US10123722B2 - Body-worn monitor for measuring respiration rate - Google Patents
Body-worn monitor for measuring respiration rate Download PDFInfo
- Publication number
- US10123722B2 US10123722B2 US12/559,429 US55942909A US10123722B2 US 10123722 B2 US10123722 B2 US 10123722B2 US 55942909 A US55942909 A US 55942909A US 10123722 B2 US10123722 B2 US 10123722B2
- Authority
- US
- United States
- Prior art keywords
- patient
- motion
- waveform
- waveforms
- ecg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A61B5/0402—
-
- A61B5/0809—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/085—Measuring impedance of respiratory organs or lung elasticity
- A61B5/086—Measuring impedance of respiratory organs or lung elasticity by impedance pneumography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1116—Determining posture transitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1118—Determining activity level
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/33—Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
- A61B5/721—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02416—Measuring pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0535—Impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/681—Wristwatch-type devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6823—Trunk, e.g., chest, back, abdomen, hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6824—Arm or wrist
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6825—Hand
- A61B5/6826—Finger
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7239—Details of waveform analysis using differentiation including higher order derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
Definitions
- the present invention relates to medical devices for monitoring vital signs, e.g., respiration rate.
- Respiration rate is a vital sign typically measured in the hospital using either an indirect electrode-based technique called ‘impedance pneumography’ (IP), a direct optical technique called ‘end-tidal CO2’ (et-CO2), or simply through manual counting of breaths by a medical professional.
- IP is typically used in lower-acuity areas of the hospital, and uses the same electrodes deployed in a conventional ‘Einthoven's triangle’ configuration for measuring heart rate (HR) from an electrocardiogram (ECG).
- One of the electrodes supplies a low-amperage ( ⁇ 4 mA) current that is typically modulated at a high frequency ( ⁇ 50-100 kHz).
- a device called a capnometer features a small plastic tube that typically inserts in the patient's mouth. With each breath the tube collects expelled CO2.
- a beam of infrared radiation emitted from an integrated light source passes through the CO2 and is absorbed in a time-dependent manner that varies with the breathing rate.
- a photodetector and series of processing electronics analyze the transmitted signal to determine RR.
- et-CO2 systems are typically used in high-acuity areas of the hospital, such as the intensive care unit (ICU), where patients often use ventilators to assist them in breathing.
- ICU intensive care unit
- RR is measured from the envelope of a time-dependent optical waveform called a photoplethysmogram (PPG) that is measured from the index finger during a conventional measurement of the patient's oxygen saturation (SpO2). Breathing changes the oxygen content in the patient's blood and, subsequently, its optical absorption properties. Such changes cause a slight, low-frequency variation in the PPG that can be detected with a pulse oximeter's optical system, which typically operates at both red and infrared wavelengths.
- PPG photoplethysmogram
- RR is an important predictor of a decompensating patient.
- a respiratory rate greater than 27 breaths/minute was the most important predictor of cardiac arrests in hospital wards (Fieselmann et al., ‘Respiratory rate predicts cardiopulmonary arrest for internal medicine patients’, J Gen Intern Med 1993; 8: 354-360). Subbe et al.
- RR is notoriously difficult to measure, particularly when a patient is moving.
- non-invasive techniques based on IP and PPG signals are usually overwhelmed by artifacts and thus completely ineffective. This makes it difficult or impossible to measure RR from an ambulatory patient.
- Measurements based on et-CO2 are typically less susceptible to motion, but require a plastic tube inserted in the patient's mouth, which is typically impractical for ambulatory patients.
- This invention provides methods, devices, and systems for use in measuring RR using multiple input signals, including IP, PPG, and ECG waveforms, and a signal processing technique based on adaptive filtering.
- these waveforms are processed along with those from an accelerometer mounted on the patient's torso (most typically the chest or abdomen).
- the accelerometer measures small, breathing-induced movements to generate a time-dependent waveform (ACC).
- ACC time-dependent waveform
- an initial RR is preferably estimated from the IP waveform, and alternatively from the PPG or ECG waveform.
- the initial RR is then processed and used to determine parameters for a bandpass digital filter, typically implemented with a finite impulse response function. This yields a customized filtering function which then processes the ACC waveform.
- the filtering function generates a relatively noise-free ACC waveform with well-defined pulses corresponding to RR. Each pulse can then be further processed and counted to determine an accurate RR value, even during periods of motion.
- the body-worn monitor measures IP, PPG, ECG, and ACC waveforms with a series of sensors integrated into a comfortable, low-profile system that preferably communicates wirelessly with a remote computer in the hospital.
- the system typically features three accelerometers, each configured to measure a unique signal along its x, y, and z axes, to yield a total of nine ACC waveforms.
- the accelerometers are deployed on the patient's torso, upper arm, and lower arm, and may be embedded in the monitor's cabling or processing unit.
- Each ACC waveform can be additionally processed to determine the patient's posture, degree of motion, and activity level.
- Sensors attached to the wrist and bicep each measure signals that are collectively analyzed to estimate the patient's arm height; this can be used to improve accuracy of a continuous blood pressure measurement (cNIBP), as described below, that measures systolic (SYS), diastolic (DIA), and mean (MAP) arterial blood pressures.
- cNIBP continuous blood pressure measurement
- the sensor attached to the patient's chest measures signals that are analyzed to determine posture and activity level, which can affect measurements for RR, SpO2, cNIBP, and other vital signs.
- the body-worn monitor features systems for continuously monitoring patients in a hospital environment, and as the patient transfers from different areas in the hospital, and ultimately to the home.
- Both SpO2 and cNIBP rely on accurate measurement of PPG and ACC waveforms, along with an ECG, from patients that are both moving and at rest.
- cNIBP is typically measured with the ‘Composite Technique’, which is described in detail in the co-pending patent application entitled: VITAL SIGN MONITOR FOR MEASURING BLOOD PRESSURE USING OPTICAL, ELECTRICAL, AND PRESSURE WAVEFORMS (U.S. Ser. No. 12/138,194; filed Jun. 12, 2008), the contents of which are fully incorporated herein by reference.
- the Composite Technique typically uses a single PPG waveform from the SpO2 measurement (typically generated with infrared radiation), along with the ECG waveform, to calculate a parameter called ‘pulse transit time’ (PTT) which strongly correlates to blood pressure.
- PTT pulse transit time
- the ECG waveform features a sharply peaked QRS complex that indicates depolarization of the heart's left ventricle, and, informally, provides a time-dependent marker of a heart beat.
- PTT is the time separating the peak of the QRS complex and the onset, or ‘foot’, of the PPG waveforms.
- the QRS complex along with the foot of each pulse in the PPG, can be used to more accurately extract AC signals using a mathematical technique described in detail below.
- both the red and infrared PPG waveforms are collectively processed to enhance the accuracy of the cNIBP measurement.
- the electrical system for measuring RR features a small-scale, low-power circuit mounted on a circuit board that fits within the wrist-worn transceiver.
- the transceiver additionally includes a touchpanel display, barcode reader, and wireless systems for ancillary applications described, for example, in the above-referenced applications, the contents of which have been previously incorporated herein by reference.
- the invention provides a multi-sensor system that uses an algorithm based on adaptive filtering to monitor a patient's RR.
- the system features a first sensor selected from the following group: i) an IP sensor featuring at least two electrodes and an IP processing circuit configured to measure an IP signal; ii) an ECG sensor featuring at least two electrodes and an ECG processing circuit configured to measure an ECG signal; and iii) a PPG sensor featuring a light source, photodetector, and PPG processing circuit configured to measure a PPG signal.
- Each of these sensors measures a time-dependent signal which is sensitive to RR and is processed to determine an initial RR value.
- the system features a second sensor (e.g. a digital 3-axis accelerometer) that attaches to the patient's torso and measures an ACC signal indicating movement of the chest or abdomen that is also sensitive to RR.
- a second sensor e.g. a digital 3-axis accelerometer
- a body-worn processing system receives a first signal representing at least one of the IP, ECG, and PPG signals, and a second signal representing the ACC signal.
- the processing system is configured to: i) process the first signal to determine an initial RR; ii) process the second signal with a digital filter determined from the initial RR to determine a third signal; and iii) process the third signal to determine a final value for the patient's RR.
- the processing system can include one or more microprocessors.
- it can include first microprocessor embedded within a single ASIC that also measures IP and ECG, or mounted on a circuit board that also contains the ASIC or an equivalent circuit made from discrete components.
- the first microprocessor is mounted on the patient's torso.
- a wrist-worn transceiver can contain the second microprocessor.
- the first microprocessor mounted on the patient's torso determines a RR from multiple time-dependent signals; this value is transmitted to the second microprocessor within the wrist-worn transceiver as a digital or analog data stream transmitted through a cable.
- the second microprocessor further processes the RR value alongside data describing the patient's motion and other vital signs.
- the secondary processing for example, can be used to generate alarms/alerts based on RR, or suppress alarms/alerts because of the patient's motion.
- the digital filter used for adaptive filtering is a bandpass filter or low-pass filter.
- the digital filter is determined from a finite impulse response function.
- the bandpass filter typically features an upper frequency limit determined from a multiple (e.g. 1-3 ⁇ ) of the initial RR.
- Such a digital filter is used to process time-dependent waveforms to remove noise and other artifacts to determine the initial version of RR.
- the filter is not adaptive, and instead has a pre-determined passband.
- the final version of RR is determined from the adaptive filter, which as described above has a passband that depends on the initial version of RR.
- the processing system is further configured to determine both initial and final versions of RR by processing a filtered waveform with a mathematical derivative and then determine a zero-point crossing indicating a ‘count’ marking a respiratory event. Such counts are evident in the processed IP signal, which features a first series of pulses that, once analyzed by the processing system, yields the initial RR.
- the initial RR is determined from either an ECG or PPG, both of which feature a series of heartbeat-induced pulses with amplitudes characterized by a time-varying envelope, with the frequency of the envelope representing the initial RR.
- the waveforms used to determine the initial and final values for RR can be interchanged, e.g.
- the ACC waveform can be processed to determine the initial RR value, and this can then be used to design a digital filter that processes the IP, ECG, or PPG waveforms to determine the final RR value.
- any combination of the above-described waveforms can be used in the adaptive filtering process to determine the initial and final RR values.
- the invention provides a system for monitoring a patient's RR that also accounts for their posture, activity level, and degree of motion.
- patient states can result in artifacts that affect the RR measurement, and thus proper interpretation of them can reduce the occurrence of erroneous RR values and ultimately false alarms/alerts in the hospital.
- the invention provides a cable within a body-worn monitor that includes an IP system, a motion sensor (e.g. accelerometer), and a processing system that determines RR from signals generated by these sensors.
- IP system IP system
- motion sensor e.g. accelerometer
- processing system that determines RR from signals generated by these sensors.
- These components can be included in a terminal end of the cable, typically worn on the patient's torso, which connects to a series of disposable electrodes that attach to the patient's body.
- a mechanical housing typically made of plastic, covers these and other components, such as sensors for measuring signals relating to ECG and skin temperature.
- the cable includes at least one conductor configured to transmit both a first digital data stream representing the digital IP signal or information calculated therefrom, and a second digital data stream representing the digital motion signal or information calculated therefrom.
- these signals are processed by a microprocessor on the chest to determine an RR value, and this value is then sent in the digital data stream to another processor, such as one within the wrist-worn transceiver, where it is further processed.
- the terminal portion of the cable can include a transceiver component, e.g. a serial transceiver configured to transmit a digital data stream according to the CAN protocol.
- Other properties such as heart rate, temperature, alarms relating to ECG signals, and other information relating to the CAN communication protocol and its timing can be transmitted by the transceiver component.
- both the IP and ECG systems are contained within a single integrated circuit.
- the ECG system can be modular and determine multi-lead ECG signals, such as three, five, and twelve-lead ECG signals.
- the invention provides a method for determining RR during periods of motion.
- the method includes the following steps: (a) measuring a first time-dependent signal by detecting a modulated electrical current passing through the patient's torso; (b) measuring a second time-dependent signal by detecting respiration-induced movements in the patient's torso with at least one motion sensor; (c) determining a motion-related event not related to the patient's respiration rate value by processing signals from the motion sensor; and (d) collectively processing both the first and second time-dependent signals to determine a value for RR corresponding to a period when the patient's motion-related event is below a pre-determined threshold.
- the motion-related event determined during step (c) can be the patient's posture, activity level, or degree of motion.
- these parameters are determined from signals measured with an accelerometer mounted on the patient's torso. These signals are processed with an algorithm, described in detail below, that yields a vector indicating orientation of the patient's chest and their subsequent posture. Specifically, an angle separating the vector from a pre-determined coordinate system ultimately yields posture, as is described in detail below.
- Activity level (corresponding, e.g., to moving, walking, falling, convulsing) can be calculated from a mathematical transform of time-dependent variations of a motion signal that yields a frequency-domain spectrum. Portions of the spectrum (e.g.
- the power of specific frequency components are compared to pre-determined frequency parameters to determine the activity level.
- Other operations such as a mathematical derivative of the time-dependent motion signal, or a series of ‘decision rules’ based on a decision-tree algorithm, can also yield the activity level.
- the invention provides a method for suppressing alarms related to RR by processing the patient's posture, activity level, and degree of motion as determined by the accelerometer.
- the alarm can be suppressed if the patient is standing upright, or if their posture changes from lying down to one of sitting and standing upright. Or the alarm can be suppressed if their posture changes from either standing upright or sitting to lying down.
- a rapid change in posture which can be determined with the chest-worn accelerometer, may disrupt the signals used to determine RR to the point where a false alarm/alert is generated.
- posture is determined from the vector-based analysis, described above.
- the invention provides a system for monitoring a patient's RR featuring a sensor unit configured to be mounted on the patient's torso.
- the sensor unit features IP and motion sensors, as described above, and additionally attaches directly to an electrode that secures the unit to the patient's torso (e.g. chest or abdomen).
- a housing comprising the IP and motion sensors additionally includes a connector featuring an opening configured to receive a metal snap on the exterior of a conventional disposable electrode.
- Other electrodes used for IP and ECG measurements connect to the unit through cables.
- the unit can additionally send a digital data stream including RR data over a CAN bus to a wrist-worn transceiver, which as described above can further process the RR value to account for alarms/alerts, motion, etc.
- the wrist-worn transceiver can include a display configured to display the patient's RR and other vital signs, along with a touchpanel interface.
- a wireless transceiver within the wrist-worn transceiver can transmit information to a remote computer using conventional protocols such as 802.11, 802.15.4, and cellular.
- the remote computer for example, can be connected to a hospital network. It can also be a portable computer, such as a tablet computer, personal digital assistant, or cellular phone.
- this invention provides an accurate measurement of RR, along with an independent measurement of a patient's posture, activity level, and motion, to characterize an ambulatory patient in the hospital. These parameters can be collectively analyzed to improve true positive alarms while reducing the occurrence of false positive alarms. Additionally, the measurement of RR is performed with a body-worn monitor that is comfortable, lightweight, and low-profile, making it particularly well suited for patients that are moving about. Such a monitor could continuously monitor a patient as, for example, they transition from the emergency department to the ICU, and ultimately to the home after hospitalization.
- FIG. 1A shows a schematic view of a patient wearing accelerometers on their abdomen (position 1) and chest (position 2) to measure ACC waveforms and RR according to the adaptive filtering process of the invention
- FIG. 1B shows a schematic view of the accelerometers from FIG. 1 along with their three-dimensional measurement axes
- FIG. 2A shows a schematic view of a patient wearing ECG electrodes on their chest in a conventional Einthoven's triangle configuration to measure an IP waveform
- FIG. 2B shows a schematic view of ECG and IP circuits that simultaneously process signals from each ECG electrode in FIG. 2A to determine both ECG and IP waveforms;
- FIGS. 3A-D each show an ACC waveform measured with the configuration shown in FIG. 1 after processing with no filter ( FIG. 3A ; top), a 0.01 ⁇ 1 Hz bandpass filter ( FIG. 3B ), a 0.01 ⁇ 0.5 Hz bandpass filter ( FIG. 3C ), and a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 3C ; bottom);
- FIGS. 3E-H show, respectively, time-dependent derivatives of the ACC waveforms shown in FIGS. 3A-D ;
- FIGS. 4A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 4A ; top), an IP waveform ( FIG. 4B ), and a et-CO2 waveform ( FIG. 4C ; bottom) simultaneously measured from a supine patient undergoing slow, deep breaths;
- FIGS. 5A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 5A ; top), an IP waveform ( FIG. 5B ), and a et-CO2 waveform ( FIG. 5C ; bottom) simultaneously measured from a supine patient undergoing fast, deep breaths;
- FIGS. 6A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 6A ; top), an IP waveform ( FIG. 6B ), and a et-CO2 waveform ( FIG. 6C ; bottom) simultaneously measured from a supine patient undergoing very fast, deep breaths;
- FIGS. 7A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 7A ; top), an IP waveform ( FIG. 7B ), and a et-CO2 waveform ( FIG. 7C ; bottom) simultaneously measured from a supine patient undergoing medium, shallow breaths;
- FIGS. 8A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 8A ; top), an IP waveform ( FIG. 8B ), and a et-CO2 waveform ( FIG. 8C ; bottom) simultaneously measured from a standing patient undergoing medium, shallow breaths;
- FIGS. 9A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 9A ; top), an IP waveform ( FIG. 9B ), and a et-CO2 waveform ( FIG. 9C ; bottom) simultaneously measured from a standing patient undergoing fast, deep breaths;
- FIGS. 10A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 10A ; top), an IP waveform ( FIG. 10B ), and a et-CO2 waveform ( FIG. 10C ; bottom) simultaneously measured from a supine patient undergoing slow, deep breaths, followed by a period of apnea, followed by relatively fast, deep breaths;
- FIGS. 11A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 11A ; top), an IP waveform ( FIG. 11B ), and a et-CO2 waveform ( FIG. 11C ; bottom) simultaneously measured from a supine patient undergoing very fast, shallow breaths, followed by a period of apnea, followed by relatively slow, shallow breaths;
- FIGS. 12A-C show an ACC waveform filtered with a 0.01 ⁇ 0.1 Hz bandpass filter ( FIG. 12A ; top), an IP waveform ( FIG. 12B ), and a et-CO2 waveform ( FIG. 12C ; bottom) simultaneously measured from a walking patient undergoing fast, deep breaths;
- FIG. 13 shows a flow chart along with ACC and IP waveforms used to determine RR using an adaptive filtering technique
- FIG. 14 shows a flow chart that describes details of the adaptive filtering technique shown in FIG. 13 ;
- FIGS. 15A-E show graphs of an ACC waveform filtered initially with a 0.01 ⁇ 2 Hz bandpass filter ( FIG. 15A ; top), an IP waveform filtered initially with a 0.01 ⁇ 12 Hz bandpass ( FIG. 15B ), an ACC waveform adaptively filtered with a bandpass filter ranging from 0.01 Hz to 1.5 times the breathing rate calculated from the IP waveform in FIG. 15B ( FIG. 15C ), a first derivative of the filtered waveform in FIG. 15C ( FIG. 15D ), and the adaptively filtered waveform in FIG. 15C along with markers ( FIG. 15E ; bottom) indicating slow, deep breaths as determined from the algorithm shown by the flow chart in FIG. 14 ;
- FIG. 15F is a flow chart showing the algorithmic steps used to process the waveforms shown in FIGS. 15A-E ;
- FIGS. 16A-E show graphs of an ACC waveform filtered initially with a 0.01 ⁇ 2 Hz bandpass filter ( FIG. 16A ; top), an IP waveform filtered initially with a 0.01 ⁇ 12 Hz bandpass ( FIG. 16B ), an ACC waveform adaptively filtered with a bandpass filter ranging from 0.01 Hz to 1.5 times the breathing rate calculated from the IP waveform in FIG. 16B ( FIG. 16C ), a first derivative of the filtered waveform in FIG. 16C ( FIG. 16D ), and the adaptively filtered waveform in FIG. 16C along with markers ( FIG. 16E ; bottom) indicating fast, deep breaths as determined from the algorithm shown by the flow chart in FIG. 14 ;
- FIG. 16F is a flow chart showing the algorithmic steps used to process the waveforms shown in FIGS. 16A-E ;
- FIGS. 17A-E show graphs of an ACC waveform filtered initially with a 0.01 ⁇ 2 Hz bandpass filter ( FIG. 17A ; top), an IP waveform filtered initially with a 0.01 ⁇ 12 Hz bandpass ( FIG. 17B ), an ACC waveform adaptively filtered with a bandpass filter ranging from 0.01 Hz to 1.5 times the breathing rate calculated from the IP waveform in FIG. 17B ( FIG. 17C ), a first derivative of the filtered waveform in FIG. 17C ( FIG. 17D ), and the adaptively filtered waveform in FIG. 17C along with markers ( FIG. 17E ; bottom) indicating very fast, deep breaths as determined from the algorithm shown by the flow chart in FIG. 14 ;
- FIG. 17F is a flow chart showing the algorithmic steps used to process the waveforms shown in FIGS. 17A-E ;
- FIGS. 18A-B show graphs of an ACC waveform filtered initially with a 0.01 ⁇ 2 Hz bandpass filter ( FIG. 18A ; top), and an IP waveform filtered initially with a 0.01 ⁇ 12 Hz bandpass ( FIG. 18B ; bottom) measured from a walking patient;
- FIG. 18C is a flow chart showing the algorithmic steps used to process the waveforms shown in FIGS. 18A-B ;
- FIG. 19 is a graph showing correlation between respiratory rates measured with the adaptive filtering technique shown by the flow chart in FIG. 14 and et-CO2;
- FIG. 20A is a graph showing an unfiltered ECG waveform measured from a resting patient
- FIG. 20B is a graph showing the time-dependent envelope of the ECG waveform shown in FIG. 20A ;
- FIG. 20C is a graph showing an unfiltered PPG waveform measured simultaneously with the ECG waveform of FIG. 20A ;
- FIG. 20D is a graph showing the time-dependent envelope of the PPG waveform shown in FIG. 20C ;
- FIG. 20E is a graph showing an IP waveform measured simultaneously with the ECG waveform of FIG. 20A and the PPG waveform of FIG. 20C ;
- FIGS. 21A-C show graphs of time-dependent ECG waveforms ( FIG. 21A ; top), PPG waveforms ( FIG. 21B ), and ACC waveforms ( FIG. 21C ; bottom) measured along the x, y, and z-axes for a resting patient;
- FIGS. 22A-C show graphs of time-dependent ECG waveforms ( FIG. 22A ; top), PPG waveforms ( FIG. 22B ), and ACC waveforms ( FIG. 22C ; bottom) measured along the x, y, and z-axes for a walking patient;
- FIGS. 23A-C show graphs of time-dependent ECG waveforms ( FIG. 23A ; top), PPG waveforms ( FIG. 23B ), and ACC waveforms ( FIG. 23C ; bottom) measured along the x, y, and z-axes for a convulsing patient;
- FIGS. 24A-C show graphs of time-dependent ECG waveforms ( FIG. 24A ; top), PPG waveforms ( FIG. 24B ), and ACC waveforms ( FIG. 24C ; bottom) measured along the x, y, and z-axes for a falling patient;
- FIG. 25 shows a schematic view of the patient of FIG. 1 and a coordinate axis used with an algorithm and ACC waveforms to determine the patient's posture;
- FIG. 26A shows a graph of time-dependent ACC waveforms measured from a patient's chest during different postures
- FIG. 26B shows a graph of time-dependent postures determined by processing the ACC waveforms of FIG. 26A with an algorithm and coordinate axis shown in FIG. 25 ;
- FIGS. 27A and 27B show, respectively, a three-dimensional image of the body-worn monitor of the invention attached to a patient during and after an initial indexing measurement;
- FIG. 28 shows a three-dimensional image of the wrist-worn transceiver used with the body-worn monitor of FIGS. 27A and 27B ;
- FIG. 29A is a schematic view of a patient wearing an alternate embodiment of the invention featuring a sensor unit for measuring IP and ACC waveforms that connects directly to the patient's abdomen with an electrode;
- FIG. 29B is a schematic, cross-sectional view of the sensor unit of FIG. 29A connected to the patient's abdomen with an electrode.
- a pair of accelerometers 12 , 14 attach, respectively, to the chest and abdomen of a patient 10 to predict RR through the patient's torso movement and an algorithm based on adaptive filtering.
- Each accelerometer 12 , 14 simultaneously measures acceleration (e.g. motion) along x, y, and z axes of a local coordinate system 18 .
- the accelerometers 12 , 14 are preferably aligned so the z axis points into the patient's torso.
- an internal analog-to-digital converter that generates a digital ACC waveform 19 corresponding to each axis.
- Waveforms are sent as a stream of digital data to a wrist-worn transceiver (shown, for example, in FIGS. 27A , B, and 28 ) where they are processed using an adaptive filtering algorithm described in detail below to determine the patient's RR.
- the adaptive filtering algorithm can be performed with a microprocessor mounted proximal to the accelerometers 12 , 14 on the patient's torso. Additional properties such as the patient's posture, degree of motion, and activity level are determined from these same digital ACC waveforms. As indicated by FIG.
- the axis within the accelerometer's coordinate system 18 that is aligned along the patient's torso (and thus orthogonal to their respiration-induced torso movement) is typically more sensitive to events not related to respiration, e.g. walking and falling.
- digital accelerometers manufactured by Analog Devices are used in the configuration shown in FIG. 1A . These sensors detect acceleration over a range of +/ ⁇ 2 g (or, alternatively, up to +/ ⁇ 8 g) with a small-scale, low-power circuit.
- RR is determined using an ACC waveform detected along the z-axis with an accelerometer 14 positioned on the patient's abdomen.
- the accelerometer 12 on the chest can be used in its place or two augment data collected with the abdomen-mounted sensor.
- ACC waveforms along multiple axes are also modulated by breathing patterns, and can thus be used to estimate RR.
- multiple signals from one or both accelerometers 12 , 14 are collectively processed to determine a single ‘effective’ ACC waveform representing, e.g., an average of the two waveforms. This waveform is then processed using adaptive filtering to determine the patient's RR.
- ECG waveforms are simultaneously measured with the ACC waveforms using a trio of electrodes 20 , 22 , 24 typically positioned on the chest of the patient 10 in an Einthoven's triangle configuration.
- each electrode 20 , 22 , 24 measures a unique analog signal that passes through a shielded cable to an ECG circuit 26 , which is typically mounted in a small plastic box 25 attached to the patient's chest.
- the ECG circuit 26 typically includes a differential amplifier and a series of analog filters with passbands that pass the high and low-frequency components that contribute to the ECG waveform 28 , but filter out components associated with electrical and mechanical noise.
- a conventional analog ECG waveform 28 features a series of heartbeat-induced pulses, each characterized by a well-known ‘QRS complex’ that, informally, marks the initial depolarization of the patient's heart.
- QRS complex a well-known ‘QRS complex’ that, informally, marks the initial depolarization of the patient's heart.
- a separate IP circuit 27 within the plastic box 25 generates a low-amperage current (typically 1-4 mA) that is modulated at a high frequency (typically 50-100 kHz).
- the current typically passes through electrode LL (‘lower left’) 24 , which is located on the lower left-hand side of the patient's torso.
- Electrode UR (‘upper right’) 20 detects the resultant analog signal, which is then processed with a separate differential amplifier and series of analog filters within the IP circuit to determine an analog IP waveform 30 featuring a low-frequency series of pulses corresponding to RR.
- the analog filters in the IP circuit 27 are chosen to filter out high-frequency components that contribute to the ECG QRS complex.
- the plastic box includes a temperature sensor 33 , such as a conventional thermocouple, that measures the skin temperature of the patient's chest. This temperature is typically a few degrees lower than conventional core temperature, usually measured with a thermometer inserted in the patient's throat or rectum. Despite this discrepancy, skin temperature measured with the temperature sensor 33 can be monitored continuously and can therefore be used along with RR and other vital signs to predict patient decompensation.
- a temperature sensor 33 such as a conventional thermocouple
- both the ECG 28 and IP 30 waveforms are generated with a single application-specific integrated circuit (ASIC), or a circuit composed of a series of discrete elements which are known in the art.
- ASIC application-specific integrated circuit
- the ECG circuit includes an internal analog-to-digital converter that digitizes both waveforms before transmission to the wrist-worn transceiver for further processing.
- This circuitry, along with that associated with both the ECG and IP circuits, is contained within a single, small-scale electronic package.
- Transmission of digital IP, ECG, and ACC waveforms, along with processed RR values, has several advantages over transmission of analog waveforms.
- a single transmission line in the monitor's cabling can transmit multiple digital waveforms, each generated by different sensors.
- ECG circuits can plug into the wrist-worn transceiver to replace the three-lead system shown in FIG. 2A . These ECG circuits can include, e.g., five and twelve leads.
- Digital data streams are typically transmitted to the wrist-worn transceiver using a serial protocol, such as a controlled area network (CAN) protocol, USB protocol, or RS-232 protocol.
- CAN is the preferred protocol for the body-worn monitor described in FIGS. 27A, 27B .
- Accelerometers positioned in the above-described locations on the patient's torso can detect respiration-induced motion associated with the chest and abdomen, and can therefore be processed to determine RR.
- Digital filtering is typically required to remove unwanted noise from the ACC waveform and isolate signal components corresponding to RR.
- Good filtering is required since respiratory-induced motions are typically small compared to those corresponding to activities (e.g. walking, falling) and posture changes (e.g. standing up, sitting down) associated with a patient's motion. Often these signals are only slightly larger than the accelerometer's noise floor.
- FIGS. 3A-3D show a common, normalized ACC waveform without any filtering ( FIG. 3A ), and then filtered with a progressively narrow digital bandpass filter generated from a finite impulse response function featuring 1048 coefficients.
- FIGS. 3E-3H show the first derivative of these waveforms, and feature a zero-point crossing corresponding to a positive-to-negative slope change of a single pulse in the ACC waveform. This feature can be easily analyzed with a computer algorithm to count the various pulses that contribute to RR.
- an unfiltered ACC waveform typically includes a series of respiration-induced pulses characterized by a peak amplitude which, in this case, is roughly twice that of the noise floor.
- This poor signal-to-noise ratio yields a derivatized signal in FIG. 3E that has no discernible zero-point crossing, thus making it nearly impossible to analyze.
- a relatively wide bandpass filter (0.01 ⁇ 1 Hz) yields an ACC waveform with a significantly improved signal-to-noise ratio.
- the derivative of this waveform features a primary zero-point crossing occurring near 25 seconds, and a series of artificial noise-induced crossings, both before and after the primary crossing, that could be erroneously counted by an algorithm to yield an artificially high value for RR.
- FIGS. 3C and 3G show, respectively, an ACC waveform and corresponding first derivative that result from a relatively narrow 0.01 ⁇ 0.5 Hz bandpass filter. These signals have higher signal-to-noise ratios than those shown in FIGS. 3B, 3F , but still include artificial zero-point crossings on both sides of the primary zero-point crossing. While small, these features still have the potential to yield an artificially high value for RR.
- the signals shown in FIGS. 3D, 3H are ideal.
- a narrow 0.01 ⁇ 0.1 Hz bandpass filter removes high-frequency components associated with artifacts in the ACC waveform, and in the process removes similar frequency components that contribute to sharp rising and falling edges of the individual breathing-induced pulses.
- RR determined from a filtered ACC waveform agrees well with that determined from IP, which is a signal used during the adaptive filtering algorithm described herein, and et-CO2, which represents a ‘quasi’ gold standard for determining RR.
- IP which is a signal used during the adaptive filtering algorithm described herein
- et-CO2 which represents a ‘quasi’ gold standard for determining RR.
- Data shown in each of these figures were collected simultaneously.
- ACC and IP waveforms were collected using an accelerometer mounted on a patient's abdomen, similar to that shown in FIG. 1A , and a trio of electrodes mounted in an Einthoven's triangle configuration, similar to that shown in FIG. 2A .
- the IP waveform is unfiltered, while the ACC waveform is filtered with a 0.01 ⁇ 0.1 Hz bandpass filter, as described with reference to FIGS.
- FIGS. 4-9 indicate that RR determined from both IP and ACC waveforms correlates well to absolute RR determined from et-CO2.
- the correlation holds for a variety of breathing conditions, ranging from slow, deep breathing ( FIGS. 4A-4C ); fast, deep breathing ( FIGS. 5A-5C ); very fast, deep breathing ( FIGS. 6A-6C ); and shallow, slow breathing ( FIGS. 7A-7C ).
- Data were measured under these conditions from a patient in a prone (i.e. lying down) posture. Additionally, the agreement continues to hold for a standing patient undergoing deep, slow breathing ( FIG. 8A-8C ) and deep, fast breathing ( FIG. 9A-9C ).
- the ACC waveform can be analyzed to determine walking, which it turn may be processed to avoid triggering a false alarm/alert that would normally be generated with a conventional vital sign monitor from the IP waveform, alone.
- the ACC waveform shown in FIG. 12A particularly when coupled with ACC waveforms corresponding to other axes of the chest-worn accelerometer as well as those from other accelerometers in the body-worn monitor, shows a clear signal indicative of walking. This determination can be corroborated with the IP waveform, which for a walking patient features an uncharacteristically low signal-to-noise ratio.
- an algorithm can determine that the patient is indeed walking, and can assume that their RR value is within normal limits, as a patient undergoing a consistent walking pattern is likely not in dire need of medical attention. For this reason an alarm/alert associated with RR is not generated. Similar alarms can be avoided when processing of the ACC waveforms determines that the patient is convulsing or falling (see, e.g., FIGS. 21-24 ), although in these cases a different type of alarm/alert may sound. In this way, collective processing of both the ACC and IP waveforms can help reduce false alarms/alerts associated with RR, while improving real alarms/alerts corresponding to other patient situations.
