US10329605B2 - Method to increase sensitivity of detection of low-occurrence mutations - Google Patents
Method to increase sensitivity of detection of low-occurrence mutations Download PDFInfo
- Publication number
- US10329605B2 US10329605B2 US15/134,302 US201615134302A US10329605B2 US 10329605 B2 US10329605 B2 US 10329605B2 US 201615134302 A US201615134302 A US 201615134302A US 10329605 B2 US10329605 B2 US 10329605B2
- Authority
- US
- United States
- Prior art keywords
- dna
- blocking probe
- isolated dna
- mutation
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000035772 mutation Effects 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000035945 sensitivity Effects 0.000 title description 26
- 238000001514 detection method Methods 0.000 title description 21
- 239000000523 sample Substances 0.000 claims abstract description 91
- 230000000903 blocking effect Effects 0.000 claims abstract description 50
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 48
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 45
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 45
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 41
- 230000003321 amplification Effects 0.000 claims abstract description 38
- 239000012634 fragment Substances 0.000 claims abstract description 27
- 238000012163 sequencing technique Methods 0.000 claims abstract description 26
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 21
- 230000000295 complement effect Effects 0.000 claims abstract description 16
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 5
- 108020004705 Codon Proteins 0.000 claims description 11
- 210000004369 blood Anatomy 0.000 claims description 7
- 239000008280 blood Substances 0.000 claims description 7
- 210000005259 peripheral blood Anatomy 0.000 claims description 6
- 239000011886 peripheral blood Substances 0.000 claims description 6
- 210000000988 bone and bone Anatomy 0.000 claims description 5
- 108020004414 DNA Proteins 0.000 description 90
- 238000007481 next generation sequencing Methods 0.000 description 57
- 108090000623 proteins and genes Proteins 0.000 description 29
- 108091093088 Amplicon Proteins 0.000 description 22
- 206010028980 Neoplasm Diseases 0.000 description 21
- 102000001301 EGF receptor Human genes 0.000 description 20
- 108060006698 EGF receptor Proteins 0.000 description 20
- 201000011510 cancer Diseases 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 238000007480 sanger sequencing Methods 0.000 description 13
- 206010069755 K-ras gene mutation Diseases 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 239000002773 nucleotide Substances 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- 238000013459 approach Methods 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 102100030708 GTPase KRas Human genes 0.000 description 8
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 238000003753 real-time PCR Methods 0.000 description 7
- 206010009944 Colon cancer Diseases 0.000 description 6
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 5
- 108700024394 Exon Proteins 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 238000012408 PCR amplification Methods 0.000 description 4
- 239000012472 biological sample Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 206010069754 Acquired gene mutation Diseases 0.000 description 2
- 101001042041 Bos taurus Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial Proteins 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101710105178 F-box/WD repeat-containing protein 7 Proteins 0.000 description 2
- 102100028138 F-box/WD repeat-containing protein 7 Human genes 0.000 description 2
- 102100029974 GTPase HRas Human genes 0.000 description 2
- 102100039788 GTPase NRas Human genes 0.000 description 2
- 102100032610 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Human genes 0.000 description 2
- 101000584633 Homo sapiens GTPase HRas Proteins 0.000 description 2
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 2
- 101001014590 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Proteins 0.000 description 2
- 101001014594 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms short Proteins 0.000 description 2
- 101000960234 Homo sapiens Isocitrate dehydrogenase [NADP] cytoplasmic Proteins 0.000 description 2
- 101001014610 Homo sapiens Neuroendocrine secretory protein 55 Proteins 0.000 description 2
- 101001109719 Homo sapiens Nucleophosmin Proteins 0.000 description 2
- 101000605639 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 description 2
- 101001126417 Homo sapiens Platelet-derived growth factor receptor alpha Proteins 0.000 description 2
- 101000797903 Homo sapiens Protein ALEX Proteins 0.000 description 2
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 2
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 2
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 description 2
- 101000997832 Homo sapiens Tyrosine-protein kinase JAK2 Proteins 0.000 description 2
- 101000934996 Homo sapiens Tyrosine-protein kinase JAK3 Proteins 0.000 description 2
- 101001087416 Homo sapiens Tyrosine-protein phosphatase non-receptor type 11 Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 102100039905 Isocitrate dehydrogenase [NADP] cytoplasmic Human genes 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 2
- 102100022678 Nucleophosmin Human genes 0.000 description 2
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 2
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 2
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 description 2
- 102100030485 Platelet-derived growth factor receptor alpha Human genes 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 2
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 2
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 2
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 2
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 description 2
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 description 2
- 102100025387 Tyrosine-protein kinase JAK3 Human genes 0.000 description 2
- 102100033019 Tyrosine-protein phosphatase non-receptor type 11 Human genes 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229960001433 erlotinib Drugs 0.000 description 2
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000000416 exudates and transudate Anatomy 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 230000004077 genetic alteration Effects 0.000 description 2
- 231100000118 genetic alteration Toxicity 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 229960001972 panitumumab Drugs 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 210000000582 semen Anatomy 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 230000037439 somatic mutation Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000003802 sputum Anatomy 0.000 description 2
- 208000024794 sputum Diseases 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 210000001138 tear Anatomy 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 2
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 2
- 101150028074 2 gene Proteins 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 102100021247 BCL-6 corepressor Human genes 0.000 description 1
- 102100021256 BCL-6 corepressor-like protein 1 Human genes 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100034808 CCAAT/enhancer-binding protein alpha Human genes 0.000 description 1
- 102100029968 Calreticulin Human genes 0.000 description 1
- 102100028914 Catenin beta-1 Human genes 0.000 description 1
- ZEOWTGPWHLSLOG-UHFFFAOYSA-N Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F Chemical compound Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F ZEOWTGPWHLSLOG-UHFFFAOYSA-N 0.000 description 1
- 102000038594 Cdh1/Fizzy-related Human genes 0.000 description 1
- 108091007854 Cdh1/Fizzy-related Proteins 0.000 description 1
- 102100035595 Cohesin subunit SA-2 Human genes 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 108010043471 Core Binding Factor Alpha 2 Subunit Proteins 0.000 description 1
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 1
- 102100024812 DNA (cytosine-5)-methyltransferase 3A Human genes 0.000 description 1
- 108010024491 DNA Methyltransferase 3A Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 102100037799 DNA-binding protein Ikaros Human genes 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 102100029952 Double-strand-break repair protein rad21 homolog Human genes 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 102100035273 E3 ubiquitin-protein ligase CBL-B Human genes 0.000 description 1
- 102100035275 E3 ubiquitin-protein ligase CBL-C Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102100031785 Endothelial transcription factor GATA-2 Human genes 0.000 description 1
- 102100031690 Erythroid transcription factor Human genes 0.000 description 1
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 description 1
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 1
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 1
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 description 1
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100039622 Granulocyte colony-stimulating factor receptor Human genes 0.000 description 1
- 102100025334 Guanine nucleotide-binding protein G(q) subunit alpha Human genes 0.000 description 1
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 1
- 102100022057 Hepatocyte nuclear factor 1-alpha Human genes 0.000 description 1
- 102100038970 Histone-lysine N-methyltransferase EZH2 Human genes 0.000 description 1
- 102100030234 Homeobox protein cut-like 1 Human genes 0.000 description 1
- 101000894688 Homo sapiens BCL-6 corepressor-like protein 1 Proteins 0.000 description 1
- 101100165236 Homo sapiens BCOR gene Proteins 0.000 description 1
- 101000945515 Homo sapiens CCAAT/enhancer-binding protein alpha Proteins 0.000 description 1
- 101000793651 Homo sapiens Calreticulin Proteins 0.000 description 1
- 101000916173 Homo sapiens Catenin beta-1 Proteins 0.000 description 1
- 101000642968 Homo sapiens Cohesin subunit SA-2 Proteins 0.000 description 1
- 101000599038 Homo sapiens DNA-binding protein Ikaros Proteins 0.000 description 1
- 101000584942 Homo sapiens Double-strand-break repair protein rad21 homolog Proteins 0.000 description 1
- 101000737265 Homo sapiens E3 ubiquitin-protein ligase CBL-B Proteins 0.000 description 1
- 101000737269 Homo sapiens E3 ubiquitin-protein ligase CBL-C Proteins 0.000 description 1
- 101001066265 Homo sapiens Endothelial transcription factor GATA-2 Proteins 0.000 description 1
- 101001066268 Homo sapiens Erythroid transcription factor Proteins 0.000 description 1
- 101000746364 Homo sapiens Granulocyte colony-stimulating factor receptor Proteins 0.000 description 1
- 101000857888 Homo sapiens Guanine nucleotide-binding protein G(q) subunit alpha Proteins 0.000 description 1
- 101001072407 Homo sapiens Guanine nucleotide-binding protein subunit alpha-11 Proteins 0.000 description 1
- 101001045751 Homo sapiens Hepatocyte nuclear factor 1-alpha Proteins 0.000 description 1
- 101000882127 Homo sapiens Histone-lysine N-methyltransferase EZH2 Proteins 0.000 description 1
- 101000726740 Homo sapiens Homeobox protein cut-like 1 Proteins 0.000 description 1
- 101000599886 Homo sapiens Isocitrate dehydrogenase [NADP], mitochondrial Proteins 0.000 description 1
- 101001025967 Homo sapiens Lysine-specific demethylase 6A Proteins 0.000 description 1
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 1
- 101000653374 Homo sapiens Methylcytosine dioxygenase TET2 Proteins 0.000 description 1
- 101000728236 Homo sapiens Polycomb group protein ASXL1 Proteins 0.000 description 1
- 101000761460 Homo sapiens Protein CASP Proteins 0.000 description 1
- 101000779418 Homo sapiens RAC-alpha serine/threonine-protein kinase Proteins 0.000 description 1
- 101000654718 Homo sapiens SET-binding protein Proteins 0.000 description 1
- 101000587430 Homo sapiens Serine/arginine-rich splicing factor 2 Proteins 0.000 description 1
- 101000628562 Homo sapiens Serine/threonine-protein kinase STK11 Proteins 0.000 description 1
- 101000707567 Homo sapiens Splicing factor 3B subunit 1 Proteins 0.000 description 1
- 101000808799 Homo sapiens Splicing factor U2AF 35 kDa subunit Proteins 0.000 description 1
- 101000633429 Homo sapiens Structural maintenance of chromosomes protein 1A Proteins 0.000 description 1
- 101000708766 Homo sapiens Structural maintenance of chromosomes protein 3 Proteins 0.000 description 1
- 101000813738 Homo sapiens Transcription factor ETV6 Proteins 0.000 description 1
- 101000658084 Homo sapiens U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 2 Proteins 0.000 description 1
- 102100037845 Isocitrate dehydrogenase [NADP], mitochondrial Human genes 0.000 description 1
- 101150105104 Kras gene Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102100037462 Lysine-specific demethylase 6A Human genes 0.000 description 1
- 101150053046 MYD88 gene Proteins 0.000 description 1
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100030803 Methylcytosine dioxygenase TET2 Human genes 0.000 description 1
- 102100025725 Mothers against decapentaplegic homolog 4 Human genes 0.000 description 1
- 101710143112 Mothers against decapentaplegic homolog 4 Proteins 0.000 description 1
- 102100024134 Myeloid differentiation primary response protein MyD88 Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 208000005228 Pericardial Effusion Diseases 0.000 description 1
- 102100029799 Polycomb group protein ASXL1 Human genes 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 1
- 102100032741 SET-binding protein Human genes 0.000 description 1
- 108700028341 SMARCB1 Proteins 0.000 description 1
- 101150008214 SMARCB1 gene Proteins 0.000 description 1
- 102100025746 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 Human genes 0.000 description 1
- 102100029666 Serine/arginine-rich splicing factor 2 Human genes 0.000 description 1
- 102100026715 Serine/threonine-protein kinase STK11 Human genes 0.000 description 1
- 102100031711 Splicing factor 3B subunit 1 Human genes 0.000 description 1
- 102100038501 Splicing factor U2AF 35 kDa subunit Human genes 0.000 description 1
- 102100029538 Structural maintenance of chromosomes protein 1A Human genes 0.000 description 1
- 102100032723 Structural maintenance of chromosomes protein 3 Human genes 0.000 description 1
- 102100039580 Transcription factor ETV6 Human genes 0.000 description 1
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 1
- 102100035036 U2 small nuclear ribonucleoprotein auxiliary factor 35 kDa subunit-related protein 2 Human genes 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 238000007844 allele-specific PCR Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 241000617156 archaeon Species 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 201000010989 colorectal carcinoma Diseases 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 238000007849 hot-start PCR Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 150000002614 leucines Chemical class 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 235000019689 luncheon sausage Nutrition 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 210000004912 pericardial fluid Anatomy 0.000 description 1
- 230000002974 pharmacogenomic effect Effects 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000012175 pyrosequencing Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 102200048955 rs121434569 Human genes 0.000 description 1
- 210000004911 serous fluid Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000007860 single-cell PCR Methods 0.000 description 1
- 108010068698 spleen exonuclease Proteins 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 108010057210 telomerase RNA Proteins 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2535/00—Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
- C12Q2535/122—Massive parallel sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2537/00—Reactions characterised by the reaction format or use of a specific feature
- C12Q2537/10—Reactions characterised by the reaction format or use of a specific feature the purpose or use of
- C12Q2537/159—Reduction of complexity, e.g. amplification of subsets, removing duplicated genomic regions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2537/00—Reactions characterised by the reaction format or use of a specific feature
- C12Q2537/10—Reactions characterised by the reaction format or use of a specific feature the purpose or use of
- C12Q2537/163—Reactions characterised by the reaction format or use of a specific feature the purpose or use of blocking probe
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- the present invention relates to a method for enhancing the sensitivity of next generation sequencing of low-occurrence mutations and more particularly to a method for selectively blocking portions of the fragments from amplification prior to NGS.
- NGS next-generation sequencing
- NGS capillary electrophoresis
- NGS differs from conventional Sanger sequencing in that in conventional Sanger sequencing, all copies of the DNA are sequenced together, while in NGS, the DNA is separated into small fragments that are isolated and individually sequenced. This distinction has implications in terms of procedures to enhance the sensitivity of the procedure for low-occurrence mutation detection.
- NGS Detection of mutations in specific genes is most commonly achieved using targeted tests that are designed to detect one or at least a small number of mutations in a single gene.
- NGS is gaining momentum as a complementary test for a number of reasons. Firstly, clinical trials for targeted cancer therapies rely on detection of mutations that are frequently not covered by existing targeted tests. Instead of relying on the slow and labor-intensive process of validating and implementing a new molecular assay to test for one or a few mutations, NGS simplifies the task of providing coverage of one or more additional mutations of interest. Second, targeted tests can provide misleading results, failing to identify therapeutically-targetable mutations. Further, targeted tests may fail to detect the very mutation they are designed to detect. Finally, tumors frequently harbor mutations that are therapeutically-targetable but are not typically seen in that tumor type. Due to its massively parallel nature, NGS is well suited for detecting mutations in unexpected genes.
- NGS has provided a valuable tool for detecting mutations with a sensitivity in the range of 5 percent, it remains less sensitive for the detection of mutations that present in less than 5 percent of the analyzed DNA. This particularly becomes a problem when attempting to analyze peripheral blood plasma or other body fluids such as urine or bronchial lavage. Accordingly, the need remains for method for improving the sensitivity of NGS for purposes of detecting low-occurrence mutations.
- a method for enriching for the mutant DNA and reducing the relative ratio of the wild-type DNA in the analyzed sample through selective sequencing.
- a locked nucleic acid (LNA) probe that is identical to the wild-type is used to block the wild type DNA amplification while the mutant DNA is enriched for sequencing using amplicon-based NGS procedure.
- LNA probe is structurally different from normal DNA and when it binds to DNA, the binding is very strong and disassociating it for amplification becomes very difficult even at high temperature, thus preventing amplification.
- selective sequencing can be achieved using techniques including ICE COLD-PCR (Improved & Complete Enrichment Co-amplification at Lower Denaturation temperature), which preferentially enriches mutant DNA sequences in an excess of wild-type DNA using an oligonucleotide complementary to wild-type sequence (RS-oligo).
- ICE COLD-PCR has been reported to significantly improve sensitivity in standard Sanger sequencing analysis.
- Another approach is the QClampTM technology (from DiaCarta), which is used to screen for somatic mutations by utilizing a sequence specific wild-type template xeno-nucleic acid “Clamp” (XNA) that suppresses PCR amplification of wild-type template DNA and allows selective PCR amplification of only mutant templates. This allows the detection of mutant DNA in the presence of a large excess of wild-type template.
- XNA sequence specific wild-type template xeno-nucleic acid
- a method of detecting a low-occurrence mutation in a sample from a patient includes: isolating DNA from the sample; adding a blocking probe to the isolated DNA, the blocking probe comprising an oligonucleotide complementary to wild-type DNA corresponding to the sample, the blocking probe adapted to span a site of a suspected mutation within a region of interest in the isolated DNA; amplifying the isolated DNA; sequencing fragments of the amplified DNA using next generating sequencing; and generating an output corresponding to the sequenced fragments.
- the blocking probe is locked nucleic acid (LNA); in other embodiments, the blocking probe is selected from block nucleic acid (BNA), QClamp and ICE COLD-PCR.
- the blocking probe may be a 10mer to 12mer.
- the blocking probe is CCTACGCCACAGCTCCAA (SEQ ID NO. 1).
- the blocking probe is CTCATCACGCAGCTC (SEQ ID NO. 2).
- the isolated DNA prior to adding a blocking probe, is fragmented into fragments comprising one or more regions of interest. In other embodiments, prior to amplifying the isolated DNA, the isolated DNA is hybridized with one or more enrichment probes to tag and fragment the DNA.
- the sample may be selected from the group consisting of whole blood, stool, biopsied tissue, bone marrow, fine needle aspirate (FNA), and peripheral blood.
- a method for detecting a low-occurrence mutation in isolated DNA includes: adding a blocking probe to reagents during amplification of the isolated DNA, wherein the blocking probe comprises an oligonucleotide complementary to wild-type DNA corresponding to the sample, the blocking probe adapted to span a site of a suspected mutation within a region of interest in the isolated DNA; sequencing fragments of the amplified DNA using next generating sequencing; and generating an output corresponding to the sequenced fragments.
- the blocking probe is locked nucleic acid (LNA); in other embodiments, the blocking probe is selected from block nucleic acid (BNA), QClamp and ICE COLD-PCR.
- the blocking probe may be a 10mer to 12mer.
- the blocking probe is CCTACGCCACAGCTCCAA (SEQ ID NO. 1). In embodiments in which the region of interest is EGFR codon T790, the blocking probe is CTCATCACGCAGCTC (SEQ ID NO. 2).
- the isolated DNA prior to adding a blocking probe, is fragmented into fragments comprising one or more regions of interest. In other embodiments, prior to amplifying the isolated DNA, the isolated DNA is hybridized with one or more enrichment probes to tag and fragment the DNA.
- the sample may be selected from the group consisting of whole blood, stool, biopsied tissue, bone marrow, fine needle aspirate (FNA), and peripheral blood.
- FIG. 1A is a diagram showing the use of LNA for selecting mutant DNA for amplicon-based NGS according to an embodiment of the invention
- FIG. 1B is a diagram showing the basic process for amplicon-based NGC.
- FIGS. 2A and 2B show NGS results showing the mutation (C>A) in KRAS as detected in the same sample using LNA blocking ( FIG. 2A ) and the mutation without LNA blocking ( FIG. 2B ).
- FIG. 3 is a table comparing NGS results obtained with and without LNA for the detection of KRAS mutation.
- FIG. 4 is a table comparing NGS results obtained with and without LNA for the detection of EGFR mutation.
- FIG. 5 shows NGS results showing the mutation (C>T) in EGFR T790 as detected in the same sample without LNA (Top panel) and with LNA (Lower panel).
- FIG. 6 is a table showing results of NGS sequencing for detecting EGFR mutation with enhanced methods according to an embodiment of the invention.
- FIG. 7 is a table listing genes in a custom-designed 315 panel for hybrid capture NGS.
- NCBI National Center for Biotechnology Information
- the inventive method improves sensitivity of NGS analysis by enriching for the mutant DNA and reducing the relative ratio of the wild-type DNA in the analyzed sample through selective sequencing.
- a locked nucleic acid (LNA) probe that is identical to the wild-type is used to block the wild type DNA amplification while the mutant DNA is enriched for sequencing using amplicon-based NGS procedure.
- LNA locked nucleic acid
- a LNA is structurally different from normal DNA and when it binds to DNA, the binding is very strong such that disassociating it for amplification becomes very difficult, even at high temperature, thus preventing amplification.
- Locked nucleic acids are a nucleic acid analog that may be used for increasing oligonucleotide hybridization strength and specificity.
- the LNA bases can be incorporated into any DNA or RNA oligonucleotide and induce a conformational change in the local helix. This altered state provides the LNA bases with stronger binding strength for complementary sequences, greater mismatch discrimination, and enhanced duplex formation. These features increase amplification success when LNAs are incorporated into oligonucleotides and also increase duplex melting temperatures, which enable probes and primers to be shortened and give greater specificity.
- Applications for LNAs to date include allele-specific PCR, TaqMan and Molecular Beacon probes, real-time PCR probes, antisense oligonucleotides, microarray probes, and PCR primers.
- LNA nucleotides into real-time PCR probes and primers decreases C t values significantly, with a corresponding increase in amplification efficiency.
- LNA modifications increase the specificity of the amplification, resulting in improved sequencing read quality, and can reduce the amount of template required by at least 10-fold. For many applications, the ability to detect these lower amounts, even as little as one or two copies of a target sequence, would be highly desirable.
- the term “gene” means a nucleic acid sequence that is transcribed (DNA) to RNA in vitro or in vivo when operably linked to appropriate regulatory sequences.
- the gene can include regulatory regions preceding and following the coding region, e.g. 5′ untranslated (5′UTR) or “leader” sequences and 3′ UTR or “trailer” sequences, as well as intervening sequences (introns) between individual coding segments (exons).
- nucleic acid refers to any molecule, preferably a polymeric molecule, incorporating units of ribonucleic acid, deoxyribonucleic acid or an analog thereof.
- the nucleic acid can be either single-stranded or double-stranded.
- a single-stranded nucleic acid can be one strand nucleic acid of a denatured double-stranded DNA. Alternatively, it can be a single-stranded nucleic acid not derived from any double-stranded DNA.
- the template nucleic acid is DNA.
- the template is RNA.
- Suitable nucleic acid molecules are DNA, including genomic DNA or cDNA.
- RNA RNA
- a “portion” of a nucleic acid molecule refers to contiguous set of nucleotides comprised by that molecule. A portion can comprise all or only a subset of the nucleotides comprised by the molecule. A portion can be double-stranded or single-stranded.
- Nucleic acids may be isolated from a biological sample containing a variety of other components, such as proteins, lipids, and other (e.g., non-target or non-template) nucleic acids.
- Nucleic acid molecules can be obtained from any material (e.g., cellular material (live or dead), extracellular material, viral material, environmental samples (e.g., metagenomic samples), synthetic material (e.g., amplicons such as provided by PCR or other amplification technologies)), obtained from an animal, plant, bacterium, archaeon, fungus, or any other organism.
- Biological samples for use in the present technology include viral particles or preparations thereof.
- a nucleic acid is isolated from a sample for use as a template in an amplification reaction (e.g., to prepare an amplicon library or fragment library for sequencing). In some embodiments a nucleic acid is isolated from a sample for use in preparing a library of fragments.
- Nucleic acid molecules can be obtained directly from an organism or from a biological sample obtained from an organism, e.g., from blood, urine, cerebrospinal fluid, seminal fluid, saliva, sputum, stool, hair, sweat, tears, skin, and tissue.
- Exemplary samples include, but are not limited to, whole blood, lymphatic fluid, serum, plasma, buccal cells, sweat, tears, saliva, sputum, hair, skin, biopsy, cerebrospinal fluid (CSF), amniotic fluid, seminal fluid, vaginal excretions, serous fluid, synovial fluid, pericardial fluid, peritoneal fluid, pleural fluid, transudates, exudates, cystic fluid, bile, urine, gastric fluids, intestinal fluids, fecal samples, and swabs, aspirates (e.g., bone marrow, fine needle, etc.), washes (e.g., oral, nasopharyngeal, bronchial, bronchialalveolar, optic, rectal, intestinal, vaginal, epidermal, etc.), and/or other specimens.
- CSF cerebrospinal fluid
- tissue or body fluid specimen may be used as a source for nucleic acid for use in the technology, including forensic specimens, archived specimens, preserved specimens, and/or specimens stored for long periods of time, e.g., fresh-frozen, methanol/acetic acid fixed, or formalin-fixed paraffin embedded (FFPE) specimens and samples.
- Nucleic acid template molecules can also be isolated from cultured cells, such as a primary cell culture or a cell line. The cells or tissues from which template nucleic acids are obtained can be infected with a virus or other intracellular pathogen.
- a sample can also be total RNA extracted from a biological specimen, a cDNA library, viral, or genomic DNA.
- a sample may also be isolated DNA from a non-cellular origin, e.g. amplified/isolated DNA that has been stored in a freezer.
- Nucleic acid molecules can be obtained, e.g., by extraction from a biological sample, e.g., by a variety of techniques such as those described by Maniatis, et al. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y. (see, e.g., pp. 280-281).
- a nucleic acid is amplified. Any amplification method known in the art may be used. Examples of amplification techniques that can be used include, but are not limited to, PCR, quantitative PCR, quantitative fluorescent PCR (QF-PCR), multiplex fluorescent PCR (MF-PCR), real time PCR (RT-PCR), single cell PCR, restriction fragment length polymorphism PCR (PCR-RFLP), hot start PCR, nested PCR, in situ polony PCR, in situ rolling circle amplification (RCA), bridge PCR, picotiter PCR, and emulsion PCR.
- QF-PCR quantitative fluorescent PCR
- MF-PCR multiplex fluorescent PCR
- RT-PCR real time PCR
- PCR-RFLP restriction fragment length polymorphism PCR
- hot start PCR nested PCR
- in situ polony PCR in situ rolling circle amplification
- RCA in situ rolling circle amplification
- bridge PCR picotiter PCR
- picotiter PCR picot
- LCR ligase chain reaction
- transcription amplification self-sustained sequence replication
- selective amplification of target polynucleotide sequences consensus sequence primed polymerase chain reaction (CP-PCR), arbitrarily primed polymerase chain reaction (AP-PCR), degenerate oligonucleotide-primed PCR (DOP-PCR), and nucleic acid based sequence amplification (NABSA).
- CP-PCR consensus sequence primed polymerase chain reaction
- AP-PCR arbitrarily primed polymerase chain reaction
- DOP-PCR degenerate oligonucleotide-primed PCR
- NABSA nucleic acid based sequence amplification
- Other amplification methods that can be used herein include those described in U.S. Pat. Nos. 5,242,794; 5,494,810; 4,988,617; and 6,582,938.
- isolated refers, in the case of a nucleic acid, to a nucleic acid separated from at least one other component (e.g., nucleic acid or polypeptide) that is present with the nucleic acid as found in its natural source and/or that would be present with the nucleic acid when expressed by a cell.
- a chemically synthesized nucleic acid or one synthesized using in vitro transcription/translation is considered “isolated.”
- single nucleotide polymorphism or “SNP” refers to single point variations in genomic DNA or tumor-associated DNA.
- mutation and “point mutation” are meant to include and/or refer to SNPs.
- a “disease associated with a genetic alteration” refers to any disease that is caused by, at least in part, by an alteration in the genetic material of the subject as compared to a healthy wildtype subject, e.g. a deletion, an insertion, a SNP, a gene rearrangement.
- a disease can be caused by, at least in part, an alteration in the genetic material of the subject if the alteration increases the risk of the subject developing the disease, increases the subject's susceptibility to a disease (including infectious diseases, or diseases with an infectious component), causes the production of a disease-associated molecule, or causes cells to become diseased or abnormal (e.g. loss of cell cycle regulation in cancer cells).
- Diseases can be associated with multiple genetic alterations, e.g. cancers.
- complementary refers to the ability of nucleotides to form hydrogen-bonded base pairs.
- complementary refers to hydrogen-bonded base pair formation preferences between the nucleotide bases G, A, T, C and U, such that when two given polynucleotides or polynucleotide sequences anneal to each other, A pairs with T and G pairs with C in DNA, and G pairs with C and A pairs with U in RNA.
- primer specific when used in the context of a primer specific for a target nucleic acid refers to a level of complementarity between the primer and the target such that there exists an annealing temperature at which the primer will anneal to and mediate amplification of the target nucleic acid and will not anneal to or mediate amplification of non-target sequences present in a sample.
- amplified product refers to oligonucleotides resulting from an amplification reaction that are copies of a portion of a particular target nucleic acid template strand and/or its complementary sequence, which correspond in nucleotide sequence to the template nucleic acid sequence and/or its complementary sequence.
- An amplification product can further comprise sequence specific to the primers and which flanks sequence which is a portion of the target nucleic acid and/or its complement.
- An amplicon panel is a collection of amplicons that are related, e.g., to a disease, disease progression, developmental defect, constitutional disease, metabolic pathway, pharmacogenomic characterization, trait, organism (e.g., for species identification), group of organisms, geographic location, organ, tissue, sample, environment (e.g., for metagenomic and/or ribosomal RNA), gene, chromosome, etc.
- a cancer panel comprises specific genes or mutations in genes that have established relevancy to a particular cancer phenotype.
- Some amplicon panels are directed toward particular “cancer hotspots”, that is, regions of the genome containing known mutations that correlate with cancer progression and therapeutic resistance.
- Production of an amplicon panel is often associated with downstream next-generation sequencing to obtain the sequences of the amplicons of the panel.
- the amplification is used to target the genome and provide selected regions of interest (ROIs) for NGS. This target enrichment focuses sequencing efforts to specific regions of a genome.
- ROIs regions of interest
- blocking oligonucleotide (also “blocking probe”) is a single stranded nucleic acid sequence, which may be one of single stranded DNA, RNA, peptide nucleic, or locked nucleic acid.
- the blocking oligonucleotide can be naturally- or non-naturally-occurring and generally comprises from 10 to 40 nucleotides, more preferably from 10 to 12 nucleotides.
- a blocking oligonucleotide is configured to modify the binding interaction (for example, melting temperature (Tm)) within a complementary target region (ROI).
- NGS Next-generation sequencing
- Amplification-requiring methods include pyrosequencing commercialized by Roche as the 454 technology platforms (e.g., GS 20 and GS FLX), the Solexa platform commercialized by Illumina, and the Supported Oligonucleotide Ligation and Detection (SOLiD) platform commercialized by Applied Biosystems.
- Non-amplification approaches also known as single-molecule sequencing, are exemplified by the HeliScope platform commercialized by Helicos BioSciences, and emerging platforms commercialized by VisiGen, Oxford Nanopore Technologies Ltd., and Pacific Biosciences, respectively.
- FIG. 1A diagrammatically illustrates the process of using LNA for selecting mutant DNA for amplicon-based NGS.
- FIG. 1B is a block diagram showing the process for hybrid capture-based NGS using WT-blocking to increase sensitivity for mutant DNA.
- selective sequencing according to the can be achieved using techniques including ICE COLD-PCR (Improved & Complete Enrichment Co-amplification at Lower Denaturation temperature), which preferentially enriches mutant DNA sequences in an excess of wild-type DNA using an oligonucleotide complementary to wild-type sequence (RS-oligo).
- ICE COLD-PCR has been reported to significantly improve sensitivity in standard Sanger sequencing analysis.
- QClampTM technology from DiaCarta
- XNA sequence specific wild-type template xeno-nucleic acid “Clamp”
- NGS NGS technologies, it is possible to screen simultaneously multiple mutations in multiple genes in a single test run. Detection of targeted oncogene mutations, including KRAS mutations, in CRC formalin-fixed, paraffin-embedded specimens by NGS has been reported to have an accuracy of 96.1% (compared with Sanger sequencing) and 99.6% (compared with real-time PCR methods). Unfortunately, NGS is limited in its sensitivity for detection of low-occurrence ( ⁇ 5%) mutations.
- DNA was extracted from FFPE or EDTA whole blood/stool samples. Normal and cancer samples are used. Cancer was confirmed using standard diagnostic procedures including morphologic evaluation, FISH testing, flow cytometry, cytogenetic analysis and immunohistochemistry. It should be noted that other sources of DNA may be used, including, but not limited to, biopsied tissue, bone marrow, fine needle aspirate (FNA), and peripheral blood.
- FNA fine needle aspirate
- the high sensitivity testing was performed on more than 30 DNA samples with specific mutations as well as on 4 samples without any mutations as a negative control.
- DNA extraction We extracted DNA using the QIAamp DNA Mini Kit (Qiagen; Venlo, Netherlands) in both manual and automated (QIAcube) extractions according to manufacturer's instruction. Extracted DNA was then quantified using a Nanodrop 2000 (Thermo Fisher Scientific; Waltham, Mass., U.S.A.) instrument and adjusted to approximately 50-100 ng/ ⁇ L with water.
- Targeted sequencing panels can be purchased with preselected content or custom-designed using procedures known in the art using any of a number of commercially-available targeted sequencing library prep kits according to the manufacturer's instructions.
- oligos for amplicon-based NGS 100,one pair of oligos (Probe 1,Probe 2) is designed for each amplicon.
- step 120 hybridization of these oligos to unfragmented genomic DNA is performed in a 96 well plate, followed by extension and ligation in step 122 to form a DNA template consisting of the regions of interest flanked by universal primer sequences.
- DNA templates are then PCR amplified in step 124 and pooled into a single tube.
- the final amplicon is sequenced on the Illumina MiSeq or NextSeq System in step 126 .
- the sequence data is analysed using available bioinformatics software and output via a user interface 128.
- FIG. 1A diagrammatically illustrates the modified procedure for amplicon-based NGS 102 according to the invention in which an LNA blocking oligonucleotide is added during amplification.
- the LNA oligo is designed so that it anneals to the template strand during the primer annealing step of PCR and melts from mutant template DNA—but not WT DNA—during extension. Because a single nucleotide mismatch in the LNA-DNA hybrid greatly decreases its melting temperature (T m ), only mutant template DNA is free to complete its extension. Therefore, WT DNA is amplified linearly but mutant DNA is amplified exponentially.
- a target-specific cancer panel includes 48 cancer genes with 212 amplicons in a highly multiplexed, single tube reaction.
- the TSA-Myeloid panel has 54 genes with 581 amplicons in a highly multiplexed, single tube reaction. This highly targeted approach enables a wide range of applications for discovering, validating, and screening genetic variants in a rapid and efficient manner. With the ability to combine hundreds of amplicons per sample and up to 96 samples per run, the TSACP or TSA-Myeloid Panel provide unprecedented level of sample multiplexing, while providing excellent specificity and uniformity. See Table 1 for a listing of TSACP genes and Table 2 for a listing of TSA-Myeloid genes.
- Gap 0;
- This assay used the standard NGS Nextera Rapid Capture Custom Enrichment workflow.
- DNA was extracted from EDTA WB, BM or FFPE using Qiacube instrument and quantified using the Qubit DNA BR assay kit.
- Nextera enrichment-based sample preparation generates adaptor-tagged libraries from 50 ng input genomic DNA.
- Nextera tagmentation of DNA simultaneously fragments and tags DNA without the need for mechanical shearing.
- Integrated sample barcodes allow the pooling of up to 12 adaptor ligated sample libraries into a single, hybridization-based, pull down reaction. The pooled libraries are then denatured into single-stranded DNA and biotin-labeled probes complementary to the targeted region are used for the Rapid Capture hybridization.
- Streptavidin beads are added, which bind to the biotinylated probes that are hybridized to the targeted regions of interest. Magnetic pull down of the streptavidin beads enriches the targeted regions that are hybridized to biotinylated probes. The enriched DNA fragments are then eluted from the beads and a second round of rapid capture is completed to increase enrichment specificity.
- the NDST custom pools sequenced on MiSeq are analyzed using MiSeq reporter (MSR).
- MSR MiSeq reporter
- the enrichment workflow from MSR generates aligned sequence reads in the .bam file format using the BWA algorithm and performs indel realignment using the GATK indel realignment tool.
- Variant calling occurs in the target regions specified in the manifest file.
- the GATK variant caller generates .vcf files that contain genotype, annotation and other information across all sites in the specified target region.
- the enrichment summary statistics contain the on-target and off-target reads/base, average coverage in the target region, % reads that are present at 1X, 10X, 20X and 50X coverage, uniformity of the coverage, all listed in the each samples enrichment sequencing report.
- LNA or BNA Block Nucleic Acid
- the LNA oligos are designed to feature a 3′ inverted dT to inhibit both extension by DNA polymerase and degradation by 3′ exonuclease.
- the BNA oligos are designed with a 3′ phosphate for the same reason. In all procedures, LNA or BNA is added to the sample prior to amplification step, as shown in FIG. 1A for amplicon-based NGS.
- FIG. 2A is a representative image from the Integrative Genome Viewer (IGV) (Broad Institute) with visual confirmation of KRAS mutations detected using LNA blocking, demonstrating a mutation rate of 98%, which can be compared to the 6% rate seen in FIG. 2B .
- the table shown in FIG. 3 provides a comparison of the results obtained using LNA and without LNA, demonstrating the significant difference (16 fold enrichment) in the percentage of mutant DNA.
- Non-small-cell lung cancer is one of the most frequent human malignancies, constituting about 80% of all lung tumors. NSCLC can be divided into genetic subsets on the basis of the activating mutations that they harbor; each of these subsets may correspond to patient cohorts that are likely to benefit from treatment with specific inhibitors.
- EGFR epidermal growth factor receptor
- TKIs tyrosine kinase inhibitors
- the inventive approach demonstrates significant improvement of sensitivity of the NGS. While this is applied here to KRAS and EGFR T790 mutation, the same approach can be used for other types of mutations as well as for multiple mutations in multiple genes that are tested together in NGS.
- LNA probes as the mechanism for blocking amplification of the wild-type DNA
- other blocking materials may be used, including BNA, QClamp and ICE COLD-PCR may be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
TABLE 1 | ||
ABL1 | ||
AKT1 | ||
ALK | ||
APC | ||
ATM | ||
BRAF | ||
CDH1 | ||
CDKN2A | ||
CSF1R | ||
CTNNB1 | ||
EGFR | ||
ERBB2 | ||
ERBB4 | ||
FBXW7 | ||
FGFR1 | ||
FGFR2 | ||
FGFR3 | ||
FLT3 | ||
GNA11 | ||
GNAQ | ||
GNAS | ||
HNF1A | ||
HRAS | ||
IDH1 | ||
JAK2 | ||
JAK3 | ||
KDR | ||
KIT | ||
KRAS | ||
MET | ||
MLH1 | ||
MPL | ||
NOTCH1 | ||
NPM1 | ||
NRAS | ||
PDGFRA | ||
PIK3CA | ||
PTEN | ||
PTPN11 | ||
RB1 | ||
RET | ||
SMAD4 | ||
SMARCB1 | ||
SMO | ||
SRC | ||
STK11 | ||
TP53 | ||
VHL | ||
TABLE 2 |
GENE |
ABL1 | ||
ASXL1 | ||
ATRX | ||
BCOR | ||
BCORL1 | ||
BRAF | ||
CALR | ||
CBL | ||
CBLB | ||
CBLC | ||
CKDN2A | ||
CEBPA | ||
CSF3R | ||
CUX1 | ||
DNMT3A | ||
ETV6/TEL | ||
EZH2 | ||
FBXW7 | ||
FLT3 | ||
GATA1 | ||
GATA2 | ||
GNAS | ||
HRAS | ||
IDH1 | ||
IDH2 | ||
IKZF1 | ||
JAK2 | ||
JAK3 | ||
KDM6A | ||
KIT | ||
KRAS | ||
MLL | ||
MPL | ||
MYD88 | ||
NOTCH1 | ||
NPM1 | ||
NRAS | ||
PDGFRA | ||
PFH6 | ||
PTEN | ||
PTPN11 | ||
RAD21 | ||
RUNX1 | ||
SETBP1 | ||
SF3B1 | ||
SMC1A | ||
SMC3 | ||
SRSF2 | ||
STAG2 | ||
TET2 | ||
TP53 | ||
U2AF1 | ||
WT1 | ||
ZRSR2 | ||
As will be readily apparent to those in the art, larger or smaller gene panels may be used.
Procedure for Hybrid Capture NGS
- 1. Komatsu H, Tsunoda T, Inui A, Sogo T, Fujisawa T, Imura M, Tateno A., “Successful use of saliva without DNA extraction for detection of macrolide-resistant Mycoplasma pneumoniae DNA in children using LNA probe-based real-time PCR”, J Infect Chemother. 2013 Dec;19(6):1087-92. doi: 10.1007/s10156-013-0630-9. Epub 2013 Jun 17.
- 2. Ang D, O'Gara R, Schilling A, Beadling C, Warrick A, Troxell M L, Corless C L., “Novel method for PIK3CA mutation analysis: locked nucleic acid-PCR sequencing”, J Mol Diagn. 2013 May;15(3):312-8. doi: 10.1016/j.jmoldx.2012.12.005. Epub 2013 Mar 27.
- 3. Dono M, Massucco C, Chiara S, Sonaglio C, Mora M, Truini A, Cerruti G, Zoppoli G, Ballestrero A, Truini M, Ferrarini M, Zupo S., “Low percentage of KRAS mutations revealed by locked nucleic acid polymerase chain reaction: implications for treatment of metastatic colorectal cancer”, Mol Med. 2013 Feb 8;18:1519-26. doi: 10.2119/molmed.2012.00175.
- 4. Skronski M, Chorostowska-Wynimko J, Szczepulska E, Szpechcinski A, Rudzinski P, Orlowski T, Langfort R., “Reliable detection of rare mutations in EGFR gene codon L858 by PNA-LNA PCR clamp in non-small cell lung cancer”, Adv Exp Med Biol. 2013;756:321-31. doi: 10.1007/978-94-007-4549-0_39.
- 5. Morandi L, de Biase D, Visani M, Cesari V, De Maglio G, Pizzolitto S, Pession A, Tallini G., “Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation”, PLoS One. 2012;7(4):e36084. doi: 10.1371/journal.pone.0036084. Epub 2012 Apr 30.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/134,302 US10329605B2 (en) | 2015-04-20 | 2016-04-20 | Method to increase sensitivity of detection of low-occurrence mutations |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562150198P | 2015-04-20 | 2015-04-20 | |
US15/134,302 US10329605B2 (en) | 2015-04-20 | 2016-04-20 | Method to increase sensitivity of detection of low-occurrence mutations |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160340725A1 US20160340725A1 (en) | 2016-11-24 |
US10329605B2 true US10329605B2 (en) | 2019-06-25 |
Family
ID=57144655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/134,302 Expired - Fee Related US10329605B2 (en) | 2015-04-20 | 2016-04-20 | Method to increase sensitivity of detection of low-occurrence mutations |
Country Status (6)
Country | Link |
---|---|
US (1) | US10329605B2 (en) |
EP (1) | EP3286334A4 (en) |
JP (1) | JP2018512878A (en) |
CN (1) | CN107849606A (en) |
AU (1) | AU2016250529A1 (en) |
WO (1) | WO2016172265A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220025453A1 (en) * | 2020-07-23 | 2022-01-27 | Michael Y Sha | Xenonucleic acid-mediated multiplex qpcr clamping technology for lung cancer mutation detection |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180187267A1 (en) * | 2017-01-05 | 2018-07-05 | Michael J. Powell | Method for conducting early detection of colon cancer and/or of colon cancer precursor cells and for monitoring colon cancer recurrence |
KR102133013B1 (en) | 2017-09-06 | 2020-07-13 | (주)디엑솜 | Small mutation amplification and quantification method using molecular barcode and blocking oligonucleotide |
EP3695008B1 (en) * | 2017-10-09 | 2021-11-24 | Psomagen, Inc. | Single molecule sequencing and unique molecular identifiers to characterize nucleic acid sequences |
CN109306379A (en) * | 2017-10-13 | 2019-02-05 | 广州健天基因技术有限公司 | For detecting primer, detection method and the kit of human EGFR gene T790M mutation |
CN108611412B (en) * | 2018-03-28 | 2021-12-17 | 无锡市申瑞生物制品有限公司 | Primer probe combination for EGFR gene mutation detection and application thereof |
US11519033B2 (en) | 2018-08-28 | 2022-12-06 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
CA3107323A1 (en) * | 2018-09-25 | 2020-04-02 | Qiagen Sciences, Llc | Depleting unwanted rna species |
EP3894592A2 (en) | 2018-12-10 | 2021-10-20 | 10X Genomics, Inc. | Generating spatial arrays with gradients |
CN109762901B (en) * | 2019-01-30 | 2022-11-29 | 杭州瑞普基因科技有限公司 | DNA probe for enriching low-frequency DNA mutation and applied to simultaneous detection of multiple mutations |
EP3976820A1 (en) | 2019-05-30 | 2022-04-06 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
CN115038794A (en) | 2019-12-23 | 2022-09-09 | 10X基因组学有限公司 | Compositions and methods for using fixed biological samples in partition-based assays |
US20210230681A1 (en) | 2020-01-24 | 2021-07-29 | 10X Genomics, Inc. | Methods for spatial analysis using proximity ligation |
US12076701B2 (en) | 2020-01-31 | 2024-09-03 | 10X Genomics, Inc. | Capturing oligonucleotides in spatial transcriptomics |
US12110541B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Methods for preparing high-resolution spatial arrays |
US11732300B2 (en) | 2020-02-05 | 2023-08-22 | 10X Genomics, Inc. | Increasing efficiency of spatial analysis in a biological sample |
US12129516B2 (en) | 2020-02-07 | 2024-10-29 | 10X Genomics, Inc. | Quantitative and automated permeabilization performance evaluation for spatial transcriptomics |
US12281357B1 (en) | 2020-02-14 | 2025-04-22 | 10X Genomics, Inc. | In situ spatial barcoding |
WO2021263111A1 (en) | 2020-06-25 | 2021-12-30 | 10X Genomics, Inc. | Spatial analysis of dna methylation |
US11981960B1 (en) | 2020-07-06 | 2024-05-14 | 10X Genomics, Inc. | Spatial analysis utilizing degradable hydrogels |
US12209280B1 (en) | 2020-07-06 | 2025-01-28 | 10X Genomics, Inc. | Methods of identifying abundance and location of an analyte in a biological sample using second strand synthesis |
CN114067911B (en) * | 2020-08-07 | 2024-02-06 | 西安中科茵康莱医学检验有限公司 | Method and device for acquiring microorganism species and related information |
US11981958B1 (en) | 2020-08-20 | 2024-05-14 | 10X Genomics, Inc. | Methods for spatial analysis using DNA capture |
EP4222283A1 (en) * | 2020-11-06 | 2023-08-09 | 10X Genomics, Inc. | Compositions and methods for binding an analyte to a capture probe |
WO2022140028A1 (en) | 2020-12-21 | 2022-06-30 | 10X Genomics, Inc. | Methods, compositions, and systems for capturing probes and/or barcodes |
CN112575388A (en) * | 2020-12-22 | 2021-03-30 | 深圳市睿法生物科技有限公司 | Single-molecule target gene library building method and kit thereof |
US20220290221A1 (en) * | 2021-03-15 | 2022-09-15 | Roche Molecular Systems, Inc. | Compositions and methods for detecting severe acute respiratory syndrome coronavirus 2 (sars-cov-2) variants having spike protein mutations |
WO2022221425A1 (en) | 2021-04-14 | 2022-10-20 | 10X Genomics, Inc. | Methods of measuring mislocalization of an analyte |
EP4347879B1 (en) | 2021-06-03 | 2025-02-19 | 10X Genomics, Inc. | Methods, compositions, kits, and systems for enhancing analyte capture for spatial analysis |
EP4419707A1 (en) | 2021-11-10 | 2024-08-28 | 10X Genomics, Inc. | Methods, compositions, and kits for determining the location of an analyte in a biological sample |
EP4305195A2 (en) | 2021-12-01 | 2024-01-17 | 10X Genomics, Inc. | Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis |
CN114277095B (en) * | 2021-12-27 | 2025-03-04 | 上海市肺科医院 | A nucleotide composition for detecting gene variation and a high-throughput sequencing library constructed therefrom |
CN114250269B (en) * | 2021-12-28 | 2025-03-04 | 上海市肺科医院 | A probe composition, a second-generation sequencing library based on the probe composition and its application |
WO2024048753A1 (en) * | 2022-09-02 | 2024-03-07 | 学校法人北里研究所 | Method, polynucleotide, and kit for assessing risk of onset of stomach cancer in patient after removing helicobacter pylori |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996017945A1 (en) | 1994-12-08 | 1996-06-13 | Pioneer Hi-Bred International, Inc. | Reversible nuclear genetic system for male sterility in transgenic plants |
US20030148273A1 (en) | 2000-08-26 | 2003-08-07 | Shoulian Dong | Target enrichment and amplification |
US20100009355A1 (en) | 2006-03-14 | 2010-01-14 | Kolodney Michael S | Selective amplification of minority mutations using primer blocking high-affinity oligonucleotides |
US20110217714A1 (en) | 2010-03-08 | 2011-09-08 | Dana-Farber Cancer Institute, Inc. | Full Cold-PCR Enrichment with Reference Blocking Sequence |
WO2013123031A2 (en) | 2012-02-15 | 2013-08-22 | Veridex, Llc | Highly sensitive method for detecting low frequency mutations |
US20140031240A1 (en) | 2012-07-03 | 2014-01-30 | Foundation Medicine, Inc. | Tm-enhanced blocking oligonucleotides and baits for improved target enrichment and reduced off-target selection |
US20140249142A1 (en) | 2011-07-01 | 2014-09-04 | Dana-Farber Cancer Institute, Inc. | Discovery of a somatic mutation in myd88 gene in lymphoplasmacytic lymphoma |
US20140335514A1 (en) | 2011-05-04 | 2014-11-13 | Aegea Biotechnologies | Methods for detecting nucleic acid sequence variants |
WO2015085075A1 (en) | 2013-12-06 | 2015-06-11 | Dana-Farber Cancer Institute, Inc. | Methods to distinguish waldenström's macroglobulinemia from igm monoclonal gammopathy of undetermined significance |
US20160194691A1 (en) * | 2014-06-10 | 2016-07-07 | Michael J Powell | Dna mutation detection employing enrichment of mutant polynucleotide sequences and minimally invasive sampling |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2376659B1 (en) * | 2008-12-17 | 2015-12-02 | Life Technologies Corporation | Methods, compositions, and kits for detecting allelic variants |
KR20140010093A (en) * | 2011-02-28 | 2014-01-23 | 트랜스제노믹, 인크. | Kit and method for sequencing a target dna in a mixed population |
-
2016
- 2016-04-20 JP JP2017555320A patent/JP2018512878A/en not_active Ceased
- 2016-04-20 CN CN201680030934.7A patent/CN107849606A/en active Pending
- 2016-04-20 EP EP16783804.4A patent/EP3286334A4/en not_active Withdrawn
- 2016-04-20 US US15/134,302 patent/US10329605B2/en not_active Expired - Fee Related
- 2016-04-20 AU AU2016250529A patent/AU2016250529A1/en not_active Abandoned
- 2016-04-20 WO PCT/US2016/028517 patent/WO2016172265A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996017945A1 (en) | 1994-12-08 | 1996-06-13 | Pioneer Hi-Bred International, Inc. | Reversible nuclear genetic system for male sterility in transgenic plants |
US20030148273A1 (en) | 2000-08-26 | 2003-08-07 | Shoulian Dong | Target enrichment and amplification |
US20100009355A1 (en) | 2006-03-14 | 2010-01-14 | Kolodney Michael S | Selective amplification of minority mutations using primer blocking high-affinity oligonucleotides |
US20110217714A1 (en) | 2010-03-08 | 2011-09-08 | Dana-Farber Cancer Institute, Inc. | Full Cold-PCR Enrichment with Reference Blocking Sequence |
US20140335514A1 (en) | 2011-05-04 | 2014-11-13 | Aegea Biotechnologies | Methods for detecting nucleic acid sequence variants |
US20140249142A1 (en) | 2011-07-01 | 2014-09-04 | Dana-Farber Cancer Institute, Inc. | Discovery of a somatic mutation in myd88 gene in lymphoplasmacytic lymphoma |
WO2013123031A2 (en) | 2012-02-15 | 2013-08-22 | Veridex, Llc | Highly sensitive method for detecting low frequency mutations |
US20140031240A1 (en) | 2012-07-03 | 2014-01-30 | Foundation Medicine, Inc. | Tm-enhanced blocking oligonucleotides and baits for improved target enrichment and reduced off-target selection |
WO2015085075A1 (en) | 2013-12-06 | 2015-06-11 | Dana-Farber Cancer Institute, Inc. | Methods to distinguish waldenström's macroglobulinemia from igm monoclonal gammopathy of undetermined significance |
US20160194691A1 (en) * | 2014-06-10 | 2016-07-07 | Michael J Powell | Dna mutation detection employing enrichment of mutant polynucleotide sequences and minimally invasive sampling |
Non-Patent Citations (28)
Title |
---|
"An Introduction to Next-Generation Sequencing Technology", Illumina, Inc., 2011-2013, 12 pages. |
Adams, RL, et al., "CpG deficiency, dinucleotide distributions and nucleosome positioning," Eur Biochem 1987, 165 (1): 107:115. |
Adams, RLP, et al., "Increased G+C content of DNA stabilises methyl CpG dinucieotides," Nucl Acids Res 1984, 12 (14): 5869-5877. |
Albitar, A. et al., "Positive Selection and High Sensitivity Test for MYD88 Mutations Using Locked Nucleic Acid," International Journal of Laboratory Hematology, Jan. 21, 2016, vol. 38, pp. 133-140. |
Capaldi, IB et al, "Detection of MYD88 L265P Mutations in Formalin-Fixed and Decalcified BM Biopsies from Patients with Lymphoplasmacytic Lymphoma," Experimental and Molecular Pathology, May 16, 2014, vol. 97, pp. 57-65. |
Do, H, et al., "Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates," Clin Chem 2013, 59(9), 1376-1383. |
Do, H. et al., "Dramatic Reduction of Sequence Artefacts from DNA Isolated from Formalin-Fixed Cancer Biopsies by Treatment with the Uracil-DNA Glycosylase," Oncotarget, May 24, 2012, vol. 3, pp. 546-558. |
Dominguez, PL et al., Wild-Type Blocking Polymerase Chain Reaction for Detection of Single Nucleotide Minority Mutations from Clinical Specimens, Oncogene, Aug. 22, 2005, vol. 24, pp. 6830-6834. |
Efrati et al., "LNA-based PCR clamping enrichment assay for the identification of KRAS mutations," Cancer Biomarkers, vol. 8, pp. 89-94. (Year: 2010). * |
Gallegos-Ruiz, MI, et al., "EGFR and K-ras mutation analysis in non-small cell lung cancer: comparison of paraffin embedded versus frozen specimens," Cell Oncol 2007, 29(3): 257-264. |
GenBank NM_033360.3-Homo sapiens Kirsten rat sarcoma viral oncogene homolog (KRAS), transcript variant a, mRNA [online] Mar. 15, 2015, retrieved Sep. 12, 2016, available at <URL :http://www.ncbi.nlm.nih.gov/nuccore/575403058?sat=21&satkey=33223617>. |
GenBank NM_033360.3—Homo sapiens Kirsten rat sarcoma viral oncogene homolog (KRAS), transcript variant a, mRNA [online] Mar. 15, 2015, retrieved Sep. 12, 2016, available at <URL :http://www.ncbi.nlm.nih.gov/nuccore/575403058?sat=21&satkey=33223617>. |
Haley L., et al., "Performance characteristics of next-generation sequencing in clinical mutation detection of colorectal cancers", Mod. Pathol. Oct. 2015; 28(10): 1390-1399. |
Knierim et al., "Systemic Comparison of Three Methods for Fragmentation of Long-Range PCR Products for Next Generation Sequencing," PLoS ONE, vol. 6, No. 11, e28240, pp. 1-6. (Year: 2011). * |
Loiarro, M, at al., "Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases", J Biol Chem 2009, 284(41): 28093-28103. |
Morlan et al, Mutation detection by real-time PCR: a simple, robust and highly selective method, PLosS One Feb. 25, 2009 vol. 4 No. 2, pp. e4584 1-11 and Table S1 (appended as p. 12). |
Ngo, VN, et al., "Oncogenically active MYD88 mutations in human lymphoma", Nature 2011, 470(7332): 115-119. |
Pasqualucci, L., et al., "Analysis of the coding genome of diffuse large B-cell lymphoma," Nat Genet 2011, 43(9): 830-837. |
PCT/US2016/028517, International Search Report and Written Opinion, dated Sep. 2, 2016, 9 pages. |
Salar, A., et al., 1690 MYD88 (L265P) Mutation Confers Very Poor Response and Outcome after Second-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma (DLBCL), Presentation at 56th American Society of Hematology Meeting and Exposition, San Francisco, CA, 2014. |
Siebolts et al., "Establishment of a Highly Sensitive Allele Specific Wild Type Blocker Polymerase Chain Reaction Followed by Pyrosequencing for Detection of the p.D816V Point Mutation," Blood, vol. 114, pp. 1-4. (Year: 2009). * |
Sikkema-Raddatz et al., "Targeted Next-Generation Sequencing can Replace Sanger Sequencing in Clinical Diagnostics," Human Mutations, vol. 34, No. 7, pp. 1035-1042. (Year: 2013). * |
Treon, SP, et al., "MYD88 L265P somatic mutation in Waldenström's macroglobulinemia.", N Engl J Med 2012, 367(9): 826-833. |
Troen, G, et al, CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma. ISRN Oncology, 2013, 252318. |
Varettoni, M, et al., "Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenström's macroglobulinemia and related lymphoid neoplasms", Blood 2013, 121(13): 2522-2528. |
Wang, D, et al., "508 Novel Approach to the Potential Treatment of Patients with B-Cell Lymphomas Harboring the MYD88 L265P Mutation: Combination Treatment with TLR Antagonist and Rituximab", Presentation at 56th American Society of Hematology Meeting and Exposition, San Francisco, CA, 2014. |
Xu L, et al., "MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction", Blood 2013, 121(11): 2051-2058. |
Yost, SE, et al, "Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens," Nucleic Acids Res 2012, 40 (14). |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220025453A1 (en) * | 2020-07-23 | 2022-01-27 | Michael Y Sha | Xenonucleic acid-mediated multiplex qpcr clamping technology for lung cancer mutation detection |
Also Published As
Publication number | Publication date |
---|---|
EP3286334A4 (en) | 2018-09-12 |
WO2016172265A1 (en) | 2016-10-27 |
US20160340725A1 (en) | 2016-11-24 |
JP2018512878A (en) | 2018-05-24 |
EP3286334A1 (en) | 2018-02-28 |
AU2016250529A1 (en) | 2017-11-30 |
CN107849606A (en) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10329605B2 (en) | Method to increase sensitivity of detection of low-occurrence mutations | |
AU2021202766B2 (en) | Method of preparing cell free nucleic acid molecules by in situ amplification | |
ES2925014T3 (en) | Identification and use of circulating nucleic acids | |
US20240336963A1 (en) | Methods and kits for amplification of double stranded dna | |
EP3607065B1 (en) | Method and kit for constructing nucleic acid library | |
CN105518151A (en) | Identification and use of circulating nucleic acid tumor markers | |
JP2014507950A (en) | Kits and methods for sequencing target DNA in mixed populations | |
JP2019519540A (en) | Novel Mutations in Anaplastic Lymphoma Kinase to Predict Response to ALK Inhibitor Therapy in Lung Cancer Patients | |
CN106834515A (en) | A kind of probe library of the exons mutation of detection MET genes 14, detection method and kit | |
AU2021291586B2 (en) | Multimodal analysis of circulating tumor nucleic acid molecules | |
WO2017112738A1 (en) | Methods for measuring microsatellite instability | |
KR102112951B1 (en) | Ngs method for the diagnosis of cancer | |
US20180187267A1 (en) | Method for conducting early detection of colon cancer and/or of colon cancer precursor cells and for monitoring colon cancer recurrence | |
US20180291436A1 (en) | Nucleic acid capture method and kit | |
US20180291369A1 (en) | Error-proof nucleic acid library construction method and kit | |
US20210115503A1 (en) | Nucleic acid capture method | |
JP2022512848A (en) | Methods, compositions and systems for calibrating epigenetic compartment assays | |
US20210115435A1 (en) | Error-proof nucleic acid library construction method | |
EP3938541B1 (en) | Method for sequencing a direct repeat | |
JP2001137000A (en) | Distinction of gene mutation | |
WO2023056300A1 (en) | Personalized cancer liquid biopsies using primers from a primer bank | |
JP2016512696A (en) | Method for amplifying fragmented target nucleic acid using assembler sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REGIONS BANK, AS COLLATERAL AGENT, GEORGIA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NEOGENOMICS LABORATORIES, INC.;REEL/FRAME:041182/0717 Effective date: 20161222 |
|
AS | Assignment |
Owner name: NEOGENOMICS LABORATORIES, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALBITAR, MAHER;REEL/FRAME:042004/0858 Effective date: 20170411 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NEOGENOMICS LABORATORIES, INC.;REEL/FRAME:049624/0512 Effective date: 20190627 Owner name: NEOGENOMICS LABORATORIES, INC., FLORIDA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:REGIONS BANK, AS COLLATERAL AGENT;REEL/FRAME:049629/0235 Effective date: 20190627 Owner name: PNC BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT, PENNSYLVANIA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:NEOGENOMICS LABORATORIES, INC.;REEL/FRAME:049624/0512 Effective date: 20190627 |
|
AS | Assignment |
Owner name: NEOGENOMICS LABORATORIES, INC., FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PNC BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT;REEL/FRAME:052625/0295 Effective date: 20200504 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230625 |