內核上的該些線材的一實際覆蓋率; 判斷該實際覆蓋率是否符合一目標覆蓋率; 當該實際覆蓋率未符合該目標覆蓋率,依據該實際覆蓋率,取得該些線材的一實際編織角度; 依據該實際編織角度,取得調整後之該第一運轉參數及該第二運轉參數; 以該調整後第一運轉參數,驅動該內核運動;以及 以該調整後第二運轉參數,驅動該些線材編織於該內核上。 A weaving dynamic correction method, comprising: driving a kernel to move with a first operating parameter according to a weaving simulation path; According to the weaving simulation path, a second operation parameter is used to drive a plurality of wires to weave on the core; obtaining an actual coverage of the wires braided on the core; Determine whether the actual coverage rate complies with a target coverage rate; When the actual coverage does not meet the target coverage, obtain an actual braiding angle of the wires according to the actual coverage; obtaining the adjusted first operation parameter and the second operation parameter according to the actual knitting angle; driving the core to move with the adjusted first operating parameter; and Using the adjusted second operating parameter, the wires are driven to be braided on the inner core. 如請求項4所述之動態修正方法,其中該內核為變截面內核。The dynamic correction method of claim 4, wherein the kernel is a variable section kernel. 如請求項4所述之動態修正方法,更包括: 擷取編織於該內核上的該些線材的一編織影像; 其中,在取得編織於該內核上的該些線材的該實際覆蓋率之步驟包括:透過分析該編織影像,取得該實際覆蓋率。 The dynamic correction method as described in claim 4, further comprising: capturing a braided image of the wires braided on the core; Wherein, the step of obtaining the actual coverage of the wires braided on the inner core includes: obtaining the actual coverage by analyzing the braided image. 一種編織路徑生成裝置,包括 一內核模型接收器,用以:接收一內核模型; 一路徑生成器,用以: 取得該內核模型之一外徑資訊; 依據一目標覆蓋率及該內核模型之該外徑資訊,取得一目標編織角度;以及 依據該目標編織角度,生成一編織模擬路徑。 A weaving path generating device, comprising a kernel model receiver for: receiving a kernel model; A path generator to: obtain information on an outer diameter of the kernel model; obtaining a target braiding angle according to a target coverage and the outer diameter information of the kernel model; and According to the target knitting angle, a knitting simulation path is generated. 如請求項7所述之編織路徑生成裝置,其中該路徑生成器更用以: 依據下式取得該目標編織角度;
Figure 03_image030
; 其中, N為一線材之複數條絲束的數目,d為各該絲束的線徑,C為該編織系統之複數個線軸的數目,其中各該線軸纏繞有一條該線材,
Figure 03_image032
為該目標編織角度,K為該目標覆蓋率,而D(s)為該內核模型隨s變化的外徑資訊,其中s為該內核模型的延伸方向。
The knitting path generating device according to claim 7, wherein the path generator is further configured to: obtain the target knitting angle according to the following formula;
Figure 03_image030
; wherein, N is the number of a plurality of tows of a single wire, d is the wire diameter of each tow, C is the number of a plurality of spools of the braiding system, and each of the spools is wound with one of the wires,
Figure 03_image032
For the target weaving angle, K is the target coverage, and D(s) is the outer diameter information of the kernel model as a function of s, where s is the extension direction of the kernel model.
如請求項7所述之編織路徑生成裝置,其中該內核模型為變截面內核模型。The weaving path generating apparatus of claim 7, wherein the kernel model is a variable-section kernel model. 一種編織系統,包括: 一驅動裝置,用以: 依據一編織模擬路徑,以一第一運轉參數驅動一內核運動;及 依據該編織模擬路徑,以一第二運轉參數驅動複數條線材編織於該內核上; 一控制器,用以: 取得編織於該內核上的該些線材的一實際覆蓋率; 判斷該實際覆蓋率是否符合一目標覆蓋率; 當該實際覆蓋率未符合該目標覆蓋率,依據該實際覆蓋率,取得該些線材的一實際編織角度;及 依據該實際編織角度,取得調整後之該第一運轉參數及該第二運轉參數; 其中,該驅動裝置更用以: 以該調整後第一運轉參數,驅動該內核運動;及 以該調整後第二運轉參數,驅動該些線材編織於該內核上。 A braiding system comprising: a drive means for: driving a core motion with a first operating parameter according to a weaving simulation path; and According to the weaving simulation path, a second operation parameter is used to drive a plurality of wires to weave on the core; a controller to: obtaining an actual coverage of the wires braided on the core; Determine whether the actual coverage rate complies with a target coverage rate; When the actual coverage does not meet the target coverage, obtain an actual braiding angle of the wires according to the actual coverage; and obtaining the adjusted first operation parameter and the second operation parameter according to the actual knitting angle; Among them, the driving device is further used for: driving the inner core to move with the adjusted first operating parameter; and Using the adjusted second operating parameter, the wires are driven to be braided on the inner core. 如請求項10所述之編織系統,其中該內核為變截面內核。The braiding system of claim 10, wherein the core is a variable cross-section core. 如請求項10所述之編織系統,更包括: 一覆蓋率偵測器,用以:擷取編織於該內核上的該些線材的一編織影像; 其中,該控制器更用以:透過分析該編織影像,取得該實際覆蓋率。 The weaving system as claimed in claim 10, further comprising: a coverage detector for: capturing a braided image of the wires braided on the core; Wherein, the controller is further used for obtaining the actual coverage by analyzing the woven image.
TW109142364A 2020-12-02 2020-12-02 Braiding path generation method and device, and dynamic correction method and braiding system TWI772991B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109142364A TWI772991B (en) 2020-12-02 2020-12-02 Braiding path generation method and device, and dynamic correction method and braiding system
US17/316,995 US11560657B2 (en) 2020-12-02 2021-05-11 Braiding path generating method and device using the same, and dynamic correcting method and braiding system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109142364A TWI772991B (en) 2020-12-02 2020-12-02 Braiding path generation method and device, and dynamic correction method and braiding system