- FIG. 13 illustrates in more detail how ACC and IP waveforms can be collectively processed to determine RR, activity levels, posture, and alarms/alerts associated with these patient states.
- the figure shows a flow chart describing an algorithm that would typically run using a microprocessor, such as that contained within a wrist-worn transceiver such as that shown in FIG. 28 .
- the algorithm could run on a microprocessor mounted on the patient's torso with the IP and accelerometer sensors or elsewhere.
- the algorithm begins with steps 54 , 56 that process all nine ACC waveforms, which are shown in the graph 69 on the left-hand side of the figure, to determine the patient's posture (step 54 ) and activity level (step 56 ). Both these processes are described in detail below.
- determining posture involves processing DC values of the ACC waveform generated by the accelerometer mounted on the patient's chest; such signals are shown in the initial and end portions of the graph 69 , which show changing DC values representing a posture change.
- the DC values are processed with an algorithm to estimate states corresponding to the patient such as standing, sitting, prone, supine, and lying on their side. This algorithm is also described with reference to FIG. 26A, 26B , below.
- the algorithm analyzes AC portions of the ACC waveforms to determine the patient's activity level (step 56 ).
- This part of the algorithm can be performed in several ways.
- the AC portions of the ACC waveforms such as the oscillating portion in the graph 69
- Specific activity levels such as walking and convulsing, involve periodic or quasi-periodic motions; these result in a well-defined power spectrum with frequency components between about 0 and 15 Hz (with this value representing the upper limit of human motion).
- Frequency bands in the power spectrum can be analyzed to estimate the patient's activity level.
- This analysis can also be combined with the posture determination from step 54 to refine the calculation for activity level. For example, a patient that is sitting down may be convulsing, but cannot be walking. Similarly, a falling event will begin with a standing posture, and end with a prone or supine posture.
- the patient's activity level may be estimated with an algorithm based on probability and the concept of a ‘logit variable’, which considers a variety of time and frequency-domain parameters extracted from the AC portions of the ACC waveforms, and then processes these with a probability analysis that considers activity levels from a previously measured group of patients.
- An analysis based on a series of ‘decision trees’ can also be used to estimate the patient's activity level.
- the decision trees feature steps that process both the AC and DC portions of the ACC waveforms to estimate the patient's activity level.
- VITAL SIGN MONITOR FEATURING 3 ACCELEROMETERS (U.S. Ser. No. 12/469,094; filed May 20, 2009) and METHOD FOR GENERATING ALARMS/ALERTS BASED ON A PATIENT'S POSTURE AND VITAL SIGNS (U.S. Ser. No. 12/469,236; filed May 20, 2009).
- the patient's overall state is preferably grouped into one of two categories once posture and activity level are determined with steps 54 and 56 .
- the first group involves relatively motion-free states, and includes categories such as patients that are: lying down with minimal motion (step 58 ), sitting up with minimal motion (step 59 ), and standing upright with minimal motion (step 60 ).
- Adaptive filtering that processes both ACC and IP waveforms will be effective in determining RR from this group of patients.
- the second group features patients that are undergoing some type of motion that will likely influence both the ACC and IP waveforms. Categories for this group include patients that are: lying down with significant motion, e.g.
- step 61 convulsing or talking in an animated manner (step 61 ), sitting up with significant motion (step 62 ), or standing upright with significant motion, e.g. walking (step 63 ).
- step 62 sitting up with significant motion
- step 63 standing upright with significant motion, e.g. walking
- the adaptive filtering approach is abandoned, as a pair of respiratory-influenced waveforms with high signal-to-noise ratios is not available.
- the second group of patients is processed with a series of heuristic rules, described above, to determine whether or not to generate an alarm/alert based on their posture, activity level, and vital signs (including RR).
- Patients within the first group yield ACC and IP waveforms that are collectively processed with an algorithm based on adaptive filtering to determine RR. Representative waveforms are described above and are shown, for example, by graphs 70 , 71 , as well as those shown in FIGS. 4-11 . Details of the adaptive filtering algorithm are described below with reference to FIG. 14 .
- This technique yields an accurate value for RR (step 66 ). An alarm/alert is generated if this value exceeds pre-set high and low limits for RR for a well-defined period of time (step 67 ).
- RR is normal but cannot be accurately determined (step 65 ).
- the underlying theory is that a patient that is walking or talking likely has a normal RR, and that such activity levels may result in artificially high or low values of RR that may trigger a false alarm.
- an alarm/alert may be generated depending on the patient's posture or activity level, coupled with other vital signs and a set of heuristic rules (step 68 ). For example, activity levels such as convulsing or falling will automatically generate an alarm/alert.
- the algorithm may ignore vital signs that are known to be strongly affected by motion (e.g.
- RR blood pressure
- SpO2 blood pressure
- An alarm/alert may be triggered based on these parameters and the patient's motion and activity level.
- the set of heuristic rules used during step 68 along with a general approach for generating alarms/alerts with the body-worn monitor described herein, are described in more detail in the following co-pending patent application, the contents of which have been fully incorporated by reference above: METHOD FOR GENERATING ALARMS/ALERTS BASED ON A PATIENT'S POSTURE AND VITAL SIGNS (U.S. Ser. No. 12/469,236; filed May 20, 2009).
- FIG. 14 describes in more detail an exemplary adaptive filtering algorithm used during step 64 to determine RR from the IP and ACC waveforms.
- the algorithm involves collecting ECG, PPG, ACC, and IP waveforms using the body-worn monitor described in FIGS. 27A , B (step 81 ).
- ECG and PPG waveforms are processed with external algorithms to determine heart rate, blood pressure, and pulse oximetry, as described in more detail below. Additionally, as described with reference to FIGS. 20A-E , these waveforms feature envelopes that are modulated by respiratory rate, and thus may be analyzed to provide an initial RR value for the adaptive filtering algorithm.
- the ECG, PPG, and IP waveforms are analyzed with a series of simple metrics, such as analysis of signal-to-noise ratios and comparison of extracted RR values to pre-determined limits, to determine which one will provide the initial input to the adaptive filtering algorithm (step 82 ).
- RR is extracted from the IP waveform, as this provides a reliable initial value. If during step 82 it is determined that IP does not yield a reliable initial RR value, the envelopes of both the PPG and ECG waveforms are extracted and analyzed as described above. If they are acceptable, RR values are then extracted from these waveforms and used for the initial value (step 89 ). The algorithm is terminated if each of the IP, PPG, and ECG waveforms fails to yield a reliable RR value.
- the IP waveform is filtered with a finite impulse response filter with a bandpass of 0.01 ⁇ 12 Hz to remove electrical and mechanical noise that may lead to artifacts (step 83 ).
- the waveform is derivatized to yield a waveform similar to that shown in FIG. 3H (step 84 ), and then analyzed to find a zero-point crossing so that peaks corresponding to RR can be counted (step 85 ).
- step 85 several simple signal processing algorithms may also be deployed to avoid counting features that don't actually correspond to RR, such as those shown in FIGS. 3F, 3G .
- the derivatized waveform may be squared to accentuate lobes on each side of the crossing.
- the resultant waveform may then be filtered again with a bandpass filter, or simply smoothed with a moving average. In other embodiments only lobes that exceed a pre-determined magnitude are considered when determining the zero-point crossing.
- the initial RR serves as the basis for the adaptive filter used in step 85 .
- this rate is multiplied by a factor (e.g. 1.5), and then used as an upper limit for a bandpass filter based on a finite impulse response function used to filter the ACC waveform (step 86 ).
- the lower limit for the bandpass filter is typically 0.01 Hz, as described above. Filtering the ACC waveform with these tailored parameters yields a resulting waveform that has a high signal-to-noise ratio, limited extraneous frequency components, and can easily be processed to determine RR.
- signal processing technique similar to those described above with reference to step 84 may be used to further process the ACC waveform. These yield a smooth, derivatized waveform that is analyzed to determine a zero-point crossing and count the resulting peaks contributing to RR (step 88 ).
- FIGS. 15, 16, and 17 illustrate how the above-described adaptive filtering algorithm can be applied to both ACC and IP waveforms.
- the graphs show the ACC waveform filtered with an initial, non-adaptive filter ( 15 A, 16 A, 17 A; 0.01 ⁇ 2 Hz bandpass), and the IP waveform filtered under similar conditions with a slightly larger bandpass filter ( 15 B, 16 B, 17 B; 0.01 ⁇ 12 Hz bandpass).
- the IP waveform is filtered with the larger bandpass so that high-frequency components composing the rising and falling edges of pulses within these waveforms are preserved.
- the IP waveform is processed as described above to determine an initial RR.
- This value may include artifacts due to motion, electrical, and mechanical noise that erroneously increases or decreases the initial RR value. But typically such errors have little impact on the final RR value that results from the adaptive filter.
- the middle graph ( FIGS. 15C, 16C, and 17C ) in each figure show the ACC waveform processed with the adaptive filter. In all cases this waveform features an improved signal-to-noise ratio compared to data shown in the top graph ( 15 A, 16 A, 17 A), which is processed with a non-adaptive (and relatively wide) filter.
- the narrow bandpass on the adaptive filter removes many high-frequency components that contribute the sharp rising and falling edges of pulses in the ACC waveforms. This slightly distorts the waveforms by rounding the pulses, giving the filtered waveform a shape that resembles a conventional sinusoid. Such distortion, however, has basically no affect on the absolute number of pulses in each waveform which are counted to determine RR.
- the adaptively filtered waveform is then derivatized and graphed in FIGS. 15D, 16D, and 17D .
- This waveform is then processed with the above-mentioned signal processing techniques, e.g. squaring the derivative and filtering out lobes that fall beneath pre-determined threshold values, to yield an algorithm-determined ‘count’, indicated in FIGS. 15E, 16E, and 17E as a series of black triangles.
- the count is plotted along with the adaptively filtered waveforms from FIGS. 15C, 16C, and 17C . Exact overlap between each pulse in the waveform and the corresponding count indicates the algorithm is working properly.
- Data from each of the figures correspond to varying respiratory behavior (5, 17, and 38 breaths/minute in, respectively, FIGS.
- FIGS. 15F, 16F, and 17F show a series of steps 90 - 94 that indicate the analysis required to generate the corresponding graphs in the figure.
- FIG. 18 shows data collected when the patient is walking.
- the walking motion manifests in the ACC waveform in FIG. 18A as a series of periodic pulses which look similar to RR, particularly after the initial bandpass filter of 0.01 ⁇ 2 Hz.
- the IP waveform shown in FIG. 18B has a poor signal-to-noise ratio, and fails to yield an accurate initial value for RR.
- step 95 in the modified flow chart shown in FIG. 18C , which highlights an alternate series of steps that are deployed when motion is present.
- step 96 in this case other ACC waveforms (e.g., those along the x and y-axes, indicated by ACC′) are analyzed to determine that the patient is walking. In this case no value of RR is reported, and an alarm/alert is not triggered because of the above-mentioned heuristic rules (i.e. a walking patient typically has a normal RR, and is not in need of medical attention).
- the efficacy of using adaptive filtering to determine RR from ACC and IP waveforms is summarized with the correlation graph in FIG. 19 .
- RR can additionally be determined from both the PPG and ECG waveforms by analyzing an envelope outlining heartbeat-induced pulses in these waveforms.
- Both PPG and ECG waveforms are collected with the body-worn monitor of FIGS. 27A, 27B , where they are further analyzed to continuously determine cNIBP according to the Composite Technique, as described above.
- FIGS. 20A-E show representative data that indicate this technique.
- FIG. 20A shows an unfiltered ECG waveform featuring a train of pulses, each representing an individual QRS complex.
- the envelope of the QRS complexes is extracted by determining the maximum and minimum of each complex. Alternatively it can be determined with a series of digital filters that only pass very low frequencies. Comparison of the ECG envelope in FIG.
- the PPG waveform shown in FIG. 20C features a train of pulses, each corresponding to a unique heartbeat, that typically follow the ECG QRS complex by a few hundred milliseconds. It is this time difference (typically called a ‘pulse transit time’, or PTT) that is sensitive to blood pressure changes, and is used during the Composite Technique to measure an absolute value for blood pressure.
- the PPG envelope like the ECG envelope, is modulated by RR, and can be determined by extracting the maximum and minimum of each pulse. Alternatively this envelope can be determined with a low-pass filter similar to that used to extract the ECG envelope. As shown in FIG. 20D , the resulting envelope agrees well with the IP waveform, indicating it too is indicative of RR.
- the body-worn monitor shown in FIGS. 27A, 27B measures two separate PPG waveforms (generated with red and infrared radiation) to determine the patient's SpO2 value.
- the algorithm for this calculation is described in detail in the following co-pending patent applications, the contents of which are incorporated herein by reference: BODY-WORN PULSE OXIMETER (U.S. Ser. No. 61/218,062; filed Jun. 17, 2009).
- envelopes from both PPG waveforms can be extracted and processed to determine an initial value of RR.
- This value may also be calculated from the ECG waveform alone, or from this waveform and one or both PPG waveforms.
- this method for determining an initial RR value for the adaptive filter algorithm is less preferred than one that uses an IP waveform. Such an algorithm would be used, for example, if an IP waveform featuring a good signal-to-noise ratio was not available.
- FIGS. 21-24 show time-dependent graphs of ECG, PPG, and ACC waveforms for a patient who is resting ( FIG. 21 ), walking ( FIG. 22 ), convulsing ( FIG. 23 ), and falling ( FIG. 24 ).
- Each graph includes a single ECG waveform, PPG waveform and three ACC waveforms.
- the PPG waveforms are generated with the infrared light source.
- the ACC waveforms correspond to signals measured along the x, y, and z axes by a single accelerometer worn on the patient's wrist, similar to the accelerometer used within the wrist-worn transceiver shown in FIG. 28 .
- FIGS. 21A-C shows data collected from a patient at rest. This state is clearly indicated by the ACC waveforms ( FIG. 21C ; bottom), which feature a relatively stable baseline along all three axes of the accelerometer. High-frequency noise in all the ACC waveforms shown in FIGS. 21-24 is due to electrical noise, and is not indicative of patient motion in any way.
- the ECG and PPG waveforms shown, respectively, in FIGS. 21A and 21B also feature envelopes indicated by the dashed lines 97 a , 97 b , 98 that are modulated by RR. This modulation is similar to that shown in FIGS. 20A and 20C .
- FIGS. 22A-C shows ECG ( FIG. 22A ; top), PPG ( FIG. 22B ; middle), and ACC ( FIG. 22C ; top) waveforms measured from a walking patient wearing the body-worn monitor.
- the ACC waveform clearly indicates a quasi-periodic modulation, with each ‘bump’ in the modulation corresponding to a particular step.
- the ‘gaps’ in the modulation shown near 10, 19, 27, and 35 seconds, correspond to periods when the patient stops walking and changes direction.
- Each bump in the ACC waveform includes relatively high-frequency features (other than those associated with electrical noise, described above) that correspond to walking-related movements of the patient's wrist.
- the ECG waveform measured from the walking patient is relatively unaffected by motion, other than indicating an increase in heart rate (i.e., a shorter time separation between neighboring QRS complexes) and respiratory rate (i.e. a higher frequency modulation of the waveform's envelope) caused by the patient's exertion.
- the PPG waveform in contrast, is strongly affected by this motion, and pulses within it become basically immeasurable. Its distortion is likely due in part to a quasi-periodic change in light levels, caused by the patient's swinging arm, and detected by the photodetector within the thumb-worn sensor. Movement of the patient's arm additionally affects blood flow in the thumb and can cause the optical sensor to move relative to the patient's skin.
- the photodetector measures all of these artifacts, along with a conventional PPG signal (like the one shown in FIG. 21B ) caused by volumetric expansion in the underlying arteries and capillaries within the patient's thumb.
- the artifacts produce radiation-induced photocurrent that is difficult to distinguish from normal PPG signal used to calculate SpO2 and cNIBP. These vital signs are thus difficult or impossible to accurately measure when the patient is walking.
- the body-worn monitor may deploy multiple strategies to avoid generating false alarms/alerts during a walking activity state that correspond to RR as well as all other vital signs. As described in detail below, the monitor can detect this state by processing the ACC waveforms shown in FIG. 22C along with similar waveforms measured from the patient's bicep and chest. Walking typically elevates heart rate, respiratory rate, and blood pressure, and thus alarm thresholds for these parameters, as indicated by Table 1, are systematically and temporarily increased when this state is detected. Values above the modified thresholds are considered abnormal, and trigger an alarm. SpO2, unlike heart rate, respiratory rate and blood pressure, does not typically increase with exertion. Thus the alarm thresholds for this parameter, as shown in Table 1, do not change when the patient is walking. Body temperature measured with the body-worn monitor typically increases between 1-5%, depending on the physical condition of the patient and the speed at which they are walking.
- software associated with the body-worn monitor or remote monitor can deploy a series of heuristic rules determined beforehand using practical, empirical studies. These rules, for example, can indicate that a walking patient is likely healthy, breathing, and characterized by a normal RR. Accordingly, the rules dictate that cNIBP, RR, and SpO2 values measured during a walking state that exceed predetermined alarm/alert thresholds are likely corrupted by artifacts; the system, in turn, does not sound the alarm/alert in this case.
- Heart rate, as indicated by FIG. 22A and body temperature can typically be accurately measured even when a patient is walking; the heuristic rules therefore dictate the modified thresholds listed in Table 1 be used to generate alarms/alerts for a patient in this state.
- the ECG waveform shown in FIG. 22A still features an envelope shown by the dashed lines 99 a , 99 b that represents the patient's RR. This indicates that RR may be determined from a walking patient by processing the ECG envelope, even when other signals (e.g. IP and ACC waveforms) are corrupted. Because of the motion-induced noise in these signals, RR is typically determined directly from the ECG envelope, without using any adaptive filtering.
- FIGS. 23A-C show ECG ( FIG. 23A ; top), PPG ( FIG. 23B ; middle), and ACC ( FIG. 23C ; bottom) waveforms measured from a patient that is simulating convulsing by rapidly moving their arm back and forth.
- the patient is at rest for the initial 10 seconds shown in the graph, during which the ECG and PPG waveforms are uncorrupted by motion.
- the patient then begins a period of simulated, rapid convulsing that lasts for about 12 seconds.
- a brief 5-second period of rest follows, and then convulsing begins for another 12 seconds or so.
- Convulsing modulates the ACC waveform due to rapid motion of the patient's arm, as measured by the wrist-worn accelerometer. This modulation is strongly coupled into the PPG waveform, likely because of the phenomena described above, i.e.: 1) ambient light coupling into the oximetry probe's photodiode; 2) movement of the photodiode relative to the patient's skin; and 3) disrupted blow flow underneath the probe. Note that from about 23-28 seconds the ACC waveform is not modulated, indicating that the patient's arm is at rest. During this period the ambient light is constant and the optical sensor is stationary relative to the patient's skin.
- both ECG and PPG waveforms similar to those shown in FIG. 23 can be analyzed in conjunction with ACC waveforms measured from groups of stationary and moving patients. These data can then be analyzed to estimate the effects of specific motions and activities on the ECG and PPG waveforms, and then deconvolute these factors using known mathematical techniques to effectively remove any motion-related artifacts. The deconvoluted ECG and PPG waveforms can then be used to calculate vital signs, as described in detail below.
- the ECG waveform is modulated by the patient's arm movement, but to a lesser degree than the PPG waveform.
- modulation is caused primarily by electrical ‘muscle noise’ instigated by the convulsion and detected by the ECG electrodes, and well as by convulsion-induced motion in the ECG cables and electrodes relative to the patient's skin.
- Such motion is expected to have a similar affect on temperature measurements, which are determined by a sensor that also includes a cable.
- Table 2 shows examples of the modified threshold values and heuristic rules for alarms/alerts generated by a convulsing patient.
- Heart rate determined from the ECG waveform for example, is typically erroneously high due to high-frequency convulsions, and RR is immeasurable from the distorted waveform. Strong distortion of the optical waveform also makes both SpO2 and PPT-based cNIBP difficult or impossible to measure. For this reason, algorithms operating on either the body-worn monitor or a remote monitor will not generate alarms/alerts based on vital signs when a patient is convulsing, as these vital signs will almost certainly be corrupted by motion-related artifacts.
- Table 2 also shows exemplary heuristic rules for convulsing patients.
- the overriding rule is that a convulsing patient needs assistance, and thus an alarm/alert for this patient is generated regardless of their vital signs (which, as described above, are likely inaccurate due to motion-related artifacts).
- the system always generates an alarm/alert for a convulsing patient.
- FIGS. 24A-C shows ECG ( FIG. 24A ; top), PPG ( FIG. 24B ; middle), and ACC ( FIG. 24C ; bottom) waveforms measured from a patient that experiences a fall roughly 13 seconds into the measuring period.
- the ACC waveform clearly indicates the fall with a sharp decrease in its signal, followed by a short-term oscillatory signal, due (literally) to the patient bouncing on the floor.
- ACC waveforms associated with the x, y, and z axes also show a prolonged decrease in value due to the resulting change in the patient's posture.
- both the ECG and PPG waveforms are uncorrupted by motion prior to the fall, but basically immeasurable during the fall, which typically takes only 1-2 seconds. Specifically, this activity adds very high frequency noise to the ECG waveform, making it impossible to extract heart rate and RR during this short time period. Falling causes a sharp drop in the PPG waveform, presumably for the same reasons as described above (i.e. changes in ambient light, sensor movement, and disruption of blood flow) for walking and convulsing, making it difficult to measure SpO2 and cNIBP.
- both the ECG and PPG waveforms are free from artifacts, but both indicate an accelerated heart rate and relatively high heart rate variability for roughly 10 seconds.
- the PPG waveform also shows distortion and a decrease in pulse amplitude.
- the increase in heart rate may be due to the patient's baroreflex, which is the body's haemostatic mechanism for regulating and maintaining blood pressure.
- the baroreflex for example, is initiated when a patient begins faint. In this case, the patient's fall may cause a rapid drop in blood pressure, thereby depressing the baroreflex.
- the body responds by accelerating heart rate (indicated by the ECG waveform) and increasing blood pressure (indicated by a reduction in PTT, as measured from the ECG and PPG waveforms) in order to deliver more blood to the patient's extremities.
- Table 3 shows exemplary heuristic rules and modified alarm thresholds for a falling patient. Falling, similar to convulsing, makes it difficult to measure waveforms and the vital signs calculated from them. Because of this and the short time duration associated with a fall, alarms/alerts based on vital signs thresholds are not generated during an actual falls. However, this activity, optionally coupled with prolonged stationary period or convulsion (both determined from the following ACC waveform), generates an alarm/alert according to the heuristic rules.
- a patient's posture can influence how the above-described system generates alarms/alerts from RR, cNIBP, and other vital signs.
- the alarms/alerts related to both RR and cNIBP may vary depending on whether the patient is lying down or standing up.
- FIG. 25 indicates how the body-worn monitor can determine motion-related parameters (e.g. degree of motion, posture, and activity level) from a patient 110 using time-dependent ACC waveforms continuously generated from the three accelerometers 112 , 113 , 114 worn, respectively, on the patient's chest, bicep, and wrist.
- motion-related parameters e.g. degree of motion, posture, and activity level
- the height of the patient's arm can affect the cNIBP measurement, as blood pressure can vary significantly due to hydrostatic forces induced by changes in arm height. Moreover, this phenomenon can be detected and exploited to calibrate the cNIBP measurement, as described in detail in the above-referenced patent application, the contents of which have been previously incorporated by reference: BODY-WORN VITAL SIGN MONITOR WITH SYSTEM FOR DETECTING AND ANALYZING MOTION (U.S. Ser. No. 12/469,094; filed May 20, 2009).
- arm height can be determined using DC signals from the accelerometers 113 , 114 disposed, respectively, on the patient's bicep and wrist. Posture, in contrast, can be exclusively determined by the accelerometer 112 worn on the patient's chest.
- An algorithm operating on the wrist-worn transceiver extracts DC values from waveforms measured from this accelerometer and processes them with an algorithm described below to determine posture.
- torso posture is determined for a patient 110 using angles determined between the measured gravitational vector and the axes of a torso coordinate space 111 .
- the axes of this space 111 are defined in a three-dimensional Euclidean space where ⁇ right arrow over (R) ⁇ CV the vertical axis, ⁇ right arrow over (R) ⁇ CH is the horizontal axis, and ⁇ right arrow over (R) ⁇ CN is the normal axis. These axes must be identified relative to a ‘chest accelerometer coordinate space’ before the patient's posture can be determined.
- the first step in determining a patient's posture is to identify alignment of ⁇ right arrow over (R) ⁇ CV in the chest accelerometer coordinate space. This can be determined in either of two approaches.
- ⁇ right arrow over (R) ⁇ CV is assumed based on a typical alignment of the body-worn monitor relative to the patient. During a manufacturing process, these parameters are then preprogrammed into firmware operating on the wrist-worn transceiver. In this procedure it is assumed that accelerometers within the body-worn monitor are applied to each patient with essentially the same configuration.
- ⁇ right arrow over (R) ⁇ CV is identified on a patient-specific basis.
- an algorithm operating on the wrist-worn transceiver prompts the patient (using, e.g., video instruction operating on the wrist-worn transceiver, or audio instructions transmitted through a speaker) to assume a known position with respect to gravity (e.g., standing upright with arms pointed straight down).
- the algorithm calculates ⁇ right arrow over (R) ⁇ CV from DC values corresponding to the x, y, and z axes of the chest accelerometer while the patient is in this position. This case, however, still requires knowledge of which arm (left or right) the monitor is worn on, as the chest accelerometer coordinate space can be rotated by 180 degrees depending on this orientation. A medical professional applying the monitor can enter this information using the GUI, described above.
- the second step in the procedure is to identify the alignment of ⁇ right arrow over (R) ⁇ CN in the chest accelerometer coordinate space.
- the monitor determines this vector in the same way it determines ⁇ right arrow over (R) ⁇ CV using one of two approaches. In the first approach the monitor assumes a typical alignment of the chest-worn accelerometer on the patient. In the second approach, the alignment is identified by prompting the patient to assume a known position with respect to gravity. The monitor then calculates ⁇ right arrow over (R) ⁇ CN from the DC values of the time-dependent ACC waveform.
- the third step in the procedure is to identify the alignment of ⁇ right arrow over (R) ⁇ CH in the chest accelerometer coordinate space.
- This vector is typically determined from the vector cross product of ⁇ right arrow over (R) ⁇ CV and ⁇ right arrow over (R) ⁇ CN , or it can be assumed based on the typical alignment of the accelerometer on the patient, as described above.
- a patient's posture is determined using the coordinate system described above and in FIG. 25 , along with a gravitational vector ⁇ right arrow over (R) ⁇ G that extends normal from the patient's chest.
- the angle between ⁇ right arrow over (R) ⁇ CV and ⁇ right arrow over (R) ⁇ G is given by equation (1):
- the angle ⁇ NG between ⁇ right arrow over (R) ⁇ CN and ⁇ right arrow over (R) ⁇ G determines if the patient is lying in the supine position (chest up), prone position (chest down), or on their side.
- ⁇ right arrow over (R) ⁇ CN r CNx î+r CNy ⁇ +r CNz ⁇ circumflex over (k) ⁇ (6)
- the angle between ⁇ right arrow over (R) ⁇ CN and ⁇ right arrow over (R) ⁇ G determined from DC values extracted from the chest accelerometer ACC waveform is given by equation (7):
- ⁇ NG ⁇ [ n ] arc ⁇ ⁇ cos ⁇ ( R ⁇ G ⁇ [ n ] ⁇ R ⁇ CN ⁇ R ⁇ G ⁇ [ n ] ⁇ ⁇ ⁇ R ⁇ CN ⁇ ) ( 7 )
- ⁇ right arrow over (R) ⁇ CH is determined using either an assumed orientation, or from the vector cross-product of ⁇ right arrow over (R) ⁇ CV and ⁇ right arrow over (R) ⁇ CN as given by equation (9), where i, j, k represent the unit vectors of the x, y, and z axes of the accelerometer coordinate space respectively. Note that the orientation of the calculated vector is dependent on the order of the vectors in the operation. The order below defines the horizontal axis as positive towards the right side of the patient's body.
- ⁇ HG ⁇ [ n ] arc ⁇ ⁇ cos ⁇ ( R ⁇ G ⁇ [ n ] ⁇ R ⁇ CH ⁇ R ⁇ G ⁇ [ n ] ⁇ ⁇ ⁇ R ⁇ CH ⁇ ) ( 10 )
- Table 4 describes each of the above-described postures, along with a corresponding numerical torso state used to render, e.g., a particular icon on a remote computer:
- FIGS. 26A and 26B show, respectively, graphs of time-dependent ACC waveforms measured along the x, y, and z-axes ( FIG. 26A ), and the torso states (i.e. postures; FIG. 26B ) determined from these waveforms for a moving patient, as described above.
- the DC values of the ACC waveforms measured by the chest accelerometer vary accordingly, as shown in FIG. 26A .
- the body-worn monitor processes these values as described above to continually determine ⁇ right arrow over (R) ⁇ G and the various quantized torso states for the patient, as shown in FIG. 26B .
- the torso states yield the patient's posture as defined in Table 4.
- the patient rapidly alternated between standing, lying on their back, chest, right side, and left side within a time period of about 160 seconds.
- different alarm/alert conditions e.g. threshold values
- different alarm/alert conditions e.g. threshold values
- the time-dependent properties of the graph can be analyzed (e.g. changes in the torso states can be counted) to determine, for example, how often the patient moves in their hospital bed. This number can then be equated to various metrics, such as a ‘bed sore index’ indicating a patient that is so stationary in their bed that lesions may result. Such a state could then be used to trigger an alarm/alert to the supervising medical professional.
- FIGS. 27A and 27B show how the body-worn monitor 200 described above attaches to a patient 170 to measure RR, cNIBP, and other vital signs. These figures show two configurations of the system: FIG. 27A shows the system used during the indexing portion of the Composite Technique, and includes a pneumatic, cuff-based system 185 , while FIG. 27B shows the system used for subsequent RR and cNIBP measurements.
- the indexing measurement typically takes about 60 seconds, and is typically performed once every 4 hours. Once the indexing measurement is complete the cuff-based system 185 is typically removed from the patient. The remainder of the time the monitor 200 performs the RR, SpO2 and cNIBP measurements.
- the body-worn monitor 200 features a wrist-worn transceiver 172 , described in more detail in FIG. 28 , featuring a touch panel interface 173 that displays RR, blood pressure values and other vital signs.
- a wrist strap 190 affixes the transceiver 172 to the patient's wrist like a conventional wristwatch.
- a flexible cable 192 connects the transceiver 172 to a pulse oximeter probe 194 that wraps around the base of the patient's thumb. During a measurement, the probe 194 generates a time-dependent PPG waveform which is processed along with an ECG to measure cNIBP, SpO2, and possible RR. This provides an accurate representation of blood pressure in the central regions of the patient's body, as described above.
- the body-worn monitor 200 features three separate accelerometers located at different portions on the patient's arm and chest.
- the first accelerometer is surface-mounted on a circuit board in the wrist-worn transceiver 172 and measures signals associated with movement of the patient's wrist. As described above, this motion can also be indicative of that originating from the patient's fingers, which will affect the SpO2 measurement.
- the second accelerometer is included in a small bulkhead portion 196 included along the span of the cable 182 .
- a small piece of disposable tape similar in size to a conventional bandaid, affixes the bulkhead portion 196 to the patient's arm.
- the bulkhead portion 196 serves two purposes: 1) it measures a time-dependent ACC waveform from the mid-portion of the patient's arm, thereby allowing their posture and arm height to be determined as described in detail above; and 2) it secures the cable 182 to the patient's arm to increase comfort and performance of the body-worn monitor 200 , particularly when the patient is ambulatory.
- the third accelerometer is mounted in a bulkhead component 174 that connects through cables 180 a - c to ECG electrodes 178 a - c . As described in detail above, this accelerometer, which can also be mounted closer to the patient's abdomen, measures respiration-induced motion of the patient's chest and abdomen. These signals are then digitized, transmitted through the cable 182 to the wrist-worn transceiver 172 , where they are processed with an algorithm as described above to determine RR.
- the cuff-based module 185 features a pneumatic system 176 that includes a pump, valve, pressure fittings, pressure sensor, analog-to-digital converter, microcontroller, and rechargeable Li:ion battery.
- the pneumatic system 176 inflates a disposable cuff 184 and performs two measurements according to the Composite Technique: 1) it performs an inflation-based measurement of oscillometry to determine values for SYS, DIA, and MAP; and 2) it determines a patient-specific relationship between PTT and MAP.
- the cuff 184 within the cuff-based pneumatic system 185 is typically disposable and features an internal, airtight bladder that wraps around the patient's bicep to deliver a uniform pressure field.
- pressure values are digitized by the internal analog-to-digital converter, and sent through a cable 186 according to a CAN protocol, along with SYS, DIA, and MAP blood pressures, to the wrist-worn transceiver 172 for processing as described above.
- the cuff-based module 185 is removed from the patient's arm and the cable 186 is disconnected from the wrist-worn transceiver 172 .
- cNIBP is then determined using PTT, as described in detail above.
- the body-worn monitor 200 features a small-scale, three-lead ECG circuit integrated directly into the bulkhead 174 that terminates an ECG cable 182 .
- the ECG circuit features an integrated circuit that collects electrical signals from three chest-worn ECG electrodes 178 a - c connected through cables 180 a - c .
- the ECG electrodes 178 a - c are typically disposed in a conventional Einthoven's Triangle configuration which is a triangle-like orientation of the electrodes 178 a - c on the patient's chest that features three unique ECG vectors.
- the ECG circuit determines up to three ECG waveforms, which are digitized using an analog-to-digital converter mounted proximal to the ECG circuit, and sent through the cable 182 to the wrist-worn transceiver 172 according to the CAN protocol. There, the ECG and PPG waveforms are processed to determine the patient's blood pressure. Heart rate and RR are determined directly from the ECG waveform using known algorithms, such as those described above.
- the cable bulkhead 174 also includes an accelerometer that measures motion associated with the patient's chest as described above.
- a single transmission line in the cable 182 can transmit multiple digital waveforms, each generated by different sensors.
- More sophisticated ECG circuits e.g. five and twelve-lead systems
- FIG. 28 shows a close-up view of the wrist-worn transceiver 172 .
- the transceiver 172 attaches to the patient's wrist using a flexible strap 190 which threads through two D-ring openings in a plastic housing 206 .
- the transceiver 172 features a touchpanel display 220 that renders a GUI 173 which is altered depending on the viewer (typically the patient or a medical professional).
- the transceiver 172 includes a small-scale infrared barcode scanner 202 that, during use, can scan a barcode worn on a badge of a medical professional. The barcode indicates to the transceiver's software that, for example, a nurse or doctor is viewing the user interface.
- the GUI 173 displays vital sign data and other medical diagnostic information appropriate for medical professionals.
- the nurse or doctor can view the vital sign information, set alarm parameters, and enter information about the patient (e.g. their demographic information, medication, or medical condition).
- the nurse can press a button on the GUI 173 indicating that these operations are complete.
- the display 220 renders an interface that is more appropriate to the patient, such as time of day and battery power.
- the transceiver 172 features three CAN connectors 204 a - c on the side of its upper portion, each which supports the CAN protocol and wiring schematics, and relays digitized data to the internal CPU.
- Digital signals that pass through the CAN connectors include a header that indicates the specific signal (e.g. ECG, ACC, or pressure waveform from the cuff-based module) and the sensor from which the signal originated. This allows the CPU to easily interpret signals that arrive through the CAN connectors 204 a - c , such as those described above corresponding to RR, and means that these connectors are not associated with a specific cable. Any cable connecting to the transceiver can be plugged into any connector 204 a - c . As shown in FIG.
- the first connector 204 a receives the cable 182 that transports a digitized ECG waveform determined from the ECG circuit and electrodes, and digitized ACC waveforms measured by accelerometers in the cable bulkhead 174 and the bulkhead portion 196 associated with the ECG cable 182 .
- the second CAN connector 204 b shown in FIG. 28 receives the cable 186 that connects to the pneumatic cuff-based system 185 used for the pressure-dependent indexing measurement (shown in FIG. 27A ).
- This connector 204 b receives a time-dependent pressure waveform delivered by the pneumatic system 185 to the patient's arm, along with values for SYS, DIA, and MAP values determined during the indexing measurement.
- the cable 186 unplugs from the connector 204 b once the indexing measurement is complete, and is plugged back in after approximately four hours for another indexing measurement.
- the final CAN connector 204 c can be used for an ancillary device, e.g. a glucometer, infusion pump, body-worn insulin pump, ventilator, or et-CO2 delivery system.
- an ancillary device e.g. a glucometer, infusion pump, body-worn insulin pump, ventilator, or et-CO2 delivery system.
- digital information generated by these systems will include a header that indicates their origin so that the CPU can process them accordingly.
- the transceiver includes a speaker 201 that allows a medical professional to communicate with the patient using a voice over Internet protocol (VOIP).
- VOIP voice over Internet protocol
- the medical professional could query the patient from a central nursing station or mobile phone connected to a wireless, Internet-based network within the hospital.
- the medical professional could wear a separate transceiver similar to the shown in FIG. 28 , and use this as a communication device.
- the transceiver 172 worn by the patient functions much like a conventional cellular telephone or ‘walkie talkie’: it can be used for voice communications with the medical professional and can additionally relay information describing the patient's vital signs and motion.
- the speaker can also enunciate pre-programmed messages to the patient, such as those used to calibrate the chest-worn accelerometers for a posture calculation, as described above.
- RR can also be calculated using a combination of ACC, ECG, PPG, IP, and other signals using algorithms that differ from those described above.
- these signals can be processed with an averaging algorithm, such as one using a weighted average, to determine a single waveform that can then be processed to determine RR.
- the ACC waveform can be used alone, without being integrated in an adaptive filtering algorithm, to determine RR without relying on IP.
- the ACC waveform is filtered with a simple bandpass filter, e.g. a finite impulse response filter, with a set passband (e.g. 0.01 ⁇ 5 Hz).
- multiple ACC waveforms such as those measured along axes (e.g.
- the x or y-axes) orthogonal to the vector normal to the patient's chest can be processed with or without adaptive filtering to determine RR.
- the waveforms may be averaged together with a weighted average to generate a single waveform, which is then filtered, derivatized, and signal processed as described above with reference to FIG. 3 to determine RR.
- envelopes associated with the ECG and PPG waveforms can be processed in a similar manner to determine RR.
- other sensors such as ultra wide-band radar or acoustic sensors, can detect signals indicative of RR and used with ACC or IP waveforms and the adaptive filtering approach described above to determine RR.
- the alternative sensors are typically used to replace measurement of the IP waveform, although they can also be used to replace measurement of the ACC waveform.
- An acoustic sensor suitable for this application is described, for example, in the following co-pending patent application, the contents of which are incorporated herein by reference: DEVICE FOR DETERMINING RESPIRATORY RATE AND OTHER VITAL SIGNS (U.S. Ser. No. 12/171,886; filed Jul. 12, 2008).
- the body-worn monitor can use a number of additional methods to calculate blood pressure and other properties from the optical and electrical waveforms. These are described in the following co-pending patent applications, the contents of which are incorporated herein by reference: 1) CUFFLESS BLOOD-PRESSURE MONITOR AND ACCOMPANYING WIRELESS, INTERNET-BASED SYSTEM (U.S. Ser. No. 10/709,015; filed Apr. 7, 2004); 2) CUFFLESS SYSTEM FOR MEASURING BLOOD PRESSURE (U.S. Ser. No. 10/709,014; filed Apr.
- processing units and probes for measuring pulse oximetry similar to those described above can be modified and worn on other portions of the patient's body.
- pulse oximetry probes with finger-ring configurations can be worn on fingers other than the thumb.
- they can be modified to attach to other conventional sites for measuring SpO2, such as the ear, forehead, and bridge of the nose.
- the processing unit can be worn in places other than the wrist, such as around the neck (and supported, e.g., by a lanyard) or on the patient's waist (supported, e.g., by a clip that attaches to the patient's belt).
- the probe and processing unit are integrated into a single unit.
- a set of body-worn monitors can continuously monitor a group of patients, wherein each patient in the group wears a body-worn monitor similar to those described herein.
- each body-worn monitor can be augmented with a location sensor.
- the location sensor includes a wireless component and a location-processing component that receives a signal from the wireless component and processes it to determine a physical location of the patient.
- a processing component determines from the time-dependent waveforms at least one vital sign, one motion parameter, and an alarm parameter calculated from the combination of this information.
- a wireless transceiver transmits the vital sign, motion parameter, location of the patient, and alarm parameter through a wireless system.
- a remote computer system featuring a display and an interface to the wireless system receives the information and displays it on a user interface for each patient in the group.
- the interface rendered on the display at the central nursing station features a field that displays a map corresponding to an area with multiple sections.
- Each section corresponds to the location of the patient and includes, e.g., the patient's vital signs, motion parameter, and alarm parameter.
- the field can display a map corresponding to an area of a hospital (e.g. a hospital bay or emergency room), with each section corresponding to a specific bed, chair, or general location in the area.
- the display renders graphical icons corresponding to the motion and alarm parameters for each patient in the group.
- the body-worn monitor includes a graphical display that renders these parameters directly on the patient.
- the location sensor and the wireless transceiver operate on a common wireless system, e.g. a wireless system based on 802.11, 802.15.4, or cellular protocols.
- a location is determined by processing the wireless signal with one or more algorithms known in the art. These include, for example, triangulating signals received from at least three different base stations, or simply estimating a location based on signal strength and proximity to a particular base station.
- the location sensor includes a conventional global positioning system (GPS).
- the body-worn monitor can include a first voice interface
- the remote computer can include a second voice interface that integrates with the first voice interface.
- the location sensor, wireless transceiver, and first and second voice interfaces can all operate on a common wireless system, such as one of the above-described systems based on 802.11 or cellular protocols.
- the remote computer can be a monitor that is essentially identical to the monitor worn by the patient, and can be carried or worn by a medical professional.
- the monitor associated with the medical professional features a GUI wherein the user can select to display information (e.g. vital signs, location, and alarms) corresponding to a particular patient.
- This monitor can also include a voice interface so the medical professional can communicate directly with the patient.
- FIGS. 29A, 29B show yet another alternate embodiment of the invention wherein a sensor unit 255 attaches to the abdomen of a patient 10 using an electrode 24 normally attached to the lower left-hand portion of the patient's torso.
- the sensor unit 255 includes a connector 253 featuring an opening that receives the metal snap or rivet present on most disposable ECG electrodes. Connecting the connector 245 to the electrode's rivet holds the sensor unit 255 in place.
- This configuration reduces the number of cables in the body-worn monitor, and additionally secures an accelerometer 12 to the patient's abdomen. This is typically the part of their torso that undergoes the greatest motion during respiration, and thus generates ACC waveforms with the highest possible signal-to-noise ratio.
- the ECG circuit 26 the IP circuit 27
- a temperature sensor 33 are also contained within the sensor unit 255 .
- the sensor unit 255 connects through cables 250 a , 250 b to electrodes 20 , 22 attached, respectively, to the upper right-hand and left-hand portions of the patient's torso.
- This system measures RR using the adaptive filtering approach described above, and has the additional advantage of measuring a relatively large ACC signals indicating respiration-induced motions of the patient's abdomen. As described above, these signals are typically generated by the z-axis of the accelerometer 12 , which is normal to the patient's torso. ACC signals along the x and y-axes can be additionally processed to determine the patient's posture and activity level, as described above.
- a transceiver in the sensor unit (not shown in the figure) transmits them in the form of a digital data stream through a cable 251 to the wrist-worn transceiver for further processing.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physiology (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pulmonology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
TABLE 1 |
motion-dependent alarm/alert thresholds and heuristic rules for a walking patient |
Modified | |||
Threshold for | Heuristic Rules for | ||
Vital Sign | Motion State | Alarms/Alerts | Alarms/Alerts |
Blood Pressure (SYS, | Walking | Increase (+10-30%) | Ignore Threshold; Do |
DIA) | Not Alarm/Alert | ||
Heart Rate | Walking | Increase (+10-300%) | Use Modified |
Threshold; Alarm/Alert | |||
if Value Exceeds | |||
Threshold | |||
Respiratory Rate | Walking | Increase (+10-300%) | Ignore Threshold; Do |
Not Alarm/Alert | |||
SpO2 | Walking | No Change | Ignore Threshold; Do |
Not Alarm/Alert | |||
Temperature | Walking | Increase (+10-30%) | Use Original Threshold; |
Alarm/Alert if Value | |||
Exceeds Threshold | |||
TABLE 2 |
motion-dependent alarm/alert thresholds and heuristic rules for a |
convulsing patient |
Modified | |||
Motion | Threshold for | Heuristic Rules for | |
Vital Sign | State | Alarms/Alerts | Alarms/Alerts |
Blood Pressure | Convulsing | No Change | Ignore Threshold; |
(SYS, DIA) | Generate Alarm/Alert | ||
Because of Convulsion | |||
Heart Rate | Convulsing | No Change | Ignore Threshold; |
Generate Alarm/Alert | |||
Because of Convulsion | |||
Respiratory Rate | Convulsing | No Change | Ignore Threshold; |
Generate Alarm/Alert | |||
Because of Convulsion | |||
SpO2 | Convulsing | No Change | Ignore Threshold; |
Generate Alarm/Alert | |||
Because of Convulsion | |||
Temperature | Convulsing | No Change | Ignore Threshold; |
Generate Alarm/Alert | |||
Because of Convulsion | |||
TABLE 3 |
motion-dependent alarm/alert thresholds and heuristic rules for a falling |
patient Processing ACC Waveforms to Determine Posture |
Modified | |||
Motion | Threshold for | Heuristic Rules for | |
Vital Sign | State | Alarms/Alerts | Alarms/Alerts |
Blood Pressure | Falling | No Change | Ignore Threshold; Generate |
(SYS, DIA) | Alarm/Alert Because of | ||
Fall | |||
Heart Rate | Falling | No Change | Ignore Threshold; Generate |
Alarm/Alert Because of | |||
Fall | |||
Respiratory Rate | Falling | No Change | Ignore Threshold; Generate |
Alarm/Alert Because of | |||
Fall | |||
SpO2 | Falling | No Change | Ignore Threshold; Generate |
Alarm/Alert Because of | |||
Fall | |||
Temperature | Falling | No Change | Ignore Threshold; Generate |
Alarm/Alert Because of | |||
Fall | |||
where the dot product of the two vectors is defined as:
{right arrow over (R)} G [n]·{right arrow over (R)} CV=(y Cx [n]×r CVx)+(y Cy [n]×r CVy)+(y Cz [n]×r CVz) (2)
The definition of the norms of {right arrow over (R)}G and {right arrow over (R)}CV are given by equations (3) and (4):
if θVG≤45° then Torso State=0, the patient is upright (5)
If the condition in equation (5) is met the patient is assumed to be upright, and their torso state, which is a numerical value equated to the patient's posture, is equal to 0. The patient is assumed to be lying down if the condition in equation (5) is not met, i.e. θVG>45 degrees. Their lying position is then determined from angles separating the two remaining vectors, as defined below.
{right arrow over (R)} CN =r CNx î+r CNy ĵ+r CNz {circumflex over (k)} (6)
The angle between {right arrow over (R)}CN and {right arrow over (R)}G determined from DC values extracted from the chest accelerometer ACC waveform is given by equation (7):
The body-worn monitor determines the normal angle θNG and then compares it to a set of predetermined threshold angles to determine which position the patient is lying in, as shown in equation (8):
if θNG≤35° then Torso State=1, the patient is supine
if θNG≥135° then Torso State=2, the patient is prone (8)
If the conditions in equation (8) are not met then the patient is assumed to be lying on their side. Whether they are lying on their right or left side is determined from the angle calculated between the horizontal torso vector and measured gravitational vectors, as described above.
The monitor compares this angle to a set of predetermined threshold angles to determine if the patient is lying on their right or left side, as given by equation (11):
if θHG≥90° then Torso State=3, the patient is on their right side
if θNG<90° then Torso State=4, the patient is on their left side (11)
Table 4 describes each of the above-described postures, along with a corresponding numerical torso state used to render, e.g., a particular icon on a remote computer:
TABLE 4 |
postures and their corresponding torso states |
Posture | Torso State | ||
standing upright | 0 | ||
supine: lying on back | 1 | ||
prone: lying on |
2 | ||
lying on |
3 | ||
lying on |
4 | ||
|
5 | ||
Claims (9)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/559,435 US8740807B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,430 US20110066008A1 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,422 US8545417B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,419 US8622922B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,426 US10595746B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,429 US10123722B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
PCT/US2010/048729 WO2011032132A2 (en) | 2009-09-14 | 2010-09-14 | Body-worn monitor for measuring respiration rate |
EP10816259.5A EP2470068B1 (en) | 2009-09-14 | 2010-09-14 | Body-worn monitor for measuring respiration rate |
SG2012017851A SG179128A1 (en) | 2009-09-14 | 2010-09-14 | Body-worn monitor for measuring respiration rate |
SG10201405698RA SG10201405698RA (en) | 2009-09-14 | 2010-09-14 | Body-worn monitor for measuring respiration rate |
EP15159340.7A EP2910182B1 (en) | 2009-09-14 | 2010-09-14 | Body-worn monitor for measuring respiration rate |
US14/292,872 US9339211B2 (en) | 2009-09-14 | 2014-05-31 | Body-worn monitor for measuring respiration rate |
US16/188,125 US11253169B2 (en) | 2009-09-14 | 2018-11-12 | Body-worn monitor for measuring respiration rate |
US16/827,162 US20200359934A1 (en) | 2009-09-14 | 2020-03-23 | Body-worn monitor for measuring respiration rate |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/559,430 US20110066008A1 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,422 US8545417B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,426 US10595746B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,429 US10123722B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,435 US8740807B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,419 US8622922B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/188,125 Continuation US11253169B2 (en) | 2009-09-14 | 2018-11-12 | Body-worn monitor for measuring respiration rate |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110066007A1 US20110066007A1 (en) | 2011-03-17 |
US10123722B2 true US10123722B2 (en) | 2018-11-13 |
Family
ID=43733132
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/559,430 Abandoned US20110066008A1 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,435 Active 2031-08-06 US8740807B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,429 Active 2030-07-31 US10123722B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,422 Active 2031-07-08 US8545417B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,426 Active US10595746B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,419 Active 2032-01-26 US8622922B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US14/292,872 Active US9339211B2 (en) | 2009-09-14 | 2014-05-31 | Body-worn monitor for measuring respiration rate |
US16/827,162 Abandoned US20200359934A1 (en) | 2009-09-14 | 2020-03-23 | Body-worn monitor for measuring respiration rate |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/559,430 Abandoned US20110066008A1 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,435 Active 2031-08-06 US8740807B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/559,422 Active 2031-07-08 US8545417B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,426 Active US10595746B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US12/559,419 Active 2032-01-26 US8622922B2 (en) | 2009-09-14 | 2009-09-14 | Body-worn monitor for measuring respiration rate |
US14/292,872 Active US9339211B2 (en) | 2009-09-14 | 2014-05-31 | Body-worn monitor for measuring respiration rate |
US16/827,162 Abandoned US20200359934A1 (en) | 2009-09-14 | 2020-03-23 | Body-worn monitor for measuring respiration rate |
Country Status (4)
Country | Link |
---|---|
US (8) | US20110066008A1 (en) |
EP (2) | EP2910182B1 (en) |
SG (2) | SG10201405698RA (en) |
WO (1) | WO2011032132A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110850773A (en) * | 2019-11-14 | 2020-02-28 | 北京和利时系统工程有限公司 | Signal acquisition method and device, computer storage medium and electronic equipment |
US11022511B2 (en) * | 2018-04-18 | 2021-06-01 | Aron Kain | Sensor commonality platform using multi-discipline adaptable sensors for customizable applications |
US11253169B2 (en) * | 2009-09-14 | 2022-02-22 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US12186241B2 (en) | 2021-01-22 | 2025-01-07 | Hill-Rom Services, Inc. | Time-based wireless pairing between a medical device and a wall unit |
US12279999B2 (en) | 2021-01-22 | 2025-04-22 | Hill-Rom Services, Inc. | Wireless configuration and authorization of a wall unit that pairs with a medical device |
Families Citing this family (256)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100738074B1 (en) * | 2005-07-16 | 2007-07-10 | 삼성전자주식회사 | Health care device and method |
DE102006057709B4 (en) * | 2006-12-07 | 2015-04-02 | Dräger Medical GmbH | Apparatus and method for determining a respiratory rate |
US8554297B2 (en) | 2009-06-17 | 2013-10-08 | Sotera Wireless, Inc. | Body-worn pulse oximeter |
US12245852B2 (en) | 2007-06-12 | 2025-03-11 | Sotera Wireless, Inc. | Optical sensors for use in vital sign monitoring |
EP2162059B1 (en) | 2007-06-12 | 2021-01-13 | Sotera Wireless, Inc. | Vital sign monitor and method for measuring blood pressure using optical, electrical, and pressure waveforms |
US11607152B2 (en) | 2007-06-12 | 2023-03-21 | Sotera Wireless, Inc. | Optical sensors for use in vital sign monitoring |
US11330988B2 (en) | 2007-06-12 | 2022-05-17 | Sotera Wireless, Inc. | Body-worn system for measuring continuous non-invasive blood pressure (cNIBP) |
US8602997B2 (en) | 2007-06-12 | 2013-12-10 | Sotera Wireless, Inc. | Body-worn system for measuring continuous non-invasive blood pressure (cNIBP) |
US20110098583A1 (en) * | 2009-09-15 | 2011-04-28 | Texas Instruments Incorporated | Heart monitors and processes with accelerometer motion artifact cancellation, and other electronic systems |
US11083407B2 (en) * | 2013-03-14 | 2021-08-10 | Flint Hills Scientific, Llc | Pathological state detection using dynamically determined body index range values |
US8337404B2 (en) | 2010-10-01 | 2012-12-25 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8382667B2 (en) | 2010-10-01 | 2013-02-26 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8571643B2 (en) | 2010-09-16 | 2013-10-29 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
AU2009311406B2 (en) * | 2008-11-05 | 2013-06-27 | Covidien Lp | System and method for facilitating observation of monitored physiologic data |
US8771204B2 (en) | 2008-12-30 | 2014-07-08 | Masimo Corporation | Acoustic sensor assembly |
US11278237B2 (en) | 2010-04-22 | 2022-03-22 | Leaf Healthcare, Inc. | Devices, systems, and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions |
US10020075B2 (en) | 2009-03-24 | 2018-07-10 | Leaf Healthcare, Inc. | Systems and methods for monitoring and/or managing patient orientation using a dynamically adjusted relief period |
US10631732B2 (en) | 2009-03-24 | 2020-04-28 | Leaf Healthcare, Inc. | Systems and methods for displaying sensor-based user orientation information |
US9728061B2 (en) | 2010-04-22 | 2017-08-08 | Leaf Healthcare, Inc. | Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions |
US9492092B2 (en) | 2009-05-20 | 2016-11-15 | Sotera Wireless, Inc. | Method for continuously monitoring a patient using a body-worn device and associated system for alarms/alerts |
US11896350B2 (en) | 2009-05-20 | 2024-02-13 | Sotera Wireless, Inc. | Cable system for generating signals for detecting motion and measuring vital signs |
US10973414B2 (en) | 2009-05-20 | 2021-04-13 | Sotera Wireless, Inc. | Vital sign monitoring system featuring 3 accelerometers |
US20110208015A1 (en) | 2009-07-20 | 2011-08-25 | Masimo Corporation | Wireless patient monitoring system |
US12121364B2 (en) | 2009-09-14 | 2024-10-22 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US20110066008A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US8527038B2 (en) | 2009-09-15 | 2013-09-03 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US8321004B2 (en) | 2009-09-15 | 2012-11-27 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US12156743B2 (en) | 2009-09-15 | 2024-12-03 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110066044A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US8364250B2 (en) | 2009-09-15 | 2013-01-29 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US10806351B2 (en) | 2009-09-15 | 2020-10-20 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US10420476B2 (en) * | 2009-09-15 | 2019-09-24 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US8430817B1 (en) | 2009-10-15 | 2013-04-30 | Masimo Corporation | System for determining confidence in respiratory rate measurements |
US8690799B2 (en) | 2009-10-15 | 2014-04-08 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US8523781B2 (en) | 2009-10-15 | 2013-09-03 | Masimo Corporation | Bidirectional physiological information display |
US9848800B1 (en) | 2009-10-16 | 2017-12-26 | Masimo Corporation | Respiratory pause detector |
EP2517131A2 (en) * | 2009-12-21 | 2012-10-31 | Koninklijke Philips Electronics N.V. | Bode index measurement |
US20120302900A1 (en) * | 2010-02-12 | 2012-11-29 | Koninklijke Philips Electronics N.V. | Method and apparatus for processing a cyclic physiological signal |
US20110224500A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US9307928B1 (en) | 2010-03-30 | 2016-04-12 | Masimo Corporation | Plethysmographic respiration processor |
US8888700B2 (en) | 2010-04-19 | 2014-11-18 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US9173594B2 (en) | 2010-04-19 | 2015-11-03 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US9339209B2 (en) * | 2010-04-19 | 2016-05-17 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US9173593B2 (en) | 2010-04-19 | 2015-11-03 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US8747330B2 (en) | 2010-04-19 | 2014-06-10 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US8979765B2 (en) | 2010-04-19 | 2015-03-17 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US10758162B2 (en) | 2010-04-22 | 2020-09-01 | Leaf Healthcare, Inc. | Systems, devices and methods for analyzing a person status based at least on a detected orientation of the person |
US9655546B2 (en) | 2010-04-22 | 2017-05-23 | Leaf Healthcare, Inc. | Pressure Ulcer Detection Methods, Devices and Techniques |
US10140837B2 (en) | 2010-04-22 | 2018-11-27 | Leaf Healthcare, Inc. | Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions |
US11272860B2 (en) | 2010-04-22 | 2022-03-15 | Leaf Healthcare, Inc. | Sensor device with a selectively activatable display |
JP6192032B2 (en) * | 2010-04-22 | 2017-09-06 | リーフ ヘルスケア インコーポレイテッド | A system for monitoring a patient's physiological status |
US11980449B2 (en) | 2010-04-22 | 2024-05-14 | Leaf Healthcare, Inc. | Systems and methods for monitoring orientation and biometric data using acceleration data |
US11051751B2 (en) | 2010-04-22 | 2021-07-06 | Leaf Healthcare, Inc. | Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions |
US11369309B2 (en) | 2010-04-22 | 2022-06-28 | Leaf Healthcare, Inc. | Systems and methods for managing a position management protocol based on detected inclination angle of a person |
US10588565B2 (en) | 2010-04-22 | 2020-03-17 | Leaf Healthcare, Inc. | Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions |
US8831732B2 (en) | 2010-04-29 | 2014-09-09 | Cyberonics, Inc. | Method, apparatus and system for validating and quantifying cardiac beat data quality |
US8562536B2 (en) | 2010-04-29 | 2013-10-22 | Flint Hills Scientific, Llc | Algorithm for detecting a seizure from cardiac data |
US8649871B2 (en) | 2010-04-29 | 2014-02-11 | Cyberonics, Inc. | Validity test adaptive constraint modification for cardiac data used for detection of state changes |
EP2407102A1 (en) * | 2010-07-15 | 2012-01-18 | Tanita Corporation | Respiration characteristic analysis apparatus and respiration characteristic analysis system |
EP2407100A1 (en) * | 2010-07-15 | 2012-01-18 | Tanita Corporation | Respiration characteristic analysis |
US9055925B2 (en) | 2010-07-27 | 2015-06-16 | Carefusion 303, Inc. | System and method for reducing false alarms associated with vital-signs monitoring |
US9420952B2 (en) | 2010-07-27 | 2016-08-23 | Carefusion 303, Inc. | Temperature probe suitable for axillary reading |
US9585620B2 (en) | 2010-07-27 | 2017-03-07 | Carefusion 303, Inc. | Vital-signs patch having a flexible attachment to electrodes |
US9615792B2 (en) | 2010-07-27 | 2017-04-11 | Carefusion 303, Inc. | System and method for conserving battery power in a patient monitoring system |
US9357929B2 (en) | 2010-07-27 | 2016-06-07 | Carefusion 303, Inc. | System and method for monitoring body temperature of a person |
US8814792B2 (en) | 2010-07-27 | 2014-08-26 | Carefusion 303, Inc. | System and method for storing and forwarding data from a vital-signs monitor |
US9017255B2 (en) | 2010-07-27 | 2015-04-28 | Carefusion 303, Inc. | System and method for saving battery power in a patient monitoring system |
US8641646B2 (en) | 2010-07-30 | 2014-02-04 | Cyberonics, Inc. | Seizure detection using coordinate data |
US8684921B2 (en) | 2010-10-01 | 2014-04-01 | Flint Hills Scientific Llc | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
BR112013008702A2 (en) * | 2010-10-18 | 2016-06-21 | 3M Innovative Properties Co | "Multifunctional medical device for telemedicine applications" |
CN105832317B (en) | 2010-12-28 | 2020-02-14 | 索泰拉无线公司 | System for measuring cardiac output, stroke volume, heart force and blood pressure |
SG10201601161YA (en) | 2011-02-18 | 2016-03-30 | Sotera Wireless Inc | Optical sensor for measuring physiological properties |
US9439574B2 (en) | 2011-02-18 | 2016-09-13 | Sotera Wireless, Inc. | Modular wrist-worn processor for patient monitoring |
US9504390B2 (en) | 2011-03-04 | 2016-11-29 | Globalfoundries Inc. | Detecting, assessing and managing a risk of death in epilepsy |
BR112013022900A2 (en) * | 2011-03-11 | 2017-11-14 | Koninklijke Philips Nv | monitoring apparatus, method and computer program for monitoring physiological signals |
US9498162B2 (en) | 2011-04-25 | 2016-11-22 | Cyberonics, Inc. | Identifying seizures using heart data from two or more windows |
US9402550B2 (en) | 2011-04-29 | 2016-08-02 | Cybertronics, Inc. | Dynamic heart rate threshold for neurological event detection |
US20130133424A1 (en) * | 2011-06-10 | 2013-05-30 | Aliphcom | System-based motion detection |
GB2493362A (en) * | 2011-08-01 | 2013-02-06 | Univ Cranfield | A clavicular respiratory sensor |
US9801552B2 (en) | 2011-08-02 | 2017-10-31 | Valencell, Inc. | Systems and methods for variable filter adjustment by heart rate metric feedback |
BR112014004491A2 (en) * | 2011-09-02 | 2017-03-14 | Koninklijke Philips Nv | camera and method for generating a biometric signal of a living being |
US8880576B2 (en) | 2011-09-23 | 2014-11-04 | Nellcor Puritan Bennett Ireland | Systems and methods for determining respiration information from a photoplethysmograph |
US9675274B2 (en) | 2011-09-23 | 2017-06-13 | Nellcor Puritan Bennett Ireland | Systems and methods for determining respiration information from a photoplethysmograph |
US9402554B2 (en) | 2011-09-23 | 2016-08-02 | Nellcor Puritan Bennett Ireland | Systems and methods for determining respiration information from a photoplethysmograph |
US9119597B2 (en) | 2011-09-23 | 2015-09-01 | Nellcor Puritan Bennett Ireland | Systems and methods for determining respiration information from a photoplethysmograph |
US9693709B2 (en) | 2011-09-23 | 2017-07-04 | Nellcot Puritan Bennett Ireland | Systems and methods for determining respiration information from a photoplethysmograph |
CN103027684B (en) * | 2011-10-08 | 2016-07-06 | 皇家飞利浦电子股份有限公司 | For removing the apparatus and method of the noise caused in respiratory movement is monitored by body kinematics |
US9549677B2 (en) | 2011-10-14 | 2017-01-24 | Flint Hills Scientific, L.L.C. | Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm |
US9693736B2 (en) | 2011-11-30 | 2017-07-04 | Nellcor Puritan Bennett Ireland | Systems and methods for determining respiration information using historical distribution |
US8755871B2 (en) | 2011-11-30 | 2014-06-17 | Covidien Lp | Systems and methods for detecting arrhythmia from a physiological signal |
US9247896B2 (en) | 2012-01-04 | 2016-02-02 | Nellcor Puritan Bennett Ireland | Systems and methods for determining respiration information using phase locked loop |
US9339691B2 (en) | 2012-01-05 | 2016-05-17 | Icon Health & Fitness, Inc. | System and method for controlling an exercise device |
US20130183104A1 (en) * | 2012-01-13 | 2013-07-18 | Rick Steven Louie | Retaining wall blocks with built-in drainage and filtration system |
US10307111B2 (en) | 2012-02-09 | 2019-06-04 | Masimo Corporation | Patient position detection system |
US10149616B2 (en) | 2012-02-09 | 2018-12-11 | Masimo Corporation | Wireless patient monitoring device |
US9592066B2 (en) | 2012-02-22 | 2017-03-14 | Carter J. Kovarik | Selectively bendable remote gripping tool |
USD780547S1 (en) | 2013-08-08 | 2017-03-07 | Carter J. Kovarik | Pick up device with flexible shaft portion |
US9832980B2 (en) | 2012-02-22 | 2017-12-05 | Carter J. Kovarik | Selectively bendable remote gripping tool |
EP2819569B1 (en) * | 2012-02-28 | 2019-05-22 | Koninklijke Philips N.V. | Device and method for monitoring vital signs |
US10448839B2 (en) | 2012-04-23 | 2019-10-22 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US9179876B2 (en) | 2012-04-30 | 2015-11-10 | Nellcor Puritan Bennett Ireland | Systems and methods for identifying portions of a physiological signal usable for determining physiological information |
WO2014006891A1 (en) * | 2012-07-06 | 2014-01-09 | パナソニック株式会社 | Biological signal measurement device, and biological signal measurement method |
US9955937B2 (en) | 2012-09-20 | 2018-05-01 | Masimo Corporation | Acoustic patient sensor coupler |
USD850626S1 (en) | 2013-03-15 | 2019-06-04 | Rhythm Diagnostic Systems, Inc. | Health monitoring apparatuses |
US10413251B2 (en) | 2012-10-07 | 2019-09-17 | Rhythm Diagnostic Systems, Inc. | Wearable cardiac monitor |
US10244949B2 (en) | 2012-10-07 | 2019-04-02 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US10610159B2 (en) | 2012-10-07 | 2020-04-07 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
JP5811360B2 (en) * | 2012-12-27 | 2015-11-11 | カシオ計算機株式会社 | Exercise information display system, exercise information display method, and exercise information display program |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US9560978B2 (en) | 2013-02-05 | 2017-02-07 | Covidien Lp | Systems and methods for determining respiration information from a physiological signal using amplitude demodulation |
US9872634B2 (en) * | 2013-02-08 | 2018-01-23 | Vital Connect, Inc. | Respiratory rate measurement using a combination of respiration signals |
WO2014124133A1 (en) * | 2013-02-09 | 2014-08-14 | Spire, Inc. | System and method for monitoring respiration |
US9687159B2 (en) | 2013-02-27 | 2017-06-27 | Covidien Lp | Systems and methods for determining physiological information by identifying fiducial points in a physiological signal |
US9554712B2 (en) | 2013-02-27 | 2017-01-31 | Covidien Lp | Systems and methods for generating an artificial photoplethysmograph signal |
US10441181B1 (en) | 2013-03-13 | 2019-10-15 | Masimo Corporation | Acoustic pulse and respiration monitoring system |
US10130306B2 (en) | 2013-03-14 | 2018-11-20 | Greatbatch Ltd. | Apparatus and method for detection of sleep disordered breathing |
WO2014153158A1 (en) | 2013-03-14 | 2014-09-25 | Icon Health & Fitness, Inc. | Strength training apparatus with flywheel and related methods |
US9751534B2 (en) | 2013-03-15 | 2017-09-05 | Honda Motor Co., Ltd. | System and method for responding to driver state |
US10153796B2 (en) * | 2013-04-06 | 2018-12-11 | Honda Motor Co., Ltd. | System and method for capturing and decontaminating photoplethysmopgraphy (PPG) signals in a vehicle |
GB2512304A (en) * | 2013-03-25 | 2014-10-01 | Toumaz Healthcare Ltd | Apparatus and method for estimating energy expenditure |
US10537288B2 (en) | 2013-04-06 | 2020-01-21 | Honda Motor Co., Ltd. | System and method for biological signal processing with highly auto-correlated carrier sequences |
US10213162B2 (en) | 2013-04-06 | 2019-02-26 | Honda Motor Co., Ltd. | System and method for capturing and decontaminating photoplethysmopgraphy (PPG) signals in a vehicle |
US10499856B2 (en) | 2013-04-06 | 2019-12-10 | Honda Motor Co., Ltd. | System and method for biological signal processing with highly auto-correlated carrier sequences |
US9554748B2 (en) | 2013-05-01 | 2017-01-31 | Tosense, Inc. | System for monitoring heart failure patients featuring necklace-shaped sensor and display based on a conventional television or mobile device |
CN105451652B (en) | 2013-08-09 | 2019-09-17 | 皇家飞利浦有限公司 | For determining the processing unit and processing method of the breath signal of object |
US10420490B2 (en) | 2013-09-06 | 2019-09-24 | Xhale Assurance, Inc. | Systems and methods for physiological monitoring using multiple signal processing devices |
US10828007B1 (en) | 2013-10-11 | 2020-11-10 | Masimo Corporation | Acoustic sensor with attachment portion |
EP3062700A4 (en) * | 2013-10-28 | 2017-06-21 | Covidien LP | Systems and methods for identifying ventilated breathing |
US10022068B2 (en) | 2013-10-28 | 2018-07-17 | Covidien Lp | Systems and methods for detecting held breath events |
US9750463B2 (en) | 2013-12-10 | 2017-09-05 | General Electric Company | Respiratory stress detection |
EP2974648A1 (en) * | 2013-12-18 | 2016-01-20 | Analog Devices Global | System and method for measuring respiration with accelerometers |
WO2015100429A1 (en) | 2013-12-26 | 2015-07-02 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
WO2015105787A1 (en) | 2014-01-07 | 2015-07-16 | Covidien Lp | Apnea analysis system and method |
FI20145128L (en) | 2014-02-10 | 2015-08-11 | Murata Manufacturing Co | Early detection of acute fall risk |
WO2015127281A1 (en) | 2014-02-20 | 2015-08-27 | Covidien Lp | Systems and methods for filtering autocorrelation peaks and detecting harmonics |
WO2015130705A1 (en) | 2014-02-25 | 2015-09-03 | Icu Medical, Inc. | Patient monitoring system with gatekeeper signal |
US10433612B2 (en) | 2014-03-10 | 2019-10-08 | Icon Health & Fitness, Inc. | Pressure sensor to quantify work |
WO2015153676A1 (en) * | 2014-03-31 | 2015-10-08 | Angulus Corp. | Accelerometer and wireless notification system |
US9717427B2 (en) | 2014-05-30 | 2017-08-01 | Microsoft Technology Licensing, Llc | Motion based estimation of biometric signals |
US10426989B2 (en) | 2014-06-09 | 2019-10-01 | Icon Health & Fitness, Inc. | Cable system incorporated into a treadmill |
WO2015195872A1 (en) * | 2014-06-20 | 2015-12-23 | Xhale, Inc. | Systems and methods for physiological monitoring using multiple signal processing devices |
WO2015195965A1 (en) | 2014-06-20 | 2015-12-23 | Icon Health & Fitness, Inc. | Post workout massage device |
JP6459241B2 (en) * | 2014-06-25 | 2019-01-30 | Tdk株式会社 | Sleep state estimation device, sleep state estimation method, and program |
DK3009070T3 (en) * | 2014-07-24 | 2017-10-09 | Goertek Inc | METHOD OF DETECTING HEART RATE IN HEADPHONE AND HEADPHONE THAT CAN DETECT HEART RATE |
US10265024B2 (en) | 2014-07-26 | 2019-04-23 | Salutron, Inc. | Sensor system for heart rate measurement per axis of shared orientation |
CN106687027B (en) | 2014-08-25 | 2020-10-23 | 德尔格制造股份两合公司 | Removing noise in a signal |
CA2958311A1 (en) * | 2014-09-03 | 2016-03-10 | Smiths Medical Asd, Inc. | Medical device association systems and methods |
US9924902B2 (en) * | 2014-09-11 | 2018-03-27 | Tosense, Inc. | Neck-worn physiological monitor |
US20160073897A1 (en) * | 2014-09-13 | 2016-03-17 | ARC Devices, Ltd | Non-touch detection of body core temperature |
US11701027B2 (en) * | 2015-06-01 | 2023-07-18 | Pixart Imaging Inc. | Optical respiration rate detection device |
US9700218B2 (en) * | 2014-09-29 | 2017-07-11 | Covidien Lp | Systems and methods for reducing nuisance alarms in medical devices |
US10226211B2 (en) * | 2014-10-11 | 2019-03-12 | Zimmer Dental, Ltd. | System and method for determining user's deep vein thrombosis prevention and diagnosis system utilization compliance |
US9569589B1 (en) | 2015-02-06 | 2017-02-14 | David Laborde | System, medical item including RFID chip, data collection engine, server and method for capturing medical data |
US9977865B1 (en) | 2015-02-06 | 2018-05-22 | Brain Trust Innovations I, Llc | System, medical item including RFID chip, server and method for capturing medical data |
US10391361B2 (en) | 2015-02-27 | 2019-08-27 | Icon Health & Fitness, Inc. | Simulating real-world terrain on an exercise device |
GB2538261A (en) * | 2015-05-12 | 2016-11-16 | Blacklay Mole Thomas | Apparatus and method for determining, visualising or monitoring vital signs |
CN104814728B (en) * | 2015-05-28 | 2018-06-05 | 京东方科技集团股份有限公司 | A kind of running bootstrap technique and running guide device |
US11147505B1 (en) * | 2015-06-01 | 2021-10-19 | Verily Life Sciences Llc | Methods, systems and devices for identifying an abnormal sleep condition |
US20170020459A1 (en) * | 2015-07-22 | 2017-01-26 | Edwards Lifesciences Corporation | Motion compensated biomedical sensing |
US10004427B1 (en) | 2015-08-04 | 2018-06-26 | Verily Life Sciences Llc | Methods, systems, and devices for determining a respiration rate |
US11793454B2 (en) * | 2015-08-14 | 2023-10-24 | Oura Health Oy | Method and system for providing feedback to user for improving performance level management thereof |
US20170049404A1 (en) * | 2015-08-19 | 2017-02-23 | Amiigo, Inc. | Wearable LED Sensor Device Configured to Identify a Wearer's Pulse |
US10448844B2 (en) | 2015-08-31 | 2019-10-22 | Masimo Corporation | Systems and methods for patient fall detection |
CA3002372C (en) | 2015-10-19 | 2021-03-02 | Icu Medical, Inc. | Hemodynamic monitoring system with detachable display unit |
US10610158B2 (en) | 2015-10-23 | 2020-04-07 | Valencell, Inc. | Physiological monitoring devices and methods that identify subject activity type |
US10945618B2 (en) | 2015-10-23 | 2021-03-16 | Valencell, Inc. | Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type |
CN108366742B (en) * | 2015-12-03 | 2023-08-22 | 华为技术有限公司 | Biological signal acquisition method, device, electronic equipment and system |
US11229405B2 (en) | 2015-12-18 | 2022-01-25 | Baxter International Inc. | Neck-worn physiological monitor |
US11123020B2 (en) | 2015-12-18 | 2021-09-21 | Baxter International Inc. | Neck-worn physiological monitor |
US11357453B2 (en) | 2015-12-18 | 2022-06-14 | Baxter International Inc. | Neck-worn physiological monitor |
US9814388B2 (en) | 2016-02-11 | 2017-11-14 | General Electric Company | Wireless patient monitoring system and method |
US9883800B2 (en) | 2016-02-11 | 2018-02-06 | General Electric Company | Wireless patient monitoring system and method |
US10420514B2 (en) | 2016-02-25 | 2019-09-24 | Samsung Electronics Co., Ltd. | Detection of chronotropic incompetence |
US11164596B2 (en) | 2016-02-25 | 2021-11-02 | Samsung Electronics Co., Ltd. | Sensor assisted evaluation of health and rehabilitation |
US10362998B2 (en) | 2016-02-25 | 2019-07-30 | Samsung Electronics Co., Ltd. | Sensor-based detection of changes in health and ventilation threshold |
US10617356B2 (en) | 2016-03-15 | 2020-04-14 | Anhui Huami Information Technology Co., Ltd. | Garment and cardiac data processing |
US10123741B2 (en) * | 2016-11-30 | 2018-11-13 | Huami Inc. | Cardiac condition detection |
US10625137B2 (en) | 2016-03-18 | 2020-04-21 | Icon Health & Fitness, Inc. | Coordinated displays in an exercise device |
US10272317B2 (en) | 2016-03-18 | 2019-04-30 | Icon Health & Fitness, Inc. | Lighted pace feature in a treadmill |
US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
CN109074755B (en) * | 2016-04-06 | 2024-06-14 | 皇家飞利浦有限公司 | Methods, devices and systems for enabling analysis of performance of vital sign detectors |
US10098558B2 (en) | 2016-04-25 | 2018-10-16 | General Electric Company | Wireless patient monitoring system and method |
WO2017198787A1 (en) * | 2016-05-19 | 2017-11-23 | Pmd Device Solutions Limited | An apparatus and method for detection of dysfunctional breathing |
US10617302B2 (en) | 2016-07-07 | 2020-04-14 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
US10966662B2 (en) * | 2016-07-08 | 2021-04-06 | Valencell, Inc. | Motion-dependent averaging for physiological metric estimating systems and methods |
US10898141B2 (en) * | 2016-09-16 | 2021-01-26 | Intelomed, Inc. | System and method for characterizing respiratory stress |
US10671705B2 (en) | 2016-09-28 | 2020-06-02 | Icon Health & Fitness, Inc. | Customizing recipe recommendations |
WO2018068084A1 (en) * | 2016-10-11 | 2018-04-19 | Resmed Limited | Apparatus and methods for screening, diagnosis and monitoring of respiratory disorders |
US11076777B2 (en) | 2016-10-13 | 2021-08-03 | Masimo Corporation | Systems and methods for monitoring orientation to reduce pressure ulcer formation |
CN106539586B (en) * | 2016-11-07 | 2019-07-16 | 广州视源电子科技股份有限公司 | Respiration rate calculation method and device |
CN106510716B (en) * | 2016-11-07 | 2019-09-20 | 广州视源电子科技股份有限公司 | Method and device for calculating respiration rate based on electrocardiosignals |
CN106344023B (en) * | 2016-11-10 | 2020-02-11 | 重庆邮电大学 | Unsteady state respiratory wave detection device based on atmospheric pressure and acceleration |
CN110024043A (en) * | 2016-11-29 | 2019-07-16 | 皇家飞利浦有限公司 | False alarm detection |
US10743777B2 (en) * | 2016-12-08 | 2020-08-18 | Qualcomm Incorporated | Cardiovascular parameter estimation in the presence of motion |
EP3551059B1 (en) | 2016-12-09 | 2023-02-08 | Koninklijke Philips N.V. | An apparatus and method for determining a calibration parameter for a blood pressure measurement device |
WO2018126128A2 (en) | 2016-12-29 | 2018-07-05 | Caeden, Inc. | Detecting resonance breathing using a wearable device and related methods and systems |
WO2018148319A1 (en) | 2017-02-07 | 2018-08-16 | Spire, Inc. | System for physiological monitoring |
WO2018156809A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | Augmented reality system for displaying patient data |
WO2018156804A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | System for displaying medical monitoring data |
CN117373636A (en) | 2017-05-08 | 2024-01-09 | 梅西莫股份有限公司 | System for pairing a medical system with a network controller using an adapter |
US11419520B2 (en) | 2017-05-15 | 2022-08-23 | Agency For Science, Technology And Research | Method and system for respiratory measurement |
EP3403574A1 (en) * | 2017-05-18 | 2018-11-21 | Preventicus GmbH | Device for reliable acquisition of photoplethysmographic data |
EP3406189B1 (en) * | 2017-05-25 | 2024-05-29 | Tata Consultancy Services Limited | System and method for heart rate estimation |
KR20190016385A (en) * | 2017-08-08 | 2019-02-18 | 사단법인 허브테크미래기술연구소 | Apparatus and method for moniotring an apnea of sleeper |
US10806933B2 (en) | 2017-09-06 | 2020-10-20 | General Electric Company | Patient monitoring systems and methods that detect interference with pacemaker |
EP3479758B1 (en) | 2017-11-03 | 2023-09-27 | Tata Consultancy Services Limited | System and method for breathing pattern extraction from ppg signals |
EP3488781B1 (en) * | 2017-11-28 | 2022-05-18 | Current Health Limited | Apparatus and method for estimating respiration rate |
US10098587B1 (en) | 2017-12-27 | 2018-10-16 | Industrial Technology Research Institute | Physiology detecting garment and method thereof |
CN108095714A (en) * | 2017-12-29 | 2018-06-01 | 中国人民解放军陆军炮兵防空兵学院 | A kind of Dynamic Heart Rate detection method |
JP6829841B2 (en) * | 2018-04-26 | 2021-02-17 | ミネベアミツミ株式会社 | Biological condition monitoring system |
FR3080929B1 (en) * | 2018-05-02 | 2021-04-30 | Fivefive | PROCESS FOR PROCESSING AN ACCELEROMETRIC SIGNAL. |
US11839350B2 (en) | 2018-05-03 | 2023-12-12 | Monovo, LLC | Ultrasound transducer system for wearable monitoring device |
CA3004071A1 (en) | 2018-05-04 | 2019-11-04 | Universite Laval | Wearable respiration sensor and respiration monitoring system |
EP3801207B1 (en) | 2018-06-06 | 2024-12-04 | Masimo Corporation | Opioid overdose monitoring |
US12097043B2 (en) | 2018-06-06 | 2024-09-24 | Masimo Corporation | Locating a locally stored medication |
US11026587B2 (en) | 2018-07-24 | 2021-06-08 | Baxter International Inc. | Physiological sensor resembling a neck-worn collar |
US11045094B2 (en) | 2018-07-24 | 2021-06-29 | Baxter International Inc. | Patch-based physiological sensor |
CA3106674A1 (en) * | 2018-07-24 | 2020-01-30 | Baxter International Inc. | Patch-based physiological sensor |
US11096590B2 (en) | 2018-07-24 | 2021-08-24 | Baxter International Inc. | Patch-based physiological sensor |
US11202578B2 (en) * | 2018-07-24 | 2021-12-21 | Welch Allyn, Inc. | Patch-based physiological sensor |
US11116410B2 (en) | 2018-07-24 | 2021-09-14 | Baxter International Inc. | Patch-based physiological sensor |
US10842392B2 (en) | 2018-07-24 | 2020-11-24 | Baxter International Inc. | Patch-based physiological sensor |
US11039751B2 (en) | 2018-07-24 | 2021-06-22 | Baxter International Inc. | Physiological sensor resembling a neck-worn collar |
US11058340B2 (en) | 2018-07-24 | 2021-07-13 | Baxter International Inc. | Patch-based physiological sensor |
US11064918B2 (en) | 2018-07-24 | 2021-07-20 | Baxter International Inc. | Patch-based physiological sensor |
US20200038708A1 (en) * | 2018-08-01 | 2020-02-06 | Dwight Cheu | System and method for optimizing diaphragmatic breathing |
US10528833B1 (en) * | 2018-08-06 | 2020-01-07 | Denso International America, Inc. | Health monitoring system operable in a vehicle environment |
US20210315463A1 (en) * | 2018-08-20 | 2021-10-14 | Macdonald, Dettwiler And Associates Inc. | Method and apparatus for deriving biometric information using multiple-axis seismocardiography |
CN109157220B (en) * | 2018-09-11 | 2021-05-07 | 上海宏桐实业有限公司 | Respiratory index extraction system based on multi-channel dynamic monitoring and working method |
EP3636144B1 (en) | 2018-10-11 | 2023-06-07 | Current Health Limited | Monitoring apparatus and method |
US11464410B2 (en) | 2018-10-12 | 2022-10-11 | Masimo Corporation | Medical systems and methods |
BR112021006910A2 (en) | 2018-10-12 | 2021-07-20 | Masimo Corporation | system and method for pairing a set of non-invasive sensors, system and method for collecting physiological data, method of collecting and displaying physiological data, flexible circuit for a set of disposable sensors, pairing system for establishing wireless communication, apparatus for storing a set of reusable wireless transmitters, method for attaching a set of wireless transmitters, system for collecting physiological parameters from the patient, method and flexible circuit for transmitting physiological data |
GB2578471B (en) * | 2018-10-29 | 2023-01-04 | Pneumowave Ltd | Condition detector |
FI20186044A1 (en) * | 2018-12-04 | 2020-06-05 | Myllylae Teemu | Biosignal measurement apparatus and method |
CN109847160B (en) * | 2019-01-14 | 2020-06-02 | 东北大学 | Lung breathing assistance control device and breathing machine |
EP3914159A4 (en) | 2019-01-25 | 2022-09-14 | Rds | HEALTH CONTROL SYSTEMS AND PROCEDURES |
US11998303B2 (en) | 2019-06-24 | 2024-06-04 | Medtronic, Inc. | Sensing respiration parameters based on an impedance signal |
EP4021293A4 (en) | 2019-08-28 | 2023-08-09 | Rds | Vital signs or health monitoring systems and methods |
US11730379B2 (en) | 2020-03-20 | 2023-08-22 | Masimo Corporation | Remote patient management and monitoring systems and methods |
US11554781B2 (en) * | 2020-03-23 | 2023-01-17 | Aptiv Technologies Limited | Driver alertness monitoring including a predictive sleep risk factor |
CN111714112A (en) * | 2020-04-09 | 2020-09-29 | 上海电气集团股份有限公司 | Real-time electrocardiogram artifact elimination method |
AU2021252998A1 (en) * | 2020-04-10 | 2022-12-08 | Foresite Healthcare, Llc | Systems and methods for obtaining and monitoring respiration, cardiac function, and other health data from physical input |
WO2021239543A1 (en) * | 2020-05-26 | 2021-12-02 | Biotronik Se & Co. Kg | Active medical device capable of identifying coughing |
GB2596518B (en) * | 2020-06-23 | 2022-11-23 | Myzone Ltd | Physical activity monitoring system |
USD974193S1 (en) | 2020-07-27 | 2023-01-03 | Masimo Corporation | Wearable temperature measurement device |
USD980091S1 (en) | 2020-07-27 | 2023-03-07 | Masimo Corporation | Wearable temperature measurement device |
USD1072837S1 (en) | 2020-10-27 | 2025-04-29 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
CN116600702A (en) * | 2020-12-29 | 2023-08-15 | 深圳迈瑞生物医疗电子股份有限公司 | Respiration information acquisition method, apparatus, monitor and computer readable storage medium |
CN113409548B (en) * | 2021-06-19 | 2022-08-12 | 厦门大学嘉庚学院 | An Anti-Drowning Alarm System Based on Artificial Immune Algorithm |
USD1000975S1 (en) | 2021-09-22 | 2023-10-10 | Masimo Corporation | Wearable temperature measurement device |
WO2023075108A1 (en) * | 2021-10-25 | 2023-05-04 | 삼성전자주식회사 | Wearable electronic device and operating method of wearable electronic device |
USD1048908S1 (en) | 2022-10-04 | 2024-10-29 | Masimo Corporation | Wearable sensor |
EP4420600A1 (en) | 2023-02-21 | 2024-08-28 | Koninklijke Philips N.V. | Patient monitoring system |
PL444753A1 (en) * | 2023-05-05 | 2024-11-12 | Advanced Diagnostic Equipment Spółka Z Ograniczoną Odpowiedzialnością | Biosignal monitoring system and biosignal monitoring method |
AT527363A1 (en) * | 2023-06-26 | 2025-01-15 | Jonas Astl David | Arrangement and method for measuring a vital parameter signal |
FR3150944A1 (en) * | 2023-07-11 | 2025-01-17 | Sentinhealth | Signal processing method for determining a respiratory parameter |
Citations (381)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4086916A (en) | 1975-09-19 | 1978-05-02 | Joseph J. Cayre | Cardiac monitor wristwatch |
US4263918A (en) | 1977-03-21 | 1981-04-28 | Biomega Corporation | Methods of and apparatus for the measurement of blood pressure |
US4270547A (en) | 1978-10-03 | 1981-06-02 | University Patents, Inc. | Vital signs monitoring system |
US4305400A (en) | 1979-10-15 | 1981-12-15 | Squibb Vitatek Inc. | Respiration monitoring method and apparatus including cardio-vascular artifact detection |
US4577639A (en) | 1984-11-08 | 1986-03-25 | Spacelabs, Inc. | Apparatus and method for automatic lead selection in electrocardiography |
US4582068A (en) | 1981-12-21 | 1986-04-15 | American Home Products Corporation | Systems and methods for processing physiological signals |
US4653498A (en) | 1982-09-13 | 1987-03-31 | Nellcor Incorporated | Pulse oximeter monitor |
US4710164A (en) | 1984-05-01 | 1987-12-01 | Henry Ford Hospital | Automated hemodialysis control based upon patient blood pressure and heart rate |
US4722351A (en) | 1981-12-21 | 1988-02-02 | American Home Products Corporation | Systems and methods for processing physiological signals |
US4802486A (en) | 1985-04-01 | 1989-02-07 | Nellcor Incorporated | Method and apparatus for detecting optical pulses |
US4807638A (en) | 1987-10-21 | 1989-02-28 | Bomed Medical Manufacturing, Ltd. | Noninvasive continuous mean arterial blood prssure monitor |
US4905697A (en) | 1989-02-14 | 1990-03-06 | Cook Pacemaker Corporation | Temperature-controlled cardiac pacemaker responsive to body motion |
US5025791A (en) | 1989-06-28 | 1991-06-25 | Colin Electronics Co., Ltd. | Pulse oximeter with physical motion sensor |
EP0443267A1 (en) | 1990-02-23 | 1991-08-28 | Sentinel Monitoring, Inc. | Method and apparatus for continuous non-invasive blood pressure monitoring |
US5140990A (en) | 1990-09-06 | 1992-08-25 | Spacelabs, Inc. | Method of measuring blood pressure with a photoplethysmograph |
US5190038A (en) | 1989-11-01 | 1993-03-02 | Novametrix Medical Systems, Inc. | Pulse oximeter with improved accuracy and response time |
US5197489A (en) | 1991-06-17 | 1993-03-30 | Precision Control Design, Inc. | Activity monitoring apparatus with configurable filters |
US5224928A (en) | 1983-08-18 | 1993-07-06 | Drug Delivery Systems Inc. | Mounting system for transdermal drug applicator |
US5247931A (en) | 1991-09-16 | 1993-09-28 | Mine Safety Appliances Company | Diagnostic sensor clasp utilizing a slot, pivot and spring hinge mechanism |
US5289824A (en) | 1991-12-26 | 1994-03-01 | Instromedix, Inc. | Wrist-worn ECG monitor |
US5316008A (en) | 1990-04-06 | 1994-05-31 | Casio Computer Co., Ltd. | Measurement of electrocardiographic wave and sphygmus |
US5339818A (en) | 1989-09-20 | 1994-08-23 | University Of Utah Research Foundation | Method for determining blood pressure utilizing a neural network |
US5465082A (en) | 1990-07-27 | 1995-11-07 | Executone Information Systems, Inc. | Apparatus for automating routine communication in a facility |
US5482036A (en) | 1991-03-07 | 1996-01-09 | Masimo Corporation | Signal processing apparatus and method |
US5485838A (en) | 1992-12-07 | 1996-01-23 | Nihon Kohden Corporation | Non-invasive blood pressure measurement device |
US5490505A (en) | 1991-03-07 | 1996-02-13 | Masimo Corporation | Signal processing apparatus |
US5515858A (en) | 1992-02-28 | 1996-05-14 | Myllymaeki; Matti | Wrist-held monitoring device for physical condition |
US5517988A (en) | 1993-12-11 | 1996-05-21 | Hewlett-Packard Company | Method for detecting an irregular state in a non-invasive pulse oximeter system |
US5524637A (en) | 1994-06-29 | 1996-06-11 | Erickson; Jon W. | Interactive system for measuring physiological exertion |
US5549650A (en) | 1994-06-13 | 1996-08-27 | Pacesetter, Inc. | System and method for providing hemodynamically optimal pacing therapy |
US5575284A (en) | 1994-04-01 | 1996-11-19 | University Of South Florida | Portable pulse oximeter |
US5588427A (en) | 1995-11-20 | 1996-12-31 | Spacelabs Medical, Inc. | Enhancement of physiological signals using fractal analysis |
US5593431A (en) * | 1995-03-30 | 1997-01-14 | Medtronic, Inc. | Medical service employing multiple DC accelerometers for patient activity and posture sensing and method |
US5632272A (en) | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
US5645060A (en) | 1995-06-14 | 1997-07-08 | Nellcor Puritan Bennett Incorporated | Method and apparatus for removing artifact and noise from pulse oximetry |
US5649543A (en) | 1994-06-06 | 1997-07-22 | Nihon Kohden Corporation | Pulse-wave propagation time basis blood pressure monitor |
US5680870A (en) | 1995-01-04 | 1997-10-28 | Johnson & Johnson Medical, Inc. | Oscillometric blood pressure monitor which acquires blood pressure signals from composite arterial pulse signal |
US5709205A (en) | 1994-08-23 | 1998-01-20 | Hewlett-Packard Company | Pulsoximetry sensor |
US5743856A (en) | 1995-11-06 | 1998-04-28 | Colin Corporation | Apparatus for measuring pulse-wave propagation velocity |
US5766131A (en) | 1995-08-04 | 1998-06-16 | Seiko Epson Corporation | Pulse-wave measuring apparatus |
US5800349A (en) | 1996-10-15 | 1998-09-01 | Nonin Medical, Inc. | Offset pulse oximeter sensor |
US5848373A (en) | 1994-06-24 | 1998-12-08 | Delorme Publishing Company | Computer aided map location system |
US5853370A (en) | 1996-09-13 | 1998-12-29 | Non-Invasive Technology, Inc. | Optical system and method for non-invasive imaging of biological tissue |
US5857975A (en) | 1996-10-11 | 1999-01-12 | Dxtek, Inc. | Method and apparatus for non-invasive, cuffless continuous blood pressure determination |
US5865756A (en) | 1997-06-06 | 1999-02-02 | Southwest Research Institute | System and method for identifying and correcting abnormal oscillometric pulse waves |
US5873834A (en) | 1994-11-15 | 1999-02-23 | Omron Corporation | Blood pressure detecting device |
US5876353A (en) * | 1997-01-31 | 1999-03-02 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
GB2329250A (en) | 1997-09-11 | 1999-03-17 | Kevin Doughty | Non-intrusive electronic determination of the orientation and presence of a person or infant in a bed, cot or chair using primary and secondary coils |
US5895359A (en) | 1997-06-06 | 1999-04-20 | Southwest Research Institute | System and method for correcting a living subject's measured blood pressure |
US5899855A (en) | 1992-11-17 | 1999-05-04 | Health Hero Network, Inc. | Modular microprocessor-based health monitoring system |
US5913827A (en) | 1993-03-19 | 1999-06-22 | Gorman; Peter Gregory | Personal monitor and method for monitoring a biomedical condition in the presence of interference |
WO1999032030A1 (en) | 1997-12-22 | 1999-07-01 | Btg International Limited | Artefact reduction in photoplethysmography |
US5919141A (en) | 1994-11-15 | 1999-07-06 | Life Sensing Instrument Company, Inc. | Vital sign remote monitoring device |
US5941836A (en) | 1996-06-12 | 1999-08-24 | Friedman; Mark B. | Patient position monitor |
US5964720A (en) | 1996-11-29 | 1999-10-12 | Adaptivity Devices Ltd. | Method and system for monitoring the physiological condition of a patient |
US5964701A (en) | 1996-10-24 | 1999-10-12 | Massachusetts Institute Of Technology | Patient monitoring finger ring sensor |
US5971930A (en) | 1997-10-17 | 1999-10-26 | Siemens Medical Systems, Inc. | Method and apparatus for removing artifact from physiological signals |
US6002952A (en) | 1997-04-14 | 1999-12-14 | Masimo Corporation | Signal processing apparatus and method |
US6018673A (en) | 1996-10-10 | 2000-01-25 | Nellcor Puritan Bennett Incorporated | Motion compatible sensor for non-invasive optical blood analysis |
US6041783A (en) | 1995-06-07 | 2000-03-28 | Nellcor Puritan Bennett Corporation | Integrated activity sensor |
US6057758A (en) | 1998-05-20 | 2000-05-02 | Hewlett-Packard Company | Handheld clinical terminal |
US6064910A (en) * | 1996-11-25 | 2000-05-16 | Pacesetter Ab | Respirator rate/respiration depth detector and device for monitoring respiratory activity employing same |
US6081742A (en) | 1996-09-10 | 2000-06-27 | Seiko Epson Corporation | Organism state measuring device and relaxation instructing device |
US6094592A (en) | 1998-05-26 | 2000-07-25 | Nellcor Puritan Bennett, Inc. | Methods and apparatus for estimating a physiological parameter using transforms |
US6117077A (en) | 1999-01-22 | 2000-09-12 | Del Mar Medical Systems, Llc | Long-term, ambulatory physiological recorder |
US6160478A (en) | 1998-10-27 | 2000-12-12 | Sarcos Lc | Wireless health monitoring system |
US6159147A (en) | 1997-02-28 | 2000-12-12 | Qrs Diagnostics, Llc | Personal computer card for collection of real-time biological data |
US6168569B1 (en) | 1998-12-22 | 2001-01-02 | Mcewen James Allen | Apparatus and method for relating pain and activity of a patient |
US6198394B1 (en) | 1996-12-05 | 2001-03-06 | Stephen C. Jacobsen | System for remote monitoring of personnel |
US6198951B1 (en) | 1997-09-05 | 2001-03-06 | Seiko Epson Corporation | Reflection photodetector and biological information measuring instrument |
US6199550B1 (en) | 1998-08-14 | 2001-03-13 | Bioasyst, L.L.C. | Integrated physiologic sensor system |
US6251080B1 (en) | 1999-05-13 | 2001-06-26 | Del Mar Medical Systems, Llc | Self contained ambulatory blood pressure cincture |
US6261247B1 (en) | 1998-12-31 | 2001-07-17 | Ball Semiconductor, Inc. | Position sensing system |
US6262769B1 (en) | 1997-07-31 | 2001-07-17 | Flashpoint Technology, Inc. | Method and system for auto rotating a graphical user interface for managing portrait and landscape images in an image capture unit |
US20010013826A1 (en) | 1999-09-24 | 2001-08-16 | Kavlico Corporation | Versatile smart networkable sensor |
US6287262B1 (en) | 1996-06-12 | 2001-09-11 | Seiko Epson Corporation | Device for measuring calorie expenditure and device for measuring body temperature |
US20010045395A1 (en) | 1991-10-11 | 2001-11-29 | Yuli Kitaevich | Hemofiltration system and method based on monitored patient parameters |
US6334065B1 (en) | 1998-06-03 | 2001-12-25 | Masimo Corporation | Stereo pulse oximeter |
US20020013517A1 (en) | 2000-05-19 | 2002-01-31 | West Kenneth G. | Patient monitoring system |
US20020032386A1 (en) | 2000-04-17 | 2002-03-14 | Sackner Marvin A. | Systems and methods for ambulatory monitoring of physiological signs |
US6371921B1 (en) | 1994-04-15 | 2002-04-16 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US6388240B2 (en) | 1999-08-26 | 2002-05-14 | Masimo Corporation | Shielded optical probe and method having a longevity indication |
US20020072859A1 (en) | 2000-10-06 | 2002-06-13 | Osami Kajimoto | Mentation test method and mentation test apparatus |
US20020109600A1 (en) * | 2000-10-26 | 2002-08-15 | Mault James R. | Body supported activity and condition monitor |
US6443890B1 (en) | 2000-03-01 | 2002-09-03 | I-Medik, Inc. | Wireless internet bio-telemetry monitoring system |
USRE37852E1 (en) | 1994-03-30 | 2002-09-17 | Nihon Kohden Corporation | Blood pressure monitoring system |
US20020151805A1 (en) | 2001-03-01 | 2002-10-17 | Nihon Kohden Corporation | Blood flow volume measurement method and vital sign monitoring apparatus |
US20020156354A1 (en) | 2001-04-20 | 2002-10-24 | Larson Eric Russell | Pulse oximetry sensor with improved spring |
US6480729B2 (en) | 2000-04-28 | 2002-11-12 | Alexander K. Mills | Method for determining blood constituents |
US20020170193A1 (en) | 2001-02-23 | 2002-11-21 | Townsend Christopher P. | Posture and body movement measuring system |
US6491647B1 (en) | 1998-09-23 | 2002-12-10 | Active Signal Technologies, Inc. | Physiological sensing device |
US20020193671A1 (en) | 2000-08-21 | 2002-12-19 | Ciurczak Emil W. | Near infrared blood glucose monitoring system |
US20020193692A1 (en) | 2000-05-26 | 2002-12-19 | Colin Corporation | Blood pressure monitor apparatus |
US20020198679A1 (en) | 2001-06-22 | 2002-12-26 | Victor Hendrik Johannes | Method and system for collecting and retrieving time-series, real-time and non-real-time data |
US20030004420A1 (en) | 2001-07-02 | 2003-01-02 | Colin Corporation | Pulse-wave-propagation-velocity-related-information obtaining apparatus |
US6503206B1 (en) | 2001-07-27 | 2003-01-07 | Vsm Medtech Ltd | Apparatus having redundant sensors for continuous monitoring of vital signs and related methods |
US6516289B2 (en) | 1999-07-21 | 2003-02-04 | Daniel David | Physiological measuring system comprising a garment and sensing apparatus incorporated in the garment |
US6516218B1 (en) | 1999-06-30 | 2003-02-04 | Industrial Technology Research Institute | Method for detecting leads off in multi-electrode medical diagnostic system |
US6526310B1 (en) | 2001-03-02 | 2003-02-25 | Ge Medical Systems Information Technologies, Inc. | Patient transceiver system which uses conductors within leads of leadset to provide phased antenna array |
US6527729B1 (en) | 1999-11-10 | 2003-03-04 | Pacesetter, Inc. | Method for monitoring patient using acoustic sensor |
US6533729B1 (en) | 2000-05-10 | 2003-03-18 | Motorola Inc. | Optical noninvasive blood pressure sensor and method |
US6541756B2 (en) | 1991-03-21 | 2003-04-01 | Masimo Corporation | Shielded optical probe having an electrical connector |
US6546267B1 (en) | 1999-11-26 | 2003-04-08 | Nihon Kohden Corporation | Biological sensor |
US20030097046A1 (en) | 2000-05-16 | 2003-05-22 | Takanori Sakamaki | Vital sign monitor |
US6584336B1 (en) | 1999-01-25 | 2003-06-24 | Masimo Corporation | Universal/upgrading pulse oximeter |
US6589170B1 (en) | 1995-11-13 | 2003-07-08 | Ge Medical Systems Information Technologies, Inc. | Medical telemetry system with cellular reception of patient data |
US20030130590A1 (en) | 1998-12-23 | 2003-07-10 | Tuan Bui | Method and apparatus for providing patient care |
US20030135099A1 (en) | 1999-12-09 | 2003-07-17 | Ammar Al-Ali | Isolation and communication element for a resposable pulse oximetry sensor |
US6595929B2 (en) | 2001-03-30 | 2003-07-22 | Bodymedia, Inc. | System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow |
US6605038B1 (en) | 2000-06-16 | 2003-08-12 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
US20030153836A1 (en) | 2000-05-05 | 2003-08-14 | Claude Gagnadre | Device and method for detecting abnormal situations |
US20030158699A1 (en) | 1998-12-09 | 2003-08-21 | Christopher P. Townsend | Orientation sensor |
US20030167012A1 (en) | 2002-03-01 | 2003-09-04 | Ge Medical Systems Information Technologies, Inc. | Continuous, non-invasive technique for measuring blood pressure using impedance plethysmography |
US20030171662A1 (en) | 2002-03-07 | 2003-09-11 | O'connor Michael William | Non-adhesive flexible electro-optical sensor for fingertip trans-illumination |
US20030181815A1 (en) | 2002-03-22 | 2003-09-25 | Ebner Dennis M. | Method for continuous monitoring of patients to detect the potential onset of sepsis |
US20030208335A1 (en) | 1996-07-03 | 2003-11-06 | Hitachi, Ltd. | Method, apparatus and system for recognizing actions |
US6650917B2 (en) | 1991-03-07 | 2003-11-18 | Masimo Corporation | Signal processing apparatus |
US6684090B2 (en) | 1999-01-07 | 2004-01-27 | Masimo Corporation | Pulse oximetry data confidence indicator |
US20040019288A1 (en) | 2002-07-23 | 2004-01-29 | Eric Kinast | Patient-worn medical monitoring device |
US20040030261A1 (en) | 2002-08-09 | 2004-02-12 | Borje Rantala | Measuring blood pressure |
US6694177B2 (en) | 2001-04-23 | 2004-02-17 | Cardionet, Inc. | Control of data transmission between a remote monitoring unit and a central unit |
US20040034294A1 (en) | 2002-08-16 | 2004-02-19 | Optical Sensors, Inc. | Pulse oximeter |
US20040034293A1 (en) | 2002-08-16 | 2004-02-19 | Optical Sensors Inc. | Pulse oximeter with motion detection |
US20040054821A1 (en) | 2000-08-22 | 2004-03-18 | Warren Christopher E. | Multifunctional network interface node |
US20040073128A1 (en) | 2002-10-09 | 2004-04-15 | Cardiac Pacemakers, Inc. | Detection of congestion from monitoring patient response to a recumbent position |
US20040077934A1 (en) | 1999-07-06 | 2004-04-22 | Intercure Ltd. | Interventive-diagnostic device |
US6732064B1 (en) | 1997-07-02 | 2004-05-04 | Nonlinear Solutions, Inc. | Detection and classification system for analyzing deterministic properties of data using correlation parameters |
US20040111033A1 (en) | 2002-04-11 | 2004-06-10 | Harry Oung | Method and apparatus for monitoring the autonomic nervous system using non-stationary spectral analysis of heart rate and respiratory activity |
US20040122315A1 (en) | 2002-09-24 | 2004-06-24 | Krill Jerry A. | Ingestible medical payload carrying capsule with wireless communication |
US20040133079A1 (en) | 2003-01-02 | 2004-07-08 | Mazar Scott Thomas | System and method for predicting patient health within a patient management system |
US6770028B1 (en) | 1999-01-25 | 2004-08-03 | Masimo Corporation | Dual-mode pulse oximeter |
US20040162466A1 (en) | 2000-12-15 | 2004-08-19 | Quy Roger J. | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US20040162493A1 (en) | 1999-10-07 | 2004-08-19 | Mills Alexander K. | Device and method for noninvasive continuous determination of physiologic characteristics |
US6790178B1 (en) | 1999-09-24 | 2004-09-14 | Healthetech, Inc. | Physiological monitor and associated computation, display and communication unit |
US20040193063A1 (en) | 2003-02-28 | 2004-09-30 | Teiyuu Kimura | Method and apparatus for measuring biological condition |
US6811538B2 (en) | 2000-12-29 | 2004-11-02 | Ares Medical, Inc. | Sleep apnea risk evaluation |
US20040225207A1 (en) | 2003-05-09 | 2004-11-11 | Sang-Kon Bae | Ear type apparatus for measuring a bio signal and measuring method therefor |
US20040267099A1 (en) | 2003-06-30 | 2004-12-30 | Mcmahon Michael D. | Pain assessment user interface |
US6850787B2 (en) | 2001-06-29 | 2005-02-01 | Masimo Laboratories, Inc. | Signal component processor |
US20050027205A1 (en) | 2001-12-14 | 2005-02-03 | Lionel Tarassenko | Combining measurements from breathing rate sensors |
US20050043598A1 (en) | 2003-08-22 | 2005-02-24 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US20050059870A1 (en) | 2003-08-25 | 2005-03-17 | Aceti John Gregory | Processing methods and apparatus for monitoring physiological parameters using physiological characteristics present within an auditory canal |
US6893396B2 (en) | 2000-03-01 | 2005-05-17 | I-Medik, Inc. | Wireless internet bio-telemetry monitoring system and interface |
US20050113703A1 (en) | 2003-09-12 | 2005-05-26 | Jonathan Farringdon | Method and apparatus for measuring heart related parameters |
US20050113107A1 (en) | 2003-11-21 | 2005-05-26 | Xerox Corporation | Method for determining proximity of devices in a wireless network |
US20050119586A1 (en) | 2003-04-10 | 2005-06-02 | Vivometrics, Inc. | Systems and methods for respiratory event detection |
US20050124866A1 (en) | 2003-11-12 | 2005-06-09 | Joseph Elaz | Healthcare processing device and display system |
US20050124903A1 (en) | 2003-12-05 | 2005-06-09 | Luchy Roteliuk | Pressure-based system and method for determining cardiac stroke volume |
US20050149350A1 (en) | 2003-12-24 | 2005-07-07 | Kerr Roger S. | Patient information management system and method |
US20050171444A1 (en) | 2003-12-08 | 2005-08-04 | Nihon Kohden Corporation | Vital sign telemeter |
US20050187796A1 (en) | 1999-06-23 | 2005-08-25 | Visicu, Inc. | System and method for displaying a health status of hospitalized patients |
US6947781B2 (en) | 2002-12-13 | 2005-09-20 | Massachusetts Institute Of Technology | Vibratory venous and arterial oximetry sensor |
US20050209511A1 (en) | 2004-03-16 | 2005-09-22 | Heruth Kenneth T | Collecting activity and sleep quality information via a medical device |
US20050206518A1 (en) | 2003-03-21 | 2005-09-22 | Welch Allyn Protocol, Inc. | Personal status physiologic monitor system and architecture and related monitoring methods |
US20050228298A1 (en) | 2004-04-07 | 2005-10-13 | Triage Data Networks | Device, system and method for monitoring vital signs |
US20050228296A1 (en) | 2004-04-07 | 2005-10-13 | Banet Matthew J | Cuffless System for Measuring Blood Pressure |
US20050228301A1 (en) | 2004-04-07 | 2005-10-13 | Triage Data Networks | Blood-pressure monitoring device featuring a calibration-based analysis |
US20050234317A1 (en) | 2004-03-19 | 2005-10-20 | Kiani Massi E | Low power and personal pulse oximetry systems |
US20050240087A1 (en) | 2003-11-18 | 2005-10-27 | Vivometrics Inc. | Method and system for processing data from ambulatory physiological monitoring |
US20050251232A1 (en) | 2004-05-10 | 2005-11-10 | Hartley Craig J | Apparatus and methods for monitoring heart rate and respiration rate and for monitoring and maintaining body temperature in anesthetized mammals undergoing diagnostic or surgical procedures |
US20050261593A1 (en) | 2004-05-20 | 2005-11-24 | Zhang Yuan T | Methods for measuring blood pressure with automatic compensations |
US20050261565A1 (en) | 2004-05-18 | 2005-11-24 | Micron Medical Products | Discretely coated sensor for use in medical electrodes |
US20050265267A1 (en) | 2004-05-17 | 2005-12-01 | Sonosite, Inc. | Processing of medical signals |
US20050283088A1 (en) | 2004-06-16 | 2005-12-22 | Bernstein Donald P | Apparatus and method for determination of stroke volume using the brachial artery |
US6985078B2 (en) | 2000-03-14 | 2006-01-10 | Kabushiki Kaisha Toshiba | Wearable life support apparatus and method |
WO2006005169A1 (en) | 2004-07-09 | 2006-01-19 | Telemedic Inc | Vital sign monitoring system and method |
US6997882B1 (en) * | 2001-12-21 | 2006-02-14 | Barron Associates, Inc. | 6-DOF subject-monitoring device and method |
US20060036141A1 (en) | 2004-07-13 | 2006-02-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20060047215A1 (en) | 2004-09-01 | 2006-03-02 | Welch Allyn, Inc. | Combined sensor assembly |
US7020578B2 (en) | 2000-02-02 | 2006-03-28 | The General Hospital Corporation | Method for evaluating novel, stroke treatments using a tissue risk map |
US7020508B2 (en) | 2002-08-22 | 2006-03-28 | Bodymedia, Inc. | Apparatus for detecting human physiological and contextual information |
US20060074321A1 (en) | 2002-08-27 | 2006-04-06 | Kenji Kouchi | Vital sign display and its method |
US20060074322A1 (en) | 2004-09-30 | 2006-04-06 | Jerusalem College Of Technology | Measuring systolic blood pressure by photoplethysmography |
US7041060B2 (en) | 1996-06-26 | 2006-05-09 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US7048687B1 (en) | 1999-04-14 | 2006-05-23 | Ob Scientific, Inc. | Limited use medical probe |
US20060122469A1 (en) | 2004-11-16 | 2006-06-08 | Martel Normand M | Remote medical monitoring system |
US20060128263A1 (en) | 2004-12-09 | 2006-06-15 | Baird John C | Computerized assessment system and method for assessing opinions or feelings |
US20060142648A1 (en) | 2003-01-07 | 2006-06-29 | Triage Data Networks | Wireless, internet-based, medical diagnostic system |
US20060155589A1 (en) | 2005-01-10 | 2006-07-13 | Welch Allyn, Inc. | Portable vital signs measurement instrument and method of use thereof |
US20060178591A1 (en) | 2004-11-19 | 2006-08-10 | Hempfling Ralf H | Methods and systems for real time breath rate determination with limited processor resources |
US20060200029A1 (en) | 2005-03-04 | 2006-09-07 | Medwave, Inc. | Universal transportable vital signs monitor |
US7115824B2 (en) | 2004-08-03 | 2006-10-03 | Kam Chun Lo | Tilt switch and system |
US20060252999A1 (en) | 2005-05-03 | 2006-11-09 | Devaul Richard W | Method and system for wearable vital signs and physiology, activity, and environmental monitoring |
US20060265246A1 (en) | 2005-05-10 | 2006-11-23 | Cardinal Health 303, Inc. | Medication safety system featuring a multiplexed RFID interrogator panel |
US20060271404A1 (en) | 1997-03-28 | 2006-11-30 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US20060270949A1 (en) | 2003-08-15 | 2006-11-30 | Mathie Merryn J | Monitoring apparatus for ambulatory subject and a method for monitoring the same |
US20060281979A1 (en) | 2005-06-09 | 2006-12-14 | Seung-Nam Kim | Sensing device for sensing emergency situation having acceleration sensor and method thereof |
US7156809B2 (en) | 1999-12-17 | 2007-01-02 | Q-Tec Systems Llc | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US20070010719A1 (en) | 2005-06-28 | 2007-01-11 | Hill-Rom Services, Inc. | Remote access to healthcare device diagnostic information |
US7184809B1 (en) | 2005-11-08 | 2007-02-27 | Woolsthorpe Technologies, Llc | Pulse amplitude indexing method and apparatus |
WO2007024777A2 (en) | 2005-08-22 | 2007-03-01 | Massachusetts Institute Of Technology | Wearable blood pressure sensor and method of calibration |
US7186966B2 (en) | 1999-08-26 | 2007-03-06 | Masimo Corporation | Amount of use tracking device and method for medical product |
US7194293B2 (en) | 2004-03-08 | 2007-03-20 | Nellcor Puritan Bennett Incorporated | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US20070066910A1 (en) | 2005-09-21 | 2007-03-22 | Fukuda Denshi Co., Ltd. | Blood pressure monitoring apparatus |
US20070071643A1 (en) | 2005-09-29 | 2007-03-29 | Berkeley Heartlab, Inc. | Internet based system for monitoring blood test, vital sign and exercise information from a patient |
US20070094045A1 (en) | 2005-10-20 | 2007-04-26 | Archie Cobbs | Methods, systems, and apparatus for providing a notification of a message in a health care environment |
US7215987B1 (en) | 2005-11-08 | 2007-05-08 | Woolsthorpe Technologies | Method and apparatus for processing signals reflecting physiological characteristics |
US20070118056A1 (en) | 2005-11-18 | 2007-05-24 | Hua Wang | Posture detector calibration and use |
US7225007B2 (en) | 2003-01-24 | 2007-05-29 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US20070129769A1 (en) | 2005-12-02 | 2007-06-07 | Medtronic, Inc. | Wearable ambulatory data recorder |
US20070142730A1 (en) | 2005-12-13 | 2007-06-21 | Franz Laermer | Apparatus for noninvasive blood pressure measurement |
US20070142715A1 (en) | 2005-12-20 | 2007-06-21 | Triage Wireless, Inc. | Chest strap for measuring vital signs |
US20070146145A1 (en) * | 1999-09-15 | 2007-06-28 | Lehrman Michael L | System and method for analyzing activity of a body |
US20070156456A1 (en) | 2006-01-04 | 2007-07-05 | Siemens Medical Solutions Health Services Corporation | System for Monitoring Healthcare Related Activity In A Healthcare Enterprise |
US7241265B2 (en) | 2002-06-05 | 2007-07-10 | Diabetes Diagnostics, Inc. | Analyte testing device |
US20070161912A1 (en) | 2006-01-10 | 2007-07-12 | Yunlong Zhang | Assessing autonomic activity using baroreflex analysis |
US20070185393A1 (en) | 2006-02-03 | 2007-08-09 | Triage Wireless, Inc. | System for measuring vital signs using an optical module featuring a green light source |
US20070188323A1 (en) | 2006-01-26 | 2007-08-16 | Microsoft Corporation | Motion Detection Notification |
US20070193834A1 (en) | 2006-02-21 | 2007-08-23 | Adt Security Services, Inc. | System and method for remotely attended delivery |
US20070208233A1 (en) * | 2006-03-03 | 2007-09-06 | Physiowave Inc. | Integrated physiologic monitoring systems and methods |
US20070232867A1 (en) | 2006-04-01 | 2007-10-04 | Draeger Medical Ag & Co. Kg | Process and system for setting a patient monitor |
US20070237719A1 (en) | 2006-03-30 | 2007-10-11 | Jones Christopher M | Method and system for monitoring and analyzing compliance with internal dosing regimen |
US20070244376A1 (en) | 2006-04-18 | 2007-10-18 | Wei-Kung Wang | Physiological signal apparatus with digital real time calibration |
US20070250261A1 (en) | 2006-04-20 | 2007-10-25 | Honeywell International Inc. | Motion classification methods for personal navigation |
US20070252853A1 (en) | 2006-04-28 | 2007-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus to control screen orientation of user interface of portable device |
US20070255116A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Broadcast data transmission and data packet repeating techniques for a wireless medical device network |
US20070260487A1 (en) | 2006-05-06 | 2007-11-08 | Irody Inc | System and method for real time management of a drug regimen |
US20070265533A1 (en) | 2006-05-12 | 2007-11-15 | Bao Tran | Cuffless blood pressure monitoring appliance |
US7299159B2 (en) | 1998-03-03 | 2007-11-20 | Reuven Nanikashvili | Health monitor system and method for health monitoring |
US7296312B2 (en) | 2002-09-06 | 2007-11-20 | Hill-Rom Services, Inc. | Hospital bed |
US20070270671A1 (en) | 2006-04-10 | 2007-11-22 | Vivometrics, Inc. | Physiological signal processing devices and associated processing methods |
US7301451B2 (en) | 2003-12-31 | 2007-11-27 | Ge Medical Systems Information Technologies, Inc. | Notification alarm transfer methods, system, and device |
US20070276261A1 (en) | 2006-05-25 | 2007-11-29 | Triage Wireless, Inc. | Bilateral device, system and method for monitoring vital signs |
US20070282208A1 (en) | 2006-06-06 | 2007-12-06 | Bob Jacobs | Mobile computing device with integrated medical devices |
WO2007143535A2 (en) | 2006-06-01 | 2007-12-13 | Biancamed Ltd. | Apparatus, system, and method for monitoring physiological signs |
US20070287386A1 (en) | 2006-04-14 | 2007-12-13 | Qualcomm Incorporated | Distance-based association |
US20070293770A1 (en) | 2006-06-16 | 2007-12-20 | Frank Bour | Analysis and use of cardiographic measurements |
US20070293781A1 (en) * | 2003-11-04 | 2007-12-20 | Nathaniel Sims | Respiration Motion Detection and Health State Assesment System |
US7314451B2 (en) | 2005-04-25 | 2008-01-01 | Earlysense Ltd. | Techniques for prediction and monitoring of clinical episodes |
US20080004507A1 (en) | 2004-10-27 | 2008-01-03 | E-Z-Em, Inc. | Data collection device, system, method, and computer program product for collecting data related to the dispensing of contrast media |
US20080004500A1 (en) | 2006-06-29 | 2008-01-03 | Shelley Cazares | Automated device programming at changeout |
US20080004904A1 (en) | 2006-06-30 | 2008-01-03 | Tran Bao Q | Systems and methods for providing interoperability among healthcare devices |
US20080027341A1 (en) | 2002-03-26 | 2008-01-31 | Marvin Sackner | Method and system for extracting cardiac parameters from plethysmographic signals |
US20080039731A1 (en) | 2005-08-22 | 2008-02-14 | Massachusetts Institute Of Technology | Wearable Pulse Wave Velocity Blood Pressure Sensor and Methods of Calibration Thereof |
US20080077027A1 (en) | 2006-09-12 | 2008-03-27 | Allgeyer Dean O | Simplified ECG monitoring system |
US20080077026A1 (en) | 2006-09-07 | 2008-03-27 | Triage Wireless, Inc. | Hand-held vital signs monitor |
US7351206B2 (en) | 2004-03-30 | 2008-04-01 | Kabushiki Kaisha Toshiba | Apparatus for and method of biotic sleep state determining |
WO2008037820A1 (en) | 2006-09-27 | 2008-04-03 | Universidad De Cádiz | System for monitoring and analysing cardiorespiratory signals and snoring |
US20080082001A1 (en) | 2006-08-24 | 2008-04-03 | Hatlestad John D | Physiological response to posture change |
US7355512B1 (en) | 2002-01-24 | 2008-04-08 | Masimo Corporation | Parallel alarm processor |
US20080101160A1 (en) | 2006-11-01 | 2008-05-01 | Rodney Besson | Med Alert Watch |
US7373191B2 (en) | 1996-03-05 | 2008-05-13 | Nellcor Puritan Bennett Inc. | Shunt barrier in pulse oximeter sensor |
US20080114220A1 (en) | 2006-11-10 | 2008-05-15 | Triage Wireless, Inc. | Two-part patch sensor for monitoring vital signs |
WO2008057883A2 (en) | 2006-11-01 | 2008-05-15 | Biancamed Limited | System and method for monitoring cardiorespiratory parameters |
US7373912B2 (en) | 2006-06-07 | 2008-05-20 | Ford Global Technologies, Llc | Oil level indicating system for internal combustion engine |
US7377794B2 (en) | 2005-03-01 | 2008-05-27 | Masimo Corporation | Multiple wavelength sensor interconnect |
US7383069B2 (en) | 1997-08-14 | 2008-06-03 | Sensys Medical, Inc. | Method of sample control and calibration adjustment for use with a noninvasive analyzer |
US20080132106A1 (en) | 2006-12-05 | 2008-06-05 | Lee Burnes | ECG lead set and ECG adapter system |
US20080139955A1 (en) * | 2006-12-07 | 2008-06-12 | Drager Medical Ag & Co. Kg | Device and method for determining a respiration rate |
US20080146892A1 (en) | 2006-12-19 | 2008-06-19 | Valencell, Inc. | Physiological and environmental monitoring systems and methods |
US20080146887A1 (en) | 2004-11-30 | 2008-06-19 | Rao Raman K | Intelligent personal health management appliances for external and internal visualization of the human anatomy and for dental/personal hygiene |
EP1938862A2 (en) | 2003-08-18 | 2008-07-02 | Cardiac Pacemakers, Inc. | Disordered breathing management system and methods |
US20080162496A1 (en) | 2004-06-02 | 2008-07-03 | Richard Postrel | System and method for centralized management and monitoring of healthcare services |
US20080167535A1 (en) | 2002-08-22 | 2008-07-10 | Stivoric John M | Devices and systems for contextual and physiological-based reporting, entertainment, control of other devices, health assessment and therapy |
US7400919B2 (en) | 2004-02-25 | 2008-07-15 | Nellcor Puritan Bennett Llc | Oximeter ambient light cancellation |
US20080171927A1 (en) | 2007-01-11 | 2008-07-17 | Health & Life Co., Ltd. | Physiological detector with a waterproof structure |
US20080194918A1 (en) | 2007-02-09 | 2008-08-14 | Kulik Robert S | Vital signs monitor with patient entertainment console |
US20080195735A1 (en) | 2007-01-25 | 2008-08-14 | Microsoft Corporation | Motion Triggered Data Transfer |
US20080208013A1 (en) | 2005-07-28 | 2008-08-28 | Quan Zhang | Electro-Optical System, Apparatus, and Method For Ambulatory Monitoring |
US20080208273A1 (en) | 2002-08-26 | 2008-08-28 | Owen James M | Pulse Detection Using Patient Physiological Signals |
US20080204254A1 (en) | 2007-02-27 | 2008-08-28 | Paramount Bed Co., Ltd. | Bed apparatus having movable bedboard |
US7420472B2 (en) | 2005-10-16 | 2008-09-02 | Bao Tran | Patient monitoring apparatus |
US20080214963A1 (en) | 2003-07-02 | 2008-09-04 | Commissariat A L'energie Atomique | Method for measuring movements of a person wearing a portable detector |
US20080221404A1 (en) | 2006-11-13 | 2008-09-11 | Shun-Wun Tso | Multifunction health apparatus |
US20080221399A1 (en) | 2007-03-05 | 2008-09-11 | Triage Wireless, Inc. | Monitor for measuring vital signs and rendering video images |
WO2008110788A1 (en) | 2007-03-15 | 2008-09-18 | Imperial Innovations Limited | Heart rate measurement |
US20080262362A1 (en) | 2007-04-17 | 2008-10-23 | General Electric Company | Non-invasive blood pressure determination method |
US20080275349A1 (en) | 2007-05-02 | 2008-11-06 | Earlysense Ltd. | Monitoring, predicting and treating clinical episodes |
US20080281168A1 (en) | 2005-01-13 | 2008-11-13 | Welch Allyn, Inc. | Vital Signs Monitor |
US20080281310A1 (en) | 2007-05-11 | 2008-11-13 | Tyco Healthcare Group Lp | Temperature monitoring return electrode |
US7455643B1 (en) | 2003-07-07 | 2008-11-25 | Nellcor Puritan Bennett Ireland | Continuous non-invasive blood pressure measurement apparatus and methods providing automatic recalibration |
US20080294019A1 (en) | 2007-05-24 | 2008-11-27 | Bao Tran | Wireless stroke monitoring |
US20080312541A1 (en) * | 2007-06-15 | 2008-12-18 | Cardiac Pacemakers, Inc | Daytime/nighttime respiration rate monitoring |
US7468036B1 (en) | 2004-09-28 | 2008-12-23 | Impact Sports Technology, Inc. | Monitoring device, method and system |
US20080319327A1 (en) | 2007-06-25 | 2008-12-25 | Triage Wireless, Inc. | Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure |
US7477143B2 (en) | 2004-07-23 | 2009-01-13 | Innovalarm Corporation | Enhanced personal monitoring and alarm response method and system |
US20090018453A1 (en) | 2007-06-12 | 2009-01-15 | Triage Wireless, Inc. | Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms |
US20090018409A1 (en) | 2007-07-11 | 2009-01-15 | Triage Wireless, Inc. | Device for determining respiratory rate and other vital signs |
US20090018408A1 (en) | 2007-07-05 | 2009-01-15 | Kabushiki Kaisha Toshiba | Apparatus and method for processing pulse waves |
US7485095B2 (en) | 2000-05-30 | 2009-02-03 | Vladimir Shusterman | Measurement and analysis of trends in physiological and/or health data |
US20090040041A1 (en) | 2007-08-10 | 2009-02-12 | Integrity Tracking, Llc | Alzheimer's patient tracking system |
US20090054752A1 (en) | 2007-08-22 | 2009-02-26 | Motorola, Inc. | Method and apparatus for photoplethysmographic sensing |
US20090069642A1 (en) | 2007-09-11 | 2009-03-12 | Aid Networks, Llc | Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device |
US20090076405A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Device for Respiratory Monitoring |
US20090076397A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Emergency Patient Monitor |
US20090076363A1 (en) * | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Device with Multiple Physiological Sensors |
US7508307B2 (en) | 2004-07-23 | 2009-03-24 | Innovalarm Corporation | Home health and medical monitoring method and service |
US7509131B2 (en) | 2004-06-29 | 2009-03-24 | Microsoft Corporation | Proximity detection using wireless signal strengths |
US20090082681A1 (en) | 2007-09-21 | 2009-03-26 | Kabushiki Kaisha Toshiba | Biological information processing apparatus and biological information processing method |
US20090112281A1 (en) | 2007-10-26 | 2009-04-30 | Medtronic, Inc. | Medical device configuration based on sensed brain signals |
US20090112630A1 (en) | 2007-10-26 | 2009-04-30 | Collins Jr Williams F | System and method for collection and communication of data from multiple patient care devices |
US20090118590A1 (en) | 2000-06-16 | 2009-05-07 | Eric Teller | Multi-sensor system, device, and method for deriving human status information |
US20090118626A1 (en) | 2007-11-01 | 2009-05-07 | Transoma Medical, Inc. | Calculating Respiration Parameters Using Impedance Plethysmography |
US20090131809A1 (en) * | 2007-11-20 | 2009-05-21 | James Huang | Respiration sensor |
US7541939B2 (en) | 2007-03-15 | 2009-06-02 | Apple Inc. | Mounted shock sensor |
US7542878B2 (en) | 1998-03-03 | 2009-06-02 | Card Guard Scientific Survival Ltd. | Personal health monitor and a method for health monitoring |
US20090187085A1 (en) | 2007-12-28 | 2009-07-23 | Nellcor Puritan Bennett Llc | System And Method For Estimating Physiological Parameters By Deconvolving Artifacts |
US20090192366A1 (en) | 2007-12-17 | 2009-07-30 | Dexcom, Inc | Systems and methods for processing sensor data |
US20090222119A1 (en) | 2008-02-29 | 2009-09-03 | Fresenius Medical Care Holdings, Inc. | Multimedia system for dialysis machine |
US20090221937A1 (en) * | 2008-02-25 | 2009-09-03 | Shriners Hospitals For Children | Activity Monitoring |
US7586418B2 (en) | 2006-11-17 | 2009-09-08 | General Electric Company | Multifunctional personal emergency response system |
WO2009112981A1 (en) * | 2008-03-14 | 2009-09-17 | Koninklijke Philips Electronics N.V. | An activity monitoring system insensitive to accelerations induced by external motion factors |
US20090233770A1 (en) | 2007-08-17 | 2009-09-17 | Stephen Michael Vincent | Sports Electronic Training System With Electronic Gaming Features, And Applications Thereof |
US7598878B2 (en) | 2001-12-10 | 2009-10-06 | Rami Goldreich | Method and device for measuring physiological parameters at the wrist |
US7602301B1 (en) | 2006-01-09 | 2009-10-13 | Applied Technology Holdings, Inc. | Apparatus, systems, and methods for gathering and processing biometric and biomechanical data |
US20090259113A1 (en) | 2007-11-08 | 2009-10-15 | General Electric Company | System and method for determining pain level |
US20090262074A1 (en) | 2007-01-05 | 2009-10-22 | Invensense Inc. | Controlling and accessing content using motion processing on mobile devices |
US20090264712A1 (en) | 2006-07-28 | 2009-10-22 | Koninklijke Philips Electronics N. V. | Automatic transfer and identification of monitored data with hierarchical key management infrastructure |
US7616110B2 (en) | 2005-03-11 | 2009-11-10 | Aframe Digital, Inc. | Mobile wireless customizable health and condition monitor |
US20090287067A1 (en) | 2007-03-27 | 2009-11-19 | Apple Inc. | Integrated sensors for tracking performance metrics |
US7625344B1 (en) | 2007-06-13 | 2009-12-01 | Impact Sports Technologies, Inc. | Monitoring device, method and system |
US20090295541A1 (en) | 2008-05-27 | 2009-12-03 | Intellidot Corporation | Directional rfid reader |
US7628071B2 (en) | 2007-06-20 | 2009-12-08 | Headway Techologies, Inc. | Sensing unit and method of making same |
US7628730B1 (en) | 1999-07-08 | 2009-12-08 | Icon Ip, Inc. | Methods and systems for controlling an exercise apparatus using a USB compatible portable remote device |
US20090306524A1 (en) | 2006-08-02 | 2009-12-10 | Koninklijke Philips Electronics N.V. | Sensor for detecting the passing of a pulse wave from a subject's arterial system |
US20090306485A1 (en) | 2008-06-03 | 2009-12-10 | Jonathan Arnold Bell | Wearable Electronic System |
US20090306487A1 (en) | 2006-04-11 | 2009-12-10 | The University Of Nottingham | Photoplethysmography |
US20090312973A1 (en) | 2008-06-12 | 2009-12-17 | Hatlestad John D | Posture sensor automatic calibration |
US20090318779A1 (en) | 2006-05-24 | 2009-12-24 | Bao Tran | Mesh network stroke monitoring appliance |
US20090322513A1 (en) | 2008-06-27 | 2009-12-31 | Franklin Dun-Jen Hwang | Medical emergency alert system and method |
US20100010380A1 (en) | 2008-07-11 | 2010-01-14 | Medtronic, Inc. | Posture state classification for a medical device |
US7648463B1 (en) | 2005-12-15 | 2010-01-19 | Impact Sports Technologies, Inc. | Monitoring device, method and system |
US7656287B2 (en) | 2004-07-23 | 2010-02-02 | Innovalarm Corporation | Alert system with enhanced waking capabilities |
US20100030034A1 (en) | 2008-07-31 | 2010-02-04 | Schulhauser Randal C | Apparatus and Method for Detecting Cardiac Events |
US7668588B2 (en) | 2006-03-03 | 2010-02-23 | PhysioWave, Inc. | Dual-mode physiologic monitoring systems and methods |
US20100056881A1 (en) | 2008-08-29 | 2010-03-04 | Corventis, Inc. | Method and Apparatus For Acute Cardiac Monitoring |
US7674230B2 (en) | 2004-11-22 | 2010-03-09 | Widemed Ltd. | Sleep monitoring using a photoplethysmograph |
US7678061B2 (en) | 2003-09-18 | 2010-03-16 | Cardiac Pacemakers, Inc. | System and method for characterizing patient respiration |
US7684954B2 (en) | 2007-12-31 | 2010-03-23 | Intel Corporation | Apparatus and method for classification of physical orientation |
US7698101B2 (en) | 2007-03-07 | 2010-04-13 | Apple Inc. | Smart garment |
US7698941B2 (en) | 2007-06-20 | 2010-04-20 | Headway Technologies, Inc. | Sensing unit and method of making same |
US7715984B2 (en) | 2004-06-04 | 2010-05-11 | Schlumberger Technology Corporation | Method for continuous interpretation of monitoring data |
US20100125188A1 (en) | 2008-11-18 | 2010-05-20 | Nonin Medical, Inc. | Motion correlated pulse oximetry |
US7725147B2 (en) | 2005-09-29 | 2010-05-25 | Nellcor Puritan Bennett Llc | System and method for removing artifacts from waveforms |
US20100130811A1 (en) | 2008-04-24 | 2010-05-27 | Searete Llc | Computational system and method for memory modification |
US20100160793A1 (en) | 2008-12-23 | 2010-06-24 | Industrial Technology Research Institute | Biosignal measurement modules and methods |
US20100160798A1 (en) | 2007-06-12 | 2010-06-24 | Sotera Wireless, Inc. | BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP) |
US20100210930A1 (en) | 2009-02-13 | 2010-08-19 | Saylor Stephen D | Physiological Blood Gas Detection Apparatus and Method |
US7782189B2 (en) | 2005-06-20 | 2010-08-24 | Carestream Health, Inc. | System to monitor the ingestion of medicines |
US20100217099A1 (en) | 2009-02-25 | 2010-08-26 | Leboeuf Steven Francis | Methods and Apparatus for Assessing Physiological Conditions |
US20100222649A1 (en) | 2009-03-02 | 2010-09-02 | American Well Systems | Remote medical servicing |
US20100234695A1 (en) | 2009-03-12 | 2010-09-16 | Raytheon Company | Networked symbiotic edge user infrastructure |
US20100234786A1 (en) | 2009-02-12 | 2010-09-16 | Barry Neil Fulkerson | System and Method for Detection of Disconnection in an Extracorporeal Blood Circuit |
US20100234693A1 (en) | 2009-03-16 | 2010-09-16 | Robert Bosch Gmbh | Activity monitoring device and method |
US20100241011A1 (en) | 2009-03-20 | 2010-09-23 | Massachusetts Institute Of Technology | Calibration of Pulse Transit Time Measurements to Arterial Blood Pressure using External Arterial Pressure Applied along the Pulse Transit Path |
US7827011B2 (en) | 2005-05-03 | 2010-11-02 | Aware, Inc. | Method and system for real-time signal classification |
US20100280440A1 (en) | 2009-04-30 | 2010-11-04 | Medtronic, Inc. | Posture-responsive therapy control based on patient input |
US20100298661A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Method for generating alarms/alerts based on a patient's posture and vital signs |
US20100298651A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Cable system for generating signals for detecting motion and measuring vital signs |
US20100312115A1 (en) | 2009-06-05 | 2010-12-09 | General Electric Company | System and method for monitoring hemodynamic state |
US20100324386A1 (en) | 2009-06-17 | 2010-12-23 | Jim Moon | Body-worn pulse oximeter |
US20100331640A1 (en) | 2009-06-26 | 2010-12-30 | Nellcor Puritan Bennett Llc | Use of photodetector array to improve efficiency and accuracy of an optical medical sensor |
US20110066051A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066010A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066009A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066045A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066043A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | System for measuring vital signs during hemodialysis |
US20110066039A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US20110066050A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066044A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066006A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | System for measuring vital signs during hemodialysis |
US20110070829A1 (en) | 2009-09-24 | 2011-03-24 | Research In Motion Limited | Accelerometer tap detection to initiate nfc communication |
WO2011034881A1 (en) | 2009-09-15 | 2011-03-24 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110076942A1 (en) | 2009-09-30 | 2011-03-31 | Ebay Inc. | Network updates of time and location |
US20110093281A1 (en) | 2009-10-20 | 2011-04-21 | Otho Raymond Plummer | Generation and Data Management of a Medical Study Using Instruments in an Integrated Media and Medical System |
US20110105862A1 (en) | 2008-04-28 | 2011-05-05 | Universite Du Sud Toulon-Var | Device for acquiring and processing physiological data of an animal or of a human in the course of a physical or mental activity |
US20110144456A1 (en) | 2008-08-19 | 2011-06-16 | Koninklijke Philips Electrnics N.V. | Monitoring the blood pressure of a patient |
US20110152632A1 (en) | 2008-08-06 | 2011-06-23 | E-Vitae Pte. Ltd. | Universal Body Sensor Network |
US7976480B2 (en) | 2004-12-09 | 2011-07-12 | Motorola Solutions, Inc. | Wearable auscultation system and method |
US7983933B2 (en) | 2006-12-06 | 2011-07-19 | Microsoft Corporation | Patient monitoring via image capture |
US20110178375A1 (en) | 2010-01-19 | 2011-07-21 | Avery Dennison Corporation | Remote physiological monitoring |
US20110224564A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110257555A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257552A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257551A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257489A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257554A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
WO2011133582A1 (en) | 2010-04-19 | 2011-10-27 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110275907A1 (en) | 2010-05-07 | 2011-11-10 | Salvatore Richard Inciardi | Electronic Health Journal |
US20120065525A1 (en) | 2008-01-11 | 2012-03-15 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Pressure gauge, blood pressure gauge, method of determining pressure values, method of calibrating a pressure gauge, and computer program |
US20120123232A1 (en) | 2008-12-16 | 2012-05-17 | Kayvan Najarian | Method and apparatus for determining heart rate variability using wavelet transformation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644173A (en) * | 1994-10-25 | 1997-07-01 | Elliason; Kurt L. | Real time and/shed load based on received tier pricing and direct load control with processors for each load |
JP2001190526A (en) * | 2000-01-07 | 2001-07-17 | Minolta Co Ltd | Posture detecting device and respiratory function measuring device |
TWI282126B (en) * | 2001-08-30 | 2007-06-01 | Semiconductor Energy Lab | Method for manufacturing semiconductor device |
WO2006124494A1 (en) * | 2005-05-13 | 2006-11-23 | Virginia Tech Intellectual Properties, Inc. | TRANSITION-STATE INHIBITORS OF PIN1, α-KETOAMIDE-CONTAINING PEPTIDOMIMETICS, AND SYNTHESES THEREOF |
WO2006134415A1 (en) * | 2005-06-17 | 2006-12-21 | Productos Microcelulares De Colombia S.A. Promicolda | Improved seat frame having an improved structure |
JP2008040442A (en) * | 2006-07-12 | 2008-02-21 | Ricoh Co Ltd | Fixing device |
JP4976934B2 (en) * | 2007-06-29 | 2012-07-18 | 株式会社東芝 | Information processing apparatus and control method |
US7911970B2 (en) * | 2009-02-02 | 2011-03-22 | Harvey Timothy J | Systems and methods for presenting electronic communication packets using a logic analyzer |
-
2009
- 2009-09-14 US US12/559,430 patent/US20110066008A1/en not_active Abandoned
- 2009-09-14 US US12/559,435 patent/US8740807B2/en active Active
- 2009-09-14 US US12/559,429 patent/US10123722B2/en active Active
- 2009-09-14 US US12/559,422 patent/US8545417B2/en active Active
- 2009-09-14 US US12/559,426 patent/US10595746B2/en active Active
- 2009-09-14 US US12/559,419 patent/US8622922B2/en active Active
-
2010
- 2010-09-14 EP EP15159340.7A patent/EP2910182B1/en active Active
- 2010-09-14 WO PCT/US2010/048729 patent/WO2011032132A2/en active Application Filing
- 2010-09-14 SG SG10201405698RA patent/SG10201405698RA/en unknown
- 2010-09-14 EP EP10816259.5A patent/EP2470068B1/en active Active
- 2010-09-14 SG SG2012017851A patent/SG179128A1/en unknown
-
2014
- 2014-05-31 US US14/292,872 patent/US9339211B2/en active Active
-
2020
- 2020-03-23 US US16/827,162 patent/US20200359934A1/en not_active Abandoned
Patent Citations (492)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4086916A (en) | 1975-09-19 | 1978-05-02 | Joseph J. Cayre | Cardiac monitor wristwatch |
US4263918A (en) | 1977-03-21 | 1981-04-28 | Biomega Corporation | Methods of and apparatus for the measurement of blood pressure |
US4270547A (en) | 1978-10-03 | 1981-06-02 | University Patents, Inc. | Vital signs monitoring system |
US4305400A (en) | 1979-10-15 | 1981-12-15 | Squibb Vitatek Inc. | Respiration monitoring method and apparatus including cardio-vascular artifact detection |
US4582068A (en) | 1981-12-21 | 1986-04-15 | American Home Products Corporation | Systems and methods for processing physiological signals |
US4722351A (en) | 1981-12-21 | 1988-02-02 | American Home Products Corporation | Systems and methods for processing physiological signals |
US4653498A (en) | 1982-09-13 | 1987-03-31 | Nellcor Incorporated | Pulse oximeter monitor |
US4653498B1 (en) | 1982-09-13 | 1989-04-18 | ||
US5224928A (en) | 1983-08-18 | 1993-07-06 | Drug Delivery Systems Inc. | Mounting system for transdermal drug applicator |
US4710164A (en) | 1984-05-01 | 1987-12-01 | Henry Ford Hospital | Automated hemodialysis control based upon patient blood pressure and heart rate |
US4577639A (en) | 1984-11-08 | 1986-03-25 | Spacelabs, Inc. | Apparatus and method for automatic lead selection in electrocardiography |
US4802486A (en) | 1985-04-01 | 1989-02-07 | Nellcor Incorporated | Method and apparatus for detecting optical pulses |
US4807638A (en) | 1987-10-21 | 1989-02-28 | Bomed Medical Manufacturing, Ltd. | Noninvasive continuous mean arterial blood prssure monitor |
US4905697A (en) | 1989-02-14 | 1990-03-06 | Cook Pacemaker Corporation | Temperature-controlled cardiac pacemaker responsive to body motion |
US5025791A (en) | 1989-06-28 | 1991-06-25 | Colin Electronics Co., Ltd. | Pulse oximeter with physical motion sensor |
US5339818A (en) | 1989-09-20 | 1994-08-23 | University Of Utah Research Foundation | Method for determining blood pressure utilizing a neural network |
US5190038A (en) | 1989-11-01 | 1993-03-02 | Novametrix Medical Systems, Inc. | Pulse oximeter with improved accuracy and response time |
US5448991A (en) | 1989-11-01 | 1995-09-12 | Polson; Michael J. R. | Method of measuring the oxygen saturation in pulsating blood flow |
US5820550A (en) | 1989-11-01 | 1998-10-13 | Novametrix Medical Systems Inc. | Pulse oximeter with improved accuracy and response time |
EP0443267A1 (en) | 1990-02-23 | 1991-08-28 | Sentinel Monitoring, Inc. | Method and apparatus for continuous non-invasive blood pressure monitoring |
US5316008A (en) | 1990-04-06 | 1994-05-31 | Casio Computer Co., Ltd. | Measurement of electrocardiographic wave and sphygmus |
US5465082A (en) | 1990-07-27 | 1995-11-07 | Executone Information Systems, Inc. | Apparatus for automating routine communication in a facility |
US5140990A (en) | 1990-09-06 | 1992-08-25 | Spacelabs, Inc. | Method of measuring blood pressure with a photoplethysmograph |
US7383070B2 (en) | 1991-03-07 | 2008-06-03 | Masimo Corporation | Signal processing apparatus |
US7509154B2 (en) | 1991-03-07 | 2009-03-24 | Masimo Corporation | Signal processing apparatus |
US5482036A (en) | 1991-03-07 | 1996-01-09 | Masimo Corporation | Signal processing apparatus and method |
US6036642A (en) | 1991-03-07 | 2000-03-14 | Masimo Corporation | Signal processing apparatus and method |
US5490505A (en) | 1991-03-07 | 1996-02-13 | Masimo Corporation | Signal processing apparatus |
US6081735A (en) | 1991-03-07 | 2000-06-27 | Masimo Corporation | Signal processing apparatus |
US6157850A (en) | 1991-03-07 | 2000-12-05 | Masimo Corporation | Signal processing apparatus |
US6206830B1 (en) | 1991-03-07 | 2001-03-27 | Masimo Corporation | Signal processing apparatus and method |
US6236872B1 (en) | 1991-03-07 | 2001-05-22 | Masimo Corporation | Signal processing apparatus |
US6263222B1 (en) | 1991-03-07 | 2001-07-17 | Masimo Corporation | Signal processing apparatus |
US6650917B2 (en) | 1991-03-07 | 2003-11-18 | Masimo Corporation | Signal processing apparatus |
US7215984B2 (en) | 1991-03-07 | 2007-05-08 | Masimo Corporation | Signal processing apparatus |
US5632272A (en) | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
US6745060B2 (en) | 1991-03-07 | 2004-06-01 | Masimo Corporation | Signal processing apparatus |
US5769785A (en) | 1991-03-07 | 1998-06-23 | Masimo Corporation | Signal processing apparatus and method |
US5685299A (en) | 1991-03-07 | 1997-11-11 | Masimo Corporation | Signal processing apparatus |
US6541756B2 (en) | 1991-03-21 | 2003-04-01 | Masimo Corporation | Shielded optical probe having an electrical connector |
US5197489A (en) | 1991-06-17 | 1993-03-30 | Precision Control Design, Inc. | Activity monitoring apparatus with configurable filters |
US5247931A (en) | 1991-09-16 | 1993-09-28 | Mine Safety Appliances Company | Diagnostic sensor clasp utilizing a slot, pivot and spring hinge mechanism |
US20010045395A1 (en) | 1991-10-11 | 2001-11-29 | Yuli Kitaevich | Hemofiltration system and method based on monitored patient parameters |
US5289824A (en) | 1991-12-26 | 1994-03-01 | Instromedix, Inc. | Wrist-worn ECG monitor |
US5515858A (en) | 1992-02-28 | 1996-05-14 | Myllymaeki; Matti | Wrist-held monitoring device for physical condition |
US5899855A (en) | 1992-11-17 | 1999-05-04 | Health Hero Network, Inc. | Modular microprocessor-based health monitoring system |
US5485838A (en) | 1992-12-07 | 1996-01-23 | Nihon Kohden Corporation | Non-invasive blood pressure measurement device |
US5913827A (en) | 1993-03-19 | 1999-06-22 | Gorman; Peter Gregory | Personal monitor and method for monitoring a biomedical condition in the presence of interference |
US5517988A (en) | 1993-12-11 | 1996-05-21 | Hewlett-Packard Company | Method for detecting an irregular state in a non-invasive pulse oximeter system |
USRE37852E1 (en) | 1994-03-30 | 2002-09-17 | Nihon Kohden Corporation | Blood pressure monitoring system |
US6011985A (en) | 1994-04-01 | 2000-01-04 | University Of South Florida | Medical diagnostic instrument using light-to-frequency converter |
US5575284A (en) | 1994-04-01 | 1996-11-19 | University Of South Florida | Portable pulse oximeter |
US6371921B1 (en) | 1994-04-15 | 2002-04-16 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US5649543A (en) | 1994-06-06 | 1997-07-22 | Nihon Kohden Corporation | Pulse-wave propagation time basis blood pressure monitor |
US5549650A (en) | 1994-06-13 | 1996-08-27 | Pacesetter, Inc. | System and method for providing hemodynamically optimal pacing therapy |
US5848373A (en) | 1994-06-24 | 1998-12-08 | Delorme Publishing Company | Computer aided map location system |
US5524637A (en) | 1994-06-29 | 1996-06-11 | Erickson; Jon W. | Interactive system for measuring physiological exertion |
US5709205A (en) | 1994-08-23 | 1998-01-20 | Hewlett-Packard Company | Pulsoximetry sensor |
US5873834A (en) | 1994-11-15 | 1999-02-23 | Omron Corporation | Blood pressure detecting device |
US5919141A (en) | 1994-11-15 | 1999-07-06 | Life Sensing Instrument Company, Inc. | Vital sign remote monitoring device |
US5680870A (en) | 1995-01-04 | 1997-10-28 | Johnson & Johnson Medical, Inc. | Oscillometric blood pressure monitor which acquires blood pressure signals from composite arterial pulse signal |
US5593431A (en) * | 1995-03-30 | 1997-01-14 | Medtronic, Inc. | Medical service employing multiple DC accelerometers for patient activity and posture sensing and method |
US6041783A (en) | 1995-06-07 | 2000-03-28 | Nellcor Puritan Bennett Corporation | Integrated activity sensor |
US5645060A (en) | 1995-06-14 | 1997-07-08 | Nellcor Puritan Bennett Incorporated | Method and apparatus for removing artifact and noise from pulse oximetry |
US5766131A (en) | 1995-08-04 | 1998-06-16 | Seiko Epson Corporation | Pulse-wave measuring apparatus |
US5743856A (en) | 1995-11-06 | 1998-04-28 | Colin Corporation | Apparatus for measuring pulse-wave propagation velocity |
US6589170B1 (en) | 1995-11-13 | 2003-07-08 | Ge Medical Systems Information Technologies, Inc. | Medical telemetry system with cellular reception of patient data |
US5588427A (en) | 1995-11-20 | 1996-12-31 | Spacelabs Medical, Inc. | Enhancement of physiological signals using fractal analysis |
US7373191B2 (en) | 1996-03-05 | 2008-05-13 | Nellcor Puritan Bennett Inc. | Shunt barrier in pulse oximeter sensor |
US6287262B1 (en) | 1996-06-12 | 2001-09-11 | Seiko Epson Corporation | Device for measuring calorie expenditure and device for measuring body temperature |
US5941836A (en) | 1996-06-12 | 1999-08-24 | Friedman; Mark B. | Patient position monitor |
US6129686A (en) | 1996-06-12 | 2000-10-10 | Friedman; Mark B. | Patient position monitor |
US7041060B2 (en) | 1996-06-26 | 2006-05-09 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US20030208335A1 (en) | 1996-07-03 | 2003-11-06 | Hitachi, Ltd. | Method, apparatus and system for recognizing actions |
US6081742A (en) | 1996-09-10 | 2000-06-27 | Seiko Epson Corporation | Organism state measuring device and relaxation instructing device |
US5853370A (en) | 1996-09-13 | 1998-12-29 | Non-Invasive Technology, Inc. | Optical system and method for non-invasive imaging of biological tissue |
US6845256B2 (en) | 1996-10-10 | 2005-01-18 | Nellcor Puritan Bennett Incorporated | Motion compatible sensor for non-invasive optical blood analysis |
US20050070773A1 (en) | 1996-10-10 | 2005-03-31 | Nellcor Puritan Bennett Incorporated | Motion compatible sensor for non-invasive optical blood analysis |
US6018673A (en) | 1996-10-10 | 2000-01-25 | Nellcor Puritan Bennett Incorporated | Motion compatible sensor for non-invasive optical blood analysis |
US5865755A (en) | 1996-10-11 | 1999-02-02 | Dxtek, Inc. | Method and apparatus for non-invasive, cuffless, continuous blood pressure determination |
US5857975A (en) | 1996-10-11 | 1999-01-12 | Dxtek, Inc. | Method and apparatus for non-invasive, cuffless continuous blood pressure determination |
US5800349A (en) | 1996-10-15 | 1998-09-01 | Nonin Medical, Inc. | Offset pulse oximeter sensor |
US5964701A (en) | 1996-10-24 | 1999-10-12 | Massachusetts Institute Of Technology | Patient monitoring finger ring sensor |
US6064910A (en) * | 1996-11-25 | 2000-05-16 | Pacesetter Ab | Respirator rate/respiration depth detector and device for monitoring respiratory activity employing same |
US5964720A (en) | 1996-11-29 | 1999-10-12 | Adaptivity Devices Ltd. | Method and system for monitoring the physiological condition of a patient |
US6198394B1 (en) | 1996-12-05 | 2001-03-06 | Stephen C. Jacobsen | System for remote monitoring of personnel |
US5876353A (en) * | 1997-01-31 | 1999-03-02 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
US6159147A (en) | 1997-02-28 | 2000-12-12 | Qrs Diagnostics, Llc | Personal computer card for collection of real-time biological data |
US20060271404A1 (en) | 1997-03-28 | 2006-11-30 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US6002952A (en) | 1997-04-14 | 1999-12-14 | Masimo Corporation | Signal processing apparatus and method |
US6067462A (en) | 1997-04-14 | 2000-05-23 | Masimo Corporation | Signal processing apparatus and method |
US6699194B1 (en) | 1997-04-14 | 2004-03-02 | Masimo Corporation | Signal processing apparatus and method |
US5865756A (en) | 1997-06-06 | 1999-02-02 | Southwest Research Institute | System and method for identifying and correcting abnormal oscillometric pulse waves |
US5895359A (en) | 1997-06-06 | 1999-04-20 | Southwest Research Institute | System and method for correcting a living subject's measured blood pressure |
US6732064B1 (en) | 1997-07-02 | 2004-05-04 | Nonlinear Solutions, Inc. | Detection and classification system for analyzing deterministic properties of data using correlation parameters |
US6262769B1 (en) | 1997-07-31 | 2001-07-17 | Flashpoint Technology, Inc. | Method and system for auto rotating a graphical user interface for managing portrait and landscape images in an image capture unit |
US7383069B2 (en) | 1997-08-14 | 2008-06-03 | Sensys Medical, Inc. | Method of sample control and calibration adjustment for use with a noninvasive analyzer |
US6198951B1 (en) | 1997-09-05 | 2001-03-06 | Seiko Epson Corporation | Reflection photodetector and biological information measuring instrument |
GB2329250A (en) | 1997-09-11 | 1999-03-17 | Kevin Doughty | Non-intrusive electronic determination of the orientation and presence of a person or infant in a bed, cot or chair using primary and secondary coils |
US5971930A (en) | 1997-10-17 | 1999-10-26 | Siemens Medical Systems, Inc. | Method and apparatus for removing artifact from physiological signals |
WO1999032030A1 (en) | 1997-12-22 | 1999-07-01 | Btg International Limited | Artefact reduction in photoplethysmography |
US7542878B2 (en) | 1998-03-03 | 2009-06-02 | Card Guard Scientific Survival Ltd. | Personal health monitor and a method for health monitoring |
US7299159B2 (en) | 1998-03-03 | 2007-11-20 | Reuven Nanikashvili | Health monitor system and method for health monitoring |
US6057758A (en) | 1998-05-20 | 2000-05-02 | Hewlett-Packard Company | Handheld clinical terminal |
US6094592A (en) | 1998-05-26 | 2000-07-25 | Nellcor Puritan Bennett, Inc. | Methods and apparatus for estimating a physiological parameter using transforms |
US6334065B1 (en) | 1998-06-03 | 2001-12-25 | Masimo Corporation | Stereo pulse oximeter |
US6934571B2 (en) | 1998-08-14 | 2005-08-23 | Bioasyst, L.L.C. | Integrated physiologic sensor system |
US6606993B1 (en) | 1998-08-14 | 2003-08-19 | Bioasyst | Integrated physiologic sensor system |
US6199550B1 (en) | 1998-08-14 | 2001-03-13 | Bioasyst, L.L.C. | Integrated physiologic sensor system |
US6491647B1 (en) | 1998-09-23 | 2002-12-10 | Active Signal Technologies, Inc. | Physiological sensing device |
US20010004234A1 (en) | 1998-10-27 | 2001-06-21 | Petelenz Tomasz J. | Elderly fall monitoring method and device |
US6160478A (en) | 1998-10-27 | 2000-12-12 | Sarcos Lc | Wireless health monitoring system |
US20030158699A1 (en) | 1998-12-09 | 2003-08-21 | Christopher P. Townsend | Orientation sensor |
US6168569B1 (en) | 1998-12-22 | 2001-01-02 | Mcewen James Allen | Apparatus and method for relating pain and activity of a patient |
US20030130590A1 (en) | 1998-12-23 | 2003-07-10 | Tuan Bui | Method and apparatus for providing patient care |
US6261247B1 (en) | 1998-12-31 | 2001-07-17 | Ball Semiconductor, Inc. | Position sensing system |
US6684090B2 (en) | 1999-01-07 | 2004-01-27 | Masimo Corporation | Pulse oximetry data confidence indicator |
US6117077A (en) | 1999-01-22 | 2000-09-12 | Del Mar Medical Systems, Llc | Long-term, ambulatory physiological recorder |
US7530949B2 (en) | 1999-01-25 | 2009-05-12 | Masimo Corporation | Dual-mode pulse oximeter |
US6770028B1 (en) | 1999-01-25 | 2004-08-03 | Masimo Corporation | Dual-mode pulse oximeter |
US6584336B1 (en) | 1999-01-25 | 2003-06-24 | Masimo Corporation | Universal/upgrading pulse oximeter |
US7048687B1 (en) | 1999-04-14 | 2006-05-23 | Ob Scientific, Inc. | Limited use medical probe |
US6251080B1 (en) | 1999-05-13 | 2001-06-26 | Del Mar Medical Systems, Llc | Self contained ambulatory blood pressure cincture |
US20050187796A1 (en) | 1999-06-23 | 2005-08-25 | Visicu, Inc. | System and method for displaying a health status of hospitalized patients |
US6516218B1 (en) | 1999-06-30 | 2003-02-04 | Industrial Technology Research Institute | Method for detecting leads off in multi-electrode medical diagnostic system |
US20040077934A1 (en) | 1999-07-06 | 2004-04-22 | Intercure Ltd. | Interventive-diagnostic device |
US7628730B1 (en) | 1999-07-08 | 2009-12-08 | Icon Ip, Inc. | Methods and systems for controlling an exercise apparatus using a USB compatible portable remote device |
US6516289B2 (en) | 1999-07-21 | 2003-02-04 | Daniel David | Physiological measuring system comprising a garment and sensing apparatus incorporated in the garment |
US6388240B2 (en) | 1999-08-26 | 2002-05-14 | Masimo Corporation | Shielded optical probe and method having a longevity indication |
US7186966B2 (en) | 1999-08-26 | 2007-03-06 | Masimo Corporation | Amount of use tracking device and method for medical product |
US20070146145A1 (en) * | 1999-09-15 | 2007-06-28 | Lehrman Michael L | System and method for analyzing activity of a body |
US7479890B2 (en) | 1999-09-15 | 2009-01-20 | Ilife Solutions, Inc. | System and method for analyzing activity of a body |
US6790178B1 (en) | 1999-09-24 | 2004-09-14 | Healthetech, Inc. | Physiological monitor and associated computation, display and communication unit |
US20010013826A1 (en) | 1999-09-24 | 2001-08-16 | Kavlico Corporation | Versatile smart networkable sensor |
US20040162493A1 (en) | 1999-10-07 | 2004-08-19 | Mills Alexander K. | Device and method for noninvasive continuous determination of physiologic characteristics |
US6527729B1 (en) | 1999-11-10 | 2003-03-04 | Pacesetter, Inc. | Method for monitoring patient using acoustic sensor |
US6546267B1 (en) | 1999-11-26 | 2003-04-08 | Nihon Kohden Corporation | Biological sensor |
US20030135099A1 (en) | 1999-12-09 | 2003-07-17 | Ammar Al-Ali | Isolation and communication element for a resposable pulse oximetry sensor |
US7156809B2 (en) | 1999-12-17 | 2007-01-02 | Q-Tec Systems Llc | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US7020578B2 (en) | 2000-02-02 | 2006-03-28 | The General Hospital Corporation | Method for evaluating novel, stroke treatments using a tissue risk map |
US6893396B2 (en) | 2000-03-01 | 2005-05-17 | I-Medik, Inc. | Wireless internet bio-telemetry monitoring system and interface |
US6443890B1 (en) | 2000-03-01 | 2002-09-03 | I-Medik, Inc. | Wireless internet bio-telemetry monitoring system |
US6985078B2 (en) | 2000-03-14 | 2006-01-10 | Kabushiki Kaisha Toshiba | Wearable life support apparatus and method |
US7670295B2 (en) | 2000-04-17 | 2010-03-02 | Vivometrics, Inc. | Systems and methods for ambulatory monitoring of physiological signs |
US20020032386A1 (en) | 2000-04-17 | 2002-03-14 | Sackner Marvin A. | Systems and methods for ambulatory monitoring of physiological signs |
US6551252B2 (en) | 2000-04-17 | 2003-04-22 | Vivometrics, Inc. | Systems and methods for ambulatory monitoring of physiological signs |
US6480729B2 (en) | 2000-04-28 | 2002-11-12 | Alexander K. Mills | Method for determining blood constituents |
US7384398B2 (en) | 2000-05-05 | 2008-06-10 | Universite De Rennes | Device and method for detecting abnormal situations |
US20030153836A1 (en) | 2000-05-05 | 2003-08-14 | Claude Gagnadre | Device and method for detecting abnormal situations |
US6533729B1 (en) | 2000-05-10 | 2003-03-18 | Motorola Inc. | Optical noninvasive blood pressure sensor and method |
US20030097046A1 (en) | 2000-05-16 | 2003-05-22 | Takanori Sakamaki | Vital sign monitor |
US6616606B1 (en) | 2000-05-19 | 2003-09-09 | Welch Allyn Protocol, Inc. | Patient monitoring system |
US20020013517A1 (en) | 2000-05-19 | 2002-01-31 | West Kenneth G. | Patient monitoring system |
US6544173B2 (en) | 2000-05-19 | 2003-04-08 | Welch Allyn Protocol, Inc. | Patient monitoring system |
US6544174B2 (en) | 2000-05-19 | 2003-04-08 | Welch Allyn Protocol, Inc. | Patient monitoring system |
US20020193692A1 (en) | 2000-05-26 | 2002-12-19 | Colin Corporation | Blood pressure monitor apparatus |
US7485095B2 (en) | 2000-05-30 | 2009-02-03 | Vladimir Shusterman | Measurement and analysis of trends in physiological and/or health data |
US6605038B1 (en) | 2000-06-16 | 2003-08-12 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
US20090118590A1 (en) | 2000-06-16 | 2009-05-07 | Eric Teller | Multi-sensor system, device, and method for deriving human status information |
US7689437B1 (en) | 2000-06-16 | 2010-03-30 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
US20020193671A1 (en) | 2000-08-21 | 2002-12-19 | Ciurczak Emil W. | Near infrared blood glucose monitoring system |
US20040054821A1 (en) | 2000-08-22 | 2004-03-18 | Warren Christopher E. | Multifunctional network interface node |
US20020072859A1 (en) | 2000-10-06 | 2002-06-13 | Osami Kajimoto | Mentation test method and mentation test apparatus |
US20020109600A1 (en) * | 2000-10-26 | 2002-08-15 | Mault James R. | Body supported activity and condition monitor |
US6976958B2 (en) | 2000-12-15 | 2005-12-20 | Q-Tec Systems Llc | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US20040162466A1 (en) | 2000-12-15 | 2004-08-19 | Quy Roger J. | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US6811538B2 (en) | 2000-12-29 | 2004-11-02 | Ares Medical, Inc. | Sleep apnea risk evaluation |
US20020170193A1 (en) | 2001-02-23 | 2002-11-21 | Townsend Christopher P. | Posture and body movement measuring system |
US7698830B2 (en) | 2001-02-23 | 2010-04-20 | Microstrain, Inc. | Posture and body movement measuring system |
US20020151805A1 (en) | 2001-03-01 | 2002-10-17 | Nihon Kohden Corporation | Blood flow volume measurement method and vital sign monitoring apparatus |
US6526310B1 (en) | 2001-03-02 | 2003-02-25 | Ge Medical Systems Information Technologies, Inc. | Patient transceiver system which uses conductors within leads of leadset to provide phased antenna array |
US6595929B2 (en) | 2001-03-30 | 2003-07-22 | Bodymedia, Inc. | System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow |
US20020156354A1 (en) | 2001-04-20 | 2002-10-24 | Larson Eric Russell | Pulse oximetry sensor with improved spring |
US6694177B2 (en) | 2001-04-23 | 2004-02-17 | Cardionet, Inc. | Control of data transmission between a remote monitoring unit and a central unit |
US20020198679A1 (en) | 2001-06-22 | 2002-12-26 | Victor Hendrik Johannes | Method and system for collecting and retrieving time-series, real-time and non-real-time data |
US6850787B2 (en) | 2001-06-29 | 2005-02-01 | Masimo Laboratories, Inc. | Signal component processor |
US20030004420A1 (en) | 2001-07-02 | 2003-01-02 | Colin Corporation | Pulse-wave-propagation-velocity-related-information obtaining apparatus |
US6503206B1 (en) | 2001-07-27 | 2003-01-07 | Vsm Medtech Ltd | Apparatus having redundant sensors for continuous monitoring of vital signs and related methods |
US7598878B2 (en) | 2001-12-10 | 2009-10-06 | Rami Goldreich | Method and device for measuring physiological parameters at the wrist |
US20050027205A1 (en) | 2001-12-14 | 2005-02-03 | Lionel Tarassenko | Combining measurements from breathing rate sensors |
US6997882B1 (en) * | 2001-12-21 | 2006-02-14 | Barron Associates, Inc. | 6-DOF subject-monitoring device and method |
US7355512B1 (en) | 2002-01-24 | 2008-04-08 | Masimo Corporation | Parallel alarm processor |
US20030167012A1 (en) | 2002-03-01 | 2003-09-04 | Ge Medical Systems Information Technologies, Inc. | Continuous, non-invasive technique for measuring blood pressure using impedance plethysmography |
US20030171662A1 (en) | 2002-03-07 | 2003-09-11 | O'connor Michael William | Non-adhesive flexible electro-optical sensor for fingertip trans-illumination |
US20030181815A1 (en) | 2002-03-22 | 2003-09-25 | Ebner Dennis M. | Method for continuous monitoring of patients to detect the potential onset of sepsis |
US20080027341A1 (en) | 2002-03-26 | 2008-01-31 | Marvin Sackner | Method and system for extracting cardiac parameters from plethysmographic signals |
US20040111033A1 (en) | 2002-04-11 | 2004-06-10 | Harry Oung | Method and apparatus for monitoring the autonomic nervous system using non-stationary spectral analysis of heart rate and respiratory activity |
US7079888B2 (en) | 2002-04-11 | 2006-07-18 | Ansar, Inc. | Method and apparatus for monitoring the autonomic nervous system using non-stationary spectral analysis of heart rate and respiratory activity |
US7241265B2 (en) | 2002-06-05 | 2007-07-10 | Diabetes Diagnostics, Inc. | Analyte testing device |
US7257438B2 (en) | 2002-07-23 | 2007-08-14 | Datascope Investment Corp. | Patient-worn medical monitoring device |
US20040019288A1 (en) | 2002-07-23 | 2004-01-29 | Eric Kinast | Patient-worn medical monitoring device |
US7029447B2 (en) | 2002-08-09 | 2006-04-18 | Instrumentarium Corporation | Measuring blood pressure |
US20040030261A1 (en) | 2002-08-09 | 2004-02-12 | Borje Rantala | Measuring blood pressure |
US6879850B2 (en) | 2002-08-16 | 2005-04-12 | Optical Sensors Incorporated | Pulse oximeter with motion detection |
US20040034293A1 (en) | 2002-08-16 | 2004-02-19 | Optical Sensors Inc. | Pulse oximeter with motion detection |
US20040034294A1 (en) | 2002-08-16 | 2004-02-19 | Optical Sensors, Inc. | Pulse oximeter |
US20080167535A1 (en) | 2002-08-22 | 2008-07-10 | Stivoric John M | Devices and systems for contextual and physiological-based reporting, entertainment, control of other devices, health assessment and therapy |
US20080287751A1 (en) | 2002-08-22 | 2008-11-20 | Stivoric John M | Apparatus for detecting human physiological and contextual information |
US7020508B2 (en) | 2002-08-22 | 2006-03-28 | Bodymedia, Inc. | Apparatus for detecting human physiological and contextual information |
US20080208273A1 (en) | 2002-08-26 | 2008-08-28 | Owen James M | Pulse Detection Using Patient Physiological Signals |
US20060074321A1 (en) | 2002-08-27 | 2006-04-06 | Kenji Kouchi | Vital sign display and its method |
US7296312B2 (en) | 2002-09-06 | 2007-11-20 | Hill-Rom Services, Inc. | Hospital bed |
US20040122315A1 (en) | 2002-09-24 | 2004-06-24 | Krill Jerry A. | Ingestible medical payload carrying capsule with wireless communication |
US20040073128A1 (en) | 2002-10-09 | 2004-04-15 | Cardiac Pacemakers, Inc. | Detection of congestion from monitoring patient response to a recumbent position |
US6947781B2 (en) | 2002-12-13 | 2005-09-20 | Massachusetts Institute Of Technology | Vibratory venous and arterial oximetry sensor |
US20040133079A1 (en) | 2003-01-02 | 2004-07-08 | Mazar Scott Thomas | System and method for predicting patient health within a patient management system |
US20060142648A1 (en) | 2003-01-07 | 2006-06-29 | Triage Data Networks | Wireless, internet-based, medical diagnostic system |
US20080103405A1 (en) | 2003-01-07 | 2008-05-01 | Triage Data Networks | Wireless, internet-based, medical diagnostic system |
US7225007B2 (en) | 2003-01-24 | 2007-05-29 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US20040193063A1 (en) | 2003-02-28 | 2004-09-30 | Teiyuu Kimura | Method and apparatus for measuring biological condition |
US20050206518A1 (en) | 2003-03-21 | 2005-09-22 | Welch Allyn Protocol, Inc. | Personal status physiologic monitor system and architecture and related monitoring methods |
US7382247B2 (en) | 2003-03-21 | 2008-06-03 | Welch Allyn, Inc. | Personal status physiologic monitor system and architecture and related monitoring methods |
US20050119586A1 (en) | 2003-04-10 | 2005-06-02 | Vivometrics, Inc. | Systems and methods for respiratory event detection |
US20040225207A1 (en) | 2003-05-09 | 2004-11-11 | Sang-Kon Bae | Ear type apparatus for measuring a bio signal and measuring method therefor |
US20040267099A1 (en) | 2003-06-30 | 2004-12-30 | Mcmahon Michael D. | Pain assessment user interface |
US20080214963A1 (en) | 2003-07-02 | 2008-09-04 | Commissariat A L'energie Atomique | Method for measuring movements of a person wearing a portable detector |
US20090076398A1 (en) | 2003-07-07 | 2009-03-19 | Nellcor Puritan Bennett Ireland | Continuous Non-Invasive Blood Pressure Measurement Apparatus and Methods Providing Automatic Recalibration |
US7455643B1 (en) | 2003-07-07 | 2008-11-25 | Nellcor Puritan Bennett Ireland | Continuous non-invasive blood pressure measurement apparatus and methods providing automatic recalibration |
US20060270949A1 (en) | 2003-08-15 | 2006-11-30 | Mathie Merryn J | Monitoring apparatus for ambulatory subject and a method for monitoring the same |
EP1938862A2 (en) | 2003-08-18 | 2008-07-02 | Cardiac Pacemakers, Inc. | Disordered breathing management system and methods |
US20050043598A1 (en) | 2003-08-22 | 2005-02-24 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US20050059870A1 (en) | 2003-08-25 | 2005-03-17 | Aceti John Gregory | Processing methods and apparatus for monitoring physiological parameters using physiological characteristics present within an auditory canal |
US7502643B2 (en) | 2003-09-12 | 2009-03-10 | Bodymedia, Inc. | Method and apparatus for measuring heart related parameters |
US20080161707A1 (en) | 2003-09-12 | 2008-07-03 | Jonathan Farringdon | Method and apparatus for measuring heart-related parameters and deriving human status parameters from sensed physiological and contextual parameters |
US20050113703A1 (en) | 2003-09-12 | 2005-05-26 | Jonathan Farringdon | Method and apparatus for measuring heart related parameters |
US7678061B2 (en) | 2003-09-18 | 2010-03-16 | Cardiac Pacemakers, Inc. | System and method for characterizing patient respiration |
US20090131759A1 (en) | 2003-11-04 | 2009-05-21 | Nathaniel Sims | Life sign detection and health state assessment system |
US20070293781A1 (en) * | 2003-11-04 | 2007-12-20 | Nathaniel Sims | Respiration Motion Detection and Health State Assesment System |
US20050124866A1 (en) | 2003-11-12 | 2005-06-09 | Joseph Elaz | Healthcare processing device and display system |
US20050240087A1 (en) | 2003-11-18 | 2005-10-27 | Vivometrics Inc. | Method and system for processing data from ambulatory physiological monitoring |
US8137270B2 (en) | 2003-11-18 | 2012-03-20 | Adidas Ag | Method and system for processing data from ambulatory physiological monitoring |
US20050113107A1 (en) | 2003-11-21 | 2005-05-26 | Xerox Corporation | Method for determining proximity of devices in a wireless network |
US20050124903A1 (en) | 2003-12-05 | 2005-06-09 | Luchy Roteliuk | Pressure-based system and method for determining cardiac stroke volume |
US20050171444A1 (en) | 2003-12-08 | 2005-08-04 | Nihon Kohden Corporation | Vital sign telemeter |
US20050149350A1 (en) | 2003-12-24 | 2005-07-07 | Kerr Roger S. | Patient information management system and method |
US7301451B2 (en) | 2003-12-31 | 2007-11-27 | Ge Medical Systems Information Technologies, Inc. | Notification alarm transfer methods, system, and device |
US7400919B2 (en) | 2004-02-25 | 2008-07-15 | Nellcor Puritan Bennett Llc | Oximeter ambient light cancellation |
US7194293B2 (en) | 2004-03-08 | 2007-03-20 | Nellcor Puritan Bennett Incorporated | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US20050209511A1 (en) | 2004-03-16 | 2005-09-22 | Heruth Kenneth T | Collecting activity and sleep quality information via a medical device |
US20050234317A1 (en) | 2004-03-19 | 2005-10-20 | Kiani Massi E | Low power and personal pulse oximetry systems |
US7351206B2 (en) | 2004-03-30 | 2008-04-01 | Kabushiki Kaisha Toshiba | Apparatus for and method of biotic sleep state determining |
US20050228298A1 (en) | 2004-04-07 | 2005-10-13 | Triage Data Networks | Device, system and method for monitoring vital signs |
US20050228301A1 (en) | 2004-04-07 | 2005-10-13 | Triage Data Networks | Blood-pressure monitoring device featuring a calibration-based analysis |
US20050228296A1 (en) | 2004-04-07 | 2005-10-13 | Banet Matthew J | Cuffless System for Measuring Blood Pressure |
US20050251232A1 (en) | 2004-05-10 | 2005-11-10 | Hartley Craig J | Apparatus and methods for monitoring heart rate and respiration rate and for monitoring and maintaining body temperature in anesthetized mammals undergoing diagnostic or surgical procedures |
US20050265267A1 (en) | 2004-05-17 | 2005-12-01 | Sonosite, Inc. | Processing of medical signals |
US20050261565A1 (en) | 2004-05-18 | 2005-11-24 | Micron Medical Products | Discretely coated sensor for use in medical electrodes |
US20050261593A1 (en) | 2004-05-20 | 2005-11-24 | Zhang Yuan T | Methods for measuring blood pressure with automatic compensations |
US20080162496A1 (en) | 2004-06-02 | 2008-07-03 | Richard Postrel | System and method for centralized management and monitoring of healthcare services |
US7715984B2 (en) | 2004-06-04 | 2010-05-11 | Schlumberger Technology Corporation | Method for continuous interpretation of monitoring data |
US20050283088A1 (en) | 2004-06-16 | 2005-12-22 | Bernstein Donald P | Apparatus and method for determination of stroke volume using the brachial artery |
US7509131B2 (en) | 2004-06-29 | 2009-03-24 | Microsoft Corporation | Proximity detection using wireless signal strengths |
WO2006005169A1 (en) | 2004-07-09 | 2006-01-19 | Telemedic Inc | Vital sign monitoring system and method |
US20100056886A1 (en) | 2004-07-09 | 2010-03-04 | Jean Denis Hurtubise | Vital sign monitor system and method |
US20060036141A1 (en) | 2004-07-13 | 2006-02-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7522035B2 (en) | 2004-07-23 | 2009-04-21 | Innovalarm Corporation | Enhanced bedside sound monitoring and alarm response method, system and device |
US7508307B2 (en) | 2004-07-23 | 2009-03-24 | Innovalarm Corporation | Home health and medical monitoring method and service |
US7477143B2 (en) | 2004-07-23 | 2009-01-13 | Innovalarm Corporation | Enhanced personal monitoring and alarm response method and system |
US7656287B2 (en) | 2004-07-23 | 2010-02-02 | Innovalarm Corporation | Alert system with enhanced waking capabilities |
US7115824B2 (en) | 2004-08-03 | 2006-10-03 | Kam Chun Lo | Tilt switch and system |
US20060047215A1 (en) | 2004-09-01 | 2006-03-02 | Welch Allyn, Inc. | Combined sensor assembly |
US7468036B1 (en) | 2004-09-28 | 2008-12-23 | Impact Sports Technology, Inc. | Monitoring device, method and system |
US20060074322A1 (en) | 2004-09-30 | 2006-04-06 | Jerusalem College Of Technology | Measuring systolic blood pressure by photoplethysmography |
US20080004507A1 (en) | 2004-10-27 | 2008-01-03 | E-Z-Em, Inc. | Data collection device, system, method, and computer program product for collecting data related to the dispensing of contrast media |
US20060122469A1 (en) | 2004-11-16 | 2006-06-08 | Martel Normand M | Remote medical monitoring system |
US20060178591A1 (en) | 2004-11-19 | 2006-08-10 | Hempfling Ralf H | Methods and systems for real time breath rate determination with limited processor resources |
US7674230B2 (en) | 2004-11-22 | 2010-03-09 | Widemed Ltd. | Sleep monitoring using a photoplethysmograph |
US20080146887A1 (en) | 2004-11-30 | 2008-06-19 | Rao Raman K | Intelligent personal health management appliances for external and internal visualization of the human anatomy and for dental/personal hygiene |
US20060128263A1 (en) | 2004-12-09 | 2006-06-15 | Baird John C | Computerized assessment system and method for assessing opinions or feelings |
US7976480B2 (en) | 2004-12-09 | 2011-07-12 | Motorola Solutions, Inc. | Wearable auscultation system and method |
US20060155589A1 (en) | 2005-01-10 | 2006-07-13 | Welch Allyn, Inc. | Portable vital signs measurement instrument and method of use thereof |
US20080281168A1 (en) | 2005-01-13 | 2008-11-13 | Welch Allyn, Inc. | Vital Signs Monitor |
US7377794B2 (en) | 2005-03-01 | 2008-05-27 | Masimo Corporation | Multiple wavelength sensor interconnect |
US20060200029A1 (en) | 2005-03-04 | 2006-09-07 | Medwave, Inc. | Universal transportable vital signs monitor |
US7616110B2 (en) | 2005-03-11 | 2009-11-10 | Aframe Digital, Inc. | Mobile wireless customizable health and condition monitor |
US7314451B2 (en) | 2005-04-25 | 2008-01-01 | Earlysense Ltd. | Techniques for prediction and monitoring of clinical episodes |
US7827011B2 (en) | 2005-05-03 | 2010-11-02 | Aware, Inc. | Method and system for real-time signal classification |
US20060252999A1 (en) | 2005-05-03 | 2006-11-09 | Devaul Richard W | Method and system for wearable vital signs and physiology, activity, and environmental monitoring |
US20060265246A1 (en) | 2005-05-10 | 2006-11-23 | Cardinal Health 303, Inc. | Medication safety system featuring a multiplexed RFID interrogator panel |
US20060281979A1 (en) | 2005-06-09 | 2006-12-14 | Seung-Nam Kim | Sensing device for sensing emergency situation having acceleration sensor and method thereof |
US7782189B2 (en) | 2005-06-20 | 2010-08-24 | Carestream Health, Inc. | System to monitor the ingestion of medicines |
US20070010719A1 (en) | 2005-06-28 | 2007-01-11 | Hill-Rom Services, Inc. | Remote access to healthcare device diagnostic information |
US20080208013A1 (en) | 2005-07-28 | 2008-08-28 | Quan Zhang | Electro-Optical System, Apparatus, and Method For Ambulatory Monitoring |
US20070055163A1 (en) | 2005-08-22 | 2007-03-08 | Asada Haruhiko H | Wearable blood pressure sensor and method of calibration |
US20080039731A1 (en) | 2005-08-22 | 2008-02-14 | Massachusetts Institute Of Technology | Wearable Pulse Wave Velocity Blood Pressure Sensor and Methods of Calibration Thereof |
US7641614B2 (en) | 2005-08-22 | 2010-01-05 | Massachusetts Institute Of Technology | Wearable blood pressure sensor and method of calibration |
WO2007024777A2 (en) | 2005-08-22 | 2007-03-01 | Massachusetts Institute Of Technology | Wearable blood pressure sensor and method of calibration |
US7674231B2 (en) | 2005-08-22 | 2010-03-09 | Massachusetts Institute Of Technology | Wearable pulse wave velocity blood pressure sensor and methods of calibration thereof |
US20070066910A1 (en) | 2005-09-21 | 2007-03-22 | Fukuda Denshi Co., Ltd. | Blood pressure monitoring apparatus |
US20070071643A1 (en) | 2005-09-29 | 2007-03-29 | Berkeley Heartlab, Inc. | Internet based system for monitoring blood test, vital sign and exercise information from a patient |
US7725147B2 (en) | 2005-09-29 | 2010-05-25 | Nellcor Puritan Bennett Llc | System and method for removing artifacts from waveforms |
US7420472B2 (en) | 2005-10-16 | 2008-09-02 | Bao Tran | Patient monitoring apparatus |
US20080319282A1 (en) | 2005-10-16 | 2008-12-25 | Bao Tran | Patient monitoring apparatus |
US20070094045A1 (en) | 2005-10-20 | 2007-04-26 | Archie Cobbs | Methods, systems, and apparatus for providing a notification of a message in a health care environment |
US7184809B1 (en) | 2005-11-08 | 2007-02-27 | Woolsthorpe Technologies, Llc | Pulse amplitude indexing method and apparatus |
US7215987B1 (en) | 2005-11-08 | 2007-05-08 | Woolsthorpe Technologies | Method and apparatus for processing signals reflecting physiological characteristics |
US20070118056A1 (en) | 2005-11-18 | 2007-05-24 | Hua Wang | Posture detector calibration and use |
US20070129769A1 (en) | 2005-12-02 | 2007-06-07 | Medtronic, Inc. | Wearable ambulatory data recorder |
US20070142730A1 (en) | 2005-12-13 | 2007-06-21 | Franz Laermer | Apparatus for noninvasive blood pressure measurement |
US7648463B1 (en) | 2005-12-15 | 2010-01-19 | Impact Sports Technologies, Inc. | Monitoring device, method and system |
US20070142715A1 (en) | 2005-12-20 | 2007-06-21 | Triage Wireless, Inc. | Chest strap for measuring vital signs |
US20070156456A1 (en) | 2006-01-04 | 2007-07-05 | Siemens Medical Solutions Health Services Corporation | System for Monitoring Healthcare Related Activity In A Healthcare Enterprise |
US7602301B1 (en) | 2006-01-09 | 2009-10-13 | Applied Technology Holdings, Inc. | Apparatus, systems, and methods for gathering and processing biometric and biomechanical data |
US20070161912A1 (en) | 2006-01-10 | 2007-07-12 | Yunlong Zhang | Assessing autonomic activity using baroreflex analysis |
US7427926B2 (en) | 2006-01-26 | 2008-09-23 | Microsoft Corporation | Establishing communication between computing-based devices through motion detection |
US20070188323A1 (en) | 2006-01-26 | 2007-08-16 | Microsoft Corporation | Motion Detection Notification |
US20070185393A1 (en) | 2006-02-03 | 2007-08-09 | Triage Wireless, Inc. | System for measuring vital signs using an optical module featuring a green light source |
US20070193834A1 (en) | 2006-02-21 | 2007-08-23 | Adt Security Services, Inc. | System and method for remotely attended delivery |
US7668588B2 (en) | 2006-03-03 | 2010-02-23 | PhysioWave, Inc. | Dual-mode physiologic monitoring systems and methods |
US20070208233A1 (en) * | 2006-03-03 | 2007-09-06 | Physiowave Inc. | Integrated physiologic monitoring systems and methods |
US20070237719A1 (en) | 2006-03-30 | 2007-10-11 | Jones Christopher M | Method and system for monitoring and analyzing compliance with internal dosing regimen |
US20070232867A1 (en) | 2006-04-01 | 2007-10-04 | Draeger Medical Ag & Co. Kg | Process and system for setting a patient monitor |
US20070270671A1 (en) | 2006-04-10 | 2007-11-22 | Vivometrics, Inc. | Physiological signal processing devices and associated processing methods |
US20090306487A1 (en) | 2006-04-11 | 2009-12-10 | The University Of Nottingham | Photoplethysmography |
US20070287386A1 (en) | 2006-04-14 | 2007-12-13 | Qualcomm Incorporated | Distance-based association |
US20070244376A1 (en) | 2006-04-18 | 2007-10-18 | Wei-Kung Wang | Physiological signal apparatus with digital real time calibration |
US20070250261A1 (en) | 2006-04-20 | 2007-10-25 | Honeywell International Inc. | Motion classification methods for personal navigation |
US20070255116A1 (en) | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Broadcast data transmission and data packet repeating techniques for a wireless medical device network |
US20070252853A1 (en) | 2006-04-28 | 2007-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus to control screen orientation of user interface of portable device |
US20070260487A1 (en) | 2006-05-06 | 2007-11-08 | Irody Inc | System and method for real time management of a drug regimen |
US20070265880A1 (en) | 2006-05-06 | 2007-11-15 | Irody Inc | Apparatus and method for obtaining an identification of drugs for enhanced safety |
US7539532B2 (en) | 2006-05-12 | 2009-05-26 | Bao Tran | Cuffless blood pressure monitoring appliance |
US20070265533A1 (en) | 2006-05-12 | 2007-11-15 | Bao Tran | Cuffless blood pressure monitoring appliance |
US20090227877A1 (en) | 2006-05-12 | 2009-09-10 | Bao Tran | Health monitoring appliance |
US20090318779A1 (en) | 2006-05-24 | 2009-12-24 | Bao Tran | Mesh network stroke monitoring appliance |
US20070276261A1 (en) | 2006-05-25 | 2007-11-29 | Triage Wireless, Inc. | Bilateral device, system and method for monitoring vital signs |
WO2007143535A2 (en) | 2006-06-01 | 2007-12-13 | Biancamed Ltd. | Apparatus, system, and method for monitoring physiological signs |
US20070282208A1 (en) | 2006-06-06 | 2007-12-06 | Bob Jacobs | Mobile computing device with integrated medical devices |
US7373912B2 (en) | 2006-06-07 | 2008-05-20 | Ford Global Technologies, Llc | Oil level indicating system for internal combustion engine |
US20070293770A1 (en) | 2006-06-16 | 2007-12-20 | Frank Bour | Analysis and use of cardiographic measurements |
US20080004500A1 (en) | 2006-06-29 | 2008-01-03 | Shelley Cazares | Automated device programming at changeout |
US20080004904A1 (en) | 2006-06-30 | 2008-01-03 | Tran Bao Q | Systems and methods for providing interoperability among healthcare devices |
US20090264712A1 (en) | 2006-07-28 | 2009-10-22 | Koninklijke Philips Electronics N. V. | Automatic transfer and identification of monitored data with hierarchical key management infrastructure |
US20090306524A1 (en) | 2006-08-02 | 2009-12-10 | Koninklijke Philips Electronics N.V. | Sensor for detecting the passing of a pulse wave from a subject's arterial system |
US20080082001A1 (en) | 2006-08-24 | 2008-04-03 | Hatlestad John D | Physiological response to posture change |
US20080077026A1 (en) | 2006-09-07 | 2008-03-27 | Triage Wireless, Inc. | Hand-held vital signs monitor |
US20080077027A1 (en) | 2006-09-12 | 2008-03-27 | Allgeyer Dean O | Simplified ECG monitoring system |
WO2008037820A1 (en) | 2006-09-27 | 2008-04-03 | Universidad De Cádiz | System for monitoring and analysing cardiorespiratory signals and snoring |
US20100030085A1 (en) | 2006-09-27 | 2010-02-04 | Universidad De Cadiz | System for monitoring and analysing cardiorespiratory signals and snoring |
WO2008057883A2 (en) | 2006-11-01 | 2008-05-15 | Biancamed Limited | System and method for monitoring cardiorespiratory parameters |
US20080101160A1 (en) | 2006-11-01 | 2008-05-01 | Rodney Besson | Med Alert Watch |
US20080114220A1 (en) | 2006-11-10 | 2008-05-15 | Triage Wireless, Inc. | Two-part patch sensor for monitoring vital signs |
US20080221404A1 (en) | 2006-11-13 | 2008-09-11 | Shun-Wun Tso | Multifunction health apparatus |
US7586418B2 (en) | 2006-11-17 | 2009-09-08 | General Electric Company | Multifunctional personal emergency response system |
US20080132106A1 (en) | 2006-12-05 | 2008-06-05 | Lee Burnes | ECG lead set and ECG adapter system |
US7983933B2 (en) | 2006-12-06 | 2011-07-19 | Microsoft Corporation | Patient monitoring via image capture |
US20080139955A1 (en) * | 2006-12-07 | 2008-06-12 | Drager Medical Ag & Co. Kg | Device and method for determining a respiration rate |
US20080146892A1 (en) | 2006-12-19 | 2008-06-19 | Valencell, Inc. | Physiological and environmental monitoring systems and methods |
US20090262074A1 (en) | 2007-01-05 | 2009-10-22 | Invensense Inc. | Controlling and accessing content using motion processing on mobile devices |
US20080171927A1 (en) | 2007-01-11 | 2008-07-17 | Health & Life Co., Ltd. | Physiological detector with a waterproof structure |
US20080195735A1 (en) | 2007-01-25 | 2008-08-14 | Microsoft Corporation | Motion Triggered Data Transfer |
US20080194918A1 (en) | 2007-02-09 | 2008-08-14 | Kulik Robert S | Vital signs monitor with patient entertainment console |
US20080204254A1 (en) | 2007-02-27 | 2008-08-28 | Paramount Bed Co., Ltd. | Bed apparatus having movable bedboard |
US20080221399A1 (en) | 2007-03-05 | 2008-09-11 | Triage Wireless, Inc. | Monitor for measuring vital signs and rendering video images |
US7698101B2 (en) | 2007-03-07 | 2010-04-13 | Apple Inc. | Smart garment |
US7541939B2 (en) | 2007-03-15 | 2009-06-02 | Apple Inc. | Mounted shock sensor |
WO2008110788A1 (en) | 2007-03-15 | 2008-09-18 | Imperial Innovations Limited | Heart rate measurement |
US20100113948A1 (en) | 2007-03-15 | 2010-05-06 | Imperial Innovations Limited | Heart rate measurement |
US20090287067A1 (en) | 2007-03-27 | 2009-11-19 | Apple Inc. | Integrated sensors for tracking performance metrics |
US20080262362A1 (en) | 2007-04-17 | 2008-10-23 | General Electric Company | Non-invasive blood pressure determination method |
US8047998B2 (en) | 2007-04-17 | 2011-11-01 | General Electric Company | Non-invasive blood pressure determination method |
US20080275349A1 (en) | 2007-05-02 | 2008-11-06 | Earlysense Ltd. | Monitoring, predicting and treating clinical episodes |
US20080281310A1 (en) | 2007-05-11 | 2008-11-13 | Tyco Healthcare Group Lp | Temperature monitoring return electrode |
US20080294019A1 (en) | 2007-05-24 | 2008-11-27 | Bao Tran | Wireless stroke monitoring |
US20100160795A1 (en) | 2007-06-12 | 2010-06-24 | Sotera Wireless, Inc. | BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP) |
US20090018453A1 (en) | 2007-06-12 | 2009-01-15 | Triage Wireless, Inc. | Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms |
US20100160794A1 (en) | 2007-06-12 | 2010-06-24 | Sotera Wireless, Inc. | BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP) |
US20100160798A1 (en) | 2007-06-12 | 2010-06-24 | Sotera Wireless, Inc. | BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP) |
US20100160797A1 (en) | 2007-06-12 | 2010-06-24 | Sotera Wireless, Inc. | BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP) |
US20100160796A1 (en) | 2007-06-12 | 2010-06-24 | Sotera Wireless, Inc. | BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP) |
US20100168589A1 (en) | 2007-06-12 | 2010-07-01 | Sotera Wireless, Inc. | BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP) |
US7625344B1 (en) | 2007-06-13 | 2009-12-01 | Impact Sports Technologies, Inc. | Monitoring device, method and system |
US20090198139A1 (en) * | 2007-06-15 | 2009-08-06 | Aaron Lewicke | Daytime/nighttime respiration rate monitoring |
US20080312541A1 (en) * | 2007-06-15 | 2008-12-18 | Cardiac Pacemakers, Inc | Daytime/nighttime respiration rate monitoring |
US7698941B2 (en) | 2007-06-20 | 2010-04-20 | Headway Technologies, Inc. | Sensing unit and method of making same |
US7628071B2 (en) | 2007-06-20 | 2009-12-08 | Headway Techologies, Inc. | Sensing unit and method of making same |
US20080319327A1 (en) | 2007-06-25 | 2008-12-25 | Triage Wireless, Inc. | Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure |
US8167800B2 (en) | 2007-07-05 | 2012-05-01 | Kabushiki Kaisha Toshiba | Apparatus and method for processing pulse waves |
US20090018408A1 (en) | 2007-07-05 | 2009-01-15 | Kabushiki Kaisha Toshiba | Apparatus and method for processing pulse waves |
US20090018409A1 (en) | 2007-07-11 | 2009-01-15 | Triage Wireless, Inc. | Device for determining respiratory rate and other vital signs |
US20090040041A1 (en) | 2007-08-10 | 2009-02-12 | Integrity Tracking, Llc | Alzheimer's patient tracking system |
US20090233770A1 (en) | 2007-08-17 | 2009-09-17 | Stephen Michael Vincent | Sports Electronic Training System With Electronic Gaming Features, And Applications Thereof |
US20090054752A1 (en) | 2007-08-22 | 2009-02-26 | Motorola, Inc. | Method and apparatus for photoplethysmographic sensing |
US20090069642A1 (en) | 2007-09-11 | 2009-03-12 | Aid Networks, Llc | Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device |
US20090076405A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Device for Respiratory Monitoring |
US20090076397A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Emergency Patient Monitor |
US20090076363A1 (en) * | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Adherent Device with Multiple Physiological Sensors |
US20090082681A1 (en) | 2007-09-21 | 2009-03-26 | Kabushiki Kaisha Toshiba | Biological information processing apparatus and biological information processing method |
US20090112281A1 (en) | 2007-10-26 | 2009-04-30 | Medtronic, Inc. | Medical device configuration based on sensed brain signals |
US8082160B2 (en) | 2007-10-26 | 2011-12-20 | Hill-Rom Services, Inc. | System and method for collection and communication of data from multiple patient care devices |
US20090112630A1 (en) | 2007-10-26 | 2009-04-30 | Collins Jr Williams F | System and method for collection and communication of data from multiple patient care devices |
US20090118626A1 (en) | 2007-11-01 | 2009-05-07 | Transoma Medical, Inc. | Calculating Respiration Parameters Using Impedance Plethysmography |
US20090259113A1 (en) | 2007-11-08 | 2009-10-15 | General Electric Company | System and method for determining pain level |
US20090131809A1 (en) * | 2007-11-20 | 2009-05-21 | James Huang | Respiration sensor |
US20090192366A1 (en) | 2007-12-17 | 2009-07-30 | Dexcom, Inc | Systems and methods for processing sensor data |
US20090187085A1 (en) | 2007-12-28 | 2009-07-23 | Nellcor Puritan Bennett Llc | System And Method For Estimating Physiological Parameters By Deconvolving Artifacts |
US7684954B2 (en) | 2007-12-31 | 2010-03-23 | Intel Corporation | Apparatus and method for classification of physical orientation |
US20120065525A1 (en) | 2008-01-11 | 2012-03-15 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Pressure gauge, blood pressure gauge, method of determining pressure values, method of calibrating a pressure gauge, and computer program |
US20090221937A1 (en) * | 2008-02-25 | 2009-09-03 | Shriners Hospitals For Children | Activity Monitoring |
US20090222119A1 (en) | 2008-02-29 | 2009-09-03 | Fresenius Medical Care Holdings, Inc. | Multimedia system for dialysis machine |
WO2009112981A1 (en) * | 2008-03-14 | 2009-09-17 | Koninklijke Philips Electronics N.V. | An activity monitoring system insensitive to accelerations induced by external motion factors |
US8416102B2 (en) * | 2008-03-14 | 2013-04-09 | Koninklijke Philips Electronics N.V. | Activity monitoring system insensitive to accelerations induced by external motion factors |
US20110012759A1 (en) * | 2008-03-14 | 2011-01-20 | Koninklijke Philips Electronics N.V. | Activity monitoring system insensitive to accelerations induced by external motion factors |
US20100130811A1 (en) | 2008-04-24 | 2010-05-27 | Searete Llc | Computational system and method for memory modification |
US20110105862A1 (en) | 2008-04-28 | 2011-05-05 | Universite Du Sud Toulon-Var | Device for acquiring and processing physiological data of an animal or of a human in the course of a physical or mental activity |
US20090295541A1 (en) | 2008-05-27 | 2009-12-03 | Intellidot Corporation | Directional rfid reader |
US20090306485A1 (en) | 2008-06-03 | 2009-12-10 | Jonathan Arnold Bell | Wearable Electronic System |
US20090312973A1 (en) | 2008-06-12 | 2009-12-17 | Hatlestad John D | Posture sensor automatic calibration |
US20090322513A1 (en) | 2008-06-27 | 2009-12-31 | Franklin Dun-Jen Hwang | Medical emergency alert system and method |
US20100010380A1 (en) | 2008-07-11 | 2010-01-14 | Medtronic, Inc. | Posture state classification for a medical device |
US20100030034A1 (en) | 2008-07-31 | 2010-02-04 | Schulhauser Randal C | Apparatus and Method for Detecting Cardiac Events |
US20110152632A1 (en) | 2008-08-06 | 2011-06-23 | E-Vitae Pte. Ltd. | Universal Body Sensor Network |
US20110144456A1 (en) | 2008-08-19 | 2011-06-16 | Koninklijke Philips Electrnics N.V. | Monitoring the blood pressure of a patient |
US20100056881A1 (en) | 2008-08-29 | 2010-03-04 | Corventis, Inc. | Method and Apparatus For Acute Cardiac Monitoring |
US20100125188A1 (en) | 2008-11-18 | 2010-05-20 | Nonin Medical, Inc. | Motion correlated pulse oximetry |
US20120123232A1 (en) | 2008-12-16 | 2012-05-17 | Kayvan Najarian | Method and apparatus for determining heart rate variability using wavelet transformation |
US20100160793A1 (en) | 2008-12-23 | 2010-06-24 | Industrial Technology Research Institute | Biosignal measurement modules and methods |
US20100234786A1 (en) | 2009-02-12 | 2010-09-16 | Barry Neil Fulkerson | System and Method for Detection of Disconnection in an Extracorporeal Blood Circuit |
US20100210930A1 (en) | 2009-02-13 | 2010-08-19 | Saylor Stephen D | Physiological Blood Gas Detection Apparatus and Method |
US20100217099A1 (en) | 2009-02-25 | 2010-08-26 | Leboeuf Steven Francis | Methods and Apparatus for Assessing Physiological Conditions |
US20100222649A1 (en) | 2009-03-02 | 2010-09-02 | American Well Systems | Remote medical servicing |
US20100234695A1 (en) | 2009-03-12 | 2010-09-16 | Raytheon Company | Networked symbiotic edge user infrastructure |
US20100234693A1 (en) | 2009-03-16 | 2010-09-16 | Robert Bosch Gmbh | Activity monitoring device and method |
US20100241011A1 (en) | 2009-03-20 | 2010-09-23 | Massachusetts Institute Of Technology | Calibration of Pulse Transit Time Measurements to Arterial Blood Pressure using External Arterial Pressure Applied along the Pulse Transit Path |
US20100280440A1 (en) | 2009-04-30 | 2010-11-04 | Medtronic, Inc. | Posture-responsive therapy control based on patient input |
US20100298655A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless , Inc. | Method for measuring patient posture and vital signs |
US20100298654A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Blood pressure-monitoring system with alarm/alert system that accounts for patient motion |
US20100298660A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Body-worn device and associated system for alarms/alerts based on vital signs and motion; also describes specific monitors that include barcode scanner and different user interfaces for nurse, patient, etc. |
US20100298652A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | System for calibrating a ptt-based blood pressure measurement using arm height |
US20100298656A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds |
US20100298653A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Method for measuring patient motion, activity level, and posture along with ptt-based blood pressure |
WO2010135516A2 (en) | 2009-05-20 | 2010-11-25 | Sotera Wireless, Inc. | Vital sign monitoring systems |
US20100298650A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Vital sign monitoring system featuring 3 accelerometers |
US20100298659A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Body-worn system for continuously monitoring a patient's bp, hr, spo2, rr, temperature, and motion; also describes specific monitors for apnea, asy, vtac, vfib, and 'bed sore' index |
US20100298661A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Method for generating alarms/alerts based on a patient's posture and vital signs |
WO2010135518A1 (en) | 2009-05-20 | 2010-11-25 | Sotera Wireless, Inc. | System that monitors patient motion and vital signs |
US20100298651A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Cable system for generating signals for detecting motion and measuring vital signs |
US20100298658A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Graphical 'mapping system' for continuously monitoring a patient's vital signs, motion, and location |
US20100298657A1 (en) | 2009-05-20 | 2010-11-25 | Triage Wireless, Inc. | Method for continuously monitoring a patient using a body-worn device and associated system for alarms/alerts |
US20100312115A1 (en) | 2009-06-05 | 2010-12-09 | General Electric Company | System and method for monitoring hemodynamic state |
US20100324388A1 (en) | 2009-06-17 | 2010-12-23 | Jim Moon | Body-worn pulse oximeter |
US20100324384A1 (en) | 2009-06-17 | 2010-12-23 | Jim Moon | Body-worn pulse oximeter |
US20100324385A1 (en) | 2009-06-17 | 2010-12-23 | Jim Moon | Body-worn pulse oximeter |
US20100324389A1 (en) | 2009-06-17 | 2010-12-23 | Jim Moon | Body-worn pulse oximeter |
WO2010148205A1 (en) | 2009-06-17 | 2010-12-23 | Sotera Wireless, Inc. | Body-worn pulse oximeter |
US20100324387A1 (en) | 2009-06-17 | 2010-12-23 | Jim Moon | Body-worn pulse oximeter |
US20100324386A1 (en) | 2009-06-17 | 2010-12-23 | Jim Moon | Body-worn pulse oximeter |
US20100331640A1 (en) | 2009-06-26 | 2010-12-30 | Nellcor Puritan Bennett Llc | Use of photodetector array to improve efficiency and accuracy of an optical medical sensor |
US8622922B2 (en) * | 2009-09-14 | 2014-01-07 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
WO2011032132A2 (en) | 2009-09-14 | 2011-03-17 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US20110066006A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | System for measuring vital signs during hemodialysis |
US20110066008A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US20110066037A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US8545417B2 (en) * | 2009-09-14 | 2013-10-01 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US20110066038A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US20110066062A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US20110066007A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US20110066039A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | Body-worn monitor for measuring respiration rate |
US20110066043A1 (en) | 2009-09-14 | 2011-03-17 | Matt Banet | System for measuring vital signs during hemodialysis |
US8740807B2 (en) * | 2009-09-14 | 2014-06-03 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US9339211B2 (en) * | 2009-09-14 | 2016-05-17 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US20110066010A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066051A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066009A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066045A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066050A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
US20110066044A1 (en) | 2009-09-15 | 2011-03-17 | Jim Moon | Body-worn vital sign monitor |
WO2011034881A1 (en) | 2009-09-15 | 2011-03-24 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110070829A1 (en) | 2009-09-24 | 2011-03-24 | Research In Motion Limited | Accelerometer tap detection to initiate nfc communication |
US20110076942A1 (en) | 2009-09-30 | 2011-03-31 | Ebay Inc. | Network updates of time and location |
US20110093281A1 (en) | 2009-10-20 | 2011-04-21 | Otho Raymond Plummer | Generation and Data Management of a Medical Study Using Instruments in an Integrated Media and Medical System |
WO2011082341A1 (en) | 2009-12-30 | 2011-07-07 | Sotera Wireless, Inc. | Body-worn system for measuring continuous non-invasive blood pressure (cnibp) |
US20110178375A1 (en) | 2010-01-19 | 2011-07-21 | Avery Dennison Corporation | Remote physiological monitoring |
US20110224507A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224498A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224506A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
WO2011112782A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224556A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224557A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224499A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224564A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224508A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110224500A1 (en) | 2010-03-10 | 2011-09-15 | Sotera Wireless, Inc. | Body-worn vital sign monitor |
US20110257555A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257552A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257551A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
WO2011133582A1 (en) | 2010-04-19 | 2011-10-27 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257554A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US8747330B2 (en) * | 2010-04-19 | 2014-06-10 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US9339209B2 (en) * | 2010-04-19 | 2016-05-17 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110257489A1 (en) | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20110275907A1 (en) | 2010-05-07 | 2011-11-10 | Salvatore Richard Inciardi | Electronic Health Journal |
Non-Patent Citations (192)
Title |
---|
"Accelerometer Signal-based Human Activity Recognition Using Augmented Autoregressive Model Coefficients and Artificial Neural Nets." Khan et al. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Aug. 20-25, 2008. pp. 5172-5175. * |
"An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation." Park et al. Med Bio Eng Comput (2008) 46. pp. 147-158. * |
"Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models." Allen et al. Physiol. Meas. 27 (2006) pp. 935-951. * |
"Classification of basic daily movements using a triaxial accelerometer." Mathie et al. Medical & Biological Engineering & Computing 2004, vol. 42. pp. 679-687. * |
"Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring." Karantonis et al. IEEE Transactions on Information Technology in Biomedicine. vol. 10, Issue 1. Jan 2006. pp. 156-167. * |
"Monitoring and Interpreting Human Movement Patterns Using a Triaxial Accelerometer." Mathie, Merryn. PhD Dissertation. The University of New South Wales. Aug. 2003. * |
"Performance Improvement of Pulse Oximetry-Based Respiration Detection by Selective Mode Bandpass Filtering." Sao et al. Ergonomics and Health Aspects of Work with Computers Lecture Notes in Computer Science, 2007, vol. 4566/2007, 300-308. * |
Ahlstrom et al., Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients. J Artif Organs. 2005;8(3):192-197. |
Allen et al., Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Physiol. Meas. 2006;27:935-951. |
Alves et al., CAN Protocol: A Laboratory Prototype for Fieldbus Applications. XIX IMEKO World Congress Fundamental and Applied Metrology Sep. 6-11, 2009, Lisbon, Portugal. 4 pages :454-457 ISBN 978-963-88410-0-1. |
Asada et al., Active Noise Cancellation Using MEMS Accelerometers for Motion-Tolerant Wearable Bio-Sensors. Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco, CA, USA. Sep. 1-5, 2004:2157-2160. |
Benefits of Digital Sensors. Gems Sensors. Feb. 14, 2008. http://web.archive.org/web/20080214122230/http://www.sensorland.com/HowPage054.html. |
Bonfiglio et al., Managing Catastrophic Events by Wearable Mobile Systems. Mobile Response (Lecture Notes in Computer Science) Feb. 2007;4458:95-105. |
Bowers et al., Respiratory Rate Derived from Principal Component Analysis of Single Lead Electrocardiogram. Computers in Cardiology Conference Proceedings Sep. 2008;35:437-440. |
Bussmann et al., Measuring daily behavior using ambulatory accelerometry: The Activity Monitor. Behav Res Methods Instrum Comput. Aug. 2001;33(3):349-356. |
Chan et al., Noninvasive and Cuffless Measurements of Blood Pressure for Telemedicine. Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2001:3 pages. |
Clifford et al., Measuring Tilt with Low-g Accelerometers. Freescale Semiconductor, Inc., 2005:8 pages. |
Cretikos et al., The Objective Medical Emergency Team Activation Criteria: a case-control study. Resuscitation Apr. 2007;73(1):62-72. |
De Scalzi et al., Relationship Between Systolic Time Intervals and Arterial Blood Pressure. Clin Cardiol. 1986;9:545-549. |
Drinnan et al., Relation between heart rate and pulse transit time during paced respiration. Physiol. Meas. Aug. 2001;22(3):425-432. |
Espina et al., Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring. Proceedings of the 3rd IEEE-EMBS. International Summer School and Symposium on Medical Devices and Biosensors. MIT, Boston, USA, Sep. 4-6, 2006:11-15. |
Extended European Search Report and Written Opinion issued in EP 15159340.7 dated Dec. 10, 2015. |
Extended European Search Report issued in EP 10816259 dated Jan. 7, 2014. |
Fieselmann et al., Respiratory rate predicts cardiopulmonary arrest for internal medicine patients. J Gen Intern Med Jul. 1993;8(7):354-360. |
Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/469,222 dated Feb. 13, 2013. |
Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/559,039 dated Feb. 11, 2013. |
Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/650,389 dated Mar. 14, 2013. |
Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/762,751 dated Mar. 29, 2013. |
Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/762,874 dated Mar. 14, 2013. |
Final Office Action issued by the US Patent and Trademark Office dated Oct. 22, 2012 in U.S. Appl. No. 12/762,822. |
Final Office Action issued by the US Patent and Trademark Office dated Oct. 24, 2012 in U.S. Appl. No. 12/599,429. |
Final Office Action issued by the US Patent and Trademark Office dated Oct. 24, 2012 in U.S. Appl. No. 12/599,430. |
Final Office Action issued by the US Patent and Trademark Office dated Oct. 25, 2012 in U.S. Appl. No. 12/599,426. |
Final Office Action issued by the US Patent and Trademark Office dated Oct. 25, 2012 in U.S. Appl. No. 12/762,790. |
Final Office Action issued by the US Patent and Trademark Office dated Oct. 26, 2012 in U.S. Appl. No. 12/762,836. |
Final Rejection issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/487,283 dated Jan. 3, 2013. |
Final Rejection issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/559,419 dated Nov. 16, 2012. |
Final Rejection issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/559,435 dated Dec. 12, 2012. |
Final Rejection issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/560,111 dated Dec. 12, 2012. |
Final Rejection issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/650,392 dated Jan. 3, 2013. |
Final Rejection issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/762,733 dated Dec. 20, 2012. |
Final Rejection issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/762,846 dated Dec. 20, 2012. |
Flash et al., The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. J Neurosci. Jul. 1985;5(7):1688-1703. |
Fung, Advisory System for Administration of Phenylephrine Following Spinal Anesthesia for Cesarean Section. Master's Thesis. University of British Columbia 2002: 119 pages. |
Gallagher, Comparison of Radial and Femoral Arterial Blood Pressure in Children after Cardiopulmonary Bypass. J Clin Monit. Jul. 1985;1(3):168-171. |
Goldhill et al., A physiologically-based early warning score for ward patients: the association between score and outcome. Anaesthesia Jun. 2005;60(6):547-553. |
Hung et al., Estimation of Respiratory Waveform Using an Accelerometer. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, May 14-17, 2008:1493-1496. |
International Preliminary Report on Patentability dated Dec. 1, 2011 issued in PCT/US2010/035554. |
International Preliminary Report on Patentability dated Jan. 5, 2012 issued in PCT/US2010/039000. |
International Search Report and Written Opinion dated Apr. 27, 2012 as reported in PCT/US2011/067441. |
International Search Report and Written Opinion dated Jul. 20, 2011 issued in PCT/US2011/033100. |
International Search Report and Written Opinion dated Jul. 22, 2011 issued in PCT/US2011/027843. |
International Search Report and Written Opinion dated Jun. 29, 2012 issued in PCT/US2012/025640. |
International Search Report and Written Opinion dated Mar. 3, 2011 issued in PCT/US2010/062564. |
International Search Report and Written Opinion dated May 29, 2012 issued in PCT/US2012/025648. |
International Search Report and Written Opinion dated Nov. 3, 2010 issued in PCT/US2010/048729. |
International Search Report and Written Opinion dated Nov. 5, 2010 issued in PCT/US2010/048866. |
International Search Report and Written Opinion dated Oct. 15, 2010 issued in PCT/US2010/035550. |
International Search Report and Written Opinion dated Sep. 23, 2010 issued in PCT/US2010/035554. |
International Search Report and Written Opinion dated Sep. 7, 2010 issued in PCT/US2010/039000. |
International Search Report and Written Opinion issued in U.S. Appl. No. PCT/US2012/064302 dated Jan. 15, 2013. |
Jackson, Digital Filter Design and Synthesis Using High-Level Modeling Tools. Virginia Polytechnic Institute and State University Thesis. Dec. 1999. |
Jin, A Respiration Monitoring System Based on a Tri-Axial Accelerometer and an Air-Coupled Microphone. Technische Universiteit Eindhoven, University of Technology. Master's Graduation Paper, Electrical Engineering Aug. 25, 2009. |
Karantonis et al., Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring. IEEE Transactions on Information Technology in Biomedicine. Jan. 2006;10(1):156-167. |
Khambete et al., Movement artefact rejection in impedance pneumography using six strategically placed electrodes. Physiol. Meas. 2000;21:79-88. |
Khan et al., Accelerometer Signal-based Human Activity Recognition Using Augmented Autoregressive Model Coefficients and Artificial w Neural Nets. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Aug. 20-24, 2008:5172-5175. |
Kim et al., Two Algorithms for Detecting Respiratory Rate from ECG Signal. IFMBE Proceedings 2007;14(6) JC27:4069-4071. |
Klabunde, Mean Arterial Pressure. Cardiovascular Physiology Concepts. Mar. 8, 2007.http://web.archive.org/web/20070308182914/http://www.cvphysiology.com/Blood%20Pressure/BP006.htm. |
Liu et al., The Changes in Pulse Transit Time at Specific Cuff Pressures during Inflation and Deflation. Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug. 30-Sep. 3, 2006:6404-6405. |
Ma and Zhang, A Correlation Study on the Variabilities in Pulse Transit Time, Blood Pressure, and Heart Rate Recorded Simultaneously from Healthy Subjects. Conf Proc IEEE Eng Med Biol Soc. 2005;1:996-999. |
Mason, Signal Processing Methods for Non-Invasive Respiration Monitoring. Department of Engineering Science, University of Oxford 2002. |
Mathie et al., Classification of basic daily movements using a triaxial accelerometer. Med Biol Eng Comput. Sep. 2004;42(5):679-687. |
Mathie, Monitoring and Interpreting Human Movement Patterns using a Triaxial Accelerometer. Faculty of Engineering. The University of New South Wales. PhD Dissertation. Aug. 2003: part1 pp. 1-256. |
Mathie, Monitoring and Interpreting Human Movement Patterns using a Triaxial Accelerometer. Faculty of Engineering. The University of New South Wales. PhD Dissertation. Aug. 2003: part2 pp. 256-512. |
McKneely et al., Plug-and-Play and Network-Capable Medical Instrumentation and Database with a Complete Healthcare Technology Suite: MediCAN. Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability. 2007:122-129. |
Montgomery et al., Lifeguard-A Personal Physiological Monitor for Extreme Environments. Conf Proc IEEE Eng Med Biol Soc. 2004;3:2192-2195. |
Montgomery et al., Lifeguard—A Personal Physiological Monitor for Extreme Environments. Conf Proc IEEE Eng Med Biol Soc. 2004;3:2192-2195. |
Nitzan et al., Effects of External Pressure on Arteries Distal to the Cuff During Sphygmomanometry. IEEE Transactions on Biomedical Engineering, Jun. 2005;52(6):1120-1127. |
Non Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/559,408 dated Nov. 23, 2012. |
Non Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/559,413 dated Nov. 09, 2012. |
Non Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 12/650,383 dated Feb. 15, 2013. |
Non Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 13/196,326 dated Mar. 22, 2013. |
Non Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 13/292,923 dated Jan. 14, 2013. |
Non Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 13/346,408 dated Feb. 25, 2013. |
Non Final Office Action issued by the United States Patent and Trademark Office in U.S. Appl. No. 13/432,976 dated Dec. 14, 2012. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 12, 2012 in U.S. Appl. No. 12/559,429. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 12, 2012 in U.S. Appl. No. 12/559,430. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 24, 2012 in U.S. Appl. No. 12/559,435. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 25, 2012 in U.S. Appl. No. 12/762,733. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 27, 2012 in U.S. Appl. No. 12/762,822. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 3, 2012 in U.S. Appl. No. 12/469,094. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 3, 2012 in U.S. Appl. No. 12/469,137. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 3, 2012 in U.S. Appl. No. 12/559,039. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Apr. 30, 2012 in U.S. Appl. No. 12/762,790. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 20, 2012 in U.S. Appl. No. 12/762,777. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 21, 2012 in U.S. Appl. No. 12/469,107. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 24, 2012 in U.S. Appl. No. 12/762,936. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 3, 2012 in U.S. Appl. No. 12/762,925. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 3, 2012 in U.S. Appl. No. 12/762,963. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 30, 2012 in U.S. Appl. No. 12/469,202. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 31, 2012 in U.S. Appl. No. 12/469,213. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Aug. 4, 2011 in U.S. Appl. No. 12/469,182. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Dec. 15, 2011 in U.S. Appl. No. 12/560,077. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Dec. 29, 2011 in U.S. Appl. No. 12/559,080. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Jul. 18, 2012 in U.S. Appl. No. 12/650,389. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Jul. 5, 2012 in U.S. Appl. No. 12/560,138. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Jun. 11, 2012 in U.S. Appl. No. 12/469,222. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Jun. 20, 2012 in U.S. Appl. No. 12/762,751. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Jun. 8, 2012 in U.S. Appl. No. 12/650,383. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Jun. 8, 2012 in U.S. Appl. No. 12/650,392. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Mar. 1, 2012 in U.S. Appl. No. 12/560,104. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Mar. 27, 2012 in U.S. Appl. No. 12/559,422. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Mar. 27, 2012 in U.S. Appl. No. 12/559,426. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Mar. 30, 2012 in U.S. Appl. No. 12/469,236. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Mar. 8, 2012 in U.S. Appl. No. 12/560,093. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Mar. 9, 2012 in U.S. Appl. No. 12/469,127. |
Non-Final Office Action issued by the US Patent and Trademark Office dated May 10, 2012 in U.S. Appl. No. 12/559,419. |
Non-Final Office Action issued by the US Patent and Trademark Office dated May 11, 2012 in U.S. Appl. No. 12/762,846. |
Non-Final Office Action issued by the US Patent and Trademark Office dated May 11, 2012 in U.S. Appl. No. 12/762,874. |
Non-Final Office Action issued by the US Patent and Trademark Office dated May 24, 2012 in U.S. Appl. No. 12/560,111. |
Non-Final Office Action issued by the US Patent and Trademark Office dated May 26, 2011 in U.S. Appl. No. 12/469,151. |
Non-Final Office Action issued by the US Patent and Trademark Office dated May 7, 2012 in U.S. Appl. No. 12/469,115. |
Non-Final Office Action issued by the US Patent and Trademark Office dated May 9, 2012 in U.S. Appl. No. 12/762,836. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Nov. 6, 2012 in U.S. Appl. No. 12/559,379. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Nov. 6, 2012 in U.S. Appl. No. 12/650,370. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Nov. 7, 2012 in U.S. Appl. No. 12/559,392. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Oct. 23, 2012 in U.S. Appl. No. 12/762,944. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Oct. 24, 2012 in U.S. Appl. No. 12/559,403. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Oct. 30, 2012 in U.S. Appl. No. 12/559,386. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Oct. 9, 2012 in U.S. Appl. No. 12/762,726. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Sep. 14, 2012 in U.S. Appl. No. 12/650,374. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Sep. 17, 2012 in U.S. Appl. No. 12/469,192. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Sep. 17, 2012 in U.S. Appl. No. 12/650,354. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Sep. 21, 2012 in U.S. Appl. No. 12/469,115. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Sep. 26, 2012 in U.S. Appl. No. 12/560,104. |
Non-Final Office Action issued by the US Patent and Trademark Office dated Sep. 28, 2012 in U.S. Appl. No. 12/560,087. |
Notice of Allowance issued by the United States Patent and Trademark Office in U.S. Appl. No. 11/470,708 dated Jan. 18, 2013. |
Notice of Allowance issued by the US Patent and Trademark Office dated Apr. 2, 2012 in U.S. Appl. No. 12/559,080. |
Notice of Allowance issued by the US Patent and Trademark Office dated Dec. 28, 2011 in U.S. Appl. No. 12/469,182. |
Notice of Allowance issued by the US Patent and Trademark Office dated Feb. 1, 2012 in U.S. Appl. No. 12/469,151. |
O'Haver, Peak Finding and Measurement, Version 1.6 Oct. 26, 2006. http://web.archive.org/web/20090205162604/http://terpconnect.umd.edu/-toh/spectrum/PeakFindingandMeasurement.htm. |
Otto et al., System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring. Journal of Mobile Multimedia Jan. 10, 2006;1(4):307-326. |
Packet Definition. The Linux Information Project Jan. 8, 2006 http://www.linfo.org/packet.html. |
Park et al., An improved algorithm for respiration signal extraction from electrocardiogram measured by conductive textile electrodes using instantaneous frequency estimation. Med Bio Eng Comput 2008;46:147-158. |
Park et al., Direct Blood Pressure Measurements in Brachial and Femoral Arteries in Children. Circulation Feb. 1970; 41(2)231-237. |
Partial European Search Report issued in EP 15159340 dated Jul. 16, 2015. |
PDF-Pro for iPhone & iPod touch User Manual. ePapyrus Jul. 2009;1:1-25 http://epapyrus.com/en/files/PDFPro%. |
Poon and Zhang, Cuff-Less and Noninvasive Measurements of Arterial Blood Pressure by Pulse Transit Time. Conf Proc IEEE Eng Med Biol Soc. 2005;6:5877-5880. |
Reddan et al., Intradialytic Blood Volume Monitoring in Ambulatory Hemodialysis Patients: A Randomized Trial. J Am Soc Nephrol. Jul. 2005;16(7):2162-2169. |
Reinvuo et al., Measurement of Respiratory Rate with High-Resolution Accelerometer and EMFit Pressure Sensor. Proceedings of the 2006 IEEE Sensors Applications Symposium Feb. 7-9, 2006:192-195. |
Response to Non-Final Office Action dated Mar. 19, 2012 in U.S. Appl. No. 12/559,080. |
Response to Non-Final Office Action dated Nov. 25, 2011 in U.S. Appl. No. 12/469,151. |
Response to Non-Final Office Action dated Nov. 25, 2011 in U.S. Appl. No. 12/469,182. |
Response to Non-Final Office Action issued in U.S. Appl. No. 12/469,236 dated Sep. 27, 2012. |
Response to Non-Final Office Action issued in U.S. Appl. No. 12/487,283 dated Sep. 27, 2012. |
Response to Non-Final Office Action issued in U.S. Appl. No. 12/559,429 dated Oct. 12, 2012. |
Response to Non-Final Office Action issued in U.S. Appl. No. 12/559,430 dated Oct. 12, 2012. |
Response to Non-Final Office Action issued in U.S. Appl. No. 12/559,435 dated Oct. 23, 2012. |
Response to Non-Final Office Action issued in U.S. Appl. No. 12/762,733 dated Oct. 25, 2012. |
Response to Non-Final Office Action issued in U.S. Appl. No. 12/762,836 dated Oct. 9, 2012. |
Response to Office Action issued in U.S. Appl. No. 11/930,881 dated Nov. 26, 2012. |
Response to Office Action issued in U.S. Appl. No. 12/138,199 dated Nov. 29, 2012. |
Response to Office Action issued in U.S. Appl. No. 12/560,111 dated Nov. 26, 2012. |
Response to Office Action issued in U.S. Appl. No. 12/650,383 dated Dec. 7, 2012. |
Response to Office Action issued in U.S. Appl. No. 12/650,392 dated Dec. 7, 2012. |
Response to Office Action issued in U.S. Appl. No. 12/762,846 dated Nov. 13, 2012. |
Response to Office Action issued in U.S. Appl. No. 12/762,874 dated Nov. 13, 2012. |
Response to Restriction Requirement dated Feb. 15, 2012 in U.S. Appl. No. 12/469,115. |
Response to Restriction Requirement dated Feb. 15, 2012 in U.S. Appl. No. 12/469,127. |
Response to Restriction Requirement dated Feb. 15, 2012 in U.S. Appl. No. 12/560,093. |
Response to Restriction Requirement dated Jun. 14, 2012 in U.S. Appl. No. 12/469,107. |
Restriction Requirement issued by the US Patent and Trademark Office dated Apr. 24, 2012 in U.S. Appl. No. 12/469,107. |
Restriction Requirement issued by the US Patent and Trademark Office dated Dec. 14, 2012 in U.S. Appl. No. 12/560,093. |
Restriction Requirement issued by the US Patent and Trademark Office dated Feb. 2, 2012 in U.S. Appl. No. 12/469,222. |
Restriction Requirement issued by the US Patent and Trademark Office dated Jan. 19, 2012 in U.S. Appl. No. 12/469,115. |
Restriction Requirement issued by the US Patent and Trademark Office dated Nov. 14, 2011 in U.S. Appl. No. 12/469,127. |
RS-232. Wikipedia Dec. 5, 2008 http:l/web.archive.org/web/20081205160754/http:/!en.wikipedia.org/wiki/RS-232. |
Seo et al., Performance Improvement of Pulse Oximetry-Based Respiration Detection by Selective Mode Bandpass Filtering. Ergonomics and Health Aspects of Work with Computers Lecture Notes in Computer Science, 2007;4566:300-308. |
Signal Strength. Oct. 6, 2008. http://web.archive.org/web/20081 006200523/http:/!en.wikipedia.org/wiki/Signal_strength. |
Soh et al., An investigation of respiration while wearing back belts. Applied Ergonomics 1997; 28(3):189-192. |
Subbe et al., Effect of introducing the Modified Early Warning score on clinical outcomes, cardiopulmonary arrests and intensive care utilization in acute medical admissions. Anaesthesia Aug. 2003;58(8):797-802. |
Supplemental European Search Report issued in EP 10778376 dated Jan. 31, 2013. |
Talkowski, Quantifying Physical Activity in Community Dwelling Older Adults Using Accelerometry. University of Pittsburgh (Dissertation) 2008:1-91. |
Thongpithoonrat et al., Networking and Plug-and-Play of Bedside Medical Instruments. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1514-1517. |
USB 2.0 Specification Engineering Change Notice. Oct. 20, 2000. |
Vuorela et al., Two portable long-term measurement devices for ECG and bioimpedance. Second International Conference on Pervasive Computing Technologies for Healthcare.. Jan. 30-Feb. 1, 2008: 169-172. |
Wolf et al., Development of a Fall Detector and Classifier based on a Triaxial Accelerometer Demo Board. 2007:210-213. |
Yan and Zhang, A Novel Calibration Method for Noninvasive Blood Pressure Measurement Using Pulse Transit Time. Proceedings of the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors St Catharine's College,Cambridge, UK, Aug. 19-22, 2007. |
Yang et al., Research on Multi-Parameter Physiological Monitor Based on CAN Bus. IFMBE Proceed. 2008;19:417-419. |
Zeltvvanger, Controller Area Network and CANopen in Medical Equipment. Bus Briefing: Med Dev Manuf Technol. 2002:34-37. |
Zislin et al., Ways of Improving the Accuracy of Arterial Pressure Oscillometry. Biomedical Engineering 2005;39(4):174-178. |
Zitzmann and Schumann, Interoperable Medical Devices Due to Standardized CANopen Interfaces. Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability. 2007:97-103. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11253169B2 (en) * | 2009-09-14 | 2022-02-22 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiration rate |
US11022511B2 (en) * | 2018-04-18 | 2021-06-01 | Aron Kain | Sensor commonality platform using multi-discipline adaptable sensors for customizable applications |
CN110850773A (en) * | 2019-11-14 | 2020-02-28 | 北京和利时系统工程有限公司 | Signal acquisition method and device, computer storage medium and electronic equipment |
US12186241B2 (en) | 2021-01-22 | 2025-01-07 | Hill-Rom Services, Inc. | Time-based wireless pairing between a medical device and a wall unit |
US12279999B2 (en) | 2021-01-22 | 2025-04-22 | Hill-Rom Services, Inc. | Wireless configuration and authorization of a wall unit that pairs with a medical device |
Also Published As
Publication number | Publication date |
---|---|
US20110066039A1 (en) | 2011-03-17 |
US8545417B2 (en) | 2013-10-01 |
US8740807B2 (en) | 2014-06-03 |
EP2470068A2 (en) | 2012-07-04 |
US10595746B2 (en) | 2020-03-24 |
US20200359934A1 (en) | 2020-11-19 |
EP2910182A3 (en) | 2016-01-13 |
US20140276175A1 (en) | 2014-09-18 |
US20110066007A1 (en) | 2011-03-17 |
EP2470068B1 (en) | 2015-03-18 |
US20110066008A1 (en) | 2011-03-17 |
WO2011032132A3 (en) | 2012-12-27 |
US8622922B2 (en) | 2014-01-07 |
US9339211B2 (en) | 2016-05-17 |
EP2910182A2 (en) | 2015-08-26 |
SG179128A1 (en) | 2012-04-27 |
US20110066038A1 (en) | 2011-03-17 |
US20110066062A1 (en) | 2011-03-17 |
SG10201405698RA (en) | 2014-11-27 |
WO2011032132A2 (en) | 2011-03-17 |
EP2910182B1 (en) | 2021-12-01 |
US20110066037A1 (en) | 2011-03-17 |
EP2470068A4 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200359934A1 (en) | Body-worn monitor for measuring respiration rate | |
US20210251493A1 (en) | Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds | |
US20200054246A1 (en) | Body-worn monitor for measuring respiratory rate | |
US9173594B2 (en) | Body-worn monitor for measuring respiratory rate | |
US8979765B2 (en) | Body-worn monitor for measuring respiratory rate | |
US8888700B2 (en) | Body-worn monitor for measuring respiratory rate | |
US9173593B2 (en) | Body-worn monitor for measuring respiratory rate | |
US8747330B2 (en) | Body-worn monitor for measuring respiratory rate | |
EP2560550A1 (en) | Body-worn monitor for measuring respiratory rate | |
US11253169B2 (en) | Body-worn monitor for measuring respiration rate | |
US12121364B2 (en) | Body-worn monitor for measuring respiration rate | |
US20240215836A1 (en) | Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TRIAGE WIRELESS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANET, MATT;MCCOMBIE, DEVIN;DHILLON, MARSHAL;REEL/FRAME:023228/0948 Effective date: 20090911 |
|
AS | Assignment |
Owner name: SOTERA WIRELESS, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:TRIAGE WIRELESS, INC.;REEL/FRAME:024379/0367 Effective date: 20091026 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |