US10357306B2 - Planar ferromagnetic coated surgical tip and method for making - Google Patents
Planar ferromagnetic coated surgical tip and method for making Download PDFInfo
- Publication number
- US10357306B2 US10357306B2 US14/711,662 US201514711662A US10357306B2 US 10357306 B2 US10357306 B2 US 10357306B2 US 201514711662 A US201514711662 A US 201514711662A US 10357306 B2 US10357306 B2 US 10357306B2
- Authority
- US
- United States
- Prior art keywords
- planar
- tip
- strips
- substrate
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000005294 ferromagnetic effect Effects 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 95
- 238000000576 coating method Methods 0.000 claims abstract description 54
- 239000011248 coating agent Substances 0.000 claims abstract description 51
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000002224 dissection Methods 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims description 40
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 26
- 239000010949 copper Substances 0.000 claims description 26
- 238000005520 cutting process Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 20
- 239000000956 alloy Substances 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 229910052790 beryllium Inorganic materials 0.000 claims description 8
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 4
- 238000004070 electrodeposition Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 36
- 210000001519 tissue Anatomy 0.000 description 36
- 239000004020 conductor Substances 0.000 description 30
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 21
- 239000010410 layer Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 238000005452 bending Methods 0.000 description 12
- 239000003302 ferromagnetic material Substances 0.000 description 12
- 238000007747 plating Methods 0.000 description 12
- 229910052721 tungsten Inorganic materials 0.000 description 12
- 239000010937 tungsten Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 238000007789 sealing Methods 0.000 description 6
- 229910000952 Be alloy Inorganic materials 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000000451 tissue damage Effects 0.000 description 4
- 231100000827 tissue damage Toxicity 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium dioxide Chemical compound O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002439 hemostatic effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910016555 CuOFe2O3 Inorganic materials 0.000 description 1
- 229910016697 EuO Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910015191 FeOFe2O3 Inorganic materials 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 229910017955 MgOFe2O3 Inorganic materials 0.000 description 1
- -1 MnAs Chemical compound 0.000 description 1
- 229910016629 MnBi Inorganic materials 0.000 description 1
- 229910016987 MnOFe2O3 Inorganic materials 0.000 description 1
- 229910016964 MnSb Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229910005857 NiOFe2O3 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 229910009493 Y3Fe5O12 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002828 effect on organs or tissue Effects 0.000 description 1
- 230000001700 effect on tissue Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- MGRWKWACZDFZJT-UHFFFAOYSA-N molybdenum tungsten Chemical compound [Mo].[W] MGRWKWACZDFZJT-UHFFFAOYSA-N 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229910001235 nimonic Inorganic materials 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001088 rené 41 Inorganic materials 0.000 description 1
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
- A61B18/085—Forceps, scissors
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00526—Methods of manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00929—Material properties isolating electrical current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00071—Electrical conductivity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00089—Thermal conductivity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00107—Coatings on the energy applicator
- A61B2018/00148—Coatings on the energy applicator with metal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00601—Cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
- A61B2018/087—Probes or electrodes therefor using semiconductors as heating element
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B2018/146—Scissors
Definitions
- the present invention relates to surgical tools. More specifically, the present invention relates to an improved ferromagnetic surgical tips and method of making such surgical tips.
- Surgery generally involves cutting or dissection of tissue or other materials. These applications are generally performed by cutting tissue, fusing tissue, or tissue destruction.
- Current electrosurgery modalities used for cutting, coagulating, desiccating, ablating, or fulgurating tissue have undesirable side effects and drawbacks.
- ferromagnetic coated tungsten cutting instruments such instruments have some limitations. For example, surgical tips having tungsten wire substrates have limited malleability because the tungsten substrate is very stiff.
- tungsten wire can be difficult to plate with other materials, requiring special plating processes and attention to quality control. Differences in the coefficient of thermal expansion between tungsten and ferromagnetic coatings may also cause cumulative stresses over time between the layers when the parts heat up and cool down.
- tungsten wire limits its malleability when forming customized shapes.
- Tungsten is also a relatively rare and expensive metal.
- the present invention relates to improved structures for manufacturing surgical tips.
- the present invention provides a metal sheet comprising a plurality of surgical dissection tip substrates connected at the base of the surgical dissection tip substrate by a tab, wherein each surgical dissection tip substrate comprises two substantially parallel planar extension strips connected to a tip.
- the surgical dissention tip may be configured in a planar spatula shape having a greater cross sectional area than the thickness of the substrate.
- the present invention also provides improved surgical tips having ferromagnetic coatings and methods for manufacturing such surgical tips.
- the present invention provides a surgical dissection tip, comprising a substrate comprising beryllium copper; and a ferromagnetic layer coating at least a portion of the substrate.
- the substrate may comprise other alloys of copper, tungsten alloys, cobalt-based alloys, or nickel-based alloys. It is also contemplated that the substrate of the present invention may comprise clad materials, such as copper clad beryllium copper, copper clad stainless steel, copper clad titanium, and copper clad Haynes 25.
- the beryllium copper may comprise greater than 1 percent by weight beryllium. In other embodiments, the beryllium copper comprises greater than 1.5 percent by weight beryllium. In yet other embodiments, the beryllium copper comprises about 2 percent by weight beryllium.
- the substrate comprises beryllium copper laminated to one or more layer of copper. In other embodiments, the substrate comprises beryllium copper laminated between two layers of copper. In these cases, the sandwich can be optimized with a wide variety of materials to achieve the appropriate balance of thermal conductivity, stiffness and electrical conductivity.
- the ferromagnetic coating is a ferromagnetic alloy.
- the ferromagnetic coating comprises a material selected from the group consisting of a nickel/iron alloy and a nickel/chromium alloy.
- the ferromagnetic coating may comprise a nickel iron alloy having about 50-80% by weight nickel and 50-20% by weight iron.
- the present invention provides a surgical dissection tip, comprising: a substrate comprising beryllium copper, wherein the substrate comprises a planar tip having two planar extension strips, wherein the planar tip and the planar extension strips are within the same plane; and a ferromagnetic layer coating at least a portion of the planar tip.
- the two planar extension strips are substantially parallel.
- the planar extension strips have a width in the plane of the extension strips and a thickness in a plane perpendicular to the plane of the extension strips, wherein the width of each extension strip is greater than the thickness of the extension strip.
- the present invention provides a method for manufacturing a surgical dissection tip, comprising: forming a substrate comprising beryllium copper, wherein the substrate comprises a planar tip having two planar strips extending from the tip, wherein the tip and the planar extension strips are within the same plane; and coating at least a portion of the tip of the substrate with a ferromagnetic layer.
- the two planar extension strips are substantially parallel.
- the substrate comprising beryllium copper is formed by a process comprising electrodeposition.
- the thickness of the planar sheet is from about 0.3 mm to about 1.5 mm.
- the present invention provides a method for manufacturing a surgical dissection tip, comprising: providing a planar sheet of substrate material comprising beryllium copper; removing material from the sheet of substrate to provide a planar tip having two planar strips extending from the tip, wherein the tip and the planar extension strips are within the same plane; and coating at least a portion of the tip of the substrate with a ferromagnetic layer.
- the two planar extension strips are substantially parallel.
- the material from the sheet of substrate is removed by a process comprising etching.
- the material from the sheet of substrate is removed by a process comprising cutting.
- the material from the sheet of substrate may be removed by such processes as stamping, laser etching, laser cutting, and the like.
- the planar tip has a central region and an edge and the thickness of the central region is greater than the thickness at the edge to provide a sharper edge for cutting.
- the thickness of the planar sheet is from about 0.3 mm to about 1.5 mm.
- FIG. 1A shows a flat thermal surgical heating element
- FIG. 1B shows a flat thermal surgical heating element with a wider tip
- FIG. 1C shows a flat thermal surgical heating element having a pointed tip
- FIG. 1D shows a flat thermal surgical heating element having a tip coated with a ferromagnetic material
- FIG. 1E shows a surgical instrument having an exemplary surgical tip
- FIG. 2A shows a perspective view of multiple thermal surgical heating elements that are manufactured from a single sheet of material
- FIG. 2B shows a top view of multiple thermal surgical heating elements that are manufactured from a single sheet of material
- FIG. 3A shows a side view of a bent surgical tip
- FIG. 3B shows a perspective view of a bent surgical tip
- FIG. 4A shows shears, with a detail view of the shears tip
- FIG. 4B shows a perspective view of a shears heating element
- FIG. 4C shows a side view of a shears heating element
- FIG. 5A shows forceps, with a detail view of the forceps blade
- FIG. 5B shoes a forceps heating element.
- ferromagnetic refers to any ferromagnetic-like material that is capable of producing heat via magnetic induction, including but not limited to ferromagnets and ferrimagnets.
- FIGS. 1A, 1B, 1C and 1C show perspective views of several embodiments of the surgical tip of the present invention.
- FIGS. 1A, 1B, 1C each show a surgical tip substrate 10 comprising a planar tip 11 having two substantially parallel planar strips 12 and 13 extending from the tip 11 , wherein the tip 11 and the planar extension strips 12 and 13 are within the same plane.
- FIGS. 1A, 1B and 1C further show the shape of a spatula area wherein the width of the spatula is greater than the thickness of the substrate.
- FIG. 1D shows a surgical tip substrate 10 having a coating 14 on at least a portion of the tip 11 of the substrate, wherein the coating comprises a ferromagnetic layer.
- FIG. 1E shows a surgical tool 19 having exemplary surgical tip 10 .
- FIGS. 2A and 2B there is shown a series of surgical tip substrates 10 a , 10 b and 10 c , manufactured together as a single unit and connected via a tab 21 from which each of the individual surgical tip substrates 10 a , 10 b , and 10 c extend.
- the surgical tip substrates 10 a , 10 b , and 10 c are eventually separated from the tab 21 to form individual surgical tips that will be installed in a thermal surgical tool.
- FIGS. 3A and 3B illustrate an embodiment in which the flat surgical tip substrate is bent, so as to provide a surgical tip configuration that can be used to dissect tissue in locations or at angles that may be too difficult for a straight surgical tip.
- a surgical tip substrate 30 has surgical tip 31 with planar extensions 32 and 33 , each of which have a bend 35 .
- the bend 35 can be made either as part of the manufacturing process (after the flat surgical tip structure has been created) or by the end user.
- the location of the bend is selected at a location along the extensions that facilitates a bent tip size suitable for the particular surgical technique being employed by the surgeon.
- FIGS. 4A, 4B and 4C provide various views of a set of surgical shears ( FIG. 4A ) and the heating elements ( FIGS. 4B and 4C ) used in such shears.
- the surgical shears shown in FIG. 4A include surgical tip substrate 40 on at least one of the opposing blades 49 a and 49 b.
- the surgical tip substrate 40 used in such surgical shears comprises extensions 42 and 43 extending from the proximal end where bends 45 a and 45 b are located.
- the surgical tip may be manufactured by creating a long planar strip.
- the location of the bends 45 a and 45 b may be pre-determined by manufacturing the strip with score marks, peforations, thinner material, stamped depressions, or the like, at the location of the bends, so as to facilitate customized bending the substrate by the end user surgeon.
- the long planar strip is then bent at the location of the score marks or, in the absence of score marks, at any location where a bend is desired.
- the surgical tip is coated with a ferromagnetic material, either prior to the bending step or following the bending step. Coating the surgical tip with a ferromagnetic material following the bending step would, of course, have the advantage of avoid possible stress fractures in the ferromagnetic material during the bending process.
- the surgical tip may further include a raised portion 44 so as to create an area of greater pressure at the apex of the raised portion 44 when the shears are clamped down on tissue, thereby cutting the tissue.
- the raised portion 44 can be created either by depositing additional beryllium copper material or other metal alloy material to the planar substrate, or by depositing a larger quantity of ferromagnetic material on the flat beryllium copper substrate, or other metal alloy substrate, when the ferromagnetic coating is applied.
- FIGS. 5A and 5B illustrate another embodiment of the invention, wherein the surgical tip 50 is applied to forceps comprising forcep tips 59 a and 59 b .
- the surgical tip 50 may be used on one or both sides of the forcep ends 59 a and 59 b .
- the construction of the surgical tip 50 may be manufactured by creating a long planar strip have two extensions 52 and 53 that extend from the top portion 51 .
- the location of the bends 55 a and 55 b may be pre-determined by manufacturing the strip with score marks at the location of the bends.
- the long planar strip is then bent at the location of the score marks or, in the absence of score marks, at any location where a bend is desired so as to conform to the shape of the forcep tip.
- the surgical tip is coated with a ferromagnetic material, either prior to the bending step or following the bending step. Coating the surgical tip with a ferromagnetic material following the bending step would, of course, have the advantage of avoid possible stress fractures in the ferromagnetic material during the bending process.
- the surgical tip preferably uses a ferromagnetic coated conductor to treat or destroy tissue (i.e. endothelial tissue welding, homeostasis, ablation, etc). It will be appreciated that the surgical tip may use heat to incise tissue and not cut tissue in the sense of a sharp edge being drawn across the tissue as with a conventional scalpel. While the embodiments of the present invention could be made with a relatively sharp edge so as to form a cutting blade, such is not necessary as the heated coating discussed herein will separate tissue without the need for a cutting blade or sharp edge. However, for convenience, the term cutting is used when discussing separating or dissecting tissue.
- a control mechanism such as a foot pedal may be used to control output energy produced by a power subsystem.
- the energy from the power subsystem may be sent via radio frequency (RF) or oscillating electrical energy along a cable to a handheld surgical tool, which contains substrate 10 having at least a section thereof circumferentially coated with a ferromagnetic coating 14 .
- the ferromagnetic coating 14 may convert the electrical energy into available thermal energy via induction and corresponding hysteresis losses in the ferromagnetic material disposed around the conductor substrate 10 .
- Electrodeposited films such as a nickel-iron coating like PERMALLOYTM, may form an array of randomly aligned microcrystals, resulting in randomly aligned domains, which together may have an open loop hysteresis curve when a high frequency current is passed through the conductor.
- the alternating RF current in the conductor's surface produces an alternating magnetic field, which may excite the domains in the ferromagnetic coating 14 .
- hysteresis losses in the coating may cause inductive heating.
- heating occurs due to a combination of hysteresis losses and resistive heating due to the skin effect.
- the RF energy may travel along the conductor's surface in a manner known as the “skin effect”.
- the current is forced through the narrow cross-sectional area of the ferromagnetic plating resulting in a high current density and therefore joule heating.
- the RF conductor from the signal source up to and including the tip may form a resonant circuit at a specific frequency (also known as a tuned circuit). Changes in the tip “detune” the circuit. Thus, should the ferromagnetic coating 14 or the conductor substrate 10 become damaged, the circuit may likely become detuned. This detuning may reduce the efficiency of the heating of the ferromagnetic coating 14 such that the temperature will be substantially reduced. The reduced temperature may ensure little or no tissue damage after breakage.
- the handheld surgical tool may include indicia of the power being applied and may even include a mechanism for controlling the power.
- a series of lights could be used to indicate power level
- the handheld surgical tool could include a switch, rotary dial, set of buttons, touchpad or slide that communicates with the power source to regulate power and thereby affect the temperature at the ferromagnetic coating 14 to having varying effects on tissue. Examples of such surgical tools are shown in U.S. Pat. No. 8,425,503. While the controls may be present on the foot pedal or the handheld surgical tool, they may also be included in the power subsystem or even a separate control instrument. Safety features such as a button or touchpad that must be contacted to power the handheld surgical tool may be employed, and may include a dead man's switch.
- the ferromagnetic coating 14 heats through the mechanisms of skin effect and joule heating, it also provides a temperature cap due to its Curie temperature, which causes the temperature of the ferromagnetic material to stabilize around the Curie temperature if sufficient power is provided to reach the Curie temperature. Once the temperature has dropped below the Curie temperature, the material again heats up to the Curie temperature. Thus, the temperature in the ferromagnetic coating may reach the Curie temperature with the application of sufficient power, but will not likely exceed the Curie temperature.
- the surgical tip 10 allows the power output to be adjustable in order to adjust the temperature of the tool and its effect on tissue. This adjustability gives the surgeon precise control over the effects that may be achieved by the handheld surgical tool. Tissue effects such as cutting, hemostasis, tissue welding, tissue vaporization and tissue carbonization occur at different temperatures.
- the surgeon or other physician, etc. can adjust the power delivered to the ferromagnetic coating 14 and consequently control the tissue effects to achieve a desired result.
- Thermal power delivery can be controlled by varying the amplitude, frequency or duty cycle of the alternating current waveform, or alteration of the circuit to effect the standing wave driving the ferromagnetic coated conductor, which may be achieved by input received by the foot pedal, the power subsystem, or the controls on the handheld surgical tool.
- ferromagnetic material can be heated to a cutting temperature in a brief interval of time (typically as short one quarter of a second). Additionally, because of the relatively low mass of the coating, the small thermal mass of the conductor, and the localization of the heating to a small region due to construction of the handheld surgical tool, the material will also cool extremely rapidly. This provides a surgeon with a precise thermal tool while reducing accidental tissue damage caused by touching tissue when the thermal tool is not activated.
- the time period required to heat and cool the handheld surgical tool will depend, in part, on the relative dimensions of the conductor substrate 10 and the ferromagnetic coating 14 and the heat capacity of the structure of the surgical tool, as well as its heat capacity and thermal conductivity.
- the desired time periods for heating and cooling of the handheld surgical tool can be minimized with a beryllium copper conductor substrate having a thickness of from about 0.2 to about 0.5 mm, e.g. about 0.375 mm, and a ferromagnetic coating of a Nickel Iron alloy (such as NIRONTM available from Enthone, Inc. of West Haven, Conn.) about the conductor substrate.
- a Nickel Iron alloy such as NIRONTM available from Enthone, Inc. of West Haven, Conn.