Publications (2)

Publication Number Publication Date
TW202223625A TW202223625A (en) 2022-06-16
TWI772991B true TWI772991B (en) 2022-08-01

Family

ID=81752218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109142364A TWI772991B (en) 2020-12-02 2020-12-02 Braiding path generation method and device, and dynamic correction method and braiding system

Country Status (2)

Country Link
US (1) US11560657B2 (en)
TW (1) TWI772991B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160243762A1 (en) * 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
TWI612914B (en) * 2011-11-18 2018-02-01 耐克創新有限合夥公司 Method and system for manipulating shoe parts in automated manner during manufacturing process and method of positioning and joining shoe parts
US20180108826A1 (en) * 2015-04-30 2018-04-19 Teijin Limited Piezoelectric element and device using same
TW201820106A (en) * 2016-10-25 2018-06-01 加拿大商一號工作室控股有限公司 Flexible conductive apparatus and systems for detecting pressure

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2365691A (en) 1940-10-22 1944-12-26 Ferenz H Fodor Apparatus for advancing filamentary material
DE1510839A1 (en) 1964-12-04 1970-04-23 Palitex Project Co Gmbh Twisting or spinning spindle with spindle brake
US4420123A (en) 1981-10-19 1983-12-13 The United States Of America As Represented By The Secretary Of The Army Force rate sensor assembly
US4519290A (en) * 1983-11-16 1985-05-28 Thiokol Corporation Braided preform for refractory articles and method of making
US4619180A (en) 1985-07-26 1986-10-28 Raychem Corporation Braider carrier
US5732611A (en) 1996-10-11 1998-03-31 Wardwell Brainding Machine Company Spool carrier for delivering yarn under tension
US5904087A (en) 1997-07-28 1999-05-18 Foster-Miller, Inc. Braiding machine carrier with clutch
DE19811241A1 (en) 1998-03-14 1999-09-30 Memminger Iro Gmbh Thread tension sensor with repeated adjustment
ITRM20030522A1 (en) 2003-11-10 2005-05-11 Eutron S P A DEVICE TO ACQUIRE THE IMAGE OF A FABRIC
CN1955869A (en) 2005-10-25 2007-05-02 南京航空航天大学 A Method of Realizing Tension Control Using Programmable Multi-Axis Controller
US7835567B2 (en) * 2006-01-24 2010-11-16 Ingersoll Machine Tools, Inc. Visual fiber placement inspection
JP4492595B2 (en) 2006-08-30 2010-06-30 村田機械株式会社 Braiding career
JP4973142B2 (en) 2006-11-17 2012-07-11 株式会社豊田自動織機 Warp tension controller for pile weaving loom
DE102008033561A1 (en) 2007-07-17 2009-02-05 August Herzog Maschinenfabrik Gmbh & Co. Kg Clapper for a braiding machine
JP4263752B2 (en) 2007-08-10 2009-05-13 トヨタ自動車株式会社 FIBER-REINFORCED RESIN MEMBER, ITS MANUFACTURING METHOD, AND FIBER FABRIC PRODUCTION DEVICE
DE102008038281A1 (en) 2008-08-18 2010-02-25 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Flechtklöppel; Braiding machine and method for drawing a fiber thread from the bobbin of a braiding bobbin
WO2012066851A1 (en) 2010-11-16 2012-05-24 村田機械株式会社 Filament winding apparatus
DE102011009641B4 (en) 2011-01-27 2013-04-04 Puma SE Method for producing a shoe upper of a shoe, in particular a sports shoe
US9499926B2 (en) * 2011-04-05 2016-11-22 Elbit Vision Systems Ltd. On-loom fabric inspection system and method
ITMI20112046A1 (en) 2011-11-11 2013-05-12 Btsr Int Spa DEVICE FOR POWER SUPPLY UNIT WITH PERFECT ACCUMULATION
CZ2012479A3 (en) 2012-07-12 2013-06-05 Rieter Cz S.R.O. Circular interstice bin of yarn on textile machine workstation and controlling method thereof
FR2995555B1 (en) 2012-09-17 2017-11-24 Snecma FIBROUS TEXTURE WINDING MACHINE FOR IMAGE ANALYSIS ALIGNMENT AND DECADING CONTROL
FR3005042B1 (en) 2013-04-26 2016-01-01 Snecma WEAVING OR WINDING MACHINE FOR FIBROUS TEXTURE FOR ANOMALY CONTROL BY IMAGE ANALYSIS
EP2832908B1 (en) 2013-07-30 2023-01-04 Stäubli Sargans AG Monitoring device for a weaving loom, weaving loom and method of monitoring
US9783388B2 (en) 2013-08-07 2017-10-10 Ogura Clutch Co., Ltd. Spindle unit
CN103668625B (en) 2013-12-30 2016-05-11 东南大学 Fiber yarn stranding device and method for improving mechanical property of fiber reinforced composite material
KR101562382B1 (en) 2014-01-25 2015-10-22 권혁주 Tention adjuster for wire winder
EP2907908B1 (en) 2014-02-13 2016-06-22 L.G.L. Electronics S.p.A. Yarn-unwinding sensor for storage yarn feeders with rotary drum
JP5777184B2 (en) 2014-02-14 2015-09-09 旭精機工業株式会社 Forming machine
CN103901853B (en) 2014-03-28 2016-10-05 华南理工大学 A kind of single ingot single control control system being applied to air yarn cladding machine and control method
DE102014004994B3 (en) 2014-04-02 2015-07-23 Airbus Ds Gmbh Chopper disc and apparatus and method for their preparation
TWM492921U (en) 2014-06-26 2015-01-01 rui-xing Zhang Feed stabilizing device of bag weaving machine
CN104252920B (en) 2014-09-04 2016-03-23 浙江龙游公任电子有限公司 A kind of control system of coaxial cable production line and control method thereof
CN104532452A (en) 2014-12-10 2015-04-22 东华大学 Device and method for detecting weft breakage and weft completion of circular knitting machine on basis of image technology
US9839253B2 (en) 2014-12-10 2017-12-12 Nike, Inc. Last system for braiding footwear
MX353758B (en) 2014-12-19 2018-01-26 Grober Leon S A De C V Inspection system to identify defects in twisted strands.
CN104574439A (en) 2014-12-25 2015-04-29 南京邮电大学 Kalman filtering and TLD (tracking-learning-detection) algorithm integrated target tracking method
US10555581B2 (en) 2015-05-26 2020-02-11 Nike, Inc. Braided upper with multiple materials
US10238176B2 (en) 2015-05-26 2019-03-26 Nike, Inc. Braiding machine and method of forming a braided article using such braiding machine
JP6460923B2 (en) 2015-06-23 2019-01-30 日特エンジニアリング株式会社 Wire holding apparatus and wire holding method
CN204855298U (en) 2015-08-27 2015-12-09 台湾动力检测科技股份有限公司 Fiber cloth testing equipment
DE102015119444B4 (en) 2015-11-11 2018-01-18 Protechna Herbst Gmbh & Co. Kg Device and method for monitoring a running web
EP3391994A4 (en) 2015-11-16 2019-11-27 Takatori Corporation Wire saw device, and processing method and processing device for workpiece
WO2017187617A1 (en) 2016-04-28 2017-11-02 オリンパス株式会社 Sheath for flexible manipulator
WO2017190739A1 (en) 2016-05-04 2017-11-09 Innotec Lightweight Engineering & Polymer Technology Gmbh Circular weaving machine and method for producing a hollow profile-like fabric
CN106436010B (en) 2016-06-30 2018-03-09 张敏 A kind of braider spindle and track plate component
US10392734B2 (en) 2016-07-03 2019-08-27 Tzu-Chin Hsu Yarn tension control device
JP6378302B2 (en) 2016-12-22 2018-08-22 ファナック株式会社 Welding wire processing structure of arc welding robot
US10328641B1 (en) 2017-05-23 2019-06-25 Ebert Composites Corporation Thermoplastic composite tubular lineal forming system and method
CN107324144B (en) 2017-07-03 2023-07-11 三峡大学 Tension adjusting device
US10246291B2 (en) 2017-07-31 2019-04-02 Sunshine Kinetics Technology Co. Ltd. Yarn feeder
CN107604517A (en) 2017-08-16 2018-01-19 泰州市凌峰机电设备有限公司 A kind of spindle with backrush tension force
TW201926024A (en) 2017-11-22 2019-07-01 財團法人資訊工業策進會 Textile machine adjustment method and system thereof
US10751902B2 (en) 2017-11-28 2020-08-25 John Bean Technologies Corporation Portioner mist management assembly
TWM564181U (en) 2018-03-28 2018-07-21 精湛光學科技股份有限公司 Wire material discharge detection system
CN109623780B (en) 2018-11-28 2022-02-11 西安电子科技大学 Camera robot for shooting multi-view continuum and using method thereof
CN111326334A (en) 2018-12-14 2020-06-23 大连北方互感器集团有限公司 Secondary assembly of composite insulation dry current transformer
CN109402865B (en) 2018-12-18 2023-06-16 浙江理工大学 Weaving device and weaving method of gradient structure woven fabric
JP7185583B2 (en) 2019-04-03 2022-12-07 小倉クラッチ株式会社 spindle unit
US11685104B2 (en) * 2019-12-20 2023-06-27 Industrial Technology Research Institute Dynamic correcting system of manufacturing process using wire and dynamic correcting method using the same
DE102020005407B3 (en) * 2020-09-03 2022-02-03 ADMEDES GmbH Computer-assisted method for creating a braiding program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612914B (en) * 2011-11-18 2018-02-01 耐克創新有限合夥公司 Method and system for manipulating shoe parts in automated manner during manufacturing process and method of positioning and joining shoe parts
US20160243762A1 (en) * 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
US20180108826A1 (en) * 2015-04-30 2018-04-19 Teijin Limited Piezoelectric element and device using same
TW201820106A (en) * 2016-10-25 2018-06-01 加拿大商一號工作室控股有限公司 Flexible conductive apparatus and systems for detecting pressure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 黃一萍複材編織製程技術與應用 機械工業雜誌 446期 財團法人工業技術研究院 2020年5月 第60~68頁 *

Also Published As

Publication number Publication date
US11560657B2 (en) 2023-01-24
US20220170191A1 (en) 2022-06-02
TW202223625A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US20150039113A1 (en) Method and apparatus for 3D printing along natural direction
CN112149198B (en) Arc fuse additive manufacturing path generation method
TWI772991B (en) Braiding path generation method and device, and dynamic correction method and braiding system
CN109702294A (en) A kind of control method, system and the device of electric arc increasing material manufacturing
CN1165951C (en) Driving method of high-power electron beam
CN110781588B (en) Method for generating wire laying angle reference line by intersecting helical surface and revolving body curved surface
CN104504193A (en) Construction method for taper-changeable composite fiber winding models
CN102592745A (en) Composite wire and manufacturing method thereof
US10361168B2 (en) Systems and methods for optimizing looping parameters and looping trajectories in the formation of wire loops
Insero et al. A novel infill strategy to approach non-planar 3d-printing in 6-axis robotized fdm
CN114996884B (en) Method for solving motion angle of positioner of rotary tool of automatic wire laying equipment
CN114755977B (en) A 5-axis Towpreg winding programming method
JP3692971B2 (en) 3D virtual assembly system
US11685104B2 (en) Dynamic correcting system of manufacturing process using wire and dynamic correcting method using the same
CN112464467A (en) Computer simulation method of three-dimensional braided structure
CN117727511A (en) Rigid cable braiding machine and motion control method thereof
CN110614632B (en) Multi-robot laying track distribution design method
CN117034496B (en) Grasshopper-based cable parameterized modeling method
CN114003277B (en) Eccentric knitting control method and storage device
CN1234099C (en) Information processor and method
TWI727791B (en) Dynamic correcting system of manufacturing process using wire and dynamic correcting method using the same
CN103137254B (en) A kind of Aeronautical cable protective sleeve
KR102163759B1 (en) Braiding process performed by smart braiding simulation system
CN109325292B (en) ANSYS-based setting method for complex welding track heat source loading local coordinate system
CN111210950B (en) Calculation method for production arrangement structure of multi-strand stranded conductor
OSZAR »