US10265419B2 - Intraoperative determination of nerve location - Google Patents
Intraoperative determination of nerve location Download PDFInfo
- Publication number
- US10265419B2 US10265419B2 US11/515,419 US51541906A US10265419B2 US 10265419 B2 US10265419 B2 US 10265419B2 US 51541906 A US51541906 A US 51541906A US 10265419 B2 US10265419 B2 US 10265419B2
- Authority
- US
- United States
- Prior art keywords
- nerve
- cavernous
- nerves
- dye
- icg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 210000005036 nerve Anatomy 0.000 title claims abstract description 180
- 238000000034 method Methods 0.000 claims abstract description 42
- 210000003899 penis Anatomy 0.000 claims abstract description 29
- 238000002347 injection Methods 0.000 claims description 43
- 239000007924 injection Substances 0.000 claims description 43
- 230000005284 excitation Effects 0.000 claims description 23
- 238000005286 illumination Methods 0.000 claims description 18
- 210000001699 lower leg Anatomy 0.000 claims description 18
- 229960004657 indocyanine green Drugs 0.000 claims description 11
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 claims description 11
- 238000011472 radical prostatectomy Methods 0.000 claims description 9
- 210000003029 clitoris Anatomy 0.000 claims description 6
- 238000009803 radical hysterectomy Methods 0.000 claims description 4
- 239000007850 fluorescent dye Substances 0.000 abstract description 14
- 239000000975 dye Substances 0.000 description 87
- 238000001356 surgical procedure Methods 0.000 description 32
- 241001465754 Metazoa Species 0.000 description 28
- 210000002307 prostate Anatomy 0.000 description 27
- 102100024748 E3 ubiquitin-protein ligase UHRF2 Human genes 0.000 description 15
- 101710131422 E3 ubiquitin-protein ligase UHRF2 Proteins 0.000 description 15
- 238000003384 imaging method Methods 0.000 description 15
- 210000005226 corpus cavernosum Anatomy 0.000 description 14
- 241000700159 Rattus Species 0.000 description 13
- 238000012800 visualization Methods 0.000 description 10
- 230000001537 neural effect Effects 0.000 description 9
- 241000282412 Homo Species 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 210000000056 organ Anatomy 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 210000003708 urethra Anatomy 0.000 description 8
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 7
- DVGHHMFBFOTGLM-UHFFFAOYSA-L fluorogold Chemical compound F[Au][Au]F DVGHHMFBFOTGLM-UHFFFAOYSA-L 0.000 description 7
- 201000001881 impotence Diseases 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 206010060862 Prostate cancer Diseases 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 208000010228 Erectile Dysfunction Diseases 0.000 description 5
- 210000001367 artery Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 210000000944 nerve tissue Anatomy 0.000 description 4
- 210000003689 pubic bone Anatomy 0.000 description 4
- 238000002271 resection Methods 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- LHYQAEFVHIZFLR-UHFFFAOYSA-L 4-(4-diazonio-3-methoxyphenyl)-2-methoxybenzenediazonium;dichloride Chemical compound [Cl-].[Cl-].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 LHYQAEFVHIZFLR-UHFFFAOYSA-L 0.000 description 3
- 206010002091 Anaesthesia Diseases 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 208000002193 Pain Diseases 0.000 description 3
- 230000003187 abdominal effect Effects 0.000 description 3
- 230000037005 anaesthesia Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000005225 erectile tissue Anatomy 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001506 fluorescence spectroscopy Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 210000000194 hypogastric plexus Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000902 placebo Substances 0.000 description 3
- 229940068196 placebo Drugs 0.000 description 3
- 230000002980 postoperative effect Effects 0.000 description 3
- 239000000700 radioactive tracer Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 210000000278 spinal cord Anatomy 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 2
- 208000028389 Nerve injury Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 238000002583 angiography Methods 0.000 description 2
- 230000004872 arterial blood pressure Effects 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 230000003376 axonal effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000030214 innervation Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 230000001926 lymphatic effect Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000008764 nerve damage Effects 0.000 description 2
- 230000007135 neurotoxicity Effects 0.000 description 2
- 210000004977 neurovascular bundle Anatomy 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000036407 pain Effects 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011473 radical retropubic prostatectomy Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 210000000664 rectum Anatomy 0.000 description 2
- 230000007441 retrograde transport Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000005070 sphincter Anatomy 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 210000001590 sural nerve Anatomy 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010069632 Bladder dysfunction Diseases 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000002881 Colic Diseases 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- -1 Formalin Aldehyde Chemical class 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 206010017999 Gastrointestinal pain Diseases 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- 229920000153 Povidone-iodine Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 208000001431 Psychomotor Agitation Diseases 0.000 description 1
- 206010038743 Restlessness Diseases 0.000 description 1
- 239000012891 Ringer solution Substances 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000002187 accessory nerve Anatomy 0.000 description 1
- 208000005298 acute pain Diseases 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 230000036626 alertness Effects 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 230000004596 appetite loss Effects 0.000 description 1
- 210000000467 autonomic pathway Anatomy 0.000 description 1
- 230000008335 axon cargo transport Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 description 1
- 229960001736 buprenorphine Drugs 0.000 description 1
- 230000005773 cancer-related death Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000001168 carotid artery common Anatomy 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000035606 childbirth Effects 0.000 description 1
- 210000003477 cochlea Anatomy 0.000 description 1
- 210000000860 cochlear nerve Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000009986 erectile function Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012820 exploratory laparotomy Methods 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical group O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000009802 hysterectomy Methods 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229940063718 lodine Drugs 0.000 description 1
- 235000021266 loss of appetite Nutrition 0.000 description 1
- 208000019017 loss of appetite Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 238000001929 near-infrared microscopy Methods 0.000 description 1
- 230000007383 nerve stimulation Effects 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 230000001734 parasympathetic effect Effects 0.000 description 1
- 210000005034 parasympathetic neuron Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000004049 perilymph Anatomy 0.000 description 1
- 210000002640 perineum Anatomy 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 230000008884 pinocytosis Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229960001621 povidone-iodine Drugs 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011471 prostatectomy Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000009844 retrograde axon cargo transport Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000002466 splanchnic nerve Anatomy 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 210000001113 umbilicus Anatomy 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 230000008728 vascular permeability Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/0019—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
- A61K49/0021—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
- A61K49/0032—Methine dyes, e.g. cyanine dyes
- A61K49/0034—Indocyanine green, i.e. ICG, cardiogreen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/313—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/313—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
- A61B1/3132—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
- A61B1/00052—Display arrangement positioned at proximal end of the endoscope body
Definitions
- a variety of medical techniques suitable for imaging biological tissues and organs are known. These include traditional x-rays, ultra-sound, magnetic resonance imaging, and computerized tomography.
- a variety of dyes useful for medical imaging have been described, including radio opaque dyes, fluorescent dyes, and calorimetric dyes (see e.g., U.S. Pat. Nos. 5,699,798; 5,279,298; 6,351,663). Imaging techniques and systems using fluorescent dyes have been described for the heart and eye (see, e.g., U.S. Pat. No. 5,279,298). Some dyes can serve both an imaging function and a therapeutic function (see, e.g. U. S. Pat. No. 6,840,933). Some specific neuronal imaging agents have been used to visualize tissue in the central nervous system.
- tracers were visually detected using ultraviolet or visible light (Bentivoglio et al., 1980, Neurosci Lett. 18(1):19; Minciacchi D et al., 1991, J Neurosci Methods. 38(2-3):183).
- Non-toxic tracers such as Indocyanine Green, Fast Blue, and Fluorogold, have been used in mammals without evidence of neuronal toxicity several months after the treatment (Thielert et al., 1993, J Comp Neurol. 337(1):113; Yeterian et al., 1994, Exp Brain Res.
- Marangos et al. labeled the auditory nerve using Fluorogold and Fast Blue in rats and monkeys by suctioning out perilymph and filling the cochlea with neuronal tracers to identify the nerve and cochlear brain stem nucleus for the positioning of electrodes for an auditory neuroprosthesis (Marangos N, et al., 2001, Hear Res. 162(1-2):48).
- the prostate is an accessory sex gland in men. It is about the size of a walnut, and surrounds the neck of the bladder and the urethra, the tube that carries urine from the bladder. It is partly muscular and partly glandular, with ducts opening into the prostatic portion of the urethra. It is made up of three lobes: a center lobe with one lobe on each side.
- the prostate gland secretes a slightly alkaline fluid that forms part of the seminal fluid.
- Prostate cancer is the most common type of cancer (excluding skin cancer) among American men. It is found most often in men aged 50 and over, with an especially high prevalence rate among African Americans. In men, it is second only to lung cancer as a cause of cancer-related death.
- the American Cancer Society has estimated that 220,900 new cases of prostate cancer will be diagnosed annually and that 28,900 men annually will die of the disease (Cancer Facts and Figures, American Cancer Society, 2003). Treatment options include hormonal therapy aimed at lowering testosterone levels, radiation therapy, chemo therapy and surgery.
- radical prostatectomy Surgical removal of the entire prostate gland is called radical prostatectomy (“RP”).
- the aim of radical prostatectomy is removal of early-stage prostate cancer, one that has not yet spread locally or to distant organs. Radical prostatectomy complications include incontinence and impotence. Most men experience urinary incontinence after surgery. Many continue to have intermittent problems with dribbling caused by coughing or exertion. Damage to nerves which innervate both the prostate and the penis plays a significant part in these unwanted side effects. Approximately 40 to 60% of men undergoing RP are impotent due to injury to the cavernous nerves during the surgery.
- cavernous nerves are part of the neurovascular bundle, which travels at the posterolateral border of the prostate, outside the prostatic capsule and on the anterolateral surface of the rectum.
- McNeal described large superior and small inferior pedicles innervating the base and the apex of the prostate respectively (McNeal J E., 1988, Am J Surg Pathol.; 12(8):619.). After reaching the apex at the 5 and 7-o'clock positions, nerves travel posterolaterally to the urethra.
- the risk of impotence may be reduced by avoiding cutting or stretching bundles of nerves and blood vessels that run along the surface of the prostate gland and are needed for an erection.
- Successful nerve sparing surgery is often difficult to achieve because of the difficulty in distinguishing between the prostate tissue, in particular the cancerous prostate tissue, and the innervating nerve tissue.
- Appropriate mapping of the nerves can also lead to better understanding of cavernous nerves topography and penile accessory innervation. Accordingly, a need exists for improved methods of imaging peripheral nerves, such as the nerves which innervate the prostate. The present invention fills these and other needs.
- the invention provides methods of determining the location of a nerve or portion of a nerve of interest in a subject during a surgical operation.
- the methods comprise, prior to the surgical operation, administering to an organ or area of the subject innervated by the nerve or portion of a nerve of interest a dye which fluoresces at an emission wavelength when the dye is contacted with an excitation wavelength, whereby the dye is taken up by or proceeds along the path of the nerve; exposing the nerve or portion of nerve during said operation to illumination comprising said excitation wavelength, thereby causing the fluorescent dye in or along the nerve or portion thereof to fluoresce; and detecting the fluorescence of the dye, thereby determining the location of said nerve or portion of nerve during said surgical operation.
- the dye is injected into a cavernous body of the penis. In some embodiments, the injection into the cavernous body is into a crus of said cavernous body. In some embodiments, said dye is injected into a cavernous body of the clitoris, into the vaginal wall, or into both. In some embodiments, the dye is injected by epidural injection. In some embodiments, the nerve is transected during the surgical operation, creating two ends, and the detection of fluorescence of step is used to determine the location of the two ends. In some embodiments, the determination of the location of the two ends of the transected nerve is used to guide grafting of nerve tissue between the ends or to reconnect them.
- the determination of the location of the nerve is used to avoid transecting said nerve.
- the surgical operation is a radical prostatectomy.
- the surgical operation is a radical hysterectomy.
- the nerve is a cavernous nerve.
- the nerve or aid portion of the nerve is visualized on a image display, thereby permitting determination of the location of the nerve or portion of the nerve.
- the exposing of the nerve or portion of nerve to excitation wavelength is by a laparoscopic instrument.
- the dye is a dye which fluoresces when exposed to near infrared light.
- the dye is a tricarbocyanine dye or an analog thereof.
- the tricarbocyanine dye is indocyanine green.
- the subject is a human.
- the dye is administered between 1 hour and 30 hours before the surgical operation. In some embodiments, the dye is administered between about 18 hours and about 24 hours before the surgical operation. In some embodiments, the dye is administered between about 6 hours and about 24 hours before the surgical operation.
- the nerve is the small cavernous nerve. In some embodiments, the nerve is the large cavernous nerve.
- FIGS. 1 a - d show the exposing of the penis of a rat.
- FIGS. 1 b and 1 c show the injection of ICG into the crura of the left and right cavernous bodies, respectively.
- FIG. 1 d shows the exposed penile crura and cavernous nerves under near infrared (NIRF) illumination following injection of ICG. Arrows show the location of the cavernous nerves.
- NIRF near infrared
- FIG. 2 shows a cavernous nerve under NIRF illumination following injection of ICG into the crura of the cavernous bodies.
- the white arrow points to the nerve.
- FIG. 3 shows a hook electrode (arrow) hooked around a cavernous nerve under NIRF illumination, after ICG injection into the crura of the cavernous bodies.
- FIG. 4 shows NIRF illumination of a cavernous nerve (arrow) from an animal injected with ICG as described above.
- FIGS. 5 a and 5 b are photographs of a cavernous nerve excised from an animal whose penile crura were injected with ICG.
- FIG. 5 a shows the nerve under infrared and LED illumination.
- FIG. 5 b shows the same nerve under NIRF alone.
- dyes and other agents have been used to image nerve cells in the eye and nerves connecting the ear to the central nervous system.
- dyes can also be used to image (that is, to permit visualization) of nerves elsewhere in the body and can be used either to reduce the chance that nerves will inadvertently be transected during surgical procedures or to help guide neural grafts when unintended transactions occur or when they cannot otherwise be avoided.
- the methods of the invention provide for the visualization of cavernous nerve cells during radical prostatectomy (“RP”) and other surgical procedures.
- RP radical prostatectomy
- the recovery of erectile function is a significant concern for patients undergoing treatment for localized prostate cancer.
- impotence is a common side effect of RP resulting from damage to the cavernous nerves that innervate the penis. Damage to the nerve tissue surrounding the prostate usually results from the surgeon's inability to distinguish between prostate tissue and nerve tissue.
- the present invention increases the ability of the surgeon to identify and avoid the cavernous nerves as they traverse the area surrounding the prostate and other abdominal organs and thus to reduce or to prevent damage to those nerves tissue during the course of surgery.
- the methods are useful not only to reduce the inadvertent transection of these nerves during prostate surgery, but also to aid in grafting the ends of the nerves if they are transected.
- genitofemoral or sural nerve grafts can be applied directly to the ends to facilitate sprouting of regenerative neural fibers.
- the light visible from the fluorescence of the ends of transected nerves provides a target to guide the anastomosis of the nerves by the nerve graft.
- the methods can further be used to identify the cavernous nerves in patients undergoing radical pelvic surgeries, such as low anterior resection or abdominal perineal resection.
- a fluorescent dye that can be taken up by nerve cells and that has low toxicity is injected into the corpora cavernosa or one corpus cavernosum of the penis (as persons of skill are aware, “corpora cavernosa” is the plural form and “corpus cavernosum” is the singular form.
- the practitioner may choose to inject the dye into one corpus cavernosum or into both, depending on whether the practitioner wishes to be able to image one or both of the subject's cavernous nerves.
- the corpora cavernosa will sometimes be referred to herein as the “cavernous bodies.”
- the injections may be made into the cavernous bodies as they run parallel to each other along the length of the penis, or at the base or root of the penis into the crura, which is the area where the two corpora cavernosa diverge within the subject's body and anchor to bone. (If the intent is to visualize just one of the cavernous nerves, the injection will be made into the appropriate crus of penis, “crus” being the singular form of “crura.”) In studies underlying the present invention, injections into the cavernous bodies closer to the glans of the penis, and therefore more distal from the body, resulted in less favorable visualization of the nerves than did injections into the crura. Accordingly, injection into the crura is preferred.
- the injections are easily made by palpating the pubic bone and making the injection about 1 cm distal (along the penis, away from the body) from the pubic bone. This location is the same as that at which patients are taught to self inject erectile dysfunction drugs to cause erections, so it is well known and relatively easy to find even for the layperson.
- the dye is transported along the nerves supplying the organ, permitting visualization of the nerve and determination of their location.
- the flow of the dye is in lymphatic channels around the nerve rather than in the nerve itself. This belief arises because, in studies underlying the invention, it was noted both that the periphery of the nerve fluoresced more strongly than the middle of the nerve that the speed at which the dye moved along the nerve seemed faster than might be expected from retrograde transport alone.
- the surgeon may wish to visualize only one cavernous nerve.
- the surgeon may inject dye only into the cavernous body innervated by the cavernous nerve whose visualization is desired. It is contemplated, however, that the surgeon will usually want the ability to visualize and thereby locate, the nerves around both sides of the prostate, in part because visualizing the transected ends will permit the nerves to be bridged (interpositioned) with genitofemoral or sural nerve. Additionally, in some prostate cancers, it is difficult for the surgeon to determine where the prostate tissue ends. In such cases, visualization of the nerves through the methods of the invention will assist the surgeon determine the margin between prostate and non-prostate tissue. Accordingly, injection of dye into both cavernous bodies is preferred.
- Imaging of the nerves can also be made by injecting the dye by an epidural injection in the area of S2-S4 of the spinal cord level to allow antegrade flow of the dye along the nerve.
- Tens of thousands of epidural injections are made every year, for example, to women undergoing childbirth, and techniques for making such injections, and for positioning them at desired levels are well known in the art. It is expected that dye injected by epidural injection, will undergo transport along the nerves from the spine towards the penis, and will permit visualization of the nerves in a manner like that seen from injections of dye into the cavernous bodies.
- the clitoris contains a glans, shaft, and crura containing cavernous bodies homologous to the structures of the penis.
- the dye can be injected into the cavernous bodies in the clitoris in a like manner to the injections described above with regard to the penis. Specifically, the dye is injected into the clitoris or into the anterior wall of the vagina just below the clitoris or, preferably, both.
- the dye is administered as an epidural injection at the S2-S4 spinal cord level, at the start of the parasympathetic outflow. It is expected that the improved ability to visualize the nerves will help the surgeon avoid transecting the nerves or, if the nerves are transected, will help the surgeon identify the cut ends and assist in bridging the gap with a nerve graft or, where possible, reattaching the cut ends.
- fluorescent dyes have a particular excitation wavelength which causes the dye to fluoresce and emit light of a particular emission wavelength.
- excitation wavelength causes the dye to fluoresce and emit light of a particular emission wavelength.
- emission wavelength causes the dye to fluoresce and emit light of a particular emission wavelength.
- mammals for which the techniques can be used include, but are not limited to, non-human primates, dogs, cats, sheep, cows, pigs, horses, mice, rats, rabbits, and guinea pigs.
- the methods are particularly useful in visualizing nerves in humans, and particularly the cavernous nerves in humans.
- the penis can be thought of as comprising three cylinders. Two, the corpora cavernosa, are disposed on either side of the penis, and make up the bulk of the penis. The third, the corpus spongiosum, which contains the urethra, is disposed in the middle of the penis, in a cleft between the undersides of the corpora cavernosa. A “deep artery” runs down the center of each corpus cavernosum and provides blood to sinusoidal spaces in the respective corpus.
- the deep artery is expanded and the sinusoidal spaces are swollen, while the emissary veins that drain blood from the corpora cavernosa are compressed.
- the sinusoidal spaces within each corpus cavernosum communicate, permitting a common intracavernosal pressure and a common penile rigidity.
- Preganglionic parasympathetic neurons originate from the sacral spinal nucleus at levels S2-S4.
- the axons travel from the anterior sacral roots and end as cavernous nerves giving innervation to the cavernous bodies. Stimulation of pelvic and cavernous nerves has been shown to result in an erection in animals as well as in humans. Complete loss of erection is observed after bilateral cavernous nerve resection.
- the sympathetic contribution to the cavernous bodies originates at the T11-L2 level of the spinal cord, and travels through the prevertebral pathway, consisting of lumbar splanchnic nerves, hypogastric nerves, pelvic plexus and cavernous nerves and through the paravertebral chain, leading to the pelvic nerves, pelvic plexus, cavernous and pudendal nerves.
- cavernous nerves are part of the neurovascular bundle, which travels at the posterolateral border of the prostate, outside the prostatic capsule and on the anterolateral surface of the rectum.
- Large superior and small inferior pedicles innervate the base and the apex of the prostate, respectively. After reaching the apex at the 5 and 7 o'clock positions, nerves travel posterolaterally to the urethra.
- the device used for visualization of the nerves in the area of interest comprises both a laser and a camera.
- the laser preferably consists of a laser diode providing a maximum of 3W output at 806 nm.
- the laser diode is selected to provide a light with a wavelength at an excitation frequency appropriate for the dye selected.
- the discussion below refers to the exemplar dye ICG.
- the laser output is decollimated (i.e. optics are used to spread out the laser light from a tight beam) to provide even illumination over a field of view, for example, 7.6 cm by 7.6 cm at a working distance of 30 cm.
- the unit typically contains a charge-coupled device (“CCD”) video camera sensitive into the near infrared spectrum and, for use with ICG, is equipped with an 815 nm edge filter.
- CCD charge-coupled device
- An articulated arm connected to a wheeled base, supports the laser/camera device. This allows the imaging head to be moved into close proximity to the surgical table and for vertical movement of the head to attain the correct focal distance above the area of interest.
- the imaging head and extension arm that protrudes over the surgical field is typically covered with an optically transparent sterile drape.
- the laser can be activated by means of a computer command or by foot pedal.
- Such laser/camera devices are commercially available.
- Laser/camera devices suitable for intra-operative imaging are commercially available.
- the laser/camera device is a SPY® Intra-operative Imaging System (Novadaq Technologies, Inc., Mississauga, Ontario, Canada).
- the ICG is administered by injection into one of the corpus cavernosum of interest, preferably into the crus, permitting the dye to be taken up by the nerve serving that corpus cavernosum, and transported by retrograde transport back towards the pelvic plexus.
- the practitioner will want to visualize both cavernous nerves and will inject the dye into both cavernous bodies.
- a 806 nm excitation light causes the dye to fluoresce, emitting light at 830 nm.
- the emitted light can then be imaged directly or, preferably, is captured using an imaging system.
- the capture system is a charge-coupled device (CCD) camera or CMOS (complementary symmetry metal oxide semiconductor) image sensor, which feeds the image to a monitor so that the surgeon can visualize the fluorescence of the dye in the nerves in the area of interest in real time.
- CCD charge-coupled device
- CMOS complementary symmetry metal oxide semiconductor
- the camera is also attached to a computer and the image is saved, which not only permits documentation of the nerve's location and path in the area of interest, but also can be used for training urologic surgeons, nurses, and other medical staff.
- the time required for positioning the device is 2 minutes, while the total time that the nerve or nerves are illuminated with laser light is 30 seconds.
- suitable mammals include, but are not limited to, humans, non-human primates, dogs, cats, sheep, cows, pigs, horses, mice, rats, rabbits, and guinea pigs. Use in humans is primates, and particularly in humans, is preferred.
- fluorescent dyes have a particular excitation wavelength which causes the dye to fluoresce and emit light of a particular emission wavelength.
- Persons of skill will appreciate that a considerable literature is available in the art on the characteristics of different dyes, including their excitation wavelength and emission wavelength. This literature is well known, and will not be set forth in detail herein.
- the dye is imaged by exciting it with a light that has an excitation wavelength appropriate for the particular dye used.
- a light that has an excitation wavelength appropriate for the particular dye used.
- Some dyes for example, fluoresce under ultraviolet (“UV”) illumination while others fluoresce under incandescent illumination.
- UV ultraviolet
- Fluorescent dyes suitable for use in the methods of the invention are non-toxic dyes which fluoresce when exposed to radiant energy, e.g. light.
- the dyes are near infrared fluorochromes, or “NIRF” that emit light in the near infra red spectrum.
- the dye is a tricarbocyanine dye, and in particularly preferred embodiments, is indocyanine green (“ICG”).
- ICG is commercially available from, for example, Akom, Inc. (Buffalo Grove, Ill.), which sells it under the name IC-GREENTM.
- the dye is selected from fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde, fluorescamine, Rose Bengal, trypan blue, and fluoro-gold.
- the dyes may be mixed or combined.
- dye analogs may be used.
- a “dye analog” is a dye that has been chemically modified, but still retains its ability to fluoresce when exposed to radiant energy of an appropriate wavelength. ICG, Fast Blue and Fluorogold have all been used in mammals with low evidence of neuronal toxicity and are preferred.
- ICG is particularly preferred both because it has low toxicity and because it has been approved by the Food and Drug Administration for several diagnostic purposes in humans. Its absorption (excitation) and emission peaks (805 and 835 nm, respectively) lie within the “optical window” of tissue, where absorption due to endogenous chromophores is low. Near infrared light can therefore penetrate tissue to a depth of several millimeters to a few centimeters. After intravenous injection, ICG is bound within 1 to 2 seconds, mainly to globulins (1-lipoproteins), and remains intravascular, with normal vascular permeability. ICG is not metabolized in the body and is excreted exclusively by the liver, with a plasma half-life of 3 to 4 minutes.
- ICG Intrahepatic recirculation
- the surgical field For intraoperatively visualizing the cavernous nerves, the surgical field, or the portion of the surgical field in which imaging is desired, is illuminated with a light of the excitation wavelength or wavelengths suitable for the dye or dyes used. Since the nerves are quite thin (accounting in part for the difficulty in discerning them with the unaided eye), ambient light may need to be dimmed to permit the fluorescence to be seen. Observation will typically also require magnification. Where the excitation wavelength is outside of the visible range (where, for example, the excitation wavelength is in the ultraviolet or near infrared range), the light source may be designed to permit switching or “toggling” between the excitation wavelength and visible light. This permits the practitioner to note the position of the nerves using the fluorescent property in relation to the rest of the surgical field and surrounding (but non-fluorescent) structures.
- an instrument having an optical configuration similar to a fluorescence microscope may be used, in which a dichroic mirror is used to split the paths of the illumination (the excitation light).
- the excitation light reflects off the surface of the dichroic mirror into the objective, while the fluorescence emission passes through the dichroic mirror to the eyepiece or is converted into a signal to be presented on a screen.
- the instrument may further have an excitation filter or an emission filter, or both, to select the wavelengths appropriate for each function.
- the filters are interference filters, which block transmission of frequencies out of their bandpass.
- the dye is typically administered by an injection into one or both of the corpora cavemosa. Typically, the dye will be administered some hours preoperatively, to permit the dye to be taken up by the nerves and transported throughout the area of interest prior to commencing the radical prostatectomy or other surgical operation.
- the dye may be administered in the patient's room.
- the dye is administered sufficiently before the intended surgery to permit the nerves to take up the dye and to transport it over the length of their axons, but not so long before the surgery that the dye has been transported in large part to the cell body.
- the dye is administered more than 2 hours, but less than 48 hours, before the intended surgery. More preferably, the dye is administered at least about 5 hours but not more than 40 hours before the intended surgery. In some embodiments, the dye is administered at least about 10 hours but not more than 36 hours before the intended surgery. In other embodiments, the dye is administered at least about 14 hours but not more than 30 hours before the intended surgery. In preferred embodiments, the dye is administered between about 16 hours to 26 hours before the intended surgery. In still preferred embodiments, the dye is administered between about 18 hours to about 24 hours before the intended surgery, with “about” meaning an hour on either side.
- the maximum daily dosage of ICG for adults is 2 mg/kg. There is no data available describing the signs, symptoms, or laboratory findings accompanying an overdose of ICG.
- the LD 50 after IV administration ranges between 60 and 80 mg/kg in mice, 50 and 70 mg/kg in rats, and 50 to 80 mg/kg in rabbits.
- Intraoperative video angiography is performed with a laser-fluorescence imaging device (Novadaq Technologies, Inc., Mississauga, Ontario, Canada) consisting of a near infrared (NIR) laser light source and a NIR-sensitive digital camcorder.
- NIR near infrared
- the unit is positioned 30 to 40 cm from the area of interest.
- ICG dissolved in water
- the NIR light emitted by the laser light source induces ICG fluorescence.
- the fluorescence is recorded by a digital video camera, with optical filtering to block ambient and laser light so that, when desired, only ICG fluorescence is captured. Images can be observed on screen in real time (25 images/sec). The images can be reviewed and stored on the digital video camera or transferred to a computer or to storage media.
- the rat cavernous nerve model is well-recognized as a model for radical retropubic prostatectomy-associated neurogenic erectile dysfunction and has distinctive advantages over the other animal models.
- the rat cavernous nerves are single neural bundles that run alongside the prostate on either side. They are easily identified and are ideal neural bundles to evaluate the ability of neuro tracer to highlight pelvic nerves. Further, electrical stimulation is easily accomplished and yields reliable and reproducible results. Additionally, neurophysiological studies are feasible, and animal purchase, housing, and maintenance costs are low.
- the medical literature describes the successful use of Sprague-Dawley rats for the assessment of erectile dysfunction after cavernous nerve injury.
- the animals are divided into three groups: Group I, placebo injection; group II intracavernous ICG injection; group III Fluorogold injection.
- Groups I-III are subdivided into 3 sub-groups, according to the timing for intraoperative evaluation of axonal fluorescent staining in cavernous nerves.
- Retrograde injection of placebo (distilled water) or fluorochromes, ICG or Fluorogold is administered by intra-penile, sub-albugineal injection of 25 ul of ICG diluted in 100 ⁇ l of water for injection, per cavernous body.
- Sprague-Dawley rats 60 to 100 days old, weighing 275-325 grams are used. All animals are anesthetized using intraperitoneal injection of Ketamine/Xylazine (40-80 mg/kg and 5/10 mg/kg, respectively). No pre-anesthetic medications are used. When appropriate depth of anesthesia is reached, positioning of the animal takes place. All animals are fastened to a padded rack in the supine position using gauze knots to fix all four extremities to the rack equipped with heating device. Depth of anesthesia, regularity of respirations, and heart beat palpation are repeatedly checked. A pulse oximeter is used to monitor the animal.
- Surgery/Procedure starts after appropriate preparation of surgical field by Povidone-Iodine scrub, 70% Isopropyl Alcohol and Povidone-lodine solution.
- the surgical field includes the genital area, lower abdomen and perineum.
- the penis is squeezed out from prepuce, then stretched using finger grip at the glans and, when maximally stretched, a clamp used for atraumatic clamping in neurosurgical operation on brain aneurysms is placed at the root of the penis.
- This allows blood to pool inside cavernous bodies, an erection, and easier application of a 27 Gauge butterfly needle to sub-albugineal space bilaterally. Adequate placement is assured when blood is easily aspirated.
- 0.5 mg/kg of ICG and 1 mg/kg of Fluorogold diluted in distilled water to total volume of 50 ⁇ l is injected, 25 ⁇ l per cavernous body.
- a placebo group is injected using 25 ⁇ l of distilled water per cavernous body.
- Animals in all groups have an exploratory laparotomy through midline lower incision, with intraoperative identification of cavernous nerves. Midline incisions are made from umbilicus to pubis. Bowels and testicles, after their release from scrotal attachments, are packed back to upper abdomen. For better visualization of the pelvic structures, surgical loops with 3.8 ⁇ magnification are used. In all animals, pelvic ganglion and cavernous nerves are identified bilaterally.
- the pressure at the level of penile base is held for 15 minutes to allow better penetration of injected fluorochromes into neural endings in cavernous bodies. After release of the clamps, the 27 Gauge needles are removed, but a slight pressure by fingers at the injection sites is maintained for 3-5 minutes to prevent extravasation.
- Buprenorphine (0.01-0.05 mg/kg) is administered intraoperatively and then as needed to control pain.
- Analgesia is used for all animals for postoperative pain. Animals are checked for signs of pain every 6 hours during first 24 hours post-surgery and then every 12 hours until sacrifice surgery.
- Signs of acute pain are guarding (protecting the painful area), vocalization, especially when the animal moves or the painful area is touched, licking, biting, scratching or shaking a particular area, restlessness, such as pacing and repeatedly lying down and getting up again (stereotypic-like behavior), lack of mobility as seen with joint, colic or gut pain or an unusual gait posture during movement, failure to groom, causing an unkempt appearance (rats accumulate red porphyrin around the eyes when they fail to groom properly), abnormal resting postures in which the animal appears to be sleeping or is hunched up and cannot get comfortable, failure to show normal patterns of inquisitiveness or alertness, loss of appetite or reduction in water consumption, and changes in behavior or signs of aggression.
- the rats undergo a second surgery (non-survival) and postmortem harvesting at chosen timepoints after fluorochrome injection.
- Anesthesia identical to the first procedure is administered and then appropriate skin preparation for surgery is performed.
- the same level of incision is used in second surgery/harvesting procedure.
- the bladder and prostate are exposed as in the first surgery.
- the penis is denuded of skin and the prepuce circumcised.
- Cavernous nerves, located lateral to urethra and prostate bilaterally, are identified using the SPY® Imaging System (Novadaq Technologies, Inc. Toronto, Canada) and isolated for electrode placement.
- a stainless-steel bipolar electrode with parallel hooks (1 mm apart) is placed around a cavernous nerve and positioned by micromanipulator.
- the electrode cable is attached to a Grass S48 stimulator (Quincy, Mass.), with stimulation parameters 16 Hz, 5 msec duration, 0.5 to 4 volts.
- a heparinized (100 units per 1 ml NS) 24 gauge angiocath (Insyte-N, Becton Dickinson Vascular Access, Sandy, Utah), attached to polyethylene-50 tubing, is inserted in the rat's right cavernous body.
- a cannula inserted to the right cavernous body is connected to a pressure transducer and an amplifier unit (Harvard Apparatus, Holliston, Mass).
- the amplifier is connected to a data acquisition module (DI-190, Dataq Instruments, Akron, Ohio). The data is recorded on a computer with Windaq/Lite recording software (Dataq). Similarly, Central Arterial Pressure (CAP) is measured after appropriate placement of silicone tube into common carotid artery identified just lateral to the trachea. This allows measurement of the cavernous/central arterial pressure ratio and accurate assessment of erection in animal after cavernous nerve stimulation. When ICP measurements are completed, the animal is euthanized by performing elongation of abdominal incision with opening of the chest and use of large vascular clip to ligate aorta and vena cava at the exit/entrance from/to the heart.
- CAP Central Arterial Pressure
- cavernous bodies are transected close to their roots and divided tangentially. Identical fixation and storage are used for cavernous bodies as for cavernous nerves. At the end of non-survival surgery cavernous nerves are harvested as well as cavernous bodies using NS and 10% Formaldehyde adequately marked tubes. Half of the specimen is placed into Formalin Aldehyde and half into NS. These are sent for pathological assessment of the structures for presence of fluorochrome in cavernous bodies and presence of axonal tracer/fluorochrome in cavernous nerves. Electronic microscopy is used to assess subcellular integrity of the neural and myovascular structures.
- Intracrural injection of ICG permitted identification of the nerves at 6, 8, 12, 18, 24 and 36 hours post-operatively. (These were specific time points at which examinations were made. It can be assumed that the nerves would have also fluoresced and therefore permitted identification of the nerves at times, such as 20 hours and 30 hours, between those at which the nerves were examined.) Although other penile structures fluoresced for extended periods, fluorescence of the cavernous nerves was not detectable at longer post-injection periods (e.g., 30 days). The highest intensity was achieved at 18 and at 24 hours post-injection. NIRF and hematoxylin and eosin (H&E) staining were used to confirm that the fluorescence observed macroscopically coincided with the cavernous nerves.
- H&E hematoxylin and eosin
- FIGS. 1 a, b , and c show the exposing of the penis and injection of ICG into the crura of the cavernous bodies.
- FIG. 1 d shows the penile crura and cavernous nerves under near infrared (NIRF) illumination following injection of ICG.
- NIRF near infrared
- FIG. 2 shows a cavernous nerve under NIRF.
- the white arrow points to the nerve.
- nerves were identified in situ at 6, 8, 12, 18, 24, and 36 hours post ICG injection. The highest fluorescent intensity was noted at 18 and at 24 hours post injection. The fluorescent nerves were then excised. NIRF and hematoxylin and eosin (H&E) staining were used to confirm that the fluorescence observed macroscopically coincided with the cavernous nerves.
- FIG. 3 shows a hook electrode hooked around a cavernous nerve under NIRF, after ICG injection as described above.
- FIG. 4 shows NIRF illumination of a cavernous nerve (arrow) from an animal injected with ICG as described above.
- FIGS. 5 a and 5 b are photographs of a cavernous nerve excised from an animal injected with ICG as described above.
- FIG. 5 a shows the nerve under infrared and LED illumination.
- FIG. 5 b shows the same nerve under NIRF alone. The surgeon can alternate at will between visualizing the nerve under normal illumination (with or without infrared illumination) and by fluorescence induced by NIRF illumination.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Optics & Photonics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
Description
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/515,419 US10265419B2 (en) | 2005-09-02 | 2006-09-01 | Intraoperative determination of nerve location |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71364305P | 2005-09-02 | 2005-09-02 | |
US11/515,365 US20070122344A1 (en) | 2005-09-02 | 2006-08-31 | Intraoperative determination of nerve location |
US11/515,419 US10265419B2 (en) | 2005-09-02 | 2006-09-01 | Intraoperative determination of nerve location |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/291,930 Continuation US20190388565A1 (en) | 2005-09-02 | 2019-03-04 | Intraoperative determination of nerve location |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070122345A1 US20070122345A1 (en) | 2007-05-31 |
US10265419B2 true US10265419B2 (en) | 2019-04-23 |
Family
ID=37809582
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/515,365 Abandoned US20070122344A1 (en) | 2005-09-02 | 2006-08-31 | Intraoperative determination of nerve location |
US11/515,419 Active 2033-06-02 US10265419B2 (en) | 2005-09-02 | 2006-09-01 | Intraoperative determination of nerve location |
US16/291,930 Abandoned US20190388565A1 (en) | 2005-09-02 | 2019-03-04 | Intraoperative determination of nerve location |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/515,365 Abandoned US20070122344A1 (en) | 2005-09-02 | 2006-08-31 | Intraoperative determination of nerve location |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/291,930 Abandoned US20190388565A1 (en) | 2005-09-02 | 2019-03-04 | Intraoperative determination of nerve location |
Country Status (2)
Country | Link |
---|---|
US (3) | US20070122344A1 (en) |
WO (1) | WO2007028032A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10434190B2 (en) | 2006-09-07 | 2019-10-08 | Novadaq Technologies ULC | Pre-and-intra-operative localization of penile sentinel nodes |
US10488340B2 (en) | 2014-09-29 | 2019-11-26 | Novadaq Technologies ULC | Imaging a target fluorophore in a biological material in the presence of autofluorescence |
US10631746B2 (en) | 2014-10-09 | 2020-04-28 | Novadaq Technologies ULC | Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography |
US10835138B2 (en) | 2008-01-25 | 2020-11-17 | Stryker European Operations Limited | Method for evaluating blush in myocardial tissue |
US10992848B2 (en) | 2017-02-10 | 2021-04-27 | Novadaq Technologies ULC | Open-field handheld fluorescence imaging systems and methods |
US11284801B2 (en) | 2012-06-21 | 2022-03-29 | Stryker European Operations Limited | Quantification and analysis of angiography and perfusion |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7403812B2 (en) | 2001-05-17 | 2008-07-22 | Xenogen Corporation | Method and apparatus for determining target depth, brightness and size within a body region |
US20070122344A1 (en) | 2005-09-02 | 2007-05-31 | University Of Rochester Medical Center Office Of Technology Transfer | Intraoperative determination of nerve location |
US8114382B2 (en) | 2006-12-11 | 2012-02-14 | General Electric Company | Myelin detection using benzofuran derivatives |
US20090234236A1 (en) * | 2008-03-14 | 2009-09-17 | General Electric Company | Nerve blood flow modulation for imaging nerves |
US10219742B2 (en) | 2008-04-14 | 2019-03-05 | Novadaq Technologies ULC | Locating and analyzing perforator flaps for plastic and reconstructive surgery |
EP2285421B1 (en) | 2008-05-02 | 2018-04-11 | Novadaq Technologies ULC | Methods for production and use of substance-loaded erythrocytes for observation and treatment of microvascular hemodynamics |
JP2011520907A (en) | 2008-05-14 | 2011-07-21 | ノヴァダク テクノロジーズ インコーポレイテッド | Imaging method and composition for neuroimaging comprising a fluorescent dye conjugated to a viral component |
US10492671B2 (en) | 2009-05-08 | 2019-12-03 | Novadaq Technologies ULC | Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest |
US9179843B2 (en) | 2011-04-21 | 2015-11-10 | Hassan Ghaderi MOGHADDAM | Method and system for optically evaluating proximity to the inferior alveolar nerve in situ |
US20130166001A1 (en) * | 2011-06-23 | 2013-06-27 | University Of North Carolina At Charlotte | Continuous-wave optical stimulation of nerve tissue |
US10744212B2 (en) | 2016-03-14 | 2020-08-18 | General Electric Company | Topical application of nerve labeling dyes for image-guided surgery |
WO2018229771A1 (en) * | 2017-06-16 | 2018-12-20 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Spectroscopic clamper for real time nerve detection |
US12274530B2 (en) * | 2018-09-18 | 2025-04-15 | The Johns Hopkins University | Neuromodulation based nerve identification |
JP7346357B2 (en) * | 2020-06-01 | 2023-09-19 | 富士フイルム株式会社 | endoscope system |
Citations (341)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4109647A (en) | 1977-03-16 | 1978-08-29 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare | Method of and apparatus for measurement of blood flow using coherent light |
US4162405A (en) | 1978-05-23 | 1979-07-24 | Britton Chance | Flying spot fluoro-meter for oxidized flavoprotein and reduced pyridine nucleotide |
US4200801A (en) | 1979-03-28 | 1980-04-29 | The United States Of America As Represented By The United States Department Of Energy | Portable spotter for fluorescent contaminants on surfaces |
US4263916A (en) | 1978-03-27 | 1981-04-28 | University Of Southern California | Image averaging for angiography by registration and combination of serial images |
US4394199A (en) | 1981-09-08 | 1983-07-19 | Agnus Chemical Company | Explosive emulsion composition |
EP0091805A2 (en) | 1982-04-08 | 1983-10-19 | Olympus Optical Co., Ltd. | Endoscope focus state detectors |
JPS58222331A (en) | 1982-06-21 | 1983-12-24 | Sony Corp | Reproducer of character information |
JPS5969721A (en) | 1982-10-15 | 1984-04-20 | Olympus Optical Co Ltd | Endoscope measuring device |
JPS5970903A (en) | 1982-10-15 | 1984-04-21 | Olympus Optical Co Ltd | Automatic measuring apparatus of endoscope |
US4473841A (en) | 1981-10-20 | 1984-09-25 | Fuji Photo Film Co., Ltd. | Video signal transmission system for endoscope using solid state image sensor |
US4532918A (en) | 1983-10-07 | 1985-08-06 | Welch Allyn Inc. | Endoscope signal level control |
US4541438A (en) | 1983-06-02 | 1985-09-17 | The Johns Hopkins University | Localization of cancerous tissue by monitoring infrared fluorescence emitted by intravenously injected porphyrin tumor-specific markers excited by long wavelength light |
US4556057A (en) | 1982-08-31 | 1985-12-03 | Hamamatsu Tv Co., Ltd. | Cancer diagnosis device utilizing laser beam pulses |
WO1986002730A1 (en) | 1984-10-22 | 1986-05-09 | Hightech Network Sci Ab | A fluorescence imaging system |
US4619249A (en) | 1985-07-24 | 1986-10-28 | Kim Landry | Transcutaneous intravenous illuminator |
EP0215772A2 (en) | 1985-09-16 | 1987-03-25 | AVL Medical Instruments AG | Method and device for diagnosing tumours using sera |
US4719508A (en) | 1985-10-02 | 1988-01-12 | Olympus Optical Co., Ltd. | Endoscopic photographing apparatus |
US4718417A (en) | 1985-03-22 | 1988-01-12 | Massachusetts Institute Of Technology | Visible fluorescence spectral diagnostic for laser angiosurgery |
US4768513A (en) | 1986-04-21 | 1988-09-06 | Agency Of Industrial Science And Technology | Method and device for measuring and processing light |
US4773097A (en) | 1984-05-31 | 1988-09-20 | Omron Tateisi Electronics Co. | Image analyzing apparatus |
US4774568A (en) | 1986-01-27 | 1988-09-27 | Kabushiki Kaisha Toshiba | Endoscopic apparatus |
GB2203831A (en) | 1986-07-07 | 1988-10-26 | Academy Of Applied Sciences | Diagnosis of malignant tumours by fluorescence |
US4805597A (en) | 1986-09-30 | 1989-02-21 | Kabushiki Kaisha Toshiba | Endoscopic apparatus |
US4815848A (en) | 1985-03-28 | 1989-03-28 | Gruen-Optik Wetzlar Gmbh | Device for the individual adjustment of the intensity of several spectral lamps |
US4821117A (en) | 1986-11-12 | 1989-04-11 | Kabushiki Kaisha Toshiba | Endoscopic system for producing fluorescent and visible images |
US4827908A (en) | 1987-03-30 | 1989-05-09 | Kabushiki Kaisha Toshiba | Endoscopic apparatus |
US4852579A (en) | 1987-04-20 | 1989-08-01 | Karl Storz Endoscopy Gmbh And Company | Photocharacterization and treatment of normal abnormal and ectopic endometrium |
US4858001A (en) | 1987-10-08 | 1989-08-15 | High-Tech Medical Instrumentation, Inc. | Modular endoscopic apparatus with image rotation |
US4860731A (en) | 1987-12-17 | 1989-08-29 | Olympus Optical Co., Ltd. | Endoscope |
US4867137A (en) | 1987-03-19 | 1989-09-19 | Olympus Optical Co., Ltd. | Electronic endoscope |
US4868647A (en) | 1987-09-14 | 1989-09-19 | Olympus Optical Co., Ltd. | Electronic endoscopic apparatus isolated by differential type drive means |
JPH01236879A (en) | 1988-03-17 | 1989-09-21 | Canon Inc | Picture encoder |
DE3906860A1 (en) | 1988-03-08 | 1989-09-28 | Fraunhofer Ges Forschung | Device for producing an angiography |
US4900934A (en) | 1987-07-15 | 1990-02-13 | University Of Utah | Apparatus for simultaneous visualization and measurement of fluorescence from fluorescent dye-treated cell preparations and solutions |
US4930516A (en) | 1985-11-13 | 1990-06-05 | Alfano Robert R | Method for detecting cancerous tissue using visible native luminescence |
US4938205A (en) | 1988-05-27 | 1990-07-03 | The University Of Connecticut | Endoscope with traced raster and elemental photodetectors |
KR900005434B1 (en) | 1984-06-01 | 1990-07-30 | 제너럴 일렉트릭 캄파니 | Region - of - interest digital subtraction angiography |
JPH02200237A (en) | 1989-01-30 | 1990-08-08 | Olympus Optical Co Ltd | Fluorescent observing method |
WO1990010219A1 (en) | 1989-02-22 | 1990-09-07 | Spectraphos Ab | Improvements in diagnosis by means of fluorescent light emission from tissue |
US4957114A (en) | 1985-04-01 | 1990-09-18 | Kun Zeng | Diagnostic apparatus for intrinsic fluorescence of malignant tumor |
WO1990012536A1 (en) | 1989-04-14 | 1990-11-01 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
US4993404A (en) | 1989-06-26 | 1991-02-19 | Lane Timothy G | Fluoroscopy switching device |
US4995398A (en) | 1990-04-30 | 1991-02-26 | Turnidge Patrick A | Coronary angiography imaging system |
US4995396A (en) | 1988-12-08 | 1991-02-26 | Olympus Optical Co., Ltd. | Radioactive ray detecting endoscope |
US4998972A (en) | 1988-04-28 | 1991-03-12 | Thomas J. Fogarty | Real time angioscopy imaging system |
CN1049781A (en) | 1989-09-02 | 1991-03-13 | 住友电气工业株式会社 | Laser surgery instruments for vascular surgery |
US5003977A (en) | 1988-03-31 | 1991-04-02 | Agency Of Industrial Science And Technology | Device for analyzing fluorescent light signals |
JPH03115958A (en) | 1989-09-29 | 1991-05-16 | Hamamatsu Photonics Kk | Fluorescent observation device for biotissue |
US5042494A (en) | 1985-11-13 | 1991-08-27 | Alfano Robert R | Method and apparatus for detecting cancerous tissue using luminescence excitation spectra |
US5071417A (en) | 1990-06-15 | 1991-12-10 | Rare Earth Medical Lasers, Inc. | Laser fusion of biological materials |
US5078150A (en) | 1988-05-02 | 1992-01-07 | Olympus Optical Co., Ltd. | Spectral diagnosing apparatus with endoscope |
US5091652A (en) | 1990-01-12 | 1992-02-25 | The Regents Of The University Of California | Laser excited confocal microscope fluorescence scanner and method |
US5090400A (en) | 1987-03-31 | 1992-02-25 | Kabushiki Kaisha Toshiba | Measuring endoscope |
US5117466A (en) | 1991-04-30 | 1992-05-26 | The United States Of America As Represented By The United States Department Of Energy | Integrated fluorescence analysis system |
US5125404A (en) | 1985-03-22 | 1992-06-30 | Massachusetts Institute Of Technology | Apparatus and method for obtaining spectrally resolved spatial images of tissue |
US5131398A (en) | 1990-01-22 | 1992-07-21 | Mediscience Technology Corp. | Method and apparatus for distinguishing cancerous tissue from benign tumor tissue, benign tissue or normal tissue using native fluorescence |
US5134662A (en) | 1985-11-04 | 1992-07-28 | Cell Analysis Systems, Inc. | Dual color camera microscope and methodology for cell staining and analysis |
JPH04297236A (en) | 1991-03-26 | 1992-10-21 | Toshiba Corp | Digital fluorography system |
EP0512965A1 (en) | 1991-05-08 | 1992-11-11 | Xillix Technologies Corporation | Endoscopic imaging system for diseased tissue |
US5165079A (en) | 1989-02-02 | 1992-11-17 | Linotype-Hell Ag | Optical color-splitter arrangement |
US5178616A (en) | 1988-06-06 | 1993-01-12 | Sumitomo Electric Industries, Ltd. | Method and apparatus for intravascular laser surgery |
US5196928A (en) | 1991-04-02 | 1993-03-23 | Olympus Optical Co., Ltd. | Endoscope system for simultaneously displaying two endoscopic images on a shared monitor |
US5214503A (en) | 1992-01-31 | 1993-05-25 | The United States Of America As Represented By The Secretary Of The Army | Color night vision camera system |
US5225883A (en) | 1991-06-05 | 1993-07-06 | The Babcock & Wilcox Company | Video temperature monitor |
JPH05264232A (en) | 1991-12-09 | 1993-10-12 | Kokuritsu Jiyunkankibiyou Center Souchiyou | Device for measuring diameter of contrasted blood vessel with high accuracy |
US5255087A (en) | 1986-11-29 | 1993-10-19 | Olympus Optical Co., Ltd. | Imaging apparatus and endoscope apparatus using the same |
WO1993025141A1 (en) | 1992-06-08 | 1993-12-23 | University Of Washington | Solid tumor, cortical function, and nerve imaging |
US5279298A (en) | 1992-11-20 | 1994-01-18 | The Johns Hopkins University | Method and apparatus to identify and treat neovascular membranes in the eye |
JPH067353A (en) | 1992-03-30 | 1994-01-18 | Hewlett Packard Co <Hp> | Online acoustic densitometry apparatus used with ultrasonic imaging apparatus |
US5318023A (en) | 1991-04-03 | 1994-06-07 | Cedars-Sinai Medical Center | Apparatus and method of use for a photosensitizer enhanced fluorescence based biopsy needle |
US5318869A (en) | 1989-06-06 | 1994-06-07 | Dai Nippon Insatsu Kabushiki Kaisha | Method and apparatus for repairing defects in emulsion masks and the like |
US5318024A (en) | 1985-03-22 | 1994-06-07 | Massachusetts Institute Of Technology | Laser endoscope for spectroscopic imaging |
US5340592A (en) | 1988-05-18 | 1994-08-23 | Cobe Laboratories, Inc. | Lyophilization of erythrocytes |
US5361769A (en) | 1991-08-22 | 1994-11-08 | Gert Nilsson | Method and a system for measuring fluid flow movements by a laser-doppler technique |
US5365057A (en) | 1993-07-02 | 1994-11-15 | Litton Systems, Inc. | Light-weight night vision device |
JPH06335451A (en) | 1993-03-19 | 1994-12-06 | Olympus Optical Co Ltd | Picture image processor for endoscope |
US5371355A (en) | 1993-07-30 | 1994-12-06 | Litton Systems, Inc. | Night vision device with separable modular image intensifier assembly |
US5375603A (en) | 1990-01-08 | 1994-12-27 | Feiler; Ernest M. | Method of performing heart surgery using thermographic imaging |
US5377676A (en) | 1991-04-03 | 1995-01-03 | Cedars-Sinai Medical Center | Method for determining the biodistribution of substances using fluorescence spectroscopy |
US5377686A (en) | 1991-10-11 | 1995-01-03 | The University Of Connecticut | Apparatus for detecting leakage from vascular tissue |
WO1995000171A1 (en) | 1993-06-25 | 1995-01-05 | Novo Nordisk A/S | A stabilised phenylalanine ammonia lyase |
JPH0743303A (en) | 1993-07-30 | 1995-02-14 | Mitsubishi Heavy Ind Ltd | Method and device for concentration measurement by lif |
US5394199A (en) | 1993-05-17 | 1995-02-28 | The Johns Hopkins University | Methods and apparatus for improved visualization of choroidal blood flow and aberrant vascular structures in the eye using fluorescent dye angiography |
JPH0765154A (en) | 1993-08-31 | 1995-03-10 | Toshiba Corp | Device and method for quantitatively analyzing blood vessel image |
JPH0779955A (en) | 1993-09-14 | 1995-03-28 | Toshiba Corp | Radiographic apparatus |
US5420628A (en) | 1990-01-16 | 1995-05-30 | Research Development Foundation | Video densitometer with determination of color composition |
US5419323A (en) | 1988-12-21 | 1995-05-30 | Massachusetts Institute Of Technology | Method for laser induced fluorescence of tissue |
US5421339A (en) | 1993-05-12 | 1995-06-06 | Board Of Regents, The University Of Texas System | Diagnosis of dysplasia using laser induced fluoroescence |
US5421337A (en) | 1989-04-14 | 1995-06-06 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
US5424841A (en) | 1993-05-28 | 1995-06-13 | Molecular Dynamics | Apparatus for measuring spatial distribution of fluorescence on a substrate |
JPH07155290A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Endoscope apparatus |
JPH07155291A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observation apparatus |
JPH07155292A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observing apparatus |
JPH07155286A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observing apparatus |
JPH07155285A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observing endoscope apparatus |
US5430476A (en) | 1992-06-24 | 1995-07-04 | Richard Wolf Gmbh | Device for supplying light to endoscopes |
US5437274A (en) | 1993-02-25 | 1995-08-01 | Gholam A. Peyman | Method of visualizing submicron-size vesicles and particles in blood circulation |
JPH07204156A (en) | 1993-12-03 | 1995-08-08 | Olympus Optical Co Ltd | Fluorescence observation device |
JPH07222712A (en) | 1994-02-10 | 1995-08-22 | Olympus Optical Co Ltd | Fluorescent endoscope system |
JPH07222723A (en) | 1993-12-17 | 1995-08-22 | Nippon Koden Corp | Circulating blood quantity measuring instrument |
US5453448A (en) | 1993-12-09 | 1995-09-26 | Pdt Cardiovascular, Inc. | In vivo method for estimating the lipid contant of an atheromatous lesion |
JPH07250812A (en) | 1994-03-15 | 1995-10-03 | Olympus Optical Co Ltd | Fluorescence diagnosing apparatus |
JPH07250804A (en) | 1994-03-15 | 1995-10-03 | Olympus Optical Co Ltd | Fluorescence observer |
WO1995026673A2 (en) | 1994-03-28 | 1995-10-12 | Xillix Technologies Corporation | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5465718A (en) | 1990-08-10 | 1995-11-14 | Hochman; Daryl | Solid tumor, cortical function, and nerve tissue imaging methods and device |
JPH0824227A (en) | 1994-07-19 | 1996-01-30 | Hitachi Medical Corp | Medical image diagnosing apparatus |
US5491343A (en) | 1994-03-25 | 1996-02-13 | Brooker; Gary | High-speed multiple wavelength illumination source, apparatus containing the same, and applications thereof to methods of irradiating luminescent samples and of quantitative luminescence ratio microscopy |
US5496369A (en) | 1994-02-09 | 1996-03-05 | University Of Iowa Research Foundation | Human cerebral cortex neural prosthetic |
WO1996009435A1 (en) | 1994-09-21 | 1996-03-28 | Kimberly-Clark Worldwide, Inc. | Wet-resilient webs |
WO1996009792A1 (en) | 1993-05-17 | 1996-04-04 | The Johns Hopkins University | Improved visualization of choroidal blood flow and aberrant vascular structures in the eye |
US5514127A (en) | 1993-02-18 | 1996-05-07 | Central Research Laboratories Limited | Apparatus for irradiating an area with a controllable pattern of light |
US5519534A (en) * | 1994-05-25 | 1996-05-21 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Irradiance attachment for an optical fiber to provide a uniform level of illumination across a plane |
WO1996018415A1 (en) | 1994-12-14 | 1996-06-20 | The Johns Hopkins University | Selective and non-invasive visualization or treatment of vasculature |
CA2212257A1 (en) | 1995-02-02 | 1996-08-08 | Nycomed Imaging A/S | Contrast media for in vivo imaging based on light transmission on reflection |
JPH08224240A (en) | 1995-02-22 | 1996-09-03 | Olympus Optical Co Ltd | Fluorescent diagnosing device |
JPH08224209A (en) | 1995-02-23 | 1996-09-03 | Olympus Optical Co Ltd | Fluorescence observing device |
JPH08224208A (en) | 1995-02-22 | 1996-09-03 | Olympus Optical Co Ltd | Fluorescence observing endoscope device |
DE19608027A1 (en) | 1995-03-03 | 1996-09-05 | Asahi Optical Co Ltd | Biological fluorescence diagnosis device for medical use |
US5576013A (en) | 1995-03-21 | 1996-11-19 | Eastern Virginia Medical School | Treating vascular and neoplastic tissues |
WO1996039925A1 (en) | 1995-06-07 | 1996-12-19 | University Of Arkansas | Method and apparatus for detecting electro-magnetic reflection from biological tissue |
WO1997008538A1 (en) | 1995-08-24 | 1997-03-06 | Purdue Research Foundation | Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media |
US5623930A (en) | 1995-05-02 | 1997-04-29 | Acuson Corporation | Ultrasound system for flow measurement |
US5627907A (en) | 1994-12-01 | 1997-05-06 | University Of Pittsburgh | Computerized detection of masses and microcalcifications in digital mammograms |
JPH09120033A (en) | 1996-09-30 | 1997-05-06 | Olympus Optical Co Ltd | Rotary filter of light source device for endoscope |
US5647368A (en) | 1996-02-28 | 1997-07-15 | Xillix Technologies Corp. | Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract |
US5656498A (en) | 1994-02-22 | 1997-08-12 | Nippon Telegraph And Telephone Corporation | Freeze-dried blood cells, stem cells and platelets, and manufacturing method for the same |
US5662644A (en) | 1996-05-14 | 1997-09-02 | Mdlt, Inc. | Dermatological laser apparatus and method |
US5664574A (en) | 1991-01-22 | 1997-09-09 | Non-Invasive Technology, Inc. | System for tissue examination using directional optical radiation |
US5673701A (en) | 1994-10-07 | 1997-10-07 | Non Invasive Technology, Inc. | Optical techniques for examination of biological tissue |
US5689241A (en) | 1995-04-24 | 1997-11-18 | Clarke, Sr.; James Russell | Sleep detection and driver alert apparatus |
EP0807402A1 (en) | 1996-04-15 | 1997-11-19 | Ohmeda Inc. | Photoplethysmographic perfusion index monitoring |
JPH09305845A (en) | 1996-05-13 | 1997-11-28 | Shibaura Eng Works Co Ltd | Hot vending machine |
JPH09308609A (en) | 1996-05-24 | 1997-12-02 | Canon Inc | Ophthalmologic image processor |
JPH09309845A (en) | 1996-05-21 | 1997-12-02 | Hamamatsu Photonics Kk | Near-infrared fluorescent tracer and fluorescent imaging |
US5699798A (en) | 1990-08-10 | 1997-12-23 | University Of Washington | Method for optically imaging solid tumor tissue |
US5707986A (en) | 1994-03-14 | 1998-01-13 | Miller; Joan W. | Angiographic method using green porphyrins in primate eyes |
EP0826335A1 (en) | 1996-08-30 | 1998-03-04 | ESC Medical Systems Ltd. | Spectral monitoring apparatus |
US5732707A (en) | 1994-05-03 | 1998-03-31 | Molecular Biosystems, Inc. | Method of ultrasonically quantitating myocardial perfusion using as intravenously injected tracer |
US5741648A (en) | 1992-11-20 | 1998-04-21 | The Board Of Regents Of The University Of Oklahoma | Cell analysis method using quantitative fluorescence image analysis |
JPH10104070A (en) | 1996-09-30 | 1998-04-24 | Oyo Koden Kenkiyuushitsu:Kk | Frequency standard and method for forming selected standard frequency |
US5743266A (en) | 1995-04-25 | 1998-04-28 | Molecular Biosystems, Inc. | Method for processing real-time contrast enhanced ultrasonic images |
US5756541A (en) | 1996-03-11 | 1998-05-26 | Qlt Phototherapeutics Inc | Vision through photodynamic therapy of the eye |
JPH10151104A (en) | 1996-11-25 | 1998-06-09 | Olympus Optical Co Ltd | Fluorescent endoscope device |
WO1998024360A1 (en) | 1996-12-04 | 1998-06-11 | Harvey Lui | Fluorescence scope system for dermatologic diagnosis |
JPH10506550A (en) | 1994-09-26 | 1998-06-30 | ザ・ジョーンズ・ホプキンス・ユニバーシティ | Improved visualization of choroidal blood flow and stray vasculature in the eye |
WO1998030144A1 (en) | 1997-01-08 | 1998-07-16 | Biosense Inc. | Monitoring of myocardial revascularization |
US5785965A (en) | 1996-05-15 | 1998-07-28 | The Board Of Trustees Of The Leland Stanford Junior Univ. | VEGF gene transfer into endothelial cells for vascular prosthesis |
JPH10201700A (en) | 1997-01-20 | 1998-08-04 | Olympus Optical Co Ltd | Fluoroscopic endoscope device |
JPH10201707A (en) | 1996-11-20 | 1998-08-04 | Olympus Optical Co Ltd | Endoscope apparatus |
US5803914A (en) | 1993-04-15 | 1998-09-08 | Adac Laboratories | Method and apparatus for displaying data in a medical imaging system |
WO1998046122A1 (en) | 1997-04-17 | 1998-10-22 | Avimo Group Limited | Ocular microcirculation examination and treatment apparatus |
US5845639A (en) | 1990-08-10 | 1998-12-08 | Board Of Regents Of The University Of Washington | Optical imaging methods |
WO1999000053A1 (en) | 1997-06-27 | 1999-01-07 | Toa Medical Electronics Co., Ltd. | Living body inspecting apparatus and noninvasive blood analyzer using the same |
JPH11137517A (en) | 1997-11-14 | 1999-05-25 | Matsushita Electric Ind Co Ltd | Imaging device |
JPH11155812A (en) | 1997-12-02 | 1999-06-15 | Olympus Optical Co Ltd | Fluorescent observation device |
US5919616A (en) | 1997-12-12 | 1999-07-06 | Aurx, Inc. | Serological assay for herpes |
US5927284A (en) | 1995-09-20 | 1999-07-27 | Medtronic, Inc | Method and apparatus for temporarily immobilizing a local area of tissue |
US5951980A (en) | 1995-01-06 | 1999-09-14 | Leuven Research & Development Vzw | Identification, production and use of new staphylokinase derivatives with reduced immunogenicity |
US5956435A (en) | 1996-04-03 | 1999-09-21 | U.S. Philips Corporation | Automatic analysis of two different images of the same object |
WO1999047940A1 (en) | 1998-03-18 | 1999-09-23 | Magnetic Imaging Technologies Incorporated | MR METHODS FOR IMAGING PULMONARY AND CARDIAC VASCULATURE AND EVALUATING BLOOD FLOW USING DISSOLVED POLARIZED 129Xe |
US5965356A (en) | 1997-01-31 | 1999-10-12 | University Of Maryland, Baltimore | Herpes simplex virus type specific seroassay |
WO1999053832A1 (en) | 1998-04-20 | 1999-10-28 | Xillix Technologies Corp. | Imaging system with automatic gain control for reflectance and fluorescence endoscopy |
US6008889A (en) | 1997-04-16 | 1999-12-28 | Zeng; Haishan | Spectrometer system for diagnosis of skin disease |
US6013265A (en) | 1996-10-22 | 2000-01-11 | University Of Maryland, Baltimore | Vaccine composition for herpes simplex virus and methods of using |
CA2413033A1 (en) | 1998-09-18 | 2000-03-30 | Schering Aktiengesellschaft | Near infrared fluorescent contrast agent and fluorescence imaging |
US6054131A (en) | 1998-01-16 | 2000-04-25 | University Of Maryland Baltimore | Vaccine composition for herpes simplex virus and method of using |
US6074627A (en) | 1991-02-08 | 2000-06-13 | Diatide, Inc. | Technetium-99m labeled peptides for imaging |
US6081612A (en) | 1997-02-28 | 2000-06-27 | Electro Optical Sciences Inc. | Systems and methods for the multispectral imaging and characterization of skin tissue |
US6093149A (en) | 1996-12-04 | 2000-07-25 | Acuson Corporation | Method and apparatus for setting the integration interval for time integrated surface integral in an ultrasound imaging system |
WO2000042910A1 (en) | 1999-01-26 | 2000-07-27 | Newton Laboratories, Inc. | Autofluorescence imaging system for endoscopy |
WO2000047107A1 (en) | 1999-02-15 | 2000-08-17 | Avimo Group Limited | Method and apparatus for treating neovascularization |
US6122042A (en) | 1997-02-07 | 2000-09-19 | Wunderman; Irwin | Devices and methods for optically identifying characteristics of material objects |
US6148227A (en) | 1998-01-07 | 2000-11-14 | Richard Wolf Gmbh | Diagnosis apparatus for the picture providing recording of fluorescing biological tissue regions |
US6149671A (en) | 1995-04-04 | 2000-11-21 | Wound Healings Of Oklahoma | Laser/sensitizer assisted immunotherapy |
US6162242A (en) | 1999-01-21 | 2000-12-19 | Peyman; Gholam A. | Selective photodynamic treatment |
US6178340B1 (en) | 1998-08-24 | 2001-01-23 | Eduardo Svetliza | Three-dimensional infrared imager for subcutaneous puncture and study of vascular network |
WO2001008552A1 (en) | 1999-08-03 | 2001-02-08 | Biophysica, Llc | Spectroscopic systems and methods for detecting tissue properties |
US6186628B1 (en) | 1999-05-23 | 2001-02-13 | Jozek F. Van de Velde | Scanning laser ophthalmoscope for selective therapeutic laser |
US6196226B1 (en) | 1990-08-10 | 2001-03-06 | University Of Washington | Methods and apparatus for optically imaging neuronal tissue and activity |
WO2001017561A1 (en) | 1999-09-10 | 2001-03-15 | Akorn, Inc. | Fluorescent dye angiography and dye-enhanced photocoagulation |
US6211953B1 (en) | 1997-12-25 | 2001-04-03 | Kowa Company Ltd. | Vessel for imaging fluorescent particles |
WO2001022870A1 (en) | 1999-09-24 | 2001-04-05 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
US6217848B1 (en) | 1999-05-20 | 2001-04-17 | Mallinckrodt Inc. | Cyanine and indocyanine dye bioconjugates for biomedical applications |
US6223069B1 (en) | 1996-08-29 | 2001-04-24 | Pulsion Medical Systems Ag | Process and device for non-invasively determining cerebral blood flow by near-infrared spectroscopy |
WO2001039764A2 (en) | 1999-11-30 | 2001-06-07 | Akorn, Inc. | Methods for treating conditions and illnesses associated with abnormal vasculature |
US6246901B1 (en) | 1999-05-05 | 2001-06-12 | David A. Benaron | Detecting, localizing, and targeting internal sites in vivo using optical contrast agents |
US6263227B1 (en) | 1996-05-22 | 2001-07-17 | Moor Instruments Limited | Apparatus for imaging microvascular blood flow |
JP2001198079A (en) | 2000-01-19 | 2001-07-24 | Fuji Photo Film Co Ltd | Fluorescent diagnostic device |
US6280386B1 (en) | 1997-06-16 | 2001-08-28 | The Research Foundation Of The City University Of New York | Apparatus for enhancing the visibility of a luminous object inside tissue and methods for same |
WO2001069244A2 (en) | 2000-03-10 | 2001-09-20 | Washington University | Method for labeling individual cells |
US6293911B1 (en) | 1996-11-20 | 2001-09-25 | Olympus Optical Co., Ltd. | Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum |
WO2001080734A1 (en) | 2000-04-27 | 2001-11-01 | The University Of Nottingham | Planar light sheet probes |
WO2001082786A2 (en) | 2000-05-03 | 2001-11-08 | Flock Stephen T | Optical imaging of subsurface anatomical structures and biomolecules |
US6319273B1 (en) | 1999-12-16 | 2001-11-20 | Light Sciences Corporation | Illuminating device for treating eye disease |
US6331703B1 (en) * | 1999-03-12 | 2001-12-18 | Ethicon Endo-Surgery, Inc. | Guidance method for radiation detection |
US6335429B1 (en) | 1997-10-10 | 2002-01-01 | Cytovia, Inc. | Fluorogenic or fluorescent reporter molecules and their applications for whole-cell fluorescence screening assays for caspases and other enzymes and the use thereof |
DE10028233A1 (en) | 2000-06-07 | 2002-01-24 | Cobra Electronic Gmbh | Colour camera has slide with infrared or optical filters provides day and night modes |
US6351667B1 (en) | 1997-10-24 | 2002-02-26 | Pulsion Medical Systems Ag | Device for detecting pericardial effusion |
US6351663B1 (en) | 1999-09-10 | 2002-02-26 | Akorn, Inc. | Methods for diagnosing and treating conditions associated with abnormal vasculature using fluorescent dye angiography and dye-enhanced photocoagulation |
US20020025541A1 (en) | 1997-11-24 | 2002-02-28 | Nelson Alan M. | Enzyme substrate delivery and product registration in one step enzyme immunoassays |
US20020038120A1 (en) | 1998-03-13 | 2002-03-28 | Duhaylongsod Francis G. | Method of transillumination of a coronary artery bypass graft |
US6399354B1 (en) | 1998-07-31 | 2002-06-04 | President And Fellows Of Harvard College | Replication-competent virus expressing a detectable fusion protein |
US20020099295A1 (en) | 1999-11-26 | 2002-07-25 | Applied Spectral Imaging Ltd. | System and method for functional brain mapping and an oxygen saturation difference map algorithm for effecting same |
US20020099279A1 (en) | 2000-11-28 | 2002-07-25 | Pfeiffer Ulrich J. | Device for the determination of tissue perfusion and operative use thereof |
WO2002061390A2 (en) | 2001-01-31 | 2002-08-08 | Mayo Foundation For Medical Education And Research | Detection of herpes simplex virus |
AT409451B (en) | 1999-12-14 | 2002-08-26 | Hoffmann La Roche | DEVICE FOR DETERMINING THE LOCAL DISTRIBUTION OF A MEASURED VALUE |
US6447443B1 (en) | 2001-01-13 | 2002-09-10 | Medtronic, Inc. | Method for organ positioning and stabilization |
US20020146369A1 (en) * | 1992-05-06 | 2002-10-10 | Immunomedics, Inc. | Intraoperative, intravascular and endoscopic tumor and lesion detection, biopsy and therapy |
DE10120980A1 (en) | 2001-05-01 | 2002-11-21 | Pulsion Medical Sys Ag | Method, device and computer program for determining blood flow in a tissue or organ region |
US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US20020181752A1 (en) | 2001-03-14 | 2002-12-05 | Warren Wallo | Method for measuring changes in portions of a human body |
US6498945B1 (en) | 1997-05-19 | 2002-12-24 | Amersham Health As | Sonodynamic therapy using an ultrasound sensitizer compound |
WO2003006658A1 (en) | 2001-07-13 | 2003-01-23 | The General Hospital Corporation | Mutant herpes simplex virus that expresses yeast cytosine deaminase |
US20030032885A1 (en) | 2001-05-22 | 2003-02-13 | Alfred E. Mann Institute For Biomedical Engineering | Measurement of cardiac output & blood volume by non-invasive detection of indicator dilution |
US20030060722A1 (en) | 2001-09-07 | 2003-03-27 | Pulsion Medical Systems Ag | System and a computer program for the determination of quantities relating to the circulatory system of a patient |
US20030060718A1 (en) | 1999-09-10 | 2003-03-27 | Akorn, Inc. | Indocyanine green (ICG) compositions and related methods of use |
US20030064025A1 (en) | 2001-04-05 | 2003-04-03 | Xiaoming Yang | Imaging systems for in vivo protocols |
US6544183B2 (en) | 2001-08-02 | 2003-04-08 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Method for imaging skin surface intercellular and intracellular structure using a compound to enhance contrast |
US20030093064A1 (en) | 2001-11-13 | 2003-05-15 | Peyman Gholam A. | Method to treat age-related macular degeneration |
US20030093065A1 (en) | 2001-11-13 | 2003-05-15 | Peyman Gholam A. | Method to treat age-related macular degeneration |
US6566641B1 (en) | 1999-11-22 | 2003-05-20 | Pentax Corporation | Scanning optical system having automatic power control with saw-tooth wave generating circuit |
JP2003144401A (en) | 2001-11-14 | 2003-05-20 | Shimadzu Corp | Bloodstream measuring device |
US6603552B1 (en) | 1999-12-22 | 2003-08-05 | Xillix Technologies Corp. | Portable system for detecting skin abnormalities based on characteristic autofluorescence |
US20030156252A1 (en) | 2001-10-19 | 2003-08-21 | Morris Robert E. | Macula cover and method |
US6621917B1 (en) | 1996-11-26 | 2003-09-16 | Imedos Intelligente Optische Systeme Der Medizin-Und Messtechnik Gmbh | Device and method for examining biological vessels |
US20030187349A1 (en) | 2002-03-29 | 2003-10-02 | Olympus Optical Co., Ltd. | Sentinel lymph node detecting method |
US20030232016A1 (en) | 2002-04-17 | 2003-12-18 | Russell Heinrich | Nerve identification and sparing method |
US6671540B1 (en) | 1990-08-10 | 2003-12-30 | Daryl W. Hochman | Methods and systems for detecting abnormal tissue using spectroscopic techniques |
WO2004006963A1 (en) | 2002-07-12 | 2004-01-22 | Beth Israel Deaconess Medical Center | Conjugated infrared fluorescent substances for detection of cell death |
US20040066961A1 (en) | 2002-06-21 | 2004-04-08 | Spreeuwers Lieuwe Jan | Method, apparatus and software for analyzing perfusion images |
US20040077952A1 (en) | 2002-10-21 | 2004-04-22 | Rafter Patrick G. | System and method for improved diagnostic image displays |
US20040109231A1 (en) | 2002-08-28 | 2004-06-10 | Carl-Zeiss-Stiftung Trading As Carl Zeiss | Microscopy system, microscopy method and a method of treating an aneurysm |
WO2004052195A1 (en) | 2002-12-10 | 2004-06-24 | Zerrle, Irmgard | Device for the determination of blood flow in discrete blood vessels and regions of living organisms |
US20040156782A1 (en) | 2003-02-12 | 2004-08-12 | Akorn, Inc. | Methods of using indocyanine green (ICG) dye |
US20040162489A1 (en) | 1995-03-14 | 2004-08-19 | Board Of Regents, The University Of Texas System. | Method and apparatus for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy |
US20040171827A1 (en) | 2002-10-25 | 2004-09-02 | Li-Cor, Inc. | Phthalocyanine dyes |
US20040174495A1 (en) * | 2001-06-05 | 2004-09-09 | Adaptive Optics Associates, Inc. | Method of and system for examining the human eye with a wavefront sensor-based ophthalmic instrument |
US6804549B2 (en) | 2000-04-25 | 2004-10-12 | Fuji Photo Film Co., Ltd. | Sentinel lymph node detection method and system therefor |
US20040206364A1 (en) | 2002-07-17 | 2004-10-21 | Robert Flower | Combined photocoagulation and photodynamic therapy |
JP2004325200A (en) | 2003-04-24 | 2004-11-18 | Hitachi Ltd | Tissue concentration measurement device |
US6821946B2 (en) | 2000-05-10 | 2004-11-23 | University College London | Repair of nerve damage |
US20050019744A1 (en) | 2003-07-25 | 2005-01-27 | La Jolla Bioengineering Institute | Ultrasound-assisted ischemic reperfusion |
US20050033145A1 (en) | 2003-07-02 | 2005-02-10 | Graham John S. | Wearable tissue viability diagnostic unit |
WO2005026319A2 (en) | 2003-08-06 | 2005-03-24 | The Regents Of Teh University Of California | Erythrocytic cells and method for loading solutes |
US20050069525A1 (en) | 2001-11-16 | 2005-03-31 | Wiberg Mikael | Nerve repair unit and method of producing it |
US6882366B1 (en) | 1997-01-20 | 2005-04-19 | Olympus Corporation | Electronic imaging system |
WO2005034747A1 (en) | 2003-09-15 | 2005-04-21 | Beth Israel Deaconess Medical Center | Medical imaging systems |
US20050089866A1 (en) * | 2002-02-14 | 2005-04-28 | Shuji Hinuma | Novel screening method |
US20050107380A1 (en) | 2000-01-18 | 2005-05-19 | Nimmo Alan J. | Brain, spinal and nerve injury treatment |
US6899675B2 (en) | 2002-01-15 | 2005-05-31 | Xillix Technologies Corp. | Fluorescence endoscopy video systems with no moving parts in the camera |
US20050142556A1 (en) | 2002-08-16 | 2005-06-30 | John Wayne Cancer Institute | Molecular lymphatic mapping of sentinel lymph nodes |
US6915154B1 (en) | 1999-09-24 | 2005-07-05 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
US20050182431A1 (en) | 2000-11-13 | 2005-08-18 | Cardica, Inc. | Tool and method for minimally invasive bypass surgery |
US20050182434A1 (en) | 2000-08-11 | 2005-08-18 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
US20050182321A1 (en) | 2002-03-12 | 2005-08-18 | Beth Israel Deaconess Medical Center | Medical imaging systems |
US20050182327A1 (en) | 2004-02-12 | 2005-08-18 | Petty Howard R. | Method of evaluating metabolism of the eye |
US20050187477A1 (en) | 2002-02-01 | 2005-08-25 | Serov Alexander N. | Laser doppler perfusion imaging with a plurality of beams |
US20050197583A1 (en) | 1998-02-11 | 2005-09-08 | Britton Chance | Detection, imaging and characterization of breast tumors |
US20050254008A1 (en) | 2002-06-14 | 2005-11-17 | Ferguson R D | Monitoring blood flow in the retina using a line-scanning laser ophthalmoscope |
US20060013768A1 (en) | 2004-07-13 | 2006-01-19 | Woltering Eugene A | Injection of a radioactive dye for sentinel lymph node identification |
US20060079750A1 (en) | 2004-07-06 | 2006-04-13 | Fauci Mark A | Systems and methods for localizing vascular architecture, and evaluation and monitoring of functional behavior of same |
US20060108509A1 (en) | 2004-09-09 | 2006-05-25 | Frangioni John V | Systems and methods for multi-modal imaging |
US20060118742A1 (en) | 2004-12-06 | 2006-06-08 | Richard Levenson | Systems and methods for in-vivo optical imaging and measurement |
US20060147897A1 (en) | 2002-12-02 | 2006-07-06 | Amiram Grinvald | Characterization of arteriosclerosis by optical imaging |
US7113817B1 (en) | 2001-10-04 | 2006-09-26 | Wintec, Llc | Optical imaging of blood circulation velocities |
US20060241499A1 (en) | 2005-02-24 | 2006-10-26 | Irion Klaus M | Multifunctional fluorescence diagnosis system |
WO2006111909A1 (en) | 2005-04-20 | 2006-10-26 | Cvl Cosmetics S.A. | Instrument and method for high-speed perfusion imaging |
US20060239921A1 (en) | 2005-04-26 | 2006-10-26 | Novadaq Technologies Inc. | Real time vascular imaging during solid organ transplant |
WO2006116634A2 (en) | 2005-04-26 | 2006-11-02 | Novadaq Technologies, Inc. | Method and apparatus for vasculature visualization with applications in neurosurgery and neurology |
WO2006119349A2 (en) | 2005-04-29 | 2006-11-09 | Novadaq Technologies, Inc. | Choroid and retinal imaging and treatment system |
WO2006123742A1 (en) | 2005-05-20 | 2006-11-23 | Hitachi Medical Corporation | Image diagnosing device |
RU2288633C1 (en) | 2005-04-29 | 2006-12-10 | ГОУ ВПО "Красноярская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию" | Method for detecting the borders of resection in case of close trauma of pancreas along with the rupture of the main pancreatic duct |
JP2007021006A (en) | 2005-07-20 | 2007-02-01 | Hitachi Medical Corp | X-ray ct apparatus |
WO2007028032A2 (en) | 2005-09-02 | 2007-03-08 | University Of Rochester Medical Center | Intraoperative determination of nerve location |
DE102005044531A1 (en) | 2005-09-16 | 2007-03-22 | Myrenne Gmbh | Indicator`s e.g. indocyanin green, perfusion distribution determining method, involves measuring intensity of light radiation or field by measuring device directed on tissue, and determining gradient of intensity as measure of perfusion |
US20070254276A1 (en) | 2006-04-26 | 2007-11-01 | Seng Enterprises Ltd. | Method and system for measuring membrane potential based on fluorescence polarization |
US20080007733A1 (en) | 2006-07-10 | 2008-01-10 | The Board Of Trustees Of The University Of Illinois | Volumetric endoscopic coherence microscopy using a coherent fiber bundle |
US20080015446A1 (en) | 2006-07-11 | 2008-01-17 | Umar Mahmood | Systems and methods for generating fluorescent light images |
US20080025918A1 (en) | 2006-07-03 | 2008-01-31 | Beth Israel Deaconess Medical Center, Inc. | Invisible light fluorescent platelets for intraoperative detection of vascular thrombosis |
US20080044073A1 (en) | 2006-05-31 | 2008-02-21 | Siemens Aktiengesellschaft | X-ray device having a dual energy mode and method to analyze projection images detected in the dual energy mode |
WO2008044822A1 (en) | 2006-10-11 | 2008-04-17 | Korea Advanced Institute Of Science And Technology | System for analyzing tissue perfusion using concentration of indocyanine green in blood |
WO2008070269A2 (en) | 2006-10-06 | 2008-06-12 | Novadaq Technologies, Inc. | Methods, software and systems for imaging |
US20080161744A1 (en) | 2006-09-07 | 2008-07-03 | University Of Rochester Medical Center | Pre-And Intra-Operative Localization of Penile Sentinel Nodes |
US7400753B2 (en) | 2001-07-03 | 2008-07-15 | Hitachi, Ltd. | Biological sample optical measuring method and biological sample optical measuring apparatus |
US7400755B2 (en) | 2005-06-02 | 2008-07-15 | Accuray Incorporated | Inverse planning using optimization constraints derived from image intensity |
JP2008525126A (en) | 2004-12-22 | 2008-07-17 | バイオ−ツリー システムズ, インコーポレイテッド | Medical imaging method and apparatus for disease diagnosis and monitoring and uses thereof |
WO2008087869A1 (en) | 2007-01-16 | 2008-07-24 | Olympus Corporation | Fluorescent signal analyzing apparatus and fluorescent signal analyzing method |
JP2008535600A (en) | 2005-04-14 | 2008-09-04 | ブラッコ・リサーチ・ソシエテ・アノニム | Perfusion diagnosis method and system based on dynamic perfusion imaging |
US20080221421A1 (en) | 2007-03-09 | 2008-09-11 | Korea Advanced Institute Of Science And Technology | Apparatus for measuring perfusion rate of legs |
US20080239070A1 (en) | 2006-12-22 | 2008-10-02 | Novadaq Technologies Inc. | Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy |
JP2008231113A (en) | 2000-10-16 | 2008-10-02 | Mallinckrodt Inc | Hydrophilic light absorbing composition for measuring physiological function in fatal ill patient |
US20080319309A1 (en) | 2005-12-15 | 2008-12-25 | Koninklijke Philips Electronics, N.V. | System, Apparatus, and Method for Repreoducible and Comparable Flow Acquisitions |
US7482318B2 (en) | 2000-07-26 | 2009-01-27 | University Of Maryland, Baltimore | Protein kinase domain of the large subunit of herpes simplex type 2 ribonucleotide reductase (icp 10pk) has anti-apoptotic activity |
US20090042179A1 (en) | 2005-02-14 | 2009-02-12 | Commissariat A L'energie Atomique | Fluorescence Reflection Imaging Device with Two Wavelengths |
US20090054788A1 (en) | 2007-04-19 | 2009-02-26 | Carl Zeiss Surgical Gmbh | Method and apparatus for displaying a field of a brain of a patient and navigation system for brain surgery |
WO2009048660A2 (en) | 2007-07-16 | 2009-04-16 | Raytheon Company | System and method of moving target based calibration of non-uniformity compensation for optical imagers |
WO2009046985A2 (en) | 2007-10-09 | 2009-04-16 | Carl Zeiss Surgical Gmbh | System and method for examining an object |
JP2009095683A (en) | 2004-12-08 | 2009-05-07 | Olympus Corp | Fluorescent endoscope device and imaging unit used therefor |
US20090137902A1 (en) | 2006-07-03 | 2009-05-28 | Frangioni John V | Intraoperative imaging methods |
CA2711560A1 (en) | 2008-01-10 | 2009-07-16 | Pacific Biosciences Of California, Inc. | Methods and systems for analysis of fluorescent reactions with modulated excitation |
WO2009092162A1 (en) | 2008-01-25 | 2009-07-30 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US7581191B2 (en) | 1999-11-15 | 2009-08-25 | Xenogen Corporation | Graphical user interface for 3-D in-vivo imaging |
US20090252682A1 (en) | 2006-06-01 | 2009-10-08 | The General Hospital Corporation | In-vivo optical imaging method including analysis of dynamic images |
WO2009127972A2 (en) | 2008-04-14 | 2009-10-22 | Novadaq Technologies Inc. | Locating and analyzing perforator flaps for plastic and reconstructive surgery |
US20090297004A1 (en) | 2008-05-28 | 2009-12-03 | Siemens Medical Solutions Usa, Inc. | Method for Automatically Synchronizing the Review of Two DSA Scenes |
JP2009291554A (en) | 2008-06-09 | 2009-12-17 | Olympus Corp | Fluorescence endoscope system |
US20100061604A1 (en) | 2008-09-11 | 2010-03-11 | Carl Zeiss Surgical Gmbh | Medical systems and methods |
US7729750B2 (en) | 2005-01-20 | 2010-06-01 | The Regents Of The University Of California | Method and apparatus for high resolution spatially modulated fluorescence imaging and tomography |
US7774048B2 (en) | 2004-12-08 | 2010-08-10 | Olympus Corporation | Fluorescent endoscope device |
US20100222673A1 (en) | 2005-08-10 | 2010-09-02 | Novadaq Technologies Inc. | Intra-operative head and neck nerve mapping |
US20100286529A1 (en) | 2009-05-08 | 2010-11-11 | Novadaq Technologies Inc. | Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest |
US20110001061A1 (en) | 2008-03-24 | 2011-01-06 | Olympus Corporation | Fluorescence observation apparatus |
US20110013002A1 (en) | 2007-07-06 | 2011-01-20 | Oliver Bendix Thompson | Laser Speckle Imaging Systems and Methods |
US7885438B2 (en) | 1997-02-12 | 2011-02-08 | The University Of Iowa Research Foundation | Methods and apparatuses for analyzing images |
US20110063427A1 (en) | 2008-03-18 | 2011-03-17 | Novadaq Technologies Inc. | Imaging system for combined full-color reflectance and near-infrared imaging |
US20110071403A1 (en) | 2009-09-21 | 2011-03-24 | Board Of Regents Of The University Of Texas System | Functional near-infrared fluorescence lymphatic mapping for diagnosing, accessing, monitoring and directing therapy of lymphatic disorders |
US20110098685A1 (en) | 2008-05-02 | 2011-04-28 | Flower Robert W | METHODS FOR PRODUCTION AND USE OF SUBSTANCE-LOADED ERYTHROCYTES (S-IEs) FOR OBSERVATION AND TREATMENT OF MICROVASCULAR HEMODYNAMICS |
US8073224B2 (en) | 2007-07-09 | 2011-12-06 | Siemens Aktiengesellschaft | System and method for two-dimensional visualization of temporal phenomena and three dimensional vessel reconstruction |
US20110306877A1 (en) | 2008-04-14 | 2011-12-15 | Novadaq Technologies Inc. | Locating and analyzing perforator flaps for plastic and reconstructive surgery |
US20120026325A1 (en) | 2010-07-29 | 2012-02-02 | Logitech Europe S.A. | Optimized movable ir filter in cameras |
US20120078093A1 (en) | 2008-05-14 | 2012-03-29 | Novadaq Technologies Inc. | Imaging methods and compositions comprising fluorescent dyes associated with viral components for nerve imaging |
WO2012096878A2 (en) | 2011-01-10 | 2012-07-19 | East Carolina University | Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling |
US20120271176A1 (en) | 2011-04-21 | 2012-10-25 | Moghaddam Hassan Ghaderi | Method and system for optically evaluating proximity to the inferior alveolar nerve in situ |
WO2013002350A1 (en) | 2011-06-29 | 2013-01-03 | 京都府公立大学法人 | Tumor site identification device and method |
US8406860B2 (en) | 2008-01-25 | 2013-03-26 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US20130230866A1 (en) | 2010-09-17 | 2013-09-05 | Tohoku University | Method for Determining Effectiveness of Medicine Containing Antibody as Component |
US8538107B2 (en) | 2007-03-23 | 2013-09-17 | Siemens Aktiengesellschaft | Method for visualizing a sequence of tomographic volume data records for medical imaging |
US20130245456A1 (en) | 2011-01-10 | 2013-09-19 | East Carolina University | Methods, Systems and Computer Program Products for Non-Invasive Determination of Blood Flow Distribution Using Speckle Imaging Techniques and Hemodynamic Modeling |
US20130296715A1 (en) | 2005-04-20 | 2013-11-07 | Ecole Polytechnique Federale De Lausanne (Epfl) | Instrument and method for high-speed perfusion imaging |
US20130345560A1 (en) | 2012-06-21 | 2013-12-26 | Novadaq Technologies Inc. | Quantification and analysis of angiography and perfusion |
US20140099007A1 (en) | 2012-10-09 | 2014-04-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv | Imaging methods and computer-readable media |
US8725225B2 (en) | 2006-08-10 | 2014-05-13 | University Of Rochester | Intraoperative imaging of renal cortical tumors and cysts |
US20140316262A1 (en) | 2008-02-26 | 2014-10-23 | Novadaq Technologies Inc. | Preoperative identification of perforator vessels in flaps to be used in reconstructive surgery |
WO2015001427A2 (en) | 2013-06-14 | 2015-01-08 | Novadaq Technologies Inc. | Quantification of absolute blood flow in tissue using fluorescence mediated photoplethysmography |
US9089601B2 (en) | 2006-07-10 | 2015-07-28 | University Of Rochester | Pre- and intra-operative imaging of bladder cancer |
US20160041098A1 (en) | 2013-03-29 | 2016-02-11 | Hamamatsu Photonics K.K | Fluorescence viewing device and fluorescence viewing method |
US20160371834A1 (en) | 2013-07-03 | 2016-12-22 | Konica Minolta, Inc. | Image processing device, pathological diagnosis support system, image processing program, and pathological diagnosis support method |
US20170039710A1 (en) | 2014-06-05 | 2017-02-09 | Olympus Corporation | Processing apparatus, endoscope system, endoscope apparatus, method for operating image processing apparatus, and computer-readable recording medium |
US20170303800A1 (en) | 2014-10-09 | 2017-10-26 | Novadaq Technologies Inc. | Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography |
US9816930B2 (en) | 2014-09-29 | 2017-11-14 | Novadaq Technologies Inc. | Imaging a target fluorophore in a biological material in the presence of autofluorescence |
US20180234603A1 (en) | 2017-02-10 | 2018-08-16 | Novadaq Technologies Inc. | Open-field handheld flourescence imaging systems and methods |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6241372B1 (en) * | 1999-06-23 | 2001-06-05 | North American Lighting, Inc. | One piece molded component high mounted stop lamp |
US20030154349A1 (en) * | 2002-01-24 | 2003-08-14 | Berg Stefan G. | Program-directed cache prefetching for media processors |
-
2006
- 2006-08-31 US US11/515,365 patent/US20070122344A1/en not_active Abandoned
- 2006-09-01 US US11/515,419 patent/US10265419B2/en active Active
- 2006-09-01 WO PCT/US2006/034252 patent/WO2007028032A2/en active Application Filing
-
2019
- 2019-03-04 US US16/291,930 patent/US20190388565A1/en not_active Abandoned
Patent Citations (459)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4109647A (en) | 1977-03-16 | 1978-08-29 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare | Method of and apparatus for measurement of blood flow using coherent light |
US4263916A (en) | 1978-03-27 | 1981-04-28 | University Of Southern California | Image averaging for angiography by registration and combination of serial images |
US4162405A (en) | 1978-05-23 | 1979-07-24 | Britton Chance | Flying spot fluoro-meter for oxidized flavoprotein and reduced pyridine nucleotide |
US4200801A (en) | 1979-03-28 | 1980-04-29 | The United States Of America As Represented By The United States Department Of Energy | Portable spotter for fluorescent contaminants on surfaces |
US4394199A (en) | 1981-09-08 | 1983-07-19 | Agnus Chemical Company | Explosive emulsion composition |
US4473841A (en) | 1981-10-20 | 1984-09-25 | Fuji Photo Film Co., Ltd. | Video signal transmission system for endoscope using solid state image sensor |
EP0091805A2 (en) | 1982-04-08 | 1983-10-19 | Olympus Optical Co., Ltd. | Endoscope focus state detectors |
JPS58222331A (en) | 1982-06-21 | 1983-12-24 | Sony Corp | Reproducer of character information |
US4556057A (en) | 1982-08-31 | 1985-12-03 | Hamamatsu Tv Co., Ltd. | Cancer diagnosis device utilizing laser beam pulses |
JPS5970903A (en) | 1982-10-15 | 1984-04-21 | Olympus Optical Co Ltd | Automatic measuring apparatus of endoscope |
JPS5969721A (en) | 1982-10-15 | 1984-04-20 | Olympus Optical Co Ltd | Endoscope measuring device |
US4541438A (en) | 1983-06-02 | 1985-09-17 | The Johns Hopkins University | Localization of cancerous tissue by monitoring infrared fluorescence emitted by intravenously injected porphyrin tumor-specific markers excited by long wavelength light |
US4532918A (en) | 1983-10-07 | 1985-08-06 | Welch Allyn Inc. | Endoscope signal level control |
US4773097A (en) | 1984-05-31 | 1988-09-20 | Omron Tateisi Electronics Co. | Image analyzing apparatus |
KR900005434B1 (en) | 1984-06-01 | 1990-07-30 | 제너럴 일렉트릭 캄파니 | Region - of - interest digital subtraction angiography |
WO1986002730A1 (en) | 1984-10-22 | 1986-05-09 | Hightech Network Sci Ab | A fluorescence imaging system |
US4786813A (en) | 1984-10-22 | 1988-11-22 | Hightech Network Sci Ab | Fluorescence imaging system |
US5318024A (en) | 1985-03-22 | 1994-06-07 | Massachusetts Institute Of Technology | Laser endoscope for spectroscopic imaging |
US4718417A (en) | 1985-03-22 | 1988-01-12 | Massachusetts Institute Of Technology | Visible fluorescence spectral diagnostic for laser angiosurgery |
US5125404A (en) | 1985-03-22 | 1992-06-30 | Massachusetts Institute Of Technology | Apparatus and method for obtaining spectrally resolved spatial images of tissue |
US4815848A (en) | 1985-03-28 | 1989-03-28 | Gruen-Optik Wetzlar Gmbh | Device for the individual adjustment of the intensity of several spectral lamps |
US4957114A (en) | 1985-04-01 | 1990-09-18 | Kun Zeng | Diagnostic apparatus for intrinsic fluorescence of malignant tumor |
US4619249A (en) | 1985-07-24 | 1986-10-28 | Kim Landry | Transcutaneous intravenous illuminator |
EP0215772A2 (en) | 1985-09-16 | 1987-03-25 | AVL Medical Instruments AG | Method and device for diagnosing tumours using sera |
US4719508A (en) | 1985-10-02 | 1988-01-12 | Olympus Optical Co., Ltd. | Endoscopic photographing apparatus |
US5134662A (en) | 1985-11-04 | 1992-07-28 | Cell Analysis Systems, Inc. | Dual color camera microscope and methodology for cell staining and analysis |
US4930516B1 (en) | 1985-11-13 | 1998-08-04 | Laser Diagnostic Instr Inc | Method for detecting cancerous tissue using visible native luminescence |
US5042494A (en) | 1985-11-13 | 1991-08-27 | Alfano Robert R | Method and apparatus for detecting cancerous tissue using luminescence excitation spectra |
US4930516A (en) | 1985-11-13 | 1990-06-05 | Alfano Robert R | Method for detecting cancerous tissue using visible native luminescence |
US4774568A (en) | 1986-01-27 | 1988-09-27 | Kabushiki Kaisha Toshiba | Endoscopic apparatus |
US4768513A (en) | 1986-04-21 | 1988-09-06 | Agency Of Industrial Science And Technology | Method and device for measuring and processing light |
GB2203831A (en) | 1986-07-07 | 1988-10-26 | Academy Of Applied Sciences | Diagnosis of malignant tumours by fluorescence |
US4805597A (en) | 1986-09-30 | 1989-02-21 | Kabushiki Kaisha Toshiba | Endoscopic apparatus |
US4821117A (en) | 1986-11-12 | 1989-04-11 | Kabushiki Kaisha Toshiba | Endoscopic system for producing fluorescent and visible images |
US5255087A (en) | 1986-11-29 | 1993-10-19 | Olympus Optical Co., Ltd. | Imaging apparatus and endoscope apparatus using the same |
US4867137A (en) | 1987-03-19 | 1989-09-19 | Olympus Optical Co., Ltd. | Electronic endoscope |
US4827908A (en) | 1987-03-30 | 1989-05-09 | Kabushiki Kaisha Toshiba | Endoscopic apparatus |
US5090400A (en) | 1987-03-31 | 1992-02-25 | Kabushiki Kaisha Toshiba | Measuring endoscope |
US4852579A (en) | 1987-04-20 | 1989-08-01 | Karl Storz Endoscopy Gmbh And Company | Photocharacterization and treatment of normal abnormal and ectopic endometrium |
US4900934A (en) | 1987-07-15 | 1990-02-13 | University Of Utah | Apparatus for simultaneous visualization and measurement of fluorescence from fluorescent dye-treated cell preparations and solutions |
US4868647A (en) | 1987-09-14 | 1989-09-19 | Olympus Optical Co., Ltd. | Electronic endoscopic apparatus isolated by differential type drive means |
US4858001A (en) | 1987-10-08 | 1989-08-15 | High-Tech Medical Instrumentation, Inc. | Modular endoscopic apparatus with image rotation |
US4858001B1 (en) | 1987-10-08 | 1992-06-30 | High Tech Medical Instrumentat | |
US4860731A (en) | 1987-12-17 | 1989-08-29 | Olympus Optical Co., Ltd. | Endoscope |
DE3906860A1 (en) | 1988-03-08 | 1989-09-28 | Fraunhofer Ges Forschung | Device for producing an angiography |
JPH01236879A (en) | 1988-03-17 | 1989-09-21 | Canon Inc | Picture encoder |
US5003977A (en) | 1988-03-31 | 1991-04-02 | Agency Of Industrial Science And Technology | Device for analyzing fluorescent light signals |
US4998972A (en) | 1988-04-28 | 1991-03-12 | Thomas J. Fogarty | Real time angioscopy imaging system |
US5078150A (en) | 1988-05-02 | 1992-01-07 | Olympus Optical Co., Ltd. | Spectral diagnosing apparatus with endoscope |
US5340592A (en) | 1988-05-18 | 1994-08-23 | Cobe Laboratories, Inc. | Lyophilization of erythrocytes |
US4938205A (en) | 1988-05-27 | 1990-07-03 | The University Of Connecticut | Endoscope with traced raster and elemental photodetectors |
US5178616A (en) | 1988-06-06 | 1993-01-12 | Sumitomo Electric Industries, Ltd. | Method and apparatus for intravascular laser surgery |
US4995396A (en) | 1988-12-08 | 1991-02-26 | Olympus Optical Co., Ltd. | Radioactive ray detecting endoscope |
US5419323A (en) | 1988-12-21 | 1995-05-30 | Massachusetts Institute Of Technology | Method for laser induced fluorescence of tissue |
JPH02200237A (en) | 1989-01-30 | 1990-08-08 | Olympus Optical Co Ltd | Fluorescent observing method |
US5165079A (en) | 1989-02-02 | 1992-11-17 | Linotype-Hell Ag | Optical color-splitter arrangement |
WO1990010219A1 (en) | 1989-02-22 | 1990-09-07 | Spectraphos Ab | Improvements in diagnosis by means of fluorescent light emission from tissue |
US5115137A (en) | 1989-02-22 | 1992-05-19 | Spectraphos Ab | Diagnosis by means of fluorescent light emission from tissue |
JP2003329589A (en) | 1989-02-22 | 2003-11-19 | Spektraphos Ab | Method for measuring tissue characteristics of fluorescence |
US5421337A (en) | 1989-04-14 | 1995-06-06 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
WO1990012536A1 (en) | 1989-04-14 | 1990-11-01 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
US5318869A (en) | 1989-06-06 | 1994-06-07 | Dai Nippon Insatsu Kabushiki Kaisha | Method and apparatus for repairing defects in emulsion masks and the like |
US4993404A (en) | 1989-06-26 | 1991-02-19 | Lane Timothy G | Fluoroscopy switching device |
CN1049781A (en) | 1989-09-02 | 1991-03-13 | 住友电气工业株式会社 | Laser surgery instruments for vascular surgery |
JPH03115958A (en) | 1989-09-29 | 1991-05-16 | Hamamatsu Photonics Kk | Fluorescent observation device for biotissue |
US5375603A (en) | 1990-01-08 | 1994-12-27 | Feiler; Ernest M. | Method of performing heart surgery using thermographic imaging |
US5091652A (en) | 1990-01-12 | 1992-02-25 | The Regents Of The University Of California | Laser excited confocal microscope fluorescence scanner and method |
US5420628A (en) | 1990-01-16 | 1995-05-30 | Research Development Foundation | Video densitometer with determination of color composition |
US5131398A (en) | 1990-01-22 | 1992-07-21 | Mediscience Technology Corp. | Method and apparatus for distinguishing cancerous tissue from benign tumor tissue, benign tissue or normal tissue using native fluorescence |
US4995398A (en) | 1990-04-30 | 1991-02-26 | Turnidge Patrick A | Coronary angiography imaging system |
US5071417A (en) | 1990-06-15 | 1991-12-10 | Rare Earth Medical Lasers, Inc. | Laser fusion of biological materials |
US6233480B1 (en) | 1990-08-10 | 2001-05-15 | University Of Washington | Methods and apparatus for optically imaging neuronal tissue and activity |
US6196226B1 (en) | 1990-08-10 | 2001-03-06 | University Of Washington | Methods and apparatus for optically imaging neuronal tissue and activity |
US5465718A (en) | 1990-08-10 | 1995-11-14 | Hochman; Daryl | Solid tumor, cortical function, and nerve tissue imaging methods and device |
US6671540B1 (en) | 1990-08-10 | 2003-12-30 | Daryl W. Hochman | Methods and systems for detecting abnormal tissue using spectroscopic techniques |
US6241672B1 (en) | 1990-08-10 | 2001-06-05 | University Of Washington | Method and apparatus for optically imaging solid tumor tissue |
US5438989A (en) | 1990-08-10 | 1995-08-08 | Hochman; Darryl | Solid tumor, cortical function, and nerve tissue imaging methods and device |
US5845639A (en) | 1990-08-10 | 1998-12-08 | Board Of Regents Of The University Of Washington | Optical imaging methods |
US5699798A (en) | 1990-08-10 | 1997-12-23 | University Of Washington | Method for optically imaging solid tumor tissue |
US5664574A (en) | 1991-01-22 | 1997-09-09 | Non-Invasive Technology, Inc. | System for tissue examination using directional optical radiation |
US6074627A (en) | 1991-02-08 | 2000-06-13 | Diatide, Inc. | Technetium-99m labeled peptides for imaging |
JPH04297236A (en) | 1991-03-26 | 1992-10-21 | Toshiba Corp | Digital fluorography system |
US5196928A (en) | 1991-04-02 | 1993-03-23 | Olympus Optical Co., Ltd. | Endoscope system for simultaneously displaying two endoscopic images on a shared monitor |
US5318023A (en) | 1991-04-03 | 1994-06-07 | Cedars-Sinai Medical Center | Apparatus and method of use for a photosensitizer enhanced fluorescence based biopsy needle |
US5377676A (en) | 1991-04-03 | 1995-01-03 | Cedars-Sinai Medical Center | Method for determining the biodistribution of substances using fluorescence spectroscopy |
US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US5117466A (en) | 1991-04-30 | 1992-05-26 | The United States Of America As Represented By The United States Department Of Energy | Integrated fluorescence analysis system |
EP0512965A1 (en) | 1991-05-08 | 1992-11-11 | Xillix Technologies Corporation | Endoscopic imaging system for diseased tissue |
US5507287A (en) | 1991-05-08 | 1996-04-16 | Xillix Technologies Corporation | Endoscopic imaging system for diseased tissue |
US5225883A (en) | 1991-06-05 | 1993-07-06 | The Babcock & Wilcox Company | Video temperature monitor |
US5361769A (en) | 1991-08-22 | 1994-11-08 | Gert Nilsson | Method and a system for measuring fluid flow movements by a laser-doppler technique |
US5377686A (en) | 1991-10-11 | 1995-01-03 | The University Of Connecticut | Apparatus for detecting leakage from vascular tissue |
JPH05264232A (en) | 1991-12-09 | 1993-10-12 | Kokuritsu Jiyunkankibiyou Center Souchiyou | Device for measuring diameter of contrasted blood vessel with high accuracy |
US5214503A (en) | 1992-01-31 | 1993-05-25 | The United States Of America As Represented By The Secretary Of The Army | Color night vision camera system |
JPH067353A (en) | 1992-03-30 | 1994-01-18 | Hewlett Packard Co <Hp> | Online acoustic densitometry apparatus used with ultrasonic imaging apparatus |
US20020146369A1 (en) * | 1992-05-06 | 2002-10-10 | Immunomedics, Inc. | Intraoperative, intravascular and endoscopic tumor and lesion detection, biopsy and therapy |
WO1993025141A1 (en) | 1992-06-08 | 1993-12-23 | University Of Washington | Solid tumor, cortical function, and nerve imaging |
US5430476A (en) | 1992-06-24 | 1995-07-04 | Richard Wolf Gmbh | Device for supplying light to endoscopes |
WO1994012092A1 (en) | 1992-11-20 | 1994-06-09 | The Johns Hopkins University | Identification and treatment of eye neovascular membranes |
US5741648A (en) | 1992-11-20 | 1998-04-21 | The Board Of Regents Of The University Of Oklahoma | Cell analysis method using quantitative fluorescence image analysis |
US5279298A (en) | 1992-11-20 | 1994-01-18 | The Johns Hopkins University | Method and apparatus to identify and treat neovascular membranes in the eye |
US5514127A (en) | 1993-02-18 | 1996-05-07 | Central Research Laboratories Limited | Apparatus for irradiating an area with a controllable pattern of light |
US5437274A (en) | 1993-02-25 | 1995-08-01 | Gholam A. Peyman | Method of visualizing submicron-size vesicles and particles in blood circulation |
JPH06335451A (en) | 1993-03-19 | 1994-12-06 | Olympus Optical Co Ltd | Picture image processor for endoscope |
US5803914A (en) | 1993-04-15 | 1998-09-08 | Adac Laboratories | Method and apparatus for displaying data in a medical imaging system |
US5421339A (en) | 1993-05-12 | 1995-06-06 | Board Of Regents, The University Of Texas System | Diagnosis of dysplasia using laser induced fluoroescence |
WO1996009792A1 (en) | 1993-05-17 | 1996-04-04 | The Johns Hopkins University | Improved visualization of choroidal blood flow and aberrant vascular structures in the eye |
US5394199A (en) | 1993-05-17 | 1995-02-28 | The Johns Hopkins University | Methods and apparatus for improved visualization of choroidal blood flow and aberrant vascular structures in the eye using fluorescent dye angiography |
US5424841A (en) | 1993-05-28 | 1995-06-13 | Molecular Dynamics | Apparatus for measuring spatial distribution of fluorescence on a substrate |
WO1995000171A1 (en) | 1993-06-25 | 1995-01-05 | Novo Nordisk A/S | A stabilised phenylalanine ammonia lyase |
US5365057A (en) | 1993-07-02 | 1994-11-15 | Litton Systems, Inc. | Light-weight night vision device |
JPH0743303A (en) | 1993-07-30 | 1995-02-14 | Mitsubishi Heavy Ind Ltd | Method and device for concentration measurement by lif |
US5371355A (en) | 1993-07-30 | 1994-12-06 | Litton Systems, Inc. | Night vision device with separable modular image intensifier assembly |
JPH0765154A (en) | 1993-08-31 | 1995-03-10 | Toshiba Corp | Device and method for quantitatively analyzing blood vessel image |
JPH0779955A (en) | 1993-09-14 | 1995-03-28 | Toshiba Corp | Radiographic apparatus |
JPH07155290A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Endoscope apparatus |
JPH07204156A (en) | 1993-12-03 | 1995-08-08 | Olympus Optical Co Ltd | Fluorescence observation device |
JPH07155285A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observing endoscope apparatus |
JPH07155286A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observing apparatus |
JPH07155292A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observing apparatus |
JPH07155291A (en) | 1993-12-03 | 1995-06-20 | Olympus Optical Co Ltd | Fluorescence observation apparatus |
US5453448A (en) | 1993-12-09 | 1995-09-26 | Pdt Cardiovascular, Inc. | In vivo method for estimating the lipid contant of an atheromatous lesion |
JPH07222723A (en) | 1993-12-17 | 1995-08-22 | Nippon Koden Corp | Circulating blood quantity measuring instrument |
US5999841A (en) | 1993-12-17 | 1999-12-07 | Nihon Kohden Corporation | Apparatus for measuring circulating blood volume |
US5496369A (en) | 1994-02-09 | 1996-03-05 | University Of Iowa Research Foundation | Human cerebral cortex neural prosthetic |
JPH07222712A (en) | 1994-02-10 | 1995-08-22 | Olympus Optical Co Ltd | Fluorescent endoscope system |
US5656498A (en) | 1994-02-22 | 1997-08-12 | Nippon Telegraph And Telephone Corporation | Freeze-dried blood cells, stem cells and platelets, and manufacturing method for the same |
US5707986A (en) | 1994-03-14 | 1998-01-13 | Miller; Joan W. | Angiographic method using green porphyrins in primate eyes |
JPH07250812A (en) | 1994-03-15 | 1995-10-03 | Olympus Optical Co Ltd | Fluorescence diagnosing apparatus |
JPH07250804A (en) | 1994-03-15 | 1995-10-03 | Olympus Optical Co Ltd | Fluorescence observer |
JPH10500479A (en) | 1994-03-25 | 1998-01-13 | ゲイリー ブルーカー、 | A fast multi-wavelength illumination source in quantitative luminescence ratio microscopy |
US5491343A (en) | 1994-03-25 | 1996-02-13 | Brooker; Gary | High-speed multiple wavelength illumination source, apparatus containing the same, and applications thereof to methods of irradiating luminescent samples and of quantitative luminescence ratio microscopy |
US5827190A (en) | 1994-03-28 | 1998-10-27 | Xillix Technologies Corp. | Endoscope having an integrated CCD sensor |
WO1995026673A2 (en) | 1994-03-28 | 1995-10-12 | Xillix Technologies Corporation | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
JPH10503480A (en) | 1994-05-03 | 1998-03-31 | モレキュラー バイオシステムズ, インコーポレイテッド | Composition for ultrasonically quantifying myocardial perfusion |
US5732707A (en) | 1994-05-03 | 1998-03-31 | Molecular Biosystems, Inc. | Method of ultrasonically quantitating myocardial perfusion using as intravenously injected tracer |
US5519534A (en) * | 1994-05-25 | 1996-05-21 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Irradiance attachment for an optical fiber to provide a uniform level of illumination across a plane |
JPH0824227A (en) | 1994-07-19 | 1996-01-30 | Hitachi Medical Corp | Medical image diagnosing apparatus |
JPH10506440A (en) | 1994-09-21 | 1998-06-23 | キンバリー クラーク ワールドワイド インコーポレイテッド | Wet elastic web |
WO1996009435A1 (en) | 1994-09-21 | 1996-03-28 | Kimberly-Clark Worldwide, Inc. | Wet-resilient webs |
JPH10506550A (en) | 1994-09-26 | 1998-06-30 | ザ・ジョーンズ・ホプキンス・ユニバーシティ | Improved visualization of choroidal blood flow and stray vasculature in the eye |
US5673701A (en) | 1994-10-07 | 1997-10-07 | Non Invasive Technology, Inc. | Optical techniques for examination of biological tissue |
US5627907A (en) | 1994-12-01 | 1997-05-06 | University Of Pittsburgh | Computerized detection of masses and microcalcifications in digital mammograms |
US6440950B1 (en) | 1994-12-14 | 2002-08-27 | The Johns Hopkins University | Selective and non-invasive visualization or treatment of vasculature |
WO1996018415A1 (en) | 1994-12-14 | 1996-06-20 | The Johns Hopkins University | Selective and non-invasive visualization or treatment of vasculature |
US6140314A (en) | 1994-12-14 | 2000-10-31 | The Johns Hopkins University | Selective and non-invasive visualization or treatment of vasculature |
US5935942A (en) | 1994-12-14 | 1999-08-10 | Zeimer; Ran | Selective and non-invasive visualization or treatment of vasculature |
US6248727B1 (en) | 1994-12-14 | 2001-06-19 | The Johns Hopkins University | Selective and non-invasive visualization or treatment of vasculature |
US5951980A (en) | 1995-01-06 | 1999-09-14 | Leuven Research & Development Vzw | Identification, production and use of new staphylokinase derivatives with reduced immunogenicity |
WO1996023524A1 (en) | 1995-02-02 | 1996-08-08 | Nycomed Imaging A/S | Contrast media for in vivo imaging based on light transmission on reflection |
CA2212257A1 (en) | 1995-02-02 | 1996-08-08 | Nycomed Imaging A/S | Contrast media for in vivo imaging based on light transmission on reflection |
JPH08224208A (en) | 1995-02-22 | 1996-09-03 | Olympus Optical Co Ltd | Fluorescence observing endoscope device |
JPH08224240A (en) | 1995-02-22 | 1996-09-03 | Olympus Optical Co Ltd | Fluorescent diagnosing device |
JPH08224209A (en) | 1995-02-23 | 1996-09-03 | Olympus Optical Co Ltd | Fluorescence observing device |
DE19608027A1 (en) | 1995-03-03 | 1996-09-05 | Asahi Optical Co Ltd | Biological fluorescence diagnosis device for medical use |
US7236815B2 (en) | 1995-03-14 | 2007-06-26 | The Board Of Regents Of The University Of Texas System | Method for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy |
US20040162489A1 (en) | 1995-03-14 | 2004-08-19 | Board Of Regents, The University Of Texas System. | Method and apparatus for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy |
US5576013A (en) | 1995-03-21 | 1996-11-19 | Eastern Virginia Medical School | Treating vascular and neoplastic tissues |
US6149671A (en) | 1995-04-04 | 2000-11-21 | Wound Healings Of Oklahoma | Laser/sensitizer assisted immunotherapy |
US5689241A (en) | 1995-04-24 | 1997-11-18 | Clarke, Sr.; James Russell | Sleep detection and driver alert apparatus |
US5743266A (en) | 1995-04-25 | 1998-04-28 | Molecular Biosystems, Inc. | Method for processing real-time contrast enhanced ultrasonic images |
US5623930A (en) | 1995-05-02 | 1997-04-29 | Acuson Corporation | Ultrasound system for flow measurement |
WO1996039925A1 (en) | 1995-06-07 | 1996-12-19 | University Of Arkansas | Method and apparatus for detecting electro-magnetic reflection from biological tissue |
US6272374B1 (en) | 1995-06-07 | 2001-08-07 | Stephen T. Flock | Method and apparatus for detecting electro-magnetic reflection from biological tissue |
JPH11509748A (en) | 1995-06-07 | 1999-08-31 | ユニバーシティ・オブ・アーカンソー | Method and apparatus for detecting electromagnetically reflected waves from biological tissue |
US6032070A (en) | 1995-06-07 | 2000-02-29 | University Of Arkansas | Method and apparatus for detecting electro-magnetic reflection from biological tissue |
CN1200174A (en) | 1995-08-24 | 1998-11-25 | 普渡研究基金会 | Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media |
US5865754A (en) | 1995-08-24 | 1999-02-02 | Purdue Research Foundation Office Of Technology Transfer | Fluorescence imaging system and method |
WO1997008538A1 (en) | 1995-08-24 | 1997-03-06 | Purdue Research Foundation | Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media |
US5927284A (en) | 1995-09-20 | 1999-07-27 | Medtronic, Inc | Method and apparatus for temporarily immobilizing a local area of tissue |
EP0792618A1 (en) | 1996-02-28 | 1997-09-03 | Xillix Technologies Corporation | Imaging system for detecting diseased tissue using native fluorescence in the gastrointestinal and respiratory tract |
US5647368A (en) | 1996-02-28 | 1997-07-15 | Xillix Technologies Corp. | Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract |
US5910510A (en) | 1996-03-11 | 1999-06-08 | Qlt Phototherapeutics Inc | Vision through photodynamic therapy of the eye |
US5756541A (en) | 1996-03-11 | 1998-05-26 | Qlt Phototherapeutics Inc | Vision through photodynamic therapy of the eye |
US5956435A (en) | 1996-04-03 | 1999-09-21 | U.S. Philips Corporation | Automatic analysis of two different images of the same object |
EP0807402A1 (en) | 1996-04-15 | 1997-11-19 | Ohmeda Inc. | Photoplethysmographic perfusion index monitoring |
JPH09305845A (en) | 1996-05-13 | 1997-11-28 | Shibaura Eng Works Co Ltd | Hot vending machine |
US5662644A (en) | 1996-05-14 | 1997-09-02 | Mdlt, Inc. | Dermatological laser apparatus and method |
US5785965A (en) | 1996-05-15 | 1998-07-28 | The Board Of Trustees Of The Leland Stanford Junior Univ. | VEGF gene transfer into endothelial cells for vascular prosthesis |
JPH09309845A (en) | 1996-05-21 | 1997-12-02 | Hamamatsu Photonics Kk | Near-infrared fluorescent tracer and fluorescent imaging |
DE69727220T2 (en) | 1996-05-22 | 2004-12-30 | Moor Instruments Ltd., Axminster | DEVICE FOR DISPLAYING BLOOD FLOW IN HAIR VESSELS |
US6263227B1 (en) | 1996-05-22 | 2001-07-17 | Moor Instruments Limited | Apparatus for imaging microvascular blood flow |
JPH09308609A (en) | 1996-05-24 | 1997-12-02 | Canon Inc | Ophthalmologic image processor |
US6223069B1 (en) | 1996-08-29 | 2001-04-24 | Pulsion Medical Systems Ag | Process and device for non-invasively determining cerebral blood flow by near-infrared spectroscopy |
JPH1085222A (en) | 1996-08-30 | 1998-04-07 | Esc Medical Syst Ltd | Spectrum monitoring device |
US5851181A (en) | 1996-08-30 | 1998-12-22 | Esc Medical Systems Ltd. | Apparatus for simultaneously viewing and spectrally analyzing a portion of skin |
EP0826335A1 (en) | 1996-08-30 | 1998-03-04 | ESC Medical Systems Ltd. | Spectral monitoring apparatus |
JPH09120033A (en) | 1996-09-30 | 1997-05-06 | Olympus Optical Co Ltd | Rotary filter of light source device for endoscope |
JPH10104070A (en) | 1996-09-30 | 1998-04-24 | Oyo Koden Kenkiyuushitsu:Kk | Frequency standard and method for forming selected standard frequency |
US6013265A (en) | 1996-10-22 | 2000-01-11 | University Of Maryland, Baltimore | Vaccine composition for herpes simplex virus and methods of using |
US6293911B1 (en) | 1996-11-20 | 2001-09-25 | Olympus Optical Co., Ltd. | Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum |
JPH10201707A (en) | 1996-11-20 | 1998-08-04 | Olympus Optical Co Ltd | Endoscope apparatus |
JPH10151104A (en) | 1996-11-25 | 1998-06-09 | Olympus Optical Co Ltd | Fluorescent endoscope device |
US6621917B1 (en) | 1996-11-26 | 2003-09-16 | Imedos Intelligente Optische Systeme Der Medizin-Und Messtechnik Gmbh | Device and method for examining biological vessels |
US6093149A (en) | 1996-12-04 | 2000-07-25 | Acuson Corporation | Method and apparatus for setting the integration interval for time integrated surface integral in an ultrasound imaging system |
US6021344A (en) | 1996-12-04 | 2000-02-01 | Derma Technologies, Inc. | Fluorescence scope system for dermatologic diagnosis |
WO1998024360A1 (en) | 1996-12-04 | 1998-06-11 | Harvey Lui | Fluorescence scope system for dermatologic diagnosis |
WO1998030144A1 (en) | 1997-01-08 | 1998-07-16 | Biosense Inc. | Monitoring of myocardial revascularization |
US6882366B1 (en) | 1997-01-20 | 2005-04-19 | Olympus Corporation | Electronic imaging system |
JPH10201700A (en) | 1997-01-20 | 1998-08-04 | Olympus Optical Co Ltd | Fluoroscopic endoscope device |
US5965356A (en) | 1997-01-31 | 1999-10-12 | University Of Maryland, Baltimore | Herpes simplex virus type specific seroassay |
US6122042A (en) | 1997-02-07 | 2000-09-19 | Wunderman; Irwin | Devices and methods for optically identifying characteristics of material objects |
US7885438B2 (en) | 1997-02-12 | 2011-02-08 | The University Of Iowa Research Foundation | Methods and apparatuses for analyzing images |
US6081612A (en) | 1997-02-28 | 2000-06-27 | Electro Optical Sciences Inc. | Systems and methods for the multispectral imaging and characterization of skin tissue |
US6008889A (en) | 1997-04-16 | 1999-12-28 | Zeng; Haishan | Spectrometer system for diagnosis of skin disease |
US6069689A (en) | 1997-04-16 | 2000-05-30 | Derma Technologies, Inc. | Apparatus and methods relating to optical systems for diagnosis of skin diseases |
WO1998046122A1 (en) | 1997-04-17 | 1998-10-22 | Avimo Group Limited | Ocular microcirculation examination and treatment apparatus |
US6179421B1 (en) | 1997-04-17 | 2001-01-30 | Avimo Group Limited | Ocular microcirculation examination and treatment apparatus |
US6498945B1 (en) | 1997-05-19 | 2002-12-24 | Amersham Health As | Sonodynamic therapy using an ultrasound sensitizer compound |
US6280386B1 (en) | 1997-06-16 | 2001-08-28 | The Research Foundation Of The City University Of New York | Apparatus for enhancing the visibility of a luminous object inside tissue and methods for same |
US6353750B1 (en) | 1997-06-27 | 2002-03-05 | Sysmex Corporation | Living body inspecting apparatus and noninvasive blood analyzer using the same |
WO1999000053A1 (en) | 1997-06-27 | 1999-01-07 | Toa Medical Electronics Co., Ltd. | Living body inspecting apparatus and noninvasive blood analyzer using the same |
US6335429B1 (en) | 1997-10-10 | 2002-01-01 | Cytovia, Inc. | Fluorogenic or fluorescent reporter molecules and their applications for whole-cell fluorescence screening assays for caspases and other enzymes and the use thereof |
US6351667B1 (en) | 1997-10-24 | 2002-02-26 | Pulsion Medical Systems Ag | Device for detecting pericardial effusion |
JPH11137517A (en) | 1997-11-14 | 1999-05-25 | Matsushita Electric Ind Co Ltd | Imaging device |
US20020025541A1 (en) | 1997-11-24 | 2002-02-28 | Nelson Alan M. | Enzyme substrate delivery and product registration in one step enzyme immunoassays |
JPH11155812A (en) | 1997-12-02 | 1999-06-15 | Olympus Optical Co Ltd | Fluorescent observation device |
US5919616A (en) | 1997-12-12 | 1999-07-06 | Aurx, Inc. | Serological assay for herpes |
US6211953B1 (en) | 1997-12-25 | 2001-04-03 | Kowa Company Ltd. | Vessel for imaging fluorescent particles |
US6148227A (en) | 1998-01-07 | 2000-11-14 | Richard Wolf Gmbh | Diagnosis apparatus for the picture providing recording of fluorescing biological tissue regions |
US6054131A (en) | 1998-01-16 | 2000-04-25 | University Of Maryland Baltimore | Vaccine composition for herpes simplex virus and method of using |
US6207168B1 (en) | 1998-01-16 | 2001-03-27 | University Of Maryland At Baltimore | Vaccine composition for herpes simplex virus and methods of using |
US20050197583A1 (en) | 1998-02-11 | 2005-09-08 | Britton Chance | Detection, imaging and characterization of breast tumors |
US20020038120A1 (en) | 1998-03-13 | 2002-03-28 | Duhaylongsod Francis G. | Method of transillumination of a coronary artery bypass graft |
WO1999047940A1 (en) | 1998-03-18 | 1999-09-23 | Magnetic Imaging Technologies Incorporated | MR METHODS FOR IMAGING PULMONARY AND CARDIAC VASCULATURE AND EVALUATING BLOOD FLOW USING DISSOLVED POLARIZED 129Xe |
WO1999053832A1 (en) | 1998-04-20 | 1999-10-28 | Xillix Technologies Corp. | Imaging system with automatic gain control for reflectance and fluorescence endoscopy |
US6399354B1 (en) | 1998-07-31 | 2002-06-04 | President And Fellows Of Harvard College | Replication-competent virus expressing a detectable fusion protein |
US6178340B1 (en) | 1998-08-24 | 2001-01-23 | Eduardo Svetliza | Three-dimensional infrared imager for subcutaneous puncture and study of vascular network |
CA2413033A1 (en) | 1998-09-18 | 2000-03-30 | Schering Aktiengesellschaft | Near infrared fluorescent contrast agent and fluorescence imaging |
US6162242A (en) | 1999-01-21 | 2000-12-19 | Peyman; Gholam A. | Selective photodynamic treatment |
WO2000042910A1 (en) | 1999-01-26 | 2000-07-27 | Newton Laboratories, Inc. | Autofluorescence imaging system for endoscopy |
US6840933B1 (en) | 1999-02-15 | 2005-01-11 | Cantos United Corp. | Method and apparatus for treating neovascularization |
WO2000047107A1 (en) | 1999-02-15 | 2000-08-17 | Avimo Group Limited | Method and apparatus for treating neovascularization |
US6331703B1 (en) * | 1999-03-12 | 2001-12-18 | Ethicon Endo-Surgery, Inc. | Guidance method for radiation detection |
US6246901B1 (en) | 1999-05-05 | 2001-06-12 | David A. Benaron | Detecting, localizing, and targeting internal sites in vivo using optical contrast agents |
US6217848B1 (en) | 1999-05-20 | 2001-04-17 | Mallinckrodt Inc. | Cyanine and indocyanine dye bioconjugates for biomedical applications |
US6186628B1 (en) | 1999-05-23 | 2001-02-13 | Jozek F. Van de Velde | Scanning laser ophthalmoscope for selective therapeutic laser |
WO2001008552A1 (en) | 1999-08-03 | 2001-02-08 | Biophysica, Llc | Spectroscopic systems and methods for detecting tissue properties |
US20030236458A1 (en) * | 1999-08-03 | 2003-12-25 | Biophysica Llc | Spectroscopic systems and methods for detecting tissue properties |
US6351663B1 (en) | 1999-09-10 | 2002-02-26 | Akorn, Inc. | Methods for diagnosing and treating conditions associated with abnormal vasculature using fluorescent dye angiography and dye-enhanced photocoagulation |
US20030060718A1 (en) | 1999-09-10 | 2003-03-27 | Akorn, Inc. | Indocyanine green (ICG) compositions and related methods of use |
WO2001017561A1 (en) | 1999-09-10 | 2001-03-15 | Akorn, Inc. | Fluorescent dye angiography and dye-enhanced photocoagulation |
US6944493B2 (en) | 1999-09-10 | 2005-09-13 | Akora, Inc. | Indocyanine green (ICG) compositions and related methods of use |
JP2003510121A (en) | 1999-09-24 | 2003-03-18 | ナショナル・リサーチ・カウンシル・オブ・カナダ | Method and apparatus for performing intraoperative angiography |
KR20020064287A (en) | 1999-09-24 | 2002-08-07 | 내셔날 리서치 카운실 오브 캐나다 | Method and apparatus for performing intra-operative angiography |
US7881777B2 (en) | 1999-09-24 | 2011-02-01 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
US8892190B2 (en) | 1999-09-24 | 2014-11-18 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
WO2001022870A1 (en) | 1999-09-24 | 2001-04-05 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
US20150112192A1 (en) | 1999-09-24 | 2015-04-23 | National Research Council Of Canada | Method for assessing blood flow in vasculature |
CN101264014A (en) | 1999-09-24 | 2008-09-17 | 加拿大国家研究委员会 | Systems for Intraoperative Angiography |
US20150112193A1 (en) | 1999-09-24 | 2015-04-23 | National Research Council Of Canada | Method for assessing perfusion in tissue |
CN1399528A (en) | 1999-09-24 | 2003-02-26 | 加拿大国家研究委员会 | Method and apparatus for performing intra-operative angiography |
JP2006192280A (en) | 1999-09-24 | 2006-07-27 | Natl Research Council Of Canada | Method and apparatus for performing intraoperative angiography |
US6915154B1 (en) | 1999-09-24 | 2005-07-05 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
US7581191B2 (en) | 1999-11-15 | 2009-08-25 | Xenogen Corporation | Graphical user interface for 3-D in-vivo imaging |
US6566641B1 (en) | 1999-11-22 | 2003-05-20 | Pentax Corporation | Scanning optical system having automatic power control with saw-tooth wave generating circuit |
US20020099295A1 (en) | 1999-11-26 | 2002-07-25 | Applied Spectral Imaging Ltd. | System and method for functional brain mapping and an oxygen saturation difference map algorithm for effecting same |
US6443976B1 (en) | 1999-11-30 | 2002-09-03 | Akorn, Inc. | Methods for treating conditions and illnesses associated with abnormal vasculature |
WO2001039764A2 (en) | 1999-11-30 | 2001-06-07 | Akorn, Inc. | Methods for treating conditions and illnesses associated with abnormal vasculature |
US20030050543A1 (en) | 1999-12-14 | 2003-03-13 | Paul Hartmann | Method and device for determining local distribution of a measuring parameter |
AT409451B (en) | 1999-12-14 | 2002-08-26 | Hoffmann La Roche | DEVICE FOR DETERMINING THE LOCAL DISTRIBUTION OF A MEASURED VALUE |
US6319273B1 (en) | 1999-12-16 | 2001-11-20 | Light Sciences Corporation | Illuminating device for treating eye disease |
US6603552B1 (en) | 1999-12-22 | 2003-08-05 | Xillix Technologies Corp. | Portable system for detecting skin abnormalities based on characteristic autofluorescence |
US20050107380A1 (en) | 2000-01-18 | 2005-05-19 | Nimmo Alan J. | Brain, spinal and nerve injury treatment |
JP2001198079A (en) | 2000-01-19 | 2001-07-24 | Fuji Photo Film Co Ltd | Fluorescent diagnostic device |
WO2001069244A2 (en) | 2000-03-10 | 2001-09-20 | Washington University | Method for labeling individual cells |
US6804549B2 (en) | 2000-04-25 | 2004-10-12 | Fuji Photo Film Co., Ltd. | Sentinel lymph node detection method and system therefor |
WO2001080734A1 (en) | 2000-04-27 | 2001-11-01 | The University Of Nottingham | Planar light sheet probes |
WO2001082786A2 (en) | 2000-05-03 | 2001-11-08 | Flock Stephen T | Optical imaging of subsurface anatomical structures and biomolecules |
US6821946B2 (en) | 2000-05-10 | 2004-11-23 | University College London | Repair of nerve damage |
DE10028233A1 (en) | 2000-06-07 | 2002-01-24 | Cobra Electronic Gmbh | Colour camera has slide with infrared or optical filters provides day and night modes |
US7482318B2 (en) | 2000-07-26 | 2009-01-27 | University Of Maryland, Baltimore | Protein kinase domain of the large subunit of herpes simplex type 2 ribonucleotide reductase (icp 10pk) has anti-apoptotic activity |
US20050182434A1 (en) | 2000-08-11 | 2005-08-18 | National Research Council Of Canada | Method and apparatus for performing intra-operative angiography |
JP2008231113A (en) | 2000-10-16 | 2008-10-02 | Mallinckrodt Inc | Hydrophilic light absorbing composition for measuring physiological function in fatal ill patient |
US20050182431A1 (en) | 2000-11-13 | 2005-08-18 | Cardica, Inc. | Tool and method for minimally invasive bypass surgery |
JP2002219129A (en) | 2000-11-28 | 2002-08-06 | Pulsion Medical Systems Ag | Apparatus for monitoring tissue perfusion and its functional use |
US20020099279A1 (en) | 2000-11-28 | 2002-07-25 | Pfeiffer Ulrich J. | Device for the determination of tissue perfusion and operative use thereof |
US6631286B2 (en) | 2000-11-28 | 2003-10-07 | Pulsion Medical Systems Ag | Device for the determination of tissue perfusion and operative use thereof |
US6447443B1 (en) | 2001-01-13 | 2002-09-10 | Medtronic, Inc. | Method for organ positioning and stabilization |
WO2002061390A2 (en) | 2001-01-31 | 2002-08-08 | Mayo Foundation For Medical Education And Research | Detection of herpes simplex virus |
US20020181752A1 (en) | 2001-03-14 | 2002-12-05 | Warren Wallo | Method for measuring changes in portions of a human body |
US20030064025A1 (en) | 2001-04-05 | 2003-04-03 | Xiaoming Yang | Imaging systems for in vivo protocols |
US6853857B2 (en) | 2001-05-01 | 2005-02-08 | Pulsion Medical Systems Ag | Method, device and computer program for determining the blood flow in a tissue or organ region |
DE10120980A1 (en) | 2001-05-01 | 2002-11-21 | Pulsion Medical Sys Ag | Method, device and computer program for determining blood flow in a tissue or organ region |
US20020183621A1 (en) | 2001-05-01 | 2002-12-05 | Plusion Medical Systems Ag | Method, device and computer program for determining the blood flow in a tissue or organ region |
JP2004528917A (en) | 2001-05-22 | 2004-09-24 | アルフレッド イー.マン インスティテュート フォー バイオメディカル エンジニアリング アット ザ ユニバーシティ オブ サザン カリフォルニア | A method for measuring cardiac output and circulating blood volume by noninvasively detecting indicator dilution. |
US20030032885A1 (en) | 2001-05-22 | 2003-02-13 | Alfred E. Mann Institute For Biomedical Engineering | Measurement of cardiac output & blood volume by non-invasive detection of indicator dilution |
US6757554B2 (en) | 2001-05-22 | 2004-06-29 | Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California | Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution |
US20100022898A1 (en) | 2001-05-22 | 2010-01-28 | Alfred E. Mann Institute For Biomedical Engineering | Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution |
US20050020891A1 (en) | 2001-05-22 | 2005-01-27 | Alfred E. Mann Institute For Biomedical Engineering | Measurement of cardiac output and blood volume by non-invasive detection of indicator dilution |
US20040174495A1 (en) * | 2001-06-05 | 2004-09-09 | Adaptive Optics Associates, Inc. | Method of and system for examining the human eye with a wavefront sensor-based ophthalmic instrument |
US7400753B2 (en) | 2001-07-03 | 2008-07-15 | Hitachi, Ltd. | Biological sample optical measuring method and biological sample optical measuring apparatus |
WO2003006658A1 (en) | 2001-07-13 | 2003-01-23 | The General Hospital Corporation | Mutant herpes simplex virus that expresses yeast cytosine deaminase |
US6544183B2 (en) | 2001-08-02 | 2003-04-08 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Method for imaging skin surface intercellular and intracellular structure using a compound to enhance contrast |
US20030060722A1 (en) | 2001-09-07 | 2003-03-27 | Pulsion Medical Systems Ag | System and a computer program for the determination of quantities relating to the circulatory system of a patient |
US7113817B1 (en) | 2001-10-04 | 2006-09-26 | Wintec, Llc | Optical imaging of blood circulation velocities |
US20030156252A1 (en) | 2001-10-19 | 2003-08-21 | Morris Robert E. | Macula cover and method |
US20030093064A1 (en) | 2001-11-13 | 2003-05-15 | Peyman Gholam A. | Method to treat age-related macular degeneration |
US20030093065A1 (en) | 2001-11-13 | 2003-05-15 | Peyman Gholam A. | Method to treat age-related macular degeneration |
US6936043B2 (en) | 2001-11-13 | 2005-08-30 | Minu, Llc | Method to treat age-related macular degeneration |
JP2003144401A (en) | 2001-11-14 | 2003-05-20 | Shimadzu Corp | Bloodstream measuring device |
US20050069525A1 (en) | 2001-11-16 | 2005-03-31 | Wiberg Mikael | Nerve repair unit and method of producing it |
US6899675B2 (en) | 2002-01-15 | 2005-05-31 | Xillix Technologies Corp. | Fluorescence endoscopy video systems with no moving parts in the camera |
US20050187477A1 (en) | 2002-02-01 | 2005-08-25 | Serov Alexander N. | Laser doppler perfusion imaging with a plurality of beams |
US20050089866A1 (en) * | 2002-02-14 | 2005-04-28 | Shuji Hinuma | Novel screening method |
US20050182321A1 (en) | 2002-03-12 | 2005-08-18 | Beth Israel Deaconess Medical Center | Medical imaging systems |
US20030187349A1 (en) | 2002-03-29 | 2003-10-02 | Olympus Optical Co., Ltd. | Sentinel lymph node detecting method |
US20030232016A1 (en) | 2002-04-17 | 2003-12-18 | Russell Heinrich | Nerve identification and sparing method |
US20050254008A1 (en) | 2002-06-14 | 2005-11-17 | Ferguson R D | Monitoring blood flow in the retina using a line-scanning laser ophthalmoscope |
US20040066961A1 (en) | 2002-06-21 | 2004-04-08 | Spreeuwers Lieuwe Jan | Method, apparatus and software for analyzing perfusion images |
WO2004006963A1 (en) | 2002-07-12 | 2004-01-22 | Beth Israel Deaconess Medical Center | Conjugated infrared fluorescent substances for detection of cell death |
US7364574B2 (en) | 2002-07-17 | 2008-04-29 | Novadaq Technologies Inc. | Combined photocoagulation and photodynamic therapy |
US20080221648A1 (en) | 2002-07-17 | 2008-09-11 | Novadaq Technologies Inc. | Combined photocoagulation and photodynamic therapy |
US20040206364A1 (en) | 2002-07-17 | 2004-10-21 | Robert Flower | Combined photocoagulation and photodynamic therapy |
US20050142556A1 (en) | 2002-08-16 | 2005-06-30 | John Wayne Cancer Institute | Molecular lymphatic mapping of sentinel lymph nodes |
US20040109231A1 (en) | 2002-08-28 | 2004-06-10 | Carl-Zeiss-Stiftung Trading As Carl Zeiss | Microscopy system, microscopy method and a method of treating an aneurysm |
JP2006503620A (en) | 2002-10-21 | 2006-02-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | System and method for improving the display of diagnostic images |
US20040077952A1 (en) | 2002-10-21 | 2004-04-22 | Rafter Patrick G. | System and method for improved diagnostic image displays |
US20040171827A1 (en) | 2002-10-25 | 2004-09-02 | Li-Cor, Inc. | Phthalocyanine dyes |
US20060147897A1 (en) | 2002-12-02 | 2006-07-06 | Amiram Grinvald | Characterization of arteriosclerosis by optical imaging |
US8521260B2 (en) | 2002-12-02 | 2013-08-27 | Yeda Research And Development Co. Ltd. | Characterization of arteriosclerosis by optical imaging |
WO2004052195A1 (en) | 2002-12-10 | 2004-06-24 | Zerrle, Irmgard | Device for the determination of blood flow in discrete blood vessels and regions of living organisms |
US20040156782A1 (en) | 2003-02-12 | 2004-08-12 | Akorn, Inc. | Methods of using indocyanine green (ICG) dye |
JP2004325200A (en) | 2003-04-24 | 2004-11-18 | Hitachi Ltd | Tissue concentration measurement device |
US20050033145A1 (en) | 2003-07-02 | 2005-02-10 | Graham John S. | Wearable tissue viability diagnostic unit |
US20050019744A1 (en) | 2003-07-25 | 2005-01-27 | La Jolla Bioengineering Institute | Ultrasound-assisted ischemic reperfusion |
WO2005026319A2 (en) | 2003-08-06 | 2005-03-24 | The Regents Of Teh University Of California | Erythrocytic cells and method for loading solutes |
WO2005034747A1 (en) | 2003-09-15 | 2005-04-21 | Beth Israel Deaconess Medical Center | Medical imaging systems |
US20070203413A1 (en) | 2003-09-15 | 2007-08-30 | Beth Israel Deaconess Medical Center | Medical Imaging Systems |
WO2005079238A2 (en) | 2004-02-12 | 2005-09-01 | The Regents Of The University Of Michigan | Method of evaluating metabolism of the eye |
EP1761171A2 (en) | 2004-02-12 | 2007-03-14 | The Regents of the University of Michigan | Method of evaluating metabolism of the eye |
US20050182327A1 (en) | 2004-02-12 | 2005-08-18 | Petty Howard R. | Method of evaluating metabolism of the eye |
US20060079750A1 (en) | 2004-07-06 | 2006-04-13 | Fauci Mark A | Systems and methods for localizing vascular architecture, and evaluation and monitoring of functional behavior of same |
US20060013768A1 (en) | 2004-07-13 | 2006-01-19 | Woltering Eugene A | Injection of a radioactive dye for sentinel lymph node identification |
US7381400B2 (en) | 2004-07-13 | 2008-06-03 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Injection of a radioactive dye for sentinel lymph node identification |
US20060108509A1 (en) | 2004-09-09 | 2006-05-25 | Frangioni John V | Systems and methods for multi-modal imaging |
US20060118742A1 (en) | 2004-12-06 | 2006-06-08 | Richard Levenson | Systems and methods for in-vivo optical imaging and measurement |
JP2009095683A (en) | 2004-12-08 | 2009-05-07 | Olympus Corp | Fluorescent endoscope device and imaging unit used therefor |
US7774048B2 (en) | 2004-12-08 | 2010-08-10 | Olympus Corporation | Fluorescent endoscope device |
US20090005693A1 (en) | 2004-12-22 | 2009-01-01 | Biotree Systems, Inc. | Medical Imaging Methods and Apparatus for Diagnosis and Monitoring of Diseases and Uses Therefor |
JP2008525126A (en) | 2004-12-22 | 2008-07-17 | バイオ−ツリー システムズ, インコーポレイテッド | Medical imaging method and apparatus for disease diagnosis and monitoring and uses thereof |
US7729750B2 (en) | 2005-01-20 | 2010-06-01 | The Regents Of The University Of California | Method and apparatus for high resolution spatially modulated fluorescence imaging and tomography |
US20090042179A1 (en) | 2005-02-14 | 2009-02-12 | Commissariat A L'energie Atomique | Fluorescence Reflection Imaging Device with Two Wavelengths |
US20060241499A1 (en) | 2005-02-24 | 2006-10-26 | Irion Klaus M | Multifunctional fluorescence diagnosis system |
JP2008535600A (en) | 2005-04-14 | 2008-09-04 | ブラッコ・リサーチ・ソシエテ・アノニム | Perfusion diagnosis method and system based on dynamic perfusion imaging |
US8036437B2 (en) | 2005-04-14 | 2011-10-11 | Bracco Research Sa | Perfusion assessment method and system based on animated perfusion imaging |
EP1874181A1 (en) | 2005-04-20 | 2008-01-09 | Ecole Polytechnique Federale De Lausanne (Epfl) | Instrument and method for high-speed perfusion imaging |
WO2006111909A1 (en) | 2005-04-20 | 2006-10-26 | Cvl Cosmetics S.A. | Instrument and method for high-speed perfusion imaging |
US8480579B2 (en) | 2005-04-20 | 2013-07-09 | Ecole polytechnique fédérale de Lausanne (EPFL) | Instrument and method for high-speed perfusion imaging |
WO2006111836A1 (en) | 2005-04-20 | 2006-10-26 | Ecole Polytechnique Federale De Lausanne (Epfl) | Instrument and method for high-speed perfusion imaging |
US20090118623A1 (en) | 2005-04-20 | 2009-05-07 | Cvl Cosmetics Sa | Instrument and Method for High-Speed Perfusion Imaging |
US20130296715A1 (en) | 2005-04-20 | 2013-11-07 | Ecole Polytechnique Federale De Lausanne (Epfl) | Instrument and method for high-speed perfusion imaging |
WO2006121631A2 (en) | 2005-04-26 | 2006-11-16 | Novadaq Technologies, Inc. | Real time imaging during solid organ transplant |
US8647605B2 (en) | 2005-04-26 | 2014-02-11 | Novadaq Technologies, Inc. | Real time imaging during solid organ transplant |
WO2006116634A2 (en) | 2005-04-26 | 2006-11-02 | Novadaq Technologies, Inc. | Method and apparatus for vasculature visualization with applications in neurosurgery and neurology |
US20060239921A1 (en) | 2005-04-26 | 2006-10-26 | Novadaq Technologies Inc. | Real time vascular imaging during solid organ transplant |
US9421280B2 (en) | 2005-04-26 | 2016-08-23 | Novadaq Technologies Inc. | Real time imaging during solid organ transplant |
WO2006121631A3 (en) | 2005-04-26 | 2007-01-04 | Novadaq Technologies Inc | Real time imaging during solid organ transplant |
US8185176B2 (en) | 2005-04-26 | 2012-05-22 | Novadaq Technologies, Inc. | Method and apparatus for vasculature visualization with applications in neurosurgery and neurology |
RU2288633C1 (en) | 2005-04-29 | 2006-12-10 | ГОУ ВПО "Красноярская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию" | Method for detecting the borders of resection in case of close trauma of pancreas along with the rupture of the main pancreatic duct |
WO2006119349A2 (en) | 2005-04-29 | 2006-11-09 | Novadaq Technologies, Inc. | Choroid and retinal imaging and treatment system |
WO2006123742A1 (en) | 2005-05-20 | 2006-11-23 | Hitachi Medical Corporation | Image diagnosing device |
US20090048516A1 (en) | 2005-05-20 | 2009-02-19 | Hideki Yoshikawa | Image diagnosing device |
US7400755B2 (en) | 2005-06-02 | 2008-07-15 | Accuray Incorporated | Inverse planning using optimization constraints derived from image intensity |
JP2007021006A (en) | 2005-07-20 | 2007-02-01 | Hitachi Medical Corp | X-ray ct apparatus |
US20100222673A1 (en) | 2005-08-10 | 2010-09-02 | Novadaq Technologies Inc. | Intra-operative head and neck nerve mapping |
US20070122344A1 (en) | 2005-09-02 | 2007-05-31 | University Of Rochester Medical Center Office Of Technology Transfer | Intraoperative determination of nerve location |
WO2007028032A2 (en) | 2005-09-02 | 2007-03-08 | University Of Rochester Medical Center | Intraoperative determination of nerve location |
DE102005044531A1 (en) | 2005-09-16 | 2007-03-22 | Myrenne Gmbh | Indicator`s e.g. indocyanin green, perfusion distribution determining method, involves measuring intensity of light radiation or field by measuring device directed on tissue, and determining gradient of intensity as measure of perfusion |
US20080319309A1 (en) | 2005-12-15 | 2008-12-25 | Koninklijke Philips Electronics, N.V. | System, Apparatus, and Method for Repreoducible and Comparable Flow Acquisitions |
US20070254276A1 (en) | 2006-04-26 | 2007-11-01 | Seng Enterprises Ltd. | Method and system for measuring membrane potential based on fluorescence polarization |
US20080044073A1 (en) | 2006-05-31 | 2008-02-21 | Siemens Aktiengesellschaft | X-ray device having a dual energy mode and method to analyze projection images detected in the dual energy mode |
US20090252682A1 (en) | 2006-06-01 | 2009-10-08 | The General Hospital Corporation | In-vivo optical imaging method including analysis of dynamic images |
US20080025918A1 (en) | 2006-07-03 | 2008-01-31 | Beth Israel Deaconess Medical Center, Inc. | Invisible light fluorescent platelets for intraoperative detection of vascular thrombosis |
US20090137902A1 (en) | 2006-07-03 | 2009-05-28 | Frangioni John V | Intraoperative imaging methods |
US9089601B2 (en) | 2006-07-10 | 2015-07-28 | University Of Rochester | Pre- and intra-operative imaging of bladder cancer |
US20080007733A1 (en) | 2006-07-10 | 2008-01-10 | The Board Of Trustees Of The University Of Illinois | Volumetric endoscopic coherence microscopy using a coherent fiber bundle |
US20080015446A1 (en) | 2006-07-11 | 2008-01-17 | Umar Mahmood | Systems and methods for generating fluorescent light images |
USRE45916E1 (en) | 2006-08-10 | 2016-03-08 | University Of Rochester | Intraoperative imaging of renal cortical tumors and cysts |
US8725225B2 (en) | 2006-08-10 | 2014-05-13 | University Of Rochester | Intraoperative imaging of renal cortical tumors and cysts |
US20180104362A1 (en) | 2006-09-07 | 2018-04-19 | Novadaq Technologies ULC | Pre-and-intra-operative localization of penile sentinel nodes |
US20080161744A1 (en) | 2006-09-07 | 2008-07-03 | University Of Rochester Medical Center | Pre-And Intra-Operative Localization of Penile Sentinel Nodes |
US20160038027A1 (en) | 2006-10-06 | 2016-02-11 | Novadaq Technologies Inc. | Methods, software and systems for imaging |
WO2008070269A2 (en) | 2006-10-06 | 2008-06-12 | Novadaq Technologies, Inc. | Methods, software and systems for imaging |
WO2008070269A3 (en) | 2006-10-06 | 2008-09-18 | Novadaq Technologies Inc | Methods, software and systems for imaging |
WO2008044822A1 (en) | 2006-10-11 | 2008-04-17 | Korea Advanced Institute Of Science And Technology | System for analyzing tissue perfusion using concentration of indocyanine green in blood |
US20100036217A1 (en) | 2006-10-11 | 2010-02-11 | Korea Advanced Institute Of Science And Technology | System for analyzing tissue perfusion using concentration of inocyanine green in blood |
JP2010505582A (en) | 2006-10-11 | 2010-02-25 | コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジー | Tissue perfusion analysis system using indocyanine green blood concentration dynamics |
US8285353B2 (en) | 2006-10-11 | 2012-10-09 | Korea Advanced Institute Of Science And Technology | System for analyzing tissue perfusion using concentration of indocyanine green in blood |
US20080239070A1 (en) | 2006-12-22 | 2008-10-02 | Novadaq Technologies Inc. | Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy |
US20130286176A1 (en) | 2006-12-22 | 2013-10-31 | Novadaq Technologies Inc. | Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy |
WO2008087869A1 (en) | 2007-01-16 | 2008-07-24 | Olympus Corporation | Fluorescent signal analyzing apparatus and fluorescent signal analyzing method |
US8194981B2 (en) | 2007-01-16 | 2012-06-05 | Olympus Corporation | Fluorescent signal analyzing apparatus and fluorescent signal analyzing method |
US20080221421A1 (en) | 2007-03-09 | 2008-09-11 | Korea Advanced Institute Of Science And Technology | Apparatus for measuring perfusion rate of legs |
US8538107B2 (en) | 2007-03-23 | 2013-09-17 | Siemens Aktiengesellschaft | Method for visualizing a sequence of tomographic volume data records for medical imaging |
US20090054788A1 (en) | 2007-04-19 | 2009-02-26 | Carl Zeiss Surgical Gmbh | Method and apparatus for displaying a field of a brain of a patient and navigation system for brain surgery |
US20110013002A1 (en) | 2007-07-06 | 2011-01-20 | Oliver Bendix Thompson | Laser Speckle Imaging Systems and Methods |
US8073224B2 (en) | 2007-07-09 | 2011-12-06 | Siemens Aktiengesellschaft | System and method for two-dimensional visualization of temporal phenomena and three dimensional vessel reconstruction |
WO2009048660A2 (en) | 2007-07-16 | 2009-04-16 | Raytheon Company | System and method of moving target based calibration of non-uniformity compensation for optical imagers |
WO2009046985A2 (en) | 2007-10-09 | 2009-04-16 | Carl Zeiss Surgical Gmbh | System and method for examining an object |
US8929974B2 (en) | 2007-10-09 | 2015-01-06 | Carl Zeiss Meditec Ag | System and method for examining an illuminated object |
WO2009046985A3 (en) | 2007-10-09 | 2009-07-09 | Zeiss Carl Surgical Gmbh | System and method for examining an object |
CA2711560A1 (en) | 2008-01-10 | 2009-07-16 | Pacific Biosciences Of California, Inc. | Methods and systems for analysis of fluorescent reactions with modulated excitation |
WO2009092162A1 (en) | 2008-01-25 | 2009-07-30 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US20180020933A1 (en) | 2008-01-25 | 2018-01-25 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US8965488B2 (en) | 2008-01-25 | 2015-02-24 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
JP2011509768A (en) | 2008-01-25 | 2011-03-31 | ノバダック テクノロジーズ インコーポレイテッド | Method for assessing brush in myocardial tissue |
US9610021B2 (en) | 2008-01-25 | 2017-04-04 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US9936887B2 (en) | 2008-01-25 | 2018-04-10 | Novadaq Technologies ULC | Method for evaluating blush in myocardial tissue |
US8406860B2 (en) | 2008-01-25 | 2013-03-26 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US20180220907A1 (en) | 2008-01-25 | 2018-08-09 | Novadaq Technologies ULC | Method for evaluating blush in myocardial tissue |
US20150196208A1 (en) | 2008-01-25 | 2015-07-16 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
US20140316262A1 (en) | 2008-02-26 | 2014-10-23 | Novadaq Technologies Inc. | Preoperative identification of perforator vessels in flaps to be used in reconstructive surgery |
JP2011528918A (en) | 2008-03-18 | 2011-12-01 | ノヴァダク テクノロジーズ インコーポレイテッド | Imaging system for combined full color reflection and near infrared imaging |
US20110063427A1 (en) | 2008-03-18 | 2011-03-17 | Novadaq Technologies Inc. | Imaging system for combined full-color reflectance and near-infrared imaging |
US9642532B2 (en) | 2008-03-18 | 2017-05-09 | Novadaq Technologies Inc. | Imaging system for combined full-color reflectance and near-infrared imaging |
US20110001061A1 (en) | 2008-03-24 | 2011-01-06 | Olympus Corporation | Fluorescence observation apparatus |
WO2009127972A2 (en) | 2008-04-14 | 2009-10-22 | Novadaq Technologies Inc. | Locating and analyzing perforator flaps for plastic and reconstructive surgery |
US20110306877A1 (en) | 2008-04-14 | 2011-12-15 | Novadaq Technologies Inc. | Locating and analyzing perforator flaps for plastic and reconstructive surgery |
JP5918532B2 (en) | 2008-04-14 | 2016-05-18 | ノバダック テクノロジーズ インコーポレイテッド | Apparatus for evaluating perfusion of penetrating branch blood vessel and method for controlling operation of apparatus for evaluating perfusion of penetrating branch blood vessel |
JP2011519589A (en) | 2008-04-14 | 2011-07-14 | ノヴァダク テクノロジーズ インコーポレイテッド | Localization and analysis of perforating flaps for plastic and reconstructive surgery |
US20140308656A1 (en) | 2008-05-02 | 2014-10-16 | Novadaq Technologies, Inc. | METHODS FOR PRODUCTION AND USE OF SUBSTANCE-LOADED ERYTHROCYTES (S-IEs) FOR OBSERVATION AND TREATMENT OF MICROVASCULAR HEMODYNAMICS |
US20110098685A1 (en) | 2008-05-02 | 2011-04-28 | Flower Robert W | METHODS FOR PRODUCTION AND USE OF SUBSTANCE-LOADED ERYTHROCYTES (S-IEs) FOR OBSERVATION AND TREATMENT OF MICROVASCULAR HEMODYNAMICS |
US10041042B2 (en) | 2008-05-02 | 2018-08-07 | Novadaq Technologies ULC | Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics |
US20120078093A1 (en) | 2008-05-14 | 2012-03-29 | Novadaq Technologies Inc. | Imaging methods and compositions comprising fluorescent dyes associated with viral components for nerve imaging |
US8361775B2 (en) | 2008-05-14 | 2013-01-29 | Novadaq Technologies Inc. | Imaging methods and compositions comprising fluorescent dyes associated with viral components for nerve imaging |
US20160199515A1 (en) | 2008-05-14 | 2016-07-14 | Novadaq Technologies Inc. | Compositions Comprising Fluorescent Dyes Associated With Viral Components For Nerve Imaging |
US20090297004A1 (en) | 2008-05-28 | 2009-12-03 | Siemens Medical Solutions Usa, Inc. | Method for Automatically Synchronizing the Review of Two DSA Scenes |
JP2009291554A (en) | 2008-06-09 | 2009-12-17 | Olympus Corp | Fluorescence endoscope system |
US20150230710A1 (en) | 2008-09-11 | 2015-08-20 | Carl Zeiss Meditec Ag | Medical systems and methods |
US20120165662A1 (en) | 2008-09-11 | 2012-06-28 | Carl Zeiss Meditec Ag | Medical systems and methods |
US8144958B2 (en) | 2008-09-11 | 2012-03-27 | Carl Zeiss Meditec Ag | Medical systems and methods |
US20150230715A1 (en) | 2008-09-11 | 2015-08-20 | Carl Zeiss Meditec Ag | Medical systems and methods |
US20100061604A1 (en) | 2008-09-11 | 2010-03-11 | Carl Zeiss Surgical Gmbh | Medical systems and methods |
US9129366B2 (en) | 2008-09-11 | 2015-09-08 | Carl Zeiss Meditec Ag | Medical systems and methods |
US9357931B2 (en) | 2008-09-11 | 2016-06-07 | Carl Zeiss Meditec Ag | Medical systems and methods |
US9351644B2 (en) | 2008-09-11 | 2016-05-31 | Carl Zeiss Meditec Ag | Medical systems and methods |
US20100286529A1 (en) | 2009-05-08 | 2010-11-11 | Novadaq Technologies Inc. | Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest |
US20110071403A1 (en) | 2009-09-21 | 2011-03-24 | Board Of Regents Of The University Of Texas System | Functional near-infrared fluorescence lymphatic mapping for diagnosing, accessing, monitoring and directing therapy of lymphatic disorders |
US20120026325A1 (en) | 2010-07-29 | 2012-02-02 | Logitech Europe S.A. | Optimized movable ir filter in cameras |
US20130230866A1 (en) | 2010-09-17 | 2013-09-05 | Tohoku University | Method for Determining Effectiveness of Medicine Containing Antibody as Component |
WO2012038824A1 (en) | 2010-09-20 | 2012-03-29 | Novadaq Technologies Inc. | Locating and analyzing perforator flaps for plastic and reconstructive surgery |
WO2012096878A2 (en) | 2011-01-10 | 2012-07-19 | East Carolina University | Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling |
US20130245456A1 (en) | 2011-01-10 | 2013-09-19 | East Carolina University | Methods, Systems and Computer Program Products for Non-Invasive Determination of Blood Flow Distribution Using Speckle Imaging Techniques and Hemodynamic Modeling |
US20120271176A1 (en) | 2011-04-21 | 2012-10-25 | Moghaddam Hassan Ghaderi | Method and system for optically evaluating proximity to the inferior alveolar nerve in situ |
US9241636B2 (en) | 2011-06-29 | 2016-01-26 | Kyoto Prefectural Public University Corporation | Tumor site or parathyroid gland identification device and method |
WO2013002350A1 (en) | 2011-06-29 | 2013-01-03 | 京都府公立大学法人 | Tumor site identification device and method |
US20130345560A1 (en) | 2012-06-21 | 2013-12-26 | Novadaq Technologies Inc. | Quantification and analysis of angiography and perfusion |
WO2013190391A2 (en) | 2012-06-21 | 2013-12-27 | Novadaq Technologies Inc. | Quantification and analysis of angiography and perfusion |
US20140099007A1 (en) | 2012-10-09 | 2014-04-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv | Imaging methods and computer-readable media |
US20160041098A1 (en) | 2013-03-29 | 2016-02-11 | Hamamatsu Photonics K.K | Fluorescence viewing device and fluorescence viewing method |
WO2015001427A2 (en) | 2013-06-14 | 2015-01-08 | Novadaq Technologies Inc. | Quantification of absolute blood flow in tissue using fluorescence mediated photoplethysmography |
US20160371834A1 (en) | 2013-07-03 | 2016-12-22 | Konica Minolta, Inc. | Image processing device, pathological diagnosis support system, image processing program, and pathological diagnosis support method |
US20170039710A1 (en) | 2014-06-05 | 2017-02-09 | Olympus Corporation | Processing apparatus, endoscope system, endoscope apparatus, method for operating image processing apparatus, and computer-readable recording medium |
US20180120230A1 (en) | 2014-09-29 | 2018-05-03 | Novadaq Technologies ULC | Imaging a target fluorophore in a biological material in the presence of autofluorescence |
US9816930B2 (en) | 2014-09-29 | 2017-11-14 | Novadaq Technologies Inc. | Imaging a target fluorophore in a biological material in the presence of autofluorescence |
US20170303800A1 (en) | 2014-10-09 | 2017-10-26 | Novadaq Technologies Inc. | Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography |
US20180234603A1 (en) | 2017-02-10 | 2018-08-16 | Novadaq Technologies Inc. | Open-field handheld flourescence imaging systems and methods |
Non-Patent Citations (464)
Title |
---|
Akintunde et al., "Quadruple labeling of brain-stem neurons: a multiple retrograde fluorescent tracer study of axonal collateralization," Journal of Neuroscience Methods, 45:15-22, (1992). |
Alander, J.T. et al. (Jan. 1, 2012). "A Review of Indocyanine Green Fluorescent Imaging in Surgery," International Journal of Biomedical Imaging 2012:1-26, article ID 940585. |
Alfano et al. (Oct. 1987). "Fluorescence Spectra from Cancerous and Normal Human Breast and Lung Tissues," IEEE Journal of Quantum Electronics QE-23(10):1806-1811. |
Alm, A. et al. (Jan. 1, 1973). "Ocular and Optic Nerve Blood Flow at Normal and Increased Intraocular Pressures in Monkeys (Macaca irus): A Study with Radioactively Labelled Microspheres Including Flow Determinations in Brain and Some Other Tissues," Experimental Eye Research 15(1):15-29. |
Alonso-Burgos, A. et al. (2006). "Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multi-slice-CT angiography: imaging findings and initial experience," Journal of Plastic, Reconstructive & Aesthetic Surgery 59:585-593. |
Alvarez, F. J. et al. (Apr. 1996). "Behaviour of Isolated Rat and Human Red Blood Cells Upon Hypotonic-Dialysis Encapsulation of Carbonic Anhydrase and Dextran," Biotechnology and Applied Biochemistry 23(2):173-179. |
Ancalmo, N. et al. (1997). "Minimally invasive coronary artery bypass surgery: really minimal?" Ann. Thorac. Surg. 64:928-929. |
Andersson-Engels, S. et al. (1991). "Fluorescence Characteristics of Atherosclorotic Plaque and Malignant Tumors," in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty (Ed.), The Society of Photo-optical Instrumentation Engineers (SPIE) 1426:31-43, fourteen pages. |
Andersson-Engels, S. et al. (Mar. 1989). "Tissue Diagnostics Using Laser-Induced Fluorescence," Berichte der Bunsengesellschaft für physikalische Chemie 93(3):335-342. |
Angelov et al., "Contralateral trigeminal nerve lesion reduces polyneuronal muscle innervation after facial nerve repair in rats," Eur. J. Neurosci., 11:1369-1378 (1999). |
Annese, V. et al. (2005). "Erthrocytes-Mediated Delivery of Dexamethasone in Steroid-Dependent IBD Patients—a Pilot Uncontrolled Study," American Journal of Gastroenterology 100:1370-1375. |
Argus-50/CA, Inter cellular CA2+ (calcium ion) Image Analysis system (Feb. 1992). "Observation and 2-dimensional analysis of Ca2+ concentration distribution. Fura-2 and Indo-1 compatible. Ca2+ concentrations are calculated from the fluorescence ratio," pp. 1-10. |
Australian Examination Report No. 1 dated Jun. 26, 2018 for Australian Patent Application No. 2014408488, filed on Mar. 31, 2017, nine pages. |
Author Unkown, "Invitrogen," Material Safety Data Sheet, Jun. 4, 2008, pp. 1-4. |
Awano, T. et al. (Jun. 2010). "Intraoperative EC-IC Bypass Blood Flow Assessment with Indocyanine Green Angiography in Moyamoya and Non-moyamoya Ischemic Stroke," World Neurosurg. 73(6):668-674. |
Azuma, R. et al. (2008, presented in part Jun. 2007). "Detection of Skin Perforators by Indocyanine Green Fluorescence Nearly Infrared Angiography," PRS Journal 122(4):1062-1067. |
Balacumarswami, L. et al. (Aug. 2004). "Does Off-Pump Total Arterial Grafting Increase the Incidence of Intraoperative Graft Failure?," The Journal of Thoracic and Cardiovascular Surgery 128(2):238-244. |
Barton, J.K. et al. (1999) "Simultaneous irradiation and imaging of blood vessels during pulsed laser delivery," Lasers in Surgery and Medicine 24(3):236-243. |
Bassingthwaighte, J.B. et al. (Apr. 1974). "Organ Blood Flow, Wash-in, Washout, and Clearance of Nutrients and Metabolites," Mayo Clin. Proc. 49(4):248-255. |
Batliwala, H. et al. (Apr. 15, 1995). "Methane-Induced Haemolysis of Human Erythrocytes," Biochemical J. 307(2):433-438. |
Bek, T. (1999). "Diabetic Maculopathy Caused by Disturbances in Retinal Vasomotion: A New Hypothesis," Acta Ophthalmologica Scandinavica 77:376-380. |
Benson, R.C. et al. (1978). "Fluorescence Properties of Indocyanine Green as Related to Angiography," Phys. Med. Biol. 23(1):159-163. |
BIOLOGICAL ABSTRACTS, 1 January 2005, Philadelphia, PA, US; PEIRETTI E; FLOWER R W; FOSSARELLO M: "Human erythrocyte-ghost-mediated choroidal angiography and photocoagulation" XP002725023 |
Black's Medical Dictionary, "Perfusion," 42nd Edition (2009), two pages. |
Boer, F.et al. (1994). "Effect of Ventilation on First-Pass Pulmonary Retention of Alfentaril and Sufentanil in Patients Undergoing Coronary Artery Surgery," British Journal Anesthesia 73:458-463. |
Boldt, .J. et al. (Feb. 1990). "Lung management during cardiopulmonary bypass: influence on extravascular lung water," Journal of Cardiothoracic Anesthesia 4(1):73-79. |
Boldt, J. et al. (1991). "Does the technique of cardiopulmonary bypass affect lung water content?" European Journal of Cardio-Thoracic Surgery 5:22-26. |
Butter et al., "Melanoma in children and the use of sentinel lymph node biopsy," Journal of Pediatric Surgery, 40:797-800, (2005). |
C2741, Compact High Performance video camera for industrial applications with Built-in contrast enhancement circuit, Jun. 1998, six pgs. |
Canada Health. (1997). "Coronary Bypass Surgery and Angioplasty, 1982-1995, Heart Disease and Stroke in Canada," Canada Health, located at <http:/www.hc-sc.gc.ca/hpb>, eighty two pages. |
Canadian Notice of Allowance dated Jan. 4, 2018 for Canadian Application No. 2,750,760, filed on Jul. 25, 2008, one page. |
Canadian Notice of Allowance dated Sep. 27, 2017 for Canadian Application No. 2,811,847, filed on Mar. 20, 2013, one page. |
Canadian Office Action dated Feb. 13, 2018 for CA Application No. 2,963,450 filed on Apr. 3, 2017, three pages. |
Canadian Office Action dated Feb. 27, 2017 for Canadian Application No. 2,750,760, filed on Jul. 25, 2011, three pages. |
Canadian Office Action dated Feb. 28, 2018 for CA Application No. 2,963,987 filed on Mar. 27, 2017, five pages. |
Canadian Office Action dated Jan. 19, 2017 for Canadian Application No. 2,914,778 filed on Dec. 8, 2015, four pages. |
Canadian Office Action dated Mar. 16, 2016 for CA Application No. 2,750,760 filed on Jan. 23, 2009, five pages. |
Canadian Office Action dated Nov. 28, 2017 for Canadian Application No. 2,914,778 filed on Dec. 8, 2015, six pages. |
Canadian Office Action dated Oct. 25, 2016 for Canadian Patent Application No. 2,811,847, filed on Sep. 20, 2011, three pages. |
Canadian Office Action dated Sep. 30, 2015 for CA Application No. 2,811,847, filed on Sep. 20, 2011, four pages. |
Chinese Fifth Office Action dated Dec. 19, 2017 for Chinese Application No. 201180057244.8 filed on Sep. 20, 2011, eleven pages. |
Chinese First Office Action dated Apr. 6, 2017 for Chinese Application No. 201510214021.8, filed on May 14, 2009, fifteen pages. |
Chinese Fourth Office Action dated Mar. 13, 2017 for Chinese Application No. 201180057244.8 filed on Sep. 20, 2011, twenty pages. |
Chinese Office Action dated Jul. 3, 2012, issued in counterpart Chinese Application No. 200980123414.0, eight pages. |
Chinese Office Action dated May 23, 2013, issued in counterpart Chinese Application No. 200980123414.0, nineteen pages. |
Chinese Office Action dated Nov. 12, 2015 for Chinese Patent Application No. 201180057244.8, filed on Sep. 20, 2010, five pages. |
Chinese Second Office Action dated Feb. 8, 2018 for Chinese Application No. 201510214021.8, filed on May 14, 2009, seventeen pages. |
Chinese Third Office Action dated Aug. 8, 2016 for Chinese Application No. 201180057244.8 filed on Sep. 20, 2011, eighteen pages. |
Coffey, J.H. et al. (1984). "Evaluation of Visual Acuity During Laser Photoradiation Therapy of Cancer," Lasers in Surgery and Medicine 4(1):65-71. |
Conley, M.P. et al. (Oct. 2004). "Anterograde Transport of Peptide-Conjugated Fluorescent Beads in the Squid Giant Axom Identifies a Zip-Code for Synapse," Biological Bulletin 207(2):164, one page. |
Costa, R.A. et al. (Oct. 2001). "Photodynamic Therapy with Indocyanine Green for Occult Subfoveal Choroidal Neovascularization Caused by Age-Related Macular Degeneration," Curr. Eye Res. 23(4):274-275. |
Cothren, R.M. et al. (Mar. 1990). "Gastrointestinal Tissue Diagnosis by Laser-Induced Fluorescence Spectroscopy at Endoscopy," Gastrointestinal Endoscopy 36(2):105-111. |
Dail, W.G., et al., "Multiple vasodilator pathways from the pelvic plexus to the penis of the rat," 1999, International Journal of Impotence Research, vol. 11, pp. 277-285. |
Dan et al., "1% Lymphazurin vs 10% Fluorescein for Sentinel Node Mapping in Colorectal Tumors," Arch Surg., 139:1180-1184, (2004). |
Daniels, G. et al. (Apr. 2007). "Towards Universal Red Blood Cell," Nature Biotechnology 25(4):427-428. |
De Flora, A. (Sep. 1986). "Encapsulation of Adriamycin in human erythrocytes," Proc. Natl. Acad. Sci., USA 83(18):7029-7033. |
De Grand, A.M. and J.V. Frangioni, "An operational near-infrared fluorescence imaging system prototype for large animal surgery," 2003, Technology in Cancer Research & Treatment , vol. 2(6), pp. 1-10. |
Declaration of Brian Wilson dated Aug. 22, 2017 for Inter Partes Review No. IPR2017-01426, twelve pages. |
Definition of "Expose," Excerpt of Merriam Webster's Medical Desk Dictionary (1993), four pages. |
Definition of "Graft," Excerpt of Stedman's Medical Dictionary for the Health Professions and Nursing; 6th Ed. (2008), three pages. |
Deloach, J.R. (ed.) et al. (1985). Red Blood Cells as Carriers for Drugs. A Method for Disseminating Chemotherapeutics, Hormones, Enzymes and Other Therapeutic Agents via the Circulatory System, Karger, Basel, CH, pp. v-vii, (Table of Contents), seven pages. |
Deloach, J.R. (Jun. 1983). "Encapsulation of Exogenous Agents in Erythrocytes and the Circulating Survival of Carrier Erythrocytes," Journal of Applied Biochemistry 5(3):149-157. |
Demos, "Near-infrared autofluorescence imaging for detection of cancer," Journal of Biomedical Optics, 9(3):587-592, (2004). |
Desai, N.D. et al. (Oct. 18, 2005, e-published on Sep. 28, 2005) "Improving the Quality of Coronary Bypass Surgery with Intraoperative Angiography," Journal of the American College of Cardiology 46(8):1521-1525. |
Detter, C. et al. (Aug. 1, 2007). "Fluorescent Cardiac Imaging: A Novel Intraoperative Method for Quantitative Assessment of Myocardial Perfusion During Graded Coronary Artery Stenosis," Circulation 116(9):1007-1014. |
Detter, C. et al. (Jun. 2011). "Near-Infrared Fluorescence Coronary Angiography: A New Noninvasive Technology for Intraoperative Graft Patency Control." The Heart Surgery Forum #2001-6973 5(4):364-369. |
Dietz et al., "lndocyanine Green, Evidence of Neurotoxicity in Spinal Root Axons," Anesthesiology, 98(2):516-520, (2003). |
Digital CCD Microscopy (date unknown). Chapter 14, pp. 259-282. |
Dougherty, T.J. et al. (1990). "Cutaneous Phototoxic Occurrences in Patients Receiving Photofrin," Lasers in Surgery and Medicine 10(5):485-488. |
Draijer, M.J. et al. (Jun. 17-19, 2007). "Laser Doppler Perfusion Imaging with a High-Speed CMOS-Camera," in Novel Optical Instrumentation for Biomedical Applications III, C. Depeursinge, ed., Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2007), SPIE-OSA, 6631:0N1-0N7, nine pages. |
Dunne et al., "Value of sentinel lymphonodectomy in head and neck cancer patients without evidence of lymphogenic metastatic disease," Auris Nasus Larynx, 28:339-344, (2001). |
Ekstrand, M.I. et al. (Feb. 14, 2008). "The Alpha-Herpesviruses: Molecular Pathfinders in Nervous System Circuits," Trends in Molecular Medicine, Elsevier Current Trends 14(3):134-140. |
Emery R.W. et al. (Aug. 1996). "Revascularization Using Angioplasty and Minimally Invasive Techniques Documented by Thermal Imaging," The Annals of Thoracic Surgery 62(2):591-593. |
Enquist, L.W. et al. (2002). "Directional Spread of an α-Herpesvirus in the Nervous System," Veterinary Microbiology 86:5-16. |
Eren, S. et al. (Dec. 1995). "Assessment of Microcirculation of an Axial Skin Flap Using Indocyanine Green Fluorescence Angiography," Plast. Reconstr. Surg. 96(7):1636-1649. |
European Decision in Opposition Proceeding Revoking (Jun. 10, 2010). European Patent No. 1 143 852, thirty pages. |
European Decision of European Patent Office Technical Board of Appeal Revoking Counterpart Patent No. 1143852, dated Oct. 23, 2013. |
European Decision to Grant dated Apr. 21, 2017 for EP Application No. 09732993.2, filed on Nov. 8, 2010, two pages. |
European Decision to Grant dated Mar. 15, 2018 for EP Application No. 09739980.2 filed on Nov. 30, 2010, two pages. |
European Extended Search Report dated Apr. 28, 2014 for EP Application No. 09 732 993.2, filed on Apr. 14, 2008, eight pages. |
European Extended Search Report dated Feb. 22, 2012 for EP Application No. 09 704 642.9, filed on Jan. 25, 2008, fifteen pages. |
European Extended Search Report dated Jan. 28, 2014 for EP Application No. 11 826 475.3, filed on Sep. 20, 2010, six pages. |
European Extended Search Report dated Jun. 6, 2018 for EP Application No. 18166591.0 filed on Apr. 10, 2018, six pages. |
European Extended Search Report dated May 23, 2018 for EP Application No. 14903635.2 filed on May 2, 2017, nine pages. |
European Extended Search Report dated Oct. 14, 2015 for EP Application No. 13806313.6 filed on Jun. 20, 2013, nine pages. |
European Extended Search Report dated Sep. 16, 2016 for EP Application No. 16183434.6 filed on Aug. 9, 2016, ten pages. |
European Notice of Allowance dated Oct. 21, 2015 for EP Application No. 11 826 475.3, filed on Sep. 20, 2010, eight pages. |
European Notice of Allowance dated Oct. 29, 2015 for EP Application No. 09 704 642.9, filed on Jan. 25, 2008, two pages. |
European Office Action dated Mar. 27, 2015 for EP Application No. 09 732 993.2, filed on Apr. 14, 2008, six pages. |
European Office Action—Communication Pursuant to Article 94(3) dated May 27, 2016 for EP Application No. 15160177.0 filed on Aug. 11, 2000, five pages. |
European Office Action—Communication Pursuant to Article 94(3) dated Sep. 21, 2017 for European Application No. 16163909.1 filed on Apr. 5, 2016, three pages. |
European Office Action—Communication Pursuant to Article 94(3) EPC dated Apr. 6, 2018 for EP Application No. 15188378.2 filed on Oct. 5, 2015, four pages. |
European Office Action—Communication Pursuant to Article 94(3) EPC dated Aug. 31, 2017 for EP Application No. 09739980.2 filed on Nov. 30, 2010, four pages. |
European Office Action—Communication Pursuant to Article 94(3) EPC dated Mar. 9, 2016 for European Patent Application No. 09739980.2 filed May 1, 2009, five pages. |
European Office Action—Communication Pursuant to Rules 70(2) and 70a(2) EPC dated May 15, 2014 in EP Application No. 09732993.2, one page. |
European Office Action—Communication Pursuant to Rules 70(2) and 70a(2) EPC dated Nov. 14, 2016 in EP Application No. 16163909.1, two pages. |
European Office Action—Communication Under Rule 71(3) EPC (Intention to Grant) dated Dec. 1, 2017 for European patent Application No. 09739980.2, filed on Nov. 30, 2010, seven pages. |
European Office Action—Communication under Rule 71(3) EPC (Intention to Grant) dated Nov. 21, 2017 for European Patent Application No. 15160177.0, filed on Aug. 11, 2000, seven pages. |
European Opposition of European Patent No. EP1143852 lodged by Hamamatsu Photonics, Inc., Jul. 30, 2008. |
European Partial Search Report dated Dec. 16, 2010 for European Application No. 10186218.3 filed on Aug. 11, 2000, seven pages. |
European Partial Search Report dated Jan. 10, 2018 for EP Application No. 17171383.7 filed on May 16, 2017, eleven pages. |
European Partial Search Report dated Jun. 11, 2014 for European Application No. 13178642.8, filed on May 1, 2009, five pages. |
European Partial Search Report dated Jun. 28, 2016 for European Application No. 16163909.1 filed on Apr. 5, 2016, six pages. |
European Summons to attend Oral Proceedings pursuant to Rule 115(1) EPC issued on Apr. 25, 2016 for European Patent Application No. 09732993.2, filed on Apr. 14, 2009, five pages. |
European Summons to attend Oral Proceedings pursuant to Rule 115(1) EPC mailed on Dec. 16, 2016 for European patent application No. 15160177.0, filed on Aug. 11, 2000, seven pages. |
European Supplemental Search Report dated Jul. 6, 2004 for EP Application No. 00955472.6 filed on Aug. 11, 2000, five pages. |
Falk, T. et al. (Apr. 15, 2001). "A Herpes Simplex Viral Vector Expressing Green Fluorescent Protein can be Used to Visualize Morphological Changes in High-density Neuronal Culture," Electronic Journal of Biotechnology 4(1):34-45. |
FLOWER R W ET AL: "Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells", ANNUAL MEETING OF THE MACULA SOCIETY, PALM BEACH, FL, USA, 26 March 2008 (2008-03-26) - 29-03-2008, PALM BEACH, FL, USA, pages 206 - 207, XP002535355 |
Flower, R. et al. (Apr.-Jun. 1999). "Effects of free and liposome-encapsulated hemoglobin on choroidal vascular plexus blood flow, using the rabbit eye as a model system," European Journal of Ophthalmology 9 (2):103-114. |
Flower, R.W. (1992). "Choroidal Angiography Today and Tomorrow," Retina 12(3):189-190. |
Flower, R.W. (Apr. 2000). "Experimental Studies of Indocyanine Green Dye-Enhanced Photocoagulation of Choroidal Neovascularization Feeder Vessels," American Journal of Ophthalmology 129(4):501-512. |
Flower, R.W. (Aug. 2002). "Optimizing Treatment of Choroidal Neovascularization Feeder Vessels Associated with Age-Related Macular Degeneration," American Journal of Ophthalmology 134(2):228-239. |
Flower, R.W. (Dec. 1973). "Injection Technique for Indocyanine Green and Sodium Fluorescein Dye Angiography of the Eye," Investigative Opthamology 12(12):881-895. |
Flower, R.W. (Sep. 1, 1994). "Does Preinjection Binding of Indocyanine Green to Serum Actually Improve Angiograms?," Arch Ophthalmol. 112(9):1137-1139. |
Flower, R.W. et al. (Aug. 1977). "Quantification of Indicator Dye Concentration in Ocular Blood Vessels," Exp. Eye Res. 25(2):103-111. |
Flower, R.W. et al. (Dec. 1, 2008, e-published Aug. 15, 2008). "Observation of Erythrocyte Dynamics in the Retinal Capillaries and Choriocapillaris Using ICG-Loaded Erythrocyte Ghost Cells," Investigative Ophthalmology, & Visual Science 49(12):5510-5516. |
Flower, R.W. et al. (Mar. 26, 2008-Mar. 29, 2008). "Observation of Erythrocyte Dynamics in the Retinal Capillaries and Choriocapillaris Using ICG-Loaded Erythrocyte Ghost Cells," Annual Meeting of the Macula Society, Abstract No. XP002535355, Palm Beach, FL, USA, fourteen pages, (Schedule of the Meeting only). |
Forrester et al. (Nov. 1, 2002). "Comparison of Laser Speckle and Laser Doppler Perfusion Imaging: Measurement in Human Skin and Rabbit Articular Tissue," Medical and Biological Engineering and Computing 40(6):687-697. |
Frangioni, John V., "In vivo near-infrared fluorescence imaging," 2003, Current Opinion in Chemical Biology,vol. 7, pp. 626-634. |
Frenzel H. et al. (Apr. 18, 2008). "In Vivo Perfusion Analysis of Normal and Dysplastic Ears and its Implication on Total Auricular Reconstruction," Journal of Plastic, Reconstructive and Aesthetic Surgery 61(Supplement1):S21-S28. |
Fritzsch et al., "Sequential double labeling with different fluorescent dyes coupled to dextran amines as a tool to estimate the accuracy of tracer application and of regeneration," Journal of Neuroscience Methods, 39:9-17, (1991). |
Gagnon, A.R. et al. (2006). "Deep and Superficial Inferior Epigastric Artery Perforator Flaps," Cirugia Plástica Ibero-Latinoamericana 32(4):7-13. |
Gardner, T.J. (1993). "Coronary Artery Disease and Ventricular Aneurysms," in Surgery, Scientific Principles and Practice, Greenfield, L.J. (ed.) et al., J.B. Lippincott Co., Philadelphia, PA, pp. 1391-1411, twenty three pages. |
Garrett, et. al., "Fluoro-Gold's Toxicity Makes It Inferior to True Blue for Long-Term Studies of Dorsal Root Ganglion Neurons and Motoneurons," Neuroscience Letters, 1991, pp. 137-139, vol. 128, Elsevier, Maryland Heights, MO, USA. |
Geddes, C. D. et al. (2003, e-published on Mar. 20, 2003). "Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging," Journal of Physical Chemistry A 107(18):3443-3449. |
Gipponi et al., "New Fields of Application of the Sentinel Lymph Node Biopsy in the Pathologic Staging of Solid Neoplasms: Review of Literature and Surgical Perspectives," Journal of Surgical Oncology, 85:171-179, (2004). |
Giunta, R.E. et al. (Jul. 2005). "Prediction of Flap Necrosis with Laser Induced Indocyanine Green Fluorescence in a Rat Model," British Journal of Plastic Surgery 58(5):695-701. |
Giunta, R.E. et al. (Jun. 2000). "The Value of Preoperative Doppler Sonography for Planning Free Perforator Flaps," Plastic and Reconstructive Surgery 105(7):2381-2386. |
Glossary, Nature, downloaded from the internet <http://www.nature.com/nrg/journal/v4/nI0/glossary/nrgl 183_glossary.html>> HTML on Jun. 30, 2014. |
Glover et al., "Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo," Journal of Neuroscience Methods, 18:243-254, (1986). |
Goldstein, J.A. et al. (Dec. 1998). "Intraoperative Angiography to Assess Graft Patency After Minimally Invasive Coronary Bypass," Ann. Thorac. Surg. 66(6):1978-1982. |
Gothoskar A.V. (Mar. 2004). "Resealed Erythrocytes: A Review," Pharmaceutical Technology pp. 140, 142, 144, 146, 148, 150, 152 and 154-158, twelve pages. |
Granzow, J.W. et al. (Jul. 2007)."Breast Reconstruction with Perforator Flaps" Plastic and Reconstructive Surgery 120(1):1-12. |
Green, H.A. et al. (Jan. 1992). "Burn Depth Estimation Using Indocyanine Green Fluorescence," Arch Dermatol 128(1):43-49. |
Haglund et al., "Enhanced Optical Imaging of Human Gliomas and Tumor Margins," Neurosurgery, 38(2):308-317, (1996). |
Haglund et al., "Enhanced Optical Imaging of Rat Gliomas and Tumor Margins," Neurosurgery, 35(5):930-941, (1994). |
Hallock, G.G. (Jul. 2003). "Doppler sonography and color duplex imaging for planning a perforator flap," Clinics in Plastic Surgery 30(3):347-357. |
Hamamatsu Brochure. (May 1997). Specifications for Real-time Microscope Image Processing System: ARGUS-20 with C2400-75i, four pages. |
Hamamatsu. (Date unknown). Microscope Video Camera, for Fluorescent Observation, Easy Fluorescent Image Analysis C2400-731, -751 Series a CCD Camera, seven pages. |
Hayashi, J. et al. (Nov. 1993). "Transadventitial Localization of Atheromatous Plaques by Fluorescence Emission Spectrum Analysis of Mono-L Aspartyl-Chlorin e6," Cardiovascular Research 27(11):1943-1947. |
Hayata, Y. et al. (Jul. 1982). "Fiberoptic Bronchoscopic Laser Photoradiation for Tumor Localization in Lung Cancer," Chest82(1):10-14. |
He, "Fluorogold Induces Persistent Neurological Deficits and Circling Behavior in Mice Over-Expressing Human Mutant Tau," Current Neurovascular Research, 2009, pp. 54-61, vol. 6, Bentham Science Publishers Ltd., Oak Park, IL, USA. |
Herts, B.R. (May 2003). "Imaging for Renal Tumors," Current Opin.. Urol. 13(3):181-186. |
Hirano, T. et al. (1989). "Photodynamic Cancer Diagnosis and Treatment System Consisting of Pulse Lasers and an Endoscopic Spectro-Image Analyzer," Laser in Life Sciences 3(2):99-116. |
Holm, C. et al. (2002). "Monitoring Free Flaps Using Laser-Induced Fluorescence of Indocyanine Green: A Preliminary Experience," Microsurgery 22(7):278-287. |
Holm, C. et al. (Apr. 2003, e-published on Feb. 25, 2003). "Laser-Induced Fluorescence of Indocyanine Green: Plastic Surgical Applications," European Journal of Plastic Surgery 26(1):19-25. |
Holm, C. et al. (Dec. 1, 2002). "Intraoperative Evaluation of Skin-Flap Viability Using Laser-Induced Fluorescence of Indocyanine Green," British Journal of Plastic Surgery 55(8):635-644. |
Humblet, V., et al., "High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen," 2005, Mol. Imaging, vol. 4(4), pp. 448-462. |
Hung, J. et al. (1991). "Autofluorescence of Normal and Malignant Bronchial Tissue," Lasers in Surgery and Medicine 11(2):99-105. |
Hyvärinen, L. et al. (1980). "Indocyanine Green Fluorescence Angiography." Acta ophthalmologica 58(4):528-538. |
Ikeda, S. (Jul. 1989). "Bronichial Telivision Endoscopy," Chest 96(1):41S-42S. |
Indian Examination Report dated Jan. 16, 2018 for Indian Application No. 2993/DELNP/2011, filed on Apr. 25, 2011, eleven pages. |
Indian Examination Report dated Jul. 28, 2017 for Indian Application No. 1983/MUMNP/2007, filed on Nov. 27, 2007, seven pages. |
Indian Examination Report dated Sep. 22, 2016 for Indian Application No. 7566/DELNP/2010, filed on Oct. 27, 2010, nine pages. |
International Preliminary Examination Report completed on Jul. 1, 2001 for PCT/US00/22088, filed on Aug. 11, 2000, three pages. |
International Preliminary Report on Patentability dated Apr. 4, 2017 for PCT Application No. PCT/CA2015/050973 filed on Sep. 28, 2015, six pages. |
International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Apr. 3, 2008 for PCT/US07/77892, filed on Sep. 7, 2007, ten pages. |
International Search Report and Written Opinion dated Jul. 29, 2009 for PCT/US2009/043975 filed on May 14, 2009, eleven pages. |
International Search Report and Written Opinion dated Oct. 24, 2017 for PCT Application No. PCT/CA2017/050564 filed on May 10, 2017, fourteen pages. |
International Search Report dated Dec. 3, 2009 for PCT Patent Application No. PCT/IB2009/005700, filed on Apr. 14, 2009, three pages. |
International Search Report dated Dec. 3, 2015 for PCT Application No. PCT/CA2015/050973 filed on Sep. 28, 2015, three pages. |
International Search Report dated Feb. 1, 2012 for PCT Patent Application No. PCT/IB2011/002381, filed on Sep. 20, 2011, five pages. |
International Search Report dated Jan. 22, 2014 for PCT Application No. PCT/IB2013/001934, filed on Jun. 20, 2013, four pages. |
International Search Report dated Jul. 4, 2008 for PCT Patent Application No. PCT/US2007/080847, filed on Oct. 9, 2007, three pages. |
International Search Report dated Jun. 2, 2009 for PCT Application No. PCT/EP2008/008547, filed on Oct. 9, 2008, five pages. |
International Search Report dated Jun. 8, 2009 for PCT Patent Application No. PCT/CA2009/000073, filed on Jan. 23, 2009, three pages. |
International Search Report dated Oct. 18, 2000 for PCT Application No. PCT/US2000/22088, filed on Aug. 11, 2000, one page. |
International Search Report dated Sep. 11, 2009 for Application No. PCT/US2009/042606 filed on May 1, 2009, five pages. |
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee dated Jul. 4, 2017 for PCT/CA2017/050564, filed on May 10, 2017, two pages. |
Jaber, S.F. et al. (Sep. 1998). "Role of Graft Flow Measurement Technique in Anastomotic Quality Assessment in Minimally Invasive CABG," Ann. Thorac. Surg. 66(3):1087-1092. |
Jagoe, J.R. et al. (1989). "Quantification of retinal damage during cardiopulmonary bypass," Third International Conference on Image Processing and its Applications (Conf. Publ. No. 307), IEE, pp. 319-323. |
Jamis-Dow et al., "Small (≤3-cm) Renal Masses: Detection with CT versus US and Pathologic Correlation," Radiology, 198(3):785-788, (1996). |
Japanese Final Office Action dated Feb. 5, 2018 for Japanese Patent Application No. 2016-014503, filed on Jan. 28, 2016, six pages. |
Japanese First Office Action dated Feb. 1, 2016 for Japanese Patent Application No. 2015-517876 filed Jun. 20, 2013, eight pages. |
Japanese First Office Action dated Jul. 28, 2017 for Japanese Patent Application No. 2016-203798 filed Oct. 17, 2016, four pages. |
Japanese Notice of Allowance dated Jun. 8, 2018 for Japanese Patent Application No. 2016-203798 filed Oct. 17, 2016, six pages. |
Japanese Notice of Allowance dated Sep. 16, 2016 for Japanese Patient Application No. 2015-517876 filed on Jun. 20, 2013, six pages. |
Japanese Notice of Allowance dated Sep. 25, 2017 for Japanese Patent Application No. 2013-529729, filed on Mar. 21, 2013, six pages. |
Japanese Office Action dated Apr. 1, 2016 for Japanese Patent Application No. 2013-529729, filed on Mar. 21, 2013, seven pages. |
Japanese Office Action dated Jul. 30, 2013, issued in counterpart Japanese Application No. 2011-504574 filed on Apr. 14, 2009, six pages. |
Japanese Office Action dated Mar. 19, 2018 for Japanese Application No. 2017-518785 filed on Apr. 7, 2017, eight pages. |
Japanese Office Action dated Mar. 3, 2017 for Japanese Patent Application No. 2016-014503, filed on Jan. 28, 2016, ten pages. |
Japanese Office Action dated Mar. 31, 2017 for Japanese Patent Application No. 2013-529729, filed on Mar. 21, 2013, eleven pages. |
Japanese Office Action dated May 7, 2018 for Japanese Patent Application No. 2017-516925 filed on Mar. 28, 2017, four pages. |
Japanese Office Action dated Sep. 14, 2015 for Japanese Patent Application No. 2011-504574, filed on Apr. 14, 2009, three pages. |
Jolion, J. et al. (Aug. 1991). "Robust Clustering with Applications in Computer Vision," IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8):791-802. |
Kamolz et al., "lndocyanine green video angiographies help to identify burns requiring operation," Burns, 29:785-791, (2003). |
Kapadia, C.R. et al. (Jul. 1990). "Laser-Induced Fluorescence Spectroscopy of Human Colonic Mucosa. Detection of Adenomatous Transformation," Gastroenterology 99(1):150-157. |
Kato, H. et al. (Jun. 1985). "Early Detection of Lung Cancer by Means of Hematoporphyrin Derivative Fluorescence and Laser Photoradiation," Clinics in Chest Medicine 6(2):237-253. |
Kato, H. et al. (Jun. 1990). "Photodynamic Diagnosis in Respiratory Tract Malignancy Using an Excimer Dye Laser System," Journal of Photochemistry and Photobiology, B. Biology 6(1-2):189-196. |
Keon, W.J. et al. (Dec. 1979). "Coronary Endarterectomy: An Adjunct to Coronary Artery Bypass Grafting," Surgery 86(6):859-867. |
Kim, S., et al., "Near-infrared fluorescence type II quantum dots for sentinel lymph node mapping," 2004, Nature Biotechnology, vol. 22(1), pp. 93-97. |
Kiryu, J. et al. (Sep. 1994). "Noninvasive Visualization of the Choriocapillaris and its Dynamic Filling," Investigative Ophthalmology & Visual Science 35(10):3724-3731. |
Kitai, T. et al. (Jul. 2005). "Fluorescence Navigation with Indocyanine Green for Detecting Sentinel Lymph Nodes in Breast Cancer," Breast Cancer 12(3):211-215. |
Kleszcyńska, H. et al. (Mar. 2005). "Hemolysis of Erythrocytes and Erythrocyte Membrane Fluidity Changes by New Lysosomotropic Compounds," Journal of Fluorescence 15(2):137-141. |
Kobbert et al., "Current concepts in neuroanatomical tracing," Progress in Neurobiology, 62:327-351, (2000). |
Kokaji, K. et al. (Date Unknown). "Intraoperative Quality Assessment by Using Fluorescent Imaging in Off-pump Coronary Artery Bypass Grafting," The Department of Cardiovascular Surgery, University of Keio, Tokyo, Japan, one page, (Abstract only). |
Komurcu et al., "Management strategies for peripheral iatrogenic nerve lesions", Annals of Plastic Surgery, 54 (2):135-139 (2005). |
Korean Notice of Allowance dated Apr. 27, 2017 for Korean Patent Application No. 10-2016-7007994, filed on Mar. 25, 2016, three pages. |
Korean Notice of Allowance dated Apr. 29, 2016 for Korean Patent Application No. 10-2010-7024977, filed on Apr. 14, 2009, three pages. |
Korean Office Action dated Apr. 17, 2018 for Korean Patent Application No. 10-2017-7012463, filed on May 8, 2017, six pages. |
Korean Office Action dated Nov. 30, 2015 for Korean Patent Application No. 10-2010-7024977, filed on Apr. 14, 2009, two pages. |
Korean Patent Office Action dated Jun. 25, 2014 in Korean Patent Application No. 10-2013-7035027, filed on May 14, 2009, fifteen pages. |
Krishnan, K. G. et al. (Apr. 1, 2005). "The Role of Near-Infrared Angiography in the Assessment of Post-Operative Venous Congestion in Random Pattern, Pedicled Island and Free Flaps", British Journal of Plastic Surgery 58(3):330-338. |
Kuipers, J.A. et al. (1999). "Recirculatory and Compartmental Pharmacokinetic Modeling of Alfentanil Pigs, the Influence of Cardiac Output," Anesthesiology 90(4):1146-1157. |
Kupriyanov, V.V. et al. (Nov. 2004). "Mapping Regional Oxygenation and Flow in Pig Hearts In Vivo Using Near-infrared Spectroscopic Imaging," Journal of Molecular and Cellular Cardiology 37(5):947-957. |
Kurihara K. et al., "Nerve Staining with Leucomethylene Blue: An Experimental Study" Plastic and Reconstructive Surgery, 73(6):960-964 (1984). |
Kyo, S. (Date Unknown). "Use of Ultrasound Cardiology during Coronary Artery Bypass Surgery," Heart and Blood Vessel Imaging II, three pages. |
Lam, S. et al. (1991). "Mechanism of Detection of Early Lung Cancer by Ratio Fluorometry," Lasers in Life Sciences 4(2):67-73. |
Lam, S. et al. (Feb. 1990). "Detection of Early Lung Cancer Using Low Dose Photofrin II," Chest 97(2):333-337. |
Lam, S. et al. (Jul. 1, 1990). "Detection of Lung Cancer by Ratio Fluorometry With and Without Photofrin II," Proc. SPIE—Optical Fibers in Medicine V 1201:561-568. |
Lam, S. et al. (Nov. 1-4, 1990). "Fluorescence Imaging of Early Lung Cancer," Annual International Conference of the IEEE Engineering in Medicine and Biology Society 12(3):1142-1143. |
Lam, S.C. et al. (1993). "Fluorescence Detection," Chapter 20 in Lung Cancer, Roth, J.A. (ed.), et al., Blackwell Scientific Publications Inc., 238 Main Street, Cambridge, Massachusetts, 02142, pp. 325-338, sixteen pages. |
Lanciego et al., "Multiple axonal tracing: simultaneous detection of three tracers in the same section," Histochem Cell Biol, 110:509-515, (1998). |
Lanciego et al., "Multiple neuroanatomical tracing in primates," Brain Research Protocols, 2:323-332, (1998). |
Laub, G.W. et al. (Nov. /Dec. 1989). "Experimental Use of Fluorescein for Visualization of Coronary Arteries," Vascular and Endovascular Surgery 23(6):454-457. |
Lee, E.T. et al. (Mar. 1997). "A New Method for Assessment of Changes in Retinal Blood Flow," Medical Engineering & Physics 19(2):125-130. |
Leissner, J., et al., "Extended radical lymphadenectomy in patients with urothelial bladder cancer: Results of a prospective multicenter study," 2004, J. Urol. vol. 171, pp. 139-144. |
Leithner, "Untersuchung der Sauerstoffkonzentrationsveranderungen in der Mikrozirkulation des Hirnkortex von Ratten bei funktioneller Stimulation mittels Phosphorescence Quenching," [dissertation], Jul. 14, 2003; retrieved from the Internet: <http://edoc.hu-berlin.de/dissertationen/leith ner-ch ristoph-2003-07-14/>, two hundred and eight pages [English Abstract and Machine Translation]. |
Liedberg, F., et al., "[Bladder cancer and the sentinel node concept,]" 2003, Aktuelle Urol., vol. 34(2), pp. 115-118. |
Liedberg, F., et al., "Intraoperative sentinel node detection improves nodal staging in invasive bladder cancer," 2006, J. Urol., vol. 175, pp. 84-89. |
Lippincott's New Medical Dictionary. "Perfusion," p. 707 (1897), three pages. |
Liptay, "Sentinel Node Mapping in Lung Cancer," Annals of Surgical Oncology, 11(3):271S-274S, (2004). |
Little, J.R. et al. (May 1979). "Superficial Temporal Artery to Middle Cerebral Artery Anastomosis: Intraoperative Evaluation by Fluorescein Angiography and Xenon—133 Clearance," Journal of Neurosurgery 50(5):560-569. |
Liu Q. P. et al. (Apr. 2007). "Bacterial Glycosidases for the Production of Universal Red Blood Cells" Nature Biotechnology 25(7):454-464. |
Lund, F. et al. (Nov. 1997). "Video Fluorescein Imaging of the Skin: Description of an Overviewing Technique for Functional Evaluation of Regional Cutaneous Blood Evaluation of Regional Cutaneous Perfusion in Occlusive Arterial Disease of the Limbs," Clinical Physiology 17(6):619-633. |
Mack, M.J. et al. (Sep. 1998). "Arterial Graft Patency in Coronary Artery Bypass Grafting: What Do We Really Know?," Ann. Thorac. Surg. 66(3):1055-1059. |
Magnani, M. et al. (1998). "Erythrocyte Engineering for Drug Delivery and Targeting," Biotechnol. Appl. Biochem. 28:1-6. |
Magnani, M. et al. (Jul. 15, 1992). "Targeting Antiretroviral Nucleoside Analogues in Phosphorylated Form to Macrophasges: In Vitro and In Vivo Studies," Proc. Natl. Acad. Sci. USA 89(14):6477-6481. |
Malmstrom et al., "Early Metastatic Progression of Bladder Carcinoma: Molecular Profile of Primary Tumor and Sentinel Lymph Node," The Journal of Urology, 168:2240-2244, (2002). |
Malmström, P-U, et al., "RE: Extended radical lymphadenectomy in patients with urothelial bladder cancer: Results of a prospective multicenter study," 2004, J. Urol. vol. 172, p. 386. |
Marangos, N., et al., "In vivo visualization of the cochlear nerve and nuclei with fluorescent axonal tracers," 2001, Hearing Research, vol. 162, pp. 48-52. |
Martinez-Pérez, M. et al. (Sep. 19, 1996). "Unsupervised Segmentation Based on Robust Estimation and Cooccurrence Data," Proceedings of the International Conference on Miage Processing (ICIP) Lausanne 3:943-945. |
May, S. (May/Jun. 1995). "Photonic Approaches to Burn Diagnostics," Biophotonics International pp. 44-50. |
McKee, T.D. et al. (Mar. 1, 2006). "Degradation of Fibrillar Collagen in a Human Melanoma Xenograft Improves the Efficacy of an Oncolytic Herpes Simplex Virus Vector," Cancer Research 66(5):2509-2513. |
Merriam Webster Medline Plus Medical Dictionary. "Perfusion," located at http://www.merriam-webster.com/medlineplus/perfusion, last visited on Apr. 15, 2015, one page. |
Mexican Office Action dated May 30, 2013, issued in counterpart Mexican Application No. MX/a/2010/011249. |
Minciacchi et al., "A procedure for the simultaneous visualization of two anterograde and different retrograde fluorescent tracers," Journal of Neuroscience Methods, 38:183-191, (1991). |
Mitaka USA, Inc. (2015). "PDE Breast Free Flap Evaluation," located at <http://mitakausa.com/category/pde_education/flaps/>, last visited on Dec. 29, 2015, four pages. |
Mitaka USA, Inc. (2015). "PDE-Neo" located at <http://mitakausa.com/pde-neo/>, last visited on Dec. 29, 2015, two pages. |
Mohr, F.W. et al. (May 1997). "Thermal Coronary Angiography: A Method for Assessing Graft Patency and Coronary Anatomy in Coronary Bypass Surgery," Ann Thorac. Surgery 63(5):1506-1507. |
Montán, S. et al. (Feb. 1, 1985). "Multicolor Imaging and Contrast Enhancement in Cancer-Tumor Localization Using Laser-Induced Fluorescence in Hematoporphyrin-Derivative-Bearing Tissue," Optics Letters 10(2):56-58. |
Mothes, H. et al. (Nov. 2004). "Indocyanine-Green Fluorescence Video Angiography Used Clinically to Evaluate Tissue Perfusion in Microsurgery," The Journal of Trauma Injury, Infection, and Critical Care 57(5):1018-1024. |
Motomura et al. "Sentinel Node Biopsy Guided by lndocyanin Green Dye in Breast Cancer Patients," Jpn J Clin Oncol., 29(12):604-607, (1999). |
Mullooly, V.M. et al. (1990). "Dihematoporphyrin Ether-Induced Photosensitivity in Laryngeal Papilloma Patients," Lasers in Surgery and Medicine 10(4):349-356. |
Murphy (2001). "Digital CCD Microscopy," Chapter 14 in Fundamentals of Light Microscopy and Electronic Imaging, John Wiley and Sons, pp. i-xi and 259-281. |
Nahlieli et al., "Intravital Staining with Methylene Blue as an Aid to Facial Nerve Identification in Parotid Gland Surgery," J. Oral Maxillofac. Surg., 59:355-356 (2001). |
Nakamura, T. et al. (1964). "Use of Novel Dyes, Coomassie Blue and Indocyanine Green in Dye Dilution Method," Tohoka University, Nakamura Internal Department, The Tuberculosis Prevention Society, Tuberculosis Research Laboratory, 17(2):1361-1366, seventeen pages. |
Nakayama, A., et al., "Functional near-infrared fluorescence imaging for cardiac surgery and targeted gene therapy," 2002, Mol. Imaging, vol. 1(4), pp. 365-377. |
Naumann, et al., "Retrograde Tracing of Fluoro-Gold: Different Methods of Tracer Detection at the Ultrastructural Level and Neurodegenerative Changes of Back-Filled Neurons in Long-Term Studies," Journal of Neuroscience Methods, 2000, pp. 11-21, vol. 103, Elsevier, Maryland Heights, MO, USA. |
Newman et al. (Oct. 31, 2008). "Update on the Application of Laser-Assisted Indocyanine Green Fluorescent Dye Angiography in Microsurgical Breast Reconstruction," American Society of Plastic Surgeons, Plastic Surgery 2008, 2 pages. |
Nimura, H., et al., "Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer," 2004, British Journal of Surgery, vol. 91, pp. 575-579. |
Novadaq Technologies Inc. (Jan. 19, 2005). 510(k) Summary—Showing X-Ray Fluoroscopy as Predicate Device, Fluorescent Angiographic System, six pages. |
Novadaq Technologies Inc. (Jan. 29, 2007). "Novadaq Imaging System Receives FDA Clearance for use During Plastic Reconstructive Surgery," PR Newswire three pages. |
Novadaq Technologies Inc.'s Preliminary Response filed on Aug. 23, 2017 to Petition for Inter Partes Review of U.S. Pat. No. 8,892,190, sixty one pages. |
Oddi et al., "Intraoperative Biliary Tree Imaging with Cholyl-Lysyl- Fluorescein: An Experimental Study in the rabbit," Surg. Laproscop. Endosc., 6(3):198-200 (1996). |
Ogata, F. et al. (Jun. 2007). "Novel Lymphography Using Indocyanine Green Dye for Near-Infrared Fluorescence Labeling," Annals of Plastic Surgery 58(6):652-655. |
Ohnishi et al., "Organic Alternatives to Quantum Dots for Intraoperative near-Infrared Fluorescent Lymph Node Mapping," Mol. Imaging, 4(3):172-181 (2005). |
Ooyama, M. (Oct. 12-15, 1994). The 8th Congress of International YAG Laser Symposium, The 15th Annual Meeting of Japan Society for Laser Medicine, Sun Royal Hotel, Japan, eight pages. |
Ott, P. (1998). "Hepatic Elimination of Indocyanine Green with Special Reference to Distribution Kinetics and the Influence of Plasma Protein Binding," Pharmacology & Toxicology 83(Supp. II):5-48. |
Oxford Concise Medical Dictionary. "Perfusion," p. 571 (1980), three pages. |
Pagni, S. et al. (Jun. 1997). "Anastomotic Complications in Minimally Invasive Coronary Bypass Grafting," Ann. Thorac. Surg. 63(6 Suppl):S64-S67. |
Palcic et al. (1991). "Lung Imaging Fluorescence Endoscope: A Device for Detection of Occult Lung Cancer," Medical Design and Material, thirteen pages. |
Palcic, B. et al. (1990). "Development of a Lung Imaging Fluorescence Endoscope," Annual International Conference of the IEEE Engineering in Medicine and Biology Society 12(1):0196-0197. |
Palcic, B. et al. (Aug. 1, 1990). "The Importance of Image Quality for Computing Texture Features in Biomedical Specimens," Proc. SPIE 1205:155-162. |
Palcic, B. et al. (Jun. 1, 1991). "Lung Imaging Fluorescence Endoscope: Development and Experimental Prototype," Proc. SPIE 1448:113-117. |
Palcic, B. et al. (Mar. 1991). "Detection and Localization of Early Lung Cancer by Imaging Techniques," Chest 99(3):742-743. |
Pandharlpande, P.V. et al. (Mar. 2005). "Perfusion Imaging of the Liver: Current Challenges and Future Goals," Radiology 234(3):661-673. |
Paques et al., "Axon-Tracing Properties of lndocyanine Green," Arch Ophthalmol, 121:367-370, (2003). |
Parungo, C.P., et al., "In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance," 2004, Annas of Surgical Oncology, vol. 11(12), pp. 1085-1092. |
Parungo, C.P., et al., "Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging," 2005, J. Thorac. Cardiovasc. Surg., vol. 129, pp. 844-850. |
Peak, M.J. et al. (1986). "DNA-to-Protein Crosslinks and Backbone Breaks Caused by FAR-and Near-Ultraviolet and Visible Light Radiations in Mammalian Cells," in Mechanism of DNA Damage and Repair, Implications for Carcinogenesis and Risk Assessment, SIMIC, M.G. (ed.) et al., Plenum Press, 233 Spring Street, New York, N.Y. 10013, pp. 193-202. |
Peiretti et al. (2005). "Human erythrocyte-ghost-mediated choroidal angiography and photocoagulation." Database Biosis [online] Biosciences Information Service, Philadelphia, PA, US, XP002725023, Database accession No. Prev200600056121 (abstract), three pages. |
Peiretti, E. et al. (May 2005). "Human Erythrocyte-Ghost-Mediated Choroidal Angiography and Photocoagulation," Investigative Ophthalmology & Visual Science, ARVO Annual Meeting Abstract 46(13):4282, located at <http://iovs.arvojournals.org/article.aspx?articleid=2403707>, last visited on Oct. 7, 2016, two pages. |
Perez, M.T. et al. (Sep. 2002). "In Vivo Studies on Mouse Erythrocytes Linked to Transferrin," IUBMB Life 54(3):115-121. |
Petition for Inter Partes Review of U.S. Pat. No. 8,892,190 (May 11, 2017), filed by Visionsense Corp., fifty four pages. |
Pfister, A.J. et al. (Dec. 1992). "Coronary Artery Bypass Without Cardiopulmonary Bypass," Ann. Thorac. Surg. 54(6):1085-1092, (Discussion by S.R. Gundry). |
Phillips, R.P. et al. (1991). "Quantification of Diabetic Maculopathy by Digital Imaging of the Fundus," Eye 5(1):130-137. |
Piermarocchi, S. et al. (Apr. 2002). "Photodynamic Therapy Increases the Eligibility for Feeder Vessel Treatment of Choroidal Neovascularization Caused by Age-Related Macular Degeneration," American Journal of Ophthalmology 133(4):572-575. |
Profio, A.E. et al. (Jul.-Aug. 1984). "Fluorometer for Endoscopic Diagnosis of Tumors," Medical Physics 11(4):516-520. |
Profio, A.E. et al. (Jun. 1, 1991). "Endoscopic Fluorescence Detection of Early Lung Cancer," Proc. SPIE 1426:44-46. |
Profio, A.E. et al. (Nov./Dec. 1979). "Laser Fluorescence Bronchoscope for Localization of Occult Lung Tumors," Medical Physics 6:523-525. |
Profio, A.E. et al. (Sep.-Oct. 1986). "Digital Background Subtraction for Fluorescence Imaging," Medical Physics 13(5):717-721. |
Puigdellivol-Sanchez et al., "On the use of fast blue, fluoro-gold and diamidino yellow for retrograde tracing after peripheral nerve injury: uptake, fading, dye interactions, and toxicity," Journal of Neuroscience Methods, 115:115-127, (2002). |
Pyner, S. et al. (Nov. 2001). "Tracing Functionally Identified Neurones in a Multisynaptic Pathway in the Hamster and Rat Using Herpes Simplex Virus Expressing Green Fluorescent Protein," Experimental Physiology 86(6):695-702. |
Raabe et al. (2009, e-published on Nov. 12, 2008). "Laser Doppler Imaging for Intraoperative Human Brain Mapping", NeuroImage 44:1284-1289. |
Raabe et al., "Near-Infrared lndocyanine Green Video Angiography: A New Method for lntraoperative Assessment of Vascular Flow," Neurosurgery, 52(1):132-139, (2003). |
Rava, R.P. et al. (Jun. 1, 1991). "Early Detection of Dysplasia in Colon and Bladder Tissue Using Laser-Induced Fluorescence," Proc. SPIE 1426:68-78. |
Razum, N. et al. (Nov. 1987). "Skin Photosensitivity: Duration and Intensity Following Intravenous Hematoporphyrin Derivatives, HpD and DHE," Photochemistry and Photobiology 46(5):925-928. |
Report on Observation by C2400-75i and ARGUS20 Under Low illumination conditions, Jan. 17, 2008. |
Request for Invalidation mailed on Jun. 29, 2007 for Japanese Patent No. JP-3881550, filed by Hamamatsu Photonics, Inc. (with English Translation). |
Reuthebuch, O et al. (Feb. 2004). "Novadaq SPY: Intraoperative Quality Assessment in Off Pump Coronary Artery Bypass Grafting," Chest 125(2):418-424. |
Reuthebuch, O.T. et al. (May 2003). "Graft Occlusion After Deployment of the Symmetry Bypass System," Ann. Thorac. Surg. 75(5):1626-1629. |
Richards-Kortum, R. et al. (Jun. 1991). "Spectroscopic Diagnosis of Colonic Dysplasia: Spectroscopic Analysis," Biochemistry and Photobiology 53(6):777-786. |
Roberts, W.W. et al. (Dec. 1997). "Laparoscopic Infrared Imaging," Surg. Endoscopy 11(12):1221-1223. |
Rodnenkov, O.V. et al. (May 2005). "Erythrocyte Membrane Fluidity and Haemoglobin Haemoporphyrin Conformation: Features Revealed in Patients with Heart Failure," Pathophysiology 11(4):209-213. |
Ropars, C. (ed.) et al. (1987). Red Blood Cells as Carriers for Drugs. Potential therapeutic Applications. Pergamon Press, Oxford, New York, pp. v-vii, (Table of Contens only), four pages. |
Ross et al., "Sentinel Node Biopsy in Head and Neck Cancer: Preliminary Results of a Multicenter Trial," Annals of Surgical Oncology, 11(7):690-696, (2004). |
Ross et al., "The ability of lymphoscintigraphy to direct sentinel node biopsy in the clinically NO neck for patients with head and neck squamous cell carcinoma," The British Journal of Radiology, 75:950-958, (2002). |
Ross, G.L. et al. (Dec. 2002). "The Ability of Lymphoscintigraphy to Direct Sentinel Node Biopsy in the Clinically N0 Neck for Patients with Head and Neck Squamous Cell Carcinoma," The British Journal of Radiology 75(900):950-958. |
Rossi, L. et al. (1999). "Heterodimer-Loaded Erthrocytes as Bioreactors for Slow Delivery of the Antiviral Drug Azidothymidine and the Antimycobacterial Drug Ethambutol," Aids Research and Human Retroviruses 15(4):345-353. |
Rossi, L. et al. (2001). "Erthrocyte-Mediated Delivery of Dexamethasone in Patients with Chronic Obstructive Pulmonary Disease," Biotechnol. Appl. Biochem. 33:85-89. |
Rossi, L. et al. (2004). "Low Doses of Dexamethasone Constantly Delivered by Autologous Erythrocytes Slow the Progression of Lung Disease in Cystic Fibrosis Patients," Blood Cells, Molecules, and Diseases 33:57-63. |
Rozen, W.M. et al. (Jan. 2008). "Preoperative Imaging for DIEA Perforator Flaps: A Comparative Study of Computed Tomographic Angiography and Doppler Ultrasound," Plastic and Reconstructive Surgery 121(1):9-16. |
Rubben et al., "Infrared Videoangiofluorography of the Skin with lndocyanine Green-Rat Random Cutaneous Flap Model and Results in Man," Microvascular Research, 47:240-251, (1994). |
Rubens, F.D. et al. (2002). "A New and Simplified Method for Coronary and Graft Imaging During CABG," The Heart Surgery Forum 5(2):141-144. |
Russian Decision on Grant dated Jul. 29, 2013, issued in counterpart Russian Application No. 2011111078.14, five pages. |
Russian Office Action dated Mar. 29, 2013, issued in counterpart Russian Application No. 2011111078.14, three pages. |
Sakatani, K. et al. (Nov. 1997). "Noninvasive Optical Imaging of the Subarchnoid Space and Cerebrospinal Fluid Pathways Based on Near Infrared Fluorescence," J. Neurosurg. 87(5):738-745. |
Salmon, E.D. et al. (Oct. 1994). "High Resolution Multimode Digital Imaging System for Mitosis Studies in Vivo and in Vitro," Biol. Bull 187(2):231-232. |
Sato, et al., (1991). "Development of a Visualization Method for the Microcirculation of Deep Viscera Using an Infrared Intravital Microscope System," Research on ME Devices and ME Technology, five pages, (with English translation). |
Satpathy G.R. et al. (Oct. 2004) "Loading Red Blood Cells with Trehalose: A Step Towards Biostabilization," Cryobiology 49(2):123-136. |
Schaff, H.V. et al. (Oct. 15, 1996). "Minimal Thoracotomy for Coronary Artery Bypass: Value of Immediate Postprocedure Graft Angiography," Supplement to Circulation 94(8):I-51, (Abstract No. 0289), two pages. |
Schellingerhout, D. et al. (Oct. 2000). "Quantitation of HSV Mass Distribution in a Rodent Brain Tumor Model," Gene Therapy 7(19):1648-1655. |
Schmued et al., "In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluoro-Ruby, within the CNS," Brain Research, 526: 127-134, (1990). |
Schmued, et al., "Intracranial Injection of Fluoro-Gold Results in the Degeneration of Local but not Retrogradely Labeled Neurons," Brain Research, 1993, pp. 71-77, vol. 626, Elsevier, Maryland Heights, MO, USA. |
Schneider, HC Jr., et al., "Fluorescence of testicle. An indication of viability of spermatic cord after torsion," 1975, Urology, vol. 5(1), pp. 133-136. |
Seeman, P. (Jan. 1, 1967). "Transient Holes in the Erythrocyte Membrane During Hypotonic Hemolysis and Stable Holes in the Membrane After Lysis by Saponin and Lysolecithin," Journal of Cell Biology 32(1):55-70. |
Sekijima, M. et al. (Sep. 2004). "An Intraoperative Fluorescent Imaging System in Organ Transplantation," Transplantation Proceedings 36(7):2188-2190. |
Serov, A. et al. (Mar. 1, 2002). "Laser Doppler Perfusion Imaging with a Complimentary Metal Oxide Semiconductor Image Sensor," Optics Letters 27(5):300-302. |
Serov, A.N. et al. (Sep. 23, 2003). "Quasi-Parallel Laser Doppler Perfusion Imaging Using a CMOS Image Sensor," Proc. SPIE 5067:73-84. |
Sezgin, M. et al. (Jan. 2004). "Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation," Journal of Electronic Imaging 13(1):146-165. |
Sherif, A., et al., "Lymphatic mapping and detection of sentinel nodes in patients with bladder cancer," 2001, J. Urol., vol. 166, pp. 812-815. |
Sheth, S.A. et al. (Apr. 22, 2004)"Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses," Neuron 42(2):347-355. |
Shoaib et al., "The Accuracy of Head and Neck Carcinoma Sentinel Lymph Node Biopsy in the Clinically NO Neck," 5th International Conference on Head and Neck Cancer, San Francisco, CA, pp. 2077-2083, (2001). |
Siemers, B.M. et al. (Nov. 2001). "The Acoustic Advantage of Hunting at Low Heights Above Water: Behavioual Experiments on the European ‘Trawling’ Bats Myotis Capaccinii, M Dasycneme and M. Daubentonii," J. Eperimental Biol. 204(Pt. 22):3843-3854. |
Skalidis, E.I. et al. (Nov. 16, 2004). "Regional Coronary Flow and Contractile Reserve in Patients with Idiopathic Dilated Cardiomyopathy," Journal of the American College of Cardiology 44(10):2027-2032. |
Slakter, J.S. et al. (Jun. 1995). "Indocyanine-Green Angiography," Current Opinion in Ophthalmology 6(III):25-32. |
Smith, G.A. et al. (Mar. 13, 2001). "Herpesviruses Use Bidirectional Fast-Axonal Transport to Spread in Sensory Neurons," Proceedings of the National Academy of Sciences of the United States of America 98(6):3466-3470. |
Soltesz, E.G., et al., "Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots," 2005, Ann. Thorac. Surg., vol. 79, pp. 269-277. |
Sony Corporation. The Sony U-Matic Videocassette Recorder, VO-9800, ten pages. |
Staurenghi, G. et al. (Dec. 2001)."Combining Photodynamic Therapy and Feeder Vessel Photocoagulation: A Pilot Study," Seminars in Ophthalmology 16(4):233-236. |
Stern, M.D. (Mar. 6, 1975). "In Vivo Evaluation of Microcirculation by Coherent Light Scattering," Nature 254(5495):56-58. |
Still, J. et al. (Mar. 1999). "Evaluation of the Circulation of Reconstructive Flaps Using Laser-Induced Fluorescence of Indocyanine Green," Ann. Plast. Surg. 42(3):266-274. |
Still, J.M. et al. (Jun. 2001). "Diagnosis of Burn Depth Using Laser-Induced Indocyanine Green Fluorescence: A Preliminary Clinical Trial," Burns 27(4):364-371. |
Stoeckli et al., "Sentinel lymph node evaluation in squamous cell carcinoma of the head and neck," 5th International Conference on Head and Neck Cancer, pp. 221-226, Jul. 29-Aug. 3, 2000. |
Subramanian, V.A. et al. (Oct. 15, 1995). "Minimally Invasive Coronary Bypass Surgery: A Multi-Center Report of Preliminary Clinical Experience," Supplement to Circulation 92(8):I-645, (Abstract No. 3093), two pages. |
Sugi, K. et al., "Comparison of three tracers for detecting sentinel lymph nodes in patients with clinical N0 lung cancer," 2003, Lung Cancer, vol. 39, pp. 37-40. |
Sugimoto, K. et al. (Jun. 2008, e-published on Mar. 19, 2008). "Simultaneous Tracking of Capsid, Tegument, and Envelope Protein Localization in Living Cells Infected With Triply Fluorescent Herpes Simplex Virus 1," Journal of Virology 82(11):5198-5211. |
Suma, H. et al. (2000). "Coronary Artery Bypass Grafting Without Cardiopulmonary Bypass in 200 Patients," J. Cardiol. 36(2):85-90, (English Abstract only). |
Summary of Invention Submitted to EPO, "Development of Novadaq SPY™ Cardiac Imaging Invention," five pages. |
Taggart, D.P. et al. (Mar. 2003). "Preliminary Experiences with a Novel Intraoperative Fluorescence Imaging Technique to Evaluate the Patency of Bypass Grafts in Total Arterial Revascularization," Ann Thorac Surg. 75(3):870-873. |
Taichman, G.C. et al. (Jun. 1987). "The Use of Cardio-Green for Intraoperative Visualization of the Coronary Circulation: Evaluation of Myocardial Toxicity," Texas Heart Institute Journal 14(2):133-138. |
Takahashi, M. et al. (Sep. 2004). "SPY: An Innovative Intra-Operative Imaging System to Evaluate Graft Patency During Off-Pump Coronary Artery Bypass Grafting," Interactive Cardio Vascular and Thoracic Surgery 3(3):479-483. |
Takayama, T. et al. (Apr. 1992). "Intraoperative Coronary Angiography Using Fluorescein Basic Studies and Clinical Application," Vascular and Endovascular Surgery 26(3):193-199. |
Takayama, T. et al. (Jan. 1991). "Intraoperative Coronary Angiography Using Fluorescein" The Annals of Thoracic Surgery 51(1):140-143. |
Tanaka, E. et al. (Jul. 2009). "Real-time Assessment of Cardiac Perfusion, Coronary Angiography, and Acute Intravascular Thrombi Using Dual-channel Near-infrared Fluorescence Imaging," The Journal of Thoracic and Cardiovascular Surgery 138(1):133-140. |
Tang, G.C. et al. (1989). "Spectroscopic Differences between Human Cancer and Normal Lung and Breast Tissues," Lasers in Surgery and Medicine 9(3):290-295. |
Taylor, K.M. (Apr. 1998). "Brain Damage During Cardiopulmonary Bypass," Annals of Thoracic Surgery 65(4):S20-S26. |
The American Heritage Medical Dictionary. "Perfuse." p. 401 (2008), three pages. |
Thelwall, P.E. et al. (Oct. 2002). "Human Erythrocyte Ghosts: Exploring the Origins of Multiexponential Water Diffusion in a Model Biological Tissue with Magnetic Resonance," Magnetic Resonance in Medicine 48(4):649-657. |
Torok, B. et al. (May 1996). "Simultaneous Digital Indocyanine Green and Fluorescein Angiography," Klinische Monatsblatter Fur Augenheilkunde 208(5):333-336, (Abstract only), two pages. |
Translation of Decision of Japanese Patent Office Trial Board revoking Counterpart Patent No. 3,881,550, twenty six pages. |
Tsutsumi, D. et al. "Moisture Detection of road surface using infrared camera," Reports of the Hokkaido Industrial Research Institute (No. 297), Issued on Nov. 30, 1998, two pages. |
Tubbs et al., "Anatomic Landmarks for Nerves of the Neck: A Vade mecum for Neurosurgeons," Neurosurgery, 56:0NS256-0NS260, (2005). |
U.S. Appl. No. 11/851,312, filed Sep. 6, 2007 in the name of Golijanin et al. |
U.S. Appl. No. 12/063,349, filed May 10, 2010 in the name of Mangat et al. |
U.S. Final Office Action dated Apr. 10, 2008 for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages. |
U.S. Final Office Action dated Apr. 12, 2017 for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, nine pages. |
U.S. Final Office Action dated Apr. 2, 2013 for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages. |
U.S. Final Office Action dated Apr. 20, 2016 for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, seven pages. |
U.S. Final Office Action dated Apr. 4, 2017 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, twelve pages. |
U.S. Final Office Action dated Aug. 10, 2012 for U.S. Appl. No. 11/912,877, filed Aug. 13, 2008, ten pages. |
U.S. Final Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/177,050 filed Feb. 10, 2014, eighteen pages. |
U.S. Final Office Action dated Dec. 4, 2014 for U.S. Appl. No. 12/776,835, filed May 10, 2010, thirteen pages. |
U.S. Final Office Action dated Feb. 1, 2013 for U.S. Appl. No. 12/776,835, filed May 10, 2010, thirteen pages. |
U.S. Final Office Action dated Feb. 13, 2015 for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, six pages. |
U.S. Final Office Action dated Feb. 18, 2010 for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages. |
U.S. Final Office Action dated Feb. 4, 2015 for U.S. Appl. No. 13/314,418, filed Dec. 8, 2011, six pages. |
U.S. Final Office Action dated Jul. 21, 2016 for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, seven pages. |
U.S. Final Office Action dated Jul. 9, 2015 for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, eight pages. |
U.S. Final Office Action dated Jun. 1, 2015 for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, nine pages. |
U.S. Final Office Action dated Jun. 13, 2014 for U.S. Appl. No. 12/776,835, filed May 10, 2010, thirteen pages. |
U.S. Final Office Action dated Jun. 25, 2014 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, fifteen pages. |
U.S. Final Office Action dated Mar. 20, 2017 for U.S. Appl. No. 14/177,050, filed Feb. 10, 2014, twenty three pages. |
U.S. Final Office Action dated Mar. 28, 2013 for U.S. Appl. No. 12/063,349, filed May 12, 2010, twenty pages. |
U.S. Final Office Action dated May 29, 2013 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, twelve pages. |
U.S. Final Office Action dated Nov. 6, 2013 for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages. |
U.S. Final Office Action dated Oct. 7, 2011 for U.S. Appl. No. 11/851,312, filed Sep. 6, 2007, ten pages. |
U.S. Final Office Action dated Sep. 13, 2011 for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, five pages. |
U.S. Final Office Action dated Sep. 17, 2015 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, six pages. |
U.S. Final Office Action dated Sep. 23, 2004 for U.S. Appl. No. 09/744,034, filed Apr. 27, 2001, seven pages. |
U.S. Final Office Action dated Sep. 29, 2016 for U.S. Appl. No. 13/922,996, filed Jun. 20, 2013, fourteen pages. |
U.S. Non-Final Office Action dated Apr. 1, 2015 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, fourteen pages. |
U.S. Non-Final Office Action dated Apr. 26, 2012 for U.S. Appl. No. 12/776,835, filed May 10, 2010, nine pages. |
U.S. Non-Final Office Action dated Apr. 28, 2010 for U.S. Appl. No. 11/946,672, filed Nov. 28, 2007, nine pages. |
U.S. Non-Final Office Action dated Aug. 10, 2016 for U.S. Appl. No. 14/177,050, filed Feb. 10, 2014, twenty pages. |
U.S. Non-Final Office Action dated Aug. 29, 2014 for U.S. Appl. No. 12/063,349, filed May 12, 2010, nineteen pages. |
U.S. Non-Final Office Action dated Dec. 16, 2016 for U.S. Appl. No. 14/868,369, filed Sep. 28, 2015, seven pages. |
U.S. Non-Final Office Action dated Dec. 20, 2013 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, thirteen pages. |
U.S. Non-Final Office Action dated Dec. 30, 2010 for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages. |
U.S. Non-Final Office Action dated Feb. 1, 2011 for U.S. Appl. No. 11/851,312, filed Sep. 6, 2007, seven pages. |
U.S. Non-Final Office Action dated Feb. 5, 2016 for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, seven pages. |
U.S. Non-Final Office Action dated Jan. 22, 2014 for U.S. Appl. No. 11/851,312, filed Sep. 6, 2007, ten pages. |
U.S. Non-Final Office Action dated Jan. 27, 2012 for U.S. Appl. No. 11/912,877, filed Aug. 13, 2008, eleven pages. |
U.S. Non-Final Office Action dated Jan. 31, 2018 for U.S. Appl. No. 15/799,727 filed Oct. 31, 2017, seven pages. |
U.S. Non-Final Office Action dated Jan. 8, 2018 for U.S. Appl. No. 15/077,677, filed Mar. 22, 2016, nine pages. |
U.S. Non-Final Office Action dated Jan. 9, 2009 for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages. |
U.S. Non-Final Office Action dated Jul. 2, 2015 for U.S. Appl. No. 14/177,050, filed Feb. 10, 2014, nineteen pages. |
U.S. Non-Final Office Action dated Jul. 22, 2015 for U.S. Appl. No. 13/314,418, filed Dec. 8, 2011, six pages. |
U.S. Non-Final Office Action dated Jul. 8, 2014 for U.S. Appl. No. 13/314,418, filed Dec. 8, 2011, seven pages. |
U.S. Non-Final Office Action dated Jun. 28, 2012 for U.S. Appl. No. 12/063,349, filed May 12, 2010, seventeen pages. |
U.S. Non-Final Office Action dated Mar. 10, 2004 for U.S. Appl. No. 09/744,034, filed Apr. 27, 2001, seven pages. |
U.S. Non-Final Office Action dated Mar. 13, 2015 for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, eight pages. |
U.S. Non-Final Office Action dated Mar. 22, 2018 for U.S. Appl. No. 15/610,102, filed May 31, 2017, eleven pages. |
U.S. Non-Final Office Action dated Mar. 6, 2007 for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, eight pages. |
U.S. Non-Final Office Action dated May 21, 2015 for U.S. Appl. No. 13/922,996, filed Jun. 20, 2013, fourteen pages. |
U.S. Non-Final Office Action dated May 6, 2015 for U.S. Appl. No. 12/063,349, filed May 12, 2010, seventeen pages. |
U.S. Non-Final Office Action dated Nov. 18, 2016 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, six pages. |
U.S. Non-Final Office Action dated Nov. 27, 2015 for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, six pages. |
U.S. Non-Final Office Action dated Nov. 9, 2015 for U.S. Appl. No. 14/177,045, filed Feb. 10, 2014, seven pages. |
U.S. Non-Final Office Action dated Oct. 12, 2016 for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, nine pages. |
U.S. Non-Final Office Action dated Oct. 13, 2017 for U.S. Appl. No. 13/922,996, filed Jun. 20, 2013, seventeen pages. |
U.S. Non-Final Office Action dated Oct. 26, 2017 for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, nine pages. |
U.S. Non-Final Office Action dated Oct. 28, 2016 for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, eight pages. |
U.S. Non-Final Office Action dated Oct. 3, 2013 for U.S. Appl. No. 12/776,835, filed May 10, 2010, twelve pages. |
U.S. Non-Final Office Action dated Sep. 15, 2010 for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages. |
U.S. Non-Final Office Action dated Sep. 27, 2017 for U.S. Appl. No. 14/177,050, filed Feb. 10, 2014, twenty two pages. |
U.S. Non-Final Office Action dated Sep. 5, 2012 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, seven pages. |
U.S. Notice of Allowance dated Apr. 17, 2014 for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages. |
U.S. Notice of Allowance dated Aug. 7, 2014 for U.S. Appl. No. 13/850,063, filed Mar. 25, 2013, nine pages. |
U.S. Notice of Allowance dated Dec. 2, 2016 for U.S. Appl. No. 14/598,832, filed Jan. 16, 2015, seven pages. |
U.S. Notice of Allowance dated Dec. 6, 2017 for U.S. Appl. No. 15/476,290, filed Mar. 31, 2017, nine pages. |
U.S. Notice of Allowance dated Jul. 12, 2017 for U.S. Appl. No. 14/868,369, filed Sep. 28, 2015, nine pages. |
U.S. Notice of Allowance dated Jul. 13, 2016 for U.S. Appl. No. 14/598,832, filed Jan. 16, 2015, seven pages. |
U.S. Notice of Allowance dated Mar. 15, 2016 for U.S. Appl. No. 14/598,832, filed Jan. 16, 2015, seven pages. |
U.S. Notice of Allowance dated Mar. 29, 2018 for U.S. Appl. No. 14/177,050, filed Feb. 10, 2014, ten pages. |
U.S. Notice of Allowance dated Mar. 7, 2005 for U.S. Appl. No. 09/744,034, filed Apr. 27, 2001, five pages. |
U.S. Notice of Allowance dated May 26, 2016 for U.S. Appl. No. 14/177,045, filed Feb. 10, 2014, eight pages. |
U.S. Notice of Allowance dated Nov. 25, 2015 for U.S. Appl. No. 14/598,832, filed Jan. 16, 2015, seven pages. |
U.S. Notice of Allowance dated Nov. 30, 2010 for U.S. Appl. No. 11/946,672, filed Nov. 28, 2007, six pages. |
U.S. Notice of Allowance dated Oct. 16, 2014 for U.S. Appl. No. 13/850,063, filed Mar. 25, 2013, eight pages. |
U.S. Notice of Allowance dated Oct. 18, 2012 for U.S. Appl. No. 12/841,659, filed Jul. 22, 2010, seven pages. |
U.S. Notice of Allowance dated Oct. 4, 2013 for U.S. Appl. No. 11/912,877, filed Aug. 13, 2008, nine pages. |
U.S. Notice of Allowance dated Oct. 6, 2014 for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages. |
U.S. Notice of Allowance dated Sep. 11, 2018 for U.S. Appl. No. 15/799,727, filed Oct. 31, 2017, eight pages. |
U.S. Notice of Allowance dated Sep. 6, 2018 for U.S. Appl. No. 12/776,835, filed May 10, 2010, five pages. |
U.S. Notice of Allowance dated Sep. 6, 2018 for U.S. Appl. No. 13/922,996, filed Jun. 20, 2013, nine pages. |
U.S. Restriction Requirement dated Jun. 26, 2017 for U.S. Appl. No. 15/077,677, filed Mar. 22, 2016, seven pages. |
Unno, N. et al. (Feb. 2008, e-published on Oct. 26, 2007). "Indocyanine Green Fluorescence Angiography for intraoperative assessment of Blood flow: A Feasibility Study," Eur J Vasc Endovasc Surg. 35(2):205-207. |
Uren, Roger F., "Cancer surgery joins the dots," 2004, Nature Biotechnology, vol. 22(1), pp. 38-39. |
Valero-Cabre et al., "Superior Muscle Reinnervation After Autologous Nerve Graft or Poly-L-Lactide-ϵ-Caprolactone (PLC) Tube Implantation in Comparison to Silicone Tube Repair," Journal of Neuroscience Research, 63:214-223, (2001). |
Van Son, J.A.M. et al. (Nov. 1997). "Thermal Coronary Angiography for Intraoperative Testing of Coronary Patency in Congenital Heart Defects," Ann Thorac Surg. 64(5):1499-1500. |
Verbeek, X. et al. (2001). "High-Resolution Functional Imaging With Ultrasound Contrast Agents Based on RF Processing in an In Vivo Kidney Experiment", Ultrasound in Med. & Biol. 27(2):223-233. |
Wachi, A. et al. (Apr. 1995). "Characteristics of Cerebrospinal Fluid Circulation in Infants as Detected With MR Velocity Imaging," Child's Nerv Syst 11(4):227-230. |
Wagnieres, G.A. et al. (Jul. 1, 1990). "Photodetection of Early Cancer by Laser Induced Fluorescence of a Tumor-Selective Dye: Apparatus Design and Realization," Proc. SPIE 1203:43-52. |
Weinbeer, M. et al. (Nov. 25, 2013). "Behavioral Flexibility of the Trawling Long-Legged Bat, Macrophyllum Macrophyllum (Phyllostomidae)," Frontiers in Physiology 4(Article 342):1-11. |
What is Perfusion? A Summary of Different Typed of Perfusion. (Sep. 1, 2004). Located at, <http://www.perfusion.com/cgi-bin/absolutenm/templates/articledisplay.asp?articleid=1548#.Vo8HvO2FPGj>, last visited on Jan. 7, 2016, two pages. |
Wise, R.G. et al. (Nov. 2005). "Simultaneous Measurement of Blood and Myocardial Velocity in the Rat Heart by Phase Contrast MRI Using Sparse q-Space Sampling" Journal of Magnetic Resonance Imaging 22(5):614-627. |
Woitzik, J. et al. (Apr. 2005). "Intraoperative Control of Extracranial-Intracranial Bypass Patency by Near-Infrared Indocyanine Green Videoangiography," J. Neurosurg. 102(4):692-698. |
Wollert, H.G. et al. (Dec. 1989). "Intraoperative Visualization of Coronary Artery Fistula Using Medical Dye," The Thoracic and Cardiovascular Surg. 46(6):382-383. |
Written Opinion of the International Searching Authority dated Dec. 3, 2009 for PCT Patent Application No. PCT/IB2009/005700, filed on Apr. 14, 2009, six pages. |
Written Opinion of the International Searching Authority dated Dec. 3, 2015 for PCT Patent Application No. PCT/CA2015/050973 filed on Sep. 28, 2015, five pages. |
Written Opinion of the International Searching Authority dated Feb. 1, 2012 for PCT Patent Application No. PCT/IB2011/002381, filed on Sep. 20, 2011, four pages. |
Written Opinion of the International Searching Authority dated Jan. 22, 2014 for PCT Patent Application No. PCT/IB2013/001934, filed on Jun. 20, 2013, six pages. |
Written Opinion of the International Searching Authority dated Jul. 4, 2008 for PCT Patent Application No. PCT/US2007/080847, filed on Oct. 9, 2007, six pages. |
Written Opinion of the International Searching Authority dated Jun. 2, 2009 for PCT Patent Application No. PCT/EP2008/008547, filed on Oct. 9, 2008, eleven pages. |
Written Opinion of the International Searching Authority dated Jun. 8, 2009 for PCT Patent Application No. PCT/CA2009/000073, filed on Jan. 23, 2009, four pages. |
Wu, C. et al. (Apr. 15, 2005). "cGMP (Guanosine 3′,5′-Cyclic Monophosphate) Transport Across Human Erythrocyte Membranes," Biochemical Pharmacology 69(8):1257-1262. |
Yada, T. et al. (May 1993). "In Vivo Observation of Subendocardial Microvessels of the Beating Porcine Heart Using a Needle-Probe Videomicroscope with a CCD Camera," Circulation Research 72(5):939-946. |
Yamaguchi, S. et al. (Apr. 2005). "Evaluation of Skin Perfusion After Nipple-Sparing Mastectomy by Indocyanine Green Dye" Journal of Saitama Medical University, Japan, 32(2):45-50, (with English Abstract). |
Yoneya, S. et al. (Jun. 1998). "Binding Properties of Indocyanine Green in Human Blood," IOVS 39(7):1286-1290. |
Yoneya, S. et al. (Sep. 1993). "Improved Visualization of the Choroidal Circulation with Indocyanine Green Angiography," Arch Opthalmol. 111(9):1165-1166. |
Young. I.T. et al. (1993). "Depth of Focus in Microscopy," SCIA '93, Proc. of the 8th Scandinavian Conference on Image Analysis, Tromso, Norway, pp. 493-498, six pages. |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10434190B2 (en) | 2006-09-07 | 2019-10-08 | Novadaq Technologies ULC | Pre-and-intra-operative localization of penile sentinel nodes |
US10835138B2 (en) | 2008-01-25 | 2020-11-17 | Stryker European Operations Limited | Method for evaluating blush in myocardial tissue |
US11564583B2 (en) | 2008-01-25 | 2023-01-31 | Stryker European Operations Limited | Method for evaluating blush in myocardial tissue |
US11284801B2 (en) | 2012-06-21 | 2022-03-29 | Stryker European Operations Limited | Quantification and analysis of angiography and perfusion |
US12186055B2 (en) | 2012-06-21 | 2025-01-07 | Stryker Corporation | Quantification and analysis of angiography and perfusion |
US10488340B2 (en) | 2014-09-29 | 2019-11-26 | Novadaq Technologies ULC | Imaging a target fluorophore in a biological material in the presence of autofluorescence |
US10631746B2 (en) | 2014-10-09 | 2020-04-28 | Novadaq Technologies ULC | Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography |
US10992848B2 (en) | 2017-02-10 | 2021-04-27 | Novadaq Technologies ULC | Open-field handheld fluorescence imaging systems and methods |
US11140305B2 (en) | 2017-02-10 | 2021-10-05 | Stryker European Operations Limited | Open-field handheld fluorescence imaging systems and methods |
US12028600B2 (en) | 2017-02-10 | 2024-07-02 | Stryker Corporation | Open-field handheld fluorescence imaging systems and methods |
Also Published As
Publication number | Publication date |
---|---|
WO2007028032A2 (en) | 2007-03-08 |
WO2007028032A3 (en) | 2007-09-27 |
US20070122344A1 (en) | 2007-05-31 |
US20070122345A1 (en) | 2007-05-31 |
US20190388565A1 (en) | 2019-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190388565A1 (en) | Intraoperative determination of nerve location | |
US10434190B2 (en) | Pre-and-intra-operative localization of penile sentinel nodes | |
Sherman | Phantom pain | |
USRE45916E1 (en) | Intraoperative imaging of renal cortical tumors and cysts | |
Benoit et al. | Supra and infralevator neurovascular pathways to the penile corpora cavernosa | |
US9089601B2 (en) | Pre- and intra-operative imaging of bladder cancer | |
Chang et al. | Cavernous nerve reconstruction to preserve erectile function following non-nerve-sparing radical retropubic prostatectomy: a prospective study | |
US20140316262A1 (en) | Preoperative identification of perforator vessels in flaps to be used in reconstructive surgery | |
JP2015178002A (en) | Luminescent die for intraoperative imaging or sentinel lymph node biopsy | |
Ledda | Vascular andrology: Erectile dysfunction, priapism and varicocele | |
US20080249400A1 (en) | Intraoperative Imaging Of Hepatobiliary Structures | |
Qi et al. | Krause corpuscles are genital vibrotactile sensors for sexual behaviours | |
Maxwell | Inability to breed due to injury or abnormality of the external genitalia of bulls | |
US20080125663A1 (en) | Pre-And Intra-Operative Imaging of Testicular Torsion | |
Gou et al. | Effects of unilateral/bilateral amputation of the ischiocavernosus muscle in male rats on erectile function and conception | |
Hu et al. | Erectile function restoration after repair of excised cavernous nerves by autologous vein graft in rats | |
Yang | Scrotoscopic Surgery | |
Maxwell | Inabilityto BreedDue toInjuryorAbnormalityof theExternalGenitaliaof Bulls | |
RU2840195C1 (en) | Method of treating leukoplakia of external genital organs | |
Ferreira et al. | IOM in Pelvic Floor: Gynecological and Urological Surgeries | |
Yarnitsky et al. | Smooth muscle electromyography from rat urethra | |
Kayigil et al. | Effects of transanal pelvic plexus stimulation on penile erection: clinical implications | |
Smith et al. | Urologic surgery | |
Yeung et al. | Technologies for imaging the neurovascular bundle during prostatectomy | |
Recabal et al. | INTRAOPERATIVE IDENTIFICATION OF NERVES USING A MYELIN-BINDING FLUOROPHORE: COMPARATIVE EFFICACY OF INTRAVENOUS VS. TOPICAL ADMINISTRATION: MP52-09 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF ROCHESTER, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLIJANIN, DRAGAN;REEL/FRAME:024077/0994 Effective date: 20091117 Owner name: UNIVERSITY OF ROCHESTER,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLIJANIN, DRAGAN;REEL/FRAME:024077/0994 Effective date: 20091117 |
|
AS | Assignment |
Owner name: NOVADAQ TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHESTER, UNIVERSITY OF;REEL/FRAME:031195/0163 Effective date: 20130904 |
|
AS | Assignment |
Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND Free format text: SECURITY AGREEMENT (TERM);ASSIGNORS:NOVADAQ TECHNOLOGIES;NOVADAQ CORP.;REEL/FRAME:041306/0189 Effective date: 20170106 Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND Free format text: SECURITY AGREEMENT (REVOLVING);ASSIGNORS:NOVADAQ TECHNOLOGIES;NOVADAQ CORP.;REEL/FRAME:041306/0172 Effective date: 20170106 |
|
AS | Assignment |
Owner name: NOVADAQ TECHNOLOGIES INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST (AS SUCCESSOR AGENT TO MIDCAP FINANCIAL TRUST);REEL/FRAME:043786/0344 Effective date: 20170901 Owner name: NOVADAQ CORP., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST (AS SUCCESSOR AGENT TO MIDCAP FINANCIAL TRUST);REEL/FRAME:043786/0344 Effective date: 20170901 Owner name: NOVADAQ TECHNOLOGIES INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043788/0799 Effective date: 20170901 Owner name: NOVADAQ CORP., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043788/0799 Effective date: 20170901 |
|
AS | Assignment |
Owner name: NOVADAQ TECHNOLOGIES ULC, CANADA Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:NOVADAQ TECHNOLOGIES INC.;STRYKER CANADA OPERATIONS ULC;REEL/FRAME:044910/0507 Effective date: 20170927 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: STRYKER EUROPEAN HOLDINGS I, LLC, MICHIGAN Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:NOVADAQ TECHNOLOGIES ULC;REEL/FRAME:052873/0548 Effective date: 20200520 Owner name: STRYKER EUROPEAN HOLDINGS III, LLC, DELAWARE Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER EUROPEAN HOLDINGS IV, LLC;REEL/FRAME:052873/0597 Effective date: 20200519 Owner name: STRYKER EUROPEAN OPERATIONS LIMITED, IRELAND Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER EUROPEAN HOLDINGS LLC;REEL/FRAME:052860/0900 Effective date: 20200604 Owner name: STRYKER EUROPEAN HOLDINGS IV, LLC, DELAWARE Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER EUROPEAN HOLDINGS I, LLC;REEL/FRAME:053318/0612 Effective date: 20200519 Owner name: STRYKER EUROPEAN HOLDINGS LLC, DELAWARE Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER EUROPEAN HOLDINGS III, LLC;REEL/FRAME:053823/0445 Effective date: 20200604 |
|
AS | Assignment |
Owner name: NOVADAQ TECHNOLOGIES ULC, CANADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED AGAINST APPLICATION NO. 15/570,072 PREVIOUSLY RECORDED AT REEL: 044910 FRAME: 0507. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER AND CHANGE OF NAME;ASSIGNOR:NOVADAQ TECHNOLOGIES INC.;REEL/FRAME:056425/0530 Effective date: 20170927 Owner name: STRYKER EUROPEAN HOLDINGS I, LLC, MICHIGAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED AGAINST APPLICATION NO. 15/570,072 PREVIOUSLY RECORDED AT REEL: 052873 FRAME: 0548. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE 11/30/2017;ASSIGNOR:NOVADAQ TECHNOLOGIES ULC;REEL/FRAME:056425/0616 Effective date: 20200520 Owner name: STRYKER EUROPEAN HOLDINGS IV, LLC, DELAWARE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED AGAINST APPLICAITON NO. 15/570,072 PREVIOUSLY RECORDED AT REEL: 053318 FRAME: 0612. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE 09/05/2018;ASSIGNOR:STRYKER EUROPEAN HOLDINGS I, LLC;REEL/FRAME:056425/0731 Effective date: 20200519 Owner name: STRYKER EUROPEAN HOLDINGS III, LLC, DELAWARE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED AGAINST APPLICATION NO. 15/570,072 PREVIOUSLY RECORDED AT REEL: 052873 FRAME: 0597. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE 09/05/2018;ASSIGNOR:STRYKER EUROPEAN HOLDINGS IV, LLC;REEL/FRAME:056426/0352 Effective date: 20200519 Owner name: STRYKER EUROPEAN HOLDINGS LLC, DELAWARE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED AGAINST APPLICATION NO. 15/570,072 PREVIOUSLY RECORDED AT REEL: 053823 FRAME: 0445. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE 11/29/2018;ASSIGNOR:STRYKER EUROPEAN HOLDINGS III, LLC;REEL/FRAME:056426/0496 Effective date: 20200604 Owner name: STRYKER EUROPEAN OPERATIONS LIMITED, IRELAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ERRONEOUSLY FILED AGAINST APPLICATION NO. 15/570,072 PREVIOUSLY RECORDED AT REEL: 052860 FRAME: 0900. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE 12/31/2018;ASSIGNOR:STRYKER EUROPEAN HOLDINGS LLC;REEL/FRAME:056426/0585 Effective date: 20200604 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: STRYKER CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STRYKER EUROPEAN OPERATIONS LIMITED;REEL/FRAME:066140/0647 Effective date: 20231213 |