- the thickness of the ferromagnetic coating may be between about 0.05 ⁇ m and about 500 ⁇ m. In some embodiments, the thickness of the ferromagnetic coating may be between about 1 ⁇ m and about 50 ⁇ m. Different lengths of the conductor substrate may be coated depending on desired use, such as two centimeter long coating when used as a cutting tool.
- One advantage of the present invention is that a sharp edge is not needed.
- the tool When power is not being supplied to the surgical tool, the tool will not inadvertently cut tissue of the patient or of the surgeon if it is dropped or mishandled. If power is not being supplied to the conductor substrate 10 and coating 14 , the “cutting” portion of the tool may be touched without risk of injury. This is in sharp contrast to a cutting blade which may injure the patient or the surgeon if mishandled.
- handpiece may also be placed on the handpiece in various locations. This may include a sensor to report temperature or a light to illuminate the surgical area.
- This surgical tips described herein may provide advantages over monopolar and bipolar electrical systems currently available because the thermal damage may remain very close to the ferromagnetic surface of the coated region, whereas monopolar and bipolar electrical tissue ablation may frequently cause tissue damage for a distance away from the point of contact.
- This method may also overcome disadvantages of other thermal devices based upon resistive heating, which may require more time to heat and cool, and thus present greater patient risk.
- the thin ferromagnetic coating 14 may reduce the heating of other non-target material in the body, such as blood when working within the heart in atrial ablation—which can lead to complications if a clot is formed.
- the small thermal mass of the conductor substrate 10 and localization of the heating to a small region provided by the construction of the tool (i.e. ferromagnetic coating 14 and adjacent structures) provides a reduced thermal path for heat transfer in directions away from the location of the ferromagnetic coating 14 . This reduced thermal path may result in the precise application of heat at only the point desired.
- risks of ignition such as by anesthetic gasses within or around the patient by sparks, are also reduced.
- the thermal surgical tip 10 may be used for a variety of therapeutic means—including sealing, “cutting” or separating tissue, coagulation, or vaporization of tissue.
- the thermal surgical tip 10 may be used like a knife or sealer, wherein the surgeon is actively “cutting” or sealing tissue by movement of the ferromagnetic coating 14 through tissue.
- the thermal action of the embodiments disclosed here may have distinct advantages including substantial reduction, if not elimination, of deep tissue effects compared with those associated with monopolar and bipolar RF energy devices.
- the ferromagnetic coated substrate 10 may be inserted into a lesion and set to a specific power delivery or variable power delivery based on monitored temperature.
- the thermal effects on the lesion and surrounding tissue may be monitored until the desired thermal effect is achieved or undesired effects are noticed.
- One advantage of the application of the ferromagnetic coated conductor is that it may be cost-effective compared to microwave or thermal laser modalities and avoids the undesired tissue effects of microwave lesion destruction.
- a surgeon can insert the ferromagnetic coated conductor into a tumor or other tissue to be destroyed and precisely control the tissue damage that is created by activating the handheld surgical tool.
- Dynamic load issues can be caused by the interaction of the ferromagnetic coated substrate 10 with various tissues. These issues may be minimized by the standing current wave being maximized at the load location.
- Multiple different frequencies can be used, including frequencies from 4 megahertz to 24 gigahertz, or between 12 MHz and 200 MHz. In some regulated countries it may be preferable choose frequencies in the ISM bands such as bands with the center frequencies of 6.78 MHz, 13.56 MHz, 27.12 MHz, 40.68 MHz, 433.92 MHz, 915 MHz, 2.45 GHz, 5.80 GHz, 24.125 GHz, 61.25 GHz, 122.5 GHz, 245 GHz.
- the oscillator uses an ISM Band frequency of 40.68 MHz, a class E amplifier, and a length of coaxial cable, all of which may be optimized for power delivery to a ferromagnetic coated substrate 10 with a ferromagnetic coating 14 consisting of a thickness of between 0.05 micrometer and 500 micrometers, and preferably between 1 micrometer and 50 micrometers, with the optimal plating thickness being five skin depths at the excitation frequency.
- a useful estimate may be to start the ferromagnetic coating thickness at 10% of the conductor diameter or thickness, and up to 5 mm long. However, the ferromagnetic coating may be disposed as far along the length or along multiple regions of the conductor as where heating may be desired.
- the ferromagnetic coating 14 may be formed from a Nickel Iron (NiFe) alloy, such as NIRONTM from Enthone, Inc. of West Haven, Conn., or other ferromagnetic coatings, including Co, Fe, FeOFe 2 O 3 , NiOFe 2 O 3 , CuOFe 2 O 3 , MgOFe 2 O 3 , MnBi, Ni, MnSb, MnOFe 2 O 3 , Y 3 Fe 5 O 12 , CrO 2 , MnAs, EuO, magnetite, yttrium iron garnet, and PERMALLOYTM.
- the size of the conductor, size of the ferromagnetic coating, associated thicknesses, shape, primary geometry, composition, power supply and other attributes may be selected based on the type of procedure and surgeon preferences. For example, a brain surgeon may desire a small instrument in light handheld package designed for quick application within the brain, while an orthopedic surgeon may require a larger device with more available power for operation
- the conductor substrate 10 may be formed from any one of various copper beryllium alloys, or combinations of copper beryllium alloy with additional layers of copper. Copper beryllium alloys generally fall into two categories: alloys having high strength, and alloys having high conductivity. In some embodiments of the present invention, the copper beryllium alloys are selected from the group of alloys having high strength, such as Alloys 25, 190, 290, M25 and 165. Such alloys generally comprise a beryllium content ranging from about 1.5 to about 2.0 percent by weight, with the balance comprising copper. For example, Alloys 25, 190 and 290 (designated as Copper Alloy UNS No.
- C17200 comprise beryllium ranging from 1.8 to 2.0% by weight, a minimum of 0.2 percent by weight cobalt+nickel, a maximum of 0.6 percent cobalt+nickel+iron and a maximum of 0.02 percent lead.
- Suitable beryllium copper alloys may be obtained from numerous commercially available sources, such as Materion Corporation (Elmore Ohio).
- the beryllium copper alloy contemplated is Alloy 25, which attains a high strength and hardness, with a tensile strength exceeding 200 ksi, and a hardness approaching Rockwell C45. Alloy 25 also exhibits exceptional resistance to stress relaxation at elevated temperatures, making it particularly useful in thermal surgical applications.
- the substrate may comprise other alloys of copper, such as brass or phosphor bronze.
- the substrate may comprise titanium.
- the substrate may comprise tungsten alloys, such as Tungsten molybdenum or tungsten rhenium.
- the substrate may comprise such as cobalt-based alloys, for example, Haynes 25/L605 or Haynes 188.
- the substrate may comprise nickel-based alloys, such as Inconel, Hastelloy, Nimonic, or Rene41. It is also contemplated that the substrate of the present invention may comprise clad materials, such as copper clad berrylium copper, copper clad stainless steel, copper clad titanium, and copper clad Haynes 25.
- the conductor substrate 10 may also comprise a multi-layered laminate comprising beryllium copper or other metal or metal alloy laminated with one or more layers of copper.
- the present invention contemplates a conductor substrate comprising a core layer of beryllium copper laminated between two layers of copper.
- the present invention contemplates a conductor substrate 10 comprising a layer of stainless steel or Haynes 25 laminated with one or more layers of copper. In some embodiments, the present invention contemplates a conductor substrate comprising a core layer of stainless steel or Haynes 25 laminated between two layers of copper.
- the present invention provides improved surgical tip geometries that provide improved tissue compression area and hence improved hemostatis.
- the present invention provides a surgical tip having a planar spatula shape, for example, having a greater cross sectional area than the thickness of the substrate.
- FIG. 1A shows a surgical tip having a simple rounded shape
- FIG. 1B wide rounded shape
- FIG. 1C pointed shape
- the conductor tip may have any other geometry suitable for its intended purpose.
- the conductor may also be shaped such that it has an oval, triangular, square or rectangular cross-section.
- FIGS. 1A, 1B and 1C Various tip configurations are shown, for example, in FIGS. 1A, 1B and 1C .
- the ferromagnetic coating may be between a first section (or proximal portion) and a second section (or distal portion) of the conductor. This may provide the advantage of limiting the active heating to a small area, instead of the entire conductor.
- a power supply may also connect to the first and second section to include the ferromagnetic coating within a circuit providing power.
- the present invention also contemplates geometries that may be used in a shearing tool, such as scissors, a sealing/cutting clamp, and the like.
- a flat surgical tip tool heating element of any shape desired can be manufactured by any one of various suitable methods, including chemical etching, stamping, machining, or by electro-deposition from a metal sheet. This provides flexibility to optimize the tool geometry to provide a broader hemostatic surface(s). While beryllium copper (BeCu) is the preferred material, given its ease of plating, electrical and thermal properties, good formability, and low cost, other materials may also be used, including beryllium copper laminates with copper. Tungsten is an alternative material if significantly greater stiffness is required.
- BeCu beryllium copper
- Tungsten is an alternative material if significantly greater stiffness is required.
- Multiple heating elements can be etched from single sheet. They can be arranged to maximize part density. Multiple units can be manufactured from a single sheet of material to improve plating productivity, as shown in FIGS. 2A and 2B . All of these factors reduce cost. Cleaning and plating these heating elements is also much easier with a BeCu substrate. Once plated, the parts may be coated either with TiAlN for the dissection tools or with a non-stick coating like PTFE, for the cutting and sealing heating elements.
- Sheet stock for BeCu is readily available in many thicknesses, including a standard 0.5 mm (0.020 in).
- the desired element shape is created by commercially available processes like photo etching, stamping and EDM. This allows manufacture of heating elements for dissection or vessel sealing of any shape desired.
- a typical new dissection tip shape, with a hemostatic pad is shown, for example, in FIGS. 1A, 1B and 1C .
- BeCu and many other substrate sheet stock materials are ductile. Consequently the tips made from it, are bendable, particularly between the plated area and the end of the tip extension, as shown in FIGS. 3A and 3B .
- the thermal expansion coefficient of BeCu is 16.7 ⁇ m/m/° C.
- Niron has a thermal expansion coefficient of 13.3 ⁇ m/m/° C.
- BeCu has an electrical resistivity of 6.8 ⁇ -cm versus 5.6 for tungsten. This is a slight increase and has an insignificant impact on the joule heating of the non-plated sections compared to tips of similar geometry made of tungsten.
- Sheet material of BeCu is easily plated, requiring less cleaning and preparation and plate more reliably than other materials, such as tungsten wire.
- etched parts are easily organized into multi element combs which can be plated as a single entity, as shown in FIGS. 2A and 2B . This may improve the consistency of plating depth and reduce the time and labor involved in the plating process.
- Etching the parts may also provide a sharper leading edge compared to a round wire, where, for example, the edge is only partially or gradually etched away. This may reduce drag when the tool is pulled through tissue. Additional surface contact area may also play a part.
- etching parts from BeCu is significantly less than the cost of bending tungsten wire and virtually eliminates the potential for the material to break due to bending. This combined with the simplicity of plating, make these heating elements less expensive than plated tungsten wire.
- the shape of a heating element is a broad 1-2 mm wide part with a formed convex surface. This is easily accomplished by etching and then forming the parts.
- BeCu has a modulus of elasticity of 130 GPa versus 400 GPa for tungsten. As deflection of a beam is inversely proportion to the modulus of elasticity, a piece formed from BeCu would be expected to be 1 ⁇ 3 as stiff as Tungsten at the same dimensions. This can be overcome somewhat by thickening the material, increasing the leg width, shortening the legs, or using carefully designed cross-sectional geometries.
- the thermal conductivity of BeCu is 120 W/m K which is 31% less than tungsten at 174 W/mK. This difference may slow the conduction of heat out of the heating element assuming the same cross sectional dimensions as a 0.5 mm wire. Since heat flow is proportional to the cross-sectional area and the thermal conductivity, simply increasing the cross-sectional area to compensate for the loss in conductivity would alleviate this concern. Since it is advantageous to go well beyond the cross sectional area of the tungsten wire for structural reasons, thermal conductivity may not be an issue.
- An alternative substrate material is titanium, which has a lower thermal conductivity at 121 W/mK but has good stiffness.
- Tungsten has a volumetric heat capacity of 2.5 ⁇ 10 3 KJ/m 3 K.
- Titanium has a similar volumetric heat capacity of 2.4 ⁇ 10 3 KJ/m 3 K.
- BeCu has a volumetric heat capacity of 3.47 ⁇ 10 3 KJ/m 3 K. This is 39% greater than tungsten and the part will store more heat energy and cool off slower unless a better conduction path is provided. Combined with the lower thermal conductivity of the material we would need legs with 1.8 ⁇ the cross sectional area for the BeCu substrate than the 0.5 mm diameter tungsten wire to attain the same thermal drainage rate and cool down time.
- Suitable photo chemical etching or photo chemical milling processes are well known in the industry. Such processes are similar to printed circuit board fabrication processes. Examples of suitable process include processes utilized by such companies as Tech-Etch, FotoFab, United Western Enterprises, Kem-Mil-Co, and Elcon Precision.
- such processes include the step of creating a design for the etched part, which is sent to an etching supplier in the form of a 2D line drawing computer file.
- the file shows the outline of the part, any holes, and bend or score lines, if any.
- the sheet material to be used is also specified, including thickness, temper or heat treatments, and any special instructions.
- the company creates a photo stencil or photo tool from the computer file. There are usually two stencils—a front and a back. The metal sheet that will make the finished parts is cleaned and a photoresistive layer is laminated to both front and back surfaces of the metal sheet. This photoresist is sensitive to light. The stencils are placed on the front and back of the metal sheet over the photoresist.
- a light is shined through the stencils on to the photoresist.
- the photoresist hardens into an acid resistant film where the light strikes the photoresist.
- the unexposed photoresist areas are washed away.
- the metal sheet with the photoresist laminates on both sides is sprayed or immersed in an acid bath that eats away any of the bare metal areas, leaving metal intact where the photoresist was applied.
- the remaining photoresist is cleaned from the etched sheet.
- the finished parts are broken out of the surrounding frame, and bent or formed into a final shape if that was specified for the particular part.
- the etched parts are cleaned and then plated with a ferromagnetic alloy where heat is to be generated.
- This plated component is then over coated with a protective layer such as TiAlN, TiN, gold plating, PTFE or other materials, provided by outside processors.
- the plated product is then assembled into a finished dissection tip or a shear tool.
- the etching process produces a semi-circular cavity on the upper and lower sides of the substrate that connect to form a sharpened edge in the middle, similar to the shape of a curved bracket “ ⁇ ”.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Otolaryngology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims (26)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/711,662 US10357306B2 (en) | 2014-05-14 | 2015-05-13 | Planar ferromagnetic coated surgical tip and method for making |
PCT/US2015/030806 WO2015175792A1 (en) | 2014-05-14 | 2015-05-14 | Planar ferromagnetic coated surgical tip and method for making |
US16/506,869 US11701160B2 (en) | 2014-05-14 | 2019-07-09 | Planar ferromagnetic coated surgical tip and method for making |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461996741P | 2014-05-14 | 2014-05-14 | |
US14/711,662 US10357306B2 (en) | 2014-05-14 | 2015-05-13 | Planar ferromagnetic coated surgical tip and method for making |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/506,869 Continuation US11701160B2 (en) | 2014-05-14 | 2019-07-09 | Planar ferromagnetic coated surgical tip and method for making |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150327907A1 US20150327907A1 (en) | 2015-11-19 |
US10357306B2 true US10357306B2 (en) | 2019-07-23 |
Family
ID=54480684
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/711,662 Active 2036-06-24 US10357306B2 (en) | 2014-05-14 | 2015-05-13 | Planar ferromagnetic coated surgical tip and method for making |
US16/506,869 Active 2035-09-09 US11701160B2 (en) | 2014-05-14 | 2019-07-09 | Planar ferromagnetic coated surgical tip and method for making |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/506,869 Active 2035-09-09 US11701160B2 (en) | 2014-05-14 | 2019-07-09 | Planar ferromagnetic coated surgical tip and method for making |
Country Status (2)
Country | Link |
---|---|
US (2) | US10357306B2 (en) |
WO (1) | WO2015175792A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230036814A1 (en) * | 2021-07-21 | 2023-02-02 | Dell Products, Lp | Add-in card connector contact optimization for high-speed signaling |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8523851B2 (en) | 2009-04-17 | 2013-09-03 | Domain Surgical, Inc. | Inductively heated multi-mode ultrasonic surgical tool |
US9107666B2 (en) | 2009-04-17 | 2015-08-18 | Domain Surgical, Inc. | Thermal resecting loop |
US9131977B2 (en) | 2009-04-17 | 2015-09-15 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
US9526558B2 (en) | 2011-09-13 | 2016-12-27 | Domain Surgical, Inc. | Sealing and/or cutting instrument |
US12029469B2 (en) * | 2018-10-25 | 2024-07-09 | Domain Surgical, Inc. | Surgical shears having ferromagnetic heater |
KR102295827B1 (en) * | 2019-10-02 | 2021-08-30 | (주)나노맥 | A Magnetic Inducting Type of a Surgical Device |
WO2021066479A2 (en) * | 2019-10-02 | 2021-04-08 | (주)나노맥 | Magnetic induction-type surgical instrument |
US11779386B2 (en) * | 2020-04-16 | 2023-10-10 | Covidien Lp | Two-part seal plate for vessel sealer and method of manufacturing same |
Citations (334)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US300155A (en) | 1884-06-10 | stabr | ||
US770368A (en) | 1904-09-20 | Surgical instrument | ||
US1104053A (en) | 1912-09-28 | 1914-07-21 | Donald Henry Lea | Tool for uncapping honey and like purposes. |
US1280052A (en) | 1916-12-18 | 1918-09-24 | Tiodolf Lidberg | Therapeutic instrument. |
US1335987A (en) | 1919-05-27 | 1920-04-06 | Kienle | Dental instrument |
US1366231A (en) | 1917-09-08 | 1921-01-18 | Kny Scheerer Corp | Sterilizable cautery |
US1401104A (en) | 1920-03-15 | 1921-12-20 | Kruesheld Henry | Surgical instrument |
US1794296A (en) | 1927-08-24 | 1931-02-24 | Mortimer N Hyams | Surgical instrument |
US2027854A (en) | 1934-11-14 | 1936-01-14 | Gen Tire & Rubber Co | Tube splicer |
US2050904A (en) | 1934-11-26 | 1936-08-11 | Trice Spencer Talley | Electric hemostat or cautery |
US2120598A (en) | 1937-03-06 | 1938-06-14 | George H Beuoy | Electrical cutting instrument |
US2250602A (en) | 1939-08-21 | 1941-07-29 | Paul W Pierce | Honey uncapping knife |
US2278633A (en) | 1940-08-15 | 1942-04-07 | American Telephone & Telegraph | Temperature control apparatus |
US2375154A (en) | 1943-10-07 | 1945-05-01 | Metals & Controls Corp | Electric furnace |
US2412977A (en) | 1943-11-19 | 1946-12-24 | Robertshaw Thermostat Co | Flame sensitive device |
US2501499A (en) | 1947-12-20 | 1950-03-21 | Gen Electric | Electric heating device and control therefor |
US2670425A (en) | 1952-05-01 | 1954-02-23 | Norton Co | Gas heater |
US2735797A (en) | 1956-02-21 | Method of heat sealing and severing | ||
US2782290A (en) | 1954-09-28 | 1957-02-19 | Westinghouse Electric Corp | Temperature responsive control device |
US2831242A (en) | 1953-03-25 | 1958-04-22 | Schwarzkopf Dev Co | Sintered electric resistance heating element |
US2846560A (en) | 1957-05-31 | 1958-08-05 | Gen Electric | Heater wire |
US2863036A (en) | 1957-06-19 | 1958-12-02 | Donald O Mitchell | Electrically heated butchering knives |
US2947345A (en) | 1958-10-08 | 1960-08-02 | Schjeldahl Co G T | Machine for making articles from multiple thermoplastic webs |
US2960592A (en) | 1959-10-12 | 1960-11-15 | Paul W Pierce | Knife for decapping honeycomb |
US3084242A (en) | 1961-11-14 | 1963-04-02 | Essex Wire Corp | Electric heater wire |
US3213259A (en) | 1961-05-23 | 1965-10-19 | Gen Electric | Electrode for electrical resistance heating tool |
US3350544A (en) | 1964-05-01 | 1967-10-31 | Arc O Vec Inc | Thermo-electrically controlled electrical heater |
US3352011A (en) | 1966-04-22 | 1967-11-14 | Wells Mfg Corp | Electrically heated flexible knife |
US3400252A (en) | 1965-10-20 | 1968-09-03 | Matsushita Electric Ind Co Ltd | Electrical heating device |
US3404202A (en) | 1964-11-06 | 1968-10-01 | Basic Inc | Electric resistance heater and method of making |
US3413442A (en) | 1965-07-15 | 1968-11-26 | Texas Instruments Inc | Self-regulating thermal apparatus |
US3414705A (en) | 1965-10-24 | 1968-12-03 | Texas Instruments Inc | Component oven |
US3434476A (en) | 1966-04-07 | 1969-03-25 | Robert F Shaw | Plasma arc scalpel |
US3501619A (en) | 1965-07-15 | 1970-03-17 | Texas Instruments Inc | Self-regulating thermal apparatus |
US3515837A (en) | 1966-04-01 | 1970-06-02 | Chisso Corp | Heat generating pipe |
US3520043A (en) | 1966-06-17 | 1970-07-14 | Johnson Matthey Co Ltd | Self-regulating heating elements |
US3556953A (en) | 1964-10-19 | 1971-01-19 | Werner P Schulz | Microsurgery suture-needle and of its method of manufacture |
US3768482A (en) | 1972-10-10 | 1973-10-30 | R Shaw | Surgical cutting instrument having electrically heated cutting edge |
US3825004A (en) | 1972-09-13 | 1974-07-23 | Durden Enterprises Ltd | Disposable electrosurgical cautery |
US3826263A (en) | 1970-08-13 | 1974-07-30 | R Shaw | Electrically heated surgical cutting instrument |
US3834392A (en) | 1973-02-01 | 1974-09-10 | Kli Inc | Laparoscopy system |
US3978312A (en) | 1974-10-17 | 1976-08-31 | Concept, Inc. | Variable temperature electric cautery assembly |
USRE29088E (en) | 1972-10-10 | 1976-12-28 | Surgical cutting instrument having electrically heated cutting edge | |
US4089336A (en) | 1970-08-13 | 1978-05-16 | Robert F. Shaw | Electrically heated surgical cutting instrument and method of using the same |
US4091813A (en) | 1975-03-14 | 1978-05-30 | Robert F. Shaw | Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same |
GB1546624A (en) | 1975-03-14 | 1979-05-23 | Shaw R F | Surgical cutting instrument heving relf-regulated electrical indoction heating of its cutting edge |
GB2022974A (en) | 1978-04-20 | 1979-12-19 | Shaw R F | Improved electrically heated apparatus and method and material |
USRE30190E (en) | 1967-11-09 | 1980-01-15 | Electrically heated surgical cutting instrument | |
US4185632A (en) | 1970-08-13 | 1980-01-29 | Shaw Robert F | Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same |
US4196734A (en) | 1978-02-16 | 1980-04-08 | Valleylab, Inc. | Combined electrosurgery/cautery system and method |
US4198957A (en) | 1967-11-09 | 1980-04-22 | Robert F. Shaw | Method of using an electrically heated surgical cutting instrument |
US4206759A (en) | 1970-08-13 | 1980-06-10 | Shaw Robert F | Surgical instrument having self-regulated vapor condensation heating of its cutting edge and method of using the same |
US4207896A (en) | 1970-08-13 | 1980-06-17 | Shaw Robert F | Surgical instrument having self-regulating dielectric heating of its cutting edge |
US4209017A (en) | 1970-08-13 | 1980-06-24 | Shaw Robert F | Surgical instrument having self-regulating radiant heating of its cutting edge and method of using the same |
US4256945A (en) | 1979-08-31 | 1981-03-17 | Iris Associates | Alternating current electrically resistive heating element having intrinsic temperature control |
EP0033958A1 (en) | 1980-02-08 | 1981-08-19 | Sumitomo Electric Industries Limited | A laser knife |
WO1982000746A1 (en) | 1980-08-20 | 1982-03-04 | D Blackmore | Skin effect heat generating unit having convective and conductive transfer of heat |
US4359052A (en) | 1976-01-26 | 1982-11-16 | Concept Inc. | Removable tip cautery |
US4364390A (en) | 1975-03-14 | 1982-12-21 | Shaw Robert F | Surgical instrument having self-regulating dielectric heating of its cutting edge and method of using the same |
US4371861A (en) | 1980-12-11 | 1983-02-01 | Honeywell Inc. | Ni-fe thin-film temperature sensor |
US4374517A (en) | 1980-06-10 | 1983-02-22 | Olympus Optical Co., Ltd. | Endoscope type high frequency surgical apparatus |
USRE31723E (en) | 1967-11-09 | 1984-11-06 | Surgical cutting instrument having electrically heated cutting edge | |
US4481057A (en) | 1980-10-28 | 1984-11-06 | Oximetrix, Inc. | Cutting device and method of manufacture |
US4485810A (en) | 1980-10-28 | 1984-12-04 | Oximetrix, Inc. | Surgical cutting blade |
US4492231A (en) | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
EP0130671A2 (en) | 1983-05-26 | 1985-01-09 | Metcal Inc. | Multiple temperature autoregulating heater |
US4493320A (en) | 1982-04-02 | 1985-01-15 | Treat Michael R | Bipolar electrocautery surgical snare |
US4523084A (en) | 1981-09-02 | 1985-06-11 | Oximetrix, Inc. | Controller for resistive heating element |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4600018A (en) | 1982-06-02 | 1986-07-15 | National Research Development Corporation | Electromagnetic medical applicators |
US4622966A (en) | 1981-06-30 | 1986-11-18 | Abbott Laboratories | Surgical cutting device |
US4658819A (en) | 1983-09-13 | 1987-04-21 | Valleylab, Inc. | Electrosurgical generator |
US4658820A (en) | 1985-02-22 | 1987-04-21 | Valleylab, Inc. | Electrosurgical generator with improved circuitry for generating RF drive pulse trains |
US4701587A (en) | 1979-08-31 | 1987-10-20 | Metcal, Inc. | Shielded heating element having intrinsic temperature control |
US4752673A (en) | 1982-12-01 | 1988-06-21 | Metcal, Inc. | Autoregulating heater |
US4807620A (en) | 1987-05-22 | 1989-02-28 | Advanced Interventional Systems, Inc. | Apparatus for thermal angioplasty |
US4839501A (en) | 1984-12-21 | 1989-06-13 | Metcal, Inc. | Cartridge soldering iron |
US4848337A (en) | 1979-09-10 | 1989-07-18 | Shaw Robert F | Abherent surgical instrument and method |
US4860745A (en) | 1986-07-17 | 1989-08-29 | Erbe Elektromedizin Gmbh | High frequency electrosurgical apparatus for thermal coagulation of biologic tissues |
US4877944A (en) | 1987-06-08 | 1989-10-31 | Metcal, Inc. | Self regulating heater |
US4914267A (en) | 1982-12-01 | 1990-04-03 | Metcal, Inc. | Connector containing fusible material and having intrinsic temperature control |
US4915100A (en) | 1988-12-19 | 1990-04-10 | United States Surgical Corporation | Surgical stapler apparatus with tissue shield |
US4927413A (en) | 1987-08-24 | 1990-05-22 | Progressive Angioplasty Systems, Inc. | Catheter for balloon angioplasty |
US4938761A (en) | 1989-03-06 | 1990-07-03 | Mdt Corporation | Bipolar electrosurgical forceps |
US5003991A (en) | 1987-03-31 | 1991-04-02 | Olympus Optical Co., Ltd. | Hyperthermia apparatus |
US5047025A (en) | 1990-01-12 | 1991-09-10 | Metcal, Inc. | Thermal atherectomy device |
US5053595A (en) | 1982-12-01 | 1991-10-01 | Metcal, Inc. | Heat shrink sleeve with high mu material |
US5057106A (en) | 1986-02-27 | 1991-10-15 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
US5071419A (en) | 1990-04-30 | 1991-12-10 | Everest Medical Corporation | Percutaneous laparoscopic cholecystectomy instrument |
US5087804A (en) | 1990-12-28 | 1992-02-11 | Metcal, Inc. | Self-regulating heater with integral induction coil and method of manufacture thereof |
US5098429A (en) | 1990-04-17 | 1992-03-24 | Mmtc, Inc. | Angioplastic technique employing an inductively-heated ferrite material |
US5107095A (en) | 1982-12-01 | 1992-04-21 | Metcal, Inc. | Clam shell heater employing high permeability material |
US5125927A (en) | 1991-02-19 | 1992-06-30 | Belanger Neil F | Breakaway electrode for surgical cutting and cauterizing tool |
WO1992017121A1 (en) | 1991-04-05 | 1992-10-15 | Metcal, Inc. | Instrument for cutting, coagulating and ablating tissue |
US5182427A (en) | 1990-09-20 | 1993-01-26 | Metcal, Inc. | Self-regulating heater utilizing ferrite-type body |
US5189271A (en) | 1982-12-01 | 1993-02-23 | Metcal, Inc. | Temperature self-regulating induction apparatus |
US5197649A (en) | 1991-10-29 | 1993-03-30 | The Trustees Of Columbia University In The City Of New York | Gastrointestinal endoscoptic stapler |
US5203782A (en) | 1990-04-02 | 1993-04-20 | Gudov Vasily F | Method and apparatus for treating malignant tumors by local hyperpyrexia |
US5209725A (en) | 1991-04-11 | 1993-05-11 | Roth Robert A | Prostatic urethra dilatation catheter system and method |
US5211646A (en) | 1990-03-09 | 1993-05-18 | Alperovich Boris I | Cryogenic scalpel |
US5217460A (en) | 1991-03-22 | 1993-06-08 | Knoepfler Dennis J | Multiple purpose forceps |
WO1993021839A1 (en) | 1992-05-01 | 1993-11-11 | Hemostatix Corporation | Surgical instruments having auto-regulating heater |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5300750A (en) | 1988-03-16 | 1994-04-05 | Metcal, Inc. | Thermal induction heater |
WO1994008524A1 (en) * | 1992-10-09 | 1994-04-28 | Hemostatix Corporation | Electrosurgical instruments having a detachable working end |
US5308311A (en) | 1992-05-01 | 1994-05-03 | Robert F. Shaw | Electrically heated surgical blade and methods of making |
US5318564A (en) | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5370645A (en) | 1993-04-19 | 1994-12-06 | Valleylab Inc. | Electrosurgical processor and method of use |
US5376094A (en) | 1993-08-19 | 1994-12-27 | Boston Scientific Corporation | Improved actuating handle with pulley system for providing mechanical advantage to a surgical working element |
US5382247A (en) | 1994-01-21 | 1995-01-17 | Valleylab Inc. | Technique for electrosurgical tips and method of manufacture and use |
US5400267A (en) | 1992-12-08 | 1995-03-21 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
US5423808A (en) | 1991-11-08 | 1995-06-13 | Ep Technologies, Inc. | Systems and methods for radiofrequency ablation with phase sensitive power detection |
US5445635A (en) | 1992-05-01 | 1995-08-29 | Hemostatic Surgery Corporation | Regulated-current power supply and methods for resistively-heated surgical instruments |
US5472443A (en) | 1991-06-07 | 1995-12-05 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
US5475203A (en) | 1994-05-18 | 1995-12-12 | Gas Research Institute | Method and woven mesh heater comprising insulated and noninsulated wire for fusion welding of plastic pieces |
US5480398A (en) | 1992-05-01 | 1996-01-02 | Hemostatic Surgery Corporation | Endoscopic instrument with disposable auto-regulating heater |
US5496314A (en) | 1992-05-01 | 1996-03-05 | Hemostatic Surgery Corporation | Irrigation and shroud arrangement for electrically powered endoscopic probes |
US5496312A (en) | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5507743A (en) | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5540679A (en) | 1992-10-05 | 1996-07-30 | Boston Scientific Corporation | Device and method for heating tissue in a patient's body |
US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
WO1996026677A1 (en) | 1995-03-02 | 1996-09-06 | Eggers Philip E | Resistively heated cutting and coagulating surgical instrument |
US5571153A (en) | 1991-09-20 | 1996-11-05 | Wallst+E,Acu E+Ee N; Hans I. | Device for hyperthermia treatment |
US5573533A (en) | 1992-04-10 | 1996-11-12 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US5593406A (en) | 1992-05-01 | 1997-01-14 | Hemostatic Surgery Corporation | Endoscopic instrument with auto-regulating heater and method of using same |
RU2072118C1 (en) | 1995-05-23 | 1997-01-20 | Александр Модестович Шамашкин | Induction heater for ferromagnetic material |
US5595565A (en) | 1994-06-30 | 1997-01-21 | The Trustees Of Columbia University In The City Of New York | Self-propelled endoscope using pressure driven linear actuators |
US5628771A (en) | 1993-05-12 | 1997-05-13 | Olympus Optical Co., Ltd. | Electromagnetic-wave thermatological device |
US5674219A (en) | 1994-10-06 | 1997-10-07 | Donaldson Company, Inc. | Electrosurgical smoke evacuator |
US5707402A (en) | 1995-05-09 | 1998-01-13 | Team Medical, L.L.C. | Directed energy surgical method and assembly |
US5707369A (en) | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5807393A (en) | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
JPH10277050A (en) | 1997-04-04 | 1998-10-20 | Olympus Optical Co Ltd | High-frequency treating implement for endscope |
US5827269A (en) | 1996-12-31 | 1998-10-27 | Gynecare, Inc. | Heated balloon having a reciprocating fluid agitator |
US5836943A (en) | 1996-08-23 | 1998-11-17 | Team Medical, L.L.C. | Electrosurgical generator |
US5836874A (en) | 1996-04-08 | 1998-11-17 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
US5843019A (en) | 1992-01-07 | 1998-12-01 | Arthrocare Corporation | Shaped electrodes and methods for electrosurgical cutting and ablation |
US5855061A (en) * | 1996-06-05 | 1999-01-05 | Valley Forge Scientific Corporation | Method of making flat loop bipolar electrode tips for electrosurgical instrument |
US5911719A (en) | 1997-06-05 | 1999-06-15 | Eggers; Philip E. | Resistively heating cutting and coagulating surgical instrument |
WO1999037227A1 (en) | 1998-01-26 | 1999-07-29 | Boston Scientific Limited | Tissue resection using resistance heating |
US5951546A (en) | 1994-12-13 | 1999-09-14 | Lorentzen; Torben | Electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal |
US5964759A (en) | 1992-10-27 | 1999-10-12 | Ortho Development Corporation | Electroconvergent cautery system |
US6004316A (en) | 1996-10-30 | 1999-12-21 | Hearten Medical, Inc. | Method for the treatment of patent ductus arteriosus |
US6006755A (en) | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
US6015415A (en) | 1999-03-09 | 2000-01-18 | General Science And Technology | Polypectomy snare instrument |
US6030381A (en) * | 1994-03-18 | 2000-02-29 | Medicor Corporation | Composite dielectric coating for electrosurgical implements |
US6035238A (en) | 1997-08-13 | 2000-03-07 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
US6038017A (en) | 1996-05-31 | 2000-03-14 | Pinsukanjana; Paul Ruengrit | Method of controlling multi-species epitaxial deposition |
US6039733A (en) | 1995-09-19 | 2000-03-21 | Valleylab, Inc. | Method of vascular tissue sealing pressure control |
US6066138A (en) | 1998-05-27 | 2000-05-23 | Sheffer; Yehiel | Medical instrument and method of utilizing same for eye capsulotomy |
US6161048A (en) | 1997-06-26 | 2000-12-12 | Radionics, Inc. | Method and system for neural tissue modification |
WO2001006943A1 (en) | 1999-07-27 | 2001-02-01 | Neotonus, Inc. | Electromagnetic scalpel for the heating of biological tissue |
US6190382B1 (en) | 1998-12-14 | 2001-02-20 | Medwaves, Inc. | Radio-frequency based catheter system for ablation of body tissues |
US6210403B1 (en) | 1993-10-07 | 2001-04-03 | Sherwood Services Ag | Automatic control for energy from an electrosurgical generator |
US6228084B1 (en) | 1999-04-06 | 2001-05-08 | Kirwan Surgical Products, Inc. | Electro-surgical forceps having recessed irrigation channel |
US6241723B1 (en) | 1997-10-15 | 2001-06-05 | Team Medical Llc | Electrosurgical system |
US20010014804A1 (en) | 2000-02-08 | 2001-08-16 | Goble Colin C.O. | Electrosurgical instrument and an electrosurgery system including such an instrument |
US6287305B1 (en) | 1997-12-23 | 2001-09-11 | Team Medical, L.L.C. | Electrosurgical instrument |
US6290697B1 (en) | 1998-12-01 | 2001-09-18 | Irvine Biomedical, Inc. | Self-guiding catheter system for tissue ablation |
US20020019627A1 (en) | 2000-06-13 | 2002-02-14 | Maguire Mark A. | Surgical ablation probe for forming a circumferential lesion |
US20020019644A1 (en) | 1999-07-12 | 2002-02-14 | Hastings Roger N. | Magnetically guided atherectomy |
US6350262B1 (en) | 1997-10-22 | 2002-02-26 | Oratec Interventions, Inc. | Method and apparatus for applying thermal energy to tissue asymetrically |
US20020026188A1 (en) | 2000-03-31 | 2002-02-28 | Balbierz Daniel J. | Tissue biopsy and treatment apparatus and method |
US20020029037A1 (en) | 2000-09-06 | 2002-03-07 | Kim Young D. | Method and apparatus for percutaneous trans-endocardial reperfusion |
US20020029062A1 (en) | 2000-09-07 | 2002-03-07 | Shutaro Satake | Balloon catheter for pulmonary vein isolation |
US6358273B1 (en) | 1999-04-09 | 2002-03-19 | Oratec Inventions, Inc. | Soft tissue heating apparatus with independent, cooperative heating sources |
US20020068931A1 (en) | 1999-06-04 | 2002-06-06 | Engineering & Research Associates, Inc. | Apparatus and method for real time determination of materials' electrical properties |
US20020087156A1 (en) | 1997-07-08 | 2002-07-04 | Maguire Mark A. | Medical device with sensor cooperating with expandable member |
US20020120261A1 (en) | 2001-02-28 | 2002-08-29 | Morris David L. | Tissue surface treatment apparatus and method |
US20020133148A1 (en) | 2001-01-11 | 2002-09-19 | Daniel Steven A. | Bone-treatment instrument and method |
US6454781B1 (en) | 1999-05-26 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Feedback control in an ultrasonic surgical instrument for improved tissue effects |
US20020165529A1 (en) | 2001-04-05 | 2002-11-07 | Danek Christopher James | Method and apparatus for non-invasive energy delivery |
US20020173787A1 (en) | 1997-11-12 | 2002-11-21 | Buysse Steven P. | Bipolar electrosurgical instrument for sealing vessels |
US20030004507A1 (en) | 2001-04-26 | 2003-01-02 | Medtronic, Inc. | Ablation system and method of use |
US6533781B2 (en) | 1997-12-23 | 2003-03-18 | Team Medical Llc | Electrosurgical instrument |
US20030055424A1 (en) | 2001-09-18 | 2003-03-20 | Scott Ciarrocca | Combination bipolar forceps and scissors instrument |
US20030055417A1 (en) | 2001-09-19 | 2003-03-20 | Csaba Truckai | Surgical system for applying ultrasonic energy to tissue |
US20030060818A1 (en) | 1999-04-21 | 2003-03-27 | Oratec Interventions, Inc. | Method and apparatus for controlling a temperature-controlled probe |
US20030073987A1 (en) | 2001-10-16 | 2003-04-17 | Olympus Optical Co., Ltd. | Treating apparatus and treating device for treating living-body tissue |
US20030073989A1 (en) | 1998-07-07 | 2003-04-17 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US20030109871A1 (en) | 2000-07-25 | 2003-06-12 | Johnson Theodore C. | Apparatus for detecting and treating tumors using locaIized impedance measurement |
US20030139741A1 (en) | 2000-10-31 | 2003-07-24 | Gyrus Medical Limited | Surgical instrument |
US20030144660A1 (en) | 2002-01-03 | 2003-07-31 | Starion Instruments Corp. | Combined dissecting, cauterizing, and stapling device |
US6604003B2 (en) | 2000-09-07 | 2003-08-05 | Sherwood Services Ag | Apparatus and method for treatment of an intervertebral disc |
US20030171747A1 (en) | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US20030176873A1 (en) | 2002-03-12 | 2003-09-18 | Lithotech Medical Ltd. | Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation |
US6626901B1 (en) | 1997-03-05 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
US6632182B1 (en) | 1998-10-23 | 2003-10-14 | The Trustees Of Columbia University In The City Of New York | Multiple bit, multiple specimen endoscopic biopsy forceps |
US20030195499A1 (en) | 2002-04-16 | 2003-10-16 | Mani Prakash | Microwave antenna having a curved configuration |
US20030199755A1 (en) | 1998-11-04 | 2003-10-23 | Johns Hopkins University School Of Medicine | System and method for magnetic-resonance-guided electrophysiologic and ablation procedures |
US20030208199A1 (en) | 1999-09-15 | 2003-11-06 | David Keane | Coiled ablation catheter system |
US20030212389A1 (en) | 1998-10-26 | 2003-11-13 | Durgin Russell F. | Multi-function surgical instrument |
US20040006335A1 (en) | 2002-07-08 | 2004-01-08 | Garrison Lawrence L. | Cauterizing surgical saw |
US20040030330A1 (en) | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
US6692489B1 (en) | 1999-07-21 | 2004-02-17 | Team Medical, Llc | Electrosurgical mode conversion system |
US20040034349A1 (en) | 2002-08-15 | 2004-02-19 | Kirwan Lawrence T. | Electro-surgical forceps having fully plated tines and process for manufacturing same |
WO2004014217A2 (en) | 2002-08-09 | 2004-02-19 | Marchitto, Kevin | Activated surgical fasteners, devices therefor and uses thereof |
US20040049185A1 (en) | 2002-07-02 | 2004-03-11 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
US20040059345A1 (en) | 2001-01-12 | 2004-03-25 | Nakao Naomi L. | Medical cauterization snare assembly and associated methodology |
US6723094B1 (en) | 1998-12-18 | 2004-04-20 | Kai Desinger | Electrode assembly for a surgical instrument provided for carrying out an electrothermal coagulation of tissue |
US6726683B1 (en) | 1967-11-09 | 2004-04-27 | Robert F. Shaw | Electrically heated surgical cutting instrument |
US20040167506A1 (en) | 2003-02-25 | 2004-08-26 | Scimed Life Systems, Inc. | Medical devices employing ferromagnetic heating |
US20040176756A1 (en) | 2003-03-07 | 2004-09-09 | Mcgaffigan Thomas H. | Tubular resistance heater with electrically insulating high thermal conductivity core for use in a tissue welding device |
US20040187875A1 (en) | 2001-05-01 | 2004-09-30 | He Sheng Ding | Method and apparatus for altering conduction properties along pathways in the heart and in vessels in conductive communication with the heart. |
US20040243120A1 (en) | 1997-12-10 | 2004-12-02 | Orszulak James Henry | Smart recognition apparatus and method |
US20050021016A1 (en) | 2003-03-27 | 2005-01-27 | Cierra, Inc. | Energy based devices and methods for treatment of anatomic tissue defects |
US20050033338A1 (en) | 2003-06-19 | 2005-02-10 | Ferree Bret A. | Surgical instruments particularly suited to severing ligaments and fibrous tissues |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
US20050107776A1 (en) | 2003-11-14 | 2005-05-19 | Starion Instruments Corporation | Thermal cautery devices with improved heating profiles |
US20050113824A1 (en) | 2003-11-20 | 2005-05-26 | Sartor Joe D. | Electrosurgical pencil with improved controls |
US6912911B2 (en) | 2002-04-30 | 2005-07-05 | Sung J. Oh | Inductively coupled stress/strain sensor |
US20050197661A1 (en) | 2004-03-03 | 2005-09-08 | Scimed Life Systems, Inc. | Tissue removal probe with sliding burr in cutting window |
US20050245919A1 (en) | 2004-04-29 | 2005-11-03 | Van Der Weide Daniel W | Triaxial antenna for microwave tissue ablation |
US20050273111A1 (en) | 1999-10-08 | 2005-12-08 | Ferree Bret A | Methods and apparatus for intervertebral disc removal and endplate preparation |
US20050283067A1 (en) | 2004-06-21 | 2005-12-22 | Mediguide Ltd. | Inductor for catheter |
US20050283149A1 (en) | 2004-06-08 | 2005-12-22 | Thorne Jonathan O | Electrosurgical cutting instrument |
US6980865B1 (en) | 2002-01-22 | 2005-12-27 | Nanoset, Llc | Implantable shielded medical device |
US20050288659A1 (en) | 2004-06-22 | 2005-12-29 | Olympus Corporation | Ultrasonic surgical apparatus with treatment modes selectable |
US20060004356A1 (en) | 2002-11-26 | 2006-01-05 | Bilski W J | Cooling Element for electrosurgery |
WO2006017517A2 (en) | 2004-08-04 | 2006-02-16 | Cardio-Optics, Inc. | Transparent electrode for the radiofrequency ablation of tissue |
WO2006029649A1 (en) | 2004-09-15 | 2006-03-23 | Commissariat A L'energie Atomique | Microwave oscillator tuned with a ferromagnetic thin film |
US7025065B2 (en) | 2003-11-14 | 2006-04-11 | Starion Instruments Corporation | Method of testing thermal cautery devices |
US20060127706A1 (en) | 2004-12-10 | 2006-06-15 | Goebel Steven G | Reactant feed for nested stamped plates for a compact fuel cell |
US20060142824A1 (en) | 2004-12-20 | 2006-06-29 | Zikorus Arthur W | Systems and methods for treating a hollow anatomical structure |
US20060161149A1 (en) | 2005-01-18 | 2006-07-20 | Salvatore Privitera | Surgical ablation device |
US20060167450A1 (en) | 2005-01-14 | 2006-07-27 | Johnson Kristin D | Vessel sealer and divider with rotating sealer and cutter |
US7083613B2 (en) | 1997-03-05 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US20060212030A1 (en) | 2005-03-16 | 2006-09-21 | Mcgaffigan Thomas H | Integrated metalized ceramic heating element for use in a tissue cutting and sealing device |
US7112201B2 (en) | 2001-10-22 | 2006-09-26 | Surgrx Inc. | Electrosurgical instrument and method of use |
US20060217706A1 (en) | 2005-03-25 | 2006-09-28 | Liming Lau | Tissue welding and cutting apparatus and method |
US20060217700A1 (en) | 2005-03-28 | 2006-09-28 | Garito Jon C | Electrosurgical instrument with enhanced capability |
US7122030B2 (en) | 2004-07-13 | 2006-10-17 | University Of Florida Research Foundation, Inc. | Ferroelectric hyperthermia system and method for cancer therapy |
US20060241587A1 (en) | 2004-07-20 | 2006-10-26 | Surginetics, Llc | Multielectrode Electrosurgical Instrument |
US20060271037A1 (en) | 2005-05-25 | 2006-11-30 | Forcept, Inc. | Assisted systems and methods for performing transvaginal hysterectomies |
US20060287649A1 (en) | 1998-12-14 | 2006-12-21 | Ormsby Theodore C | Radio-frequency based catheter system and method for ablating biological tissues |
US20070005058A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Instrument With Needle Electrode |
US20070005059A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Needle Electrode |
US20070005060A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Method For Conducting Electrosurgery With Increased Crest Factor |
US20070005056A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Instrument With Blade Profile For Reduced Tissue Damage |
US20070005055A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Blade |
US20070005057A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Blade With Profile For Minimizing Tissue Damage |
US7164968B2 (en) | 2002-04-05 | 2007-01-16 | The Trustees Of Columbia University In The City Of New York | Robotic scrub nurse |
US20070016272A1 (en) | 2004-09-27 | 2007-01-18 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
US20070016181A1 (en) | 2004-04-29 | 2007-01-18 | Van Der Weide Daniel W | Microwave tissue resection tool |
US20070060920A1 (en) | 2005-08-25 | 2007-03-15 | Boston Scientific Scimed, Inc. | Endoscopic resection method |
US20070073282A1 (en) | 2005-09-26 | 2007-03-29 | Starion Instruments Corporation | Resistive heating device and method for turbinate ablation |
US20070100405A1 (en) | 2005-07-21 | 2007-05-03 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
US20070100336A1 (en) | 2005-10-27 | 2007-05-03 | Mcfarlin Kevin | Micro-resecting and evoked potential monitoring system and method |
US20070106294A1 (en) | 2002-12-12 | 2007-05-10 | Orion Industries, Ltd. | Anti-microbial electrosurgical electrode and method of manufacturing same |
US20070127897A1 (en) | 2005-10-24 | 2007-06-07 | John Randy C | Subsurface heaters with low sulfidation rates |
US7235073B2 (en) | 2000-07-06 | 2007-06-26 | Ethicon Endo-Surgery, Inc. | Cooled electrosurgical forceps |
WO2007080578A2 (en) | 2006-01-09 | 2007-07-19 | Biospiral Ltd. | System and method for thermally treating tissues |
US20070173811A1 (en) | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | Method and system for controlling delivery of energy to divide tissue |
US20070208339A1 (en) | 2006-03-03 | 2007-09-06 | Sherwood Services Ag | System and method for controlling electrosurgical snares |
US20070219544A1 (en) | 2003-11-07 | 2007-09-20 | Visualase, Inc. | Cooled laser fiber for improved thermal therapy |
US20070239151A1 (en) | 2006-04-06 | 2007-10-11 | Baylor College Of Medicine | Method and apparatus for the detachment of catheters or puncturing of membranes and intraluminal devices within the body |
US20070270924A1 (en) | 2006-04-04 | 2007-11-22 | Mccann Claire | Coil electrode apparatus for thermal therapy |
US7300452B2 (en) | 2002-08-24 | 2007-11-27 | Koninklijke Philips Electronics N.V. | Method for local heating by means of magnetic particles |
US7317275B2 (en) | 2003-09-30 | 2008-01-08 | The Trustees Of Columbia University In The City Of New York | Harmonic propulsion and harmonic controller |
US20080017380A1 (en) | 2006-04-21 | 2008-01-24 | Vinegar Harold J | Non-ferromagnetic overburden casing |
US20080033419A1 (en) | 2006-08-04 | 2008-02-07 | Nields Morgan W | Method for planning, performing and monitoring thermal ablation |
US7329255B2 (en) | 2003-12-23 | 2008-02-12 | Starion Instruments Corporation | System for regulating heating in a tissue sealing and cutting device |
US20080077129A1 (en) | 2006-09-27 | 2008-03-27 | Van Wyk Robert A | Electrosurgical Device Having Floating Potential Electrode and Adapted for Use With a Resectoscope |
US20080119841A1 (en) | 2006-01-03 | 2008-05-22 | Geisel Donald J | High, efficiency, precision electrosurgical apparatus and method |
US7377919B2 (en) | 2003-11-10 | 2008-05-27 | Surginetics, Inc. | Electrosurgical instrument |
US20080128134A1 (en) | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US20080161800A1 (en) | 2006-12-29 | 2008-07-03 | Huisun Wang | Ablation catheter tip for generating an angled flow |
US20080187989A1 (en) | 2007-02-01 | 2008-08-07 | Mcgreevy Francis T | Apparatus and method for rapid reliable electrothermal tissue fusion |
US20080228135A1 (en) | 2007-03-05 | 2008-09-18 | Elizabeth Ann Snoderly | Apparatus for treating a damaged spinal disc |
US7435249B2 (en) | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US20080255642A1 (en) | 2006-06-28 | 2008-10-16 | Ardian, Inc. | Methods and systems for thermally-induced renal neuromodulation |
US20080281386A1 (en) | 2007-05-09 | 2008-11-13 | Tessaron Medical, Inc. | Systems and methods for treating body tissue |
US20080281315A1 (en) | 1997-04-09 | 2008-11-13 | David Lee Gines | Electrosurgical Generator With Adaptive Power Control |
US20080281310A1 (en) | 2007-05-11 | 2008-11-13 | Tyco Healthcare Group Lp | Temperature monitoring return electrode |
US20080319438A1 (en) | 2007-06-22 | 2008-12-25 | Decarlo Arnold V | Electrosurgical systems and cartridges for use therewith |
US7473253B2 (en) | 2001-04-06 | 2009-01-06 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US7473250B2 (en) | 2004-05-21 | 2009-01-06 | Ethicon Endo-Surgery, Inc. | Ultrasound medical system and method |
US7494492B2 (en) | 2004-12-10 | 2009-02-24 | Therative, Inc. | Skin treatment device |
EP2036512A1 (en) | 2007-09-13 | 2009-03-18 | Vivant Medical, Inc. | Frequency tuning in a microwave electrosurgical system |
US20090093811A1 (en) | 2007-10-09 | 2009-04-09 | Josef Koblish | Cooled ablation catheter devices and methods of use |
US20090112200A1 (en) | 2007-10-30 | 2009-04-30 | Hemostatix Medical Technologies Llc | Hemostatic surgical blade, system and method of blade manufacture |
US20090118729A1 (en) | 2007-11-07 | 2009-05-07 | Mirabilis Medica Inc. | Hemostatic spark erosion tissue tunnel generator with integral treatment providing variable volumetric necrotization of tissue |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US7578815B2 (en) | 2002-03-13 | 2009-08-25 | Starion Instruments Corporation | Power supply for identification and control of electrical surgical tools |
US7588565B2 (en) | 2002-05-15 | 2009-09-15 | Rocky Mountain Biosystems, Inc. | Method and device for anastomoses |
US20090248002A1 (en) | 2008-04-01 | 2009-10-01 | Tomoyuki Takashino | Treatment system, and treatment method for living tissue using energy |
US7613523B2 (en) | 2003-12-11 | 2009-11-03 | Apsara Medical Corporation | Aesthetic thermal sculpting of skin |
US20090292347A1 (en) | 2008-05-21 | 2009-11-26 | Boston Scientific Scimed, Inc. | Systems and methods for heating and cooling during stent crimping |
US20090306644A1 (en) | 2008-05-09 | 2009-12-10 | Innovative Pulmonary Solutions, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US20090312753A1 (en) | 2000-12-09 | 2009-12-17 | Tsunami Medtech, Llc | Thermotherapy device |
US20100004650A1 (en) | 2008-07-01 | 2010-01-07 | Medwaves, Inc. | Angioplasty and tissue ablation apparatus and method |
US7678105B2 (en) | 2005-09-16 | 2010-03-16 | Conmed Corporation | Method and apparatus for precursively controlling energy during coaptive tissue fusion |
US20100082022A1 (en) | 2008-09-30 | 2010-04-01 | Haley Kaylen J | Delivered energy generator for microwave ablation |
US20100152725A1 (en) | 2008-12-12 | 2010-06-17 | Angiodynamics, Inc. | Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation |
US20100198216A1 (en) | 2009-02-02 | 2010-08-05 | Palanker Daniel V | Electro-thermotherapy of tissue using penetrating microelectrode array |
US7776035B2 (en) | 2004-10-08 | 2010-08-17 | Covidien Ag | Cool-tip combined electrode introducer |
US20100228244A1 (en) | 2006-10-10 | 2010-09-09 | Microoncology Limited | Tissue measurement and ablation antenna |
US20100268211A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Inductively Heated Multi-Mode Bipolar Surgical Tool |
US20100268218A1 (en) | 2009-04-15 | 2010-10-21 | Medwaves, Inc. | Electrically Tunable Tissue Ablation system and Method |
US7828798B2 (en) | 1997-11-14 | 2010-11-09 | Covidien Ag | Laparoscopic bipolar electrosurgical instrument |
US20110004204A1 (en) | 2006-01-25 | 2011-01-06 | The Regents Of The University Of Michigan | Surgical Instrument and Method for Use Thereof |
US7871406B2 (en) | 2006-08-04 | 2011-01-18 | INTIO, Inc. | Methods for planning and performing thermal ablation |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7887535B2 (en) | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US7922713B2 (en) | 2006-01-03 | 2011-04-12 | Geisel Donald J | High efficiency, precision electrosurgical apparatus and method |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US7951149B2 (en) | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
US20110152857A1 (en) | 2009-12-19 | 2011-06-23 | Frank Ingle | Apparatus and Methods For Electrophysiology Procedures |
US7972335B2 (en) | 2007-10-16 | 2011-07-05 | Conmed Corporation | Coaptive tissue fusion method and apparatus with current derivative precursive energy termination control |
US7972334B2 (en) | 2007-10-16 | 2011-07-05 | Conmed Corporation | Coaptive tissue fusion method and apparatus with energy derivative precursive energy termination control |
US7981113B2 (en) | 2001-10-22 | 2011-07-19 | Surgrx, Inc. | Electrosurgical instrument |
US8100896B2 (en) | 2004-09-21 | 2012-01-24 | Covidien Ag | Method for treatment of an intervertebral disc |
US8105323B2 (en) | 1998-10-23 | 2012-01-31 | Covidien Ag | Method and system for controlling output of RF medical generator |
US8104956B2 (en) | 2003-10-23 | 2012-01-31 | Covidien Ag | Thermocouple measurement circuit |
US20120071712A1 (en) | 2009-04-17 | 2012-03-22 | Kim Manwaring | Heated balloon catheter |
US20120071870A1 (en) * | 2008-11-11 | 2012-03-22 | Amr Salahieh | Low Profile Electrode Assembly |
US8211105B2 (en) | 1997-11-12 | 2012-07-03 | Covidien Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US20120226270A1 (en) | 2009-04-17 | 2012-09-06 | Kim Manwaring | Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials |
US20120259323A1 (en) | 2011-04-08 | 2012-10-11 | Preston Manwaring | Impedance Matching Circuit |
US8287528B2 (en) | 1998-10-23 | 2012-10-16 | Covidien Ag | Vessel sealing system |
US20120330295A1 (en) | 2009-04-17 | 2012-12-27 | Kim Manwaring | Thermal Resecting Loop |
US20130006240A1 (en) | 2011-05-16 | 2013-01-03 | Mcnally David J | Surgical instrument guide |
US20130012934A1 (en) | 2009-04-17 | 2013-01-10 | Kim Manwaring | Layered Ferromagnetic Coated Conductor Thermal Surgical Tool |
US20130023866A1 (en) | 2011-04-08 | 2013-01-24 | Mark Stringham | System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue |
US20130066310A1 (en) | 2011-09-13 | 2013-03-14 | Kim H. Manwaring | Sealing and/or cutting instrument |
US8460870B2 (en) | 2005-01-20 | 2013-06-11 | The Regents Of The University Of California | Allosteric control of proteins by manipulating mechanical tension |
US8480666B2 (en) | 2007-01-31 | 2013-07-09 | Covidien Lp | Thermal feedback systems and methods of using the same |
US8617151B2 (en) | 2009-04-17 | 2013-12-31 | Domain Surgical, Inc. | System and method of controlling power delivery to a surgical instrument |
US20140052119A1 (en) * | 2012-08-17 | 2014-02-20 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
US8667674B2 (en) | 2008-06-09 | 2014-03-11 | Covidien Lp | Surface ablation process with electrode cooling methods |
US8672938B2 (en) | 2009-07-23 | 2014-03-18 | Covidien Lp | Active cooling system and apparatus for controlling temperature of a fluid used during treatment of biological tissue |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5072764B2 (en) * | 2008-08-01 | 2012-11-14 | キヤノン株式会社 | Optical apparatus and camera system |
GB2513613A (en) * | 2013-05-01 | 2014-11-05 | Gerard Brooke | Electrosurgical device |
US12029469B2 (en) * | 2018-10-25 | 2024-07-09 | Domain Surgical, Inc. | Surgical shears having ferromagnetic heater |
-
2015
- 2015-05-13 US US14/711,662 patent/US10357306B2/en active Active
- 2015-05-14 WO PCT/US2015/030806 patent/WO2015175792A1/en active Application Filing
-
2019
- 2019-07-09 US US16/506,869 patent/US11701160B2/en active Active
Patent Citations (464)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US300155A (en) | 1884-06-10 | stabr | ||
US770368A (en) | 1904-09-20 | Surgical instrument | ||
US2735797A (en) | 1956-02-21 | Method of heat sealing and severing | ||
US1104053A (en) | 1912-09-28 | 1914-07-21 | Donald Henry Lea | Tool for uncapping honey and like purposes. |
US1280052A (en) | 1916-12-18 | 1918-09-24 | Tiodolf Lidberg | Therapeutic instrument. |
US1366231A (en) | 1917-09-08 | 1921-01-18 | Kny Scheerer Corp | Sterilizable cautery |
US1335987A (en) | 1919-05-27 | 1920-04-06 | Kienle | Dental instrument |
US1401104A (en) | 1920-03-15 | 1921-12-20 | Kruesheld Henry | Surgical instrument |
US1794296A (en) | 1927-08-24 | 1931-02-24 | Mortimer N Hyams | Surgical instrument |
US2027854A (en) | 1934-11-14 | 1936-01-14 | Gen Tire & Rubber Co | Tube splicer |
US2050904A (en) | 1934-11-26 | 1936-08-11 | Trice Spencer Talley | Electric hemostat or cautery |
US2120598A (en) | 1937-03-06 | 1938-06-14 | George H Beuoy | Electrical cutting instrument |
US2250602A (en) | 1939-08-21 | 1941-07-29 | Paul W Pierce | Honey uncapping knife |
US2278633A (en) | 1940-08-15 | 1942-04-07 | American Telephone & Telegraph | Temperature control apparatus |
US2375154A (en) | 1943-10-07 | 1945-05-01 | Metals & Controls Corp | Electric furnace |
US2412977A (en) | 1943-11-19 | 1946-12-24 | Robertshaw Thermostat Co | Flame sensitive device |
US2501499A (en) | 1947-12-20 | 1950-03-21 | Gen Electric | Electric heating device and control therefor |
US2670425A (en) | 1952-05-01 | 1954-02-23 | Norton Co | Gas heater |
US2831242A (en) | 1953-03-25 | 1958-04-22 | Schwarzkopf Dev Co | Sintered electric resistance heating element |
US2782290A (en) | 1954-09-28 | 1957-02-19 | Westinghouse Electric Corp | Temperature responsive control device |
US2846560A (en) | 1957-05-31 | 1958-08-05 | Gen Electric | Heater wire |
US2863036A (en) | 1957-06-19 | 1958-12-02 | Donald O Mitchell | Electrically heated butchering knives |
US2947345A (en) | 1958-10-08 | 1960-08-02 | Schjeldahl Co G T | Machine for making articles from multiple thermoplastic webs |
US2960592A (en) | 1959-10-12 | 1960-11-15 | Paul W Pierce | Knife for decapping honeycomb |
US3213259A (en) | 1961-05-23 | 1965-10-19 | Gen Electric | Electrode for electrical resistance heating tool |
US3084242A (en) | 1961-11-14 | 1963-04-02 | Essex Wire Corp | Electric heater wire |
US3350544A (en) | 1964-05-01 | 1967-10-31 | Arc O Vec Inc | Thermo-electrically controlled electrical heater |
US3556953A (en) | 1964-10-19 | 1971-01-19 | Werner P Schulz | Microsurgery suture-needle and of its method of manufacture |
US3404202A (en) | 1964-11-06 | 1968-10-01 | Basic Inc | Electric resistance heater and method of making |
US3501619A (en) | 1965-07-15 | 1970-03-17 | Texas Instruments Inc | Self-regulating thermal apparatus |
US3413442A (en) | 1965-07-15 | 1968-11-26 | Texas Instruments Inc | Self-regulating thermal apparatus |
US3400252A (en) | 1965-10-20 | 1968-09-03 | Matsushita Electric Ind Co Ltd | Electrical heating device |
US3414705A (en) | 1965-10-24 | 1968-12-03 | Texas Instruments Inc | Component oven |
US3515837A (en) | 1966-04-01 | 1970-06-02 | Chisso Corp | Heat generating pipe |
US3434476A (en) | 1966-04-07 | 1969-03-25 | Robert F Shaw | Plasma arc scalpel |
US3352011A (en) | 1966-04-22 | 1967-11-14 | Wells Mfg Corp | Electrically heated flexible knife |
US3520043A (en) | 1966-06-17 | 1970-07-14 | Johnson Matthey Co Ltd | Self-regulating heating elements |
USRE31723E (en) | 1967-11-09 | 1984-11-06 | Surgical cutting instrument having electrically heated cutting edge | |
US4198957A (en) | 1967-11-09 | 1980-04-22 | Robert F. Shaw | Method of using an electrically heated surgical cutting instrument |
US6726683B1 (en) | 1967-11-09 | 2004-04-27 | Robert F. Shaw | Electrically heated surgical cutting instrument |
USRE30190E (en) | 1967-11-09 | 1980-01-15 | Electrically heated surgical cutting instrument | |
US4185632A (en) | 1970-08-13 | 1980-01-29 | Shaw Robert F | Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same |
US4206759A (en) | 1970-08-13 | 1980-06-10 | Shaw Robert F | Surgical instrument having self-regulated vapor condensation heating of its cutting edge and method of using the same |
US4089336A (en) | 1970-08-13 | 1978-05-16 | Robert F. Shaw | Electrically heated surgical cutting instrument and method of using the same |
US4209017A (en) | 1970-08-13 | 1980-06-24 | Shaw Robert F | Surgical instrument having self-regulating radiant heating of its cutting edge and method of using the same |
US4207896A (en) | 1970-08-13 | 1980-06-17 | Shaw Robert F | Surgical instrument having self-regulating dielectric heating of its cutting edge |
US3826263A (en) | 1970-08-13 | 1974-07-30 | R Shaw | Electrically heated surgical cutting instrument |
US3825004A (en) | 1972-09-13 | 1974-07-23 | Durden Enterprises Ltd | Disposable electrosurgical cautery |
US3768482A (en) | 1972-10-10 | 1973-10-30 | R Shaw | Surgical cutting instrument having electrically heated cutting edge |
USRE29088E (en) | 1972-10-10 | 1976-12-28 | Surgical cutting instrument having electrically heated cutting edge | |
US3834392A (en) | 1973-02-01 | 1974-09-10 | Kli Inc | Laparoscopy system |
US3978312A (en) | 1974-10-17 | 1976-08-31 | Concept, Inc. | Variable temperature electric cautery assembly |
GB1546624A (en) | 1975-03-14 | 1979-05-23 | Shaw R F | Surgical cutting instrument heving relf-regulated electrical indoction heating of its cutting edge |
US4091813A (en) | 1975-03-14 | 1978-05-30 | Robert F. Shaw | Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same |
US4364390A (en) | 1975-03-14 | 1982-12-21 | Shaw Robert F | Surgical instrument having self-regulating dielectric heating of its cutting edge and method of using the same |
US4359052A (en) | 1976-01-26 | 1982-11-16 | Concept Inc. | Removable tip cautery |
US4196734A (en) | 1978-02-16 | 1980-04-08 | Valleylab, Inc. | Combined electrosurgery/cautery system and method |
GB2022974A (en) | 1978-04-20 | 1979-12-19 | Shaw R F | Improved electrically heated apparatus and method and material |
JPH0351179B2 (en) | 1978-04-20 | 1991-08-06 | Shaw Robert F | |
US4256945A (en) | 1979-08-31 | 1981-03-17 | Iris Associates | Alternating current electrically resistive heating element having intrinsic temperature control |
US4701587A (en) | 1979-08-31 | 1987-10-20 | Metcal, Inc. | Shielded heating element having intrinsic temperature control |
US4848337A (en) | 1979-09-10 | 1989-07-18 | Shaw Robert F | Abherent surgical instrument and method |
EP0033958A1 (en) | 1980-02-08 | 1981-08-19 | Sumitomo Electric Industries Limited | A laser knife |
US4374517A (en) | 1980-06-10 | 1983-02-22 | Olympus Optical Co., Ltd. | Endoscope type high frequency surgical apparatus |
WO1982000746A1 (en) | 1980-08-20 | 1982-03-04 | D Blackmore | Skin effect heat generating unit having convective and conductive transfer of heat |
US4481057A (en) | 1980-10-28 | 1984-11-06 | Oximetrix, Inc. | Cutting device and method of manufacture |
US4485810A (en) | 1980-10-28 | 1984-12-04 | Oximetrix, Inc. | Surgical cutting blade |
US4371861A (en) | 1980-12-11 | 1983-02-01 | Honeywell Inc. | Ni-fe thin-film temperature sensor |
US4622966A (en) | 1981-06-30 | 1986-11-18 | Abbott Laboratories | Surgical cutting device |
US4523084A (en) | 1981-09-02 | 1985-06-11 | Oximetrix, Inc. | Controller for resistive heating element |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4493320A (en) | 1982-04-02 | 1985-01-15 | Treat Michael R | Bipolar electrocautery surgical snare |
US4600018A (en) | 1982-06-02 | 1986-07-15 | National Research Development Corporation | Electromagnetic medical applicators |
US4492231A (en) | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4752673A (en) | 1982-12-01 | 1988-06-21 | Metcal, Inc. | Autoregulating heater |
US5107095A (en) | 1982-12-01 | 1992-04-21 | Metcal, Inc. | Clam shell heater employing high permeability material |
US5053595A (en) | 1982-12-01 | 1991-10-01 | Metcal, Inc. | Heat shrink sleeve with high mu material |
US4914267A (en) | 1982-12-01 | 1990-04-03 | Metcal, Inc. | Connector containing fusible material and having intrinsic temperature control |
US5189271A (en) | 1982-12-01 | 1993-02-23 | Metcal, Inc. | Temperature self-regulating induction apparatus |
EP0130671A2 (en) | 1983-05-26 | 1985-01-09 | Metcal Inc. | Multiple temperature autoregulating heater |
US4658819A (en) | 1983-09-13 | 1987-04-21 | Valleylab, Inc. | Electrosurgical generator |
US4839501A (en) | 1984-12-21 | 1989-06-13 | Metcal, Inc. | Cartridge soldering iron |
US4658820A (en) | 1985-02-22 | 1987-04-21 | Valleylab, Inc. | Electrosurgical generator with improved circuitry for generating RF drive pulse trains |
US5057106A (en) | 1986-02-27 | 1991-10-15 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
US4860745A (en) | 1986-07-17 | 1989-08-29 | Erbe Elektromedizin Gmbh | High frequency electrosurgical apparatus for thermal coagulation of biologic tissues |
US5003991A (en) | 1987-03-31 | 1991-04-02 | Olympus Optical Co., Ltd. | Hyperthermia apparatus |
US4807620A (en) | 1987-05-22 | 1989-02-28 | Advanced Interventional Systems, Inc. | Apparatus for thermal angioplasty |
US4877944A (en) | 1987-06-08 | 1989-10-31 | Metcal, Inc. | Self regulating heater |
US4927413A (en) | 1987-08-24 | 1990-05-22 | Progressive Angioplasty Systems, Inc. | Catheter for balloon angioplasty |
US5300750A (en) | 1988-03-16 | 1994-04-05 | Metcal, Inc. | Thermal induction heater |
US4915100A (en) | 1988-12-19 | 1990-04-10 | United States Surgical Corporation | Surgical stapler apparatus with tissue shield |
US4938761A (en) | 1989-03-06 | 1990-07-03 | Mdt Corporation | Bipolar electrosurgical forceps |
US5087256A (en) | 1990-01-12 | 1992-02-11 | Metcal Inc. | Thermal atherectomy device |
US5047025A (en) | 1990-01-12 | 1991-09-10 | Metcal, Inc. | Thermal atherectomy device |
US5211646A (en) | 1990-03-09 | 1993-05-18 | Alperovich Boris I | Cryogenic scalpel |
US5203782A (en) | 1990-04-02 | 1993-04-20 | Gudov Vasily F | Method and apparatus for treating malignant tumors by local hyperpyrexia |
US5098429A (en) | 1990-04-17 | 1992-03-24 | Mmtc, Inc. | Angioplastic technique employing an inductively-heated ferrite material |
US5071419A (en) | 1990-04-30 | 1991-12-10 | Everest Medical Corporation | Percutaneous laparoscopic cholecystectomy instrument |
US5182427A (en) | 1990-09-20 | 1993-01-26 | Metcal, Inc. | Self-regulating heater utilizing ferrite-type body |
US5087804A (en) | 1990-12-28 | 1992-02-11 | Metcal, Inc. | Self-regulating heater with integral induction coil and method of manufacture thereof |
US5125927A (en) | 1991-02-19 | 1992-06-30 | Belanger Neil F | Breakaway electrode for surgical cutting and cauterizing tool |
US5217460A (en) | 1991-03-22 | 1993-06-08 | Knoepfler Dennis J | Multiple purpose forceps |
WO1992017121A1 (en) | 1991-04-05 | 1992-10-15 | Metcal, Inc. | Instrument for cutting, coagulating and ablating tissue |
US5425731A (en) | 1991-04-05 | 1995-06-20 | Metcal, Inc. | Instrument for cutting, coagulating and ablating tissue |
JP2558584B2 (en) | 1991-04-05 | 1996-11-27 | メトカル・インコーポレーテッド | Instruments for cutting, coagulating and removing body tissue |
US5209725A (en) | 1991-04-11 | 1993-05-11 | Roth Robert A | Prostatic urethra dilatation catheter system and method |
US5472443A (en) | 1991-06-07 | 1995-12-05 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
US5571153A (en) | 1991-09-20 | 1996-11-05 | Wallst+E,Acu E+Ee N; Hans I. | Device for hyperthermia treatment |
US5197649A (en) | 1991-10-29 | 1993-03-30 | The Trustees Of Columbia University In The City Of New York | Gastrointestinal endoscoptic stapler |
US5411508A (en) | 1991-10-29 | 1995-05-02 | The Trustees Of Columbia University In The City Of New York | Gastrointestinal approximating and tissue attaching device |
US5423808A (en) | 1991-11-08 | 1995-06-13 | Ep Technologies, Inc. | Systems and methods for radiofrequency ablation with phase sensitive power detection |
US5843019A (en) | 1992-01-07 | 1998-12-01 | Arthrocare Corporation | Shaped electrodes and methods for electrosurgical cutting and ablation |
US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5573533A (en) | 1992-04-10 | 1996-11-12 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5480397A (en) | 1992-05-01 | 1996-01-02 | Hemostatic Surgery Corporation | Surgical instrument with auto-regulating heater and method of using same |
US5308311A (en) | 1992-05-01 | 1994-05-03 | Robert F. Shaw | Electrically heated surgical blade and methods of making |
US5445635A (en) | 1992-05-01 | 1995-08-29 | Hemostatic Surgery Corporation | Regulated-current power supply and methods for resistively-heated surgical instruments |
WO1993021839A1 (en) | 1992-05-01 | 1993-11-11 | Hemostatix Corporation | Surgical instruments having auto-regulating heater |
US5318564A (en) | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5593406A (en) | 1992-05-01 | 1997-01-14 | Hemostatic Surgery Corporation | Endoscopic instrument with auto-regulating heater and method of using same |
US5480398A (en) | 1992-05-01 | 1996-01-02 | Hemostatic Surgery Corporation | Endoscopic instrument with disposable auto-regulating heater |
US5496314A (en) | 1992-05-01 | 1996-03-05 | Hemostatic Surgery Corporation | Irrigation and shroud arrangement for electrically powered endoscopic probes |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5540679A (en) | 1992-10-05 | 1996-07-30 | Boston Scientific Corporation | Device and method for heating tissue in a patient's body |
WO1994008524A1 (en) * | 1992-10-09 | 1994-04-28 | Hemostatix Corporation | Electrosurgical instruments having a detachable working end |
US5964759A (en) | 1992-10-27 | 1999-10-12 | Ortho Development Corporation | Electroconvergent cautery system |
US5400267A (en) | 1992-12-08 | 1995-03-21 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
US5807393A (en) | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US5370645A (en) | 1993-04-19 | 1994-12-06 | Valleylab Inc. | Electrosurgical processor and method of use |
US5628771A (en) | 1993-05-12 | 1997-05-13 | Olympus Optical Co., Ltd. | Electromagnetic-wave thermatological device |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5376094A (en) | 1993-08-19 | 1994-12-27 | Boston Scientific Corporation | Improved actuating handle with pulley system for providing mechanical advantage to a surgical working element |
US5496312A (en) | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US6210403B1 (en) | 1993-10-07 | 2001-04-03 | Sherwood Services Ag | Automatic control for energy from an electrosurgical generator |
US5507743A (en) | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5382247A (en) | 1994-01-21 | 1995-01-17 | Valleylab Inc. | Technique for electrosurgical tips and method of manufacture and use |
US6030381A (en) * | 1994-03-18 | 2000-02-29 | Medicor Corporation | Composite dielectric coating for electrosurgical implements |
US5475203A (en) | 1994-05-18 | 1995-12-12 | Gas Research Institute | Method and woven mesh heater comprising insulated and noninsulated wire for fusion welding of plastic pieces |
US6006755A (en) | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
US5595565A (en) | 1994-06-30 | 1997-01-21 | The Trustees Of Columbia University In The City Of New York | Self-propelled endoscope using pressure driven linear actuators |
US5674219A (en) | 1994-10-06 | 1997-10-07 | Donaldson Company, Inc. | Electrosurgical smoke evacuator |
US5951546A (en) | 1994-12-13 | 1999-09-14 | Lorentzen; Torben | Electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal |
EP2070486A1 (en) | 1994-12-13 | 2009-06-17 | Torben Lorentzen | An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal |
WO1996026677A1 (en) | 1995-03-02 | 1996-09-06 | Eggers Philip E | Resistively heated cutting and coagulating surgical instrument |
US5807392A (en) | 1995-03-02 | 1998-09-15 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
US5611798A (en) | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
US5707369A (en) | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5707402A (en) | 1995-05-09 | 1998-01-13 | Team Medical, L.L.C. | Directed energy surgical method and assembly |
RU2072118C1 (en) | 1995-05-23 | 1997-01-20 | Александр Модестович Шамашкин | Induction heater for ferromagnetic material |
US6039733A (en) | 1995-09-19 | 2000-03-21 | Valleylab, Inc. | Method of vascular tissue sealing pressure control |
US5836874A (en) | 1996-04-08 | 1998-11-17 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
US6038017A (en) | 1996-05-31 | 2000-03-14 | Pinsukanjana; Paul Ruengrit | Method of controlling multi-species epitaxial deposition |
US5855061A (en) * | 1996-06-05 | 1999-01-05 | Valley Forge Scientific Corporation | Method of making flat loop bipolar electrode tips for electrosurgical instrument |
US5836943A (en) | 1996-08-23 | 1998-11-17 | Team Medical, L.L.C. | Electrosurgical generator |
US6004316A (en) | 1996-10-30 | 1999-12-21 | Hearten Medical, Inc. | Method for the treatment of patent ductus arteriosus |
US5827269A (en) | 1996-12-31 | 1998-10-27 | Gynecare, Inc. | Heated balloon having a reciprocating fluid agitator |
US7211080B2 (en) | 1997-03-05 | 2007-05-01 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
US6626901B1 (en) | 1997-03-05 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
US6860880B2 (en) | 1997-03-05 | 2005-03-01 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
US7211079B2 (en) | 1997-03-05 | 2007-05-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US7083613B2 (en) | 1997-03-05 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US6908463B2 (en) | 1997-03-05 | 2005-06-21 | The Trustees Of Columbia University In The City Of New York | Electrothermal device for coagulating, sealing and cutting tissue during surgery |
US7588566B2 (en) | 1997-03-05 | 2009-09-15 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
JPH10277050A (en) | 1997-04-04 | 1998-10-20 | Olympus Optical Co Ltd | High-frequency treating implement for endscope |
US20080281315A1 (en) | 1997-04-09 | 2008-11-13 | David Lee Gines | Electrosurgical Generator With Adaptive Power Control |
US5911719A (en) | 1997-06-05 | 1999-06-15 | Eggers; Philip E. | Resistively heating cutting and coagulating surgical instrument |
US6161048A (en) | 1997-06-26 | 2000-12-12 | Radionics, Inc. | Method and system for neural tissue modification |
US20020087156A1 (en) | 1997-07-08 | 2002-07-04 | Maguire Mark A. | Medical device with sensor cooperating with expandable member |
US6035238A (en) | 1997-08-13 | 2000-03-07 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
US6241723B1 (en) | 1997-10-15 | 2001-06-05 | Team Medical Llc | Electrosurgical system |
US6350262B1 (en) | 1997-10-22 | 2002-02-26 | Oratec Interventions, Inc. | Method and apparatus for applying thermal energy to tissue asymetrically |
US7963965B2 (en) | 1997-11-12 | 2011-06-21 | Covidien Ag | Bipolar electrosurgical instrument for sealing vessels |
US7435249B2 (en) | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US8211105B2 (en) | 1997-11-12 | 2012-07-03 | Covidien Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
US20020173787A1 (en) | 1997-11-12 | 2002-11-21 | Buysse Steven P. | Bipolar electrosurgical instrument for sealing vessels |
US7828798B2 (en) | 1997-11-14 | 2010-11-09 | Covidien Ag | Laparoscopic bipolar electrosurgical instrument |
US20040243120A1 (en) | 1997-12-10 | 2004-12-02 | Orszulak James Henry | Smart recognition apparatus and method |
US6287305B1 (en) | 1997-12-23 | 2001-09-11 | Team Medical, L.L.C. | Electrosurgical instrument |
US6533781B2 (en) | 1997-12-23 | 2003-03-18 | Team Medical Llc | Electrosurgical instrument |
WO1999037227A1 (en) | 1998-01-26 | 1999-07-29 | Boston Scientific Limited | Tissue resection using resistance heating |
US6066138A (en) | 1998-05-27 | 2000-05-23 | Sheffer; Yehiel | Medical instrument and method of utilizing same for eye capsulotomy |
US20030073989A1 (en) | 1998-07-07 | 2003-04-17 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US20120130256A1 (en) | 1998-10-23 | 2012-05-24 | Covidien Ag | Method and System for Controlling Output of RF Medical Generator |
US20130041367A1 (en) | 1998-10-23 | 2013-02-14 | Covidien Ag | Vessel sealing system |
US20140100559A1 (en) | 1998-10-23 | 2014-04-10 | Covidien Ag | Vessel sealing system |
US20140058385A1 (en) | 1998-10-23 | 2014-02-27 | Covidien Ag | Vessel sealing system |
US20140058381A1 (en) | 1998-10-23 | 2014-02-27 | Covidien Ag | Vessel sealing system |
US6632182B1 (en) | 1998-10-23 | 2003-10-14 | The Trustees Of Columbia University In The City Of New York | Multiple bit, multiple specimen endoscopic biopsy forceps |
US8287528B2 (en) | 1998-10-23 | 2012-10-16 | Covidien Ag | Vessel sealing system |
US8105323B2 (en) | 1998-10-23 | 2012-01-31 | Covidien Ag | Method and system for controlling output of RF medical generator |
US20120150170A1 (en) | 1998-10-23 | 2012-06-14 | Covidien Ag | Method and System for Controlling Output of RF Medical Generator |
US20030212389A1 (en) | 1998-10-26 | 2003-11-13 | Durgin Russell F. | Multi-function surgical instrument |
US20030199755A1 (en) | 1998-11-04 | 2003-10-23 | Johns Hopkins University School Of Medicine | System and method for magnetic-resonance-guided electrophysiologic and ablation procedures |
US6290697B1 (en) | 1998-12-01 | 2001-09-18 | Irvine Biomedical, Inc. | Self-guiding catheter system for tissue ablation |
US20060287649A1 (en) | 1998-12-14 | 2006-12-21 | Ormsby Theodore C | Radio-frequency based catheter system and method for ablating biological tissues |
US6190382B1 (en) | 1998-12-14 | 2001-02-20 | Medwaves, Inc. | Radio-frequency based catheter system for ablation of body tissues |
US6723094B1 (en) | 1998-12-18 | 2004-04-20 | Kai Desinger | Electrode assembly for a surgical instrument provided for carrying out an electrothermal coagulation of tissue |
US20030171747A1 (en) | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US6015415A (en) | 1999-03-09 | 2000-01-18 | General Science And Technology | Polypectomy snare instrument |
US6228084B1 (en) | 1999-04-06 | 2001-05-08 | Kirwan Surgical Products, Inc. | Electro-surgical forceps having recessed irrigation channel |
US6358273B1 (en) | 1999-04-09 | 2002-03-19 | Oratec Inventions, Inc. | Soft tissue heating apparatus with independent, cooperative heating sources |
US20030060818A1 (en) | 1999-04-21 | 2003-03-27 | Oratec Interventions, Inc. | Method and apparatus for controlling a temperature-controlled probe |
US6454781B1 (en) | 1999-05-26 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Feedback control in an ultrasonic surgical instrument for improved tissue effects |
US20020068931A1 (en) | 1999-06-04 | 2002-06-06 | Engineering & Research Associates, Inc. | Apparatus and method for real time determination of materials' electrical properties |
US20020019644A1 (en) | 1999-07-12 | 2002-02-14 | Hastings Roger N. | Magnetically guided atherectomy |
US6911026B1 (en) | 1999-07-12 | 2005-06-28 | Stereotaxis, Inc. | Magnetically guided atherectomy |
US6692489B1 (en) | 1999-07-21 | 2004-02-17 | Team Medical, Llc | Electrosurgical mode conversion system |
US7175621B2 (en) | 1999-07-21 | 2007-02-13 | Surginetics, Llc | Electrosurgical mode conversion system |
WO2001006943A1 (en) | 1999-07-27 | 2001-02-01 | Neotonus, Inc. | Electromagnetic scalpel for the heating of biological tissue |
US20030208199A1 (en) | 1999-09-15 | 2003-11-06 | David Keane | Coiled ablation catheter system |
US20050273111A1 (en) | 1999-10-08 | 2005-12-08 | Ferree Bret A | Methods and apparatus for intervertebral disc removal and endplate preparation |
US7887535B2 (en) | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US20010014804A1 (en) | 2000-02-08 | 2001-08-16 | Goble Colin C.O. | Electrosurgical instrument and an electrosurgery system including such an instrument |
US20020026188A1 (en) | 2000-03-31 | 2002-02-28 | Balbierz Daniel J. | Tissue biopsy and treatment apparatus and method |
US20020019627A1 (en) | 2000-06-13 | 2002-02-14 | Maguire Mark A. | Surgical ablation probe for forming a circumferential lesion |
US7235073B2 (en) | 2000-07-06 | 2007-06-26 | Ethicon Endo-Surgery, Inc. | Cooled electrosurgical forceps |
US20030109871A1 (en) | 2000-07-25 | 2003-06-12 | Johnson Theodore C. | Apparatus for detecting and treating tumors using locaIized impedance measurement |
US20020029037A1 (en) | 2000-09-06 | 2002-03-07 | Kim Young D. | Method and apparatus for percutaneous trans-endocardial reperfusion |
US6604003B2 (en) | 2000-09-07 | 2003-08-05 | Sherwood Services Ag | Apparatus and method for treatment of an intervertebral disc |
US7702397B2 (en) | 2000-09-07 | 2010-04-20 | Covidien Ag | Apparatus and method for treatment of an intervertebral disc |
US6980862B2 (en) | 2000-09-07 | 2005-12-27 | Sherwood Services Ag | Apparatus and method for treatment of an intervertebral disc |
US20020029062A1 (en) | 2000-09-07 | 2002-03-07 | Shutaro Satake | Balloon catheter for pulmonary vein isolation |
US20030139741A1 (en) | 2000-10-31 | 2003-07-24 | Gyrus Medical Limited | Surgical instrument |
US20090312753A1 (en) | 2000-12-09 | 2009-12-17 | Tsunami Medtech, Llc | Thermotherapy device |
US20020133148A1 (en) | 2001-01-11 | 2002-09-19 | Daniel Steven A. | Bone-treatment instrument and method |
US20040059345A1 (en) | 2001-01-12 | 2004-03-25 | Nakao Naomi L. | Medical cauterization snare assembly and associated methodology |
US20020120261A1 (en) | 2001-02-28 | 2002-08-29 | Morris David L. | Tissue surface treatment apparatus and method |
US20020165529A1 (en) | 2001-04-05 | 2002-11-07 | Danek Christopher James | Method and apparatus for non-invasive energy delivery |
US8241284B2 (en) | 2001-04-06 | 2012-08-14 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US20120303026A1 (en) | 2001-04-06 | 2012-11-29 | Covidien Ag | Vessel Sealer and Divider With Non-Conductive Stop Members |
US7473253B2 (en) | 2001-04-06 | 2009-01-06 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US20030004507A1 (en) | 2001-04-26 | 2003-01-02 | Medtronic, Inc. | Ablation system and method of use |
US20040187875A1 (en) | 2001-05-01 | 2004-09-30 | He Sheng Ding | Method and apparatus for altering conduction properties along pathways in the heart and in vessels in conductive communication with the heart. |
US20030055424A1 (en) | 2001-09-18 | 2003-03-20 | Scott Ciarrocca | Combination bipolar forceps and scissors instrument |
US20030055417A1 (en) | 2001-09-19 | 2003-03-20 | Csaba Truckai | Surgical system for applying ultrasonic energy to tissue |
US7938779B2 (en) | 2001-10-16 | 2011-05-10 | Olympus Corporation | Treating apparatus and treating device for treating living-body tissue |
US20030073987A1 (en) | 2001-10-16 | 2003-04-17 | Olympus Optical Co., Ltd. | Treating apparatus and treating device for treating living-body tissue |
US7981113B2 (en) | 2001-10-22 | 2011-07-19 | Surgrx, Inc. | Electrosurgical instrument |
US7112201B2 (en) | 2001-10-22 | 2006-09-26 | Surgrx Inc. | Electrosurgical instrument and method of use |
US6821273B2 (en) | 2002-01-03 | 2004-11-23 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
US20090118730A1 (en) | 2002-01-03 | 2009-05-07 | Starion Instruments Corporation | Combined Dissecting, Cauterizing, and Stapling Device |
US7396356B2 (en) | 2002-01-03 | 2008-07-08 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
US20050072827A1 (en) | 2002-01-03 | 2005-04-07 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
US20030144660A1 (en) | 2002-01-03 | 2003-07-31 | Starion Instruments Corp. | Combined dissecting, cauterizing, and stapling device |
US6602252B2 (en) | 2002-01-03 | 2003-08-05 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
US6980865B1 (en) | 2002-01-22 | 2005-12-27 | Nanoset, Llc | Implantable shielded medical device |
US20030176873A1 (en) | 2002-03-12 | 2003-09-18 | Lithotech Medical Ltd. | Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation |
US7578815B2 (en) | 2002-03-13 | 2009-08-25 | Starion Instruments Corporation | Power supply for identification and control of electrical surgical tools |
US7164968B2 (en) | 2002-04-05 | 2007-01-16 | The Trustees Of Columbia University In The City Of New York | Robotic scrub nurse |
US20030195499A1 (en) | 2002-04-16 | 2003-10-16 | Mani Prakash | Microwave antenna having a curved configuration |
US20040030330A1 (en) | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
US6912911B2 (en) | 2002-04-30 | 2005-07-05 | Sung J. Oh | Inductively coupled stress/strain sensor |
US7588565B2 (en) | 2002-05-15 | 2009-09-15 | Rocky Mountain Biosystems, Inc. | Method and device for anastomoses |
US20040049185A1 (en) | 2002-07-02 | 2004-03-11 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
US20040006335A1 (en) | 2002-07-08 | 2004-01-08 | Garrison Lawrence L. | Cauterizing surgical saw |
US20040073256A1 (en) | 2002-08-09 | 2004-04-15 | Kevin Marchitto | Activated surgical fasteners, devices therefor and uses thereof |
WO2004014217A2 (en) | 2002-08-09 | 2004-02-19 | Marchitto, Kevin | Activated surgical fasteners, devices therefor and uses thereof |
US20040034349A1 (en) | 2002-08-15 | 2004-02-19 | Kirwan Lawrence T. | Electro-surgical forceps having fully plated tines and process for manufacturing same |
US7300452B2 (en) | 2002-08-24 | 2007-11-27 | Koninklijke Philips Electronics N.V. | Method for local heating by means of magnetic particles |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US20060004356A1 (en) | 2002-11-26 | 2006-01-05 | Bilski W J | Cooling Element for electrosurgery |
US20070106294A1 (en) | 2002-12-12 | 2007-05-10 | Orion Industries, Ltd. | Anti-microbial electrosurgical electrode and method of manufacturing same |
US20040167506A1 (en) | 2003-02-25 | 2004-08-26 | Scimed Life Systems, Inc. | Medical devices employing ferromagnetic heating |
WO2004076146A2 (en) | 2003-02-25 | 2004-09-10 | Boston Scientific Limited | Medical device comprising a ferromagnetic heating device |
US7326202B2 (en) | 2003-03-07 | 2008-02-05 | Starion Instruments Corporation | Tubular resistance heater with electrically insulating high thermal conductivity core for use in a tissue welding device |
US20040176756A1 (en) | 2003-03-07 | 2004-09-09 | Mcgaffigan Thomas H. | Tubular resistance heater with electrically insulating high thermal conductivity core for use in a tissue welding device |
US20050021016A1 (en) | 2003-03-27 | 2005-01-27 | Cierra, Inc. | Energy based devices and methods for treatment of anatomic tissue defects |
US20050033338A1 (en) | 2003-06-19 | 2005-02-10 | Ferree Bret A. | Surgical instruments particularly suited to severing ligaments and fibrous tissues |
US7317275B2 (en) | 2003-09-30 | 2008-01-08 | The Trustees Of Columbia University In The City Of New York | Harmonic propulsion and harmonic controller |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
US8104956B2 (en) | 2003-10-23 | 2012-01-31 | Covidien Ag | Thermocouple measurement circuit |
US20070219544A1 (en) | 2003-11-07 | 2007-09-20 | Visualase, Inc. | Cooled laser fiber for improved thermal therapy |
US7377919B2 (en) | 2003-11-10 | 2008-05-27 | Surginetics, Inc. | Electrosurgical instrument |
US7025065B2 (en) | 2003-11-14 | 2006-04-11 | Starion Instruments Corporation | Method of testing thermal cautery devices |
US8100908B2 (en) | 2003-11-14 | 2012-01-24 | Microline Surgical, Inc. | Thermal cautery devices with improved heating profiles |
US20050107776A1 (en) | 2003-11-14 | 2005-05-19 | Starion Instruments Corporation | Thermal cautery devices with improved heating profiles |
US7011656B2 (en) | 2003-11-14 | 2006-03-14 | Starion Instruments Corporation | Thermal cautery devices with improved heating profiles |
US20060212031A1 (en) | 2003-11-14 | 2006-09-21 | Starion Instruments, Inc. | Thermal cautery devices with improved heating profiles |
US20050113824A1 (en) | 2003-11-20 | 2005-05-26 | Sartor Joe D. | Electrosurgical pencil with improved controls |
US7959633B2 (en) | 2003-11-20 | 2011-06-14 | Covidien Ag | Electrosurgical pencil with improved controls |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US20110092971A1 (en) | 2003-11-20 | 2011-04-21 | Covidien Ag | Electrosurgical Pencil with Advanced ES Controls |
US7613523B2 (en) | 2003-12-11 | 2009-11-03 | Apsara Medical Corporation | Aesthetic thermal sculpting of skin |
US7329255B2 (en) | 2003-12-23 | 2008-02-12 | Starion Instruments Corporation | System for regulating heating in a tissue sealing and cutting device |
US20050197661A1 (en) | 2004-03-03 | 2005-09-08 | Scimed Life Systems, Inc. | Tissue removal probe with sliding burr in cutting window |
US20050245919A1 (en) | 2004-04-29 | 2005-11-03 | Van Der Weide Daniel W | Triaxial antenna for microwave tissue ablation |
US20070016181A1 (en) | 2004-04-29 | 2007-01-18 | Van Der Weide Daniel W | Microwave tissue resection tool |
US7473250B2 (en) | 2004-05-21 | 2009-01-06 | Ethicon Endo-Surgery, Inc. | Ultrasound medical system and method |
US20050283149A1 (en) | 2004-06-08 | 2005-12-22 | Thorne Jonathan O | Electrosurgical cutting instrument |
US20050283067A1 (en) | 2004-06-21 | 2005-12-22 | Mediguide Ltd. | Inductor for catheter |
US20050288659A1 (en) | 2004-06-22 | 2005-12-29 | Olympus Corporation | Ultrasonic surgical apparatus with treatment modes selectable |
US7632295B2 (en) | 2004-07-13 | 2009-12-15 | University Of Florida Research Foundation, Inc. | Ferroelectric hyperthermia method for cancer treatment |
US7122030B2 (en) | 2004-07-13 | 2006-10-17 | University Of Florida Research Foundation, Inc. | Ferroelectric hyperthermia system and method for cancer therapy |
US20060241588A1 (en) | 2004-07-20 | 2006-10-26 | Surginetics, Llc | Multielectrode Electrosurgical Blade |
US20060241589A1 (en) | 2004-07-20 | 2006-10-26 | Surginetics, Llc | Battery Powered Electrosurgical System |
US20060241587A1 (en) | 2004-07-20 | 2006-10-26 | Surginetics, Llc | Multielectrode Electrosurgical Instrument |
WO2006017517A2 (en) | 2004-08-04 | 2006-02-16 | Cardio-Optics, Inc. | Transparent electrode for the radiofrequency ablation of tissue |
US7528663B2 (en) | 2004-09-15 | 2009-05-05 | Commissariat A L'energie Atomique | Microwave oscillator tuned with a ferromagnetic thin film |
WO2006029649A1 (en) | 2004-09-15 | 2006-03-23 | Commissariat A L'energie Atomique | Microwave oscillator tuned with a ferromagnetic thin film |
US8100896B2 (en) | 2004-09-21 | 2012-01-24 | Covidien Ag | Method for treatment of an intervertebral disc |
US20070016272A1 (en) | 2004-09-27 | 2007-01-18 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US20120059367A1 (en) | 2004-10-08 | 2012-03-08 | Covidien Ag | Electrosurgical System Employing Multiple Electrodes |
US7776035B2 (en) | 2004-10-08 | 2010-08-17 | Covidien Ag | Cool-tip combined electrode introducer |
US8062290B2 (en) | 2004-10-08 | 2011-11-22 | Covidien Ag | Electrosurgical system employing multiple electrodes |
US8377057B2 (en) | 2004-10-08 | 2013-02-19 | Covidien Ag | Cool-tip combined electrode introducer |
US7699842B2 (en) | 2004-10-08 | 2010-04-20 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US7494492B2 (en) | 2004-12-10 | 2009-02-24 | Therative, Inc. | Skin treatment device |
US20060127706A1 (en) | 2004-12-10 | 2006-06-15 | Goebel Steven G | Reactant feed for nested stamped plates for a compact fuel cell |
US20060142824A1 (en) | 2004-12-20 | 2006-06-29 | Zikorus Arthur W | Systems and methods for treating a hollow anatomical structure |
US7951150B2 (en) | 2005-01-14 | 2011-05-31 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US20060167450A1 (en) | 2005-01-14 | 2006-07-27 | Johnson Kristin D | Vessel sealer and divider with rotating sealer and cutter |
US20060161149A1 (en) | 2005-01-18 | 2006-07-20 | Salvatore Privitera | Surgical ablation device |
US8460870B2 (en) | 2005-01-20 | 2013-06-11 | The Regents Of The University Of California | Allosteric control of proteins by manipulating mechanical tension |
US20060212030A1 (en) | 2005-03-16 | 2006-09-21 | Mcgaffigan Thomas H | Integrated metalized ceramic heating element for use in a tissue cutting and sealing device |
US20090198224A1 (en) | 2005-03-16 | 2009-08-06 | Starion Instruments | Integrated Metalized Ceramic Heating Element for Use in a Tissue Cutting and Sealing Device |
US20060217706A1 (en) | 2005-03-25 | 2006-09-28 | Liming Lau | Tissue welding and cutting apparatus and method |
US20060217700A1 (en) | 2005-03-28 | 2006-09-28 | Garito Jon C | Electrosurgical instrument with enhanced capability |
US20060271037A1 (en) | 2005-05-25 | 2006-11-30 | Forcept, Inc. | Assisted systems and methods for performing transvaginal hysterectomies |
US20070005056A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Instrument With Blade Profile For Reduced Tissue Damage |
US20070005060A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Method For Conducting Electrosurgery With Increased Crest Factor |
US20070005055A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Blade |
US20070005057A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Blade With Profile For Minimizing Tissue Damage |
US20070005054A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Instrument |
US20070005059A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Needle Electrode |
US20070005058A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Instrument With Needle Electrode |
US20110054456A1 (en) | 2005-07-21 | 2011-03-03 | Tyco Healthcare Group, Lp | Systems for treating a hollow anatomical structure |
US20070100405A1 (en) | 2005-07-21 | 2007-05-03 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
US20070060920A1 (en) | 2005-08-25 | 2007-03-15 | Boston Scientific Scimed, Inc. | Endoscopic resection method |
US7678105B2 (en) | 2005-09-16 | 2010-03-16 | Conmed Corporation | Method and apparatus for precursively controlling energy during coaptive tissue fusion |
US20070073282A1 (en) | 2005-09-26 | 2007-03-29 | Starion Instruments Corporation | Resistive heating device and method for turbinate ablation |
US7559368B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Solution mining systems and methods for treating hydrocarbon containing formations |
US7559367B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Temperature limited heater with a conduit substantially electrically isolated from the formation |
US20070127897A1 (en) | 2005-10-24 | 2007-06-07 | John Randy C | Subsurface heaters with low sulfidation rates |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US20070131428A1 (en) | 2005-10-24 | 2007-06-14 | Willem Cornelis Den Boestert J | Methods of filtering a liquid stream produced from an in situ heat treatment process |
US7556095B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7556096B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7591310B2 (en) | 2005-10-24 | 2009-09-22 | Shell Oil Company | Methods of hydrotreating a liquid stream to remove clogging compounds |
US7584789B2 (en) | 2005-10-24 | 2009-09-08 | Shell Oil Company | Methods of cracking a crude product to produce additional crude products |
US7635025B2 (en) | 2005-10-24 | 2009-12-22 | Shell Oil Company | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7562706B2 (en) | 2005-10-24 | 2009-07-21 | Shell Oil Company | Systems and methods for producing hydrocarbons from tar sands formations |
US7581589B2 (en) | 2005-10-24 | 2009-09-01 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US20070100336A1 (en) | 2005-10-27 | 2007-05-03 | Mcfarlin Kevin | Micro-resecting and evoked potential monitoring system and method |
US7922713B2 (en) | 2006-01-03 | 2011-04-12 | Geisel Donald J | High efficiency, precision electrosurgical apparatus and method |
US20080119841A1 (en) | 2006-01-03 | 2008-05-22 | Geisel Donald J | High, efficiency, precision electrosurgical apparatus and method |
WO2007080578A2 (en) | 2006-01-09 | 2007-07-19 | Biospiral Ltd. | System and method for thermally treating tissues |
US20070173811A1 (en) | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | Method and system for controlling delivery of energy to divide tissue |
US20110004204A1 (en) | 2006-01-25 | 2011-01-06 | The Regents Of The University Of Michigan | Surgical Instrument and Method for Use Thereof |
US20070208339A1 (en) | 2006-03-03 | 2007-09-06 | Sherwood Services Ag | System and method for controlling electrosurgical snares |
US20070270924A1 (en) | 2006-04-04 | 2007-11-22 | Mccann Claire | Coil electrode apparatus for thermal therapy |
US20070239151A1 (en) | 2006-04-06 | 2007-10-11 | Baylor College Of Medicine | Method and apparatus for the detachment of catheters or puncturing of membranes and intraluminal devices within the body |
US7631689B2 (en) | 2006-04-21 | 2009-12-15 | Shell Oil Company | Sulfur barrier for use with in situ processes for treating formations |
US7635023B2 (en) | 2006-04-21 | 2009-12-22 | Shell Oil Company | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US20080017380A1 (en) | 2006-04-21 | 2008-01-24 | Vinegar Harold J | Non-ferromagnetic overburden casing |
WO2008060668A2 (en) | 2006-04-21 | 2008-05-22 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US20080038144A1 (en) | 2006-04-21 | 2008-02-14 | Maziasz Phillip J | High strength alloys |
US7604052B2 (en) | 2006-04-21 | 2009-10-20 | Shell Oil Company | Compositions produced using an in situ heat treatment process |
US7597147B2 (en) | 2006-04-21 | 2009-10-06 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US20080035346A1 (en) | 2006-04-21 | 2008-02-14 | Vijay Nair | Methods of producing transportation fuel |
US20080035705A1 (en) | 2006-04-21 | 2008-02-14 | Menotti James L | Welding shield for coupling heaters |
US20080174115A1 (en) | 2006-04-21 | 2008-07-24 | Gene Richard Lambirth | Power systems utilizing the heat of produced formation fluid |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US7610962B2 (en) | 2006-04-21 | 2009-11-03 | Shell Oil Company | Sour gas injection for use with in situ heat treatment |
US20080173444A1 (en) | 2006-04-21 | 2008-07-24 | Francis Marion Stone | Alternate energy source usage for in situ heat treatment processes |
US20080035347A1 (en) | 2006-04-21 | 2008-02-14 | Brady Michael P | Adjusting alloy compositions for selected properties in temperature limited heaters |
US20080255642A1 (en) | 2006-06-28 | 2008-10-16 | Ardian, Inc. | Methods and systems for thermally-induced renal neuromodulation |
US7871406B2 (en) | 2006-08-04 | 2011-01-18 | INTIO, Inc. | Methods for planning and performing thermal ablation |
US20080033419A1 (en) | 2006-08-04 | 2008-02-07 | Nields Morgan W | Method for planning, performing and monitoring thermal ablation |
US20080077129A1 (en) | 2006-09-27 | 2008-03-27 | Van Wyk Robert A | Electrosurgical Device Having Floating Potential Electrode and Adapted for Use With a Resectoscope |
US20100228244A1 (en) | 2006-10-10 | 2010-09-09 | Microoncology Limited | Tissue measurement and ablation antenna |
US7951149B2 (en) | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
US7562707B2 (en) | 2006-10-20 | 2009-07-21 | Shell Oil Company | Heating hydrocarbon containing formations in a line drive staged process |
US7635024B2 (en) | 2006-10-20 | 2009-12-22 | Shell Oil Company | Heating tar sands formations to visbreaking temperatures |
US20080135254A1 (en) | 2006-10-20 | 2008-06-12 | Vinegar Harold J | In situ heat treatment process utilizing a closed loop heating system |
US20080142216A1 (en) | 2006-10-20 | 2008-06-19 | Vinegar Harold J | Treating tar sands formations with dolomite |
US20080142217A1 (en) | 2006-10-20 | 2008-06-19 | Roelof Pieterson | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US20090014180A1 (en) | 2006-10-20 | 2009-01-15 | George Leo Stegemeier | Moving hydrocarbons through portions of tar sands formations with a fluid |
US20080128134A1 (en) | 2006-10-20 | 2008-06-05 | Ramesh Raju Mudunuri | Producing drive fluid in situ in tar sands formations |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US20080185147A1 (en) | 2006-10-20 | 2008-08-07 | Vinegar Harold J | Wax barrier for use with in situ processes for treating formations |
US20080217003A1 (en) | 2006-10-20 | 2008-09-11 | Myron Ira Kuhlman | Gas injection to inhibit migration during an in situ heat treatment process |
US20080217016A1 (en) | 2006-10-20 | 2008-09-11 | George Leo Stegemeier | Creating fluid injectivity in tar sands formations |
US20080236831A1 (en) | 2006-10-20 | 2008-10-02 | Chia-Fu Hsu | Condensing vaporized water in situ to treat tar sands formations |
US20090014181A1 (en) | 2006-10-20 | 2009-01-15 | Vinegar Harold J | Creating and maintaining a gas cap in tar sands formations |
US20080135253A1 (en) | 2006-10-20 | 2008-06-12 | Vinegar Harold J | Treating tar sands formations with karsted zones |
US20080277113A1 (en) | 2006-10-20 | 2008-11-13 | George Leo Stegemeier | Heating tar sands formations while controlling pressure |
US7631690B2 (en) | 2006-10-20 | 2009-12-15 | Shell Oil Company | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US20080161800A1 (en) | 2006-12-29 | 2008-07-03 | Huisun Wang | Ablation catheter tip for generating an angled flow |
US8480666B2 (en) | 2007-01-31 | 2013-07-09 | Covidien Lp | Thermal feedback systems and methods of using the same |
US20140058384A1 (en) | 2007-01-31 | 2014-02-27 | Covidien Lp | Thermal feedback systems and methods of using the same |
US8568402B2 (en) | 2007-01-31 | 2013-10-29 | Covidien Lp | Thermal feedback systems and methods of using the same |
US20080187989A1 (en) | 2007-02-01 | 2008-08-07 | Mcgreevy Francis T | Apparatus and method for rapid reliable electrothermal tissue fusion |
US20080228135A1 (en) | 2007-03-05 | 2008-09-18 | Elizabeth Ann Snoderly | Apparatus for treating a damaged spinal disc |
US20080281386A1 (en) | 2007-05-09 | 2008-11-13 | Tessaron Medical, Inc. | Systems and methods for treating body tissue |
US20080281310A1 (en) | 2007-05-11 | 2008-11-13 | Tyco Healthcare Group Lp | Temperature monitoring return electrode |
US20080319438A1 (en) | 2007-06-22 | 2008-12-25 | Decarlo Arnold V | Electrosurgical systems and cartridges for use therewith |
EP2036512A1 (en) | 2007-09-13 | 2009-03-18 | Vivant Medical, Inc. | Frequency tuning in a microwave electrosurgical system |
US20090093811A1 (en) | 2007-10-09 | 2009-04-09 | Josef Koblish | Cooled ablation catheter devices and methods of use |
US7972335B2 (en) | 2007-10-16 | 2011-07-05 | Conmed Corporation | Coaptive tissue fusion method and apparatus with current derivative precursive energy termination control |
US7972334B2 (en) | 2007-10-16 | 2011-07-05 | Conmed Corporation | Coaptive tissue fusion method and apparatus with energy derivative precursive energy termination control |
US20090112200A1 (en) | 2007-10-30 | 2009-04-30 | Hemostatix Medical Technologies Llc | Hemostatic surgical blade, system and method of blade manufacture |
US20090118729A1 (en) | 2007-11-07 | 2009-05-07 | Mirabilis Medica Inc. | Hemostatic spark erosion tissue tunnel generator with integral treatment providing variable volumetric necrotization of tissue |
US20090248002A1 (en) | 2008-04-01 | 2009-10-01 | Tomoyuki Takashino | Treatment system, and treatment method for living tissue using energy |
US20090306644A1 (en) | 2008-05-09 | 2009-12-10 | Innovative Pulmonary Solutions, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US20090292347A1 (en) | 2008-05-21 | 2009-11-26 | Boston Scientific Scimed, Inc. | Systems and methods for heating and cooling during stent crimping |
US8667674B2 (en) | 2008-06-09 | 2014-03-11 | Covidien Lp | Surface ablation process with electrode cooling methods |
US20100004650A1 (en) | 2008-07-01 | 2010-01-07 | Medwaves, Inc. | Angioplasty and tissue ablation apparatus and method |
US20100082022A1 (en) | 2008-09-30 | 2010-04-01 | Haley Kaylen J | Delivered energy generator for microwave ablation |
US20120071870A1 (en) * | 2008-11-11 | 2012-03-22 | Amr Salahieh | Low Profile Electrode Assembly |
US20100152725A1 (en) | 2008-12-12 | 2010-06-17 | Angiodynamics, Inc. | Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation |
US20100198216A1 (en) | 2009-02-02 | 2010-08-05 | Palanker Daniel V | Electro-thermotherapy of tissue using penetrating microelectrode array |
US20100268218A1 (en) | 2009-04-15 | 2010-10-21 | Medwaves, Inc. | Electrically Tunable Tissue Ablation system and Method |
US20100268213A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Inductively heated multi-mode surgical tool |
US8506561B2 (en) | 2009-04-17 | 2013-08-13 | Domain Surgical, Inc. | Catheter with inductively heated regions |
US20120226270A1 (en) | 2009-04-17 | 2012-09-06 | Kim Manwaring | Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials |
US20170196617A1 (en) | 2009-04-17 | 2017-07-13 | Domain Surgical, Inc. | System and method of controlling power delivery to a surgical instrument |
US20100268205A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool |
US8292879B2 (en) | 2009-04-17 | 2012-10-23 | Domain Surgical, Inc. | Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool |
US20120296326A1 (en) | 2009-04-17 | 2012-11-22 | Kim Manwaring | Adjustable ferromagnetic coated conductor thermal surgical tool |
US20100268206A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Method of treatment with multi-mode surgical tool |
US20120330295A1 (en) | 2009-04-17 | 2012-12-27 | Kim Manwaring | Thermal Resecting Loop |
US20170189094A9 (en) | 2009-04-17 | 2017-07-06 | Domain Surgical, Inc. | Thermally adjustable surgical system and method |
US20130012934A1 (en) | 2009-04-17 | 2013-01-10 | Kim Manwaring | Layered Ferromagnetic Coated Conductor Thermal Surgical Tool |
US20160249971A1 (en) | 2009-04-17 | 2016-09-01 | Domain Surgical, Inc. | Multi-mode surgical tool |
US8372066B2 (en) | 2009-04-17 | 2013-02-12 | Domain Surgical, Inc. | Inductively heated multi-mode surgical tool |
US20100268215A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Catheter with inductively heated regions |
US20120071712A1 (en) | 2009-04-17 | 2012-03-22 | Kim Manwaring | Heated balloon catheter |
US8377052B2 (en) | 2009-04-17 | 2013-02-19 | Domain Surgical, Inc. | Surgical tool with inductively heated regions |
US20160192977A1 (en) | 2009-04-17 | 2016-07-07 | Domain Surgical, Inc. | Thermal surgical tool |
US8414569B2 (en) | 2009-04-17 | 2013-04-09 | Domain Surgical, Inc. | Method of treatment with multi-mode surgical tool |
US8419724B2 (en) | 2009-04-17 | 2013-04-16 | Domain Surgical, Inc. | Adjustable ferromagnetic coated conductor thermal surgical tool |
US8425503B2 (en) | 2009-04-17 | 2013-04-23 | Domain Surgical, Inc. | Adjustable ferromagnetic coated conductor thermal surgical tool |
US8430870B2 (en) | 2009-04-17 | 2013-04-30 | Domain Surgical, Inc. | Inductively heated snare |
US20100268210A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Inductively heated surgical implement driver |
US20100268209A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Inductively heated snare |
US8491578B2 (en) | 2009-04-17 | 2013-07-23 | Domain Surgical, Inc. | Inductively heated multi-mode bipolar surgical tool |
US20130197502A1 (en) | 2009-04-17 | 2013-08-01 | Domain Surgical, Inc. | Thermally adjustable surgical system and method |
US20100268211A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Inductively Heated Multi-Mode Bipolar Surgical Tool |
US20130218152A1 (en) | 2009-04-17 | 2013-08-22 | Domain Surgical, Inc. | Thermal surgical tool |
US20130226165A1 (en) | 2009-04-17 | 2013-08-29 | Domain Surgical, Inc. | Multi-mode surgical tool |
US8523850B2 (en) | 2009-04-17 | 2013-09-03 | Domain Surgical, Inc. | Method for heating a surgical implement |
US8523851B2 (en) | 2009-04-17 | 2013-09-03 | Domain Surgical, Inc. | Inductively heated multi-mode ultrasonic surgical tool |
US20100268208A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Surgical scalpel with inductively heated regions |
US20130296838A1 (en) | 2009-04-17 | 2013-11-07 | Domain Surgical, Inc. | Inductively heated multi-mode surgical tool |
US8617151B2 (en) | 2009-04-17 | 2013-12-31 | Domain Surgical, Inc. | System and method of controlling power delivery to a surgical instrument |
US20160030103A1 (en) | 2009-04-17 | 2016-02-04 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
US20100268207A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Adjustable ferromagnetic coated conductor thermal surgical tool |
US20160030102A1 (en) | 2009-04-17 | 2016-02-04 | Domain Surgical, Inc. | Thermal resecting loop |
US20100268216A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Inductively heated multi-mode ultrasonic surgical tool |
US20100268214A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Surgical tool with inductively heated regions |
US20140074082A1 (en) | 2009-04-17 | 2014-03-13 | Domain Surgical, Inc. | System and method of controlling power delivery to a surgical instrument |
US20100268212A1 (en) | 2009-04-17 | 2010-10-21 | Kim Manwaring | Method for inductively heating a surgical implement |
US8672938B2 (en) | 2009-07-23 | 2014-03-18 | Covidien Lp | Active cooling system and apparatus for controlling temperature of a fluid used during treatment of biological tissue |
US20140180266A1 (en) | 2009-07-23 | 2014-06-26 | Covidien Lp | Active cooling system and apparatus for controlling temperature of a fluid used during treatment of biological tissue |
US20110152857A1 (en) | 2009-12-19 | 2011-06-23 | Frank Ingle | Apparatus and Methods For Electrophysiology Procedures |
US20130023866A1 (en) | 2011-04-08 | 2013-01-24 | Mark Stringham | System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue |
US20120259323A1 (en) | 2011-04-08 | 2012-10-11 | Preston Manwaring | Impedance Matching Circuit |
US20130006240A1 (en) | 2011-05-16 | 2013-01-03 | Mcnally David J | Surgical instrument guide |
US20130066310A1 (en) | 2011-09-13 | 2013-03-14 | Kim H. Manwaring | Sealing and/or cutting instrument |
US20170209200A1 (en) | 2011-09-13 | 2017-07-27 | Domain Surgical, Inc. | Sealing and/or cutting instrument |
US20140052119A1 (en) * | 2012-08-17 | 2014-02-20 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
Non-Patent Citations (35)
Title |
---|
"High Temp Metals." NI2001201 Technical Data. High Temp Metals, Inc., n.d. Web. Jul. 13, 2012. <http://www.hightempmetals.com/techdatafnitempNi200data.php. |
Center for Research in Scientific Computation. A Domain Wall Theory for Ferroelectric Hysteresis, Jan. 1999. |
Denis et al., "System and Method of Controlling Power Delivery to an Electrosurgical Instrument," U.S. Appl. No. 61/669,671, filed Jul. 10, 2012, 59 pages. |
Denis et al., "Thermal Surgical Tool," U.S. Appl. No. 61/567,603, filed Dec. 6, 2011, 33 pages. |
European Search Report from European Application No. 12865504.0-1652, dated Nov. 28, 2014. |
Extended European Search Report, dated Nov. 10, 2016, for European Application No. 10765134.1-1659, 8 pages. |
International Preliminary Report on Patentability from related PCT Application US2012/038005, dated Nov. 19, 2013. |
International Preliminary Report on Patentability from related PCT Application US2012/068027, dated Jun. 19, 2014. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2010/031114, dated Jan. 21, 2011. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2010/031114, dated Nov. 1, 2011. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2011/050417, dated Apr. 12, 2012. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/032656, dated Oct. 23, 2012. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/032659, dated Nov. 23, 2012. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/038005, dated Nov. 23, 2012. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/055229, dated Feb. 1, 2013. |
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/068027, dated Feb. 25, 2013. |
International Preliminary Report on Patentability, dated Oct. 8, 2013, for International Application No. PCT/US2012/032661, 8 pages. |
International Search Report and Written Opinion from related PCT Application US2012/032565, dated Oct. 8, 2013. |
International Search Report and Written Opinion from related PCT Application US2012/032659, dated Oct. 8, 2013. |
International Search Report and Written Opinion from related PCT Application US2012/032661, dated Aug. 19, 2013. |
International Search Report and Written Opinion, dated Feb. 1, 2013, for International Application No. PCT/US2012/055229, 11 pages. |
International Search Report and Written Opinion, dated Feb. 15, 2013, for International Application No. PCT/US2012/068027, 8 pages. |
International Search Report and Written Opinion, dated Jan. 21, 2011, for International Application No. PCT/US2010/031114, 12 pages. |
International Search Report and Written Opinion, dated Nov. 23, 2012, for International Application No. PCT/US2012/038005, 9 pages. |
International Search Report and Written Opinion, dated Oct. 23, 2012, for International Application No. PCT/US2012/032656, 13 pages. |
Manwaring et al., "Adjustable Ferromagnetic Coated Conductor Thermal Surgical Tool," U.S. Appl. No. 61/170,203, filed Apr. 17, 2009, 36 pages. |
Manwaring et al., "Surgical Multi-Mode Tool With Ferromagnetic Coated Conductor for Adjustable Thermal Energy Delivery," U.S. Appl. No. 61/170,207, filed Apr. 17, 2009, 43 pages. |
Manwaring et al., "Thermally Adjustable Surgical or Therapeutic Tool and Method of Use," U.S. Appl. No. 61/170,220, filed Apr. 17, 2009, 41 pages. |
Metcal Soldering Iron Catalog-2006. |
Metcal Soldering Iron Catalog—2006. |
Supplemental European Search Report from European Patent Application No. EP 12767458 dated Jan. 30, 2015. |
Translation of Office Action from related Japanese Patent Application No. 2012-506188, PCT US2010-031114. |
URSI EMTS 2004, pp. 489-491, Electromagnetic Probes for Living Tissue Cauterization. |
Visioli, Antonio. Practice PID Control: London: Springer-Verlag, Jan. 18, 2006. Print. |
Written Opinion of the International Preliminary Examining Authority from related PCT Patent Application No. PCT/US2011/050417, dated Feb. 6, 2013. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230036814A1 (en) * | 2021-07-21 | 2023-02-02 | Dell Products, Lp | Add-in card connector contact optimization for high-speed signaling |
US11764505B2 (en) * | 2021-07-21 | 2023-09-19 | Dell Products L.P. | Add-in card connector contact optimization for high-speed signaling |
Also Published As
Publication number | Publication date |
---|---|
US11701160B2 (en) | 2023-07-18 |
US20150327907A1 (en) | 2015-11-19 |
US20190328442A1 (en) | 2019-10-31 |
WO2015175792A1 (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11701160B2 (en) | Planar ferromagnetic coated surgical tip and method for making | |
US11219480B2 (en) | Apparatus, system and method for excision of soft tissue | |
US10149712B2 (en) | Layered ferromagnetic coated conductor thermal surgical tool | |
KR101929693B1 (en) | Inductively heated surgical tool | |
US6974452B1 (en) | Cutting and cauterizing surgical tools | |
US10213247B2 (en) | Thermal resecting loop | |
KR102151368B1 (en) | System and method of controlling power delivery to a surgical instrument | |
EP3244821B1 (en) | Precision blade electrosurgical instrument | |
JP2005152663A (en) | Electrically conductive/insulative over-shoe for tissue fusion | |
KR20070009484A (en) | Electrosurgical electrode with silver component | |
US11324541B2 (en) | Thermal incision apparatus, system and method | |
JP5389542B2 (en) | Electrode for medical device and medical treatment tool | |
JP6865666B2 (en) | Electrodes for high frequency medical devices and high frequency medical devices | |
JPS6128339B2 (en) | ||
TWI860448B (en) | Electrosurgical Electrodes | |
US20060058779A1 (en) | Electrocautery method and system | |
US20240156515A1 (en) | Surgical cutting and coagulation device | |
JP6856492B2 (en) | Electrodes for high frequency medical devices and high frequency medical devices | |
JPS6072545A (en) | Heating knife | |
CN108926383A (en) | Solidification and dissection utensil with pin electrode | |
JP2003235864A (en) | Electric operating implement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SOLAR CAPITAL LTD., AS AGENT, NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:DOMAIN SURGICAL, INC.;REEL/FRAME:046662/0635 Effective date: 20180730 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: DOMAIN SURGICAL, INC., UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STRINGHAM, MARK;SCOTT, ROBERT R.;BECK, KENT F.;AND OTHERS;REEL/FRAME:049550/0174 Effective date: 20190620 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |