US10579647B1 - Methods and systems for analyzing entity performance - Google Patents
Methods and systems for analyzing entity performance Download PDFInfo
- Publication number
- US10579647B1 US10579647B1 US15/013,707 US201615013707A US10579647B1 US 10579647 B1 US10579647 B1 US 10579647B1 US 201615013707 A US201615013707 A US 201615013707A US 10579647 B1 US10579647 B1 US 10579647B1
- Authority
- US
- United States
- Prior art keywords
- entity
- provisioning
- information
- data
- location
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 127
- 230000003993 interaction Effects 0.000 claims abstract description 352
- 230000009471 action Effects 0.000 claims description 20
- 230000002123 temporal effect Effects 0.000 claims description 20
- 230000004044 response Effects 0.000 claims description 15
- 230000000007 visual effect Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 6
- 238000012545 processing Methods 0.000 abstract description 37
- 238000004458 analytical method Methods 0.000 description 130
- 230000008569 process Effects 0.000 description 68
- 238000004891 communication Methods 0.000 description 34
- 238000007726 management method Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 18
- 230000000875 corresponding effect Effects 0.000 description 13
- 230000002354 daily effect Effects 0.000 description 13
- 230000004927 fusion Effects 0.000 description 10
- 230000009466 transformation Effects 0.000 description 9
- 238000013507 mapping Methods 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 6
- 230000003442 weekly effect Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000010835 comparative analysis Methods 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 241000982035 Sparattosyce Species 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000013475 authorization Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 235000013550 pizza Nutrition 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001301450 Crocidium multicaule Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000021152 breakfast Nutrition 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000013264 cohort analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013079 data visualisation Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
- G06F16/285—Clustering or classification
- G06F16/287—Visualization; Browsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9537—Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/26—Visual data mining; Browsing structured data
Definitions
- data stores For example, one common type of data store is a so-called “flat” file such as a spreadsheet, plain-text document, or XML document.
- Another common type of data store is a relational database comprising one or more tables.
- Other examples of data stores that comprise structured data include, without limitation, files systems, object collections, record collections, arrays, hierarchical trees, linked lists, stacks, and combinations thereof.
- FIG. 1 illustrates, in block diagram form, an exemplary data fusion system for providing interactive data analysis, consistent with the embodiments of the present disclosure.
- FIG. 2 is a block diagram of an exemplary system for analyzing performance of an entity, consistent with the embodiments of the present disclosure.
- FIG. 3 is a block diagram of an exemplary computer system, consistent with the embodiments of the present disclosure.
- FIG. 4 is a block diagram of an exemplary data structure accessed in the process of analyzing entity performance, consistent with the embodiments of the present disclosure.
- FIG. 5 is a block diagram of an exemplary scenario depicting a system for analyzing entity performance, consistent with the embodiments of the present disclosure.
- FIG. 6 is a flowchart representing an exemplary process for analyzing entity performance, consistent with the embodiments of the present disclosure.
- FIG. 7 is a screenshot of an exemplary user interface representing an entity performance, consistent with the embodiments of the present disclosure.
- FIG. 8 is a screenshot of an exemplary user interface representing an entity performance, consistent with the embodiments of the present disclosure.
- FIG. 9 is a screenshot of an exemplary user interface representing an entity performance, consistent with the embodiments of the present disclosure.
- FIG. 10A is a flowchart representing an exemplary process for analyzing entity performance, consistent with the embodiments of the present disclosure.
- FIG. 10B is a screenshot of an exemplary user interface representing an entity performance, consistent with the embodiments of the present disclosure.
- FIG. 11 is a flowchart representing an exemplary process for comparing entity performance, consistent with the embodiments of the present disclosure.
- FIG. 12 is a screenshot of an exemplary user interface representing a comparison of entity performance, consistent with embodiments of the present disclosure
- FIG. 13 is a flowchart representing an exemplary process for estimating a consuming entity's location, consistent with the embodiments of the present disclosure.
- FIG. 14 is a flowchart representing an exemplary process for estimating a provisioning entity's location, consistent with the embodiments of the present disclosure.
- FIG. 15 is a flowchart representing an exemplary process for estimating a provisioning entity's location, consistent with the embodiments of the present disclosure.
- FIGS. 16A, 16B, and 16C are block diagrams representing a method of computing travel times between two provisioning entities, consistent with the embodiments of the present disclosure.
- FIGS. 17-26 are screenshots of exemplary user interfaces, consistent with the embodiments of the present disclosure.
- FIG. 27 is a block diagram of an exemplary system for analyzing entity performance, consistent with embodiments of the present disclosure
- FIGS. 28-34 are screenshots of exemplary user interfaces, consistent with the embodiments of the present disclosure.
- FIG. 35 is a block diagram representing a method of analyzing entity performance, consistent with the embodiments of the present disclosure.
- FIG. 36 is a block diagram representing a method of analyzing entity performance, consistent with the embodiments of the present disclosure.
- FIG. 1 illustrates, in block diagram form, an exemplary data fusion system 100 for providing interactive data analysis, consistent with embodiments of the present disclosure.
- data fusion system 100 facilitates transformation of one or more data sources, such as data sources 130 (e.g., financial services systems 220 , geographic data systems 230 , provisioning entity management systems 240 and/or consuming entity data systems 250 , as shown in FIG. 2 ) into an object model 160 whose semantics are defined by an ontology 150 .
- the transformation can be performed for a variety of reasons. For example, a database administrator can import data from data sources 130 into a database 170 for persistently storing object model 160 .
- a data presentation component (not depicted) can transform input data from data sources 130 “on the fly” into object model 160 .
- the object model 160 can then be utilized, in conjunction with ontology 150 , for analysis through graphs and/or other data visualization techniques.
- Data fusion system 100 comprises a definition component 110 and a translation component 120 , both implemented by one or more processors of one or more computing devices or systems executing hardware and/or software-based logic for providing various functionality and features of the present disclosure, as described herein.
- data fusion system 100 can comprise fewer or additional components that provide the various functionalities and features described herein.
- the number and arrangement of the components of data fusion system 100 responsible for providing the various functionalities and features described herein can further vary from embodiment to embodiment.
- Definition component 110 generates and/or modifies ontology 150 and a schema map 140 .
- an ontology such as ontology 150
- a dynamic ontology may be used to create a database.
- object types may be defined, where each object type includes one or more properties.
- the attributes of object types or property types of the ontology can be edited or modified at any time.
- at least one parser definition may be created. The attributes of a parser definition can be edited or modified at any time.
- each property type is declared to be representative of one or more object types.
- a property type is representative of an object type when the property type is intuitively associated with the object type.
- each property type has one or more components and a base type.
- a property type can comprise a string, a date, a number, or a composite type consisting of two or more string, date, or number elements.
- property types are extensible and can represent complex data structures. Further, a parser definition can reference a component of a complex property type as a unit or token.
- An example of a property having multiple components is an Address property having a City component and a State component.
- An example of raw input data is “Los Angeles, Calif.”
- An example parser definition specifies an association of imported input data to object property components as follows: ⁇ CITY ⁇ , ⁇ STATE ⁇ Address:State, Address:City.
- the association ⁇ CITY ⁇ , ⁇ STATE ⁇ is defined in a parser definition using regular expression symbology.
- the association ⁇ CITY ⁇ , ⁇ STATE ⁇ indicates that a city string followed by a state string, and separated by a comma, comprises valid input data for a property of type Address.
- schema map 140 can define how various elements of schemas 135 for data sources 130 map to various elements of ontology 150 .
- Definition component 110 receives, calculates, extracts, or otherwise identifies schemas 135 for data sources 130 .
- Schemas 135 define the structure of data sources 130 ; for example, the names and other characteristics of tables, files, columns, fields, properties, and so forth.
- Definition component 110 furthermore optionally identifies sample data 136 from data sources 130 .
- Definition component 110 can further identify object type, relationship, and property definitions from ontology 150 , if any already exist.
- Definition component 110 can further identify pre-existing mappings from schema map 140 , if such mappings exist.
- definition component 110 can generate a graphical user interface 115 .
- Graphical user interface 115 can be presented to users of a computing device via any suitable output mechanism (e.g., a display screen, an image projection, etc.), and can further accept input from users of the computing device via any suitable input mechanism (e.g., a keyboard, a mouse, a touch screen interface, etc.).
- Graphical user interface 115 features a visual workspace that visually depicts representations of the elements of ontology 150 for which mappings are defined in schema map 140 .
- transformation component 120 can be invoked after schema map 140 and ontology 150 have been defined or redefined. Transformation component 120 identifies schema map 140 and ontology 150 . Transformation component 120 further reads data sources 130 and identifies schemas 135 for data sources 130 . For each element of ontology 150 described in schema map 140 , transformation component 120 iterates through some or all of the data items of data sources 130 , generating elements of object model 160 in the manner specified by schema map 140 . In some embodiments, transformation component 120 can store a representation of each generated element of object model 160 in a database 170 . In some embodiments, transformation component 120 is further configured to synchronize changes in object model 160 back to data sources 130 .
- Data sources 130 can be one or more sources of data, including, without limitation, spreadsheet files, databases, email folders, document collections, media collections, contact directories, and so forth. Data sources 130 can include data structures stored persistently in non-volatile memory. Data sources 130 can also or alternatively include temporary data structures generated from underlying data sources via data extraction components, such as a result set returned from a database server executing an database query.
- Schema map 140 , ontology 150 , and schemas 135 can be stored in any suitable structures, such as XML files, database tables, and so forth. In some embodiments, ontology 150 is maintained persistently. Schema map 140 can or cannot be maintained persistently, depending on whether the transformation process is perpetual or a one-time event. Schemas 135 need not be maintained in persistent memory, but can be cached for optimization.
- Object model 160 comprises collections of elements such as typed objects, properties, and relationships.
- the collections can be structured in any suitable manner.
- a database 170 stores the elements of object model 160 , or representations thereof.
- the elements of object model 160 are stored within database 170 in a different underlying format, such as in a series of object, property, and relationship tables in a relational database.
- the functionalities, techniques, and components described herein are implemented by one or more special-purpose computing devices.
- the special-purpose computing devices can be hard-wired to perform the techniques, or can include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or can include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination.
- ASICs application-specific integrated circuits
- FPGAs field programmable gate arrays
- Such special-purpose computing devices can also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques.
- the special-purpose computing devices can be desktop computer systems, portable computer systems, handheld devices, networking devices, or any other device that incorporates hard-wired and/or program logic to implement the techniques.
- a provisioning entity can include, for example, a merchant, a retail provisioning entity or the like
- a consuming entity can include, for example, a consumer user buying products or services from a provisioning entity.
- a consuming entity can represent either individual persons or can represent a group of persons (e.g., a group of persons living under one roof as part of a family).
- a consuming entity can include a loyal customer (e.g., a user that has spent a particular amount of money or time at one or more provisioning entities, a user that has visited a provisioning entity on a number of occasions that is above a threshold number, or a user designated as a loyal customer by other means).
- a consuming entity can be a credit card number of an individual or a credit card number for an entire family sharing one credit card. It will also be understood that a provisioning entity can represent either the entity itself or individual persons involved with the entity.
- data fusion system 100 can provide a provisioning entity, such as a retail provisioning entity, to analyze information to identify behaviors to allow that provisioning entity to make more informed decisions. This information may be referred to as performance information. Such information can allow retail entities, such as a retail provisioning entity, to determine where to place their retail locations. Provisioning entities having more than one location (e.g., a merchant with a chain store or a franchise model) typically evaluate the performance of their locations and may adjust their business models or work flows when the locations under-perform. Typically, provisioning entities evaluate the performance of their locations based on period-to-period metrics. For example, a provisioning entity can evaluate a location's performance by comparing the current month's sales to the previous month's sales.
- a provisioning entity can evaluate a location's performance by comparing the current month's sales to the previous month's sales.
- provisioning entitles can evaluate each of its locations' performance using comparative analysis. For example, a provisioning entity might compare the sales at an area location with the sales at a second location. As provisioning entities generally measure the performance of its locations based on their own interaction data (e.g., the entity's sales across some or all of its locations), current methods of measuring performance do not consider sales made by competitors or demographic features of the areas of the provisioning entity's locations.
- measured performance may not represent the true performance of a provisioning entity. For instance, although a provisioning entity location in a low consumer spend capacity area might have less sales than a provisioning entity location in a high consumer spend capacity area, it may be performing better than what could be expected for that area in light of, for example, the low number of consumers residing in the area or the low income of the area. A performance of a provisioning entity at an area location can be adversely impacted by the close proximity of a second location of the provisioning entity, but the provisioning entity at the area location can be performing better than expected given the competition from the provisioning entity's second location. Conversely, while a provisioning entity location in a dense, high-income area might have the highest sales of all provisioning entity locations, it can still be under-performing because, for instance, consumer spend capacity is high and the provisioning entity location could generate more sales.
- the performance of provisioning entities can be analyzed based on how the provisioning entity is expected to perform given the location of the provisioning entity.
- the disclosed embodiments may be implemented to consider, for example, consumer demographic features of the provisioning entity location's area and the proximity of competitors to the provisioning entity location (including the proximity of the provisioning entity's other close-by locations).
- the provisioning entity can be a merchant.
- exemplary embodiments for analyzing entity performance are described herein with reference to “merchants.” The exemplary embodiments and techniques described herein, however, may be applied to other types of entities (e.g., service providers, governmental agencies, etc.) within the spirit and scope of this disclosure.
- FIG. 2 is a block diagram of an exemplary system 200 for performing one or more operations for analyzing performance of a provisioning entity and/or a consuming entity, consistent with disclosed embodiments.
- the provisioning entity is a merchant and system 200 can include provisioning entity analysis system 210 , one or more financial services systems 220 , one or more geographic data systems 230 , one or more provisioning entity management systems 240 , and one or more consuming entity data systems 250 .
- the components and arrangement of the components included in system 200 can vary depending on the embodiment. For example, the functionality described below with respect to financial services systems 220 can be embodied in consuming entity data systems 250 , or vice-versa.
- system 200 can include fewer or additional components that perform or assist in the performance of one or more processes to analyze provisioning entity's, consistent with the disclosed embodiments.
- One or more components of system 200 can be computing systems configured to analyze provisioning entity performance.
- components of system 200 can include one or more computing devices (e.g., computer(s), server(s), etc.), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.), and other known computing components.
- the one or more computing devices are configured to execute software or a set of programmable instructions stored on one or more memory devices to perform one or more operations, consistent with the disclosed embodiments.
- Components of system 200 can be configured to communicate with one or more other components of system 200 , including provisioning entity analysis system 210 , one or more financial services systems 220 , one or more geographic data systems 230 , one or more provisioning entity management systems 240 , and one or more consumer data systems 250 .
- users can operate one or more components of system 200 .
- the one or more users can be employees of, or associated with, the entity corresponding to the respective component(s) (e.g., someone authorized to use the underlying computing systems or otherwise act on behalf of the entity).
- Provisioning entity analysis system 210 can be a computing system configured to analyze provisioning entity performance.
- provisioning entity analysis system 210 can be a computer system configured to execute software or a set of programmable instructions that collect or receive financial interaction data, consumer data, and provisioning entity data and process it to determine the actual transaction amount of each transaction associated with the provisioning entity.
- Provisioning entity analysis system 210 can be configured, in some embodiments, to utilize, include, or be a data fusion system 100 (see, e.g., FIG. 1 ) to transform data from various data sources (such as, financial services systems 220 , geographic data systems 230 , provisioning entity management systems 240 , and consuming entity data systems 250 ) for processing.
- provisioning entity analysis system 210 can be implemented using a computer system 300 , as shown in FIG. 3 and described below.
- Provisioning entity analysis system 210 can include one or more computing devices (e.g., server(s)), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.) and other known computing components.
- provisioning entity analysis system 210 can include one or more networked computers that execute processing in parallel or use a distributed computing architecture.
- Provisioning entity analysis system 210 can be configured to communicate with one or more components of system 200 , and it can be configured to provide analysis of provisioning entities via an interface(s) accessible by users over a network (e.g., the Internet).
- provisioning entity analysis system 210 can include a web server that hosts a web page accessible through network 260 by provisioning entity management systems 240 .
- provisioning entity analysis system 210 can include an application server configured to provide data to one or more client applications executing on computing systems connected to provisioning entity analysis system 210 via network 260 .
- provisioning entity analysis system 210 can be configured to determine the actual sales for a provisioning entity or specific provisioning entity location by processing and analyzing data collected from one or more components of system 200 . For example, provisioning entity analysis system 210 can determine that the Big Box Merchant store located at 123 Main St, in Burbank, Calif. is actually generating $60,000 of sales per month. Provisioning entity analysis system 210 can provide an analysis of a provisioning entity or provisioning entity location's performance based on a target for sales and the actual sales for the provisioning entity or provisioning entity location. For example, for the Big Box Merchant store located at 123 Main St., Burbank, Calif., the provisioning entity analysis system 210 can provide an analysis that the store is performing above expectations. Exemplary processes that can be used by provisioning entity analysis system 210 are described below with respect to FIGS. 6, 10A, 11, 13, 14, and 15 .
- Provisioning entity analysis system 210 can, in some embodiments, generate a user interface communicating data related to one or more provisioning entities or provisioning entity locations.
- provisioning entity analysis system 210 includes a web server that generates HTML code, or scripts capable of generating HTML code, that can be displayed in a web browser executing on computing device.
- Provisioning entity analysis system 210 can also execute an application server that provides user interface objects to a client application executing on a computing device, or it can provide data that is capable of being displayed in a user interface in a client application executing on a computing device.
- provisioning entity analysis system 210 can generate user interfaces that can be displayed within another user interface.
- provisioning entity analysis system 210 can generate a user interface for display within a parent user interface that is part of a word processing application, a presentation development application, a web browser, or an illustration application, among others.
- generating a user interface can include generating the code that when executed displays information (e.g., HTML) on the user interface.
- generating interface can include providing commands and/or data to a set of instructions that when executed render a user interface capable of being shown on a display connected to a computing device.
- the user interface can include a map, indications of the provisioning entity locations on a map, and indications of the sales or interactions associated with the provisioning entity locations. Examples of some (although not all) user interfaces that can be generated by provisioning entity analysis system 210 are described below with respect to FIGS. 7-9, 10B and 12 .
- financial services system 220 can be a computing system associated with a financial service provider, such as a bank, credit card issuer, credit bureau, credit agency, or other entity that generates, provides, manages, and/or maintains financial service accounts for one or more users.
- Financial services system 220 can generate, maintain, store, provide, and/or process financial data associated with one or more financial service accounts.
- Financial data can include, for example, financial service account data, such as financial service account identification data, account balance, available credit, existing fees, reward points, user profile information, and financial service account interaction data, such as interaction dates, interaction amounts, interaction types, and location of interaction.
- each interaction of financial data can include several categories of information associated with the interaction.
- each interaction can include categories such as number category; consuming entity identification category; consuming entity location category; provisioning entity identification category; provisioning entity location category; type of provisioning entity category; interaction amount category; and time of interaction category, as described in FIG. 4 .
- financial data can comprise either additional or fewer categories than the exemplary categories listed above.
- Financial services system 220 can include infrastructure and components that are configured to generate and/or provide financial service accounts such as credit card accounts, checking accounts, savings account, debit card accounts, loyalty or reward programs, lines of credit, and the like.
- Geographic data systems 230 can include one or more computing devices configured to provide geographic data to other computing systems in system 200 such as provisioning entity analysis system 210 .
- geographic data systems 230 can provide geodetic coordinates when provided with a street address of vice-versa.
- geographic data systems 230 exposes an application programming interface (API) including one or more methods or functions that can be called remotely over a network, such as network 260 .
- API application programming interface
- geographic data systems 230 can provide information concerning routes between two geographic points.
- provisioning entity analysis system 210 can provide two addresses and geographic data systems 230 can provide, in response, the aerial distance between the two addresses, the distance between the two addresses using roads, and/or a suggested route between the two addresses and the route's distance.
- geographic data systems 230 can also provide map data to provisioning entity analysis system 210 and/or other components of system 200 .
- the map data can include, for example, satellite or overhead images of a geographic region or a graphic representing a geographic region.
- the map data can also include points of interest, such as landmarks, malls, shopping centers, schools, or popular restaurants or retailers, for example.
- Provisioning entity management systems 240 can be one or more computing devices configured to perform one or more operations consistent with disclosed embodiments.
- provisioning entity management systems 240 can be a desktop computer, a laptop, a server, a mobile device (e.g., tablet, smart phone, etc.), or any other type of computing device configured to request provisioning entity analysis from provisioning entity analysis system 210 .
- provisioning entity management systems 240 can comprise a network-enabled computing device operably connected to one or more other presentation devices, which can themselves constitute a computing system.
- provisioning entity management systems 240 can be connected to a mobile device, telephone, laptop, tablet, or other computing device.
- Provisioning entity management systems 240 can include one or more processors configured to execute software instructions stored in memory. Provisioning entity management systems 240 can include software or a set of programmable instructions that when executed by a processor performs known Internet-related communication and content presentation processes. For example, provisioning entity management systems 240 can execute software or a set of instructions that generates and displays interfaces and/or content on a presentation device included in, or connected to, provisioning entity management systems 240 . In some embodiments, provisioning entity management systems 240 can be a mobile device that executes mobile device applications and/or mobile device communication software that allows provisioning entity management systems 240 to communicate with components of system 200 over network 260 . The disclosed embodiments are not limited to any particular configuration of provisioning entity management systems 240 .
- Provisioning entity management systems 240 can be one or more computing systems associated with a provisioning entity that provides products (e.g., goods and/or services), such as a restaurant (e.g., Outback Steakhouse®, Burger King®, etc.), retailer (e.g., Amazon.com®, Target®, etc.), grocery store, mall, shopping center, service provider (e.g., utility company, insurance company, financial service provider, automobile repair services, movie theater, etc.), non-profit organization (ACLUTM, AARP®, etc.) or any other type of entity that provides goods, services, and/or information that consuming entities (i.e., end-users or other business entities) can purchase, consume, use, etc.
- consuming entities i.e., end-users or other business entities
- the exemplary embodiments presented herein relate to purchase interactions involving goods from retail provisioning entity systems.
- Provisioning entity management systems 240 is not limited to systems associated with retail provisioning entities that conduct business in any particular industry or field.
- Provisioning entity management systems 240 can be associated with computer systems installed and used at a brick and mortar provisioning entity locations where a consumer can physically visit and purchase goods and services. Such locations can include computing devices that perform financial service interactions with consumers (e.g., Point of Sale (POS) terminal(s), kiosks, etc.). Provisioning entity management systems 240 can also include back- and/or front-end computing components that store data and execute software or a set of instructions to perform operations consistent with disclosed embodiments, such as computers that are operated by employees of the provisioning entity (e.g., back office systems, etc.). Provisioning entity management systems 240 can also be associated with a provisioning entity that provides goods and/or service via known online or e-commerce types of solutions.
- POS Point of Sale
- Provisioning entity management systems 240 can also be associated with a provisioning entity that provides goods and/or service via known online or e-commerce types of solutions.
- Provisioning entity management systems 240 can include one or more servers that are configured to execute stored software or a set of instructions to perform operations associated with a provisioning entity, including one or more processes associated with processing purchase interactions, generating interaction data, generating product data (e.g., SKU data) relating to purchase interactions, for example.
- Consuming entity data systems 250 can include one or more computing devices configured to provide demographic data regarding consumers. For example, consuming entity data systems 250 can provide information regarding the name, address, gender, income level, age, email address, or other information about consumers.
- Consuming entity data systems 250 can include public computing systems such as computing systems affiliated with the U.S. Bureau of the Census, the U.S. Bureau of Labor Statistics, or FedStats, or it can include private computing systems such as computing systems affiliated with financial institutions, credit bureaus, social media sites, marketing services, or some other organization that collects and provides demographic data.
- Network 260 can be any type of network or combination of networks configured to provide electronic communications between components of system 200 .
- network 260 can be any type of network (including infrastructure) that provides communications, exchanges information, and/or facilitates the exchange of information, such as the Internet, a Local Area Network, or other suitable connection(s) that enables the sending and receiving of information between the components of system 200 .
- Network 260 may also comprise any combination of wired and wireless networks.
- one or more components of system 200 can communicate directly through a dedicated communication link(s), such as links between provisioning entity analysis system 210 , financial services system 220 , geographic data systems 230 , provisioning entity management systems 240 , and consuming entity data systems 250 .
- provisioning entity analysis system 210 can include a data fusion system (e.g., data fusion system 100 ) for organizing data received from one or more of the components of system 200 .
- a data fusion system e.g., data fusion system 100
- FIG. 3 is a block diagram of an exemplary computer system 300 , consistent with embodiments of the present disclosure.
- the components of system 200 such as provisioning entity analysis system 210 , financial service systems 220 , geographic data systems 230 , provisioning entity management systems 240 , and consuming entity data systems 250 may include the architecture based on or similar to that of computer system 300 .
- computer system 300 includes a bus 302 or other communication mechanism for communicating information, and one or more hardware processors 304 (denoted as processor 304 for purposes of simplicity) coupled with bus 302 for processing information.
- Hardware processor 304 can be, for example, one or more general-purpose microprocessors or it can be a reduced instruction set of one or more microprocessors.
- Computer system 300 also includes a main memory 306 , such as a random access memory (RAM) or other dynamic storage device, coupled to bus 302 for storing information and instructions to be executed by processor 304 .
- Main memory 306 also can be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 304 .
- Such instructions after being stored in non-transitory storage media accessible to processor 304 , render computer system 300 into a special-purpose machine that is customized to perform the operations specified in the instructions.
- Computer system 300 further includes a read only memory (ROM) 308 or other static storage device coupled to bus 302 for storing static information and instructions for processor 304 .
- ROM read only memory
- a storage device 310 such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc. is provided and coupled to bus 302 for storing information and instructions.
- Computer system 300 can be coupled via bus 302 to a display 312 , such as a cathode ray tube (CRT), liquid crystal display, or touch screen, for displaying information to a computer user.
- a display 312 such as a cathode ray tube (CRT), liquid crystal display, or touch screen
- An input device 314 is coupled to bus 302 for communicating information and command selections to processor 304 .
- cursor control 316 is Another type of user input device, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 304 and for controlling cursor movement on display 312 .
- the input device typically has two degrees of freedom in two axes, a first axis (for example, x) and a second axis (for example, y), that allows the device to specify positions in a plane.
- a first axis for example, x
- a second axis for example, y
- the same direction information and command selections as cursor control can be implemented via receiving touches on a touch screen without a cursor.
- Computing system 300 can include a user interface module to implement a graphical user interface that can be stored in a mass storage device as executable software codes that are executed by the one or more computing devices.
- This and other modules can include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
- module refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++.
- a software module can be compiled and linked into an executable program, installed in a dynamic link library, or written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules can be callable from other modules or from themselves, and/or can be invoked in response to detected events or interrupts.
- Software modules configured for execution on computing devices can be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution).
- a computer readable medium such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution).
- Such software code can be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device.
- Software instructions can be embedded in firmware, such as an EPROM.
- hardware modules can be comprised of connected logic units, such as gates and flip-flops, and/or can be comprised of programmable units, such as programmable gate arrays or processors.
- the modules or computing device functionality described herein are
- Computer system 300 can implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 300 to be a special-purpose machine. According to some embodiments, the operations, functionalities, and techniques and other features described herein are performed by computer system 300 in response to processor 304 executing one or more sequences of one or more instructions contained in main memory 306 . Such instructions can be read into main memory 306 from another storage medium, such as storage device 310 . Execution of the sequences of instructions contained in main memory 306 causes processor 304 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry can be used in place of or in combination with software instructions.
- non-transitory media refers to any non-transitory media storing data and/or instructions that cause a machine to operate in a specific fashion.
- Such non-transitory media can comprise non-volatile media and/or volatile media.
- Non-volatile media can include, for example, optical or magnetic disks, such as storage device 310 .
- Volatile media can include dynamic memory, such as main memory 306 .
- non-transitory media can include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
- Non-transitory media is distinct from, but can be used in conjunction with, transmission media.
- Transmission media can participate in transferring information between storage media.
- transmission media can include coaxial cables, copper wire and fiber optics, including the wires that comprise bus 302 .
- Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
- Various forms of media can be involved in carrying one or more sequences of one or more instructions to processor 304 for execution.
- the instructions can initially be carried on a magnetic disk or solid state drive of a remote computer.
- the remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem.
- a modem local to computer system 300 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal.
- An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 302 .
- Bus 302 carries the data to main memory 306 , from which processor 304 retrieves and executes the instructions.
- the instructions received by main memory 306 can optionally be stored on storage device 310 either before or after execution by processor 304 .
- Computer system 300 can also include a communication interface 318 coupled to bus 302 .
- Communication interface 318 can provide a two-way data communication coupling to a network link 320 that can be connected to a local network 322 .
- communication interface 318 can be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line.
- ISDN integrated services digital network
- communication interface 318 can be a local area network (LAN) card to provide a data communication connection to a compatible LAN.
- LAN local area network
- Wireless links can also be implemented.
- communication interface 318 can send and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
- Network link 320 can typically provide data communication through one or more networks to other data devices.
- network link 320 can provide a connection through local network 322 to a host computer 324 or to data equipment operated by an Internet Service Provider (ISP) 326 .
- ISP 326 in turn can provide data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 328 .
- Internet 328 can both use electrical, electromagnetic or optical signals that carry digital data streams.
- the signals through the various networks and the signals on network link 320 and through communication interface 318 which carry the digital data to and from computer system 300 , can be example forms of transmission media.
- Computer system 300 can send messages and receive data, including program code, through the network(s), network link 320 and communication interface 318 .
- a server 330 can transmit a requested code for an application program through Internet 328 , ISP 326 , local network 322 and communication interface 318 .
- the received code can be executed by processor 304 as it is received, and/or stored in storage device 310 , or other non-volatile storage for later execution.
- server 330 can provide information for being displayed on a display.
- FIG. 4 is a block diagram of an exemplary data structure 400 , consistent with embodiments of the present disclosure.
- Data structure 400 can store data records associated with interactions involving multiple entities.
- Data structure 400 can be, for example, a database (e.g., database 170 ) that can store elements of an object model (e.g., object model 160 ).
- data structure 400 can be a Relational Database Management System (RDBMS) that stores interaction data as sections of rows of data in relational tables.
- RDBMS Relational Database Management System
- An RDBMS can be designed to efficiently return data for an entire row, or record, in as few operations as possible.
- An RDBMS can store data by serializing each row of data of data structure 400 . For example, in an RDBMS, data associated with interaction 1 of FIG. 4 can be stored serially such that data associated with all categories of interaction 1 can be accessed in one operation.
- data structure 400 can be a column-oriented database management system that stores data as sections of columns of data rather than rows of data.
- This column-oriented DBMS can have advantages, for example, for data warehouses, customer relationship management systems, and library card catalogs, and other ad hoc inquiry systems where aggregates are computed over large numbers of similar data items.
- a column-oriented DBMS can be more efficient than an RDBMS when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data.
- a column-oriented DBMS can be designed to efficiently return data for an entire column, in as few operations as possible.
- a column-oriented DBMS can store data by serializing each column of data of data structure 400 . For example, in a column-oriented DBMS, data associated with a category (e.g., consuming entity identification category 420 ) can be stored serially such that data associated with that category for all interactions of data structure 400 can be accessed
- data structure 400 can comprise data associated with a very large number of interactions associated with multiple entities.
- data structure 400 can include 50 billion interactions.
- interactions associated with multiple entities can be referred to as transactions between multiple entities.
- the terms interactions and transactions are intended to convey the same meaning and can be used interchangeably throughout this disclosure. While each interaction of data structure 400 is depicted as a separate row in FIG. 4 , it will be understood that each such interaction can be represented by a column or any other known technique in the art. Each interaction data can include several categories of information.
- the several categories can include, number category 410 ; consuming entity identification category 420 ; consuming entity location category 430 ; provisioning entity identification category 440 ; provisioning entity location category 450 ; type of provisioning entity category 460 ; interaction amount category 470 ; and time of interaction category 480 .
- FIG. 4 is merely exemplary and that data structure 400 can include even more categories of information associated with an interaction.
- Number category 410 can uniquely identify each interaction of data structure 400 .
- data structure 400 depicts 50 billion interactions as illustrated by number category 410 of the last row of data structure 400 as 50,000,000,000.
- each row depicting a interaction can be identified by an element number.
- interaction number 1 can be identified by element 401 ; interaction number 2 can be identified by element 402 ; and so on such that interaction 50,000,000,000 can be identified by 499 B.
- this disclosure is not limited to any number of interactions and further that this disclosure can extend to a data structure with more or fewer than 50 billion interactions. It is also appreciated that number category 410 need not exist in data structure 400 .
- Consuming entity identification category 420 can identify a consuming entity.
- consuming entity identification category 420 can represent a name (e.g., User 1 for interaction 401 ; User N for interaction 499 B) of the consuming entity.
- consuming entity identification category 420 can represent a code uniquely identifying the consuming entity (e.g., CE002 for interaction 402 ).
- the identifiers under the consuming entity identification category 420 can be a credit card number that can identify a person or a family, a social security number that can identify a person, a phone number or a MAC address associated with a cell phone of a user or family, or any other identifier.
- Consuming entity location category 430 can represent a location information of the consuming entity.
- consuming entity location category 430 can represent the location information by providing at least one of: a state of residence (e.g., state sub-category 432 ; California for element 401 ; unknown for interaction 405 ) of the consuming entity; a city of residence (e.g., city sub-category 434 ; Palo Alto for interaction 401 ; unknown for interaction 405 ) of the consuming entity; a zip code of residence (e.g., zip code sub-category 436 ; 94304 for interaction 401 ; unknown for interaction 405 ) of the consuming entity; and a street address of residence (e.g., street address sub-category 438 ; 123 Main St. for interaction 401 ; unknown for interaction 405 ) of the consuming entity.
- a state of residence e.g., state sub-category 432 ; California for element 401 ; unknown for interaction 405
- Provisioning entity identification category 440 can identify a provisioning entity (e.g., a merchant or a coffee shop). In some embodiments, provisioning entity identification category 440 can represent a name of the provisioning entity (e.g., Merchant 2 for interaction 402 ). Alternatively, provisioning entity identification category 440 can represent a code uniquely identifying the provisioning entity (e.g., PE001 for interaction 401 ). Provisioning entity location category 450 can represent a location information of the provisioning entity.
- a provisioning entity e.g., a merchant or a coffee shop.
- provisioning entity identification category 440 can represent a name of the provisioning entity (e.g., Merchant 2 for interaction 402 ).
- provisioning entity identification category 440 can represent a code uniquely identifying the provisioning entity (e.g., PE001 for interaction 401 ).
- Provisioning entity location category 450 can represent a location information of the provisioning entity.
- provisioning entity location category 450 can represent the location information by providing at least one of: a state where the provisioning entity is located (e.g., state sub-category 452 ; California for interaction 401 ; unknown for interaction 402 ); a city where the provisioning entity is located (e.g., city sub-category 454 ; Palo Alto for interaction 401 ; unknown for interaction 402 ); a zip code where the provisioning entity is located (e.g., zip code sub-category 456 ; 94304 for interaction 401 ; unknown for interaction 402 ); and a street address where the provisioning entity is located (e.g., street address sub-category 458 ; 234 University Ave. for interaction 401 ; unknown for interaction 402 ).
- a state where the provisioning entity is located e.g., state sub-category 452 ; California for interaction 401 ; unknown for interaction 402
- a city where the provisioning entity is located e.g., city sub-
- Type of provisioning entity category 460 can identify a type of the provisioning entity involved in each interaction.
- type of provisioning entity category 460 of the provisioning entity can be identified by a category name customarily used in the industry (e.g., Gas Station for interaction 401 ) or by an identification code that can identify a type of the provisioning entity (e.g., TPE123 for interaction 403 ).
- type of the provisioning entity category 460 can include a merchant category code (“MCC”) used by credit card companies to identify any business that accepts one of their credit cards as a form of payment.
- MCC can be a four-digit number assigned to a business by credit card companies (e.g., American ExpressTM, MasterCardTM, VISATM) when the business first starts accepting one of their credit cards as a form of payment.
- type of provisioning entity category 460 can further include a sub-category (not shown in FIG. 4 ), for example, type of provisioning entity sub-category 461 that can further identify a particular sub-category of provisioning entity.
- an interaction can comprise a type of provisioning entity category 460 as a hotel and type of provisioning entity sub-category 461 as either a bed and breakfast hotel or a transit hotel. It will be understood that the above-described examples for type of provisioning entity category 460 and type of provisioning entity sub-category 461 are non-limiting and that data structure 400 can include other kinds of such categories and sub-categories associated with an interaction.
- Interaction amount category 470 can represent a transaction amount (e.g., $74.56 for interaction 401 ) involved in each interaction.
- Time of interaction category 480 can represent a time at which the interaction was executed.
- time of interaction category 480 can be represented by a date (e.g., date sub-category 482 ; Nov. 23, 2013, for interaction 401 ) and time of the day (e.g., time sub-category 484 ; 10:32 AM local time for interaction 401 ).
- Time sub-category 484 can be represented in either military time or some other format.
- time sub-category 484 can be represented with a local time zone of either provisioning entity location category 450 or consuming entity location category 430 .
- each interaction data can include categories of information including (not shown in FIG. 4 ), for example, consuming entity loyalty membership category, consuming entity credit card type category, consuming entity age category, consuming entity gender category, consuming entity income category, consuming entity with children category, product information category, and service information category.
- Consuming entity loyalty membership category can represent whether the consuming entity is part of a loyalty membership program associated with a provisioning entity. For example, consuming entity loyalty membership category can represent that the consuming entity is a member of one of CostcoTM membership programs including Goldstar MemberTM, Executive MemberTM, and Business MemberTM.
- Consuming entity credit card type category can represent the type of credit card used by the consuming entity for a particular interaction. For example, consuming entity credit card type category can represent that the credit card used by the consuming entity for that particular interaction can be one either American ExpressTM, MasterCardTM, VISATM, or DiscoverTM credit cards. In some embodiments, consuming entity credit card type category can represent a kind of MasterCardTM (e.g., Gold MasterCardTM or Platinum MasterCardTM) used for a particular interaction.
- MasterCardTM e.g., Gold MasterCardTM or Platinum MasterCardTM
- consuming entity demographic information can be stored in each interaction.
- consuming entity demographic information can include at least one of: consuming entity age category, consuming entity gender category, consuming entity income category, and consuming entity with children category.
- consuming entity age category can represent age information associated with the consuming entity;
- consuming entity gender category can represent gender information (e.g., Male or Female) associated with the consuming entity;
- consuming entity income category can represent income information (e.g., greater than $100,000 per year) associated with the consuming entity; and consuming entity with children category can represent whether the consuming entity has any children under 18 or not.
- consuming entity with children category can store information representing a number of children associated with the consuming entity.
- Product information category can represent information associated with a product that is involved in an interaction.
- product information category can represent that the product involved in the interaction is a particular type of product based on a stock keeping unit (“SKU”) of the product.
- SKU stock keeping unit
- the product's SKU can be unique to a particular provisioning entity involved in that particular interaction.
- product information category can represent the product involved in the interaction with a at least one of a Universal Product Code, International Article Number, Global Trade Item Number, and Australian Product Number.
- Service information category can represent information associated with a service that is involved in an interaction.
- service information category can represent that the service involved in the interaction is a particular type of service based on an SKU of the service. It will be appreciated that an SKU can uniquely represent either a product or a service.
- Some examples of services can be warranties, delivery fees, installation fees, and licenses.
- FIG. 5 is a block diagram of an exemplary scenario depicting a system for analyzing entity performance, consistent with embodiments of the present disclosure.
- System 500 depicts a scenario where a consuming entity (e.g., user of cell phone 505 ) can attempt to access a service at one or more provisioning entities (e.g., Website 1 542 , Website 2 544 , and/or Website 3 546 ).
- the consuming entity can initiate an access request from cell phone 505 .
- the access request can include a consuming entity identification such as, for example, a cell phone number or a MAC address associated with cell phone 5015 .
- the access request can then reach a cellular base station 515 through a communication link 510 .
- communication link 510 can either be a wireless link (as shown in the exemplary embodiment of FIG. 5 ) or a wired link (not shown).
- the access request can reach server 525 through network 520 .
- Network 520 can be, for example, the Internet.
- network 520 can be one of either a local area network, a wide area network, or an entity's intranet.
- Server 525 can be a server located at a service provider (e.g., Verizon WirelessTM)
- Server 525 can be, in some embodiments, an authentication, authorization, and accounting server (AAA server).
- AAA server 525 can be a proxy server that can facilitate a communication between cell phone 505 and a server device at the provisioning entities (e.g., Website 1 542 ).
- Access request can reach one of the provisioning entities after an authorization, authentication, and accounting process is complete. Access request can traverse to one of the provisioning entities through network 530 .
- Network 530 can be similar to network 520 , as described above. After the authorized and authenticated access request reaches one of the provisioning entities, the consuming entity is allowed to access the provisioning entities.
- user of cell phone 505 can access either Website 1 542 , Website 2 544 , or Website 3 546 , depending on details of the access request.
- provisioning entities can be one of the websites GoogleTM, FacebookTM, and TwitterTM.
- server 525 can store information regarding the user and/or cell phone accessing these provisioning entities.
- Each access by a user of a website can be stored as an interaction in a data structure in Server 525 .
- Server 525 can store such information in a data structure (e.g., data structure 400 ) comprising several categories of information including, but not limited to, an interaction number; consuming entity identification; consuming entity location; provisioning entity identification; provisioning entity location; type of provisioning entity; duration of interaction; and time of interaction.
- the data structure can be analyzed to analyze a performance of provisioning entities, for example, to estimate a number of unique consuming entities (e.g., users) per month, average amount of time a consuming entity spends on their website, time of the day where consuming entity traffic is highest or lowest, etc. It will be understood that any number of useful insights can be drawn by analyzing the data structure comprising interactions associated with consuming entities and provisioning entities. While FIG.
- FIG. 5 depicts a use case scenario of a cell phone user (exemplary consuming entity) accessing a website (exemplary provisioning entity), it will be understood that a process of analyzing interaction between a consuming entity and a provisioning entity can be extended to any number of scenarios, including, financial transactions between consumers and banks; credit card transactions between a consumer and a provisioning entity like a grocery store, movie theatre, gas station, mall, etc.
- FIG. 6 depicts a flowchart representing an exemplary process for analyzing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- the analyzing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
- a request having one or more filter selections can be received at a provisioning entity analysis system implementing a process for analyzing a performance of one or more entities of multiple entities.
- the request can be received from a provisioning entity (e.g., a merchant like LowesTM) which can be interested in analyzing its performance with regards the one or more filter selections.
- a provisioning entity e.g., a merchant like LowesTM
- one or more filter selections of the received request can comprise a selection to represent data associated with at least one of: cohorts; demographics; geographic; time; and transactions.
- the one or more filter selections can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time.
- the one or more filter selections can comprise a selection to represent data associated with at least one of: a location information associated with the occurrence of an interaction; a location information associated with the consuming entity; a location information associated with the provisioning entity; demographic information representing at least one of: age, gender, income, and location associated with the consuming entity; an amount associated with an interaction; and a time associated with an interaction.
- An exemplary screenshot of a user interface with exemplary filter selections is shown in FIGS. 7 and 8 , described below.
- the process for analyzing a performance of one or more entities of multiple entities can be implemented without having to receive one or more filter selections.
- Such a process can be implemented, for example, by having the provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) comprise one or more predetermined filter selections.
- These exemplary one or more predetermined filter selections can include the same selections as the one or more filters (e.g., add new filter 705 shown in FIG. 7 ) that can be selected by a user as described above.
- the one or more predetermined filter selections can comprise at least one of: cohorts; demographics; geographic; time; and transactions.
- the one or more predetermined filter selections can comprise at least one of: charts; histograms; maps; numbers; and time.
- a data structure (e.g., data structure 400 ) comprising several categories of information showing interactions associated with multiple entities can be accessed.
- the data structure can represent information associated with a very large number of interactions.
- the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions).
- the data structure can be similar to the exemplary data structure 400 described in FIG. 4 above.
- accessing step 620 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
- some categories of the several categories within the data structure can be identified based on the one or more filter selections of the received request.
- the identified categories can be one or more of the several categories of the data structure (e.g., data structure 400 ).
- Another exemplary mapping can exist between a filter selection for gender and a category or a sub-category associated with a gender of consuming entity (not shown in FIG. 4 ).
- one or more filter selections can include “demographics and customer zip code” selections, as depicted in FIG. 8 .
- the provisioning entity e.g., a home improvement store such as LowesTM
- the provisioning entity can select one or more filters such as demographics 820 and further zip code 824 (associated with a zip code representing location of consuming entity).
- the provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can identify some categories of the data structure that are relevant for analyzing the performance of the one or more entities (e.g., provisioning entity) regarding customer demographics including a location (e.g., zip code) of the consuming entities.
- the provisioning entity analysis system can identify categories associated with a number of interaction (e.g., number category 410 ), an identity of consuming entities (e.g., consuming entity identification category 420 ), and a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436 ).
- consuming entity location category 430 can be identified along with one or more categories of state sub-category 432 , city sub-category 434 , zip code sub-category 436 , and street address sub-category 438 .
- identifying step 630 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
- a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as LowesTM).
- One or more entities of the multiple entities can comprise one or more groups of entities of the multiple entities. For example, a group of entities can be defined such that the group of entities can have similar characteristics such as all grocery stores within a given zip code or all SafewayTM locations within a city (e.g., San Jose, Calif.).
- a group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code.
- Processing the identified categories can comprise creating a new data structure that is different from the data structure of step 620 , and comprising only the identified categories of step 630 or one or more subsets of those categories. Alternatively, processing the identified categories can be performed on the existing data structure of step 620 (e.g., data structure 400 ).
- the system can process information that is associated with identified categories based on the filter selections such as a number of interaction (e.g., number category 410 ), an identity of consuming entities (e.g., consuming entity identification category 420 ), a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436 ), and categories associated with consuming entity demographics including consuming entity age category, consuming entity gender category, and consuming entity income category.
- data associated with identified categories can be stored in either a row-oriented database or a column-oriented database, as described above with respect to data structure 400 .
- Processing information can involve performing statistical analysis on data stored in the identified categories.
- Performing statistical analysis can include various computations of data associated with identified categories.
- processing information can include performing an aggregate of the interaction amount to compute a total amount for all interactions associated with the provisioning entity. It will be understood that processing information can include other examples of performing statistical analysis, including but not limited to, computing an average, mean, maximum, minimum, or standard deviation for a series of data.
- processing the information of the identified categories can result in a multitude of useful insights regarding the behavior of consuming entities.
- Some of such insights can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
- processing the information of the identified categories can result in a multitude of useful insights regarding the performance of provisioning entities.
- Some of such insights can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity.
- processing step 640 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
- step 640 can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 640 .
- step 640 can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 640 .
- processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
- the processed information can be provided for displaying the performance of the one or more entities (e.g., provisioning entity) on a user interface.
- the user interface can comprise a representation of a geographic region.
- the user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region.
- the user interface can include a representation of the performance of the one or more entities over geographic or sub-geographic regions associated with a location of the one or more entities.
- geographic or sub-geographic regions can be associated with a location of either a consuming entity or a provisioning entity.
- providing step 650 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
- Exemplary user interfaces are depicted in FIGS. 7-9 that illustrate a performance of a provisioning entity based on one or more filter selections. As shown in FIGS. 7-9 , user interface can either be a graph-based, map-based, or any other related interface.
- FIGS. 7-9 illustrate several exemplary user interfaces that can be generated by provisioning entity analysis system, consistent with embodiments of the present disclosure.
- the exemplary user interfaces of FIGS. 7-9 are meant to help illustrate and describe certain features of disclosed embodiments, and are not meant to limit the scope of the user interfaces that can be generated or provided by the provisioning entity analysis system.
- FIG. 7 shows an exemplary user interface 700 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
- User interface 700 includes an option to add one or more new filters (e.g., add new filter 705 ).
- a provisioning entity or a user of a provisioning entity
- a consuming entity can select the option to select the one or more filters.
- the option to add one or more filters can include adding filters associated with charts 710 , histograms 720 , maps 730 , numbers 740 , and time 750 .
- Each of the above-recited filters can further comprise sub-filters.
- filter maps 730 can further comprise sub-filters associated with Map-Consuming Entity Source 732 , Map-Provisioning Entity Revenue 734 , and Regional Chart-Spend by Region 736 . It will be understood that one or more filters (and sub-filters) can include any other filters associated with interactions associated with multiple entities stored in a data structure (e.g., data structure 400 ).
- User interface 700 can include map 760 , which shows consuming entity source and geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles).
- a geohash region, or geohash bucket is a region associated with a latitude/longitude, hierarchal geocode system that subdivides regions of the Earth into grid shaped buckets. The level of granularity of geohash regions can vary depending on the length of the geohash code corresponding to that region. For example, a geohash code that is one bit in length can correspond to a geohash region of roughly 20 million square kilometers, and a geohash code that is six bits in length can correspond to a geohash region of roughly 1.2 square kilometers.
- a geohash region of five bits is preferred, although the size of the geohash region can depend on the character of the overall region which is being geohashed. For example, a six bit geohash can be more suitable for a densely populated urban area, while a four bit geohash can be more suitable for a sparsely populated rural area.
- location information of an entity can be represented by a geohash region.
- a geohash region of five bits representing San Jose, Calif. can comprise the latitude/longitude coordinates, N 37.3394° W 121.8950°, and can be depicted as shaded region 775 as illustrated on map 770 .
- location information can be represented using a zip code.
- a portion of San Jose, Calif. can be represented by using a zip code, 95113.
- location information can be represented in other ways such as street address, city, state, Global Positioning Satellite coordinates, etc.
- the provisioning entity analysis system receives a message to regenerate or modify the user interface. For example, if a user entered Maps 730 and then Map-Consuming Entity Source 732 into the add new filter box, the provisioning entity analysis system could receive a message indicating that a user interface should display a map with a location of each consuming entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 760 showing a location information for each consuming entity. For example, map 760 can display consuming entity location as shaded and unshaded rectangles in geo-hash regions. In some embodiments, a region of the map can be selected by a user by using an input device such as mouse, key board, or touch pad.
- an input device such as mouse, key board, or touch pad.
- the provisioning entity analysis system could receive a message indicating that a user interface should display a map with revenue information of provisioning entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 770 showing revenue information of provisioning entity over the given region of map.
- map 770 displays provisioning entity revenue as shaded and unshaded rectangles in geo-hash regions.
- user interface 700 can further comprise representations associated with other filter (and sub-filter) selections, including but not limited to, charts 710 , histograms 720 , numbers 740 , and time 750 .
- FIG. 8 shows an exemplary user interface 800 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
- User interface 800 includes an option to add one or more new filters (e.g., add new filter 805 .
- the option to add one or more filters can include adding filters to display an entity's performance comprising either cohort analysis (e.g., cohorts 810 ), demographic analysis (e.g., demographics 820 ), geographic analysis (e.g., geographics 830 ), time-based analysis (e.g., time 840 ), and interaction analysis (e.g., interactions 850 ).
- Each of the above-recited filters can further comprise sub-filters.
- filter demographics 820 can further comprise sub-filters associated with age of consuming entity (e.g., age 822 ), location of consuming entity (e.g., consuming entity zipcode 824 ), gender of consuming entity (e.g., gender 826 ), and income of consuming entity (e.g., income 828 ).
- age of consuming entity e.g., age 822
- location of consuming entity e.g., consuming entity zipcode 824
- gender of consuming entity e.g., gender 826
- income of consuming entity e.g., income 828 .
- User interface 800 can include map 860 , which can show, for example, a representation of income of consuming entities in terms of geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles).
- map 860 can show, for example, a representation of income of consuming entities in terms of geohash regions (while shown as shaded rectangles, they can also include any unshaded rectangles).
- the provisioning entity analysis system receives a message to regenerate or modify the user interface.
- the provisioning entity analysis system would receive a message indicating that a user interface should display a map with income information of consuming entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 860 showing a representation of income information of consuming entity using geohash regions.
- map 860 displays consuming entity income as shaded and unshaded rectangles in geo-hash regions.
- the provisioning entity analysis system would receive a request indicating that a user interface should display a map with revenue information of provisioning entity revenue for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 870 showing a representation of revenue information of provisioning entity revenue using geohash regions.
- map 870 displays provisioning entity revenue as shaded and unshaded rectangles in geo-hash regions.
- FIG. 9 shows an exemplary user interface 900 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- map-based representation e.g., map 910 and map 920
- user interface 900 can also depict an entity performance as either a graph-based representation (e.g., graph 930 ) or a heat-map representation (e.g., heat-map 940 ).
- a user can select one or more filters (e.g., add new filter 905 ) to display a timeline of an aggregate spending by consuming entities.
- provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can generate a user interface (e.g., graph 930 ) that can represent an aggregate of consuming entity spending on a daily basis at a given provisioning entity.
- the aggregate consuming entity spending on a daily basis can be displayed as a graph-based representation where the independent axis (e.g., x-axis) can represent a day and the other axis can represent aggregate consuming entity spending on a daily basis, as depicted in graph 930 .
- a user can select one or more filters (e.g., add new filter 905 ) to display an hourly spending by consuming entities.
- provisioning entity analysis system e.g., provisioning entity analysis system 210
- can generate a user interface e.g., heat map 940
- the consuming entity spending on an hourly basis can be displayed as a heat-map representation where different shades of gray-scale can be used to show different amount of spending on an hourly basis.
- a color coded heat-map can be used where different colors can be used to show different amount of spending on an hourly basis. While FIG. 9 depicts a few representations of entity performance, it will be understood that those representations are merely exemplary and other representations are possible within the spirit and scope of this disclosure.
- FIG. 10A depicts a flowchart representing an exemplary process for analyzing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- the analyzing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
- an identifier associated with an entity can be recognized.
- the entity can be a provisioning entity.
- the entity can be a consuming entity.
- the identifier can be information associated with a provisioning entity identification category.
- the identifier can be information associated with a consuming entity identification category. It will be appreciated that other methods for recognizing an identifier associated with an entity are possible.
- a data structure (e.g., data structure 400 ) comprising several categories of information and one or more interactions associated with a plurality of entities can be accessed.
- the data structure can represent information associated with a very large number of interactions.
- the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions).
- the data structure can be similar to the exemplary data structure 400 described in FIG. 4 above.
- one or more interactions of the plurality of interactions can be identified based on the recognized identifier.
- the identified interactions can be one or more interactions of the data structure that are associated with the recognized identifier of the entity.
- the identified interactions can be one or more interactions associated with a provisioning entity identification information (e.g., provisioning entity identification category 440 ) or a consuming entity identification information category (e.g., consuming entity identification category 420 ).
- provisioning entity identification information e.g., provisioning entity identification category 440
- a consuming entity identification information category e.g., consuming entity identification category 420.
- step 1030 can identify one or more interactions that are associated with a provisioning entity that can be identified with a name or code “Merchant 1.”
- the accessed data structure can comprise several categories of information showing interactions associated with multiple entities.
- the provisioning entity analysis system e.g., provisioning entity analysis system 210
- the provisioning entity analysis system can identify some categories of the data structure that are relevant for analyzing the performance of the entity (e.g., provisioning entity) associated with the recognized identifier.
- processing the identified interactions can comprise creating a new data structure that is different from the data structure of step 1020 A, and can comprise only the identified interactions of step 1030 A or one or more subsets of those categories.
- processing the identified interactions is performed on the existing data structure of step 1020 A (e.g., data structure 400 ).
- processing the information of the identified interactions can result in a multitude of useful insights regarding the behavior of consuming entities.
- Some of such insights can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
- processing the information of the identified interactions can result in a multitude of useful insights regarding the performance of provisioning entities.
- Some of such insights can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity, and performance comparison between competing provisioning entities. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
- step 1040 A can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 1040 A.
- step 1040 A can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 1040 A. For example, processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
- the processed information can comprise analysis information of a first entity or a first group of entities of the plurality of entities and a second entity or a second group of entities of a plurality of entities.
- a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as LowesTM) and a second entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Home DepotTM).
- the second entity can be a competitor of the first entity.
- the first or second group of entities of the plurality of entities can be defined such that the first or second group of entities can comprise similar characteristics.
- the first or second group of entities can be all grocery stores within a given zip code or all SafewayTM locations within a city (e.g., San Jose, Calif.).
- the first or second group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code.
- a group of entities e.g., a first group of entities of the plurality of entities
- the group of entities can include a group of provisioning entities.
- the group of provisioning entities associated with a first provisioning entity can be identified based on at least one of: a similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities; a location information associated with the first provisioning entity and associated with other provisioning entities; information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities; and information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities.
- the group of entities can be referred to as, for example, a cohort of entities, a set of entities, or an associated set of entities. It will be appreciated that the group of entities can be referred to by using other names.
- a similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities can be used to determine a group of provisioning entities associated with the first provisioning entity.
- customer entity demographic information e.g., age, gender, income, and/or location
- location information associated with the first provisioning entity and with other provisioning entities can be analyzed to identify a group of provisioning entities associated with the first provisioning entity.
- other provisioning entities that are located within a specified distance to a location of the first provisioning entity can be identified as part of the group of provisioning entities.
- other distance criteria such as, for example, same zip code, can be used to identify the group of provisioning entities.
- a restaurant situated in an airport can be interested in analyzing its own performance relative to other restaurants situated within the same airport.
- Information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity.
- a high-end bicycle store can be interested in comparing its performance against other high-end bicycle stores.
- a group of high-end bicycle stores can be identified based on a market share analysis of high-end bicycle stores.
- Information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity.
- a novelty late-night theatre can be interested in comparing its performance against other provisioning entities that also operate late-night (e.g., bars or clubs) and hence can likely compete with those entities for a consuming entity's time and money.
- An exemplary definition of wallet share can be a percentage of consuming entity spending over a period of time such as on a daily basis or a weekly basis etc.
- the group of provisioning entities can be identified by using a multi-timescale correlation comparison.
- One method of implementing the multi-timescale correlation comparison can be by analyzing interactions between a consuming entity and a first provisioning entity (“first provisioning entity interactions”) with that of interactions between the consuming entity and a second provisioning entity (“second provisioning entity interactions”). For example, if the first provisioning entity interactions are correlated with the second provisioning entity interactions on a daily timescale but anti-correlated (or inversely correlated) on an hourly timescale, then the first provisioning entity and the second provisioning entity can be defined as complementary entities rather than competitive entities. In such scenarios, the second provisioning entity need not be part of a group of provisioning entities the first provisioning entity is interested in comparing against.
- the first provisioning entity interactions are anti-correlated with the second provisioning entity interactions on a daily timescale but correlated on an hourly timescale
- the first provisioning entity and the second provisioning entity can be defined as competitive entities.
- the second provisioning entity can be included in a group of provisioning entities the first provisioning entity is interested in comparing against.
- a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
- an identity of the first entity can be known and an identity of the second entity can be unknown.
- the recognized identifier can be associated with the first entity and accordingly, an identify of the first entity can be known.
- an identity of the second entity can be estimated based on information representing at least two attributes of the first entity.
- the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity.
- the data structure e.g., data structure 400
- the data structure can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity. If the estimation returns more than one possible choice for an identity of the second entity, the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity. Alternatively, other criteria can be used to select from the more than one possible choices. In some embodiments, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
- the processed information can be provided for displaying the performance of the entity (e.g., provisioning entity) on a user interface.
- the user interface can comprise a representation of a geographic region.
- the user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region.
- An exemplary user interface is depicted in FIG. 10B .
- the user interface can include a dashboard showing a graphical representation of the performance of an entity based on recognizing an identifier for the entity.
- FIG. 10B shows an exemplary user interface 1000 B that a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can generate, according to some embodiments.
- User interface 1000 B can include a dashboard (e.g., dashboard 10108 ) that can depict a performance of an entity over a metric.
- dashboard 10108 represents information of sales of the entity (e.g., a provisioning entity) over a 7-day period for the current week (May 25, 2013- May 31, 2013) compared to the same week of the previous year (May 25, 2012- May 31, 2012).
- dashboard 10108 can represent information comparing the entity's actual revenue with the entity's expected revenue.
- the provisioning entity can input an expected revenue for a period of time (e.g., weekly, quarterly, or yearly).
- the provisioning entity analysis system can analyze interaction data to analyze the entity's performance relative to the expected revenue.
- An outcome of such comparative analysis can be represented with an exemplary bar graph or a pie chart on user interface 10008 .
- the entity's expected revenue information can be inferred without having to receive an external input representing the expected revenue.
- the provisioning analysis system can analyze interaction data of the data structure to estimate a number for the entity's expected revenue.
- dashboard 10108 can be represented as a bar graph using two different fills, one fill representing sales of the current week and another representing sales from last year. It will be understood that other representations of dashboard 1010 A are possible.
- the dashboard can be preconfigured to analyze interaction data for a period of time such as, for example, 7-days, one month, one quarter, one year, etc.
- user interface 1000 B can also include a box for representing an alert (e.g., latest alert 1020 B) that can indicate certain performance metrics of the entity.
- latest alert 10208 includes information to indicate that the entity's worst day within the preconfigured period of time is May 31, 2013. A different entity performance metric can be included in latest alert 10208 .
- user interface 10008 can include user interface elements representing information associated with entity performance metrics such as revenue (e.g, revenue 1025 B), amount of interaction (e.g., ticket size 1030 B), new consuming entities (new consuming entities 1035 B), returning consuming entities (e.g., returning consuming entities 1040 B), time of interaction in a day (e.g., time of day 1045 B), and interactions during a day of the week (e.g., day of week 1050 B).
- entity performance metrics such as revenue (e.g, revenue 1025 B), amount of interaction (e.g., ticket size 1030 B), new consuming entities (new consuming entities 1035 B), returning consuming entities (e.g., returning consuming entities 1040 B), time of interaction in a day (e.g., time of day 1045 B), and interactions during a day of the week (e.g., day of week 1050 B).
- revenue e.g, revenue 1025 B
- amount of interaction e.g., ticket size 1030 B
- FIG. 11 depicts a flowchart representing an exemplary process for comparing entity performance, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- the comparing of the entity performance can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
- an input for at least one category of information to be compared between a first entity and a second entity can be received at a provisioning entity analysis system implementing a process for comparing a performance between the first entity and a second entity.
- the input can be received from a provisioning entity (e.g., a merchant like LowesTM), which can be interested in analyzing their performance relative to a competitor (e.g., HomeDepotTM).
- a provisioning entity e.g., a merchant like LowesTM
- a competitor e.g., HomeDepotTM
- a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
- the input can be received from a first entity, where an identity of the first entity can be known.
- an identity of the second entity can be provided.
- the user of the first entity can provide an identity of the second entity.
- an identity of the second entity is not provided.
- an identity of the second entity can be estimated as described below.
- the received input can comprise a selection to represent data associated with at least one of: demographics; geographic; time; and transactions.
- the received input can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time.
- the received input can be similar to one or more filter selections (e.g., add new filter 705 ) described in FIG. 6 .
- An exemplary screenshot of a user interface comparing a performance of the first entity with that of the second entity can be shown in FIG. 12 , described below.
- a data structure (e.g., data structure 400 ) comprising several categories of information showing interactions associated with multiple entities can be accessed.
- the data structure can represent information associated with a very large number of interactions (e.g., data structure 400 of FIG. 4 . depicting 50 billion interactions).
- the multiple entities can include at least the first entity (e.g., a first provisioning entity such as LowesTM) and the second entity (e.g., a second provisioning entity such as HomeDepotTM).
- an identity of the second entity can be estimated based on information representing at least two attributes of the first entity.
- the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity. For example, knowing a type of the first entity (e.g., gas station) and location of the first entity (e.g., zip code), the data structure (e.g., data structure 400 ) can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity.
- a type of the first entity e.g., gas station
- location of the first entity e.g., zip code
- the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity.
- criteria including, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
- step 1140 relevant interaction information associated with the at least one category of the data structure can be processed to compare a performance of the first entity with that of the second entity.
- the processing step 1140 can be very similar to processing step 640 described above.
- step 1140 can involve two processing operations (e.g., processing operation of step 640 ), one for processing the information associated with the at least one category of the first entity and another one for processing the information associated with the at least one category of the second entity. After performing such operations, step 1140 can then compare the processed information from processing the first entity with that of the second entity.
- the processed information can be provided for displaying a comparison between a performance of the first entity with that of the second entity.
- Exemplary user interface is depicted in FIG. 12 that illustrates a performance comparison between the first and second entities.
- FIG. 12 shows a user interface 1200 generated by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ), according to some embodiments.
- user interface 1200 includes an option to add one or more inputs for categories to be compared between entities.
- user interface 1200 can include categories representing timeline 1211 , revenue 1212 , total transactions 1213 , ticket size 1214 , and time/day 1215 . It will be understood that other categories can be included in user interface 1200 .
- User interface 1200 can depict two graphs (e.g., graph 1252 and graph 1262 ) to represent a performance comparison between the first entity and the second entity.
- graph 1252 can represent a performance of the first entity for the selected category revenue 1212 .
- the first entity intends to compare its own revenue performance with that of one of its competitor over a given period of time (e.g., over the current quarter).
- Graph 1252 can represent revenue of the first entity over the current quarter
- graph 1262 can represent revenue of the second entity (competitor to the first entity) over the same current quarter.
- entity performance can be represented using different approaches such as, for example, charts, maps, histograms, numbers etc.
- an identity of the second entity can be estimated using the exemplary process described in FIG. 11 .
- FIG. 13 depicts a flowchart representing an exemplary process 1300 for estimating a location of a consuming entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- Process 1300 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
- provisioning entity analysis system e.g., provisioning entity analysis system 210
- a data structure (e.g., data structure 400 ) comprising a plurality of interactions associated with multiple entities can be accessed.
- the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities.
- the data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above.
- the plurality of interactions of the data structure can include information associated with a consuming entity and a provisioning entity (e.g., a first provisioning entity). Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity.
- the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
- the at least one attribute of the provisioning entity can include an identification information of the provisioning entity.
- the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity, such as a type of the provisioning entity.
- step 1320 an interaction of the data structure can be evaluated.
- step 1330 a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the consuming entity.
- the determination can include analyzing whether the categories of information associated with a location information of the consuming entity (e.g., consuming entity location category 430 ) are populated or not. If it turns out that the categories of information associated with a location information of the consuming entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the consuming entity includes a location information of the consuming entity and the process can then move to step 1360 .
- the determination can return a negative indication to signify that the interaction does not include a location information of the consuming entity and the process can then move to step 1340 .
- the determination can further include verifying that the populated data is valid data that signifies a location information before the process can move to step 1360 .
- the category of information representing zip code e.g., zip code sub-category 456
- the populated data is 94085, it can be verified as a valid data and the process can then move step 1360 .
- the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits, and the process can then move to step 1340 described below. It will be understood that other methods to determine whether the interaction includes a location information of the consuming entity can be implemented within the scope and spirit of this disclosure.
- an estimation can be performed to determine location information of the consuming entity based on its interactions with one or more provisioning entities (e.g., second provisioning entity, for purposes of simplicity) of a particular type (e.g., type of provisioning entity category 460 ).
- the second provisioning entity can be of the type including a gas station, a pharmacy, restaurant, or a grocery store.
- location information of the consuming entity can be estimated by analyzing interactions between the consuming entity and the second provisioning entity.
- interactions between the consumer entity and a type of provisioning entity that represents gas stations can be analyzed such that the gas station at which the consuming entity most frequently fills up gas can be identified as a location of the consuming entity. This is because it can be reasonable to assume that the consuming entity can frequently fill up gas at a gas station that is in a proximity to the residential location of the consuming entity.
- interactions between the consumer entity and a type of provisioning entities that represent gas stations can result in similar number of interactions between two different gas stations in two different locations (e.g., zip codes).
- one method of estimating a location of the consuming entity is to then analyze interactions between the consuming entity and a third provisioning entity that can represent grocery stores because it can be reasonable to assume that the consuming entity would more often than not shop for groceries at a location closer to residential location of the consuming entity.
- the estimating of a location can take into consideration the date (e.g., weekend) and or time (e.g., typical times before or after work) of an interaction with a type of provisioning entity. Based on analyzing interactions with the third provisioning entity (such as grocery stores) and combining such analysis with that of the interactions with the second provisioning entity (such as gas stations), an estimation can be made regarding a location of the consuming entity.
- step 1340 can estimate a location information of the consuming entity after the determination returns that the at least one attribute of the consuming entity includes an invalid location information of the consuming entity by using similar techniques as described above. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
- the data structure can be updated with an estimated location information of the consuming entity.
- data associated with only the evaluated interaction can be updated.
- data associated with all interactions associated with the consuming entity can be updated irrespective of whether those interactions were previously evaluated or not.
- step 1360 a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1320 to evaluate another interaction and further to repeat the process comprising steps 1320 through 1360 , as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
- a provisioning entity analysis system can resolve the name of a provisioning entity.
- a data structure storing information associated with billions of interactions can include millions of provisioning entities and it is possible that some of the names of the provisioning entities are not consistent.
- the name of provisioning entity “McDonalds's” can be indicated by a number of combinations such as, “McDonald's,” “Mc Donalds,” “mcdonalds,” “Mcdonald's,” etc. While each of the above-recited names can be intended to indicate the same entity, some processing can be necessary before the system can analyze all such names as the same entity. Exemplary methods for resolving a name of provisioning entities are described in U.S. Non-Provisional patent application Ser. No. 13/827,491, titled Resolving Similar Entities From A Transaction Database filed on Mar. 14, 2013, the entirety of which is expressly incorporated herein by reference.
- An exemplary method of resolving a provisioning entity name can include a number of factors including, but not limited to, categories of information associated with interactions, analyzing interactions associated with competitive and/or complementary provisioning entities. Such exemplary method can result in a significant uplift in accuracy in resolving the name of provisioning entities. In some embodiments, a percentage accuracy in resolving the name of provisioning entities can be increased to high nineties (e.g., 97%).
- FIG. 14 depicts a flowchart representing an exemplary process for estimating a location of a provisioning entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- Process 1400 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
- a data structure (e.g., data structure 400 ) comprising a plurality of interactions associated with multiple entities can be accessed.
- the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities.
- the data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above.
- the plurality of interactions of the data structure can include a consuming entity and a provisioning entity. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity.
- the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
- the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. In some embodiments, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
- step 1420 an interaction of the data structure can be evaluated.
- step 1430 a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity.
- the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1460 .
- the determination can return a negative indication to signify that the interaction does not include a location information of the provisioning entity and the process can move to step 1440 .
- the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1460 .
- the category of information representing zip code e.g., zip code sub-category 456
- the populated data is 94085, it can be verified as a valid data and the process can then move to step 1460 .
- the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits and the process can then move to step 1440 as described below. It will be understood that other methods to determine whether the interaction includes a location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
- step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities.
- step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity.
- the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440 ).
- a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google SearchTM).
- a search engine e.g., Google SearchTM
- a location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out a location information of the provisioning entity that is closest to the location of the consuming entity. In some embodiments, the location information returned by the search query can be an estimated location information of the provisioning entity.
- a location information of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each location of the provisioning entity.
- a provisioning entity can be the grocery store, SafewayTM, which can have multiple locations in a given zip code (e.g., 94086) of the consuming entity. If the location of the SafewayTM where one or more interactions with a consuming entity occurred is unknown, interactions between the same consuming entity and all SafewayTM locations within the given zip code of the consuming entity can be analyzed such that the SafewayTM location that is involved with the most number of interactions can be selected as an estimated location of the SafewayTM for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
- the data structure can be updated with an estimated location information of the provisioning entity.
- data associated with only the evaluated interaction can be updated.
- data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not.
- step 1460 a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1420 to evaluate another interaction and further to repeat the process comprising steps 1420 through 1460 , as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
- FIG. 15 depicts a flowchart representing an exemplary process for estimating a location of a provisioning entity, consistent with embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- Process 1500 can be performed in full or in part by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIG. 2 ).
- the exemplary process of FIG. 15 can depict a multi-step process for estimating location information of a provisioning entity.
- an area location information can be estimated to represent a location information of the provisioning entity broadly.
- an area location information for a grocery store like SafewayTM can be as broad as a state (e.g., California) or county (e.g., Santa Clara County) such that SafewayTM can comprise multiple possible locations within the area location.
- a location information can be estimated to identify a specific location of the provisioning entity from its multiple possible locations within the area location.
- the estimated location information can represent one of the ten possible locations within Santa Clara County using either a street address or other unique identifier for the location (e.g., zip code if there is only one store location for the zip code).
- a street address or other unique identifier for the location e.g., zip code if there is only one store location for the zip code.
- a data structure (e.g., data structure 400 ) comprising a plurality of interactions associated with multiple entities can be accessed.
- the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities.
- the data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above.
- the plurality of interactions of the data structure can include consuming entities and provisioning entities. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity.
- the at least one attribute of the consuming entity can include location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
- the at least one attribute of the provisioning entity can include an identification information of the provisioning entity.
- the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
- the provisioning entity analysis system can receive an input that can be used in a process to fill in any missing categories of information associated with an interaction.
- the received input can be “canonical data” that can be used to estimate identification information of the provisioning entity.
- An exemplary canonical data can comprise data that can be received from external to the provisioning entity analysis system (e.g., YelpTM).
- YelpTM e.g., YelpTM
- canonical data such as YelpTM review information can be analyzed to further identify the provisioning entity as an Italian restaurant.
- canonical data can be received from an external source (e.g., FactualTM) that can comprise a “status” flag as part of its data, which can signify whether the entity is no longer in business.
- FactualTM an external source
- step 1510 an interaction of the data structure can be evaluated.
- step 1515 a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity.
- the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1555 . If, on the other hand, the categories of information associated with a location information of the provisioning entity are not populated, then the determination can return a negative indication to signify that the interaction does not include location information of the provisioning entity and the process can move to step 1520 .
- the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1555 .
- the category of information representing zip code e.g., zip code sub-category 456
- the populated data is 94085, it can be verified as a valid data and the process can then move to step 1555 .
- the populated data is 094085, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are typically only five decimal numerical digits and the process can then move to step 1520 as described below. It will be appreciated that other methods to determine whether the interaction includes location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
- step 1520 can estimate an area location information of the provisioning entity based on one or more attributes of one or more consuming entities.
- step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities.
- step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity.
- the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440 ).
- a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google SearchTM) and such information can be identified as an estimated first location information of the provisioning entity.
- a search engine e.g., Google SearchTM
- an area location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out the area location information of the provisioning entity that is within a predetermined distance (e.g., within the same zip code) to the location of the consuming entity.
- the location information returned by the search query can be an estimated first location information of the provisioning entity.
- the plurality of interactions can be filtered to identify other interactions (e.g., interactions other than the first interaction) between the one or more consuming entities and other provisioning entities (i.e., provisioning entities other than the provisioning entity associated with the interaction and with an unidentified location).
- step 1525 can filter other interactions such that interactions without an indication of location information associated with the other provisioning entities need not be analyzed.
- the filtered interactions can be analyzed to filter provisioning entities based on a received canonical input data.
- the system can filter the interactions further to only analyze those interactions associated with provisioning entities with an identification information that meet the criteria set by the received canonical data. It will be appreciated that other forms of canonical data can be received within the scope of this disclosure.
- a travel time can be computed between a location of a first provisioning entity to that of a location of a second provisioning entity.
- the first provisioning entity can be the provisioning entity with an estimated area location and the second provisioning entity can be any provisioning entity other than the first provisioning entity.
- Provisioning entities S1 and S2 can be two different locations within a chain of stores associated with the same provisioning entity and situated within an area location information estimated in step 1520 .
- S1 and S2 can be two different locations of SafewayTM situated within an estimated area location (e.g., zip code 94086).
- the area location information can be depicted with a shaded region and labeled as element 1605 A in FIGS. 16A, 16B, and 16C . As shown in FIG.
- the five interactions, X1-X5 can represent interactions between the consuming entity associated with the interaction of step 1510 and a provisioning entity other than S1 or S2. While FIGS. 16A, 16B, and 16C , depict locations of two provisioning entities and locations of five interactions, it will be appreciated that this disclosure is applicable to embodiments involving any number of provisioning entities and any number of interactions.
- FIG. 16B depicts travel times between the SafewayTM location, S1, and a provisioning entity involved in each of the interactions, X1-X5. While the travel times are illustrated as aerial travel times, it is appreciated that the travel times can take into consideration roads, sidewalks, bike lanes, etc. For example, travel time between the location S1 and location of provisioning entity involved in interaction X1, can be represented by the line T S1-X1 . Travel time T S1-X1 can be computed using real-time traffic conditions or based on historical traffic conditions. Similarly, travel times can be computed between S1 and each location of provisioning entities associated with interactions X2 through X5. Such travel times can be labeled as T S1-X2 through T S1-X5 , as depicted in FIG. 16B .
- FIG. 16C depicts travel times between the other possible SafewayTM location, S2, and a provisioning entity involved in each of the interactions, X1-X5.
- This process can be very similar to that of FIG. 16B described above.
- travel time between the location S2 and location of provisioning entity involved in interaction X1 can be represented by the line T S2-X1 .
- Travel time T S2-X1 can be computed using real-time traffic conditions or based on historical traffic conditions.
- travel times can be computed between S2 and each location of provisioning entities associated with interactions X2 through X5.
- Such travel times can be labeled as T S2-X2 through T S2-X5 , as depicted in FIG. 16C .
- an affinity score can be computed.
- an affinity score can be computed for each possible location of the provisioning entity within the estimated area location.
- the computed affinity score can be based on the computed travel times such that the affinity score can have an inverse proportionality with computed travel times such that the lower the travel time the higher an affinity score. For example, based on the exemplary travel times depicted in FIGS. 16A, 16B, and 16C , it is possible that the affinity score associated with location S1 is likely higher than that of location S2 because travel times associated with S1 are lower than that of S2.
- Affinity score can be computed based on an average travel time for all interactions.
- affinity score can be computed by aggregating travel times of all interactions for each location S1 and S2. It will be appreciated that the above-described methods are merely exemplary and other methods of computing an affinity score based on travel times are possible within the scope of this disclosure.
- the computed affinity score can be normalized (e.g., can be normalized to comprise a value between 0 and 1, with 0 representing no affinity and 1 representing maximum possible affinity).
- the affinity score can have an inverse relationship with the computed travel times, it is appreciated that the affinity score can have a proportional relationship to the computed travel times.
- the computed affinity score can be used to estimate a location information within the estimated area location for the provisioning entity without an identified location information.
- a location can be estimated by selecting the location which has the highest affinity score amongst all possible locations within the area location. That is, in the exemplary embodiment of FIG. 16 , location S1 can be selected as the affinity score associated with location S1 is likely higher than that of location S2, as described above. It will be appreciated that other methods of estimating a second location information based on an affinity score are possible. Alternatively, the computed affinity score can be used in conjunction with an algorithm to estimate a second location information within the area location information.
- a location information within the area location of the provisioning entity can be estimated by analyzing interactions between the consuming entity and other provisioning entities within the location of the consuming entity (e.g., zip code of the consuming entity) that are closely spaced in time relative to the interaction that does not include an identified location information of the provisioning entity.
- a first interaction that does not include an identified location information of the provisioning entity can include a timestamp (e.g., time of interaction category 480 ) associated with the first interaction.
- the system can analyze other interactions (e.g., interactions other than the first interaction) associated with the consuming entity that occurred within the same location of the consuming entity (e.g., zip code of the consuming entity), occurred within a short time interval of the timestamp of the first interaction (e.g., within 10 minutes of the timestamp), and which further include an identified location information for the provisioning entities associated with the other interactions.
- interactions e.g., interactions other than the first interaction
- the consuming entity e.g., interactions other than the first interaction
- a short time interval of the timestamp of the first interaction e.g., within 10 minutes of the timestamp
- a location information within the area location of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each possible location of the provisioning entity.
- a provisioning entity can be the grocery store, SafewayTM, which can have multiple locations in a given city (e.g., Sunnyvale Calif.) of the consuming entity. Interactions between the consuming entity and all SafewayTM locations within the given city of the consuming entity can be analyzed such that the SafewayTM location that is involved with the most number of interactions can be selected as an estimated location within the area location of the SafewayTM for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
- an accuracy check of the estimated location information within the area location can be performed.
- the accuracy check can comprise verification that the estimated location information is one of the possible locations within the estimated area location of the provisioning entity.
- the accuracy check can comprise verification that the estimated location information is a valid location information. For example, if the estimated location information is a street address, then the accuracy check can involve verifying that the estimated street address is a valid street address based on an Internet-based search using a search engine (e.g., Google SearchTM).
- a search engine e.g., Google SearchTM
- the data structure can be updated with an estimated location information of the provisioning entity.
- the data structure can be updated with either an estimated area location information or an estimated location within the area location information.
- the data structure can be updated with both the estimated area location information and the estimated location information within the area location.
- data associated with only the evaluated interaction can be updated.
- data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not.
- a determination can be made whether the data structure comprises additional interactions that are to be evaluated.
- step 1510 If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1510 to evaluate another interaction and further to repeat the process comprising steps 1510 through 1550 , as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
- a provisioning entity analysis system can predict a purchasing pattern of consuming entities.
- a provisioning entity e.g., a large national retailer in the grocery business like SafewayTM
- SafewayTM can be interested in predicting purchasing patterns of consuming entities in order to make decision such as opening new stores or closing existing stores.
- One method of predicting purchasing patterns can be to analyze interactions of consuming entities with the provisioning entity. For example, if SafewayTM is interested in opening new store by predicting purchasing patterns of their customers of an existing location, the customer interactions at the existing location can be analyzed to understand where the customers are located by processing location information of the customers. Based on the processed location information of the customers of the existing location, SafewayTM might be able to make a decision on a location for their new location.
- Another method of predicting purchasing patterns can be to analyze interactions between the consuming entities and other provisioning entities, where the other provisioning entities can be either a competitor of or complementary to the provisioning entity.
- the other provisioning entities can be either a competitor of or complementary to the provisioning entity.
- An exemplary complementary entity can be a gas station or a pharmacy because it can be reasonable to assume that consumers frequently shop at a pharmacy or a gas station that is close to their residential location. Accordingly, by analyzing interactions that are associated with a complementary entity to estimate a residential location information of consumers, SafewayTM can make a decision on a location for their new location.
- FIGS. 17-26 are screenshots of exemplary user interfaces, consistent with the embodiments of the present disclosure. These user interfaces can be provided based on an analysis of a data structure (e.g., data structure 400 of FIG. 4 ) performed by a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ).
- FIG. 17 illustrates an exemplary user interface 1700 that a provisioning entity analysis system (e.g., provisioning entity analysis system 210 ) can generate, according to some embodiments.
- the exemplary user interface includes a dashboard, e.g a small business portal dashboard (SBP) dashboard, that can depict a performance of an entity over a metric.
- SBP small business portal dashboard
- the SBP dashboard represents revenue information of the entity (e.g., a provisioning entity) for the current week (May 26, 2013-Jun. 2, 2013).
- the SBP dashboard represents revenue information comparing the entity's actual revenue to the entity's goal revenue for the week.
- the provisioning entity can enter a goal revenue for a period of time (e.g., weekly, quarterly, or yearly).
- the provisioning entity analysis system can analyze interaction data to analyze the entity's performance relative to the goal revenue.
- An outcome of such comparative analysis can be represented with an exemplary bar graph or pie chart. For example, the middle portion of FIG. 17 depicts that the entity has received $48,078 in revenues for the current week, and the entity's goal revenue for that week is $63,933.
- user interface 1700 can include a plurality of user interface elements representing information associated with entity performance metrics such as revenue, ticket size, new customers, and returning customers.
- entity performance metrics such as revenue, ticket size, new customers, and returning customers.
- each of the above-described user interface elements can be depicted as a rectangular box with an icon and some information representing the performance metric of the entity.
- the entity can customize what metrics are displayed and how those metrics are displayed.
- the user interface elements when clicked on, can provide access to other user interfaces, depicting additional information for the selected performance metric.
- User interface 1700 can include a sidebar with expandable labels depicting, for example, “My Store,” “My Customers,” and “My Neighborhood.” Each of these labels can provide access to additional user interfaces that depict additional information for these metrics. For example, clicking on the “My Store” label can expand the label to show submenus corresponding to “Revenue,” “Total Transactions,” “Ticket Size,” “Busiest Days,” and “Busiest Hours.” Each of these submenus can provide access to another user interface, providing additional information for each category.
- FIG. 18 shows a screenshot of an exemplary user interface 1800 that represents revenue depicted temporally, consistent with some embodiments.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- User interface 1800 can be accessed by an entity selecting “Revenue” in the sidebar (e.g., “Revenue” submenu of user interface 1700 of FIG. 17 ).
- User interface 1800 can represent revenue information in a chart, such as the bar chart shown in the top panel of FIG. 18 .
- each bar in the bar chart can represent revenues for a period of time (e.g., a day, week, month, quarter, or year). The granularity or time period for each bar based on the selection of the “Monthly,” “Weekly,” and “Daily” boxes in the top left portion of the bar chart.
- user interface 1800 allows an entity to select a particular bar or time period of interest. For example, the entity can select the “May” bar. To indicate that “May” has been selected, user interface 1800 can display that month in a different color. In some embodiments, user interface 1800 can also display additional information for the selected bar. For example, as shown in FIG. 18 , user interface 1800 can display the month selected, the revenue for that month, the average ticket size, the number of transactions, and the names of holidays in that month, if any. In some embodiments, user interface 1800 can depict comparisons of revenue information. For example, user interface 1800 can display additional lines or bars (not shown), which represent revenue competitor revenue, industry revenue, or entity revenue from another time period.
- user interface 1800 can include a bottom panel depicting a bar chart of revenue for a longer period of time, such as the past twelve months.
- User interface 1800 can highlight the region currently depicted in the top panel by changing the color of the corresponding bars in the bottom panel.
- user interface 1800 can allow an entity to drag the highlighted region on the bottom panel to depict a different time period in the top panel.
- User interface 1800 can also allow an entity to access additional user interfaces by selecting, for example, the “Total Transactions,” “Ticket Size,” “Busiest Days,” or “Busiest Hours” submenus in the sidebar.
- these user interfaces can display information in the same manner as user interface 1800 .
- a user interface for “Total Transaction” can represent transaction information in a chart, such as a bar chart shown in the top panel of FIG. 18 .
- the bars in the bar chart can represent the total number of transactions for a period time (e.g., one month).
- User interfaces accessed through the “Ticket Size,” “Busiest Days,” and “Busiest Hours” can display information similarly.
- the bars in these user interfaces can represent a percentage for a period time (e.g., 15% of sales occur on Tuesday).
- FIG. 19 depicts a screenshot of an exemplary user interface representing new customer acquisition numbers over a selected period, consistent with some embodiments.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- user interface 1900 is accessible by expanding “My Customers” in the sidebar and selecting the “New Customers” submenu.
- User interface 1900 can depict customer metrics for a selected period of time. For example, user interface 1900 can display customer metrics for a selected quarter.
- User interface 1900 can use, for example, a bar graph to represent the customer metrics wherein each bar represents the number of customers for a subset period of time, (e.g., a week) within the longer period of time (e.g., a quarter).
- User interface 1900 can also depict new customers in one color and returning customers in a different color to distinguish between the different types of customers. As an example, in FIG. 19 , returning customers are represented by the upper, lighter portions of the bar, whereas new customers are represented by the lower, darker portions. In some embodiments, user interface 1900 can depict the total number of new customers and returning customers for a selected time period, as shown in the top right portion of user interface 1900 . User interface 1900 can also allow an entity to access additional user interfaces (such as user interface 2000 and user interface 2100 described below) by selecting, for example, the “Loyal Customers” or “Where do they spend?” submenus.
- additional user interfaces such as user interface 2000 and user interface 2100 described below
- FIG. 20 depicts a screenshot of an exemplary user interface 2000 representing loyal customer information, consistent with some embodiments.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- user interface 2000 can be accessed based on the selection of the “Loyal Customers” submenu in the sidebar.
- User interface 2000 can depict performance metrics relating to revenue from returning customers.
- user interface 2000 represents this information as a stacked bar graph.
- a section of the stacked graph can represent the number of customers who visited an entity a certain number of times. For example, the bottom section of the stacked bar chart depicted in FIG. 20 can represent the number of customers who visited once.
- a section of the stacked graph can represent the number of customers whose visits fall within a range of times, (e.g., “3-4 times” or “9+ times”).
- User interface 2000 can depict each section as a percentage (e.g. 7.0% of customers), as a number (e.g. 149 customers), or as a combination thereof (e.g., 149 customers, 7.0%).
- user interface 2000 can depict additional information for a section selected by the entity.
- the entity can select the “9+ times” section at the top of the stacked bar graph in FIG. 20 to display additional information about those customers.
- This information can include the total revenue from those customers, the total number of transactions with those customers, and the average ticket size of those customers.
- FIG. 21 depicts a screenshot of an exemplary user interface 2100 representing customer spending habits for specific geographic regions.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- user interface 2100 can be accessed based on the selection of the “Where do they spend” submenu in the sidebar.
- User interface 2100 can depict a geographic region.
- User interface 2100 can also depict locations where customers spend overlaid on the geographic region, e.g. a heat map. For example, the shaded regions overlaid on the geographic region in FIG. 21 can depict the regions where customers spend.
- Different shades of gray-scale can be used to show different amounts of spending (e.g., darker shaded regions can depict regions where customers spend more).
- a color coded heat-map can be used where different colors can be used to show different amounts of spending.
- the geographic granularity e.g., district, city, county, metropolitan area, state
- User interface 2100 can also depict spending habits for the geographic region for different temporal periods. For example, user interface 2100 can depict customer spending for the current month, quarter, previous quarter, or any other time period.
- FIG. 22 depicts a screenshot of an exemplary user interface 2200 representing entity performance using one or more filter selections including demographics, geographic location, time period, and transactions.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- an entity can utilize user interface 2200 to compare how different variables (e.g., time, demographics, location, etc.) affect entity performance metrics (e.g., revenues, ticket size, etc.).
- user interface 2200 can depict entity performance using a bar chart or histograms. For example, the bar charts in the middle of FIG. 22 depict the average ticket size based on the number of times a customer visits. The bar chart on the left side of FIG.
- user interface 2200 can depict additional customer information, such as income, as a histogram. As shown in FIG. 22 , the histogram can represent customer demographics for the selected filters. In some embodiments, user interface 220 can depict a delta (not shown in FIG. 22 ) representing a difference between similar categories in each histogram. The depiction of the delta can be in the area between the left and right histograms such as shown in U.S. application Ser. No. 14/289,596 at FIG. 17, the depiction of which is incorporated by reference.
- user interface 2200 can display a 5% delta to the left, representing the difference between the filter selections.
- FIG. 23 depicts a screenshot of an two exemplary user interfaces.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- the left panel of FIG. 23 shows a user interface that can depict business insights for the entity (e.g., what customers buy, where they buy, when they buy, how often they buy, where they live, how much they make, etc.).
- user interface 2300 can depict insights such as temporal trends, temporal summaries, geographical trends, whether customers are on vacation, and customer demographics. An entity can use these insights to predict future spending, to target specific customers, to determine when to have sales, to determine when to order additional inventory, etc.
- the user interface in the right panel can allow an entity to compare its revenues to other entities.
- the lines on each bar in the right panel of FIG. 23 represent competitor revenue for the selected time period. In some embodiments, these lines can represent industry revenue or entity revenue from another time period.
- the user interface shown in the right panel of FIG. 23 can include a bottom panel depicting a bar chart of revenue for a longer period of time, such as the past twelve months. The user interface can highlight the region currently depicted in the top panel by changing the color of the corresponding bars in the bottom panel. In some embodiments, the user interface allows an entity to drag the highlighted region on the bottom panel to depict a different time period in the top panel.
- FIG. 24 depicts a screenshot of an exemplary user interface 2400 including a heat-map representation (e.g., the left panel) and graph-based representation (e.g., the right panel) of entity performance.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- the entity can select one or more filters (e.g. “Add New Filter” shown in the sidebar) to display a timeline of customer.
- user interface 2400 can represent customer spending on a daily basis.
- user interface 2400 can represent customer spending with a heat map, such as the heat map shown in the left panel of FIG. 24 .
- the heat map can be used to accurately predict the geographic locations of future customer spending.
- customer spending can be represented as a graph-based representation where the independent axis (e.g., x-axis) can represent a period of time and the dependent axis can represent customer spending, as depicted in the right panel of FIG. 24 .
- the graph-based representation can be used as a predictive chart to predict future customer spending.
- FIG. 25 depicts a screenshot of an exemplary user interface 2500 representing inferred customer location.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- user interface 2500 can represent customer location inferred from persistent information (e.g., the centroid of the customer's medical transactions or the median of the customer's retail food and pharmacy stores transactions).
- user interface 2500 can represent customer location inferred from contextual information (e.g. localized small-ticket spending in severe weather or spending after an inferred move).
- user interface 2500 can represent temporal customer location (e.g., permanent, temporary, seasonal, etc.).
- customer location can be represented by a circle of a particular distance, wherein the provisioning entity analysis system infers that the customer is located within that circle.
- the inner circle represents a two mile range and the outer circle represents a five mile range.
- user interface 2500 can depict a confidence metric corresponding to the accuracy of inferred customer location (e.g., 75-80% confident that the customer is within the inner circle and 90-95% confident that the customer is located in the outer circle).
- FIG. 26 depicts a screenshot of an exemplary user interface 2600 representing predictive travel and vacation spending.
- Entities such as resorts and travel destinations, can use this information to predict vacation patterns, enabling them to develop targeted marketing and to inform future restaurant and service selection.
- a provisioning entity analysis system e.g., provisioning entity analysis system 210
- the provisioning entity analysis system can use the inferred customer locations described above to determine whether certain transactions qualify as travel or vacation spending.
- user interface 2600 can depict travel or vacation spending as a chart. For example, as shown in FIG. 26 , user interface 2600 can represent this information as a scatter chart with confidence intervals.
- the independent axis (e.g., x-axis) of the chart can represent the day of vacation.
- the dependent axis can represent the average range of percentage of travel spending that is spent on restaurants.
- FIG. 27 depicts a block diagram of an exemplary system 2700 for analyzing entity performance including a mobile device 2705 , consistent with the embodiments of the present disclosure.
- FIG. 27 depicts an example scenario where mobile device 2705 communicates with the components of system 2700 to request or analyze entity performance.
- system 2700 can include a cellular base station 2715 , a provisioning entity 2730 , a server 2725 , and a network 2720 .
- the devices of system 2700 may be communicatively coupled to transmit information.
- Various types of hardware can be included in devices in system 2700 .
- each device can include one or more processors, memory, and transceivers (e.g., devices that can send and/or receive data via a wired or wireless connection).
- a business owner will want to know details about how its retail entities are performing.
- business owners may want to be able to compare how their stores are performing in comparison to similar stores located near their store. For example, a business owner may not know that people are spending less in a particular neighborhood as opposed to only their business.
- a business owner may want to view information associated with various customers that enter or make transactions at their store. At certain points in time, the business owner or an employee of the business may not be able to access information associated with the customers visiting their store if they are not in front of a computer. Thus, having the ability to determine information associated with customers in real-time with a mobile device can be useful.
- System 2700 can implement some or all of the methods described herein (e.g., processes for determining locations and analyzing or comparing entity performance as depicted in FIGS. 6, 10A, 11, and 13-15 ) and can include some or all of the devices and/or systems described above (e.g., provisioning entity analysis system 210 , provisioning entity management systems 240 , consuming entity data systems 250 , data structure 400 , system 500 ).
- provisioning entity analysis system 210 e.g., provisioning entity management systems 240 , consuming entity data systems 250 , data structure 400 , system 500 .
- a user of mobile device 2705 may access provisioning entity analysis system 210 in order to view the performance of their provisioning entity (e.g., a retail store).
- Mobile device 2705 may be configured to electronically communicate with other devices in system 2700 , and to transmit or request information regarding an entity's performance.
- Mobile device 2705 may be a smart phone, tablet, wearable (e.g., smartwatch) or other portable electronic device capable of communicating data (e.g., information), as discussed above.
- Mobile device 2705 may include one or more data acquisition interfaces that can acquire information.
- the data acquisition interface(s) allow mobile device 2705 to gather information about its surroundings, which may be transmitted to a provisioning entity (e.g., a merchant) and/or server 2725 that analyzes entity performance.
- Data acquisition interfaces can include, but are not limited to: an input/output device, a location determination module (e.g., a global positioning system (GPS)), a network interface card, a barometer, an accelerometer, a gyroscope, a thermometer, etc.
- a data acquisition interface can be used to provide a system with information unique to a mobile device (e.g., its location), so performance analyses can be customized based on information acquired at the data acquisition interface.
- a data acquisition interface can acquire a device identifier (ID) (which may include the ID of the mobile device that the data acquisition interface is included within).
- ID device identifier
- a mobile device can determine the device IDs of mobile devices in particular area surrounding the mobile device and use the determined device IDs when performing various entity performance analyses.
- Mobile device 2705 may also include a display that can display information using a mobile widget.
- Mobile widgets may be graphical user interfaces (GUIs) that can be manipulated by a user of mobile device 2705 . They can be generated using software, a script, by opening dynamic content in an email, etc.
- GUIs graphical user interfaces
- mobile widgets can be accessed by opening an application on a mobile device, or they may be accessed automatically. For example, a mobile widget may automatically open when a user unlocks their smart phone.
- Mobile device 2705 may be associated with one or more users. Users can be a consuming entity or be associated with a consuming entity. In some cases, users can be associated with a provisioning entity, and accordingly mobile device 2705 may be associated with the provisioning entity. For example, a mobile device may belong to a store, an owner of a store, or an employee of a store such as a manager. In such cases, mobile device 2705 may be considered to be associated with the provisioning entity (e.g., the store).
- mobile device 2705 communicates with a cellular base station 2715 or provisioning entity 2730 using links 2710 .
- mobile device 2705 can use links 2710 to transmit information about its location to a provisioning entity, or request information about entity performance from server 2725 .
- Links 2710 transmit information and may include a wired connection, a wireless connection, or both.
- Example wireless technologies that may be used by mobile device 2705 in the example systems and methods described in the present disclosure include, but are not limited to: communication via satellite, CDMA, LTE, WiFi (IEEE 802.11), radio frequency identification (RFID), Near Field Communication (NFC), ZigBeeTM (IEEE 802.15.4), Z-WaveTM, BluetoothTM, ThreadTM, WeMoTM, WiMaxTM, etc.
- RFID radio frequency identification
- NFC Near Field Communication
- ZigBeeTM IEEE 802.15.4
- Z-WaveTM BluetoothTM
- ThreadTM ThreadTM
- WeMoTM WiMaxTM
- System 2700 may include a provisioning entity 2730 , which, for example, may be a merchant location.
- Provisioning entity 2730 may include one or more transceivers (e.g., wireless transceivers, beacons, etc.).
- the one or more transceivers may be configured to detect the presence of mobile device 2705 when mobile device 2705 comes within a certain range of provisioning entity 2730 .
- a consuming entity e.g., a customer
- the one or more transceivers may be configured to detect the presence of mobile device 2705 .
- the transceivers also may be configured to determine a particular location of mobile device 2705 within provisioning entity 2730 , along with a route that mobile device 2705 traveled while near and/or inside provisioning entity 2730 .
- provisioning entity 2730 may be able to detect that the consuming entity carried mobile device 2705 in through the front door, walked past the produce display, stopped in the pet food aisle for 4 minutes, then walked down aisle 10 to get to the deli counter (where the consuming entity waited for 8 minutes), then passed the candy section on the way to register 10 and out the back door.
- mobile device 2705 may share information with provisioning entity 2730 via the one or more transceivers.
- provisioning entity 2730 via the one or more transceivers, may receive information related to the consuming entity associated with mobile device 2705 . Such information may be shared before, after, or during the detection by provisioning entity 2730 of mobile device 2705 .
- provisioning entity 2730 may detect personal data, credit card data, shopping history, or other information about the consuming entity associated with mobile device 2705 .
- the provisioning entity 2730 may, in some examples, use the information received from mobile device 2705 to, in return, share information with mobile device 2705 .
- provisioning entity 2730 may be configured to share coupons for items that may interest a person of that description, directly with mobile device 2705 for display to the consuming entity.
- a user using mobile device 2705 may perform a particular action to cause provisioning entity 2730 to determine that mobile device 2705 or its associated user is within provisioning entity 2730 .
- a user may “check in” or “like” provisioning entity 2730 using a web-based application such as FacebookTM or FoursquareTM.
- provisioning entity 2730 and/or a mobile device 2705 associated with provisioning entity 2730 may receive a notification about the user's action.
- provisioning entity 2730 in response to the user's action, provisioning entity 2730 may cause an action to occur such as providing a mobile device 2705 associated with the user with one or more coupons, or providing a mobile device 2705 associated with the user with information about discounted products.
- Server 2725 is an example computing system that can perform the methods described herein, and can include multiple hardware devices.
- server 2725 may include the devices included in provisioning entity analysis system 210 as described above, and include one or more networked computers processing in parallel or use a distributed computing architecture.
- Server 2725 may include one or more machines physically located in provisioning entities, which may help save time and resources when they are close to users attempting to access server 2725 .
- Server 2725 can perform entity analysis in the same manner as provisioning entity analysis system 210 discussed above.
- server 2725 can receive data and information requests from provisioning entity 2730 or mobile device 2705 , perform various operations such as populating or accessing a database, and send data such as information associated with consuming or provisioning entities.
- a user that wants to see how certain provisioning entities are performing can use mobile device 2705 to access server 2725 .
- the user may send information requests that include filter selections, as discussed above, to retrieve information associated with the certain provisioning entities.
- a user may send filter selections to parse data in server 2725 such that only information indicating the revenue generated by grocery stores in a three-mile radius of the mobile device during the previous week. This information may be sent from server 2725 to mobile device 2705 and displayed using a widget (e.g., an application).
- a widget e.g., an application
- network 2720 included in system 2700 is similar to network 260 as discussed above.
- Network 2720 can be used by mobile device 2705 to send and receive data associated with entity performance from server 2725 .
- Network 2720 can be any type of network or combination of networks configured to provide electronic communications between components of system 2700 .
- Network 2720 can be any type of network (including infrastructure) that provides communications, exchanges information, and/or facilitates the exchange of information such as the Internet, a Local Area Network, or other suitable connection(s) that enable the sending and receiving of information between the components of system 2700 .
- mobile device(s) 2705 can perform a variety of actions and be associated with consuming entities, provisioning entities, or in some cases a mobile device can be associated with a consuming entity and a provisioning entity.
- mobile device 2705 may be belong to an employee of a provisioning entity, such that it is considered associated with the provisioning entity.
- the employee may be a customer of another provisioning entity, such that the employee is also considered a consuming entity, and their mobile device is therefore associated with a consuming entity as well.
- a user may access data associated with the performance of provisioning entities. For example, a user may access data from server 2725 about provisioning entities in an area near a particular provisioning entity, such as a store near or next to the provisioning entity.
- server 2725 By using a display on mobile device 2705 , a user can quickly view information about one or more provisioning entities or areas from anywhere.
- Data acquired by mobile device 2705 can be inserted into or acquired from a data structure (e.g., a database), such as the data structure 400 of FIG. 4 .
- a user sends an information request to a data structure to access entity performance information.
- Data structures can be stored in various places.
- a data structure may be included in mobile device 2705 , remote from mobile device 2705 , or partially located in mobile device 2705 and remote from mobile device 2705 .
- this data structure may be stored in a real-time distributed computation environment that supports stream-oriented processing.
- the data can be stored in a data structure using Hadoop's Distributed File System, VerticaTM, or AmazonTM S3.
- the data structure storing the interactions data may be incrementally updated at particular intervals by a data computation system, such as Apache's SparkTM, providing a user with real-time or near real-time information about the interactions.
- data structures can include information corresponding with entities and interactions, such as locations of interactions, amounts of money included in interactions, amounts of money included in interactions at one or more provisioning entities during one or more time periods, information representing a market share of one or more provisioning entities, information about a cohort of provisioning or consuming entities (which may be related via an interaction), etc.
- a user may send an information request to a device storing a data structure that includes filter selections and retrieves an average amount of money spent at a cohort of provisioning entities while the provisioning entities were holding a sale (e.g., discounting products or services).
- information about the surroundings of mobile device 2705 can be retrieved and sent in a request from mobile device 2705 to server 2725 .
- a data acquisition interface of mobile device 2705 can be used to determine an associated provisioning entity.
- the associated provisioning entity may be the provisioning entity mobile device 2705 is located in, provisioning entities within a particular distance from mobile device 2705 , etc.
- a user can then view performance information corresponding to the at least one associated provisioning entity.
- a mobile device 2705 being carried by the owner of a shopping center can determine when it is in the shopping center, and display information associated with the provisioning entities in the shopping center such as how much is spent at particular stores.
- information provided to mobile device 2705 may include information associated with an area or a micro-economy. For example, information may be provided by server 2725 associated with foot traffic in a particular area (e.g., a number of consuming entities in one or more locations during one or more periods of time). Information provided to mobile device 2705 may indicate an amount of retail space in a particular area, whether an amount of foot traffic in an area is high or low compared to another area, etc. Further, information can be provided indicating whether a location would be a good place to open or invest in a provisioning entity. In some embodiments, location information associated with mobile devices being carried by users may be used to determine foot traffic.
- a transceiver may determine an amount of unique mobile devices in a particular area, and the amounts of time spent by the unique mobile devices in the particular area.
- Information about foot traffic and micro-economies can be provided to mobile devices associated with a provisioning entity or a consuming entity.
- members of the public can view aggregated foot-traffic data.
- requests for information may be referred to as information requests.
- information requests generated at mobile device 2705 may include requests to determine its location (which may be determined with a data acquisition interface such as GPS), and/or requests for information associated with a cohort of provisioning entities (which may include requests to be sent to server 2725 ).
- An information request may include information that can be used to identify a particular device or type of device. For example, this information can be used to determine a user associated with the device, and information associated with the user such as where they live, information indicative of products or services the user has previously purchased, information indicative of products or services the user is likely to purchase, etc.
- Information requests can come from a mobile device 2705 associated with a provisioning entity or a consuming entity.
- system 2700 may determine that a mobile device 2705 associated with a loyal customer entered a particular provisioning entity. As discussed above, this determination may be based on communications between mobile device 2705 and one or more cellular base stations that can be inside or outside of the provisioning entity, a WiFi hotspot, or another type of communication device within a provisioning entity (e.g., a communication device that utilizes NFC, BluetoothTM, ZigBeeTM, Z-WaveTM, ThreadTM, WeMoTM, etc.).
- a mobile device 2705 associated with a provisioning entity may send an information request to using system 2700 (e.g., to server 2725 ) to determine whether a loyal customer entered the provisioning entity.
- system 2700 e.g., to server 2725
- an amount of interactions conducted at a provisioning entity over a period of time may likewise be used as a gauge for how many customers, loyal or otherwise, are likely to be within a provisioning entity.
- an action may occur in response to a particular amount of people estimated to be in a provisioning entity (e.g., whether estimated by determining the presence of a mobile device or an amount of interactions).
- system 2700 can automatically trigger (e.g., cause to perform) an action, which may be based on an information request.
- an alert may be sent to mobile device 2705 when a particular consuming entity enters or conducts an interaction at a particular provisioning entity.
- a manager of a casino might want to be alerted when a big spender enters their casino, engages in a transaction, places a bet, or makes a purchase.
- an alert can include an email or other type of message including text.
- Such an alert system can be configurable. For example, an alert may be sent to a mobile device when the mobile device is in or near a particular location, such as the provisioning entity where a loyal customer entered. In some embodiments, an alert may not be sent to mobile device 2705 when a loyal customer enters a provisioning entity and mobile device 2705 is not in the provisioning entity.
- an alert may be sent to mobile device 2705 only during particular times or when a particular amount of loyal customers are located in a provisioning entity, or when a particular amount of loyal customers engage in interactions with the provisioning entity.
- an alert may be sent to the manager of a provisioning entity when 50 people are in the provisioning entity (or when 10 consuming entities engage in a transaction at the provisioning entity) during business hours, but not after 5:00 p.m.
- an alert may be configured to send a message to the manager when over 100 people are in the provisioning entity (or at least 20 consuming entities engage in a transaction at the provisioning entity) after 5:00 p.m.
- a summary or aggregated amount of information can be sent to mobile device 2705 and include information such as loyal customers that visited one or more provisioning entities during a particular time, interactions entered into by customers and/or loyal customers, products and/or services purchased by customers, etc.
- loyal customers can be identified using RFID or biometrics such as facial recognition. Alerts can then be generated based on the identification of a particular loyal customer. It should be appreciated that devices that implement identification technology using biometrics can be included in system 2700 .
- an action is triggered based on attributes associated with an interaction, such as when an interaction involving more than a threshold amount of money occurs.
- an email may be delivered to mobile device 2705 in response to a large transaction occurring at a provisioning entity.
- the alert may not be delivered to mobile device 2705 based on one or more attributes associated with mobile device 2705 , such as its location. For example, an alert may not be delivered to mobile device 2705 if mobile device 2705 is located in the provisioning entity where a transaction occurred, since the user of mobile device 2705 may already know about a transaction that is occurring at a store they are also at.
- an alert may be delivered to mobile device 2705 when the mobile device is located in the provisioning entity, so an employee may thank a customer involved in an interaction.
- a store manager may want to view real-time metrics on their way to the store.
- an alert may be provided to mobile device 2705 at a particular time (e.g., an hour before the manager starts their shift) or in response to mobile device 2705 being near or entering a provisioning entity. This allows a user to view information associated with the provisioning entity before or when the user arrives at the provisioning entity.
- an alert may be delivered when mobile device 2705 is not located at a provisioning entity and an interaction with particular attributes occurs. For example, an alert may be sent to a store owner's mobile device that indicates that fraudulent interactions occurred at their store. As another example, an alert may be sent to a store manager indicating whether one or more products should be ordered (e.g., refilled). A determination as to whether more products should be ordered may be based on information associated with interactions, such as the amount of products that have been purchased, and information associated with inventory such as the amount of a product located at one or more provisioning entities. In some embodiments, an alert may be sent to mobile device 2705 and additional products may be ordered automatically (e.g., system 2700 send information to a supplier to order additional products).
- an alert can be an email that includes dynamic content, also known as rich media, associated with the performance of an entity.
- dynamic content also known as rich media
- metrics associated with a provisioning entity may be updated and displayed when a device accesses email and/or when a user opens an email including the metrics (e.g., using a mobile device).
- rich media can be displayed using a hyper-text markup language, using a widget, or in a manner based on the type of device in which the rich media is being displayed.
- FIG. 28 shows a screenshot of an exemplary user interface 2800 that can be shown on mobile device 2705 .
- Exemplary user interface 2800 depicts a mobile widget.
- the mobile widget shown in user interface 2800 includes a title 2805 of the mobile widget, a description 2810 of the mobile widget, example uses 2820 of the mobile widget, other pertinent information such as they type of data shown 2825 in the mobile widget or a map 2835 with map data 2850 , and an area for a user to provide feedback about the mobile widget 2840 .
- the example mobile widget shown in user interface 2800 includes information associated with revenue for a particular area.
- a map 2835 can be shown on the mobile device and may indicate provisioning entities to be analyzed within a particular radius (e.g., 500 feet as shown by map data 2830 ).
- a user can interact with a mobile widget to change a type of interaction data accessed (e.g., by manipulating the type of data shown 2825 ), or change the size of an area being analyzed.
- the example mobile widget can determine the location of the mobile device using the data acquisition interface. For example, a global positioning system included in the mobile device may cause the mobile widget to show a map 2835 indicating the location of the mobile device.
- a user may input a radius, which can be used to indicate provisioning entities within an area shaped as a circle surrounding the mobile device, wherein the radius of the circle is based on the user input.
- a mobile device can send an information request to a performance analysis system (e.g., located at server 2725 ).
- a performance analysis system can return attributes associated with provisioning entities within the radius such as types of provisioning entities, locations of provisioning entities, revenue of provisioning entities over a period of time, interactions occurring at provisioning entities during a period of time, etc.
- other shapes such as polygons may be used in conjunction with a map to determine a cohort of entities which can then be analyzed.
- a user may enter boundaries of a shape by tracing streets or drawing a circle on a map.
- a user may enter latitudinal and longitudinal coordinates associated using a mobile widget to help create a cohort of entities to be analyzed.
- a user can visit downtown Boston, Mass., and use the mobile widget in example user interface 2800 to view the performance entity of a cohort of entities surrounding the user.
- the user may open the widget and enter a radius (e.g., 2 miles), and filter selections specifying a type of provisioning entity such as coffee shops.
- the widget may use a data acquisition interface to determine the mobile device's location, and then display all of the coffee shops within a 2 mile radius of the mobile device, helping the user find coffee shops that are performing well in downtown Boston.
- a user may use this information and visit high performing coffee shops to see why they are doing well.
- the information may assist the user with determining where to open a new coffee shop.
- FIG. 29 shows a screenshot of an exemplary user interface 2900 that can be shown on mobile device 2705 .
- Exemplary user interface 2900 includes a mobile widget that indicates the daily revenue of a business over time.
- Exemplary user interface 2900 includes a descriptive title 2905 , a current revenue for a business associated with the user of a mobile device 2910 (e.g., the revenue of a provisioning entity), a current revenue for nearby businesses 2915 , and a line graph that shows revenue over time for the business associated with the user of a mobile device 2920 and nearby businesses 2930 .
- a current revenue for a business associated with the user of a mobile device 2910 e.g., the revenue of a provisioning entity
- a current revenue for nearby businesses 2915 e.g., the revenue of a provisioning entity
- a line graph that shows revenue over time for the business associated with the user of a mobile device 2920 and nearby businesses 2930 .
- business owners and investors may want to know how their business is doing compared to
- the mobile widget shown in exemplary user interface 2900 shows the revenue of nearby businesses 2915 (which may be an average of revenues of nearby businesses).
- This mobile widget shows line graphs indicating the performance of the business associated with the user of the mobile device 2920 and the revenue over time of nearby businesses 2930 .
- the performance information shown includes daily revenue. It should be understood that performance information, as discussed above, can include a variety of attributes including a number of customers over time, average amount spent by customers, average amount paid to full-time employees, a number of full time employees, and other information to assist the manager or owner of a provisioning entity to make decisions.
- a user may provide input that causes a mobile device to display monthly revenue, yearly revenue, or select a cohort of entities for comparison other than nearby businesses (e.g., provisioning entities that sell the same products, or provisioning entities that are part of the same chain of stores as the business associated with the user of the mobile device).
- a cohort of entities for comparison other than nearby businesses (e.g., provisioning entities that sell the same products, or provisioning entities that are part of the same chain of stores as the business associated with the user of the mobile device).
- FIG. 30 shows a screenshot of an exemplary user interface 3000 that can be shown on mobile device 2705 .
- Exemplary user interface 3000 includes a mobile widget that displays a current amount of revenue for a given day 3020 and a forecasted amount of revenue for a day 3025 .
- Exemplary user interface 3000 can include a difference between the amount of revenue for a particular time period and a forecasted amount of revenue for a particular time period.
- Exemplary user interface also includes a button to access a menu 3005 , a name of a provisioning entity being analyzed 3010 , a graph indicating revenue over time 3030 , and display options 3035 .
- Exemplary user interface 3000 also includes arrows 3015 which can cause a mobile device to show performance information of another business or show performance information using a different mobile widget.
- FIG. 31 shows a screenshot of an exemplary user interface 3100 that can be shown on mobile device 2705 .
- Exemplary user interface 3100 indicates the busiest hours of a provisioning entity during an average week.
- the exemplary user interface indicates days of the week 3105 and times of the day 3110 .
- a provisioning entity may be determined to be busy based on an amount of interactions, or an amount of people entering the provisioning entity. For example, an amount of congestion of a provisioning entity can be determined by an amount of electronic devices that are in, entering, or exiting a provisioning entity.
- the location of a mobile device in relation to a provisioning entity can be determined based on communications between a mobile device and a cellular base station that is either within or outside of the provisioning entity, and/or a communication device located within a provisioning entity such as an RFID, NFC, ZigBeeTM, Z-WaveTM, BluetoothTM, ThreadTM, WeMoTM, or WiFi enabled terminal.
- a communication device located within a provisioning entity such as an RFID, NFC, ZigBeeTM, Z-WaveTM, BluetoothTM, ThreadTM, WeMoTM, or WiFi enabled terminal.
- one or more mobile devices can be used to control various attributes of a provisioning entity. For example, someone using a mobile device can control the temperature or lighting within a provisioning entity, or music playing in the background.
- a system such as system 2700 may be configured to automatically adjust temperature or lighting within a portion of, or all of a provisioning entity.
- a request to change attributes of a provisioning entity may be sent to a mobile device (e.g., a mobile device that is in the provisioning entity and associated with the provisioning entity, such as a mobile device belonging to an owner or manager), such that a user of the mobile device can use the mobile device to instruct a system to adjust attributes associated with a provisioning entity.
- a request to change attributes may be delivered to a mobile device anytime, when the mobile device that receives the request is in the provisioning entity, or when the mobile device that receives the request is not in the provisioning entity.
- FIG. 32 shows a screenshot of an exemplary user interface 3200 that can be shown on mobile device 2705 .
- Exemplary user interface 3200 displays a provisioning entity's top grossing products (e.g., the products creating the highest revenues).
- the example shown in interface 3200 can show a store manager that milk is the top selling product during a particular week, followed by beer, coffee, and fish.
- Interface 3200 includes a title of the mobile widget 3205 , a text-entry field 3210 for searching for a product sold and an amount of revenue associated with the product, a time module 3215 that indicates the period of time and/or allows a user to change a period of time (e.g., average week, average month, last week, average Saturday, etc.).
- Exemplary user interface 3200 allows a user to quickly view the top selling products 3220 in a provisioning entity, so the user may know what to order.
- Information associated with a provisioning entity's inventory can be stored in a database that may be included in server 2725 , or in a data structure separate from the data structure that includes information about a provisioning entity's location and/or interactions.
- a mobile device may automatically order additional products such that they do not run out.
- a request may be sent to a mobile device associated with a provisioning entity that requests approval before ordering additional products.
- This request can be sent to a mobile device based on the time or location of the mobile device so that the request does not bother the user of the mobile device, and/or alerts the user of the mobile device when the mobile device is not located at the provisioning entity.
- FIG. 33 shows a screenshot of an exemplary user interface 3300 that can be shown on mobile device 2705 .
- Exemplary user interface 3300 includes a title 3305 that indicates that revenue over the previous 30 days is being displayed. Information associated with average revenue on particular days of the week 3310 are also shown.
- a user can press the title 3305 or another portion of the user interface to display performance information associated with more than the previous 30 days, less than the previous 30 days, a particular period of time (e.g., the past 4 Fridays), etc.
- each day of the week 3310 can be pressed or otherwise selected and more granular metrics can be shown such as what products were bought, what employees were working, the location of the mobile device on that day (which may be stored in the mobile device until a request for that information is made), etc.
- metrics such as average revenue by time of day can be displayed in response to selecting a day of the week 3310 .
- FIG. 34 shows a screenshot of an exemplary user interface 3400 that can be shown on mobile device 2705 .
- Exemplary user interface 3400 includes a title 3405 that indicates customer segments over the previous 30 days. Information associated with customer segments 3410 is also displayed.
- the mobile widget shown in exemplary user interface 3400 can display an amount of consuming entities that had previously entered into interactions with the provisioning entity associated with the mobile device (e.g., returning customers), consuming entities that have not entered into an interaction with a provisioning entity associated with the mobile device (e.g., new customers), and consuming entities that are local or non-local (e.g., consuming entities that are estimated to live within a particular distance from the provisioning entity associated with the mobile device). Local and non-local entities can be estimated based on various transactions entered into by the entity.
- Such information can be stored and processed at a system's one or more servers such as server 2725 .
- FIG. 35 is a block diagram representing a method of analyzing entity performance, consistent with the embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- the analyzing of the entity performance can be performed in full or in part by an entity analysis system (e.g., provisioning entity analysis system 210 , system 2700 , etc.). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIGS. 2 and 27 ).
- an entity analysis system e.g., provisioning entity analysis system 210 , system 2700 , etc.
- other systems e.g., such as those systems identified above in FIGS. 2 and 27 .
- step 3510 data is acquired by a data acquisition interface included in a mobile device.
- this data can include location data, information regarding other mobile devices near the mobile device, temperature, etc.
- the data acquisition interface can acquire many types of data, and then provide the data to a remote server that can then process the data acquired at the mobile device's data acquisition interface and provide performance analysis data based at least in part on the data acquired by the data acquisition interface included in the mobile device.
- a request for entity performance information is received from a mobile device.
- the request for entity performance information is received from a mobile device associated with a consuming entity, a provisioning entity, or both.
- the provisioning entity for which performance information is requested can be associated with the mobile device.
- the mobile device may have logged onto a web portal using credentials associated with the provisioning entity, or the mobile device may be owned and/or operated by the provisioning entity, an owner of the provisioning entity, or an employee of the provisioning entity.
- attributes associated with the mobile device such as location or temperature, may be determined and information provided to the device can be based on the attributes of the mobile device.
- a database comprising categories of information including interaction information associated with one or more entities is accessed.
- a database can be located in a server such as server 2725 , or another device such as those illustrated in FIGS. 2 and 27 .
- a data structure other than a database can be used to store data associated with provisioning and consuming entities.
- a database can be a Relational Database Management System or a column-oriented database. Further, in some embodiments both types of databases can be used to store information.
- a set of categories within the database is identified. These categories may be identified based on filter selections and acquired data. For example, categories can include locations of provisioning or consuming entities and amounts associated with particular transactions. Acquired data can include data acquired by a data acquisition interface included in a mobile device. The categories can be identified based on one or more filter selections as described above with reference to FIG. 6 . For example, a filter selection associated with provisioning entities in Texas may cause categories associated with provisioning or consuming entities in Texas to be accessed.
- step 3550 information of the identified categories is processed to analyze a performance of at least one of the entities in accordance with filter selections and acquired data. For example, in response to receiving a filter selection specifying entities that have a monthly revenue of over $10,000, database entries including amounts of money included in interactions may be analyzed. These interactions may be associated with an entity (e.g., an entity stored in a row of a database corresponding with an interaction), and the amounts of money included in the interactions may be averaged based at least in part on dates associated with the interactions. Based on the average amounts included in the interactions and the dates associated with the interactions, an amount of monthly revenue of an entity may be determined. In this example, entities with monthly revenues over $10,000 may be provided based on the filter selection.
- entity e.g., an entity stored in a row of a database corresponding with an interaction
- filter selections can be used to determine one or more cells (e.g., entries) within a database based on identified categories, which are identified based on the filter selections. These filter selection can be used to create what are commonly referred to as queries.
- One or more interactions corresponding to a row of a database comprising the one or more determined cells may be determined. Based on these interactions, one or more entities can be determined as corresponding to these cells (e.g., a store may be determined based on an interaction that occurred at the store, wherein a store identifier (ID) and interaction information is included in a row or column of a database).
- Performance information indicating the performance of one or more entities based on the transactions can be determined after the transactions are identified.
- filter selections can be used to extract performance information from a database.
- databases may receive queries (e.g., requests that can be based on filter sections).
- queries e.g., requests that can be based on filter sections.
- One or more modules sometimes referred to as a Query Processor may determine whether the query has permission to be ran against the database. If so, a query, which can be an SQL query, can be compiled into an internal query plan. After a query is compiled, a resulting query plan can be used by a plan operator to execute a query.
- a plan operator may implement relational query processing tasks including joins, selection, projection, aggregation, sorting, etc. Plan operators can make fetch calls to fetch data from a Transactional Storage Manager, which can manage all data access (e.g., read) and manipulation (e.g., create, update, and delete) calls.
- a database may include algorithms for organizing and accessing data in memory, including basic structures such as tables and indexes.
- a buffer management module may determine when and what data to transfer between storage devices. In some examples, before accessing data, locks are acquired from a lock manager to ensure correct execution when concurrent queries are made.
- a log manager can be accessed to determine whether a transaction can be completed successfully. After data is accessed, it can be used to compute results to provide to a requesting module or device. In some embodiments, this is performed by unwinding a stack (e.g., moving back through various activities performed prior to this point). Tuples can be generated from database data and placed in a buffer for a communications manager to send to a requesting module or device. In some embodiments, to retrieve large result sets a requesting module or device may make additional calls to fetch additional data incrementally from results returned from a query, such that multiple iterations are performed using a communications manager, query executor, and/or storage manager.
- one or more filter selections of the received request can comprise a selection to represent data associated with at least one of: cohorts; demographics; locations; time; and transactions.
- the one or more filter selections can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time.
- the one or more filter selections can comprise a selection to represent data associated with at least one of: a location information associated with the occurrence of an interaction; a location information associated with the consuming entity; a location information associated with the provisioning entity; demographic information representing at least one of: age, gender, income, and location associated with the consuming entity; an amount associated with an interaction; and a time associated with an interaction.
- Such filter selections can eliminate data that does not correspond with the filter selections, such that only interactions, entities, or the like are displayed to a user. For example, if a user selects filter selections corresponding with provisioning entities in California and transactions that include amounts over $500, then interactions that did not occur in California or involved an amount over $500 may not be displayed.
- filter selections may be combined with acquired data (e.g., by a mobile device).
- a filter selection could correspond to information about which stores that sell pizza within a radius of 500 meters, and acquired data may be the location of a mobile phone. In such an example, stores that sell pizza within 500 meters of a mobile phone may be shown.
- filter selections may include information associated with entity performance, such as an amount of revenue over a period of time, items sold by a particular merchant at a particular time, any known sales of discounts available at various provisioning entities, etc.
- a consuming entity may enter a filter selection, and use acquired data, such that a mobile device identifies sales or discounts on products located at provisioning entities within a particular distance of the mobile device.
- acquired data such as temperature combined with an amount of people in a store, or predicted to be in a store
- acquired data can be used to adjust attributes associated with a provisioning entity.
- a mobile phone may receive information associated with a temperature of a provisioning entity and access a data structure indicating an average amount of people in a provisioning entity at a particular time. Based on the particular time, amount of transactions in a provisioning entity, or number of devices in a provisioning entity, a temperature reading may be taken (e.g., by the mobile device or a thermometer communicatively coupled to the mobile device), and if the temperature is above a predefined threshold the temperature in the provisioning entity may be lowered.
- an action is performed based on performance information for at least one entity.
- a variety of actions are available to a system such as those depicted in FIGS. 2 and 27 . Many of these examples can be performed by a system at a server (e.g., a distributed computing system), one or more mobile devices, or at another device within a provisioning entity.
- some actions may be associated with sending information, such as: sending an alert (which can include or be an email), sending a summary of performance information to a mobile device, sending information indicating that a loyal customer is in a provisioning entity, sending information indicating that a particular amount of customers are in a provisioning entity, sending information indicating that an interaction including an amount of money or products above a predetermined threshold has taken place, sending information to a financial institution indicating that fraud may have occurred, sending information about an amount of revenue generated during a particular period of time, sending information to a server such as information associated with interactions, sending dynamic content within an email to be sent, etc.
- sending an alert which can include or be an email
- sending a summary of performance information to a mobile device sending information indicating that a loyal customer is in a provisioning entity
- sending information indicating that a particular amount of customers are in a provisioning entity sending information indicating that an interaction including an amount of money or products above a predetermined threshold has taken place
- sending information to a financial institution indicating that fraud may have occurred
- some actions may be associated with causing a mobile device to perform an action, such as: adjusting a temperature, lighting, or music within a space or a building, opening an application on a mobile device, causing an audible noise, causing a mobile device to determine its location, causing a mobile device to determine a temperature, causing a mobile device to communicate with a wireless device such as an Bluetooth or WiFi device, etc.
- an action such as: adjusting a temperature, lighting, or music within a space or a building, opening an application on a mobile device, causing an audible noise, causing a mobile device to determine its location, causing a mobile device to determine a temperature, causing a mobile device to communicate with a wireless device such as an Bluetooth or WiFi device, etc.
- Many of these examples can include sending information to a mobile device to trigger the mobile device to perform an action.
- FIG. 36 is a block diagram representing a method of analyzing entity performance, consistent with the embodiments of the present disclosure. While the flowchart discloses the following steps in a particular order, it will be appreciated that at least some of the steps can be moved, modified, or deleted where appropriate, consistent with the teachings of the present disclosure.
- the analyzing of the entity performance can be performed in full or in part by an entity analysis system (e.g., provisioning entity analysis system 210 , system 2700 , etc.). It is appreciated that some of these steps can be performed in full or in part by other systems (e.g., such as those systems identified above in FIGS. 2 and 27 ).
- an entity analysis system e.g., provisioning entity analysis system 210 , system 2700 , etc.
- other systems e.g., such as those systems identified above in FIGS. 2 and 27 .
- request information is sent to a server.
- data acquired by a mobile device or a data acquisition interface included in a mobile device can be sent as part of, or included with the request information.
- Request information can include filter selections, location information of a mobile device, location information used to determine a cohort, geographic information, demographic information, a request for a type of alert to be sent back upon a condition being met, etc.
- server can be used interchangeably with distributed computing devices, as described above.
- request information is processed at a server such that pertinent information is sent back to the device that requested the information (e.g., particular information associated with a provisioning entity associated with the device).
- step 3620 performance information associated with one or more entities based on the request information is received.
- This information can be received by a mobile device, which may have sent the request information to the server.
- a mobile device can be associated with a consuming entity, a provisioning entity, or both.
- Received performance information can include information indicating an amount of revenue of a cohort of provisioning entities over a period of time, and other types of performance information discussed above.
- an action is performed in response to the received performance information. For example, any of the actions discussed above with reference to step 3550 of FIG. 5 may be performed.
- the mobile device may automatically provide directions from the location of the mobile device to the location of the coffee shop with the highest revenue in the particular area.
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Systems and methods are provided for analyzing entity performance. In one implementation, a method is provided that includes recognizing an identifier associated with an entity and accessing a data structure comprising information associated with a plurality of interactions. The method also comprises identifying one or more interactions of the plurality of interactions based on the recognized identifier. The method further comprises processing the information of the identified interactions to analyze a performance of the entity and providing the processed information to display the performance of the entity on a user interface.
Description
This application is a continuation-in-part of U.S. patent application Ser. No. 14/306,138, filed on Jun. 16, 2014, which claims priority to U.S. Provisional Application No. 61/916,795, filed on Dec. 16, 2013; is a continuation-in-part of U.S. patent application Ser. No. 14/306,147, filed on Jun. 16, 2014, which claims priority to U.S. Provisional Application No. 61/916,796, filed on Dec. 16, 2013; and is a continuation-in-part of U.S. patent application Ser. No. 14/306,154, filed on Jun. 16, 2014, which claims priority to U.S. Provisional Application No. 61/916,797, filed on Dec. 16, 2013. Each of the above applications are incorporated herein by reference in their entireties.
The amount of information being processed and stored is rapidly increasing as technology advances present an ever-increasing ability to generate and store data. This data is commonly stored in computer-based systems in structured data stores. For example, one common type of data store is a so-called “flat” file such as a spreadsheet, plain-text document, or XML document. Another common type of data store is a relational database comprising one or more tables. Other examples of data stores that comprise structured data include, without limitation, files systems, object collections, record collections, arrays, hierarchical trees, linked lists, stacks, and combinations thereof.
Numerous organizations, including industry, retail, and government entities, recognize that important information and decisions can be drawn if massive data sets can be analyzed to identify patterns of behavior. Collecting and classifying large sets of data in an appropriate manner allows these entities to more quickly and efficiently identify these patterns, thereby allowing them to make more informed decisions.
Reference will now be made to the accompanying drawings which illustrate exemplary embodiments of the present disclosure and in which:
This application expressly incorporates herein by reference the entirety of U.S. Non-Provisional patent application Ser. No. 14/045,720, titled “Systems and Methods for Analyzing Performance of an Entity”, filed on Oct. 3, 2013.
Reference will now be made in detail to the embodiments, the examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. The terms interactions and transactions are intended to covey the same meaning and can be used interchangeably throughout this disclosure.
In some embodiments, each property type is declared to be representative of one or more object types. A property type is representative of an object type when the property type is intuitively associated with the object type. Alternatively, each property type has one or more components and a base type. In some embodiments, a property type can comprise a string, a date, a number, or a composite type consisting of two or more string, date, or number elements. Thus, property types are extensible and can represent complex data structures. Further, a parser definition can reference a component of a complex property type as a unit or token.
An example of a property having multiple components is an Address property having a City component and a State component. An example of raw input data is “Los Angeles, Calif.” An example parser definition specifies an association of imported input data to object property components as follows: {CITY}, {STATE}→Address:State, Address:City. In some embodiments, the association {CITY}, {STATE} is defined in a parser definition using regular expression symbology. The association {CITY}, {STATE} indicates that a city string followed by a state string, and separated by a comma, comprises valid input data for a property of type Address. In contrast, input data of “Los Angeles Calif.” would not be valid for the specified parser definition, but a user could create a second parser definition that does match input data of “Los Angeles Calif.” The definition Address:City, Address:State specifies that matching input data values map to components named “City” and “State” of the Address property. As a result, parsing the input data using the parser definition results in assigning the value “Los Angeles” to the Address:City component of the Address property, and the value “CA” to the Address:State component of the Address property.
According to some embodiments, schema map 140 can define how various elements of schemas 135 for data sources 130 map to various elements of ontology 150. Definition component 110 receives, calculates, extracts, or otherwise identifies schemas 135 for data sources 130. Schemas 135 define the structure of data sources 130; for example, the names and other characteristics of tables, files, columns, fields, properties, and so forth. Definition component 110 furthermore optionally identifies sample data 136 from data sources 130. Definition component 110 can further identify object type, relationship, and property definitions from ontology 150, if any already exist. Definition component 110 can further identify pre-existing mappings from schema map 140, if such mappings exist.
Based on the identified information, definition component 110 can generate a graphical user interface 115. Graphical user interface 115 can be presented to users of a computing device via any suitable output mechanism (e.g., a display screen, an image projection, etc.), and can further accept input from users of the computing device via any suitable input mechanism (e.g., a keyboard, a mouse, a touch screen interface, etc.). Graphical user interface 115 features a visual workspace that visually depicts representations of the elements of ontology 150 for which mappings are defined in schema map 140.
In some embodiments, transformation component 120 can be invoked after schema map 140 and ontology 150 have been defined or redefined. Transformation component 120 identifies schema map 140 and ontology 150. Transformation component 120 further reads data sources 130 and identifies schemas 135 for data sources 130. For each element of ontology 150 described in schema map 140, transformation component 120 iterates through some or all of the data items of data sources 130, generating elements of object model 160 in the manner specified by schema map 140. In some embodiments, transformation component 120 can store a representation of each generated element of object model 160 in a database 170. In some embodiments, transformation component 120 is further configured to synchronize changes in object model 160 back to data sources 130.
According to some embodiments, the functionalities, techniques, and components described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices can be hard-wired to perform the techniques, or can include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or can include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices can also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices can be desktop computer systems, portable computer systems, handheld devices, networking devices, or any other device that incorporates hard-wired and/or program logic to implement the techniques.
Throughout this disclosure, reference will be made to an entity such as, for example, a provisioning entity and a consuming entity. It will be understood that a provisioning entity can include, for example, a merchant, a retail provisioning entity or the like, and a consuming entity can include, for example, a consumer user buying products or services from a provisioning entity. It will be understood that a consuming entity can represent either individual persons or can represent a group of persons (e.g., a group of persons living under one roof as part of a family). In some embodiments, a consuming entity can include a loyal customer (e.g., a user that has spent a particular amount of money or time at one or more provisioning entities, a user that has visited a provisioning entity on a number of occasions that is above a threshold number, or a user designated as a loyal customer by other means). In some embodiments, a consuming entity can be a credit card number of an individual or a credit card number for an entire family sharing one credit card. It will also be understood that a provisioning entity can represent either the entity itself or individual persons involved with the entity.
In embodiments described herein, data fusion system 100 can provide a provisioning entity, such as a retail provisioning entity, to analyze information to identify behaviors to allow that provisioning entity to make more informed decisions. This information may be referred to as performance information. Such information can allow retail entities, such as a retail provisioning entity, to determine where to place their retail locations. Provisioning entities having more than one location (e.g., a merchant with a chain store or a franchise model) typically evaluate the performance of their locations and may adjust their business models or work flows when the locations under-perform. Typically, provisioning entities evaluate the performance of their locations based on period-to-period metrics. For example, a provisioning entity can evaluate a location's performance by comparing the current month's sales to the previous month's sales. In addition, provisioning entitles can evaluate each of its locations' performance using comparative analysis. For example, a provisioning entity might compare the sales at an area location with the sales at a second location. As provisioning entities generally measure the performance of its locations based on their own interaction data (e.g., the entity's sales across some or all of its locations), current methods of measuring performance do not consider sales made by competitors or demographic features of the areas of the provisioning entity's locations.
Since current performance evaluation methods do not consider the sales of competitors or the demographic features of the region of the provisioning entity location, measured performance may not represent the true performance of a provisioning entity. For instance, although a provisioning entity location in a low consumer spend capacity area might have less sales than a provisioning entity location in a high consumer spend capacity area, it may be performing better than what could be expected for that area in light of, for example, the low number of consumers residing in the area or the low income of the area. A performance of a provisioning entity at an area location can be adversely impacted by the close proximity of a second location of the provisioning entity, but the provisioning entity at the area location can be performing better than expected given the competition from the provisioning entity's second location. Conversely, while a provisioning entity location in a dense, high-income area might have the highest sales of all provisioning entity locations, it can still be under-performing because, for instance, consumer spend capacity is high and the provisioning entity location could generate more sales.
Consistent with embodiments of the present disclosure, the performance of provisioning entities can be analyzed based on how the provisioning entity is expected to perform given the location of the provisioning entity. For a given provisioning entity location, the disclosed embodiments may be implemented to consider, for example, consumer demographic features of the provisioning entity location's area and the proximity of competitors to the provisioning entity location (including the proximity of the provisioning entity's other close-by locations). In some embodiments, the provisioning entity can be a merchant. For purposes of illustration, exemplary embodiments for analyzing entity performance are described herein with reference to “merchants.” The exemplary embodiments and techniques described herein, however, may be applied to other types of entities (e.g., service providers, governmental agencies, etc.) within the spirit and scope of this disclosure.
One or more components of system 200 can be computing systems configured to analyze provisioning entity performance. As further described herein, components of system 200 can include one or more computing devices (e.g., computer(s), server(s), etc.), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.), and other known computing components. In some embodiments, the one or more computing devices are configured to execute software or a set of programmable instructions stored on one or more memory devices to perform one or more operations, consistent with the disclosed embodiments. Components of system 200 can be configured to communicate with one or more other components of system 200, including provisioning entity analysis system 210, one or more financial services systems 220, one or more geographic data systems 230, one or more provisioning entity management systems 240, and one or more consumer data systems 250. In certain aspects, users can operate one or more components of system 200. The one or more users can be employees of, or associated with, the entity corresponding to the respective component(s) (e.g., someone authorized to use the underlying computing systems or otherwise act on behalf of the entity).
Provisioning entity analysis system 210 can be a computing system configured to analyze provisioning entity performance. For example, provisioning entity analysis system 210 can be a computer system configured to execute software or a set of programmable instructions that collect or receive financial interaction data, consumer data, and provisioning entity data and process it to determine the actual transaction amount of each transaction associated with the provisioning entity. Provisioning entity analysis system 210 can be configured, in some embodiments, to utilize, include, or be a data fusion system 100 (see, e.g., FIG. 1 ) to transform data from various data sources (such as, financial services systems 220, geographic data systems 230, provisioning entity management systems 240, and consuming entity data systems 250) for processing. In some embodiments, provisioning entity analysis system 210 can be implemented using a computer system 300, as shown in FIG. 3 and described below.
Provisioning entity analysis system 210 can include one or more computing devices (e.g., server(s)), memory storing data and/or software instructions (e.g., database(s), memory devices, etc.) and other known computing components. According to some embodiments, provisioning entity analysis system 210 can include one or more networked computers that execute processing in parallel or use a distributed computing architecture. Provisioning entity analysis system 210 can be configured to communicate with one or more components of system 200, and it can be configured to provide analysis of provisioning entities via an interface(s) accessible by users over a network (e.g., the Internet). For example, provisioning entity analysis system 210 can include a web server that hosts a web page accessible through network 260 by provisioning entity management systems 240. In some embodiments, provisioning entity analysis system 210 can include an application server configured to provide data to one or more client applications executing on computing systems connected to provisioning entity analysis system 210 via network 260.
In some embodiments, provisioning entity analysis system 210 can be configured to determine the actual sales for a provisioning entity or specific provisioning entity location by processing and analyzing data collected from one or more components of system 200. For example, provisioning entity analysis system 210 can determine that the Big Box Merchant store located at 123 Main St, in Burbank, Calif. is actually generating $60,000 of sales per month. Provisioning entity analysis system 210 can provide an analysis of a provisioning entity or provisioning entity location's performance based on a target for sales and the actual sales for the provisioning entity or provisioning entity location. For example, for the Big Box Merchant store located at 123 Main St., Burbank, Calif., the provisioning entity analysis system 210 can provide an analysis that the store is performing above expectations. Exemplary processes that can be used by provisioning entity analysis system 210 are described below with respect to FIGS. 6, 10A, 11, 13, 14, and 15 .
Provisioning entity analysis system 210 can, in some embodiments, generate a user interface communicating data related to one or more provisioning entities or provisioning entity locations. For example, in some embodiments, provisioning entity analysis system 210 includes a web server that generates HTML code, or scripts capable of generating HTML code, that can be displayed in a web browser executing on computing device. Provisioning entity analysis system 210 can also execute an application server that provides user interface objects to a client application executing on a computing device, or it can provide data that is capable of being displayed in a user interface in a client application executing on a computing device. In some embodiments, provisioning entity analysis system 210 can generate user interfaces that can be displayed within another user interface. For example, provisioning entity analysis system 210 can generate a user interface for display within a parent user interface that is part of a word processing application, a presentation development application, a web browser, or an illustration application, among others. In some embodiments, generating a user interface can include generating the code that when executed displays information (e.g., HTML) on the user interface. Alternatively, generating interface can include providing commands and/or data to a set of instructions that when executed render a user interface capable of being shown on a display connected to a computing device. In some embodiments, the user interface can include a map, indications of the provisioning entity locations on a map, and indications of the sales or interactions associated with the provisioning entity locations. Examples of some (although not all) user interfaces that can be generated by provisioning entity analysis system 210 are described below with respect to FIGS. 7-9, 10B and 12 .
Referring again to FIG. 2 , financial services system 220 can be a computing system associated with a financial service provider, such as a bank, credit card issuer, credit bureau, credit agency, or other entity that generates, provides, manages, and/or maintains financial service accounts for one or more users. Financial services system 220 can generate, maintain, store, provide, and/or process financial data associated with one or more financial service accounts. Financial data can include, for example, financial service account data, such as financial service account identification data, account balance, available credit, existing fees, reward points, user profile information, and financial service account interaction data, such as interaction dates, interaction amounts, interaction types, and location of interaction. In some embodiments, each interaction of financial data can include several categories of information associated with the interaction. For example, each interaction can include categories such as number category; consuming entity identification category; consuming entity location category; provisioning entity identification category; provisioning entity location category; type of provisioning entity category; interaction amount category; and time of interaction category, as described in FIG. 4 . It will be appreciated that financial data can comprise either additional or fewer categories than the exemplary categories listed above. Financial services system 220 can include infrastructure and components that are configured to generate and/or provide financial service accounts such as credit card accounts, checking accounts, savings account, debit card accounts, loyalty or reward programs, lines of credit, and the like.
According to some embodiments, geographic data systems 230 can also provide map data to provisioning entity analysis system 210 and/or other components of system 200. The map data can include, for example, satellite or overhead images of a geographic region or a graphic representing a geographic region. The map data can also include points of interest, such as landmarks, malls, shopping centers, schools, or popular restaurants or retailers, for example.
Provisioning entity management systems 240 can be one or more computing devices configured to perform one or more operations consistent with disclosed embodiments. For example, provisioning entity management systems 240 can be a desktop computer, a laptop, a server, a mobile device (e.g., tablet, smart phone, etc.), or any other type of computing device configured to request provisioning entity analysis from provisioning entity analysis system 210. According to some embodiments, provisioning entity management systems 240 can comprise a network-enabled computing device operably connected to one or more other presentation devices, which can themselves constitute a computing system. For example, provisioning entity management systems 240 can be connected to a mobile device, telephone, laptop, tablet, or other computing device.
Provisioning entity management systems 240 can include one or more processors configured to execute software instructions stored in memory. Provisioning entity management systems 240 can include software or a set of programmable instructions that when executed by a processor performs known Internet-related communication and content presentation processes. For example, provisioning entity management systems 240 can execute software or a set of instructions that generates and displays interfaces and/or content on a presentation device included in, or connected to, provisioning entity management systems 240. In some embodiments, provisioning entity management systems 240 can be a mobile device that executes mobile device applications and/or mobile device communication software that allows provisioning entity management systems 240 to communicate with components of system 200 over network 260. The disclosed embodiments are not limited to any particular configuration of provisioning entity management systems 240.
Provisioning entity management systems 240 can be one or more computing systems associated with a provisioning entity that provides products (e.g., goods and/or services), such as a restaurant (e.g., Outback Steakhouse®, Burger King®, etc.), retailer (e.g., Amazon.com®, Target®, etc.), grocery store, mall, shopping center, service provider (e.g., utility company, insurance company, financial service provider, automobile repair services, movie theater, etc.), non-profit organization (ACLU™, AARP®, etc.) or any other type of entity that provides goods, services, and/or information that consuming entities (i.e., end-users or other business entities) can purchase, consume, use, etc. For ease of discussion, the exemplary embodiments presented herein relate to purchase interactions involving goods from retail provisioning entity systems. Provisioning entity management systems 240, however, is not limited to systems associated with retail provisioning entities that conduct business in any particular industry or field.
Provisioning entity management systems 240 can be associated with computer systems installed and used at a brick and mortar provisioning entity locations where a consumer can physically visit and purchase goods and services. Such locations can include computing devices that perform financial service interactions with consumers (e.g., Point of Sale (POS) terminal(s), kiosks, etc.). Provisioning entity management systems 240 can also include back- and/or front-end computing components that store data and execute software or a set of instructions to perform operations consistent with disclosed embodiments, such as computers that are operated by employees of the provisioning entity (e.g., back office systems, etc.). Provisioning entity management systems 240 can also be associated with a provisioning entity that provides goods and/or service via known online or e-commerce types of solutions. For example, such a provisioning entity can sell products via a website using known online or e-commerce systems and solutions to market, sell, and process online interactions. Provisioning entity management systems 240 can include one or more servers that are configured to execute stored software or a set of instructions to perform operations associated with a provisioning entity, including one or more processes associated with processing purchase interactions, generating interaction data, generating product data (e.g., SKU data) relating to purchase interactions, for example.
Consuming entity data systems 250 can include one or more computing devices configured to provide demographic data regarding consumers. For example, consuming entity data systems 250 can provide information regarding the name, address, gender, income level, age, email address, or other information about consumers. Consuming entity data systems 250 can include public computing systems such as computing systems affiliated with the U.S. Bureau of the Census, the U.S. Bureau of Labor Statistics, or FedStats, or it can include private computing systems such as computing systems affiliated with financial institutions, credit bureaus, social media sites, marketing services, or some other organization that collects and provides demographic data.
As noted above, provisioning entity analysis system 210 can include a data fusion system (e.g., data fusion system 100) for organizing data received from one or more of the components of system 200.
As illustrated in FIG. 3 , computer system 300 includes a bus 302 or other communication mechanism for communicating information, and one or more hardware processors 304 (denoted as processor 304 for purposes of simplicity) coupled with bus 302 for processing information. Hardware processor 304 can be, for example, one or more general-purpose microprocessors or it can be a reduced instruction set of one or more microprocessors.
In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module can be compiled and linked into an executable program, installed in a dynamic link library, or written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules can be callable from other modules or from themselves, and/or can be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices can be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that requires installation, decompression, or decryption prior to execution). Such software code can be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions can be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules can be comprised of connected logic units, such as gates and flip-flops, and/or can be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but can be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that can be combined with other modules or divided into sub-modules despite their physical organization or storage.
The term “non-transitory media” as used herein refers to any non-transitory media storing data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media can comprise non-volatile media and/or volatile media. Non-volatile media can include, for example, optical or magnetic disks, such as storage device 310. Volatile media can include dynamic memory, such as main memory 306. Common forms of non-transitory media can include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
Non-transitory media is distinct from, but can be used in conjunction with, transmission media. Transmission media can participate in transferring information between storage media. For example, transmission media can include coaxial cables, copper wire and fiber optics, including the wires that comprise bus 302. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
Various forms of media can be involved in carrying one or more sequences of one or more instructions to processor 304 for execution. For example, the instructions can initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 300 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 302. Bus 302 carries the data to main memory 306, from which processor 304 retrieves and executes the instructions. The instructions received by main memory 306 can optionally be stored on storage device 310 either before or after execution by processor 304.
Network link 320 can typically provide data communication through one or more networks to other data devices. For example, network link 320 can provide a connection through local network 322 to a host computer 324 or to data equipment operated by an Internet Service Provider (ISP) 326. ISP 326 in turn can provide data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 328. Local network 322 and Internet 328 can both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 320 and through communication interface 318, which carry the digital data to and from computer system 300, can be example forms of transmission media.
Alternatively, data structure 400 can be a column-oriented database management system that stores data as sections of columns of data rather than rows of data. This column-oriented DBMS can have advantages, for example, for data warehouses, customer relationship management systems, and library card catalogs, and other ad hoc inquiry systems where aggregates are computed over large numbers of similar data items. A column-oriented DBMS can be more efficient than an RDBMS when an aggregate needs to be computed over many rows but only for a notably smaller subset of all columns of data, because reading that smaller subset of data can be faster than reading all data. A column-oriented DBMS can be designed to efficiently return data for an entire column, in as few operations as possible. A column-oriented DBMS can store data by serializing each column of data of data structure 400. For example, in a column-oriented DBMS, data associated with a category (e.g., consuming entity identification category 420) can be stored serially such that data associated with that category for all interactions of data structure 400 can be accessed in one operation.
As shown in FIG. 4 , data structure 400 can comprise data associated with a very large number of interactions associated with multiple entities. For example, data structure 400 can include 50 billion interactions. In some embodiments, interactions associated with multiple entities can be referred to as transactions between multiple entities. Where appropriate, the terms interactions and transactions are intended to convey the same meaning and can be used interchangeably throughout this disclosure. While each interaction of data structure 400 is depicted as a separate row in FIG. 4 , it will be understood that each such interaction can be represented by a column or any other known technique in the art. Each interaction data can include several categories of information. For example, the several categories can include, number category 410; consuming entity identification category 420; consuming entity location category 430; provisioning entity identification category 440; provisioning entity location category 450; type of provisioning entity category 460; interaction amount category 470; and time of interaction category 480. It will be understood that FIG. 4 is merely exemplary and that data structure 400 can include even more categories of information associated with an interaction.
Consuming entity identification category 420 can identify a consuming entity. In some embodiments, consuming entity identification category 420 can represent a name (e.g., User 1 for interaction 401; User N for interaction 499B) of the consuming entity. Alternatively, consuming entity identification category 420 can represent a code uniquely identifying the consuming entity (e.g., CE002 for interaction 402). For example, the identifiers under the consuming entity identification category 420 can be a credit card number that can identify a person or a family, a social security number that can identify a person, a phone number or a MAC address associated with a cell phone of a user or family, or any other identifier.
Consuming entity location category 430 can represent a location information of the consuming entity. In some embodiments, consuming entity location category 430 can represent the location information by providing at least one of: a state of residence (e.g., state sub-category 432; California for element 401; unknown for interaction 405) of the consuming entity; a city of residence (e.g., city sub-category 434; Palo Alto for interaction 401; unknown for interaction 405) of the consuming entity; a zip code of residence (e.g., zip code sub-category 436; 94304 for interaction 401; unknown for interaction 405) of the consuming entity; and a street address of residence (e.g., street address sub-category 438; 123 Main St. for interaction 401; unknown for interaction 405) of the consuming entity.
Provisioning entity identification category 440 can identify a provisioning entity (e.g., a merchant or a coffee shop). In some embodiments, provisioning entity identification category 440 can represent a name of the provisioning entity (e.g., Merchant 2 for interaction 402). Alternatively, provisioning entity identification category 440 can represent a code uniquely identifying the provisioning entity (e.g., PE001 for interaction 401). Provisioning entity location category 450 can represent a location information of the provisioning entity. In some embodiments, provisioning entity location category 450 can represent the location information by providing at least one of: a state where the provisioning entity is located (e.g., state sub-category 452; California for interaction 401; unknown for interaction 402); a city where the provisioning entity is located (e.g., city sub-category 454; Palo Alto for interaction 401; unknown for interaction 402); a zip code where the provisioning entity is located (e.g., zip code sub-category 456; 94304 for interaction 401; unknown for interaction 402); and a street address where the provisioning entity is located (e.g., street address sub-category 458; 234 University Ave. for interaction 401; unknown for interaction 402).
Type of provisioning entity category 460 can identify a type of the provisioning entity involved in each interaction. In some embodiments, type of provisioning entity category 460 of the provisioning entity can be identified by a category name customarily used in the industry (e.g., Gas Station for interaction 401) or by an identification code that can identify a type of the provisioning entity (e.g., TPE123 for interaction 403). Alternatively, type of the provisioning entity category 460 can include a merchant category code (“MCC”) used by credit card companies to identify any business that accepts one of their credit cards as a form of payment. For example, MCC can be a four-digit number assigned to a business by credit card companies (e.g., American Express™, MasterCard™, VISA™) when the business first starts accepting one of their credit cards as a form of payment.
In some embodiments, type of provisioning entity category 460 can further include a sub-category (not shown in FIG. 4 ), for example, type of provisioning entity sub-category 461 that can further identify a particular sub-category of provisioning entity. For example, an interaction can comprise a type of provisioning entity category 460 as a hotel and type of provisioning entity sub-category 461 as either a bed and breakfast hotel or a transit hotel. It will be understood that the above-described examples for type of provisioning entity category 460 and type of provisioning entity sub-category 461 are non-limiting and that data structure 400 can include other kinds of such categories and sub-categories associated with an interaction.
In some embodiments, each interaction data can include categories of information including (not shown in FIG. 4 ), for example, consuming entity loyalty membership category, consuming entity credit card type category, consuming entity age category, consuming entity gender category, consuming entity income category, consuming entity with children category, product information category, and service information category.
Consuming entity loyalty membership category can represent whether the consuming entity is part of a loyalty membership program associated with a provisioning entity. For example, consuming entity loyalty membership category can represent that the consuming entity is a member of one of Costco™ membership programs including Goldstar Member™, Executive Member™, and Business Member™. Consuming entity credit card type category can represent the type of credit card used by the consuming entity for a particular interaction. For example, consuming entity credit card type category can represent that the credit card used by the consuming entity for that particular interaction can be one either American Express™, MasterCard™, VISA™, or Discover™ credit cards. In some embodiments, consuming entity credit card type category can represent a kind of MasterCard™ (e.g., Gold MasterCard™ or Platinum MasterCard™) used for a particular interaction.
In some embodiments, consuming entity demographic information can be stored in each interaction. For example, consuming entity demographic information can include at least one of: consuming entity age category, consuming entity gender category, consuming entity income category, and consuming entity with children category. In some embodiments, consuming entity age category can represent age information associated with the consuming entity; consuming entity gender category can represent gender information (e.g., Male or Female) associated with the consuming entity; consuming entity income category can represent income information (e.g., greater than $100,000 per year) associated with the consuming entity; and consuming entity with children category can represent whether the consuming entity has any children under 18 or not. For example, if the consuming entity has children under 18, a positive indication can be stored and if the consuming entity does not has children under 18, a negative indication can be stored. In some embodiments, consuming entity with children category can store information representing a number of children associated with the consuming entity.
Product information category can represent information associated with a product that is involved in an interaction. For example, product information category can represent that the product involved in the interaction is a particular type of product based on a stock keeping unit (“SKU”) of the product. In some embodiments, the product's SKU can be unique to a particular provisioning entity involved in that particular interaction. Alternatively, product information category can represent the product involved in the interaction with a at least one of a Universal Product Code, International Article Number, Global Trade Item Number, and Australian Product Number. Service information category can represent information associated with a service that is involved in an interaction. For example, service information category can represent that the service involved in the interaction is a particular type of service based on an SKU of the service. It will be appreciated that an SKU can uniquely represent either a product or a service. Some examples of services can be warranties, delivery fees, installation fees, and licenses.
Access request can reach one of the provisioning entities after an authorization, authentication, and accounting process is complete. Access request can traverse to one of the provisioning entities through network 530. Network 530 can be similar to network 520, as described above. After the authorized and authenticated access request reaches one of the provisioning entities, the consuming entity is allowed to access the provisioning entities. In this exemplary embodiment, user of cell phone 505 can access either Website 1 542, Website 2 544, or Website 3 546, depending on details of the access request. For example, provisioning entities can be one of the websites Google™, Facebook™, and Twitter™.
After a consuming entity (e.g., user of cell phone 505 or cell phone 505) accesses one of the provisioning entities, server 525 can store information regarding the user and/or cell phone accessing these provisioning entities. Each access by a user of a website can be stored as an interaction in a data structure in Server 525. Server 525 can store such information in a data structure (e.g., data structure 400) comprising several categories of information including, but not limited to, an interaction number; consuming entity identification; consuming entity location; provisioning entity identification; provisioning entity location; type of provisioning entity; duration of interaction; and time of interaction. The data structure can be analyzed to analyze a performance of provisioning entities, for example, to estimate a number of unique consuming entities (e.g., users) per month, average amount of time a consuming entity spends on their website, time of the day where consuming entity traffic is highest or lowest, etc. It will be understood that any number of useful insights can be drawn by analyzing the data structure comprising interactions associated with consuming entities and provisioning entities. While FIG. 5 , depicts a use case scenario of a cell phone user (exemplary consuming entity) accessing a website (exemplary provisioning entity), it will be understood that a process of analyzing interaction between a consuming entity and a provisioning entity can be extended to any number of scenarios, including, financial transactions between consumers and banks; credit card transactions between a consumer and a provisioning entity like a grocery store, movie theatre, gas station, mall, etc.
In step 610, a request having one or more filter selections can be received at a provisioning entity analysis system implementing a process for analyzing a performance of one or more entities of multiple entities. In some embodiments, the request can be received from a provisioning entity (e.g., a merchant like Lowes™) which can be interested in analyzing its performance with regards the one or more filter selections. In some embodiments, one or more filter selections of the received request can comprise a selection to represent data associated with at least one of: cohorts; demographics; geographic; time; and transactions. Alternatively, the one or more filter selections can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time. In some embodiments, the one or more filter selections can comprise a selection to represent data associated with at least one of: a location information associated with the occurrence of an interaction; a location information associated with the consuming entity; a location information associated with the provisioning entity; demographic information representing at least one of: age, gender, income, and location associated with the consuming entity; an amount associated with an interaction; and a time associated with an interaction. An exemplary screenshot of a user interface with exemplary filter selections is shown in FIGS. 7 and 8 , described below.
In some embodiments, the process for analyzing a performance of one or more entities of multiple entities can be implemented without having to receive one or more filter selections. Such a process can be implemented, for example, by having the provisioning entity analysis system (e.g., provisioning entity analysis system 210) comprise one or more predetermined filter selections. These exemplary one or more predetermined filter selections can include the same selections as the one or more filters (e.g., add new filter 705 shown in FIG. 7 ) that can be selected by a user as described above. For example, the one or more predetermined filter selections can comprise at least one of: cohorts; demographics; geographic; time; and transactions. In another exemplary embodiment, the one or more predetermined filter selections can comprise at least one of: charts; histograms; maps; numbers; and time.
Next, in step 620, a data structure (e.g., data structure 400) comprising several categories of information showing interactions associated with multiple entities can be accessed. The data structure can represent information associated with a very large number of interactions. In some embodiments, the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions). The data structure can be similar to the exemplary data structure 400 described in FIG. 4 above. In exemplary embodiments comprising one or more predetermined filter selections, accessing step 620 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
Next, in step 630, some categories of the several categories within the data structure can be identified based on the one or more filter selections of the received request. The identified categories, for example, can be one or more of the several categories of the data structure (e.g., data structure 400). In some embodiments, there can be a mapping between the one or more filter selections and the several categories. For example, a filter selection for customer zip code can be mapped to consuming entity location category 430 and further to zip code sub-category 436. Another exemplary mapping can exist between a filter selection for gender and a category or a sub-category associated with a gender of consuming entity (not shown in FIG. 4 ). It will be appreciated that the exemplary mapping techniques described above are merely exemplary and other mapping techniques can be defined within the scope of this disclosure. In some embodiments, one or more filter selections can include “demographics and customer zip code” selections, as depicted in FIG. 8 . When the provisioning entity (e.g., a home improvement store such as Lowes™) is interested in analyzing its performance at a particular location with respect to consuming entities (e.g., a consumer buying home improvement products at Lowes™) that buy products at the location, the provisioning entity can select one or more filters such as demographics 820 and further zip code 824 (associated with a zip code representing location of consuming entity).
Based on the one or more filter selections, the provisioning entity analysis system (e.g., provisioning entity analysis system 210) can identify some categories of the data structure that are relevant for analyzing the performance of the one or more entities (e.g., provisioning entity) regarding customer demographics including a location (e.g., zip code) of the consuming entities. In this example, the provisioning entity analysis system can identify categories associated with a number of interaction (e.g., number category 410), an identity of consuming entities (e.g., consuming entity identification category 420), and a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436). In some embodiments, consuming entity location category 430 can be identified along with one or more categories of state sub-category 432, city sub-category 434, zip code sub-category 436, and street address sub-category 438. In exemplary embodiments comprising one or more predetermined filter selections, identifying step 630 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
Next, in step 640, information associated with the identified categories can be processed to analyze a performance of one or more entities of the multiple entities in accordance with the one or more filter selections. In some embodiments, a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Lowes™). One or more entities of the multiple entities can comprise one or more groups of entities of the multiple entities. For example, a group of entities can be defined such that the group of entities can have similar characteristics such as all grocery stores within a given zip code or all Safeway™ locations within a city (e.g., San Jose, Calif.). In some embodiments, a group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code. Processing the identified categories can comprise creating a new data structure that is different from the data structure of step 620, and comprising only the identified categories of step 630 or one or more subsets of those categories. Alternatively, processing the identified categories can be performed on the existing data structure of step 620 (e.g., data structure 400).
By way of example, when the one or more filter selections is “demographics and customer zip code,” the system can process information that is associated with identified categories based on the filter selections such as a number of interaction (e.g., number category 410), an identity of consuming entities (e.g., consuming entity identification category 420), a location of consuming entities (e.g., consuming entity location category 430 including at least zip code sub-category 436), and categories associated with consuming entity demographics including consuming entity age category, consuming entity gender category, and consuming entity income category. In some embodiments, data associated with identified categories can be stored in either a row-oriented database or a column-oriented database, as described above with respect to data structure 400. Processing information can involve performing statistical analysis on data stored in the identified categories. Performing statistical analysis, for example, can include various computations of data associated with identified categories. For example, if an identified category is interaction amount category 470, processing information can include performing an aggregate of the interaction amount to compute a total amount for all interactions associated with the provisioning entity. It will be understood that processing information can include other examples of performing statistical analysis, including but not limited to, computing an average, mean, maximum, minimum, or standard deviation for a series of data.
In some embodiments, processing the information of the identified categories can result in a multitude of useful insights regarding the behavior of consuming entities. Some of such insights, for example, can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
In some embodiments, processing the information of the identified categories can result in a multitude of useful insights regarding the performance of provisioning entities. Some of such insights, for example, can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure. In exemplary embodiments comprising one or more predetermined filter selections, processing step 640 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user.
In some embodiments, step 640 can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 640. Alternatively, step 640 can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 640. For example, processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
Next, in step 650, the processed information can be provided for displaying the performance of the one or more entities (e.g., provisioning entity) on a user interface. In some embodiments, the user interface can comprise a representation of a geographic region. The user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region. Alternatively, the user interface can include a representation of the performance of the one or more entities over geographic or sub-geographic regions associated with a location of the one or more entities. For example, geographic or sub-geographic regions can be associated with a location of either a consuming entity or a provisioning entity.
In exemplary embodiments comprising one or more predetermined filter selections, providing step 650 can be implemented in the same fashion as that of the exemplary embodiments where one or more filter selections can be received from a user. Exemplary user interfaces are depicted in FIGS. 7-9 that illustrate a performance of a provisioning entity based on one or more filter selections. As shown in FIGS. 7-9 , user interface can either be a graph-based, map-based, or any other related interface.
In some embodiments, after a user enters information into the add new filter (e.g., add new filter 705), the provisioning entity analysis system receives a message to regenerate or modify the user interface. For example, if a user entered Maps 730 and then Map-Consuming Entity Source 732 into the add new filter box, the provisioning entity analysis system could receive a message indicating that a user interface should display a map with a location of each consuming entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 760 showing a location information for each consuming entity. For example, map 760 can display consuming entity location as shaded and unshaded rectangles in geo-hash regions. In some embodiments, a region of the map can be selected by a user by using an input device such as mouse, key board, or touch pad.
In some embodiments, after a user selects Maps 730 and then Map-Provisioning Entity Revenue 734 into the add new filter box, the provisioning entity analysis system could receive a message indicating that a user interface should display a map with revenue information of provisioning entity for the given region of the map (e.g., San Francisco Bay Area), and it can generate a user interface with map 770 showing revenue information of provisioning entity over the given region of map. For example, map 770 displays provisioning entity revenue as shaded and unshaded rectangles in geo-hash regions. It will be understood that user interface 700 can further comprise representations associated with other filter (and sub-filter) selections, including but not limited to, charts 710, histograms 720, numbers 740, and time 750.
In some embodiments, a user can select one or more filters (e.g., add new filter 905) to display an hourly spending by consuming entities. In such exemplary scenarios, provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate a user interface (e.g., heat map 940) that can represent consuming entity spending on an hourly basis at a given provisioning entity. Alternatively, the consuming entity spending on an hourly basis can be displayed as a heat-map representation where different shades of gray-scale can be used to show different amount of spending on an hourly basis. In some embodiments, a color coded heat-map can be used where different colors can be used to show different amount of spending on an hourly basis. While FIG. 9 depicts a few representations of entity performance, it will be understood that those representations are merely exemplary and other representations are possible within the spirit and scope of this disclosure.
In step 1010A, an identifier associated with an entity can be recognized. In some embodiments, the entity can be a provisioning entity. Alternatively, the entity can be a consuming entity. In some embodiments, the identifier can be information associated with a provisioning entity identification category. Alternatively, the identifier can be information associated with a consuming entity identification category. It will be appreciated that other methods for recognizing an identifier associated with an entity are possible.
Next, in step 1020A, a data structure (e.g., data structure 400) comprising several categories of information and one or more interactions associated with a plurality of entities can be accessed. The data structure can represent information associated with a very large number of interactions. In some embodiments, the data structure can represent information for tens of billions of interactions (e.g., data structure 400 depicting 50 billion interactions). The data structure can be similar to the exemplary data structure 400 described in FIG. 4 above.
Next, in step 1030A, one or more interactions of the plurality of interactions can be identified based on the recognized identifier. In some embodiments, the identified interactions can be one or more interactions of the data structure that are associated with the recognized identifier of the entity. For example, the identified interactions can be one or more interactions associated with a provisioning entity identification information (e.g., provisioning entity identification category 440) or a consuming entity identification information category (e.g., consuming entity identification category 420). For an exemplary provisioning entity identification information of “Merchant 1,” step 1030 can identify one or more interactions that are associated with a provisioning entity that can be identified with a name or code “Merchant 1.”
In some embodiments, the accessed data structure can comprise several categories of information showing interactions associated with multiple entities. In such embodiments, the provisioning entity analysis system (e.g., provisioning entity analysis system 210) can identify some categories of the data structure that are relevant for analyzing the performance of the entity (e.g., provisioning entity) associated with the recognized identifier.
Next, in step 1040A, information associated with the identified interactions can be processed to analyze a performance of the entity. In some embodiments, processing the identified interactions can comprise creating a new data structure that is different from the data structure of step 1020A, and can comprise only the identified interactions of step 1030A or one or more subsets of those categories. Alternatively, processing the identified interactions is performed on the existing data structure of step 1020A (e.g., data structure 400).
In some embodiments, processing the information of the identified interactions can result in a multitude of useful insights regarding the behavior of consuming entities. Some of such insights, for example, can relate to the kinds of products bought by consuming entities, a location where consuming entities buy the products, a time as to when consuming entities buy the products, the frequency with which consuming entities buy the products, a location of residence of consuming entities, demographics information of consuming entities including their age and income level. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
Alternatively, processing the information of the identified interactions can result in a multitude of useful insights regarding the performance of provisioning entities. Some of such insights, for example, can relate to the kinds of products being sold by provisioning entities, a location where provisioning entities sell the products, a time as to when provisioning entities sell the products, a performance comparison between different locations of the same provisioning entity, and performance comparison between competing provisioning entities. It will be understood that the above-listed insights are merely exemplary and a number of other insights can be drawn within the scope and spirit of this disclosure.
In some embodiments, step 1040A can process information of a data structure that is updated in real-time. That is, processing of information can occur on the data structure that comprises up-to-date interaction data at the time of an execution of step 1040A. Alternatively, step 1040A can process information of a data structure that is not updated in real-time. That is, processing of information can occur on the data structure that does not comprise up-to-date interaction data at the time of an execution of step 1040A. For example, processing of information can occur on a data structure that is updated only periodically (e.g., on a daily or weekly basis) and not in real-time.
In some embodiments, the processed information can comprise analysis information of a first entity or a first group of entities of the plurality of entities and a second entity or a second group of entities of a plurality of entities. For example, a first entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Lowes™) and a second entity of the one or more entities can be a provisioning entity (e.g., a home improvement store such as Home Depot™). In some embodiments, the second entity can be a competitor of the first entity. In some embodiments, the first or second group of entities of the plurality of entities can be defined such that the first or second group of entities can comprise similar characteristics. For example, the first or second group of entities can be all grocery stores within a given zip code or all Safeway™ locations within a city (e.g., San Jose, Calif.). Alternatively, the first or second group of entities can include all entities associated with the same MCC (e.g., 5542 for Automated Fuel Dispensers at a Gas Station) within a given zip code.
In some embodiments, for each entity of a plurality of entities, a group of entities (e.g., a first group of entities of the plurality of entities) associated with the entity can be identified or estimated such that the entity can analyze its own performance against the group of entities in aggregate. The group of entities can include a group of provisioning entities. For example, the group of provisioning entities associated with a first provisioning entity can be identified based on at least one of: a similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities; a location information associated with the first provisioning entity and associated with other provisioning entities; information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities; and information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities. In some embodiments, the group of entities can be referred to as, for example, a cohort of entities, a set of entities, or an associated set of entities. It will be appreciated that the group of entities can be referred to by using other names.
A similarity between attributes of consuming entities that are associated with the first provisioning entity and consuming entities that are associated with other provisioning entities can be used to determine a group of provisioning entities associated with the first provisioning entity. For example, customer entity demographic information (e.g., age, gender, income, and/or location) can be analyzed between customer entities of the first provisioning entity and customer entities of the other provisioning entities to identify a group of provisioning entities that have similar customer entity demographic information. Location information associated with the first provisioning entity and with other provisioning entities can be analyzed to identify a group of provisioning entities associated with the first provisioning entity. For example, other provisioning entities that are located within a specified distance to a location of the first provisioning entity can be identified as part of the group of provisioning entities. Alternatively, other distance criteria such as, for example, same zip code, can be used to identify the group of provisioning entities. For example, a restaurant situated in an airport can be interested in analyzing its own performance relative to other restaurants situated within the same airport.
Information representing a market share associated with the first provisioning entity and a market share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity. For example, a high-end bicycle store can be interested in comparing its performance against other high-end bicycle stores. In other words, a group of high-end bicycle stores can be identified based on a market share analysis of high-end bicycle stores. Information representing a wallet share associated with the first provisioning entity and a wallet share associated with the other provisioning entities can be used to identify a group of provisioning entities associated with the first provisioning entity. For example, a novelty late-night theatre can be interested in comparing its performance against other provisioning entities that also operate late-night (e.g., bars or clubs) and hence can likely compete with those entities for a consuming entity's time and money. An exemplary definition of wallet share can be a percentage of consuming entity spending over a period of time such as on a daily basis or a weekly basis etc.
In some embodiments, the group of provisioning entities can be identified by using a multi-timescale correlation comparison. One method of implementing the multi-timescale correlation comparison can be by analyzing interactions between a consuming entity and a first provisioning entity (“first provisioning entity interactions”) with that of interactions between the consuming entity and a second provisioning entity (“second provisioning entity interactions”). For example, if the first provisioning entity interactions are correlated with the second provisioning entity interactions on a daily timescale but anti-correlated (or inversely correlated) on an hourly timescale, then the first provisioning entity and the second provisioning entity can be defined as complementary entities rather than competitive entities. In such scenarios, the second provisioning entity need not be part of a group of provisioning entities the first provisioning entity is interested in comparing against. Alternatively, if the first provisioning entity interactions are anti-correlated with the second provisioning entity interactions on a daily timescale but correlated on an hourly timescale, then the first provisioning entity and the second provisioning entity can be defined as competitive entities. In such scenarios, the second provisioning entity can be included in a group of provisioning entities the first provisioning entity is interested in comparing against.
In some embodiments, a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
In some embodiments, an identity of the first entity can be known and an identity of the second entity can be unknown. For example, the recognized identifier can be associated with the first entity and accordingly, an identify of the first entity can be known. In such embodiments, an identity of the second entity can be estimated based on information representing at least two attributes of the first entity. In some embodiments, the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity. For example, knowing a type of the first entity (e.g., gas station) and location of the first entity (e.g., zip code), the data structure (e.g., data structure 400) can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity. If the estimation returns more than one possible choice for an identity of the second entity, the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity. Alternatively, other criteria can be used to select from the more than one possible choices. In some embodiments, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
Next, in step 1050A, the processed information can be provided for displaying the performance of the entity (e.g., provisioning entity) on a user interface. In some embodiments, the user interface can comprise a representation of a geographic region. The user interface can also comprise a representation of locations of the one or more entities overlaid on the geographic region; and further a representation of sub-geographic regions overlaid on a geographic region. An exemplary user interface is depicted in FIG. 10B . As shown in FIG. 10B , the user interface can include a dashboard showing a graphical representation of the performance of an entity based on recognizing an identifier for the entity.
More particularly, FIG. 10B shows an exemplary user interface 1000B that a provisioning entity analysis system (e.g., provisioning entity analysis system 210) can generate, according to some embodiments. User interface 1000B can include a dashboard (e.g., dashboard 10108) that can depict a performance of an entity over a metric. For example, dashboard 10108 represents information of sales of the entity (e.g., a provisioning entity) over a 7-day period for the current week (May 25, 2013-May 31, 2013) compared to the same week of the previous year (May 25, 2012-May 31, 2012). In some embodiments, dashboard 10108 can represent information comparing the entity's actual revenue with the entity's expected revenue. For example, the provisioning entity can input an expected revenue for a period of time (e.g., weekly, quarterly, or yearly). After receiving information regarding the expected revenue, the provisioning entity analysis system can analyze interaction data to analyze the entity's performance relative to the expected revenue. An outcome of such comparative analysis can be represented with an exemplary bar graph or a pie chart on user interface 10008. Alternatively, the entity's expected revenue information can be inferred without having to receive an external input representing the expected revenue. For example, the provisioning analysis system can analyze interaction data of the data structure to estimate a number for the entity's expected revenue.
In some embodiments, dashboard 10108 can be represented as a bar graph using two different fills, one fill representing sales of the current week and another representing sales from last year. It will be understood that other representations of dashboard 1010A are possible. Alternatively, the dashboard can be preconfigured to analyze interaction data for a period of time such as, for example, 7-days, one month, one quarter, one year, etc.
In some embodiments, user interface 1000B can also include a box for representing an alert (e.g., latest alert 1020B) that can indicate certain performance metrics of the entity. For example, latest alert 10208 includes information to indicate that the entity's worst day within the preconfigured period of time is May 31, 2013. A different entity performance metric can be included in latest alert 10208. Alternatively, user interface 10008 can include user interface elements representing information associated with entity performance metrics such as revenue (e.g, revenue 1025B), amount of interaction (e.g., ticket size 1030B), new consuming entities (new consuming entities 1035B), returning consuming entities (e.g., returning consuming entities 1040B), time of interaction in a day (e.g., time of day 1045B), and interactions during a day of the week (e.g., day of week 1050B). For example, each of the above-described user interface elements can be depicted as rectangular box with an icon and some information representing the performance metric of the entity. It will be understood that in some embodiments, user interface elements can be depicted using different approaches such as, for example, charts, maps, histograms, numbers etc.
In step 1110, an input for at least one category of information to be compared between a first entity and a second entity can be received at a provisioning entity analysis system implementing a process for comparing a performance between the first entity and a second entity. In some embodiments, the input can be received from a provisioning entity (e.g., a merchant like Lowes™), which can be interested in analyzing their performance relative to a competitor (e.g., HomeDepot™). Alternatively, a competitor to the first entity can be identified or estimated based on at least one of: an MCC information associated with the first entity; a distance between a location of the first entity and a location of the competitor; and demographic information representing at least one of age, income, and gender associated with a consuming entity involved in interactions associated with the first entity.
In some embodiments, the input can be received from a first entity, where an identity of the first entity can be known. In some embodiments, an identity of the second entity can be provided. For example, the user of the first entity can provide an identity of the second entity. Alternatively, an identity of the second entity is not provided. In exemplary embodiments where an identity of the second entity is not provided, an identity of the second entity can be estimated as described below.
In some embodiments, the received input can comprise a selection to represent data associated with at least one of: demographics; geographic; time; and transactions. Alternatively, the received input can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time. In some embodiments, the received input can be similar to one or more filter selections (e.g., add new filter 705) described in FIG. 6 . An exemplary screenshot of a user interface comparing a performance of the first entity with that of the second entity can be shown in FIG. 12 , described below.
Next, in step 1120, a data structure (e.g., data structure 400) comprising several categories of information showing interactions associated with multiple entities can be accessed. The data structure can represent information associated with a very large number of interactions (e.g., data structure 400 of FIG. 4 . depicting 50 billion interactions). In some embodiments, the multiple entities can include at least the first entity (e.g., a first provisioning entity such as Lowes™) and the second entity (e.g., a second provisioning entity such as HomeDepot™).
Next, in step 1130, an identity of the second entity can be estimated based on information representing at least two attributes of the first entity. In some embodiments, the at least two attributes of the first entity can include an attribute representing a type of entity for the first identity and an attribute representing a location of the first entity. For example, knowing a type of the first entity (e.g., gas station) and location of the first entity (e.g., zip code), the data structure (e.g., data structure 400) can be analyzed to identify entities that are of the same type as that of the first entity and are in a proximity to the location of the first entity. If the estimation returns more than one possible choice for an identity of the second entity, the system can select one of the possible choices by selecting the entity that is closest in proximity to the first entity. Alternatively, other criteria including, attributes other than that of location and type of the first entity can be used to estimate the identity of the second entity.
Next, in step 1140, relevant interaction information associated with the at least one category of the data structure can be processed to compare a performance of the first entity with that of the second entity. In some embodiments, the processing step 1140 can be very similar to processing step 640 described above. For example, step 1140 can involve two processing operations (e.g., processing operation of step 640), one for processing the information associated with the at least one category of the first entity and another one for processing the information associated with the at least one category of the second entity. After performing such operations, step 1140 can then compare the processed information from processing the first entity with that of the second entity.
Next, in step 1150, the processed information can be provided for displaying a comparison between a performance of the first entity with that of the second entity. Exemplary user interface is depicted in FIG. 12 that illustrates a performance comparison between the first and second entities.
In step 1310, a data structure (e.g., data structure 400) comprising a plurality of interactions associated with multiple entities can be accessed. In some embodiments, the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities. The data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above. The plurality of interactions of the data structure can include information associated with a consuming entity and a provisioning entity (e.g., a first provisioning entity). Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity. In some embodiments, the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
Moreover, in some embodiments, the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. Alternatively, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity, such as a type of the provisioning entity.
Next, in step 1320, an interaction of the data structure can be evaluated. Next, in step 1330, a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the consuming entity. In some embodiments, the determination can include analyzing whether the categories of information associated with a location information of the consuming entity (e.g., consuming entity location category 430) are populated or not. If it turns out that the categories of information associated with a location information of the consuming entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the consuming entity includes a location information of the consuming entity and the process can then move to step 1360. If, on the other hand, the categories of information associated with a location information of the consuming entity are not populated, then the determination can return a negative indication to signify that the interaction does not include a location information of the consuming entity and the process can then move to step 1340.
In some embodiments, where the categories of information associated with a location information of the consuming entity are populated, the determination can further include verifying that the populated data is valid data that signifies a location information before the process can move to step 1360. For example, for the category of information representing zip code (e.g., zip code sub-category 456), if the populated data is 94085, it can be verified as a valid data and the process can then move step 1360. On the other hand, if the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits, and the process can then move to step 1340 described below. It will be understood that other methods to determine whether the interaction includes a location information of the consuming entity can be implemented within the scope and spirit of this disclosure.
Next, if the interaction of the data structure does not include an identified location information of the consuming entity, at step 1340, an estimation can be performed to determine location information of the consuming entity based on its interactions with one or more provisioning entities (e.g., second provisioning entity, for purposes of simplicity) of a particular type (e.g., type of provisioning entity category 460). For example, the second provisioning entity can be of the type including a gas station, a pharmacy, restaurant, or a grocery store. In some embodiments, location information of the consuming entity can be estimated by analyzing interactions between the consuming entity and the second provisioning entity. For example, interactions between the consumer entity and a type of provisioning entity that represents gas stations can be analyzed such that the gas station at which the consuming entity most frequently fills up gas can be identified as a location of the consuming entity. This is because it can be reasonable to assume that the consuming entity can frequently fill up gas at a gas station that is in a proximity to the residential location of the consuming entity. In some embodiments, interactions between the consumer entity and a type of provisioning entities that represent gas stations can result in similar number of interactions between two different gas stations in two different locations (e.g., zip codes). In such embodiments, one method of estimating a location of the consuming entity is to then analyze interactions between the consuming entity and a third provisioning entity that can represent grocery stores because it can be reasonable to assume that the consuming entity would more often than not shop for groceries at a location closer to residential location of the consuming entity. Moreover, in some embodiments, the estimating of a location can take into consideration the date (e.g., weekend) and or time (e.g., typical times before or after work) of an interaction with a type of provisioning entity. Based on analyzing interactions with the third provisioning entity (such as grocery stores) and combining such analysis with that of the interactions with the second provisioning entity (such as gas stations), an estimation can be made regarding a location of the consuming entity.
In some embodiments, step 1340 can estimate a location information of the consuming entity after the determination returns that the at least one attribute of the consuming entity includes an invalid location information of the consuming entity by using similar techniques as described above. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
Next, in step 1350, the data structure can be updated with an estimated location information of the consuming entity. In some embodiments, data associated with only the evaluated interaction can be updated. Alternatively, data associated with all interactions associated with the consuming entity can be updated irrespective of whether those interactions were previously evaluated or not. Next, in step 1360, a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1320 to evaluate another interaction and further to repeat the process comprising steps 1320 through 1360, as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
In some embodiments, a provisioning entity analysis system can resolve the name of a provisioning entity. A data structure storing information associated with billions of interactions can include millions of provisioning entities and it is possible that some of the names of the provisioning entities are not consistent. For example, the name of provisioning entity “McDonalds's” can be indicated by a number of combinations such as, “McDonald's,” “Mc Donalds,” “mcdonalds,” “Mcdonald's,” etc. While each of the above-recited names can be intended to indicate the same entity, some processing can be necessary before the system can analyze all such names as the same entity. Exemplary methods for resolving a name of provisioning entities are described in U.S. Non-Provisional patent application Ser. No. 13/827,491, titled Resolving Similar Entities From A Transaction Database filed on Mar. 14, 2013, the entirety of which is expressly incorporated herein by reference.
An exemplary method of resolving a provisioning entity name can include a number of factors including, but not limited to, categories of information associated with interactions, analyzing interactions associated with competitive and/or complementary provisioning entities. Such exemplary method can result in a significant uplift in accuracy in resolving the name of provisioning entities. In some embodiments, a percentage accuracy in resolving the name of provisioning entities can be increased to high nineties (e.g., 97%).
In step 1410, a data structure (e.g., data structure 400) comprising a plurality of interactions associated with multiple entities can be accessed. In some embodiments, the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities. The data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above. The plurality of interactions of the data structure can include a consuming entity and a provisioning entity. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity. In some embodiments, the at least one attribute of the consuming entity can include a location information of the consuming entity. For some consuming entities, the location information may not be known or identified.
Moreover, in some embodiments, the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. In some embodiments, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
Next, in step 1420, an interaction of the data structure can be evaluated. Next, in step 1430, a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity. In some embodiments, similar to the step 1330 of FIG. 13 , the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1460. If, on the other hand, the categories of information associated with a location information of the provisioning entity are not populated, then the determination can return a negative indication to signify that the interaction does not include a location information of the provisioning entity and the process can move to step 1440.
In some embodiments, where the categories of information associated with a location information of the provisioning entity are populated, the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1460. For example, for the category of information representing zip code (e.g., zip code sub-category 456), if the populated data is 94085, it can be verified as a valid data and the process can then move to step 1460. On the other hand, if the populated data is 940850, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are supposed to be only five decimal numerical digits and the process can then move to step 1440 as described below. It will be understood that other methods to determine whether the interaction includes a location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
Next, if the interaction of the data structure does not include an identified location information of the provisioning entity, step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities. In some embodiments, step 1440 can estimate a location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity. For example, the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440). In some embodiments, a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google Search™).
In some embodiments, when the determination returns an answer in the positive, signifying that there is more than one location for the provisioning entity, a location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out a location information of the provisioning entity that is closest to the location of the consuming entity. In some embodiments, the location information returned by the search query can be an estimated location information of the provisioning entity. Alternatively, when there is more than one location for the provisioning entity, a location information of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each location of the provisioning entity. For example, a provisioning entity can be the grocery store, Safeway™, which can have multiple locations in a given zip code (e.g., 94086) of the consuming entity. If the location of the Safeway™ where one or more interactions with a consuming entity occurred is unknown, interactions between the same consuming entity and all Safeway™ locations within the given zip code of the consuming entity can be analyzed such that the Safeway™ location that is involved with the most number of interactions can be selected as an estimated location of the Safeway™ for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
Next, in step 1450, the data structure can be updated with an estimated location information of the provisioning entity. In some embodiments, data associated with only the evaluated interaction can be updated. Alternatively, data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not. Next, in step 1460, a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1420 to evaluate another interaction and further to repeat the process comprising steps 1420 through 1460, as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
The exemplary process of FIG. 15 can depict a multi-step process for estimating location information of a provisioning entity. Initially, an area location information can be estimated to represent a location information of the provisioning entity broadly. For example, an area location information for a grocery store like Safeway™ can be as broad as a state (e.g., California) or county (e.g., Santa Clara County) such that Safeway™ can comprise multiple possible locations within the area location. Later, a location information can be estimated to identify a specific location of the provisioning entity from its multiple possible locations within the area location. For example, if the area location information represents Santa Clara County comprising of ten possible Safeway™ locations, the estimated location information can represent one of the ten possible locations within Santa Clara County using either a street address or other unique identifier for the location (e.g., zip code if there is only one store location for the zip code). An exemplary multi-step process is described below.
In step 1505, a data structure (e.g., data structure 400) comprising a plurality of interactions associated with multiple entities can be accessed. In some embodiments, the accessed data structure can comprise a plurality of categories of information showing interactions associated with multiple entities. The data structure can be similar to the exemplary data structure 400 described with reference to FIG. 4 above. The plurality of interactions of the data structure can include consuming entities and provisioning entities. Each such interaction of the data structure can include at least one attribute of the consuming entity and at least one attribute of the provisioning entity. The at least one attribute of the consuming entity can include location information of the consuming entity. For some consuming entities, the location information may not be known or identified. Moreover, in some embodiments, the at least one attribute of the provisioning entity can include an identification information of the provisioning entity. Alternatively, the at least one attribute of the provisioning entity can include an attribute other than an identification information of the provisioning entity.
The provisioning entity analysis system can receive an input that can be used in a process to fill in any missing categories of information associated with an interaction. For example, the received input can be “canonical data” that can be used to estimate identification information of the provisioning entity. An exemplary canonical data can comprise data that can be received from external to the provisioning entity analysis system (e.g., Yelp™). For example, if a provisioning entity associated with an interaction is an Italian restaurant, the provisioning entity category 460 can be represented by an MCC 5812 signifying it as a restaurant but might not be able to signify that it is an Italian restaurant. In such a scenario, canonical data such as Yelp™ review information can be analyzed to further identify the provisioning entity as an Italian restaurant. Another example for applying received canonical data can be to differentiate between an entity that is no longer in business from an entity that might have changed its name. In this example, canonical data can be received from an external source (e.g., Factual™) that can comprise a “status” flag as part of its data, which can signify whether the entity is no longer in business.
Next, in step 1510, an interaction of the data structure can be evaluated. Next, in step 1515, a determination can be made for the interaction of the data structure as to whether the interaction includes an identified location information of the provisioning entity. In some embodiments, similar to the step 1430 of FIG. 14 , the determination can include analyzing whether the categories of information associated with a location information of the provisioning entity are populated or not. If it turns out that the categories of information associated with a location information of the provisioning entity are populated, then the determination can return a positive indication to signify that the at least one attribute of the provisioning entity includes an identified location information of the provisioning entity and the process can then move to step 1555. If, on the other hand, the categories of information associated with a location information of the provisioning entity are not populated, then the determination can return a negative indication to signify that the interaction does not include location information of the provisioning entity and the process can move to step 1520.
In some embodiments, where the categories of information associated with location information of the provisioning entity are populated, the determination can further include verifying that the populated data is valid data that signifies a location information before the process moves to step 1555. For example, for the category of information representing zip code (e.g., zip code sub-category 456), if the populated data is 94085, it can be verified as a valid data and the process can then move to step 1555. On the other hand, if the populated data is 094085, it can be verified as an invalid data for zip code as zip codes, at least in the United States, are typically only five decimal numerical digits and the process can then move to step 1520 as described below. It will be appreciated that other methods to determine whether the interaction includes location information of the provisioning entity can be implemented within the scope and spirit of this disclosure.
Next, if the interaction of the data structure does not include identified location information of the provisioning entity, step 1520 can estimate an area location information of the provisioning entity based on one or more attributes of one or more consuming entities. In some embodiments, step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities. Alternatively, step 1520 can estimate the area location information of the provisioning entity based on one or more attributes of one or more consuming entities and further based on one or more attributes of the provisioning entity. For example, the one or more attributes of the one or more consuming entities can be a location information of the one or more consuming entities and the one or more attributes of the provisioning entity can be an identification information of the provisioning entity (e.g., provisioning entity identification category 440). Alternatively, a determination can be made based on identification information of the provisioning entity to find out whether the provisioning entity has more than one location. If the determination returns an answer in the negative, signifying that the provisioning entity only has one location, information representing such location can be identified by performing a search query over the Internet using a search engine (e.g., Google Search™) and such information can be identified as an estimated first location information of the provisioning entity.
In some embodiments, when the determination returns an answer in the positive, signifying that there is more than one possible location for the provisioning entity, an area location information of the provisioning entity can be estimated based on at least a location information of the consuming entity and an identification information of the provisioning entity. For example, knowing a location information of the consuming entity (e.g., zip code of the consuming entity), a search query can be requested to find out the area location information of the provisioning entity that is within a predetermined distance (e.g., within the same zip code) to the location of the consuming entity. The location information returned by the search query can be an estimated first location information of the provisioning entity.
Next, in step 1525, the plurality of interactions can be filtered to identify other interactions (e.g., interactions other than the first interaction) between the one or more consuming entities and other provisioning entities (i.e., provisioning entities other than the provisioning entity associated with the interaction and with an unidentified location). For example, step 1525 can filter other interactions such that interactions without an indication of location information associated with the other provisioning entities need not be analyzed. In some embodiments, the filtered interactions can be analyzed to filter provisioning entities based on a received canonical input data. For example, if the received canonical input data comprises an identification information that might be missing in data structure 400, the system can filter the interactions further to only analyze those interactions associated with provisioning entities with an identification information that meet the criteria set by the received canonical data. It will be appreciated that other forms of canonical data can be received within the scope of this disclosure.
Next, in step 1530, a travel time can be computed between a location of a first provisioning entity to that of a location of a second provisioning entity. In some embodiments, the first provisioning entity can be the provisioning entity with an estimated area location and the second provisioning entity can be any provisioning entity other than the first provisioning entity. For each interaction of step 1510 and its associated consuming entity, the second provisioning entity can be any provisioning entity other than the first provisioning entity that is associated with other interactions of the consuming entity. Step 1530 can be explained with the block diagrams of FIGS. 16A, 16B, and 16C , which depicts two provisioning entities, S1 and S2, five interactions, X1-X5, and exemplary travel times (e.g., TS1-X1). Provisioning entities S1 and S2 can be two different locations within a chain of stores associated with the same provisioning entity and situated within an area location information estimated in step 1520. For example, S1 and S2 can be two different locations of Safeway™ situated within an estimated area location (e.g., zip code 94086). The area location information can be depicted with a shaded region and labeled as element 1605A in FIGS. 16A, 16B, and 16C . As shown in FIG. 16A , the five interactions, X1-X5, can represent interactions between the consuming entity associated with the interaction of step 1510 and a provisioning entity other than S1 or S2. While FIGS. 16A, 16B, and 16C , depict locations of two provisioning entities and locations of five interactions, it will be appreciated that this disclosure is applicable to embodiments involving any number of provisioning entities and any number of interactions.
Next, referring back to FIG. 15 , in step 1535, an affinity score can be computed. In some embodiments, an affinity score can be computed for each possible location of the provisioning entity within the estimated area location. The computed affinity score can be based on the computed travel times such that the affinity score can have an inverse proportionality with computed travel times such that the lower the travel time the higher an affinity score. For example, based on the exemplary travel times depicted in FIGS. 16A, 16B, and 16C , it is possible that the affinity score associated with location S1 is likely higher than that of location S2 because travel times associated with S1 are lower than that of S2. Affinity score can be computed based on an average travel time for all interactions. Alternatively, affinity score can be computed by aggregating travel times of all interactions for each location S1 and S2. It will be appreciated that the above-described methods are merely exemplary and other methods of computing an affinity score based on travel times are possible within the scope of this disclosure. Alternatively, the computed affinity score can be normalized (e.g., can be normalized to comprise a value between 0 and 1, with 0 representing no affinity and 1 representing maximum possible affinity). Moreover, while the affinity score can have an inverse relationship with the computed travel times, it is appreciated that the affinity score can have a proportional relationship to the computed travel times.
Next, in step 1540, the computed affinity score can be used to estimate a location information within the estimated area location for the provisioning entity without an identified location information. For example, a location can be estimated by selecting the location which has the highest affinity score amongst all possible locations within the area location. That is, in the exemplary embodiment of FIG. 16 , location S1 can be selected as the affinity score associated with location S1 is likely higher than that of location S2, as described above. It will be appreciated that other methods of estimating a second location information based on an affinity score are possible. Alternatively, the computed affinity score can be used in conjunction with an algorithm to estimate a second location information within the area location information.
In some embodiments, when there is more than one possible location for the provisioning entity without an identified location information, a location information within the area location of the provisioning entity can be estimated by analyzing interactions between the consuming entity and other provisioning entities within the location of the consuming entity (e.g., zip code of the consuming entity) that are closely spaced in time relative to the interaction that does not include an identified location information of the provisioning entity. For example, a first interaction that does not include an identified location information of the provisioning entity can include a timestamp (e.g., time of interaction category 480) associated with the first interaction. To estimate a location information for the provisioning entity associated with the first interaction, the system can analyze other interactions (e.g., interactions other than the first interaction) associated with the consuming entity that occurred within the same location of the consuming entity (e.g., zip code of the consuming entity), occurred within a short time interval of the timestamp of the first interaction (e.g., within 10 minutes of the timestamp), and which further include an identified location information for the provisioning entities associated with the other interactions.
Alternatively, when there is more than one possible location for the provisioning entity, a location information within the area location of the provisioning entity can be estimated by looking at a frequency of interactions between the consuming entity and each possible location of the provisioning entity. For example, a provisioning entity can be the grocery store, Safeway™, which can have multiple locations in a given city (e.g., Sunnyvale Calif.) of the consuming entity. Interactions between the consuming entity and all Safeway™ locations within the given city of the consuming entity can be analyzed such that the Safeway™ location that is involved with the most number of interactions can be selected as an estimated location within the area location of the Safeway™ for the one or more interactions. It will be understood that the above-recited estimation techniques are merely exemplary and not intended to be limiting.
Next, an accuracy check of the estimated location information within the area location can be performed. In some embodiments, the accuracy check can comprise verification that the estimated location information is one of the possible locations within the estimated area location of the provisioning entity. Alternatively, the accuracy check can comprise verification that the estimated location information is a valid location information. For example, if the estimated location information is a street address, then the accuracy check can involve verifying that the estimated street address is a valid street address based on an Internet-based search using a search engine (e.g., Google Search™).
Next, in step 1545, the data structure can be updated with an estimated location information of the provisioning entity. In some embodiments, the data structure can be updated with either an estimated area location information or an estimated location within the area location information. Alternatively, the data structure can be updated with both the estimated area location information and the estimated location information within the area location. In some embodiments, data associated with only the evaluated interaction can be updated. Alternatively, data associated with all interactions associated with the consuming entity and the provisioning entity can be updated irrespective of whether those interactions were previously evaluated or not. Next, in step 1550, a determination can be made whether the data structure comprises additional interactions that are to be evaluated. If the determination returns an answer in the positive, signifying that there are additional interactions that are to be evaluated, the process can go back to step 1510 to evaluate another interaction and further to repeat the process comprising steps 1510 through 1550, as described above. On the other hand, if the determination returns an answer in the negative, signifying that there are no additional interactions that are to be evaluated, the process can end.
In some embodiments, a provisioning entity analysis system can predict a purchasing pattern of consuming entities. For example, a provisioning entity (e.g., a large national retailer in the grocery business like Safeway™) can be interested in predicting purchasing patterns of consuming entities in order to make decision such as opening new stores or closing existing stores. One method of predicting purchasing patterns can be to analyze interactions of consuming entities with the provisioning entity. For example, if Safeway™ is interested in opening new store by predicting purchasing patterns of their customers of an existing location, the customer interactions at the existing location can be analyzed to understand where the customers are located by processing location information of the customers. Based on the processed location information of the customers of the existing location, Safeway™ might be able to make a decision on a location for their new location.
Another method of predicting purchasing patterns can be to analyze interactions between the consuming entities and other provisioning entities, where the other provisioning entities can be either a competitor of or complementary to the provisioning entity. For example, if Safeway™ is interested in opening new store by predicting purchasing patterns of their customers of an existing location, interactions of the customers of the existing locations that are associated with a competitive entity or a complementary entity can be analyzed. An exemplary complementary entity can be a gas station or a pharmacy because it can be reasonable to assume that consumers frequently shop at a pharmacy or a gas station that is close to their residential location. Accordingly, by analyzing interactions that are associated with a complementary entity to estimate a residential location information of consumers, Safeway™ can make a decision on a location for their new location.
In some embodiments, user interface 1700 can include a plurality of user interface elements representing information associated with entity performance metrics such as revenue, ticket size, new customers, and returning customers. For example, as shown in FIG. 17 , each of the above-described user interface elements can be depicted as a rectangular box with an icon and some information representing the performance metric of the entity. The entity can customize what metrics are displayed and how those metrics are displayed. The user interface elements, when clicked on, can provide access to other user interfaces, depicting additional information for the selected performance metric.
In some embodiments, user interface 1800 allows an entity to select a particular bar or time period of interest. For example, the entity can select the “May” bar. To indicate that “May” has been selected, user interface 1800 can display that month in a different color. In some embodiments, user interface 1800 can also display additional information for the selected bar. For example, as shown in FIG. 18 , user interface 1800 can display the month selected, the revenue for that month, the average ticket size, the number of transactions, and the names of holidays in that month, if any. In some embodiments, user interface 1800 can depict comparisons of revenue information. For example, user interface 1800 can display additional lines or bars (not shown), which represent revenue competitor revenue, industry revenue, or entity revenue from another time period. In some embodiments, user interface 1800 can include a bottom panel depicting a bar chart of revenue for a longer period of time, such as the past twelve months. User interface 1800 can highlight the region currently depicted in the top panel by changing the color of the corresponding bars in the bottom panel. In some embodiments, user interface 1800 can allow an entity to drag the highlighted region on the bottom panel to depict a different time period in the top panel.
In some embodiments, user interface 2000 can depict additional information for a section selected by the entity. For example, the entity can select the “9+ times” section at the top of the stacked bar graph in FIG. 20 to display additional information about those customers. This information can include the total revenue from those customers, the total number of transactions with those customers, and the average ticket size of those customers.
Different shades of gray-scale can be used to show different amounts of spending (e.g., darker shaded regions can depict regions where customers spend more). Alternatively, a color coded heat-map can be used where different colors can be used to show different amounts of spending. In some embodiments, the geographic granularity (e.g., district, city, county, metropolitan area, state) of user interface 2100 is selectable. User interface 2100 can also depict spending habits for the geographic region for different temporal periods. For example, user interface 2100 can depict customer spending for the current month, quarter, previous quarter, or any other time period.
In some embodiments, user interface 2200 can depict additional customer information, such as income, as a histogram. As shown in FIG. 22 , the histogram can represent customer demographics for the selected filters. In some embodiments, user interface 220 can depict a delta (not shown in FIG. 22 ) representing a difference between similar categories in each histogram. The depiction of the delta can be in the area between the left and right histograms such as shown in U.S. application Ser. No. 14/289,596 at FIG. 17, the depiction of which is incorporated by reference. For example, if 16% of the entity's customers had an income less than $30,000 for the first filter selections, and only 11% had an income less than $30,000 for the second filter selections, user interface 2200 can display a 5% delta to the left, representing the difference between the filter selections.
In some embodiments, customer location can be represented by a circle of a particular distance, wherein the provisioning entity analysis system infers that the customer is located within that circle. For example, in FIG. 25 , the inner circle represents a two mile range and the outer circle represents a five mile range. In some embodiments, user interface 2500 can depict a confidence metric corresponding to the accuracy of inferred customer location (e.g., 75-80% confident that the customer is within the inner circle and 90-95% confident that the customer is located in the outer circle).
Sometimes, a business owner will want to know details about how its retail entities are performing. In particular, business owners may want to be able to compare how their stores are performing in comparison to similar stores located near their store. For example, a business owner may not know that people are spending less in a particular neighborhood as opposed to only their business. In addition, a business owner may want to view information associated with various customers that enter or make transactions at their store. At certain points in time, the business owner or an employee of the business may not be able to access information associated with the customers visiting their store if they are not in front of a computer. Thus, having the ability to determine information associated with customers in real-time with a mobile device can be useful.
Referring back to system 2700, in some embodiments, mobile device 2705 communicates with a cellular base station 2715 or provisioning entity 2730 using links 2710. As some examples, mobile device 2705 can use links 2710 to transmit information about its location to a provisioning entity, or request information about entity performance from server 2725. Links 2710 transmit information and may include a wired connection, a wireless connection, or both. Example wireless technologies that may be used by mobile device 2705 in the example systems and methods described in the present disclosure include, but are not limited to: communication via satellite, CDMA, LTE, WiFi (IEEE 802.11), radio frequency identification (RFID), Near Field Communication (NFC), ZigBee™ (IEEE 802.15.4), Z-Wave™, Bluetooth™, Thread™, WeMo™, WiMax™, etc.
In another example, mobile device 2705 may share information with provisioning entity 2730 via the one or more transceivers. For example, provisioning entity 2730, via the one or more transceivers, may receive information related to the consuming entity associated with mobile device 2705. Such information may be shared before, after, or during the detection by provisioning entity 2730 of mobile device 2705. In one example, provisioning entity 2730 may detect personal data, credit card data, shopping history, or other information about the consuming entity associated with mobile device 2705. The provisioning entity 2730 may, in some examples, use the information received from mobile device 2705 to, in return, share information with mobile device 2705. For example, if provisioning entity 2730 receives information that the consuming entity associated with mobile device 2705 is a 15 year-old female, provisioning entity 2730 may be configured to share coupons for items that may interest a person of that description, directly with mobile device 2705 for display to the consuming entity. In some embodiments, a user using mobile device 2705 may perform a particular action to cause provisioning entity 2730 to determine that mobile device 2705 or its associated user is within provisioning entity 2730. For example, a user may “check in” or “like” provisioning entity 2730 using a web-based application such as Facebook™ or Foursquare™. In such a case, provisioning entity 2730 and/or a mobile device 2705 associated with provisioning entity 2730 may receive a notification about the user's action. In some embodiments, in response to the user's action, provisioning entity 2730 may cause an action to occur such as providing a mobile device 2705 associated with the user with one or more coupons, or providing a mobile device 2705 associated with the user with information about discounted products.
In some embodiments, network 2720 included in system 2700 is similar to network 260 as discussed above. Network 2720 can be used by mobile device 2705 to send and receive data associated with entity performance from server 2725. Network 2720 can be any type of network or combination of networks configured to provide electronic communications between components of system 2700. Network 2720 can be any type of network (including infrastructure) that provides communications, exchanges information, and/or facilitates the exchange of information such as the Internet, a Local Area Network, or other suitable connection(s) that enable the sending and receiving of information between the components of system 2700.
In combination with or in addition to the methods and systems described above, mobile device(s) 2705 can perform a variety of actions and be associated with consuming entities, provisioning entities, or in some cases a mobile device can be associated with a consuming entity and a provisioning entity. For example, mobile device 2705 may be belong to an employee of a provisioning entity, such that it is considered associated with the provisioning entity. At the same time, the the employee may be a customer of another provisioning entity, such that the employee is also considered a consuming entity, and their mobile device is therefore associated with a consuming entity as well.
As discussed above, a user may access data associated with the performance of provisioning entities. For example, a user may access data from server 2725 about provisioning entities in an area near a particular provisioning entity, such as a store near or next to the provisioning entity. By using a display on mobile device 2705, a user can quickly view information about one or more provisioning entities or areas from anywhere.
Data acquired by mobile device 2705 can be inserted into or acquired from a data structure (e.g., a database), such as the data structure 400 of FIG. 4 . In various embodiments, a user sends an information request to a data structure to access entity performance information. Data structures can be stored in various places. For example, a data structure may be included in mobile device 2705, remote from mobile device 2705, or partially located in mobile device 2705 and remote from mobile device 2705. In some embodiments, this data structure may be stored in a real-time distributed computation environment that supports stream-oriented processing. For example, the data can be stored in a data structure using Hadoop's Distributed File System, Vertica™, or Amazon™ S3. The data structure storing the interactions data may be incrementally updated at particular intervals by a data computation system, such as Apache's Spark™, providing a user with real-time or near real-time information about the interactions.
As described above, data structures can include information corresponding with entities and interactions, such as locations of interactions, amounts of money included in interactions, amounts of money included in interactions at one or more provisioning entities during one or more time periods, information representing a market share of one or more provisioning entities, information about a cohort of provisioning or consuming entities (which may be related via an interaction), etc. For example, a user may send an information request to a device storing a data structure that includes filter selections and retrieves an average amount of money spent at a cohort of provisioning entities while the provisioning entities were holding a sale (e.g., discounting products or services).
In various embodiments, information about the surroundings of mobile device 2705 can be retrieved and sent in a request from mobile device 2705 to server 2725. For example, a data acquisition interface of mobile device 2705 can be used to determine an associated provisioning entity. The associated provisioning entity may be the provisioning entity mobile device 2705 is located in, provisioning entities within a particular distance from mobile device 2705, etc. A user can then view performance information corresponding to the at least one associated provisioning entity. For example, a mobile device 2705 being carried by the owner of a shopping center can determine when it is in the shopping center, and display information associated with the provisioning entities in the shopping center such as how much is spent at particular stores.
In additional embodiments, information provided to mobile device 2705 may include information associated with an area or a micro-economy. For example, information may be provided by server 2725 associated with foot traffic in a particular area (e.g., a number of consuming entities in one or more locations during one or more periods of time). Information provided to mobile device 2705 may indicate an amount of retail space in a particular area, whether an amount of foot traffic in an area is high or low compared to another area, etc. Further, information can be provided indicating whether a location would be a good place to open or invest in a provisioning entity. In some embodiments, location information associated with mobile devices being carried by users may be used to determine foot traffic. For example, a transceiver may determine an amount of unique mobile devices in a particular area, and the amounts of time spent by the unique mobile devices in the particular area. Information about foot traffic and micro-economies can be provided to mobile devices associated with a provisioning entity or a consuming entity. For example, in some embodiments, members of the public can view aggregated foot-traffic data.
Herein, requests for information may be referred to as information requests. As examples, information requests generated at mobile device 2705 may include requests to determine its location (which may be determined with a data acquisition interface such as GPS), and/or requests for information associated with a cohort of provisioning entities (which may include requests to be sent to server 2725). An information request may include information that can be used to identify a particular device or type of device. For example, this information can be used to determine a user associated with the device, and information associated with the user such as where they live, information indicative of products or services the user has previously purchased, information indicative of products or services the user is likely to purchase, etc.
Information requests can come from a mobile device 2705 associated with a provisioning entity or a consuming entity. For example, system 2700 may determine that a mobile device 2705 associated with a loyal customer entered a particular provisioning entity. As discussed above, this determination may be based on communications between mobile device 2705 and one or more cellular base stations that can be inside or outside of the provisioning entity, a WiFi hotspot, or another type of communication device within a provisioning entity (e.g., a communication device that utilizes NFC, Bluetooth™, ZigBee™, Z-Wave™, Thread™, WeMo™, etc.). A mobile device 2705 associated with a provisioning entity may send an information request to using system 2700 (e.g., to server 2725) to determine whether a loyal customer entered the provisioning entity. In some examples, an amount of interactions conducted at a provisioning entity over a period of time may likewise be used as a gauge for how many customers, loyal or otherwise, are likely to be within a provisioning entity. In any case, an action may occur in response to a particular amount of people estimated to be in a provisioning entity (e.g., whether estimated by determining the presence of a mobile device or an amount of interactions).
In some embodiments, system 2700 can automatically trigger (e.g., cause to perform) an action, which may be based on an information request. For example, an alert may be sent to mobile device 2705 when a particular consuming entity enters or conducts an interaction at a particular provisioning entity. For example, a manager of a casino might want to be alerted when a big spender enters their casino, engages in a transaction, places a bet, or makes a purchase. In some embodiments, an alert can include an email or other type of message including text. Such an alert system can be configurable. For example, an alert may be sent to a mobile device when the mobile device is in or near a particular location, such as the provisioning entity where a loyal customer entered. In some embodiments, an alert may not be sent to mobile device 2705 when a loyal customer enters a provisioning entity and mobile device 2705 is not in the provisioning entity.
Various actions can occur based on other attributes. For example, an alert may be sent to mobile device 2705 only during particular times or when a particular amount of loyal customers are located in a provisioning entity, or when a particular amount of loyal customers engage in interactions with the provisioning entity. For example, an alert may be sent to the manager of a provisioning entity when 50 people are in the provisioning entity (or when 10 consuming entities engage in a transaction at the provisioning entity) during business hours, but not after 5:00 p.m. However, an alert may be configured to send a message to the manager when over 100 people are in the provisioning entity (or at least 20 consuming entities engage in a transaction at the provisioning entity) after 5:00 p.m.
In some embodiments, a summary or aggregated amount of information (e.g., a batch) can be sent to mobile device 2705 and include information such as loyal customers that visited one or more provisioning entities during a particular time, interactions entered into by customers and/or loyal customers, products and/or services purchased by customers, etc. In addition to identifying loyal customers via an associated mobile device, in some embodiments, loyal customers can be identified using RFID or biometrics such as facial recognition. Alerts can then be generated based on the identification of a particular loyal customer. It should be appreciated that devices that implement identification technology using biometrics can be included in system 2700.
In some embodiments, an action is triggered based on attributes associated with an interaction, such as when an interaction involving more than a threshold amount of money occurs. For example, an email may be delivered to mobile device 2705 in response to a large transaction occurring at a provisioning entity. In some embodiments, the alert may not be delivered to mobile device 2705 based on one or more attributes associated with mobile device 2705, such as its location. For example, an alert may not be delivered to mobile device 2705 if mobile device 2705 is located in the provisioning entity where a transaction occurred, since the user of mobile device 2705 may already know about a transaction that is occurring at a store they are also at. As another example, an alert may be delivered to mobile device 2705 when the mobile device is located in the provisioning entity, so an employee may thank a customer involved in an interaction. In another example, a store manager may want to view real-time metrics on their way to the store. In some cases, an alert may be provided to mobile device 2705 at a particular time (e.g., an hour before the manager starts their shift) or in response to mobile device 2705 being near or entering a provisioning entity. This allows a user to view information associated with the provisioning entity before or when the user arrives at the provisioning entity.
In some embodiments, an alert may be delivered when mobile device 2705 is not located at a provisioning entity and an interaction with particular attributes occurs. For example, an alert may be sent to a store owner's mobile device that indicates that fraudulent interactions occurred at their store. As another example, an alert may be sent to a store manager indicating whether one or more products should be ordered (e.g., refilled). A determination as to whether more products should be ordered may be based on information associated with interactions, such as the amount of products that have been purchased, and information associated with inventory such as the amount of a product located at one or more provisioning entities. In some embodiments, an alert may be sent to mobile device 2705 and additional products may be ordered automatically (e.g., system 2700 send information to a supplier to order additional products).
In some embodiments, an alert can be an email that includes dynamic content, also known as rich media, associated with the performance of an entity. For example, metrics associated with a provisioning entity may be updated and displayed when a device accesses email and/or when a user opens an email including the metrics (e.g., using a mobile device). Such rich media can be displayed using a hyper-text markup language, using a widget, or in a manner based on the type of device in which the rich media is being displayed.
The example mobile widget shown in user interface 2800 includes information associated with revenue for a particular area. In various embodiments, a map 2835 can be shown on the mobile device and may indicate provisioning entities to be analyzed within a particular radius (e.g., 500 feet as shown by map data 2830). In various embodiments, a user can interact with a mobile widget to change a type of interaction data accessed (e.g., by manipulating the type of data shown 2825), or change the size of an area being analyzed. In some embodiments, the example mobile widget can determine the location of the mobile device using the data acquisition interface. For example, a global positioning system included in the mobile device may cause the mobile widget to show a map 2835 indicating the location of the mobile device. A user may input a radius, which can be used to indicate provisioning entities within an area shaped as a circle surrounding the mobile device, wherein the radius of the circle is based on the user input. Once an area is determined, a mobile device can send an information request to a performance analysis system (e.g., located at server 2725). In response to the information request, a performance analysis system can return attributes associated with provisioning entities within the radius such as types of provisioning entities, locations of provisioning entities, revenue of provisioning entities over a period of time, interactions occurring at provisioning entities during a period of time, etc. In various embodiments, other shapes such as polygons may be used in conjunction with a map to determine a cohort of entities which can then be analyzed. For example, a user may enter boundaries of a shape by tracing streets or drawing a circle on a map. As another example, a user may enter latitudinal and longitudinal coordinates associated using a mobile widget to help create a cohort of entities to be analyzed.
As an example, a user can visit downtown Boston, Mass., and use the mobile widget in example user interface 2800 to view the performance entity of a cohort of entities surrounding the user. The user may open the widget and enter a radius (e.g., 2 miles), and filter selections specifying a type of provisioning entity such as coffee shops. The widget may use a data acquisition interface to determine the mobile device's location, and then display all of the coffee shops within a 2 mile radius of the mobile device, helping the user find coffee shops that are performing well in downtown Boston. A user may use this information and visit high performing coffee shops to see why they are doing well. As another example, the information may assist the user with determining where to open a new coffee shop.
In some embodiments, one or more mobile devices can be used to control various attributes of a provisioning entity. For example, someone using a mobile device can control the temperature or lighting within a provisioning entity, or music playing in the background. In various embodiments, when a threshold amount of users are in a store (e.g., a particular number of mobile devices are determined to be within a store) at a particular time, a system such as system 2700 may be configured to automatically adjust temperature or lighting within a portion of, or all of a provisioning entity.
In some embodiments, previously acquired data can be used to predict times that a provisioning entity will be busy, and the provisioning entity can preemptively adjust an attribute of a store such as lighting, temperature, or background music. In some embodiments, a request to change attributes of a provisioning entity may be sent to a mobile device (e.g., a mobile device that is in the provisioning entity and associated with the provisioning entity, such as a mobile device belonging to an owner or manager), such that a user of the mobile device can use the mobile device to instruct a system to adjust attributes associated with a provisioning entity. As with other alerts, a request to change attributes may be delivered to a mobile device anytime, when the mobile device that receives the request is in the provisioning entity, or when the mobile device that receives the request is not in the provisioning entity.
In step 3510, data is acquired by a data acquisition interface included in a mobile device. As discussed above, this data can include location data, information regarding other mobile devices near the mobile device, temperature, etc. The data acquisition interface can acquire many types of data, and then provide the data to a remote server that can then process the data acquired at the mobile device's data acquisition interface and provide performance analysis data based at least in part on the data acquired by the data acquisition interface included in the mobile device.
In step 3520, a request for entity performance information is received from a mobile device. In some embodiments, the request for entity performance information is received from a mobile device associated with a consuming entity, a provisioning entity, or both. It should be appreciated that the provisioning entity for which performance information is requested can be associated with the mobile device. For example, the mobile device may have logged onto a web portal using credentials associated with the provisioning entity, or the mobile device may be owned and/or operated by the provisioning entity, an owner of the provisioning entity, or an employee of the provisioning entity. In some embodiments, attributes associated with the mobile device, such as location or temperature, may be determined and information provided to the device can be based on the attributes of the mobile device.
In step 3530, a database comprising categories of information including interaction information associated with one or more entities is accessed. Such a database can be located in a server such as server 2725, or another device such as those illustrated in FIGS. 2 and 27 . It should be appreciated that in some embodiments a data structure other than a database can be used to store data associated with provisioning and consuming entities. As discussed above with reference to data structure 400, in some embodiments, a database can be a Relational Database Management System or a column-oriented database. Further, in some embodiments both types of databases can be used to store information.
In step 3540, a set of categories within the database is identified. These categories may be identified based on filter selections and acquired data. For example, categories can include locations of provisioning or consuming entities and amounts associated with particular transactions. Acquired data can include data acquired by a data acquisition interface included in a mobile device. The categories can be identified based on one or more filter selections as described above with reference to FIG. 6 . For example, a filter selection associated with provisioning entities in Texas may cause categories associated with provisioning or consuming entities in Texas to be accessed.
In step 3550, information of the identified categories is processed to analyze a performance of at least one of the entities in accordance with filter selections and acquired data. For example, in response to receiving a filter selection specifying entities that have a monthly revenue of over $10,000, database entries including amounts of money included in interactions may be analyzed. These interactions may be associated with an entity (e.g., an entity stored in a row of a database corresponding with an interaction), and the amounts of money included in the interactions may be averaged based at least in part on dates associated with the interactions. Based on the average amounts included in the interactions and the dates associated with the interactions, an amount of monthly revenue of an entity may be determined. In this example, entities with monthly revenues over $10,000 may be provided based on the filter selection.
In some embodiments, filter selections can be used to determine one or more cells (e.g., entries) within a database based on identified categories, which are identified based on the filter selections. These filter selection can be used to create what are commonly referred to as queries. One or more interactions corresponding to a row of a database comprising the one or more determined cells may be determined. Based on these interactions, one or more entities can be determined as corresponding to these cells (e.g., a store may be determined based on an interaction that occurred at the store, wherein a store identifier (ID) and interaction information is included in a row or column of a database). Performance information indicating the performance of one or more entities based on the transactions can be determined after the transactions are identified. Using these techniques, filter selections can be used to extract performance information from a database.
In various embodiments, databases may receive queries (e.g., requests that can be based on filter sections). One or more modules sometimes referred to as a Query Processor may determine whether the query has permission to be ran against the database. If so, a query, which can be an SQL query, can be compiled into an internal query plan. After a query is compiled, a resulting query plan can be used by a plan operator to execute a query. A plan operator may implement relational query processing tasks including joins, selection, projection, aggregation, sorting, etc. Plan operators can make fetch calls to fetch data from a Transactional Storage Manager, which can manage all data access (e.g., read) and manipulation (e.g., create, update, and delete) calls. A database may include algorithms for organizing and accessing data in memory, including basic structures such as tables and indexes. In addition, a buffer management module may determine when and what data to transfer between storage devices. In some examples, before accessing data, locks are acquired from a lock manager to ensure correct execution when concurrent queries are made. A log manager can be accessed to determine whether a transaction can be completed successfully. After data is accessed, it can be used to compute results to provide to a requesting module or device. In some embodiments, this is performed by unwinding a stack (e.g., moving back through various activities performed prior to this point). Tuples can be generated from database data and placed in a buffer for a communications manager to send to a requesting module or device. In some embodiments, to retrieve large result sets a requesting module or device may make additional calls to fetch additional data incrementally from results returned from a query, such that multiple iterations are performed using a communications manager, query executor, and/or storage manager.
As discussed above with reference to FIG. 6 , one or more filter selections of the received request can comprise a selection to represent data associated with at least one of: cohorts; demographics; locations; time; and transactions. Alternatively, the one or more filter selections can comprise a selection to represent data associated with at least one of: charts; histograms; maps; numbers; and time. In some embodiments, the one or more filter selections can comprise a selection to represent data associated with at least one of: a location information associated with the occurrence of an interaction; a location information associated with the consuming entity; a location information associated with the provisioning entity; demographic information representing at least one of: age, gender, income, and location associated with the consuming entity; an amount associated with an interaction; and a time associated with an interaction. Such filter selections can eliminate data that does not correspond with the filter selections, such that only interactions, entities, or the like are displayed to a user. For example, if a user selects filter selections corresponding with provisioning entities in California and transactions that include amounts over $500, then interactions that did not occur in California or involved an amount over $500 may not be displayed.
In some embodiments, filter selections may be combined with acquired data (e.g., by a mobile device). For example, a filter selection could correspond to information about which stores that sell pizza within a radius of 500 meters, and acquired data may be the location of a mobile phone. In such an example, stores that sell pizza within 500 meters of a mobile phone may be shown. In additional embodiments, filter selections may include information associated with entity performance, such as an amount of revenue over a period of time, items sold by a particular merchant at a particular time, any known sales of discounts available at various provisioning entities, etc. In some embodiments, a consuming entity may enter a filter selection, and use acquired data, such that a mobile device identifies sales or discounts on products located at provisioning entities within a particular distance of the mobile device. In some embodiments, acquired data such as temperature combined with an amount of people in a store, or predicted to be in a store, can be used to adjust attributes associated with a provisioning entity. For example, a mobile phone may receive information associated with a temperature of a provisioning entity and access a data structure indicating an average amount of people in a provisioning entity at a particular time. Based on the particular time, amount of transactions in a provisioning entity, or number of devices in a provisioning entity, a temperature reading may be taken (e.g., by the mobile device or a thermometer communicatively coupled to the mobile device), and if the temperature is above a predefined threshold the temperature in the provisioning entity may be lowered.
In step 3560, an action is performed based on performance information for at least one entity. As described above, a variety of actions are available to a system such as those depicted in FIGS. 2 and 27 . Many of these examples can be performed by a system at a server (e.g., a distributed computing system), one or more mobile devices, or at another device within a provisioning entity. For example, some actions may be associated with sending information, such as: sending an alert (which can include or be an email), sending a summary of performance information to a mobile device, sending information indicating that a loyal customer is in a provisioning entity, sending information indicating that a particular amount of customers are in a provisioning entity, sending information indicating that an interaction including an amount of money or products above a predetermined threshold has taken place, sending information to a financial institution indicating that fraud may have occurred, sending information about an amount of revenue generated during a particular period of time, sending information to a server such as information associated with interactions, sending dynamic content within an email to be sent, etc. As additional examples, some actions may be associated with causing a mobile device to perform an action, such as: adjusting a temperature, lighting, or music within a space or a building, opening an application on a mobile device, causing an audible noise, causing a mobile device to determine its location, causing a mobile device to determine a temperature, causing a mobile device to communicate with a wireless device such as an Bluetooth or WiFi device, etc. Many of these examples can include sending information to a mobile device to trigger the mobile device to perform an action.
In step 3610, request information is sent to a server. In various embodiments, data acquired by a mobile device or a data acquisition interface included in a mobile device can be sent as part of, or included with the request information. Request information can include filter selections, location information of a mobile device, location information used to determine a cohort, geographic information, demographic information, a request for a type of alert to be sent back upon a condition being met, etc. It should also be appreciated that the term server can be used interchangeably with distributed computing devices, as described above. In various embodiments, request information is processed at a server such that pertinent information is sent back to the device that requested the information (e.g., particular information associated with a provisioning entity associated with the device).
In step 3620, performance information associated with one or more entities based on the request information is received. This information can be received by a mobile device, which may have sent the request information to the server. Such a mobile device can be associated with a consuming entity, a provisioning entity, or both. Received performance information can include information indicating an amount of revenue of a cohort of provisioning entities over a period of time, and other types of performance information discussed above.
In step 3630, an action is performed in response to the received performance information. For example, any of the actions discussed above with reference to step 3550 of FIG. 5 may be performed. For example, in response to a mobile device receiving performance information indicating the coffee shops with the highest revenue in a particular area, the mobile device may automatically provide directions from the location of the mobile device to the location of the coffee shop with the highest revenue in the particular area.
In the foregoing specification, embodiments have been described with reference to numerous specific details that can vary from implementation to implementation. Certain adaptations and modifications of the embodiments described herein can be made. Therefore, the above embodiments are considered to be illustrative and not restrictive.
Claims (14)
1. A system for presenting a visual representation of entity performance, the system comprising:
a memory including a set of instructions;
a transceiver configured to send and receive data;
one or more processors configured to execute the set of instructions to cause the one or more processors to perform operations that include:
generating a presentation of an interface at a mobile device, the presentation of the interface including a display of one or more filters, wherein each filter of the one or more filters are associated with one or more data categories;
receiving a request for entity performance information of an entity, wherein the request includes a temporal criteria and a selection of a filter from among the display of the one or more filters, the temporal criteria defining a time period, and the filter comprising a geographic filter criteria that identifies a geographical location;
altering the presentation of the interface displayed at the mobile device to include an element, the element based on the data category associated with the selection of the filter, the element comprising a map image that depicts at least the geographical location identified by the geographic filter criteria;
accessing a database that comprises interaction information associated with the entity in response to the receiving the request for entity performance information of the entity, the interaction information including temporal data that indicates a time associated with an interaction, location data that identifies one or more locations of one or more entities within geographical region identified by the geographical filter criteria during the time associated with the interaction, the one or more locations including at least a location of the entity within the geographical location identified by the geographic filter criteria, and performance data associated with the entity;
filtering the interaction information based on the time period defined by the temporal criteria, the interaction information is related to a quantity of mobile devices in the geographic location during the time period;
transmitting a message that includes an email, the email comprising at least a rich media item configured to cause display of the interaction information; and
causing display of a representation a portion of the interaction information within the interface at the mobile device based on the rich media item, the portion of the interaction information based on the filtering of the interaction information based on the time period defined by the temporal criteria, and the representation comprising a shaded region within the map image presented within the interface, a shape of the shaded region within the map image based on the location data that identifies the location of the entity, and the shaded region comprising a shading pattern, the shading pattern based on the performance data of the entity.
2. The system for analyzing entity performance of claim 1 , wherein at least a portion of the database is included in the mobile device.
3. The system for analyzing entity performance of claim 1 , wherein the database is remote relative to the mobile device.
4. The system for analyzing entity performance of claim 1 , wherein the interaction information includes sales data of the geographic filter criteria.
5. The system for analyzing entity performance of claim 1 , wherein the presenting the interaction information includes causing an alert at the mobile device based on the interaction information.
6. The system for analyzing entity performance of claim 1 , wherein the operations further comprise:
transmitting an email that includes at least one rich media object configured to display the interaction information at a predefined time.
7. The system for analyzing entity performance of claim 1 , wherein the database includes one or more locations of one or more mobile devices, and wherein at least one action includes providing information associated with a quantity of mobile devices in a particular location during a particular time period.
8. A method for analyzing entity performance, the method comprising:
generating, by one or more processors, a presentation of an interface at a mobile device, the presentation of the interface including a display of one or more filters, wherein each filter of the one or more filters are associated with one or more data categories;
receiving, by the one or more processors, a request for entity performance information of an entity, wherein the request includes a temporal criteria and a selection of a filter from among the display of the one or more filters, the temporal criteria defining a time period, and the filter comprising a geographic filter criteria that identifies a geographical location;
altering, by the one or more processors, the presentation of the interface displayed at the mobile device to include an element, the element based on the data category associated with the selection of the filter, the element comprising a map image that depicts at least the geographical location identified by the geographic filter criteria;
accessing, by the one or more processors, a database that comprises interaction information associated with the entity in response to the receiving the request for entity performance information of the entity, the interaction information including temporal data that indicates a time associated with an interaction, location data that identifies one or more locations of one or more entities within the geographical region identified by the geographical filter criteria during the time associated with the interaction, the one or more locations including at least a location of the entity within the geographical location identified by the geographic filter criteria, and performance data associated with the entity;
filtering, by the one or more processors, the interaction information based on the time period defined by the temporal criteria, the interaction information is related to a quantity of mobile devices in the geographic location during the time period;
transmitting, by the one or more processors, a message that includes an email, the email comprising at least a rich media item configured to cause display of the interaction information; and
causing, by the one or more processors, display of a representation a portion of the interaction information within the interface at the mobile device based on the rich media item, the portion of the interaction information based on the filtering of the interaction information based on the time period defined by the temporal criteria, and the representation comprising a shaded region within the map image presented within the interface, a shape of the shaded region within the map image based on the location data that identifies the location of the entity, and the shaded region comprising a shading pattern, the shading pattern based on the performance data of the entity.
9. The method of claim 8 , wherein the interaction information includes sales data of the geographic filter criteria.
10. The method of claim 8 , wherein the presenting the interaction information includes causing an alert at the mobile device based on the interaction information.
11. The method of claim 8 , wherein at least one action includes transmitting an email that includes at least one rich media object configured to display the interaction information at a predefined time.
12. The method of claim 8 , wherein the database includes one or more locations of one or more mobile devices, and wherein at least one action includes providing information associated with a quantity of mobile devices in a particular location during a particular time period.
13. A non-transitory computer-readable medium storing a set of instructions that are executed by one or more processors of one or more servers to cause the one or more servers to perform a method for analyzing entity performance, the method comprising:
generating a presentation of an interface at a mobile device, the presentation of the interface including a display of one or more filters, wherein each filter of the one or more filters are associated with one or more data categories;
receiving a request for entity performance information of an entity, wherein the request includes a temporal criteria and a selection of a filter from among the display of the one or more filters, the temporal criteria defining a time period, and the filter comprising a geographic filter criteria that identifies a geographical location;
altering the presentation of the interface displayed at the mobile device to include an element, the element based on the data category associated with the selection of the filter, the element comprising a map image that depicts at least the geographical location identified by the geographic filter criteria;
accessing a database that comprises interaction information associated with the entity in response to the receiving the request for entity performance information of the entity, the interaction information including temporal data that indicates a time associated with an interaction, location data that identifies one or more locations of one or more entities within the geographical region identified by the geographical filter criteria during the time associated with the interaction, the one or more locations including at least a location of the entity within the geographical location identified by the geographic filter criteria, and performance data associated with the entity;
filtering the interaction information based on the time period defined by the temporal criteria, the interaction information is related to a quantity of mobile devices in the geographic location during the time period;
transmitting a message that includes an email, the email comprising at least a rich media item configured to cause display of the interaction information; and
causing display of a representation a portion of the interaction information within the interface at the mobile device based on the rich media item, the portion of the interaction information based on the filtering of the interaction information based on the time period defined by the temporal criteria, and the representation comprising a shaded region within the map image presented within the interface, a shape of the shaded region within the map image based on the location data that identifies the location of the entity, and the shaded region comprising a shading pattern, the shading pattern based on the performance data of the entity.
14. The non-transitory computer-readable medium 13, wherein the operations further comprise transmitting an email that includes at least one rich media object configured to display the interaction information at a predefined time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/013,707 US10579647B1 (en) | 2013-12-16 | 2016-02-02 | Methods and systems for analyzing entity performance |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361916796P | 2013-12-16 | 2013-12-16 | |
US201361916797P | 2013-12-16 | 2013-12-16 | |
US201361916795P | 2013-12-16 | 2013-12-16 | |
US14/306,154 US9727622B2 (en) | 2013-12-16 | 2014-06-16 | Methods and systems for analyzing entity performance |
US14/306,138 US9734217B2 (en) | 2013-12-16 | 2014-06-16 | Methods and systems for analyzing entity performance |
US14/306,147 US10025834B2 (en) | 2013-12-16 | 2014-06-16 | Methods and systems for analyzing entity performance |
US201562387601P | 2015-12-24 | 2015-12-24 | |
US15/013,707 US10579647B1 (en) | 2013-12-16 | 2016-02-02 | Methods and systems for analyzing entity performance |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/306,154 Continuation-In-Part US9727622B2 (en) | 2013-12-16 | 2014-06-16 | Methods and systems for analyzing entity performance |
US14/306,138 Continuation-In-Part US9734217B2 (en) | 2013-12-16 | 2014-06-16 | Methods and systems for analyzing entity performance |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/306,138 Continuation-In-Part US9734217B2 (en) | 2013-12-16 | 2014-06-16 | Methods and systems for analyzing entity performance |
Publications (1)
Publication Number | Publication Date |
---|---|
US10579647B1 true US10579647B1 (en) | 2020-03-03 |
Family
ID=69645438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/013,707 Active US10579647B1 (en) | 2013-12-16 | 2016-02-02 | Methods and systems for analyzing entity performance |
Country Status (1)
Country | Link |
---|---|
US (1) | US10579647B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10902445B2 (en) * | 2017-11-13 | 2021-01-26 | International Business Machines Corporation | Location evaluation |
US11004147B1 (en) * | 2008-08-14 | 2021-05-11 | Experian Information Solutions, Inc. | Multi-bureau credit file freeze and unfreeze |
US20210182828A1 (en) * | 2012-11-05 | 2021-06-17 | Mfoundry, Inc. | Cloud-based systems and methods for providing consumer financial data |
US11164198B2 (en) * | 2017-03-31 | 2021-11-02 | ASK Chemicals LLC | Graphical user interface for visualizing market share analysis |
US11227001B2 (en) | 2017-01-31 | 2022-01-18 | Experian Information Solutions, Inc. | Massive scale heterogeneous data ingestion and user resolution |
US11620403B2 (en) | 2019-01-11 | 2023-04-04 | Experian Information Solutions, Inc. | Systems and methods for secure data aggregation and computation |
US11652607B1 (en) | 2017-06-30 | 2023-05-16 | Experian Information Solutions, Inc. | Symmetric encryption for private smart contracts among multiple parties in a private peer-to-peer network |
US11729230B1 (en) | 2015-11-24 | 2023-08-15 | Experian Information Solutions, Inc. | Real-time event-based notification system |
Citations (682)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4881179A (en) | 1988-03-11 | 1989-11-14 | International Business Machines Corp. | Method for providing information security protocols to an electronic calendar |
US5021792A (en) | 1990-01-12 | 1991-06-04 | Rockwell International Corporation | System for determining direction or attitude using GPS satellite signals |
US5241625A (en) | 1990-11-27 | 1993-08-31 | Farallon Computing, Inc. | Screen image sharing among heterogeneous computers |
US5555503A (en) | 1989-12-11 | 1996-09-10 | Caterpillar Inc. | System and method for providing accurate vehicle positioning using spatial bias techniques |
US5670987A (en) | 1993-09-21 | 1997-09-23 | Kabushiki Kaisha Toshiba | Virtual manipulating apparatus and method |
US5826021A (en) | 1996-09-17 | 1998-10-20 | Sun Microsystems, Inc. | Disconnected write authorization in a client/server computing system |
US5832218A (en) | 1995-12-14 | 1998-11-03 | International Business Machines Corporation | Client/server electronic mail system for providng off-line client utilization and seamless server resynchronization |
US5845300A (en) | 1996-06-05 | 1998-12-01 | Microsoft Corporation | Method and apparatus for suggesting completions for a partially entered data item based on previously-entered, associated data items |
US5878434A (en) | 1996-07-18 | 1999-03-02 | Novell, Inc | Transaction clash management in a disconnectable computer and network |
US5897636A (en) | 1996-07-11 | 1999-04-27 | Tandem Corporation Incorporated | Distributed object computer system with hierarchical name space versioning |
US5966706A (en) | 1997-02-19 | 1999-10-12 | At&T Corp | Local logging in a distributed database management computer system |
US5999911A (en) | 1995-06-02 | 1999-12-07 | Mentor Graphics Corporation | Method and system for managing workflow |
US6006242A (en) | 1996-04-05 | 1999-12-21 | Bankers Systems, Inc. | Apparatus and method for dynamically creating a document |
US6057757A (en) | 1995-03-29 | 2000-05-02 | Cabletron Systems, Inc. | Method and apparatus for policy-based alarm notification in a distributed network management environment |
US6065026A (en) | 1997-01-09 | 2000-05-16 | Document.Com, Inc. | Multi-user electronic document authoring system with prompted updating of shared language |
US6101479A (en) | 1992-07-15 | 2000-08-08 | Shaw; James G. | System and method for allocating company resources to fulfill customer expectations |
US6134582A (en) | 1998-05-26 | 2000-10-17 | Microsoft Corporation | System and method for managing electronic mail messages using a client-based database |
US6141659A (en) | 1998-05-12 | 2000-10-31 | International Businss Machines Corporation | Systems, methods and computer program products for retrieving documents from multiple document servers via a single client session |
US6189003B1 (en) | 1998-10-23 | 2001-02-13 | Wynwyn.Com Inc. | Online business directory with predefined search template for facilitating the matching of buyers to qualified sellers |
WO2001025906A1 (en) | 1999-10-01 | 2001-04-12 | Global Graphics Software Limited | Method and system for arranging a workflow using graphical user interface |
US6232971B1 (en) | 1998-09-23 | 2001-05-15 | International Business Machines Corporation | Variable modality child windows |
US6237138B1 (en) | 1996-11-12 | 2001-05-22 | International Business Machines Corp. | Buffered screen capturing software tool for usability testing of computer applications |
US6243717B1 (en) | 1998-09-01 | 2001-06-05 | Camstar Systems, Inc. | System and method for implementing revision management of linked data entities and user dependent terminology |
US6243706B1 (en) | 1998-07-24 | 2001-06-05 | Avid Technology, Inc. | System and method for managing the creation and production of computer generated works |
US6272489B1 (en) | 1998-05-12 | 2001-08-07 | International Business Machines Corp. | Visually oriented, easily navigable search facility |
US6279018B1 (en) | 1998-12-21 | 2001-08-21 | Kudrollis Software Inventions Pvt. Ltd. | Abbreviating and compacting text to cope with display space constraint in computer software |
US20010021936A1 (en) | 1998-06-02 | 2001-09-13 | Randal Lee Bertram | Method and system for reducing the horizontal space required for displaying a column containing text data |
WO2001088750A1 (en) | 2000-05-16 | 2001-11-22 | Carroll Garrett O | A document processing system and method |
GB2366498A (en) | 2000-08-25 | 2002-03-06 | Copyn Ltd | Method of bookmarking a section of a web-page and storing said bookmarks |
US20020032677A1 (en) | 2000-03-01 | 2002-03-14 | Jeff Morgenthaler | Methods for creating, editing, and updating searchable graphical database and databases of graphical images and information and displaying graphical images from a searchable graphical database or databases in a sequential or slide show format |
US20020035590A1 (en) | 2000-09-16 | 2002-03-21 | International Business Machines Corporation | Guaranteed end-to-end transaction execution in a client/server environment |
EP1191463A2 (en) | 2000-09-26 | 2002-03-27 | International Business Machines Corporation | A method for adapting a k-means text clustering to emerging data |
US6370538B1 (en) | 1999-11-22 | 2002-04-09 | Xerox Corporation | Direct manipulation interface for document properties |
US6374251B1 (en) | 1998-03-17 | 2002-04-16 | Microsoft Corporation | Scalable system for clustering of large databases |
US20020065708A1 (en) | 2000-09-22 | 2002-05-30 | Hikmet Senay | Method and system for interactive visual analyses of organizational interactions |
US20020095658A1 (en) | 1997-05-27 | 2002-07-18 | Microsoft Corporation | Computer programming language statement building and information tool |
US20020095360A1 (en) | 2001-01-16 | 2002-07-18 | Joao Raymond Anthony | Apparatus and method for providing transaction history information, account history information, and/or charge-back information |
US20020103705A1 (en) | 2000-12-06 | 2002-08-01 | Forecourt Communication Group | Method and apparatus for using prior purchases to select activities to present to a customer |
US6430305B1 (en) | 1996-12-20 | 2002-08-06 | Synaptics, Incorporated | Identity verification methods |
US6463404B1 (en) | 1997-08-08 | 2002-10-08 | British Telecommunications Public Limited Company | Translation |
US20020147805A1 (en) | 1996-10-15 | 2002-10-10 | Eran Leshem | Software system and methods for generating and graphically representing web site usage data |
US20020194119A1 (en) | 2001-05-30 | 2002-12-19 | William Wright | Method and apparatus for evaluating fraud risk in an electronic commerce transaction |
US20020194058A1 (en) | 1999-03-12 | 2002-12-19 | Eldering Charles A. | Consumer profiling |
US20020196229A1 (en) | 2001-06-26 | 2002-12-26 | Frank Chen | Graphics-based calculator capable of directly editing data points on graph |
US20030028560A1 (en) | 2001-06-26 | 2003-02-06 | Kudrollis Software Inventions Pvt. Ltd. | Compacting an information array display to cope with two dimensional display space constraint |
US6519627B1 (en) | 1999-09-27 | 2003-02-11 | International Business Machines Corporation | System and method for conducting disconnected transactions with service contracts for pervasive computing devices |
US20030033228A1 (en) | 2000-11-30 | 2003-02-13 | Rowan Bosworth-Davies | Countermeasures for irregularities in financial transactions |
US6523019B1 (en) | 1999-09-21 | 2003-02-18 | Choicemaker Technologies, Inc. | Probabilistic record linkage model derived from training data |
US20030036927A1 (en) | 2001-08-20 | 2003-02-20 | Bowen Susan W. | Healthcare information search system and user interface |
US20030036848A1 (en) * | 2001-08-16 | 2003-02-20 | Sheha Michael A. | Point of interest spatial rating search method and system |
US20030061132A1 (en) | 2001-09-26 | 2003-03-27 | Yu, Mason K. | System and method for categorizing, aggregating and analyzing payment transactions data |
US20030074187A1 (en) | 2001-10-10 | 2003-04-17 | Xerox Corporation | Natural language parser |
US20030074368A1 (en) | 1999-01-26 | 2003-04-17 | Hinrich Schuetze | System and method for quantitatively representing data objects in vector space |
US20030088438A1 (en) | 2001-10-31 | 2003-05-08 | Maughan Rex Wendell | Healthcare system and user interface for consolidating patient related information from different sources |
US20030093401A1 (en) | 2001-11-14 | 2003-05-15 | Czajkowski Grzegorz J. | Method and apparatus for using a shared library mechanism to facilitate sharing of metadata |
US6567936B1 (en) | 2000-02-08 | 2003-05-20 | Microsoft Corporation | Data clustering using error-tolerant frequent item sets |
US20030097330A1 (en) | 2000-03-24 | 2003-05-22 | Amway Corporation | System and method for detecting fraudulent transactions |
US20030105759A1 (en) | 2001-10-26 | 2003-06-05 | United Services Automobile Association (Usaa) | System and method of providing electronic access to one or more documents |
US20030115481A1 (en) | 2001-12-18 | 2003-06-19 | Baird Roger T. | Controlling the distribution of information |
US20030126102A1 (en) | 1999-09-21 | 2003-07-03 | Choicemaker Technologies, Inc. | Probabilistic record linkage model derived from training data |
US20030152277A1 (en) | 2002-02-13 | 2003-08-14 | Convey Corporation | Method and system for interactive ground-truthing of document images |
US20030154044A1 (en) | 2001-07-23 | 2003-08-14 | Lundstedt Alan P. | On-site analysis system with central processor and method of analyzing |
US20030172014A1 (en) | 2000-09-01 | 2003-09-11 | Chris Quackenbush | System and method for online valuation and analysis |
US20030171942A1 (en) | 2002-03-06 | 2003-09-11 | I-Centrix Llc | Contact relationship management system and method |
US20030177112A1 (en) | 2002-01-28 | 2003-09-18 | Steve Gardner | Ontology-based information management system and method |
US20030182313A1 (en) | 2002-03-19 | 2003-09-25 | Federwisch Michael L. | System and method for determining changes in two snapshots and for transmitting changes to destination snapshot |
US6642945B1 (en) | 2000-05-04 | 2003-11-04 | Microsoft Corporation | Method and system for optimizing a visual display for handheld computer systems |
US20030212718A1 (en) | 2002-05-10 | 2003-11-13 | Lsi Logic Corporation | Revision control for database of evolved design |
US20030227746A1 (en) | 2002-06-11 | 2003-12-11 | Fujitsu Limited | Functional expansion apparatus and method for attaching electronic apparatus to the functional expansion apparatus |
US6665683B1 (en) | 2001-06-22 | 2003-12-16 | E. Intelligence, Inc. | System and method for adjusting a value within a multidimensional aggregation tree |
US20040003009A1 (en) | 2002-07-01 | 2004-01-01 | Wilmot Gerald J. | Real-time database update transaction with disconnected relational database clients |
US20040006523A1 (en) | 2002-07-08 | 2004-01-08 | Coker Don W. | System and method for preventing financial fraud |
US20040034570A1 (en) | 2002-03-20 | 2004-02-19 | Mark Davis | Targeted incentives based upon predicted behavior |
US20040044648A1 (en) | 2002-06-24 | 2004-03-04 | Xmyphonic System As | Method for data-centric collaboration |
US20040078451A1 (en) | 2002-10-17 | 2004-04-22 | International Business Machines Corporation | Separating and saving hyperlinks of special interest from a sequence of web documents being browsed at a receiving display station on the web |
US20040083466A1 (en) | 2002-10-29 | 2004-04-29 | Dapp Michael C. | Hardware parser accelerator |
US20040088177A1 (en) | 2002-11-04 | 2004-05-06 | Electronic Data Systems Corporation | Employee performance management method and system |
WO2004038548A2 (en) | 2002-10-21 | 2004-05-06 | Sinisi John P | System and method for mobile data collection |
US20040111480A1 (en) | 2002-12-09 | 2004-06-10 | Yue Jonathan Zhanjun | Message screening system and method |
US20040117387A1 (en) | 2000-02-25 | 2004-06-17 | Vincent Civetta | Database sizing and diagnostic utility |
US20040153418A1 (en) | 2003-02-05 | 2004-08-05 | Hanweck Gerald Alfred | System and method for providing access to data from proprietary tools |
US20040153451A1 (en) | 2002-11-15 | 2004-08-05 | John Phillips | Methods and systems for sharing data |
US6775675B1 (en) | 2001-04-04 | 2004-08-10 | Sagemetrics Corporation | Methods for abstracting data from various data structures and managing the presentation of the data |
US20040205524A1 (en) | 2001-08-15 | 2004-10-14 | F1F9 | Spreadsheet data processing system |
US20040203380A1 (en) | 2000-07-03 | 2004-10-14 | Maher Hamdi | Method and wireless terminal for generating and maintaining a relative positioning system |
US20040205492A1 (en) | 2001-07-26 | 2004-10-14 | Newsome Mark R. | Content clipping service |
US20040210763A1 (en) | 2002-11-06 | 2004-10-21 | Systems Research & Development | Confidential data sharing and anonymous entity resolution |
US6820135B1 (en) | 2000-08-31 | 2004-11-16 | Pervasive Software, Inc. | Modeless event-driven data transformation |
US20040236711A1 (en) | 2003-05-21 | 2004-11-25 | Bentley Systems, Inc. | System and method for automating the extraction of information contained within an engineering document |
US20040236688A1 (en) | 2000-10-30 | 2004-11-25 | Bozeman William O. | Universal positive pay database method, system, and computer useable medium |
US20050010472A1 (en) | 2003-07-08 | 2005-01-13 | Quatse Jesse T. | High-precision customer-based targeting by individual usage statistics |
US6850317B2 (en) | 2001-01-23 | 2005-02-01 | Schlumberger Technology Corporation | Apparatus and methods for determining velocity of oil in a flow stream |
US20050028094A1 (en) | 1999-07-30 | 2005-02-03 | Microsoft Corporation | Modeless child windows for application programs |
US20050027705A1 (en) * | 2003-05-20 | 2005-02-03 | Pasha Sadri | Mapping method and system |
US20050039116A1 (en) | 2003-07-31 | 2005-02-17 | Canon Kabushiki Kaisha | Collaborative editing with automatic layout |
US20050086207A1 (en) | 2003-10-16 | 2005-04-21 | Carsten Heuer | Control for selecting data query and visual configuration |
US20050091186A1 (en) | 2003-10-24 | 2005-04-28 | Alon Elish | Integrated method and apparatus for capture, storage, and retrieval of information |
US20050097441A1 (en) | 2003-10-31 | 2005-05-05 | Herbach Jonathan D. | Distributed document version control |
US20050102328A1 (en) | 2003-11-07 | 2005-05-12 | Ring Cameron T. | Synchronization and merge engines |
US20050108063A1 (en) | 2003-11-05 | 2005-05-19 | Madill Robert P.Jr. | Systems and methods for assessing the potential for fraud in business transactions |
US20050125715A1 (en) | 2003-12-04 | 2005-06-09 | Fabrizio Di Franco | Method of saving data in a graphical user interface |
US20050125436A1 (en) | 2003-12-03 | 2005-06-09 | Mudunuri Gautam H. | Set-oriented real-time data processing based on transaction boundaries |
US20050131935A1 (en) | 2003-11-18 | 2005-06-16 | O'leary Paul J. | Sector content mining system using a modular knowledge base |
US20050143096A1 (en) | 2003-12-31 | 2005-06-30 | Brian Boesch | System and method for establishing and monitoring the relative location of group members |
US20050154628A1 (en) * | 2004-01-13 | 2005-07-14 | Illumen, Inc. | Automated management of business performance information |
US20050154769A1 (en) * | 2004-01-13 | 2005-07-14 | Llumen, Inc. | Systems and methods for benchmarking business performance data against aggregated business performance data |
US6944821B1 (en) | 1999-12-07 | 2005-09-13 | International Business Machines Corporation | Copy/paste mechanism and paste buffer that includes source information for copied data |
US6944777B1 (en) | 1998-05-15 | 2005-09-13 | E.Piphany, Inc. | System and method for controlling access to resources in a distributed environment |
US20050210409A1 (en) | 2004-03-19 | 2005-09-22 | Kenny Jou | Systems and methods for class designation in a computerized social network application |
US20050222928A1 (en) | 2004-04-06 | 2005-10-06 | Pricewaterhousecoopers Llp | Systems and methods for investigation of financial reporting information |
US6967589B1 (en) | 2000-08-11 | 2005-11-22 | Oleumtech Corporation | Gas/oil well monitoring system |
US20050262512A1 (en) | 2004-05-20 | 2005-11-24 | Oliver Schmidt | Sharing objects in runtime systems |
US20050262493A1 (en) | 2004-05-20 | 2005-11-24 | Oliver Schmidt | Sharing objects in runtime systems |
WO2005116851A2 (en) | 2004-05-25 | 2005-12-08 | Postini, Inc. | Electronic message source information reputation system |
US6978419B1 (en) | 2000-11-15 | 2005-12-20 | Justsystem Corporation | Method and apparatus for efficient identification of duplicate and near-duplicate documents and text spans using high-discriminability text fragments |
US6980984B1 (en) | 2001-05-16 | 2005-12-27 | Kanisa, Inc. | Content provider systems and methods using structured data |
US20060010130A1 (en) | 2004-07-09 | 2006-01-12 | Avraham Leff | Method and apparatus for synchronizing client transactions executed by an autonomous client |
US20060026120A1 (en) | 2004-03-24 | 2006-02-02 | Update Publications Lp | Method and system for collecting, processing, and distributing residential property data |
US20060026561A1 (en) | 2004-07-29 | 2006-02-02 | International Business Machines Corporation | Inserting into a document a screen image of a computer software application |
US20060031779A1 (en) | 2004-04-15 | 2006-02-09 | Citrix Systems, Inc. | Selectively sharing screen data |
US20060045470A1 (en) | 2004-08-25 | 2006-03-02 | Thomas Poslinski | Progess bar with multiple portions |
US20060053170A1 (en) | 2004-09-03 | 2006-03-09 | Bio Wisdom Limited | System and method for parsing and/or exporting data from one or more multi-relational ontologies |
US20060053097A1 (en) | 2004-04-01 | 2006-03-09 | King Martin T | Searching and accessing documents on private networks for use with captures from rendered documents |
US20060059423A1 (en) | 2004-09-13 | 2006-03-16 | Stefan Lehmann | Apparatus, system, and method for creating customized workflow documentation |
US20060074866A1 (en) | 2004-09-27 | 2006-04-06 | Microsoft Corporation | One click conditional formatting method and system for software programs |
US20060080316A1 (en) | 2004-10-08 | 2006-04-13 | Meridio Ltd | Multiple indexing of an electronic document to selectively permit access to the content and metadata thereof |
US20060080139A1 (en) | 2004-10-08 | 2006-04-13 | Woodhaven Health Services | Preadmission health care cost and reimbursement estimation tool |
US20060080283A1 (en) | 2002-10-22 | 2006-04-13 | Shipman Robert A | Method and system for processing or searching user records |
US20060095521A1 (en) | 2004-11-04 | 2006-05-04 | Seth Patinkin | Method, apparatus, and system for clustering and classification |
US20060116991A1 (en) | 2004-10-13 | 2006-06-01 | Ciphergrid Limited | Remote database technique |
US7058648B1 (en) | 2000-12-01 | 2006-06-06 | Oracle International Corporation | Hierarchy-based secured document repository |
US20060129746A1 (en) | 2004-12-14 | 2006-06-15 | Ithink, Inc. | Method and graphic interface for storing, moving, sending or printing electronic data to two or more locations, in two or more formats with a single save function |
EP1672527A2 (en) | 2004-12-15 | 2006-06-21 | Microsoft Corporation | System and method for automatically completing spreadsheet formulas |
US20060136513A1 (en) | 2004-12-21 | 2006-06-22 | Nextpage, Inc. | Managing the status of documents in a distributed storage system |
US20060143075A1 (en) | 2003-09-22 | 2006-06-29 | Ryan Carr | Assumed demographics, predicted behaviour, and targeted incentives |
US20060143034A1 (en) | 2004-12-29 | 2006-06-29 | Sap Ag | System supported optimization of event resolution |
US20060143079A1 (en) | 2004-12-29 | 2006-06-29 | Jayanta Basak | Cross-channel customer matching |
US20060155654A1 (en) | 2002-08-13 | 2006-07-13 | Frederic Plessis | Editor and method for editing formulae for calculating the price of a service and a system for automatic costing of a service |
US7086028B1 (en) | 2003-04-09 | 2006-08-01 | Autodesk, Inc. | Simplified generation of design change information on a drawing in a computer aided design (CAD) environment |
US7089541B2 (en) | 2001-11-30 | 2006-08-08 | Sun Microsystems, Inc. | Modular parser architecture with mini parsers |
US20060178954A1 (en) | 2004-12-13 | 2006-08-10 | Rohit Thukral | Iterative asset reconciliation process |
US20060178915A1 (en) | 2002-10-18 | 2006-08-10 | Schumarry Chao | Mass customization for management of healthcare |
US20060206235A1 (en) | 2005-03-10 | 2006-09-14 | Shakes Jonathan J | Method and apparatus for multi-destination item selection using motes |
US20060218637A1 (en) | 2005-03-24 | 2006-09-28 | Microsoft Corporation | System and method of selectively scanning a file on a computing device for malware |
US20060218491A1 (en) | 2005-03-25 | 2006-09-28 | International Business Machines Corporation | System, method and program product for community review of documents |
US20060218206A1 (en) | 2002-08-12 | 2006-09-28 | International Business Machines Corporation | Method, System, and Program for Merging Log Entries From Multiple Recovery Log Files |
US20060242040A1 (en) * | 2005-04-20 | 2006-10-26 | Aim Holdings Llc | Method and system for conducting sentiment analysis for securities research |
US20060253502A1 (en) | 2005-05-06 | 2006-11-09 | Microsoft Corporation | Maintenance of link level consistency between database and file system |
US20060250764A1 (en) | 2005-05-09 | 2006-11-09 | Apple Computer, Inc. | Universal docking station for hand held electronic devices |
US20060265417A1 (en) | 2004-05-04 | 2006-11-23 | Amato Jerry S | Enhanced graphical interfaces for displaying visual data |
US20060277460A1 (en) | 2005-06-03 | 2006-12-07 | Scott Forstall | Webview applications |
US20070000999A1 (en) | 2005-06-06 | 2007-01-04 | First Data Corporation | System and method for authorizing electronic payment transactions |
US20070011304A1 (en) | 2005-06-06 | 2007-01-11 | Error Brett M | Asp for web analytics including a real-time segmentation workbench |
US20070018986A1 (en) | 2005-07-05 | 2007-01-25 | International Business Machines Corporation | Data processing method and system |
US7174377B2 (en) | 2002-01-16 | 2007-02-06 | Xerox Corporation | Method and apparatus for collaborative document versioning of networked documents |
US20070038646A1 (en) | 2005-08-04 | 2007-02-15 | Microsoft Corporation | Ranking blog content |
US20070043744A1 (en) | 2005-08-16 | 2007-02-22 | International Business Machines Corporation | Method and system for linking digital pictures to electronic documents |
US20070043686A1 (en) | 2005-08-22 | 2007-02-22 | International Business Machines Corporation | Xml sub-document versioning method in xml databases using record storages |
US7188100B2 (en) | 2000-02-25 | 2007-03-06 | Joseph De Bellis | Search-on-the-fly report generator |
US20070061752A1 (en) | 2005-09-15 | 2007-03-15 | Microsoft Corporation | Cross-application support of charts |
US7194680B1 (en) | 1999-12-07 | 2007-03-20 | Adobe Systems Incorporated | Formatting content by example |
US20070067285A1 (en) | 2005-09-22 | 2007-03-22 | Matthias Blume | Method and apparatus for automatic entity disambiguation |
US7213030B1 (en) | 1998-10-16 | 2007-05-01 | Jenkins Steven R | Web-enabled transaction and collaborative management system |
US20070106582A1 (en) | 2005-10-04 | 2007-05-10 | Baker James C | System and method of detecting fraud |
US20070113164A1 (en) | 2000-05-17 | 2007-05-17 | Hansen David R | System and method for implementing compound documents in a production printing workflow |
US20070118547A1 (en) | 2005-11-22 | 2007-05-24 | Monish Gupta | Efficient index versioning in multi-version databases |
US20070130541A1 (en) | 2004-06-25 | 2007-06-07 | Louch John O | Synchronization of widgets and dashboards |
US20070136095A1 (en) | 2005-12-09 | 2007-06-14 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Icon Queues for Workflow Management |
US20070150801A1 (en) | 2005-12-23 | 2007-06-28 | Xerox Corporation | Interactive learning-based document annotation |
US20070156673A1 (en) | 2005-12-30 | 2007-07-05 | Accenture S.P.A. | Churn prediction and management system |
US20070162454A1 (en) | 2005-12-29 | 2007-07-12 | D Albora Paul A | Method and apparatus for managing a computer-based address book for incident-related work |
US20070174760A1 (en) | 2006-01-23 | 2007-07-26 | Microsoft Corporation | Multiple conditional formatting |
US20070178501A1 (en) | 2005-12-06 | 2007-08-02 | Matthew Rabinowitz | System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology |
US20070185850A1 (en) | 1999-11-10 | 2007-08-09 | Walters Edward J | Apparatus and Method for Displaying Records Responsive to a Database Query |
US20070185867A1 (en) | 2006-02-03 | 2007-08-09 | Matteo Maga | Statistical modeling methods for determining customer distribution by churn probability within a customer population |
US20070192265A1 (en) | 2005-08-29 | 2007-08-16 | Stefan Chopin | System and method for rendering data |
US20070192122A1 (en) | 2005-09-30 | 2007-08-16 | American Express Travel Related Services Company, Inc. | Method, system, and computer program product for linking customer information |
US20070198571A1 (en) | 2006-02-03 | 2007-08-23 | Ferguson John R | Data object access system and method using dedicated task object |
US20070233756A1 (en) | 2005-02-07 | 2007-10-04 | D Souza Roy P | Retro-fitting synthetic full copies of data |
US20070245339A1 (en) | 2006-04-12 | 2007-10-18 | Bauman Brian D | Creating documentation screenshots on demand |
US20070250491A1 (en) | 2002-09-18 | 2007-10-25 | Olszak Artur G | Method for referencing image data |
US20070271317A1 (en) | 2004-08-16 | 2007-11-22 | Beinsync Ltd. | System and Method for the Synchronization of Data Across Multiple Computing Devices |
WO2007133206A1 (en) | 2006-05-12 | 2007-11-22 | Drawing Management Incorporated | Spatial graphical user interface and method for using the same |
US20070284433A1 (en) | 2006-06-08 | 2007-12-13 | American Express Travel Related Services Company, Inc. | Method, system, and computer program product for customer-level data verification |
US20070294200A1 (en) | 1998-05-28 | 2007-12-20 | Q-Phrase Llc | Automatic data categorization with optimally spaced semantic seed terms |
US20070299697A1 (en) | 2004-10-12 | 2007-12-27 | Friedlander Robert R | Methods for Associating Records in Healthcare Databases with Individuals |
US20070295797A1 (en) | 2006-06-08 | 2007-12-27 | Joshua Lee Herman | System and Method for Resolving Identities that are Indefinitely Resolvable |
US20080005063A1 (en) | 2006-06-23 | 2008-01-03 | Cognos Incorporated | System and method of member unique names |
US20080007618A1 (en) | 2006-07-05 | 2008-01-10 | Mizuki Yuasa | Vehicle-periphery image generating apparatus and method of switching images |
US20080016155A1 (en) | 2006-07-11 | 2008-01-17 | Igor Khalatian | One-Click Universal Screen Sharing |
WO2008011728A1 (en) | 2006-07-28 | 2008-01-31 | Pattern Intelligence Inc. | System and method for detecting and analyzing pattern relationships |
US20080040275A1 (en) | 2006-04-25 | 2008-02-14 | Uc Group Limited | Systems and methods for identifying potentially fraudulent financial transactions and compulsive spending behavior |
US20080069081A1 (en) | 2006-09-18 | 2008-03-20 | Yahoo! Inc. | Path discovery and analytics for network data |
US20080091693A1 (en) | 2006-10-16 | 2008-04-17 | Oracle International Corporation | Managing compound XML documents in a repository |
US20080103996A1 (en) | 2006-10-31 | 2008-05-01 | George Forman | Retraining a machine-learning classifier using re-labeled training samples |
US20080109714A1 (en) | 2006-11-03 | 2008-05-08 | Sap Ag | Capturing screen information |
US7373669B2 (en) | 2003-08-13 | 2008-05-13 | The 41St Parameter, Inc. | Method and system for determining presence of probable error or fraud in a data set by linking common data values or elements |
US20080126344A1 (en) | 2006-11-27 | 2008-05-29 | Rapleaf, Inc. | Hierarchical, traceable, and association reputation assessment of email domains |
US20080126951A1 (en) | 2005-06-03 | 2008-05-29 | C-Mail Corp. | System and method of dynamically prioritized electronic mail graphical user interface, and measuring email productivity and collaboration trends |
US7383053B2 (en) | 2004-04-28 | 2008-06-03 | Lawrence Livermore National Security, Llc | Position estimation of transceivers in communication networks |
US20080133567A1 (en) | 2006-11-30 | 2008-06-05 | Yahoo! Inc. | Dynamic cluster visualization |
US20080140387A1 (en) | 2006-12-07 | 2008-06-12 | Linker Sheldon O | Method and system for machine understanding, knowledge, and conversation |
US20080148398A1 (en) | 2006-10-31 | 2008-06-19 | Derek John Mezack | System and Method for Definition and Automated Analysis of Computer Security Threat Models |
US20080172607A1 (en) | 2007-01-15 | 2008-07-17 | Microsoft Corporation | Selective Undo of Editing Operations Performed on Data Objects |
US7403942B1 (en) | 2003-02-04 | 2008-07-22 | Seisint, Inc. | Method and system for processing data records |
US20080177782A1 (en) | 2007-01-10 | 2008-07-24 | Pado Metaware Ab | Method and system for facilitating the production of documents |
US20080186904A1 (en) | 2005-02-28 | 2008-08-07 | Kazuhiro Koyama | Data Communication Terminal, Radio Base Station Searching Method, and Program |
US20080195672A1 (en) | 2002-05-09 | 2008-08-14 | International Business Machines Corporation | System and program product for sequential coordination of external database application events with asynchronous internal database events |
US20080208735A1 (en) | 2007-02-22 | 2008-08-28 | American Expresstravel Related Services Company, Inc., A New York Corporation | Method, System, and Computer Program Product for Managing Business Customer Contacts |
US20080222295A1 (en) | 2006-11-02 | 2008-09-11 | Addnclick, Inc. | Using internet content as a means to establish live social networks by linking internet users to each other who are simultaneously engaged in the same and/or similar content |
US20080228467A1 (en) | 2004-01-06 | 2008-09-18 | Neuric Technologies, Llc | Natural language parsing method to provide conceptual flow |
US20080227473A1 (en) | 2005-04-04 | 2008-09-18 | X One, Inc. | Location sharing and tracking using mobile phones or other wireless devices |
WO2008113059A1 (en) | 2007-03-14 | 2008-09-18 | Microsoft Corporation | Enterprise security assessment sharing |
US20080243711A1 (en) | 2007-03-30 | 2008-10-02 | Andrew Aymeloglu | Generating dynamic date sets that represent maket conditions |
US20080249983A1 (en) * | 2006-03-31 | 2008-10-09 | Aol Llc | Identifying a result responsive to a current location of a client device |
US20080249820A1 (en) | 2002-02-15 | 2008-10-09 | Pathria Anu K | Consistency modeling of healthcare claims to detect fraud and abuse |
US20080252419A1 (en) | 2007-04-11 | 2008-10-16 | Batchelor Michael D | Wireless access control system and method |
US20080255973A1 (en) | 2007-04-10 | 2008-10-16 | Robert El Wade | Sales transaction analysis tool and associated method of use |
US7441182B2 (en) | 2003-10-23 | 2008-10-21 | Microsoft Corporation | Digital negatives |
US7441219B2 (en) | 2003-06-24 | 2008-10-21 | National Semiconductor Corporation | Method for creating, modifying, and simulating electrical circuits over the internet |
US20080267386A1 (en) | 2005-03-22 | 2008-10-30 | Cooper Kim A | Performance Motivation Systems and Methods for Contact Centers |
US20080270316A1 (en) | 2007-02-28 | 2008-10-30 | Aaron Guidotti | Information, document, and compliance management for financial professionals, clients, and supervisors |
US20080276167A1 (en) | 2007-05-03 | 2008-11-06 | Oliver Michael | Device And Method For Generating A Text Object |
US20080281580A1 (en) | 2007-05-10 | 2008-11-13 | Microsoft Corporation | Dynamic parser |
US20080288425A1 (en) | 2007-05-17 | 2008-11-20 | Christian Posse | Methods and Apparatus for Reasoning About Information Fusion Approaches |
US20080288475A1 (en) | 2007-05-17 | 2008-11-20 | Sang-Heun Kim | Method and system for automatically generating web page transcoding instructions |
US7461158B2 (en) | 2002-08-07 | 2008-12-02 | Intelliden, Inc. | System and method for controlling access rights to network resources |
US20080301042A1 (en) | 2007-05-30 | 2008-12-04 | Aaron Patzer | System and method for categorizing credit card transaction data |
US20080313243A1 (en) | 2007-05-24 | 2008-12-18 | Pado Metaware Ab | method and system for harmonization of variants of a sequential file |
US20080313132A1 (en) | 2007-06-15 | 2008-12-18 | Fang Hao | High accuracy bloom filter using partitioned hashing |
US20090005070A1 (en) | 2007-06-28 | 2009-01-01 | Apple Inc. | Synchronizing mobile and vehicle devices |
US20090012865A1 (en) * | 2005-10-31 | 2009-01-08 | Yahoo! Inc. | Clickable map interface for product inventory |
US20090018940A1 (en) | 2007-03-30 | 2009-01-15 | Liang Wang | Enhanced Fraud Detection With Terminal Transaction-Sequence Processing |
US20090024962A1 (en) | 2007-07-20 | 2009-01-22 | David Gotz | Methods for Organizing Information Accessed Through a Web Browser |
US20090024505A1 (en) | 2007-06-28 | 2009-01-22 | Cashedge, Inc. | Global Risk Administration Method and System |
US20090031401A1 (en) | 2007-04-27 | 2009-01-29 | Bea Systems, Inc. | Annotations for enterprise web application constructor |
US20090043801A1 (en) | 2007-08-06 | 2009-02-12 | Intuit Inc. | Method and apparatus for selecting a doctor based on an observed experience level |
US20090044279A1 (en) | 2007-05-11 | 2009-02-12 | Fair Isaac Corporation | Systems and methods for fraud detection via interactive link analysis |
US20090055487A1 (en) | 2007-08-23 | 2009-02-26 | Francisco Inacio Moraes | System and Method for Providing Improved Time References in Documents |
US20090076845A1 (en) | 2003-12-29 | 2009-03-19 | Eran Bellin | System and method for monitoring patient care |
US20090082997A1 (en) | 2005-12-21 | 2009-03-26 | Tokman Michael G | Method of identifying clusters and connectivity between clusters |
US20090083184A1 (en) | 2007-09-26 | 2009-03-26 | Ori Eisen | Methods and Apparatus for Detecting Fraud with Time Based Computer Tags |
US20090089651A1 (en) | 2007-09-27 | 2009-04-02 | Tilman Herberger | System and method for dynamic content insertion from the internet into a multimedia work |
US20090094166A1 (en) | 2007-10-03 | 2009-04-09 | Andrew Aymeloglu | Object-oriented time series generator |
US20090094270A1 (en) | 2007-10-08 | 2009-04-09 | Alirez Baldomero J | Method of building a validation database |
US7523100B1 (en) | 2005-02-28 | 2009-04-21 | Adobe Systems Incorporated | Method and apparatus for using a rendered form as a search template |
US20090106242A1 (en) | 2007-10-18 | 2009-04-23 | Mcgrew Robert J | Resolving database entity information |
US20090106178A1 (en) | 2007-10-23 | 2009-04-23 | Sas Institute Inc. | Computer-Implemented Systems And Methods For Updating Predictive Models |
US20090112678A1 (en) | 2007-10-26 | 2009-04-30 | Ingram Micro Inc. | System and method for knowledge management |
US20090112745A1 (en) | 2007-10-30 | 2009-04-30 | Intuit Inc. | Technique for reducing phishing |
US7529734B2 (en) | 2004-11-12 | 2009-05-05 | Oracle International Corporation | Method and apparatus for facilitating a database query using a query criteria template |
US20090125359A1 (en) | 2007-07-09 | 2009-05-14 | Robert Knapic | Integrating a methodology management system with project tasks in a project management system |
US20090125459A1 (en) | 2007-11-09 | 2009-05-14 | Norton Richard Elliott | Method and system for rule-based content filtering |
US20090132573A1 (en) * | 2007-11-16 | 2009-05-21 | Iac Search & Media, Inc. | User interface and method in a local search system with search results restricted by drawn figure elements |
US20090138790A1 (en) | 2004-04-29 | 2009-05-28 | Microsoft Corporation | Structural editing with schema awareness |
US20090143052A1 (en) | 2007-11-29 | 2009-06-04 | Michael Bates | Systems and methods for personal information management and contact picture synchronization and distribution |
US20090150868A1 (en) | 2007-12-10 | 2009-06-11 | Al Chakra | Method and System for Capturing Movie Shots at the Time of an Automated Graphical User Interface Test Failure |
US20090156231A1 (en) | 2007-12-13 | 2009-06-18 | Swisscom Ag | System and method for determining a location area of a mobile user |
US20090157732A1 (en) | 2007-12-13 | 2009-06-18 | Verizon Data Services Llc | Networked address book |
US20090164934A1 (en) | 2007-12-21 | 2009-06-25 | Sukadev Bhattiprolu | Method of displaying tab titles |
US20090164387A1 (en) | 2007-04-17 | 2009-06-25 | Semandex Networks Inc. | Systems and methods for providing semantically enhanced financial information |
US20090172821A1 (en) | 2004-06-30 | 2009-07-02 | Faycal Daira | System and method for securing computer stations and/or communication networks |
US20090177962A1 (en) | 2008-01-04 | 2009-07-09 | Microsoft Corporation | Intelligently representing files in a view |
US20090187548A1 (en) | 2008-01-22 | 2009-07-23 | Sungkyungkwan University Foundation For Corporate Collaboration | System and method for automatically classifying search results |
US20090187546A1 (en) | 2008-01-21 | 2009-07-23 | International Business Machines Corporation | Method, System and Computer Program Product for Duplicate Detection |
US20090192957A1 (en) | 2006-03-24 | 2009-07-30 | Revathi Subramanian | Computer-Implemented Data Storage Systems And Methods For Use With Predictive Model Systems |
US20090199106A1 (en) | 2008-02-05 | 2009-08-06 | Sony Ericsson Mobile Communications Ab | Communication terminal including graphical bookmark manager |
US20090199102A1 (en) * | 2008-01-31 | 2009-08-06 | Phm Associates Limited | Communication method, apparatus and system for a retail organization |
US20090216562A1 (en) | 2008-02-22 | 2009-08-27 | Faulkner Judith R | Method and apparatus for accommodating diverse healthcare record centers |
US20090217173A1 (en) * | 2008-02-23 | 2009-08-27 | Josh Manheimer | Method and System For A Rich Media User Interface |
US20090228507A1 (en) | 2006-11-20 | 2009-09-10 | Akash Jain | Creating data in a data store using a dynamic ontology |
US20090228365A1 (en) | 2008-03-04 | 2009-09-10 | Brad Michael Tomchek | Methods and systems for managing merchant identifiers |
US7596285B2 (en) | 2004-02-26 | 2009-09-29 | International Business Machines Corporation | Providing a portion of an electronic mail message at a reduced resolution |
US20090248757A1 (en) | 2008-04-01 | 2009-10-01 | Microsoft Corporation | Application-Managed File Versioning |
US20090249178A1 (en) | 2008-04-01 | 2009-10-01 | Ambrosino Timothy J | Document linking |
US20090249244A1 (en) | 2000-10-10 | 2009-10-01 | Addnclick, Inc. | Dynamic information management system and method for content delivery and sharing in content-, metadata- & viewer-based, live social networking among users concurrently engaged in the same and/or similar content |
US20090254971A1 (en) | 1999-10-27 | 2009-10-08 | Pinpoint, Incorporated | Secure data interchange |
US20090254970A1 (en) | 2008-04-04 | 2009-10-08 | Avaya Inc. | Multi-tier security event correlation and mitigation |
US20090265105A1 (en) | 2008-04-21 | 2009-10-22 | Igt | Real-time navigation devices, systems and methods |
US20090271359A1 (en) | 2008-04-24 | 2009-10-29 | Lexisnexis Risk & Information Analytics Group Inc. | Statistical record linkage calibration for reflexive and symmetric distance measures at the field and field value levels without the need for human interaction |
US20090271343A1 (en) | 2008-04-25 | 2009-10-29 | Anthony Vaiciulis | Automated entity identification for efficient profiling in an event probability prediction system |
US7617232B2 (en) | 2004-09-02 | 2009-11-10 | Microsoft Corporation | Centralized terminology and glossary development |
US20090281839A1 (en) | 2002-05-17 | 2009-11-12 | Lawrence A. Lynn | Patient safety processor |
US20090282068A1 (en) | 2008-05-12 | 2009-11-12 | Shockro John J | Semantic packager |
US20090287470A1 (en) | 2008-05-16 | 2009-11-19 | Research In Motion Limited | Intelligent elision |
US20090287407A1 (en) * | 2002-04-10 | 2009-11-19 | Networks In Motion, Inc. | Method and System for Dynamic Estimation and Predictive Route Generation |
US7627812B2 (en) | 2005-10-27 | 2009-12-01 | Microsoft Corporation | Variable formatting of cells |
US7627489B2 (en) | 1999-03-10 | 2009-12-01 | Illinois Institute Of Technology | Method for the construction and utilization of a medical records system |
US20090300589A1 (en) | 2008-06-03 | 2009-12-03 | Isight Partners, Inc. | Electronic Crime Detection and Tracking |
US20090299830A1 (en) | 2004-05-25 | 2009-12-03 | Arion Human Capital Limited | Data analysis and flow control system |
US20090307049A1 (en) | 2008-06-05 | 2009-12-10 | Fair Isaac Corporation | Soft Co-Clustering of Data |
US20090313311A1 (en) | 2008-06-12 | 2009-12-17 | Gravic, Inc. | Mixed mode synchronous and asynchronous replication system |
US20090313463A1 (en) | 2005-11-01 | 2009-12-17 | Commonwealth Scientific And Industrial Research Organisation | Data matching using data clusters |
US20090319515A1 (en) | 2008-06-02 | 2009-12-24 | Steven Minton | System and method for managing entity knowledgebases |
US20090319891A1 (en) | 2008-06-22 | 2009-12-24 | Mackinlay Jock Douglas | Methods and systems of automatically generating marks in a graphical view |
US20090315679A1 (en) | 2008-06-24 | 2009-12-24 | Frederic Bauchot | Location localization method and system |
US20090319418A1 (en) | 2005-03-31 | 2009-12-24 | Trading Technologies International, Inc. | System and Method for Dynamically Regulating Order Entry in an Electronic Trading Environment |
US20090318775A1 (en) | 2008-03-26 | 2009-12-24 | Seth Michelson | Methods and systems for assessing clinical outcomes |
US20100004857A1 (en) | 2008-07-02 | 2010-01-07 | Palm, Inc. | User defined names for displaying monitored location |
US7652622B2 (en) | 2005-04-28 | 2010-01-26 | Cambridge Positioning Systems Limited | Transfer of position information of mobile terminal |
US20100030722A1 (en) | 2008-08-04 | 2010-02-04 | Goodson Robert B | Entity Performance Analysis Engines |
US20100031141A1 (en) | 2006-08-30 | 2010-02-04 | Compsci Resources, Llc | Interactive User Interface for Converting Unstructured Documents |
US20100042922A1 (en) | 2005-05-12 | 2010-02-18 | Apple Inc. | Customizable, dynamic and on-demand database-informer for relational databases |
US20100058212A1 (en) | 2008-08-28 | 2010-03-04 | Nokia Corporation | User interface, device and method for displaying special locations on a map |
US20100057622A1 (en) | 2001-02-27 | 2010-03-04 | Faith Patrick L | Distributed Quantum Encrypted Pattern Generation And Scoring |
WO2010030914A2 (en) | 2008-09-15 | 2010-03-18 | Palantir Technologies, Inc. | One-click sharing for screenshots and related documents |
US20100077483A1 (en) | 2007-06-12 | 2010-03-25 | Stolfo Salvatore J | Methods, systems, and media for baiting inside attackers |
US20100077481A1 (en) | 2008-09-22 | 2010-03-25 | Microsoft Corporation | Collecting and analyzing malware data |
US20100076813A1 (en) | 2008-09-24 | 2010-03-25 | Bank Of America Corporation | Market dynamics |
US20100073315A1 (en) | 2008-09-24 | 2010-03-25 | Samsung Electrronics Co., Ltd. | Mobile terminal and data display method for the same |
US20100076821A1 (en) * | 2008-09-23 | 2010-03-25 | Sap Ag | Automated performance appraisal system with a compensation simulator |
US20100082541A1 (en) | 2005-12-19 | 2010-04-01 | Commvault Systems, Inc. | Systems and methods for performing replication copy storage operations |
US20100082842A1 (en) | 2008-09-30 | 2010-04-01 | Latista Technologies | Computer program product, system and method for field management and mobile inspection |
US20100082671A1 (en) | 2008-09-26 | 2010-04-01 | International Business Machines Corporation | Joining Tables in Multiple Heterogeneous Distributed Databases |
US20100100963A1 (en) | 2008-10-21 | 2010-04-22 | Flexilis, Inc. | System and method for attack and malware prevention |
US20100098318A1 (en) | 2008-10-20 | 2010-04-22 | Jpmorgan Chase Bank, N.A. | Method and System for Duplicate Check Detection |
US7706817B2 (en) | 2004-06-15 | 2010-04-27 | Orange Personal Communication Services Limited | Provision of group services in a telecommunications network |
US20100106611A1 (en) | 2008-10-24 | 2010-04-29 | Uc Group Ltd. | Financial transactions systems and methods |
US20100114887A1 (en) | 2008-10-17 | 2010-05-06 | Google Inc. | Textual Disambiguation Using Social Connections |
US20100114831A1 (en) | 2008-10-30 | 2010-05-06 | Gilbert Gary M | Building a Synchronized Target Database |
US20100114817A1 (en) | 2008-10-30 | 2010-05-06 | Broeder Sean L | Replication of operations on objects distributed in a storage system |
US7716140B1 (en) | 2004-12-31 | 2010-05-11 | Google Inc. | Methods and systems for controlling access to relationship information in a social network |
US20100121817A1 (en) | 2007-03-15 | 2010-05-13 | Scott Meyer | Database replication |
US20100122546A1 (en) | 2008-11-14 | 2010-05-20 | Lg Electronics Inc. | Ice dispensing technology |
US7725547B2 (en) | 2006-09-06 | 2010-05-25 | International Business Machines Corporation | Informing a user of gestures made by others out of the user's line of sight |
US20100131502A1 (en) | 2008-11-25 | 2010-05-27 | Fordham Bradley S | Cohort group generation and automatic updating |
US20100145909A1 (en) | 2008-12-10 | 2010-06-10 | Commvault Systems, Inc. | Systems and methods for managing replicated database data |
US7739246B2 (en) | 2004-10-14 | 2010-06-15 | Microsoft Corporation | System and method of merging contacts |
US20100161735A1 (en) | 2008-12-23 | 2010-06-24 | Sanjeev Sharma | Email addressee verification |
US7747648B1 (en) | 2005-02-14 | 2010-06-29 | Yahoo! Inc. | World modeling using a relationship network with communication channels to entities |
US20100169237A1 (en) | 2008-12-29 | 2010-07-01 | Athenainvest, Inc. | Investment classification and tracking system using diamond ratings |
US20100173619A1 (en) | 2009-01-07 | 2010-07-08 | Lucent Technologies Inc. | Healthy weight reminder service via wireless networks |
US7757220B2 (en) | 2004-10-21 | 2010-07-13 | Discovery Machine, Inc. | Computer interchange of knowledge hierarchies |
US7756843B1 (en) | 2006-05-25 | 2010-07-13 | Juniper Networks, Inc. | Identifying and processing confidential information on network endpoints |
US20100185984A1 (en) | 2008-12-02 | 2010-07-22 | William Wright | System and method for visualizing connected temporal and spatial information as an integrated visual representation on a user interface |
US20100185691A1 (en) | 2009-01-20 | 2010-07-22 | Yahoo! Inc. | Scalable semi-structured named entity detection |
US7765489B1 (en) | 2008-03-03 | 2010-07-27 | Shah Shalin N | Presenting notifications related to a medical study on a toolbar |
US20100191884A1 (en) | 2008-06-12 | 2010-07-29 | Gravic, Inc. | Method for replicating locks in a data replication engine |
US20100191563A1 (en) | 2009-01-23 | 2010-07-29 | Doctors' Administrative Solutions, Llc | Physician Practice Optimization Tracking |
US7770100B2 (en) | 2006-02-27 | 2010-08-03 | Microsoft Corporation | Dynamic thresholds for conditional formats |
US20100204983A1 (en) | 2004-08-06 | 2010-08-12 | Kevin Chen-Chuan Chung | Method and System for Extracting Web Query Interfaces |
US7783658B1 (en) | 2007-06-18 | 2010-08-24 | Seisint, Inc. | Multi-entity ontology weighting systems and methods |
US20100214117A1 (en) | 2009-02-22 | 2010-08-26 | Verint Systems Ltd. | System and method for predicting future meetings of wireless users |
US20100223543A1 (en) | 2009-03-02 | 2010-09-02 | International Business Machines Corporation | Automating Interrogative Population of Electronic Forms Using a Real-Time Communication Platform |
US20100223260A1 (en) | 2004-05-06 | 2010-09-02 | Oracle International Corporation | Web Server for Multi-Version Web Documents |
US20100235915A1 (en) | 2009-03-12 | 2010-09-16 | Nasir Memon | Using host symptoms, host roles, and/or host reputation for detection of host infection |
US20100238174A1 (en) | 2009-03-18 | 2010-09-23 | Andreas Peter Haub | Cursor Synchronization in a Plurality of Graphs |
US7805457B1 (en) | 2008-02-14 | 2010-09-28 | Securus Technologies, Inc. | System and method for identifying members of a gang or security threat group |
US7814102B2 (en) | 2005-12-07 | 2010-10-12 | Lexisnexis, A Division Of Reed Elsevier Inc. | Method and system for linking documents with multiple topics to related documents |
US20100262688A1 (en) | 2009-01-21 | 2010-10-14 | Daniar Hussain | Systems, methods, and devices for detecting security vulnerabilities in ip networks |
US20100262901A1 (en) | 2005-04-14 | 2010-10-14 | Disalvo Dean F | Engineering process for a real-time user-defined data collection, analysis, and optimization tool (dot) |
US20100281458A1 (en) | 2009-04-30 | 2010-11-04 | Business Objects, S.A. | Application modification framework |
US20100280851A1 (en) | 2005-02-22 | 2010-11-04 | Richard Merkin | Systems and methods for assessing and optimizing healthcare administration |
US20100306713A1 (en) | 2009-05-29 | 2010-12-02 | Microsoft Corporation | Gesture Tool |
US20100306722A1 (en) | 2009-05-29 | 2010-12-02 | Lehoty David A | Implementing A Circuit Using An Integrated Circuit Including Parametric Analog Elements |
US20100306285A1 (en) | 2009-05-28 | 2010-12-02 | Arcsight, Inc. | Specifying a Parser Using a Properties File |
US20100306029A1 (en) | 2009-06-01 | 2010-12-02 | Ryan Jolley | Cardholder Clusters |
US20100312837A1 (en) | 2009-06-05 | 2010-12-09 | Chandra Bodapati | Methods and systems for determining email addresses |
US20100313239A1 (en) | 2009-06-09 | 2010-12-09 | International Business Machines Corporation | Automated access control for rendered output |
US20100330801A1 (en) | 2009-06-26 | 2010-12-30 | Hynix Semiconductor Inc. | Method of Fabricating Landing Plug in Semiconductor Device |
US20110004498A1 (en) | 2009-07-01 | 2011-01-06 | International Business Machines Corporation | Method and System for Identification By A Cardholder of Credit Card Fraud |
US20110004626A1 (en) | 2009-07-06 | 2011-01-06 | Intelligent Medical Objects, Inc. | System and Process for Record Duplication Analysis |
US7877421B2 (en) | 2001-05-25 | 2011-01-25 | International Business Machines Corporation | Method and system for mapping enterprise data assets to a semantic information model |
US20110022312A1 (en) | 2009-07-23 | 2011-01-27 | Fmr Llc | Generating and Tracking Activity Patterns for Mobile Devices |
US7880921B2 (en) | 2007-05-01 | 2011-02-01 | Michael Joseph Dattilo | Method and apparatus to digitally whiteout mistakes on a printed form |
US20110047540A1 (en) | 2009-08-24 | 2011-02-24 | Embarcadero Technologies Inc. | System and Methodology for Automating Delivery, Licensing, and Availability of Software Products |
US7899796B1 (en) | 2004-11-23 | 2011-03-01 | Andrew Borthwick | Batch automated blocking and record matching |
US20110055140A1 (en) | 2009-09-01 | 2011-03-03 | Oracle International Corporation | Expediting k-means cluster analysis data mining using subsample elimination preprocessing |
US20110061013A1 (en) | 2009-09-08 | 2011-03-10 | Target Brands, Inc. | Operations dashboard |
US20110066497A1 (en) | 2009-09-14 | 2011-03-17 | Choicestream, Inc. | Personalized advertising and recommendation |
US7912842B1 (en) | 2003-02-04 | 2011-03-22 | Lexisnexis Risk Data Management Inc. | Method and system for processing and linking data records |
US20110078173A1 (en) | 2009-09-30 | 2011-03-31 | Avaya Inc. | Social Network User Interface |
US20110074788A1 (en) | 2009-09-30 | 2011-03-31 | Mckesson Financial Holdings Limited | Methods, apparatuses, and computer program products for facilitating visualization and analysis of medical data |
US20110087519A1 (en) | 2009-10-09 | 2011-04-14 | Visa U.S.A. Inc. | Systems and Methods for Panel Enhancement with Transaction Data |
US20110093440A1 (en) | 2009-10-19 | 2011-04-21 | International Business Machines Corporation | Device and method for generating copy of database |
US20110093327A1 (en) | 2009-10-15 | 2011-04-21 | Visa U.S.A. Inc. | Systems and Methods to Match Identifiers |
US20110099133A1 (en) | 2009-10-28 | 2011-04-28 | Industrial Technology Research Institute | Systems and methods for capturing and managing collective social intelligence information |
US20110107196A1 (en) | 2009-10-30 | 2011-05-05 | Synopsys, Inc. | Technique for dynamically sizing columns in a table |
US7941321B2 (en) | 2002-04-12 | 2011-05-10 | International Business Machines Corporation | Facilitating management of service elements usable in providing information technology service offerings |
US7941336B1 (en) | 2005-09-14 | 2011-05-10 | D2C Solutions, LLC | Segregation-of-duties analysis apparatus and method |
CN102054015A (en) | 2009-10-28 | 2011-05-11 | 财团法人工业技术研究院 | System and method for organizing community intelligence information using an organic object data model |
US7945470B1 (en) | 2006-09-29 | 2011-05-17 | Amazon Technologies, Inc. | Facilitating performance of submitted tasks by mobile task performers |
US20110131122A1 (en) | 2009-12-01 | 2011-06-02 | Bank Of America Corporation | Behavioral baseline scoring and risk scoring |
US7958147B1 (en) | 2005-09-13 | 2011-06-07 | James Luke Turner | Method for providing customized and automated security assistance, a document marking regime, and central tracking and control for sensitive or classified documents in electronic format |
US7966199B1 (en) | 2007-07-19 | 2011-06-21 | Intuit Inc. | Method and system for identification of geographic condition zones using aggregated claim data |
US20110153384A1 (en) | 2009-12-17 | 2011-06-23 | Matthew Donald Horne | Visual comps builder |
US20110161409A1 (en) | 2008-06-02 | 2011-06-30 | Azuki Systems, Inc. | Media mashup system |
US20110158469A1 (en) | 2009-12-29 | 2011-06-30 | Mastykarz Justin P | Methods and apparatus for management of field operations, projects and/or collected samples |
US20110161137A1 (en) * | 2006-09-23 | 2011-06-30 | Gis Planning, Inc. | Web based interactive geographic information systems mapping analysis and methods for improving business performance including future scenario modeling |
US20110167493A1 (en) | 2008-05-27 | 2011-07-07 | Yingbo Song | Systems, methods, ane media for detecting network anomalies |
US20110167054A1 (en) | 2010-01-06 | 2011-07-07 | Microsoft Corporation | Automated discovery aggregation and organization of subject area discussions |
US20110173093A1 (en) | 2007-11-14 | 2011-07-14 | Psota James Ryan | Evaluating public records of supply transactions for financial investment decisions |
US20110178842A1 (en) | 2010-01-20 | 2011-07-21 | American Express Travel Related Services Company, Inc. | System and method for identifying attributes of a population using spend level data |
US20110179048A1 (en) | 2001-02-20 | 2011-07-21 | Hartford Fire Insurance Company | Method and system for processing medical provider claim data |
US20110202557A1 (en) | 2010-02-18 | 2011-08-18 | Alon Atsmon | System and method for crowdsourced template based search |
US20110208822A1 (en) | 2010-02-22 | 2011-08-25 | Yogesh Chunilal Rathod | Method and system for customized, contextual, dynamic and unified communication, zero click advertisement and prospective customers search engine |
US20110205231A1 (en) * | 2010-02-24 | 2011-08-25 | Oracle International Corporation | Mapping data in enterprise applications for operational visibility |
US20110208565A1 (en) | 2010-02-23 | 2011-08-25 | Michael Ross | complex process management |
US20110213655A1 (en) | 2009-01-24 | 2011-09-01 | Kontera Technologies, Inc. | Hybrid contextual advertising and related content analysis and display techniques |
US20110219450A1 (en) | 2010-03-08 | 2011-09-08 | Raytheon Company | System And Method For Malware Detection |
US20110218955A1 (en) | 2010-03-08 | 2011-09-08 | Hsiu-Khuern Tang | Evaluation of Client Status for Likelihood of Churn |
US20110225586A1 (en) | 2010-03-11 | 2011-09-15 | Avaya Inc. | Intelligent Transaction Merging |
US20110225482A1 (en) | 2010-03-15 | 2011-09-15 | Wizpatent Pte Ltd | Managing and generating citations in scholarly work |
US20110225650A1 (en) | 2010-03-11 | 2011-09-15 | Accenture Global Services Limited | Systems and methods for detecting and investigating insider fraud |
US20110231223A1 (en) | 2010-03-19 | 2011-09-22 | Visa U.S.A. Inc. | Systems and Methods to Enhance Search Data with Transaction Based Data |
US20110238510A1 (en) | 2004-06-14 | 2011-09-29 | 20/20 Ventures, LLC | Reduction of transaction fraud through the use of automatic centralized signature/sign verification combined with credit and fraud scoring during real-time payment card authorization processes |
US20110238553A1 (en) | 2010-03-26 | 2011-09-29 | Ashwin Raj | Electronic account-to-account funds transfer |
US20110238570A1 (en) | 2008-12-15 | 2011-09-29 | Alibaba Group Holding Limited | System of Online Trading Through Intermediary Platform and Methods Thereof |
US8028894B2 (en) | 1999-05-25 | 2011-10-04 | Silverbrook Research Pty Ltd | System for providing information to user with every interaction with printed substrate |
US20110246229A1 (en) | 2007-11-12 | 2011-10-06 | Debra Pacha | System and Method for Detecting Healthcare Insurance Fraud |
US20110252282A1 (en) | 2010-04-08 | 2011-10-13 | Microsoft Corporation | Pragmatic mapping specification, compilation and validation |
US20110251951A1 (en) | 2010-04-13 | 2011-10-13 | Dan Kolkowitz | Anti-fraud event correlation |
US20110258216A1 (en) | 2010-04-20 | 2011-10-20 | International Business Machines Corporation | Usability enhancements for bookmarks of browsers |
US8046283B2 (en) | 2003-01-31 | 2011-10-25 | Trading Technologies International, Inc. | System and method for money management in electronic trading environment |
US20110270604A1 (en) | 2010-04-28 | 2011-11-03 | Nec Laboratories America, Inc. | Systems and methods for semi-supervised relationship extraction |
US20110270834A1 (en) | 2010-04-28 | 2011-11-03 | Microsoft Corporation | Data Classifier |
US20110289397A1 (en) | 2010-05-19 | 2011-11-24 | Mauricio Eastmond | Displaying Table Data in a Limited Display Area |
US20110295649A1 (en) | 2010-05-31 | 2011-12-01 | International Business Machines Corporation | Automatic churn prediction |
US8073857B2 (en) | 2009-02-17 | 2011-12-06 | International Business Machines Corporation | Semantics-based data transformation over a wire in mashups |
US20110307382A1 (en) | 2010-05-04 | 2011-12-15 | Kevin Paul Siegel | System and method for identifying a point of compromise in a payment transaction processing system |
US20110314546A1 (en) | 2004-04-01 | 2011-12-22 | Ashar Aziz | Electronic Message Analysis for Malware Detection |
US20110314007A1 (en) | 2010-06-16 | 2011-12-22 | Guy Dassa | Methods, systems, and media for content ranking using real-time data |
US20110310005A1 (en) | 2010-06-17 | 2011-12-22 | Qualcomm Incorporated | Methods and apparatus for contactless gesture recognition |
US20110314024A1 (en) | 2010-06-18 | 2011-12-22 | Microsoft Corporation | Semantic content searching |
EP2400448A1 (en) | 2010-06-23 | 2011-12-28 | Quality Inspection Inc. Phoenix | System and method for real time inspection information recording and reporting |
US20120004894A1 (en) | 2007-09-21 | 2012-01-05 | Edwin Brian Butler | Systems, Methods and Apparatuses for Generating and using Representations of Individual or Aggregate Human Medical Data |
US20120004904A1 (en) | 2010-07-05 | 2012-01-05 | Nhn Corporation | Method and system for providing representative phrase |
US20120011245A1 (en) | 2010-07-09 | 2012-01-12 | Bank Of America Corporation | Monitoring communications |
US20120010812A1 (en) | 2010-07-12 | 2012-01-12 | James Thompson | Method and System for Determining Position of an Inertial Computing Device in a Distributed Network |
US20120011238A1 (en) | 2005-07-22 | 2012-01-12 | Yogesh Chunilal Rathod | System and method for managing dynamically created groups |
US20120015673A1 (en) | 2006-02-03 | 2012-01-19 | Gerhard Dietrich Klassen | Visual Representation of Contact Location |
US20120013684A1 (en) | 2009-09-30 | 2012-01-19 | Videojet Technologies Inc. | Thermal ink jet ink compostion |
US20120022945A1 (en) | 2010-07-22 | 2012-01-26 | Visa International Service Association | Systems and Methods to Identify Payment Accounts Having Business Spending Activities |
US20120036434A1 (en) | 2010-08-06 | 2012-02-09 | Tavendo Gmbh | Configurable Pie Menu |
US20120032975A1 (en) | 2006-10-31 | 2012-02-09 | Robert Koch | Location stamping and logging of electronic events and habitat generation |
US8126848B2 (en) | 2006-12-07 | 2012-02-28 | Robert Edward Wagner | Automated method for identifying and repairing logical data discrepancies between database replicas in a database cluster |
US20120054284A1 (en) | 2010-08-25 | 2012-03-01 | International Business Machines Corporation | Communication management method and system |
US20120059853A1 (en) | 2010-01-18 | 2012-03-08 | Salesforce.Com, Inc. | System and method of learning-based matching |
US20120066166A1 (en) | 2010-09-10 | 2012-03-15 | International Business Machines Corporation | Predictive Analytics for Semi-Structured Case Oriented Processes |
US20120065987A1 (en) | 2010-09-09 | 2012-03-15 | Siemens Medical Solutions Usa, Inc. | Computer-Based Patient Management for Healthcare |
US20120078595A1 (en) | 2010-09-24 | 2012-03-29 | Nokia Corporation | Method and apparatus for ontology matching |
US20120079363A1 (en) | 2005-09-09 | 2012-03-29 | Microsoft Corporation | Filtering User Interface for a Data Summary Table |
US20120084117A1 (en) | 2010-04-12 | 2012-04-05 | First Data Corporation | Transaction location analytics systems and methods |
US20120084287A1 (en) | 2010-09-30 | 2012-04-05 | Choudur Lakshminarayan | Estimation of unique database values |
US20120084866A1 (en) | 2007-06-12 | 2012-04-05 | Stolfo Salvatore J | Methods, systems, and media for measuring computer security |
US20120084135A1 (en) | 2010-10-01 | 2012-04-05 | Smartslips Inc. | System and method for tracking transaction records in a network |
US20120084184A1 (en) | 2008-06-05 | 2012-04-05 | Raleigh Gregory G | Enterprise Access Control and Accounting Allocation for Access Networks |
US20120089606A1 (en) | 2010-10-11 | 2012-04-12 | International Business Machines Corporation | Grouping identity records to generate candidate lists to use in an entity and relationship resolution process |
US20120116828A1 (en) | 2010-05-10 | 2012-05-10 | Shannon Jeffrey L | Promotions and advertising system |
WO2012061162A1 (en) | 2010-10-25 | 2012-05-10 | Intelius Inc. | Cost-sensitive alternating decision trees for record linkage |
US20120123989A1 (en) | 2010-11-15 | 2012-05-17 | Business Objects Software Limited | Dashboard evaluator |
US20120131512A1 (en) | 2010-11-22 | 2012-05-24 | International Business Machines Corporation | Displaying posts in real time along axes on a computer screen |
US20120131107A1 (en) | 2010-11-18 | 2012-05-24 | Microsoft Corporation | Email Filtering Using Relationship and Reputation Data |
US8191005B2 (en) | 2007-09-27 | 2012-05-29 | Rockwell Automation Technologies, Inc. | Dynamically generating visualizations in industrial automation environment as a function of context and state information |
US20120136804A1 (en) | 2010-11-30 | 2012-05-31 | Raymond J. Lucia, SR. | Wealth Management System and Method |
US20120150578A1 (en) | 2010-12-08 | 2012-06-14 | Motorola Solutions, Inc. | Task management in a workforce environment using an acoustic map constructed from aggregated audio |
US20120159362A1 (en) | 2010-12-15 | 2012-06-21 | International Business Machines Corporation | User Interface Construction |
US20120158626A1 (en) | 2010-12-15 | 2012-06-21 | Microsoft Corporation | Detection and categorization of malicious urls |
US20120166929A1 (en) | 2010-12-28 | 2012-06-28 | International Business Machines Corporation | System and method for providing a context-sensitive user interface |
US8214490B1 (en) | 2009-09-15 | 2012-07-03 | Symantec Corporation | Compact input compensating reputation data tracking mechanism |
CN102546446A (en) | 2010-12-13 | 2012-07-04 | 太仓市浏河镇亿网行网络技术服务部 | Email device |
US20120173381A1 (en) | 2011-01-03 | 2012-07-05 | Stanley Benjamin Smith | Process and system for pricing and processing weighted data in a federated or subscription based data source |
US8229902B2 (en) | 2006-11-01 | 2012-07-24 | Ab Initio Technology Llc | Managing storage of individually accessible data units |
US20120191446A1 (en) | 2009-07-15 | 2012-07-26 | Proviciel - Mlstate | System and method for creating a parser generator and associated computer program |
US20120188252A1 (en) | 2007-01-31 | 2012-07-26 | Salesforce.Com Inc. | Method and system for presenting a visual representation of the portion of the sets of data that a query is expected to return |
US20120197660A1 (en) | 2011-01-31 | 2012-08-02 | Ez Derm, Llc | Systems and methods to faciliate medical services |
US20120197657A1 (en) | 2011-01-31 | 2012-08-02 | Ez Derm, Llc | Systems and methods to facilitate medical services |
EP2487610A2 (en) | 2011-02-10 | 2012-08-15 | Deutsche Telekom AG | A method for generating a randomized data structure for representing sets, based on bloom filters |
US20120215898A1 (en) | 2011-02-17 | 2012-08-23 | Nitin Jayant Shah | Applications of a Network-Centric Information Distribution Platform on the Internet |
US20120215784A1 (en) | 2007-03-20 | 2012-08-23 | Gary King | System for estimating a distribution of message content categories in source data |
US20120216106A1 (en) | 2011-02-23 | 2012-08-23 | Casey Martin D | Computer-implemented system and method for conducting field inspections and generating reports |
US20120221553A1 (en) | 2011-02-24 | 2012-08-30 | Lexisnexis, A Division Of Reed Elsevier Inc. | Methods for electronic document searching and graphically representing electronic document searches |
US20120226523A1 (en) | 2009-10-23 | 2012-09-06 | Cadio, Inc. | Performing studies of consumer behavior determined using electronically-captured consumer location data |
US20120226590A1 (en) | 2011-03-01 | 2012-09-06 | Early Warning Services, Llc | System and method for suspect entity detection and mitigation |
US20120245976A1 (en) | 2004-11-12 | 2012-09-27 | Kumar Dilip S | Computer-based analysis of seller performance |
US20120254129A1 (en) | 2011-04-02 | 2012-10-04 | Recursion Software, Inc. | System and method for managing sensitive data using intelligent mobile agents on a network |
US8290838B1 (en) | 2006-12-29 | 2012-10-16 | Amazon Technologies, Inc. | Indicating irregularities in online financial transactions |
US20120266245A1 (en) | 2011-04-15 | 2012-10-18 | Raytheon Company | Multi-Nodal Malware Analysis |
US20120268269A1 (en) | 2011-04-19 | 2012-10-25 | Qualcomm Incorporated | Threat score generation |
US8301904B1 (en) | 2008-06-24 | 2012-10-30 | Mcafee, Inc. | System, method, and computer program product for automatically identifying potentially unwanted data as unwanted |
US8302855B2 (en) | 2005-03-09 | 2012-11-06 | Diebold, Incorporated | Banking system controlled responsive to data bearing records |
US20120284670A1 (en) | 2010-07-08 | 2012-11-08 | Alexey Kashik | Analysis of complex data objects and multiple parameter systems |
US8312546B2 (en) | 2007-04-23 | 2012-11-13 | Mcafee, Inc. | Systems, apparatus, and methods for detecting malware |
US8321943B1 (en) | 2009-07-30 | 2012-11-27 | Symantec Corporation | Programmatic communication in the event of host malware infection |
US20120304244A1 (en) | 2011-05-24 | 2012-11-29 | Palo Alto Networks, Inc. | Malware analysis system |
US20120311684A1 (en) | 2011-06-03 | 2012-12-06 | Uc Group Limited | Systems and methods for registering a user across multiple websites |
US20120310838A1 (en) | 2011-06-02 | 2012-12-06 | Visa International Service Association | Local usage of electronic tokens in a transaction processing system |
US20120310831A1 (en) | 2011-06-02 | 2012-12-06 | Visa International Service Association | Reputation management in a transaction processing system |
US20120323829A1 (en) | 2011-06-17 | 2012-12-20 | Microsoft Corporation | Graph-based classification based on file relationships |
US20120323888A1 (en) | 2011-06-17 | 2012-12-20 | Osann Jr Robert | Automatic Webpage Characterization and Search Results Annotation |
US8347398B1 (en) | 2009-09-23 | 2013-01-01 | Savvystuff Property Trust | Selected text obfuscation and encryption in a local, network and cloud computing environment |
US20130006426A1 (en) | 2011-06-28 | 2013-01-03 | Christopher Healey | System and method for measurement aided prediction of temperature and airflow values in a data center |
US20130006655A1 (en) | 2011-06-30 | 2013-01-03 | Verizon Patent And Licensing Inc. | Near real-time healthcare fraud detection |
US20130005362A1 (en) | 2010-07-07 | 2013-01-03 | Apple Inc. | Ad Hoc Formation and Tracking of Location-Sharing Groups |
US20130006947A1 (en) | 2011-07-03 | 2013-01-03 | Microsoft Corporation | Conflict resolution via metadata examination |
US20130013642A1 (en) | 2011-07-05 | 2013-01-10 | Michael Klein | Web based template reporting system |
US20130018796A1 (en) | 2011-07-15 | 2013-01-17 | Kolhatkar Jayashree S | Multi-Channel Data Driven, Real-Time Anti-Money Laundering System For Electronic Payment Cards |
US20130016106A1 (en) | 2011-07-15 | 2013-01-17 | Green Charge Networks Llc | Cluster mapping to highlight areas of electrical congestion |
US20130024339A1 (en) | 2011-07-21 | 2013-01-24 | Bank Of America Corporation | Multi-stage filtering for fraud detection with customer history filters |
US20130024307A1 (en) | 2011-07-13 | 2013-01-24 | Visa International Service Association | Systems and Methods to Communicate with Transaction Terminals |
US8364642B1 (en) | 2010-07-07 | 2013-01-29 | Palantir Technologies, Inc. | Managing disconnected investigations |
US20130030873A1 (en) * | 2011-07-26 | 2013-01-31 | United Parcel Service Of America, Inc. | Systems and methods for assessing mobile asset efficiencies |
EP2555153A1 (en) | 2011-08-02 | 2013-02-06 | Tata Consultancy Services Limited | Financial activity monitoring system |
US8386377B1 (en) | 2003-05-12 | 2013-02-26 | Id Analytics, Inc. | System and method for credit scoring using an identity network connectivity |
US20130055264A1 (en) | 2011-08-25 | 2013-02-28 | Brandon Lawrence BURR | System and method for parameterizing documents for automatic workflow generation |
US20130054306A1 (en) | 2011-08-31 | 2013-02-28 | Anuj Bhalla | Churn analysis system |
US8392556B2 (en) | 2009-07-16 | 2013-03-05 | Ca, Inc. | Selective reporting of upstream transaction trace data |
US20130057551A1 (en) | 2007-10-01 | 2013-03-07 | David S. Ebert | Visual Analytics Law Enforcement Tools |
US8402047B1 (en) | 2005-02-25 | 2013-03-19 | Adobe Systems Incorporated | Method and apparatus for generating a query to search for matching forms |
US8417715B1 (en) | 2007-12-19 | 2013-04-09 | Tilmann Bruckhaus | Platform independent plug-in methods and systems for data mining and analytics |
US20130096988A1 (en) | 2011-10-05 | 2013-04-18 | Mastercard International, Inc. | Nomination engine |
US20130097130A1 (en) | 2011-10-17 | 2013-04-18 | Yahoo! Inc. | Method and system for resolving data inconsistency |
US20130096968A1 (en) | 2011-10-17 | 2013-04-18 | Christopher R. Van Pelt | Performance data in a worker profile aggregated by a job distribution platform for workers that perform crowd sourced tasks |
US20130097482A1 (en) | 2011-10-13 | 2013-04-18 | Microsoft Corporation | Search result entry truncation using pixel-based approximation |
US8429527B1 (en) | 2005-07-12 | 2013-04-23 | Open Text S.A. | Complex data merging, such as in a workflow application |
US20130110746A1 (en) | 2011-11-01 | 2013-05-02 | Accenture Global Services Limited | Identification of entities likely to engage in a behavior |
US20130113815A1 (en) * | 2011-11-09 | 2013-05-09 | International Business Machines Corporation | Interactive comparative analysis of multiple object data visualizations |
US20130124567A1 (en) | 2011-11-14 | 2013-05-16 | Helen Balinsky | Automatic prioritization of policies |
US20130124193A1 (en) | 2011-11-15 | 2013-05-16 | Business Objects Software Limited | System and Method Implementing a Text Analysis Service |
US20130143597A1 (en) | 2010-09-09 | 2013-06-06 | Koshiro Mitsuya | Position estimating apparatus, position estimating method, and computer program product |
US20130151453A1 (en) | 2011-12-07 | 2013-06-13 | Inkiru, Inc. | Real-time predictive intelligence platform |
US20130151305A1 (en) | 2011-12-09 | 2013-06-13 | Sap Ag | Method and Apparatus for Business Drivers and Outcomes to Enable Scenario Planning and Simulation |
US20130151388A1 (en) | 2011-12-12 | 2013-06-13 | Visa International Service Association | Systems and methods to identify affluence levels of accounts |
CN103167093A (en) | 2011-12-08 | 2013-06-19 | 青岛海信移动通信技术股份有限公司 | Filling method of mobile phone email address |
US20130160120A1 (en) | 2011-12-20 | 2013-06-20 | Yahoo! Inc. | Protecting end users from malware using advertising virtual machine |
US8473454B2 (en) | 2009-03-10 | 2013-06-25 | Xerox Corporation | System and method of on-demand document processing |
US20130166480A1 (en) | 2011-12-21 | 2013-06-27 | Telenav, Inc. | Navigation system with point of interest classification mechanism and method of operation thereof |
US20130165069A1 (en) | 2011-12-26 | 2013-06-27 | Fujitsu Limited | Base station apparatus, wireless communication system, and wireless communication method |
US20130166348A1 (en) | 2011-12-27 | 2013-06-27 | Stefano Alexander Scotto | Utility for Creating Heatmaps for the Study of Competitive Advantage in the Restaurant Marketplace |
US20130166550A1 (en) | 2011-12-21 | 2013-06-27 | Sap Ag | Integration of Tags and Object Data |
US20130185245A1 (en) | 2012-01-16 | 2013-07-18 | International Business Machines Corporation | Social network analysis for churn prediction |
US20130185320A1 (en) | 2010-09-29 | 2013-07-18 | Rakuten, Inc. | Display program, display apparatus, information processing method, recording medium, and information processing apparatus |
US20130185307A1 (en) | 2012-01-18 | 2013-07-18 | Technion Research & Development Foundation Ltd. | Methods and systems of supervised learning of semantic relatedness |
US20130197925A1 (en) | 2012-01-31 | 2013-08-01 | Optumlnsight, Inc. | Behavioral clustering for removing outlying healthcare providers |
US20130196614A1 (en) | 2012-01-29 | 2013-08-01 | Crimepush Llc | Mobile alert reporting and monitoring systems and methods |
US20130208565A1 (en) | 2012-02-09 | 2013-08-15 | Pgs Geophysical As | Methods and systems for correction of streamer-depth bias in marine seismic surveys |
US20130211985A1 (en) | 2002-11-01 | 2013-08-15 | Id Insight Incorporated | System, method and computer program product for assessing risk of identity theft |
US8521135B2 (en) | 2010-12-20 | 2013-08-27 | Research In Motion Limited | Message relay host for delivering messages to out of coverage communications devices |
US20130226879A1 (en) | 2012-02-28 | 2013-08-29 | Qatar Foundation | Detecting Inconsistent Data Records |
US20130226318A1 (en) | 2011-09-22 | 2013-08-29 | Dariusz Procyk | Process transformation and transitioning apparatuses, methods and systems |
US20130226944A1 (en) | 2012-02-24 | 2013-08-29 | Microsoft Corporation | Format independent data transformation |
WO2013126281A1 (en) | 2012-02-24 | 2013-08-29 | Lexisnexis Risk Solutions Fl Inc. | Systems and methods for putative cluster analysis |
US8527949B1 (en) | 2001-11-19 | 2013-09-03 | Cypress Semiconductor Corporation | Graphical user interface for dynamically reconfiguring a programmable device |
US20130232045A1 (en) | 2012-03-04 | 2013-09-05 | Oracle International Corporation | Automatic Detection Of Fraud And Error Using A Vector-Cluster Model |
US20130238616A1 (en) | 2007-09-06 | 2013-09-12 | Linkedln Corporation | Detecting associates |
US20130235749A1 (en) | 2010-10-22 | 2013-09-12 | Sk Telecom Co., Ltd. | Method device and system for estimating access points using log data |
US20130246170A1 (en) | 2010-03-16 | 2013-09-19 | UberMedia, Inc. | Systems and methods for interacting with messages, authors, and followers |
US20130246597A1 (en) | 2012-03-15 | 2013-09-19 | Fujitsu Limited | Processor, computer readable recording medium recording program therein, and processing system |
US20130246316A1 (en) | 2009-05-29 | 2013-09-19 | Aspen Technology, Inc. | Apparatus and Method for Automated Data Selection in Model Identification and Adaptation in Multivariable Process Control |
US20130246537A1 (en) | 2009-12-10 | 2013-09-19 | Satish Kumar Gaddala | System and method for monitoring social engineering in a computer network environment |
US20130262528A1 (en) | 2012-03-29 | 2013-10-03 | Touchstone Media Group, Llc | Mobile Sales Tracking System |
US20130262497A1 (en) | 2012-04-02 | 2013-10-03 | Caterpillar Inc. | Inspection Tool |
US20130262527A1 (en) | 2012-04-02 | 2013-10-03 | Nicolas M. Hunter | Smart progress indicator |
US20130262171A1 (en) | 2010-12-10 | 2013-10-03 | Solodko Properties, Llc | System and Method for Directing and Monitoring the Activities of Remote Agents |
US20130263019A1 (en) | 2012-03-30 | 2013-10-03 | Maria G. Castellanos | Analyzing social media |
US8560413B1 (en) | 2005-07-14 | 2013-10-15 | John S. Quarterman | Method and system for detecting distributed internet crime |
US20130282696A1 (en) | 2012-04-23 | 2013-10-24 | Sap Ag | Interactive data exploration and visualization tool |
US20130276799A1 (en) | 2010-12-22 | 2013-10-24 | Exonoid Medical Devices Ltd. | Method and system for drug delivery |
US20130290825A1 (en) | 2012-04-26 | 2013-10-31 | Henrik Arndt | Switch control in report generation |
US20130288719A1 (en) | 2012-04-27 | 2013-10-31 | Oracle International Corporation | Augmented reality for maintenance management, asset management, or real estate management |
US20130295970A1 (en) | 2012-05-01 | 2013-11-07 | Qualcomm Incorporated | Geofence breach confidence |
US20130297619A1 (en) | 2012-05-07 | 2013-11-07 | The Nasdaq Omx Group, Inc. | Social media profiling |
US20130304770A1 (en) | 2012-05-10 | 2013-11-14 | Siemens Aktiengesellschaft | Method and system for storing data in a database |
US8589273B2 (en) | 2002-12-23 | 2013-11-19 | Ge Corporate Financial Services, Inc. | Methods and systems for managing risk management information |
US20130318594A1 (en) | 2011-01-27 | 2013-11-28 | L-3 Communications Corporation | Internet isolation for avoiding internet security threats |
US8601326B1 (en) | 2013-07-05 | 2013-12-03 | Palantir Technologies, Inc. | Data quality monitors |
US8600872B1 (en) | 2007-07-27 | 2013-12-03 | Wells Fargo Bank, N.A. | System and method for detecting account compromises |
US20130325826A1 (en) | 2012-05-30 | 2013-12-05 | International Business Machines Corporation | Matching transactions in multi-level records |
US20130339514A1 (en) | 2012-06-13 | 2013-12-19 | Zscaler, Inc. | Systems and methods for interactive analytics of internet traffic |
US20140006109A1 (en) | 2006-11-13 | 2014-01-02 | Vendavo, Inc. | System and Methods for Generating Price Sensitivity |
US20140012796A1 (en) | 2010-11-24 | 2014-01-09 | Logrhythm, Inc. | Advanced intelligence engine |
US8639552B1 (en) | 2013-01-24 | 2014-01-28 | Broadvision, Inc. | Systems and methods for creating and sharing tasks |
US20140032506A1 (en) | 2012-06-12 | 2014-01-30 | Quality Attributes Software, Inc. | System and methods for real-time detection, correction, and transformation of time series data |
US8646080B2 (en) | 2005-09-16 | 2014-02-04 | Avg Technologies Cy Limited | Method and apparatus for removing harmful software |
US20140040371A1 (en) | 2009-12-01 | 2014-02-06 | Topsy Labs, Inc. | Systems and methods for identifying geographic locations of social media content collected over social networks |
US20140058914A1 (en) | 2012-08-27 | 2014-02-27 | Yuh-Shen Song | Transactional monitoring system |
US20140058763A1 (en) | 2012-07-24 | 2014-02-27 | Deloitte Development Llc | Fraud detection methods and systems |
US20140068487A1 (en) | 2012-09-05 | 2014-03-06 | Roche Diagnostics Operations, Inc. | Computer Implemented Methods For Visualizing Correlations Between Blood Glucose Data And Events And Apparatuses Thereof |
US20140081652A1 (en) | 2012-09-14 | 2014-03-20 | Risk Management Solutions Llc | Automated Healthcare Risk Management System Utilizing Real-time Predictive Models, Risk Adjusted Provider Cost Index, Edit Analytics, Strategy Management, Managed Learning Environment, Contact Management, Forensic GUI, Case Management And Reporting System For Preventing And Detecting Healthcare Fraud, Abuse, Waste And Errors |
US8682812B1 (en) | 2010-12-23 | 2014-03-25 | Narus, Inc. | Machine learning based botnet detection using real-time extracted traffic features |
US8682696B1 (en) | 2007-11-30 | 2014-03-25 | Intuit Inc. | Healthcare claims navigator |
US20140089339A1 (en) | 2008-02-25 | 2014-03-27 | Cisco Technology, Inc. | Unified communication audit tool |
US8688573B1 (en) | 2012-10-16 | 2014-04-01 | Intuit Inc. | Method and system for identifying a merchant payee associated with a cash transaction |
US20140095509A1 (en) | 2012-10-02 | 2014-04-03 | Banjo, Inc. | Method of tagging content lacking geotags with a location |
US20140095363A1 (en) | 2012-09-25 | 2014-04-03 | Moneydesktop, Inc. | Aggregation data source matching and merging |
US20140108985A1 (en) | 2012-10-08 | 2014-04-17 | Fisher-Rosemount Systems, Inc. | Configurable User Displays in a Process Control System |
US20140108380A1 (en) | 2012-10-12 | 2014-04-17 | International Business Machines Corporation | Iterative Refinement of Cohorts Using Visual Exploration and Data Analytics |
US20140108074A1 (en) | 2011-08-17 | 2014-04-17 | Roundhouse One Llc | Multidimensional digital platform for building integration and analysis |
US20140123279A1 (en) | 2012-10-29 | 2014-05-01 | Michael G. Bishop | Dynamic quarantining for malware detection |
US20140129936A1 (en) | 2012-11-05 | 2014-05-08 | Palantir Technologies, Inc. | System and method for sharing investigation results |
US20140129261A1 (en) | 2012-11-08 | 2014-05-08 | Hartford Fire Insurance Company | System and method for determination of insurance classification of entities |
US8726379B1 (en) | 2011-07-15 | 2014-05-13 | Norse Corporation | Systems and methods for dynamic protection from electronic attacks |
US20140136285A1 (en) | 2012-11-15 | 2014-05-15 | Homer Tlc, Inc. | System and method for classifying relevant competitors |
US20140143009A1 (en) | 2012-11-16 | 2014-05-22 | International Business Machines Corporation | Risk reward estimation for company-country pairs |
US8739059B2 (en) | 2005-05-16 | 2014-05-27 | Xcira, Inc. | System for generating inspection reports for inspected items |
US20140149130A1 (en) | 2012-11-29 | 2014-05-29 | Verizon Patent And Licensing Inc. | Healthcare fraud detection based on statistics, learning, and parameters |
US20140149272A1 (en) | 2012-08-17 | 2014-05-29 | Trueex Group Llc | Interoffice bank offered rate financial product and implementation |
US20140149436A1 (en) | 2012-11-26 | 2014-05-29 | The Boeing Company | System and Method of Reduction of Irrelevant Information during Search |
US8744890B1 (en) | 2013-02-14 | 2014-06-03 | Aktana, Inc. | System and method for managing system-level workflow strategy and individual workflow activity |
US20140156527A1 (en) | 2012-11-30 | 2014-06-05 | Bank Of America Corporation | Pre-payment authorization categorization |
US20140156484A1 (en) | 2007-04-06 | 2014-06-05 | Mastercard International Incorporated | Methods and apparatus for using assignable fee profiles to define fee structures for remittance services |
US20140157172A1 (en) | 2012-11-30 | 2014-06-05 | Drillmap | Geographic layout of petroleum drilling data and methods for processing data |
US20140164502A1 (en) | 2012-12-07 | 2014-06-12 | Alex Khodorenko | System and method for social message classification based on influence |
US8762870B2 (en) | 2011-07-19 | 2014-06-24 | Salesforce.Com, Inc. | Multifunction drag-and-drop selection tool for selection of data objects in a social network application |
US20140189536A1 (en) | 2013-01-02 | 2014-07-03 | Microsoft Corporation | Social media impact assessment |
US20140195515A1 (en) | 2013-01-10 | 2014-07-10 | I3 Analytics | Methods and systems for querying and displaying data using interactive three-dimensional representations |
US8788405B1 (en) | 2013-03-15 | 2014-07-22 | Palantir Technologies, Inc. | Generating data clusters with customizable analysis strategies |
US20140208281A1 (en) | 2013-01-20 | 2014-07-24 | International Business Machines Corporation | Real-time display of electronic device design changes between schematic and/or physical representation and simplified physical representation of design |
US8798354B1 (en) | 2012-04-25 | 2014-08-05 | Intuit Inc. | Method and system for automatic correlation of check-based payments to customer accounts and/or invoices |
US20140222793A1 (en) | 2013-02-07 | 2014-08-07 | Parlance Corporation | System and Method for Automatically Importing, Refreshing, Maintaining, and Merging Contact Sets |
US20140222521A1 (en) | 2013-02-07 | 2014-08-07 | Ibms, Llc | Intelligent management and compliance verification in distributed work flow environments |
US20140229554A1 (en) | 2013-02-13 | 2014-08-14 | International Business Machines Corporation | Mail server-based dynamic workflow management |
US8812960B1 (en) | 2013-10-07 | 2014-08-19 | Palantir Technologies Inc. | Cohort-based presentation of user interaction data |
US8807948B2 (en) | 2011-09-29 | 2014-08-19 | Cadence Design Systems, Inc. | System and method for automated real-time design checking |
US20140244284A1 (en) | 2013-02-25 | 2014-08-28 | Complete Consent, Llc | Communication of medical claims |
US20140258827A1 (en) | 2013-03-07 | 2014-09-11 | Ricoh Co., Ltd. | Form Filling Based on Classification and Identification of Multimedia Data |
US20140258246A1 (en) | 2013-03-08 | 2014-09-11 | Mastercard International Incorporated | Recognizing and combining redundant merchant deisgnations in a transaction database |
US8838538B1 (en) | 2013-07-31 | 2014-09-16 | Palantir Technologies, Inc. | Techniques for replicating changes to access control lists on investigative analysis data |
EP2778914A1 (en) | 2013-03-15 | 2014-09-17 | Palantir Technologies, Inc. | Method and system for generating a parser and parsing complex data |
EP2778913A1 (en) | 2013-03-15 | 2014-09-17 | Palantir Technologies, Inc. | Method and system for generating a parser and parsing complex data |
DE102014204830A1 (en) | 2013-03-15 | 2014-09-18 | Palantir Technologies, Inc. | Computer-implemented systems and methods for comparing and associating objects |
DE102014204827A1 (en) | 2013-03-14 | 2014-09-18 | Palantir Technologies, Inc. | Explode similar entities from a transactional database |
DE102014204834A1 (en) | 2013-03-15 | 2014-09-18 | Palantir Technologies, Inc. | Computer-implemented systems and methods for comparing and associating objects |
US20140283067A1 (en) | 2013-03-15 | 2014-09-18 | Shape Security Inc. | Detecting the introduction of alien content |
US8849254B2 (en) | 2009-12-18 | 2014-09-30 | Trueposition, Inc. | Location intelligence management system |
US20140302783A1 (en) | 2013-03-15 | 2014-10-09 | Whistle Labs, Inc. | Detecting interaction among entities via proximity |
US20140310266A1 (en) * | 2013-04-10 | 2014-10-16 | Google Inc. | Systems and Methods for Suggesting Places for Persons to Meet |
GB2513247A (en) | 2013-03-15 | 2014-10-22 | Palantir Technologies Inc | Data clustering |
US20140331119A1 (en) | 2013-05-06 | 2014-11-06 | Mcafee, Inc. | Indicating website reputations during user interactions |
US20140344230A1 (en) | 2013-03-20 | 2014-11-20 | Securboration Inc | Methods and systems for node and link identification |
US20140351070A1 (en) | 2013-05-22 | 2014-11-27 | Cube, Co. | Role-based transaction management system for multi-point merchants |
US20140357299A1 (en) | 2013-05-30 | 2014-12-04 | Hong Kong Baptist University | System and method for providing proximity information |
US20140358829A1 (en) | 2013-06-01 | 2014-12-04 | Adam M. Hurwitz | System and method for sharing record linkage information |
EP2816513A1 (en) | 2013-03-14 | 2014-12-24 | Palantir Technologies, Inc. | Mobile reports |
US20140379812A1 (en) | 2013-06-21 | 2014-12-25 | International Business Machines Corporation | Methodology that uses culture information as a means to detect spam |
US8924389B2 (en) | 2013-03-15 | 2014-12-30 | Palantir Technologies Inc. | Computer-implemented systems and methods for comparing and associating objects |
US8930874B2 (en) | 2012-11-09 | 2015-01-06 | Analog Devices, Inc. | Filter design tool |
US8938686B1 (en) | 2013-10-03 | 2015-01-20 | Palantir Technologies Inc. | Systems and methods for analyzing performance of an entity |
US8938434B2 (en) | 2004-11-22 | 2015-01-20 | Intelius, Inc. | Household grouping based on public records |
DE102014213036A1 (en) | 2013-07-05 | 2015-01-22 | Palantir Technologies, Inc. | Data Quality Monitors |
US20150026622A1 (en) | 2013-07-19 | 2015-01-22 | General Electric Company | Systems and methods for dynamically controlling content displayed on a condition monitoring system |
US8949164B1 (en) | 2011-09-08 | 2015-02-03 | George O. Mohler | Event forecasting system |
US20150067533A1 (en) | 2013-08-29 | 2015-03-05 | Pecan Technologies, Inc. | Social profiling of electronic messages |
US20150073954A1 (en) | 2012-12-06 | 2015-03-12 | Jpmorgan Chase Bank, N.A. | System and Method for Data Analytics |
US20150073929A1 (en) | 2007-11-14 | 2015-03-12 | Panjiva, Inc. | Transaction facilitating marketplace platform |
US20150080012A1 (en) | 2013-09-13 | 2015-03-19 | Palantir Technologies, Inc. | Systems and methods for detecting associated devices |
US20150089353A1 (en) | 2013-09-24 | 2015-03-26 | Chad Folkening | Platform for building virtual entities using equity systems |
US20150095773A1 (en) | 2013-10-01 | 2015-04-02 | Aetherpal, Inc. | Method and apparatus for interactive mobile device guidance |
US20150101062A1 (en) | 2010-02-25 | 2015-04-09 | American Express Travel Related Services Company, Inc. | System and method for online data processing |
US9009827B1 (en) | 2014-02-20 | 2015-04-14 | Palantir Technologies Inc. | Security sharing system |
EP2869211A2 (en) | 2013-11-04 | 2015-05-06 | Palantir Technologies, Inc. | Optimized display of multi-column table |
US20150135256A1 (en) | 2013-11-13 | 2015-05-14 | International Business Machines Corporation | Disambiguating conflicting content filter rules |
US9043894B1 (en) | 2014-11-06 | 2015-05-26 | Palantir Technologies Inc. | Malicious software detection in a computing system |
US20150178825A1 (en) | 2013-12-23 | 2015-06-25 | Citibank, N.A. | Methods and Apparatus for Quantitative Assessment of Behavior in Financial Entities and Transactions |
EP2889814A1 (en) | 2013-12-26 | 2015-07-01 | Palantir Technologies, Inc. | System and method for detecting confidential information emails |
US20150186483A1 (en) | 2013-12-27 | 2015-07-02 | General Electric Company | Systems and methods for dynamically grouping data analysis content |
EP2892197A1 (en) | 2014-01-03 | 2015-07-08 | Palantir Technologies, Inc. | IP reputation |
US20150212663A1 (en) | 2014-01-30 | 2015-07-30 | Splunk Inc. | Panel templates for visualization of data within an interactive dashboard |
US9105000B1 (en) | 2013-12-10 | 2015-08-11 | Palantir Technologies Inc. | Aggregating data from a plurality of data sources |
US20150235334A1 (en) | 2014-02-20 | 2015-08-20 | Palantir Technologies Inc. | Healthcare fraud sharing system |
US9123086B1 (en) | 2013-01-31 | 2015-09-01 | Palantir Technologies, Inc. | Automatically generating event objects from images |
US9129219B1 (en) | 2014-06-30 | 2015-09-08 | Palantir Technologies, Inc. | Crime risk forecasting |
EP2916276A1 (en) | 2014-03-04 | 2015-09-09 | Palantir Technologies, Inc. | System including a data repository and a data importing component |
US9165100B2 (en) | 2013-12-05 | 2015-10-20 | Honeywell International Inc. | Methods and apparatus to map schematic elements into a database |
US20150338233A1 (en) | 2009-07-27 | 2015-11-26 | Palantir Technologies, Inc. | Geotagging Structured Data |
US9202249B1 (en) | 2014-07-03 | 2015-12-01 | Palantir Technologies Inc. | Data item clustering and analysis |
US9230280B1 (en) | 2013-03-15 | 2016-01-05 | Palantir Technologies Inc. | Clustering data based on indications of financial malfeasance |
EP2963577A1 (en) | 2014-07-03 | 2016-01-06 | Palantir Technologies, Inc. | Method for malware analysis based on data clustering |
US20160004764A1 (en) | 2014-07-03 | 2016-01-07 | Palantir Technologies Inc. | System and method for news events detection and visualization |
US20160026923A1 (en) | 2014-07-22 | 2016-01-28 | Palantir Technologies Inc. | System and method for determining a propensity of entity to take a specified action |
US9262529B2 (en) | 2013-11-11 | 2016-02-16 | Palantir Technologies, Inc. | Simple web search |
EP2985729A1 (en) | 2014-08-12 | 2016-02-17 | Palantir Technologies, Inc. | Automated database analysis to detect malfeasance |
EP2988258A1 (en) | 2014-08-19 | 2016-02-24 | Palantir Technologies, Inc. | System and method for determining a cohort |
US20160062555A1 (en) | 2014-09-03 | 2016-03-03 | Palantir Technologies Inc. | System for providing dynamic linked panels in user interface |
EP3002691A1 (en) | 2014-10-03 | 2016-04-06 | Palantir Technologies, Inc. | Time-series analysis system |
EP3009943A1 (en) | 2014-10-16 | 2016-04-20 | Palantir Technologies, Inc. | Schematic and database linking system |
US9348880B1 (en) | 2015-04-01 | 2016-05-24 | Palantir Technologies, Inc. | Federated search of multiple sources with conflict resolution |
US20160162519A1 (en) | 2014-12-08 | 2016-06-09 | Palantir Technologies Inc. | Distributed acoustic sensing data analysis system |
US9367872B1 (en) | 2014-12-22 | 2016-06-14 | Palantir Technologies Inc. | Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures |
EP3035214A1 (en) | 2014-12-15 | 2016-06-22 | Palantir Technologies, Inc. | Associating related records to common entities across multiple lists |
EP3038046A1 (en) | 2014-12-23 | 2016-06-29 | Palantir Technologies, Inc. | System and methods for detecting fraudulent transactions |
US9760840B1 (en) * | 2011-10-27 | 2017-09-12 | Tango Analytics LLC | Geospatial data analysis |
-
2016
- 2016-02-02 US US15/013,707 patent/US10579647B1/en active Active
Patent Citations (780)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4881179A (en) | 1988-03-11 | 1989-11-14 | International Business Machines Corp. | Method for providing information security protocols to an electronic calendar |
US5555503A (en) | 1989-12-11 | 1996-09-10 | Caterpillar Inc. | System and method for providing accurate vehicle positioning using spatial bias techniques |
US5021792A (en) | 1990-01-12 | 1991-06-04 | Rockwell International Corporation | System for determining direction or attitude using GPS satellite signals |
US5241625A (en) | 1990-11-27 | 1993-08-31 | Farallon Computing, Inc. | Screen image sharing among heterogeneous computers |
US6101479A (en) | 1992-07-15 | 2000-08-08 | Shaw; James G. | System and method for allocating company resources to fulfill customer expectations |
US5670987A (en) | 1993-09-21 | 1997-09-23 | Kabushiki Kaisha Toshiba | Virtual manipulating apparatus and method |
US6057757A (en) | 1995-03-29 | 2000-05-02 | Cabletron Systems, Inc. | Method and apparatus for policy-based alarm notification in a distributed network management environment |
US5999911A (en) | 1995-06-02 | 1999-12-07 | Mentor Graphics Corporation | Method and system for managing workflow |
US5832218A (en) | 1995-12-14 | 1998-11-03 | International Business Machines Corporation | Client/server electronic mail system for providng off-line client utilization and seamless server resynchronization |
US6006242A (en) | 1996-04-05 | 1999-12-21 | Bankers Systems, Inc. | Apparatus and method for dynamically creating a document |
US5845300A (en) | 1996-06-05 | 1998-12-01 | Microsoft Corporation | Method and apparatus for suggesting completions for a partially entered data item based on previously-entered, associated data items |
US5897636A (en) | 1996-07-11 | 1999-04-27 | Tandem Corporation Incorporated | Distributed object computer system with hierarchical name space versioning |
US5878434A (en) | 1996-07-18 | 1999-03-02 | Novell, Inc | Transaction clash management in a disconnectable computer and network |
US5826021A (en) | 1996-09-17 | 1998-10-20 | Sun Microsystems, Inc. | Disconnected write authorization in a client/server computing system |
US20020147805A1 (en) | 1996-10-15 | 2002-10-10 | Eran Leshem | Software system and methods for generating and graphically representing web site usage data |
US6237138B1 (en) | 1996-11-12 | 2001-05-22 | International Business Machines Corp. | Buffered screen capturing software tool for usability testing of computer applications |
US6430305B1 (en) | 1996-12-20 | 2002-08-06 | Synaptics, Incorporated | Identity verification methods |
US6065026A (en) | 1997-01-09 | 2000-05-16 | Document.Com, Inc. | Multi-user electronic document authoring system with prompted updating of shared language |
US5966706A (en) | 1997-02-19 | 1999-10-12 | At&T Corp | Local logging in a distributed database management computer system |
US20020095658A1 (en) | 1997-05-27 | 2002-07-18 | Microsoft Corporation | Computer programming language statement building and information tool |
US6463404B1 (en) | 1997-08-08 | 2002-10-08 | British Telecommunications Public Limited Company | Translation |
US6374251B1 (en) | 1998-03-17 | 2002-04-16 | Microsoft Corporation | Scalable system for clustering of large databases |
US6272489B1 (en) | 1998-05-12 | 2001-08-07 | International Business Machines Corp. | Visually oriented, easily navigable search facility |
US6141659A (en) | 1998-05-12 | 2000-10-31 | International Businss Machines Corporation | Systems, methods and computer program products for retrieving documents from multiple document servers via a single client session |
US6944777B1 (en) | 1998-05-15 | 2005-09-13 | E.Piphany, Inc. | System and method for controlling access to resources in a distributed environment |
US6134582A (en) | 1998-05-26 | 2000-10-17 | Microsoft Corporation | System and method for managing electronic mail messages using a client-based database |
US20070294200A1 (en) | 1998-05-28 | 2007-12-20 | Q-Phrase Llc | Automatic data categorization with optimally spaced semantic seed terms |
US20010021936A1 (en) | 1998-06-02 | 2001-09-13 | Randal Lee Bertram | Method and system for reducing the horizontal space required for displaying a column containing text data |
US7962848B2 (en) | 1998-06-02 | 2011-06-14 | International Business Machines Corporation | Method and system for reducing the horizontal space required for displaying a column containing text data |
US7168039B2 (en) | 1998-06-02 | 2007-01-23 | International Business Machines Corporation | Method and system for reducing the horizontal space required for displaying a column containing text data |
US6243706B1 (en) | 1998-07-24 | 2001-06-05 | Avid Technology, Inc. | System and method for managing the creation and production of computer generated works |
US6243717B1 (en) | 1998-09-01 | 2001-06-05 | Camstar Systems, Inc. | System and method for implementing revision management of linked data entities and user dependent terminology |
US6232971B1 (en) | 1998-09-23 | 2001-05-15 | International Business Machines Corporation | Variable modality child windows |
US20070168871A1 (en) | 1998-10-16 | 2007-07-19 | Haynes And Boone, L.L.P. | Web-enabled transaction and collaborative management system |
US7392254B1 (en) | 1998-10-16 | 2008-06-24 | Jenkins Steven R | Web-enabled transaction and matter management system |
US7213030B1 (en) | 1998-10-16 | 2007-05-01 | Jenkins Steven R | Web-enabled transaction and collaborative management system |
US6189003B1 (en) | 1998-10-23 | 2001-02-13 | Wynwyn.Com Inc. | Online business directory with predefined search template for facilitating the matching of buyers to qualified sellers |
US6279018B1 (en) | 1998-12-21 | 2001-08-21 | Kudrollis Software Inventions Pvt. Ltd. | Abbreviating and compacting text to cope with display space constraint in computer software |
US20030074368A1 (en) | 1999-01-26 | 2003-04-17 | Hinrich Schuetze | System and method for quantitatively representing data objects in vector space |
US7627489B2 (en) | 1999-03-10 | 2009-12-01 | Illinois Institute Of Technology | Method for the construction and utilization of a medical records system |
US20020194058A1 (en) | 1999-03-12 | 2002-12-19 | Eldering Charles A. | Consumer profiling |
US8028894B2 (en) | 1999-05-25 | 2011-10-04 | Silverbrook Research Pty Ltd | System for providing information to user with every interaction with printed substrate |
US20050028094A1 (en) | 1999-07-30 | 2005-02-03 | Microsoft Corporation | Modeless child windows for application programs |
US6523019B1 (en) | 1999-09-21 | 2003-02-18 | Choicemaker Technologies, Inc. | Probabilistic record linkage model derived from training data |
US20030126102A1 (en) | 1999-09-21 | 2003-07-03 | Choicemaker Technologies, Inc. | Probabilistic record linkage model derived from training data |
US6519627B1 (en) | 1999-09-27 | 2003-02-11 | International Business Machines Corporation | System and method for conducting disconnected transactions with service contracts for pervasive computing devices |
WO2001025906A1 (en) | 1999-10-01 | 2001-04-12 | Global Graphics Software Limited | Method and system for arranging a workflow using graphical user interface |
US20090254971A1 (en) | 1999-10-27 | 2009-10-08 | Pinpoint, Incorporated | Secure data interchange |
US20070185850A1 (en) | 1999-11-10 | 2007-08-09 | Walters Edward J | Apparatus and Method for Displaying Records Responsive to a Database Query |
US6370538B1 (en) | 1999-11-22 | 2002-04-09 | Xerox Corporation | Direct manipulation interface for document properties |
US7194680B1 (en) | 1999-12-07 | 2007-03-20 | Adobe Systems Incorporated | Formatting content by example |
US6944821B1 (en) | 1999-12-07 | 2005-09-13 | International Business Machines Corporation | Copy/paste mechanism and paste buffer that includes source information for copied data |
US6567936B1 (en) | 2000-02-08 | 2003-05-20 | Microsoft Corporation | Data clustering using error-tolerant frequent item sets |
US20040117387A1 (en) | 2000-02-25 | 2004-06-17 | Vincent Civetta | Database sizing and diagnostic utility |
US7188100B2 (en) | 2000-02-25 | 2007-03-06 | Joseph De Bellis | Search-on-the-fly report generator |
US20020032677A1 (en) | 2000-03-01 | 2002-03-14 | Jeff Morgenthaler | Methods for creating, editing, and updating searchable graphical database and databases of graphical images and information and displaying graphical images from a searchable graphical database or databases in a sequential or slide show format |
US20030097330A1 (en) | 2000-03-24 | 2003-05-22 | Amway Corporation | System and method for detecting fraudulent transactions |
US6642945B1 (en) | 2000-05-04 | 2003-11-04 | Microsoft Corporation | Method and system for optimizing a visual display for handheld computer systems |
US20030093755A1 (en) | 2000-05-16 | 2003-05-15 | O'carroll Garrett | Document processing system and method |
WO2001088750A1 (en) | 2000-05-16 | 2001-11-22 | Carroll Garrett O | A document processing system and method |
US20070113164A1 (en) | 2000-05-17 | 2007-05-17 | Hansen David R | System and method for implementing compound documents in a production printing workflow |
US20040203380A1 (en) | 2000-07-03 | 2004-10-14 | Maher Hamdi | Method and wireless terminal for generating and maintaining a relative positioning system |
US6967589B1 (en) | 2000-08-11 | 2005-11-22 | Oleumtech Corporation | Gas/oil well monitoring system |
GB2366498A (en) | 2000-08-25 | 2002-03-06 | Copyn Ltd | Method of bookmarking a section of a web-page and storing said bookmarks |
US6820135B1 (en) | 2000-08-31 | 2004-11-16 | Pervasive Software, Inc. | Modeless event-driven data transformation |
US20030172014A1 (en) | 2000-09-01 | 2003-09-11 | Chris Quackenbush | System and method for online valuation and analysis |
US20020035590A1 (en) | 2000-09-16 | 2002-03-21 | International Business Machines Corporation | Guaranteed end-to-end transaction execution in a client/server environment |
US20020065708A1 (en) | 2000-09-22 | 2002-05-30 | Hikmet Senay | Method and system for interactive visual analyses of organizational interactions |
EP1191463A2 (en) | 2000-09-26 | 2002-03-27 | International Business Machines Corporation | A method for adapting a k-means text clustering to emerging data |
US20090249244A1 (en) | 2000-10-10 | 2009-10-01 | Addnclick, Inc. | Dynamic information management system and method for content delivery and sharing in content-, metadata- & viewer-based, live social networking among users concurrently engaged in the same and/or similar content |
US20040236688A1 (en) | 2000-10-30 | 2004-11-25 | Bozeman William O. | Universal positive pay database method, system, and computer useable medium |
US6978419B1 (en) | 2000-11-15 | 2005-12-20 | Justsystem Corporation | Method and apparatus for efficient identification of duplicate and near-duplicate documents and text spans using high-discriminability text fragments |
US20030033228A1 (en) | 2000-11-30 | 2003-02-13 | Rowan Bosworth-Davies | Countermeasures for irregularities in financial transactions |
US7058648B1 (en) | 2000-12-01 | 2006-06-06 | Oracle International Corporation | Hierarchy-based secured document repository |
US20020103705A1 (en) | 2000-12-06 | 2002-08-01 | Forecourt Communication Group | Method and apparatus for using prior purchases to select activities to present to a customer |
US20020095360A1 (en) | 2001-01-16 | 2002-07-18 | Joao Raymond Anthony | Apparatus and method for providing transaction history information, account history information, and/or charge-back information |
US6850317B2 (en) | 2001-01-23 | 2005-02-01 | Schlumberger Technology Corporation | Apparatus and methods for determining velocity of oil in a flow stream |
US8799313B2 (en) | 2001-02-20 | 2014-08-05 | Hartford Fire Insurance Company | Method and system for processing medical provider claim data |
US20110179048A1 (en) | 2001-02-20 | 2011-07-21 | Hartford Fire Insurance Company | Method and system for processing medical provider claim data |
US20100057622A1 (en) | 2001-02-27 | 2010-03-04 | Faith Patrick L | Distributed Quantum Encrypted Pattern Generation And Scoring |
US6775675B1 (en) | 2001-04-04 | 2004-08-10 | Sagemetrics Corporation | Methods for abstracting data from various data structures and managing the presentation of the data |
US6980984B1 (en) | 2001-05-16 | 2005-12-27 | Kanisa, Inc. | Content provider systems and methods using structured data |
US7877421B2 (en) | 2001-05-25 | 2011-01-25 | International Business Machines Corporation | Method and system for mapping enterprise data assets to a semantic information model |
US20020194119A1 (en) | 2001-05-30 | 2002-12-19 | William Wright | Method and apparatus for evaluating fraud risk in an electronic commerce transaction |
US6665683B1 (en) | 2001-06-22 | 2003-12-16 | E. Intelligence, Inc. | System and method for adjusting a value within a multidimensional aggregation tree |
US20020196229A1 (en) | 2001-06-26 | 2002-12-26 | Frank Chen | Graphics-based calculator capable of directly editing data points on graph |
US20030028560A1 (en) | 2001-06-26 | 2003-02-06 | Kudrollis Software Inventions Pvt. Ltd. | Compacting an information array display to cope with two dimensional display space constraint |
US8001465B2 (en) | 2001-06-26 | 2011-08-16 | Kudrollis Software Inventions Pvt. Ltd. | Compacting an information array display to cope with two dimensional display space constraint |
US20030154044A1 (en) | 2001-07-23 | 2003-08-14 | Lundstedt Alan P. | On-site analysis system with central processor and method of analyzing |
US20040205492A1 (en) | 2001-07-26 | 2004-10-14 | Newsome Mark R. | Content clipping service |
US20040205524A1 (en) | 2001-08-15 | 2004-10-14 | F1F9 | Spreadsheet data processing system |
US20030036848A1 (en) * | 2001-08-16 | 2003-02-20 | Sheha Michael A. | Point of interest spatial rating search method and system |
US20030036927A1 (en) | 2001-08-20 | 2003-02-20 | Bowen Susan W. | Healthcare information search system and user interface |
US20030061132A1 (en) | 2001-09-26 | 2003-03-27 | Yu, Mason K. | System and method for categorizing, aggregating and analyzing payment transactions data |
US20030074187A1 (en) | 2001-10-10 | 2003-04-17 | Xerox Corporation | Natural language parser |
US20030105759A1 (en) | 2001-10-26 | 2003-06-05 | United Services Automobile Association (Usaa) | System and method of providing electronic access to one or more documents |
US20030088438A1 (en) | 2001-10-31 | 2003-05-08 | Maughan Rex Wendell | Healthcare system and user interface for consolidating patient related information from different sources |
US20030093401A1 (en) | 2001-11-14 | 2003-05-15 | Czajkowski Grzegorz J. | Method and apparatus for using a shared library mechanism to facilitate sharing of metadata |
US8527949B1 (en) | 2001-11-19 | 2013-09-03 | Cypress Semiconductor Corporation | Graphical user interface for dynamically reconfiguring a programmable device |
US7089541B2 (en) | 2001-11-30 | 2006-08-08 | Sun Microsystems, Inc. | Modular parser architecture with mini parsers |
US20030115481A1 (en) | 2001-12-18 | 2003-06-19 | Baird Roger T. | Controlling the distribution of information |
US7174377B2 (en) | 2002-01-16 | 2007-02-06 | Xerox Corporation | Method and apparatus for collaborative document versioning of networked documents |
US20030177112A1 (en) | 2002-01-28 | 2003-09-18 | Steve Gardner | Ontology-based information management system and method |
US20030152277A1 (en) | 2002-02-13 | 2003-08-14 | Convey Corporation | Method and system for interactive ground-truthing of document images |
US20080249820A1 (en) | 2002-02-15 | 2008-10-09 | Pathria Anu K | Consistency modeling of healthcare claims to detect fraud and abuse |
US20030171942A1 (en) | 2002-03-06 | 2003-09-11 | I-Centrix Llc | Contact relationship management system and method |
US20030182313A1 (en) | 2002-03-19 | 2003-09-25 | Federwisch Michael L. | System and method for determining changes in two snapshots and for transmitting changes to destination snapshot |
US20040034570A1 (en) | 2002-03-20 | 2004-02-19 | Mark Davis | Targeted incentives based upon predicted behavior |
US20090287407A1 (en) * | 2002-04-10 | 2009-11-19 | Networks In Motion, Inc. | Method and System for Dynamic Estimation and Predictive Route Generation |
US7941321B2 (en) | 2002-04-12 | 2011-05-10 | International Business Machines Corporation | Facilitating management of service elements usable in providing information technology service offerings |
US20080195672A1 (en) | 2002-05-09 | 2008-08-14 | International Business Machines Corporation | System and program product for sequential coordination of external database application events with asynchronous internal database events |
US20030212718A1 (en) | 2002-05-10 | 2003-11-13 | Lsi Logic Corporation | Revision control for database of evolved design |
US20090281839A1 (en) | 2002-05-17 | 2009-11-12 | Lawrence A. Lynn | Patient safety processor |
US20030227746A1 (en) | 2002-06-11 | 2003-12-11 | Fujitsu Limited | Functional expansion apparatus and method for attaching electronic apparatus to the functional expansion apparatus |
US20040044648A1 (en) | 2002-06-24 | 2004-03-04 | Xmyphonic System As | Method for data-centric collaboration |
US20040003009A1 (en) | 2002-07-01 | 2004-01-01 | Wilmot Gerald J. | Real-time database update transaction with disconnected relational database clients |
US20040006523A1 (en) | 2002-07-08 | 2004-01-08 | Coker Don W. | System and method for preventing financial fraud |
US7461158B2 (en) | 2002-08-07 | 2008-12-02 | Intelliden, Inc. | System and method for controlling access rights to network resources |
US20060218206A1 (en) | 2002-08-12 | 2006-09-28 | International Business Machines Corporation | Method, System, and Program for Merging Log Entries From Multiple Recovery Log Files |
US20060155654A1 (en) | 2002-08-13 | 2006-07-13 | Frederic Plessis | Editor and method for editing formulae for calculating the price of a service and a system for automatic costing of a service |
US20070250491A1 (en) | 2002-09-18 | 2007-10-25 | Olszak Artur G | Method for referencing image data |
US20040078451A1 (en) | 2002-10-17 | 2004-04-22 | International Business Machines Corporation | Separating and saving hyperlinks of special interest from a sequence of web documents being browsed at a receiving display station on the web |
US20060178915A1 (en) | 2002-10-18 | 2006-08-10 | Schumarry Chao | Mass customization for management of healthcare |
WO2004038548A2 (en) | 2002-10-21 | 2004-05-06 | Sinisi John P | System and method for mobile data collection |
US20060080283A1 (en) | 2002-10-22 | 2006-04-13 | Shipman Robert A | Method and system for processing or searching user records |
US20040083466A1 (en) | 2002-10-29 | 2004-04-29 | Dapp Michael C. | Hardware parser accelerator |
US20130211985A1 (en) | 2002-11-01 | 2013-08-15 | Id Insight Incorporated | System, method and computer program product for assessing risk of identity theft |
US20040088177A1 (en) | 2002-11-04 | 2004-05-06 | Electronic Data Systems Corporation | Employee performance management method and system |
US20040210763A1 (en) | 2002-11-06 | 2004-10-21 | Systems Research & Development | Confidential data sharing and anonymous entity resolution |
US20040153451A1 (en) | 2002-11-15 | 2004-08-05 | John Phillips | Methods and systems for sharing data |
US20040111480A1 (en) | 2002-12-09 | 2004-06-10 | Yue Jonathan Zhanjun | Message screening system and method |
US8589273B2 (en) | 2002-12-23 | 2013-11-19 | Ge Corporate Financial Services, Inc. | Methods and systems for managing risk management information |
US8046283B2 (en) | 2003-01-31 | 2011-10-25 | Trading Technologies International, Inc. | System and method for money management in electronic trading environment |
US7912842B1 (en) | 2003-02-04 | 2011-03-22 | Lexisnexis Risk Data Management Inc. | Method and system for processing and linking data records |
US7403942B1 (en) | 2003-02-04 | 2008-07-22 | Seisint, Inc. | Method and system for processing data records |
US20040153418A1 (en) | 2003-02-05 | 2004-08-05 | Hanweck Gerald Alfred | System and method for providing access to data from proprietary tools |
US7086028B1 (en) | 2003-04-09 | 2006-08-01 | Autodesk, Inc. | Simplified generation of design change information on a drawing in a computer aided design (CAD) environment |
US8386377B1 (en) | 2003-05-12 | 2013-02-26 | Id Analytics, Inc. | System and method for credit scoring using an identity network connectivity |
US20050027705A1 (en) * | 2003-05-20 | 2005-02-03 | Pasha Sadri | Mapping method and system |
US20040236711A1 (en) | 2003-05-21 | 2004-11-25 | Bentley Systems, Inc. | System and method for automating the extraction of information contained within an engineering document |
US7441219B2 (en) | 2003-06-24 | 2008-10-21 | National Semiconductor Corporation | Method for creating, modifying, and simulating electrical circuits over the internet |
US20050010472A1 (en) | 2003-07-08 | 2005-01-13 | Quatse Jesse T. | High-precision customer-based targeting by individual usage statistics |
US20050039116A1 (en) | 2003-07-31 | 2005-02-17 | Canon Kabushiki Kaisha | Collaborative editing with automatic layout |
US7373669B2 (en) | 2003-08-13 | 2008-05-13 | The 41St Parameter, Inc. | Method and system for determining presence of probable error or fraud in a data set by linking common data values or elements |
US20060143075A1 (en) | 2003-09-22 | 2006-06-29 | Ryan Carr | Assumed demographics, predicted behaviour, and targeted incentives |
US20050086207A1 (en) | 2003-10-16 | 2005-04-21 | Carsten Heuer | Control for selecting data query and visual configuration |
US7441182B2 (en) | 2003-10-23 | 2008-10-21 | Microsoft Corporation | Digital negatives |
US20050091186A1 (en) | 2003-10-24 | 2005-04-28 | Alon Elish | Integrated method and apparatus for capture, storage, and retrieval of information |
US20050097441A1 (en) | 2003-10-31 | 2005-05-05 | Herbach Jonathan D. | Distributed document version control |
US20050108063A1 (en) | 2003-11-05 | 2005-05-19 | Madill Robert P.Jr. | Systems and methods for assessing the potential for fraud in business transactions |
US20050102328A1 (en) | 2003-11-07 | 2005-05-12 | Ring Cameron T. | Synchronization and merge engines |
US20050131935A1 (en) | 2003-11-18 | 2005-06-16 | O'leary Paul J. | Sector content mining system using a modular knowledge base |
US20050125436A1 (en) | 2003-12-03 | 2005-06-09 | Mudunuri Gautam H. | Set-oriented real-time data processing based on transaction boundaries |
US20050125715A1 (en) | 2003-12-04 | 2005-06-09 | Fabrizio Di Franco | Method of saving data in a graphical user interface |
US20090076845A1 (en) | 2003-12-29 | 2009-03-19 | Eran Bellin | System and method for monitoring patient care |
US7917376B2 (en) | 2003-12-29 | 2011-03-29 | Montefiore Medical Center | System and method for monitoring patient care |
US20050143096A1 (en) | 2003-12-31 | 2005-06-30 | Brian Boesch | System and method for establishing and monitoring the relative location of group members |
US20080228467A1 (en) | 2004-01-06 | 2008-09-18 | Neuric Technologies, Llc | Natural language parsing method to provide conceptual flow |
US20050154628A1 (en) * | 2004-01-13 | 2005-07-14 | Illumen, Inc. | Automated management of business performance information |
US20050154769A1 (en) * | 2004-01-13 | 2005-07-14 | Llumen, Inc. | Systems and methods for benchmarking business performance data against aggregated business performance data |
US7596285B2 (en) | 2004-02-26 | 2009-09-29 | International Business Machines Corporation | Providing a portion of an electronic mail message at a reduced resolution |
US20050210409A1 (en) | 2004-03-19 | 2005-09-22 | Kenny Jou | Systems and methods for class designation in a computerized social network application |
US20060026120A1 (en) | 2004-03-24 | 2006-02-02 | Update Publications Lp | Method and system for collecting, processing, and distributing residential property data |
US20060053097A1 (en) | 2004-04-01 | 2006-03-09 | King Martin T | Searching and accessing documents on private networks for use with captures from rendered documents |
US20110314546A1 (en) | 2004-04-01 | 2011-12-22 | Ashar Aziz | Electronic Message Analysis for Malware Detection |
US20050222928A1 (en) | 2004-04-06 | 2005-10-06 | Pricewaterhousecoopers Llp | Systems and methods for investigation of financial reporting information |
US20060031779A1 (en) | 2004-04-15 | 2006-02-09 | Citrix Systems, Inc. | Selectively sharing screen data |
US7383053B2 (en) | 2004-04-28 | 2008-06-03 | Lawrence Livermore National Security, Llc | Position estimation of transceivers in communication networks |
US20090138790A1 (en) | 2004-04-29 | 2009-05-28 | Microsoft Corporation | Structural editing with schema awareness |
US20060265417A1 (en) | 2004-05-04 | 2006-11-23 | Amato Jerry S | Enhanced graphical interfaces for displaying visual data |
US20100223260A1 (en) | 2004-05-06 | 2010-09-02 | Oracle International Corporation | Web Server for Multi-Version Web Documents |
US20050262493A1 (en) | 2004-05-20 | 2005-11-24 | Oliver Schmidt | Sharing objects in runtime systems |
US20050262512A1 (en) | 2004-05-20 | 2005-11-24 | Oliver Schmidt | Sharing objects in runtime systems |
US20090299830A1 (en) | 2004-05-25 | 2009-12-03 | Arion Human Capital Limited | Data analysis and flow control system |
WO2005116851A2 (en) | 2004-05-25 | 2005-12-08 | Postini, Inc. | Electronic message source information reputation system |
US20110238510A1 (en) | 2004-06-14 | 2011-09-29 | 20/20 Ventures, LLC | Reduction of transaction fraud through the use of automatic centralized signature/sign verification combined with credit and fraud scoring during real-time payment card authorization processes |
US7706817B2 (en) | 2004-06-15 | 2010-04-27 | Orange Personal Communication Services Limited | Provision of group services in a telecommunications network |
US20070130541A1 (en) | 2004-06-25 | 2007-06-07 | Louch John O | Synchronization of widgets and dashboards |
US20090172821A1 (en) | 2004-06-30 | 2009-07-02 | Faycal Daira | System and method for securing computer stations and/or communication networks |
US20060010130A1 (en) | 2004-07-09 | 2006-01-12 | Avraham Leff | Method and apparatus for synchronizing client transactions executed by an autonomous client |
US20060026561A1 (en) | 2004-07-29 | 2006-02-02 | International Business Machines Corporation | Inserting into a document a screen image of a computer software application |
US20100204983A1 (en) | 2004-08-06 | 2010-08-12 | Kevin Chen-Chuan Chung | Method and System for Extracting Web Query Interfaces |
US20070271317A1 (en) | 2004-08-16 | 2007-11-22 | Beinsync Ltd. | System and Method for the Synchronization of Data Across Multiple Computing Devices |
US20060045470A1 (en) | 2004-08-25 | 2006-03-02 | Thomas Poslinski | Progess bar with multiple portions |
US7617232B2 (en) | 2004-09-02 | 2009-11-10 | Microsoft Corporation | Centralized terminology and glossary development |
US20060053170A1 (en) | 2004-09-03 | 2006-03-09 | Bio Wisdom Limited | System and method for parsing and/or exporting data from one or more multi-relational ontologies |
US20060059423A1 (en) | 2004-09-13 | 2006-03-16 | Stefan Lehmann | Apparatus, system, and method for creating customized workflow documentation |
US20060074866A1 (en) | 2004-09-27 | 2006-04-06 | Microsoft Corporation | One click conditional formatting method and system for software programs |
US20060080139A1 (en) | 2004-10-08 | 2006-04-13 | Woodhaven Health Services | Preadmission health care cost and reimbursement estimation tool |
US20060080316A1 (en) | 2004-10-08 | 2006-04-13 | Meridio Ltd | Multiple indexing of an electronic document to selectively permit access to the content and metadata thereof |
US20070299697A1 (en) | 2004-10-12 | 2007-12-27 | Friedlander Robert R | Methods for Associating Records in Healthcare Databases with Individuals |
US9230060B2 (en) | 2004-10-12 | 2016-01-05 | International Business Machines Corporation | Associating records in healthcare databases with individuals |
US20060116991A1 (en) | 2004-10-13 | 2006-06-01 | Ciphergrid Limited | Remote database technique |
US7739246B2 (en) | 2004-10-14 | 2010-06-15 | Microsoft Corporation | System and method of merging contacts |
US7757220B2 (en) | 2004-10-21 | 2010-07-13 | Discovery Machine, Inc. | Computer interchange of knowledge hierarchies |
US20060095521A1 (en) | 2004-11-04 | 2006-05-04 | Seth Patinkin | Method, apparatus, and system for clustering and classification |
US7574409B2 (en) | 2004-11-04 | 2009-08-11 | Vericept Corporation | Method, apparatus, and system for clustering and classification |
US20120245976A1 (en) | 2004-11-12 | 2012-09-27 | Kumar Dilip S | Computer-based analysis of seller performance |
US7529734B2 (en) | 2004-11-12 | 2009-05-05 | Oracle International Corporation | Method and apparatus for facilitating a database query using a query criteria template |
US8938434B2 (en) | 2004-11-22 | 2015-01-20 | Intelius, Inc. | Household grouping based on public records |
US7899796B1 (en) | 2004-11-23 | 2011-03-01 | Andrew Borthwick | Batch automated blocking and record matching |
US20060178954A1 (en) | 2004-12-13 | 2006-08-10 | Rohit Thukral | Iterative asset reconciliation process |
US20060129746A1 (en) | 2004-12-14 | 2006-06-15 | Ithink, Inc. | Method and graphic interface for storing, moving, sending or printing electronic data to two or more locations, in two or more formats with a single save function |
EP1672527A2 (en) | 2004-12-15 | 2006-06-21 | Microsoft Corporation | System and method for automatically completing spreadsheet formulas |
US7451397B2 (en) | 2004-12-15 | 2008-11-11 | Microsoft Corporation | System and method for automatically completing spreadsheet formulas |
US20060136513A1 (en) | 2004-12-21 | 2006-06-22 | Nextpage, Inc. | Managing the status of documents in a distributed storage system |
US20060143034A1 (en) | 2004-12-29 | 2006-06-29 | Sap Ag | System supported optimization of event resolution |
US20060143079A1 (en) | 2004-12-29 | 2006-06-29 | Jayanta Basak | Cross-channel customer matching |
US7716140B1 (en) | 2004-12-31 | 2010-05-11 | Google Inc. | Methods and systems for controlling access to relationship information in a social network |
US20070233756A1 (en) | 2005-02-07 | 2007-10-04 | D Souza Roy P | Retro-fitting synthetic full copies of data |
US7747648B1 (en) | 2005-02-14 | 2010-06-29 | Yahoo! Inc. | World modeling using a relationship network with communication channels to entities |
US20100280851A1 (en) | 2005-02-22 | 2010-11-04 | Richard Merkin | Systems and methods for assessing and optimizing healthcare administration |
US8402047B1 (en) | 2005-02-25 | 2013-03-19 | Adobe Systems Incorporated | Method and apparatus for generating a query to search for matching forms |
US20080186904A1 (en) | 2005-02-28 | 2008-08-07 | Kazuhiro Koyama | Data Communication Terminal, Radio Base Station Searching Method, and Program |
US7523100B1 (en) | 2005-02-28 | 2009-04-21 | Adobe Systems Incorporated | Method and apparatus for using a rendered form as a search template |
US8302855B2 (en) | 2005-03-09 | 2012-11-06 | Diebold, Incorporated | Banking system controlled responsive to data bearing records |
US20060206235A1 (en) | 2005-03-10 | 2006-09-14 | Shakes Jonathan J | Method and apparatus for multi-destination item selection using motes |
US20080267386A1 (en) | 2005-03-22 | 2008-10-30 | Cooper Kim A | Performance Motivation Systems and Methods for Contact Centers |
US20060218637A1 (en) | 2005-03-24 | 2006-09-28 | Microsoft Corporation | System and method of selectively scanning a file on a computing device for malware |
US20060218491A1 (en) | 2005-03-25 | 2006-09-28 | International Business Machines Corporation | System, method and program product for community review of documents |
US20090319418A1 (en) | 2005-03-31 | 2009-12-24 | Trading Technologies International, Inc. | System and Method for Dynamically Regulating Order Entry in an Electronic Trading Environment |
US20080227473A1 (en) | 2005-04-04 | 2008-09-18 | X One, Inc. | Location sharing and tracking using mobile phones or other wireless devices |
US20100262901A1 (en) | 2005-04-14 | 2010-10-14 | Disalvo Dean F | Engineering process for a real-time user-defined data collection, analysis, and optimization tool (dot) |
US20060242040A1 (en) * | 2005-04-20 | 2006-10-26 | Aim Holdings Llc | Method and system for conducting sentiment analysis for securities research |
US7652622B2 (en) | 2005-04-28 | 2010-01-26 | Cambridge Positioning Systems Limited | Transfer of position information of mobile terminal |
US20060253502A1 (en) | 2005-05-06 | 2006-11-09 | Microsoft Corporation | Maintenance of link level consistency between database and file system |
US20060250764A1 (en) | 2005-05-09 | 2006-11-09 | Apple Computer, Inc. | Universal docking station for hand held electronic devices |
US20100042922A1 (en) | 2005-05-12 | 2010-02-18 | Apple Inc. | Customizable, dynamic and on-demand database-informer for relational databases |
US8739059B2 (en) | 2005-05-16 | 2014-05-27 | Xcira, Inc. | System for generating inspection reports for inspected items |
US20080126951A1 (en) | 2005-06-03 | 2008-05-29 | C-Mail Corp. | System and method of dynamically prioritized electronic mail graphical user interface, and measuring email productivity and collaboration trends |
US20060277460A1 (en) | 2005-06-03 | 2006-12-07 | Scott Forstall | Webview applications |
US20070000999A1 (en) | 2005-06-06 | 2007-01-04 | First Data Corporation | System and method for authorizing electronic payment transactions |
US20070011304A1 (en) | 2005-06-06 | 2007-01-11 | Error Brett M | Asp for web analytics including a real-time segmentation workbench |
US20070018986A1 (en) | 2005-07-05 | 2007-01-25 | International Business Machines Corporation | Data processing method and system |
US8429527B1 (en) | 2005-07-12 | 2013-04-23 | Open Text S.A. | Complex data merging, such as in a workflow application |
US8560413B1 (en) | 2005-07-14 | 2013-10-15 | John S. Quarterman | Method and system for detecting distributed internet crime |
US20120011238A1 (en) | 2005-07-22 | 2012-01-12 | Yogesh Chunilal Rathod | System and method for managing dynamically created groups |
US20070038646A1 (en) | 2005-08-04 | 2007-02-15 | Microsoft Corporation | Ranking blog content |
US20070043744A1 (en) | 2005-08-16 | 2007-02-22 | International Business Machines Corporation | Method and system for linking digital pictures to electronic documents |
US20070043686A1 (en) | 2005-08-22 | 2007-02-22 | International Business Machines Corporation | Xml sub-document versioning method in xml databases using record storages |
US20070192265A1 (en) | 2005-08-29 | 2007-08-16 | Stefan Chopin | System and method for rendering data |
US20120079363A1 (en) | 2005-09-09 | 2012-03-29 | Microsoft Corporation | Filtering User Interface for a Data Summary Table |
US7958147B1 (en) | 2005-09-13 | 2011-06-07 | James Luke Turner | Method for providing customized and automated security assistance, a document marking regime, and central tracking and control for sensitive or classified documents in electronic format |
US7941336B1 (en) | 2005-09-14 | 2011-05-10 | D2C Solutions, LLC | Segregation-of-duties analysis apparatus and method |
US20070061752A1 (en) | 2005-09-15 | 2007-03-15 | Microsoft Corporation | Cross-application support of charts |
US8646080B2 (en) | 2005-09-16 | 2014-02-04 | Avg Technologies Cy Limited | Method and apparatus for removing harmful software |
US20070067285A1 (en) | 2005-09-22 | 2007-03-22 | Matthias Blume | Method and apparatus for automatic entity disambiguation |
US20070192122A1 (en) | 2005-09-30 | 2007-08-16 | American Express Travel Related Services Company, Inc. | Method, system, and computer program product for linking customer information |
US20070106582A1 (en) | 2005-10-04 | 2007-05-10 | Baker James C | System and method of detecting fraud |
US7627812B2 (en) | 2005-10-27 | 2009-12-01 | Microsoft Corporation | Variable formatting of cells |
US20090012865A1 (en) * | 2005-10-31 | 2009-01-08 | Yahoo! Inc. | Clickable map interface for product inventory |
US20090313463A1 (en) | 2005-11-01 | 2009-12-17 | Commonwealth Scientific And Industrial Research Organisation | Data matching using data clusters |
US20070118547A1 (en) | 2005-11-22 | 2007-05-24 | Monish Gupta | Efficient index versioning in multi-version databases |
US20070178501A1 (en) | 2005-12-06 | 2007-08-02 | Matthew Rabinowitz | System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology |
US7814102B2 (en) | 2005-12-07 | 2010-10-12 | Lexisnexis, A Division Of Reed Elsevier Inc. | Method and system for linking documents with multiple topics to related documents |
US20070136095A1 (en) | 2005-12-09 | 2007-06-14 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Icon Queues for Workflow Management |
US20100082541A1 (en) | 2005-12-19 | 2010-04-01 | Commvault Systems, Inc. | Systems and methods for performing replication copy storage operations |
US20090082997A1 (en) | 2005-12-21 | 2009-03-26 | Tokman Michael G | Method of identifying clusters and connectivity between clusters |
US20070150801A1 (en) | 2005-12-23 | 2007-06-28 | Xerox Corporation | Interactive learning-based document annotation |
US20070162454A1 (en) | 2005-12-29 | 2007-07-12 | D Albora Paul A | Method and apparatus for managing a computer-based address book for incident-related work |
US20070156673A1 (en) | 2005-12-30 | 2007-07-05 | Accenture S.P.A. | Churn prediction and management system |
US20100122152A1 (en) | 2006-01-23 | 2010-05-13 | Microsoft Corporation | Multiple conditional formatting |
US20070174760A1 (en) | 2006-01-23 | 2007-07-26 | Microsoft Corporation | Multiple conditional formatting |
US7634717B2 (en) | 2006-01-23 | 2009-12-15 | Microsoft Corporation | Multiple conditional formatting |
US20120015673A1 (en) | 2006-02-03 | 2012-01-19 | Gerhard Dietrich Klassen | Visual Representation of Contact Location |
US20070185867A1 (en) | 2006-02-03 | 2007-08-09 | Matteo Maga | Statistical modeling methods for determining customer distribution by churn probability within a customer population |
US20070198571A1 (en) | 2006-02-03 | 2007-08-23 | Ferguson John R | Data object access system and method using dedicated task object |
US7770100B2 (en) | 2006-02-27 | 2010-08-03 | Microsoft Corporation | Dynamic thresholds for conditional formats |
US20130339218A1 (en) | 2006-03-24 | 2013-12-19 | Sas Institute Inc. | Computer-Implemented Data Storage Systems and Methods for Use with Predictive Model Systems |
US20090192957A1 (en) | 2006-03-24 | 2009-07-30 | Revathi Subramanian | Computer-Implemented Data Storage Systems And Methods For Use With Predictive Model Systems |
US20080249983A1 (en) * | 2006-03-31 | 2008-10-09 | Aol Llc | Identifying a result responsive to a current location of a client device |
US20070245339A1 (en) | 2006-04-12 | 2007-10-18 | Bauman Brian D | Creating documentation screenshots on demand |
US20080040275A1 (en) | 2006-04-25 | 2008-02-14 | Uc Group Limited | Systems and methods for identifying potentially fraudulent financial transactions and compulsive spending behavior |
WO2007133206A1 (en) | 2006-05-12 | 2007-11-22 | Drawing Management Incorporated | Spatial graphical user interface and method for using the same |
US7756843B1 (en) | 2006-05-25 | 2010-07-13 | Juniper Networks, Inc. | Identifying and processing confidential information on network endpoints |
US20070295797A1 (en) | 2006-06-08 | 2007-12-27 | Joshua Lee Herman | System and Method for Resolving Identities that are Indefinitely Resolvable |
US20070284433A1 (en) | 2006-06-08 | 2007-12-13 | American Express Travel Related Services Company, Inc. | Method, system, and computer program product for customer-level data verification |
US20080005063A1 (en) | 2006-06-23 | 2008-01-03 | Cognos Incorporated | System and method of member unique names |
US20080007618A1 (en) | 2006-07-05 | 2008-01-10 | Mizuki Yuasa | Vehicle-periphery image generating apparatus and method of switching images |
US20080016155A1 (en) | 2006-07-11 | 2008-01-17 | Igor Khalatian | One-Click Universal Screen Sharing |
WO2008011728A1 (en) | 2006-07-28 | 2008-01-31 | Pattern Intelligence Inc. | System and method for detecting and analyzing pattern relationships |
US20100031141A1 (en) | 2006-08-30 | 2010-02-04 | Compsci Resources, Llc | Interactive User Interface for Converting Unstructured Documents |
US7725547B2 (en) | 2006-09-06 | 2010-05-25 | International Business Machines Corporation | Informing a user of gestures made by others out of the user's line of sight |
US20080069081A1 (en) | 2006-09-18 | 2008-03-20 | Yahoo! Inc. | Path discovery and analytics for network data |
US8054756B2 (en) | 2006-09-18 | 2011-11-08 | Yahoo! Inc. | Path discovery and analytics for network data |
US20110161137A1 (en) * | 2006-09-23 | 2011-06-30 | Gis Planning, Inc. | Web based interactive geographic information systems mapping analysis and methods for improving business performance including future scenario modeling |
US7945470B1 (en) | 2006-09-29 | 2011-05-17 | Amazon Technologies, Inc. | Facilitating performance of submitted tasks by mobile task performers |
US20080091693A1 (en) | 2006-10-16 | 2008-04-17 | Oracle International Corporation | Managing compound XML documents in a repository |
US20080148398A1 (en) | 2006-10-31 | 2008-06-19 | Derek John Mezack | System and Method for Definition and Automated Analysis of Computer Security Threat Models |
US20080103996A1 (en) | 2006-10-31 | 2008-05-01 | George Forman | Retraining a machine-learning classifier using re-labeled training samples |
US20120032975A1 (en) | 2006-10-31 | 2012-02-09 | Robert Koch | Location stamping and logging of electronic events and habitat generation |
US8229902B2 (en) | 2006-11-01 | 2012-07-24 | Ab Initio Technology Llc | Managing storage of individually accessible data units |
US20080222295A1 (en) | 2006-11-02 | 2008-09-11 | Addnclick, Inc. | Using internet content as a means to establish live social networks by linking internet users to each other who are simultaneously engaged in the same and/or similar content |
US20080109714A1 (en) | 2006-11-03 | 2008-05-08 | Sap Ag | Capturing screen information |
US20140006109A1 (en) | 2006-11-13 | 2014-01-02 | Vendavo, Inc. | System and Methods for Generating Price Sensitivity |
US20090228507A1 (en) | 2006-11-20 | 2009-09-10 | Akash Jain | Creating data in a data store using a dynamic ontology |
US7962495B2 (en) | 2006-11-20 | 2011-06-14 | Palantir Technologies, Inc. | Creating data in a data store using a dynamic ontology |
US20080126344A1 (en) | 2006-11-27 | 2008-05-29 | Rapleaf, Inc. | Hierarchical, traceable, and association reputation assessment of email domains |
US20080133567A1 (en) | 2006-11-30 | 2008-06-05 | Yahoo! Inc. | Dynamic cluster visualization |
US20080140387A1 (en) | 2006-12-07 | 2008-06-12 | Linker Sheldon O | Method and system for machine understanding, knowledge, and conversation |
US8126848B2 (en) | 2006-12-07 | 2012-02-28 | Robert Edward Wagner | Automated method for identifying and repairing logical data discrepancies between database replicas in a database cluster |
US8117022B2 (en) | 2006-12-07 | 2012-02-14 | Linker Sheldon O | Method and system for machine understanding, knowledge, and conversation |
US8290838B1 (en) | 2006-12-29 | 2012-10-16 | Amazon Technologies, Inc. | Indicating irregularities in online financial transactions |
US20080177782A1 (en) | 2007-01-10 | 2008-07-24 | Pado Metaware Ab | Method and system for facilitating the production of documents |
US20080172607A1 (en) | 2007-01-15 | 2008-07-17 | Microsoft Corporation | Selective Undo of Editing Operations Performed on Data Objects |
US20120188252A1 (en) | 2007-01-31 | 2012-07-26 | Salesforce.Com Inc. | Method and system for presenting a visual representation of the portion of the sets of data that a query is expected to return |
US20080208735A1 (en) | 2007-02-22 | 2008-08-28 | American Expresstravel Related Services Company, Inc., A New York Corporation | Method, System, and Computer Program Product for Managing Business Customer Contacts |
US20080270316A1 (en) | 2007-02-28 | 2008-10-30 | Aaron Guidotti | Information, document, and compliance management for financial professionals, clients, and supervisors |
WO2008113059A1 (en) | 2007-03-14 | 2008-09-18 | Microsoft Corporation | Enterprise security assessment sharing |
US20100121817A1 (en) | 2007-03-15 | 2010-05-13 | Scott Meyer | Database replication |
US20120215784A1 (en) | 2007-03-20 | 2012-08-23 | Gary King | System for estimating a distribution of message content categories in source data |
US20080243711A1 (en) | 2007-03-30 | 2008-10-02 | Andrew Aymeloglu | Generating dynamic date sets that represent maket conditions |
US8036971B2 (en) | 2007-03-30 | 2011-10-11 | Palantir Technologies, Inc. | Generating dynamic date sets that represent market conditions |
US20090018940A1 (en) | 2007-03-30 | 2009-01-15 | Liang Wang | Enhanced Fraud Detection With Terminal Transaction-Sequence Processing |
US20140156484A1 (en) | 2007-04-06 | 2014-06-05 | Mastercard International Incorporated | Methods and apparatus for using assignable fee profiles to define fee structures for remittance services |
US20080255973A1 (en) | 2007-04-10 | 2008-10-16 | Robert El Wade | Sales transaction analysis tool and associated method of use |
US20080252419A1 (en) | 2007-04-11 | 2008-10-16 | Batchelor Michael D | Wireless access control system and method |
US20090164387A1 (en) | 2007-04-17 | 2009-06-25 | Semandex Networks Inc. | Systems and methods for providing semantically enhanced financial information |
US8312546B2 (en) | 2007-04-23 | 2012-11-13 | Mcafee, Inc. | Systems, apparatus, and methods for detecting malware |
US20090031401A1 (en) | 2007-04-27 | 2009-01-29 | Bea Systems, Inc. | Annotations for enterprise web application constructor |
US7880921B2 (en) | 2007-05-01 | 2011-02-01 | Michael Joseph Dattilo | Method and apparatus to digitally whiteout mistakes on a printed form |
US20080276167A1 (en) | 2007-05-03 | 2008-11-06 | Oliver Michael | Device And Method For Generating A Text Object |
US8225201B2 (en) | 2007-05-03 | 2012-07-17 | Garmin Würzburg GmbH | Device and method for generating a text object |
US20080281580A1 (en) | 2007-05-10 | 2008-11-13 | Microsoft Corporation | Dynamic parser |
US20090044279A1 (en) | 2007-05-11 | 2009-02-12 | Fair Isaac Corporation | Systems and methods for fraud detection via interactive link analysis |
US20080288475A1 (en) | 2007-05-17 | 2008-11-20 | Sang-Heun Kim | Method and system for automatically generating web page transcoding instructions |
US20080288425A1 (en) | 2007-05-17 | 2008-11-20 | Christian Posse | Methods and Apparatus for Reasoning About Information Fusion Approaches |
US20080313243A1 (en) | 2007-05-24 | 2008-12-18 | Pado Metaware Ab | method and system for harmonization of variants of a sequential file |
US8010507B2 (en) | 2007-05-24 | 2011-08-30 | Pado Metaware Ab | Method and system for harmonization of variants of a sequential file |
US20080301042A1 (en) | 2007-05-30 | 2008-12-04 | Aaron Patzer | System and method for categorizing credit card transaction data |
US20100077483A1 (en) | 2007-06-12 | 2010-03-25 | Stolfo Salvatore J | Methods, systems, and media for baiting inside attackers |
US20120084866A1 (en) | 2007-06-12 | 2012-04-05 | Stolfo Salvatore J | Methods, systems, and media for measuring computer security |
US20080313132A1 (en) | 2007-06-15 | 2008-12-18 | Fang Hao | High accuracy bloom filter using partitioned hashing |
US7783658B1 (en) | 2007-06-18 | 2010-08-24 | Seisint, Inc. | Multi-entity ontology weighting systems and methods |
US20090024505A1 (en) | 2007-06-28 | 2009-01-22 | Cashedge, Inc. | Global Risk Administration Method and System |
US20090005070A1 (en) | 2007-06-28 | 2009-01-01 | Apple Inc. | Synchronizing mobile and vehicle devices |
US20090125359A1 (en) | 2007-07-09 | 2009-05-14 | Robert Knapic | Integrating a methodology management system with project tasks in a project management system |
US7966199B1 (en) | 2007-07-19 | 2011-06-21 | Intuit Inc. | Method and system for identification of geographic condition zones using aggregated claim data |
US20090024962A1 (en) | 2007-07-20 | 2009-01-22 | David Gotz | Methods for Organizing Information Accessed Through a Web Browser |
US8600872B1 (en) | 2007-07-27 | 2013-12-03 | Wells Fargo Bank, N.A. | System and method for detecting account compromises |
US20090043801A1 (en) | 2007-08-06 | 2009-02-12 | Intuit Inc. | Method and apparatus for selecting a doctor based on an observed experience level |
US20090055487A1 (en) | 2007-08-23 | 2009-02-26 | Francisco Inacio Moraes | System and Method for Providing Improved Time References in Documents |
US20130238616A1 (en) | 2007-09-06 | 2013-09-12 | Linkedln Corporation | Detecting associates |
US20120004894A1 (en) | 2007-09-21 | 2012-01-05 | Edwin Brian Butler | Systems, Methods and Apparatuses for Generating and using Representations of Individual or Aggregate Human Medical Data |
US20090083184A1 (en) | 2007-09-26 | 2009-03-26 | Ori Eisen | Methods and Apparatus for Detecting Fraud with Time Based Computer Tags |
US8191005B2 (en) | 2007-09-27 | 2012-05-29 | Rockwell Automation Technologies, Inc. | Dynamically generating visualizations in industrial automation environment as a function of context and state information |
US20090089651A1 (en) | 2007-09-27 | 2009-04-02 | Tilman Herberger | System and method for dynamic content insertion from the internet into a multimedia work |
US20130057551A1 (en) | 2007-10-01 | 2013-03-07 | David S. Ebert | Visual Analytics Law Enforcement Tools |
US8484115B2 (en) | 2007-10-03 | 2013-07-09 | Palantir Technologies, Inc. | Object-oriented time series generator |
US20090094166A1 (en) | 2007-10-03 | 2009-04-09 | Andrew Aymeloglu | Object-oriented time series generator |
US20090094270A1 (en) | 2007-10-08 | 2009-04-09 | Alirez Baldomero J | Method of building a validation database |
WO2009051987A1 (en) | 2007-10-18 | 2009-04-23 | Palantir Technologies, Inc. | Resolving database entity information |
US20140006404A1 (en) | 2007-10-18 | 2014-01-02 | Palantir Technologies, Inc. | Resolving database entity information |
US8554719B2 (en) | 2007-10-18 | 2013-10-08 | Palantir Technologies, Inc. | Resolving database entity information |
US20090106242A1 (en) | 2007-10-18 | 2009-04-23 | Mcgrew Robert J | Resolving database entity information |
US20090106178A1 (en) | 2007-10-23 | 2009-04-23 | Sas Institute Inc. | Computer-Implemented Systems And Methods For Updating Predictive Models |
US20090112678A1 (en) | 2007-10-26 | 2009-04-30 | Ingram Micro Inc. | System and method for knowledge management |
US20090112745A1 (en) | 2007-10-30 | 2009-04-30 | Intuit Inc. | Technique for reducing phishing |
US20090125459A1 (en) | 2007-11-09 | 2009-05-14 | Norton Richard Elliott | Method and system for rule-based content filtering |
US20110246229A1 (en) | 2007-11-12 | 2011-10-06 | Debra Pacha | System and Method for Detecting Healthcare Insurance Fraud |
US20110173093A1 (en) | 2007-11-14 | 2011-07-14 | Psota James Ryan | Evaluating public records of supply transactions for financial investment decisions |
US20150073929A1 (en) | 2007-11-14 | 2015-03-12 | Panjiva, Inc. | Transaction facilitating marketplace platform |
US20090132573A1 (en) * | 2007-11-16 | 2009-05-21 | Iac Search & Media, Inc. | User interface and method in a local search system with search results restricted by drawn figure elements |
US20090143052A1 (en) | 2007-11-29 | 2009-06-04 | Michael Bates | Systems and methods for personal information management and contact picture synchronization and distribution |
US8682696B1 (en) | 2007-11-30 | 2014-03-25 | Intuit Inc. | Healthcare claims navigator |
US20090150868A1 (en) | 2007-12-10 | 2009-06-11 | Al Chakra | Method and System for Capturing Movie Shots at the Time of an Automated Graphical User Interface Test Failure |
US20090157732A1 (en) | 2007-12-13 | 2009-06-18 | Verizon Data Services Llc | Networked address book |
US20090156231A1 (en) | 2007-12-13 | 2009-06-18 | Swisscom Ag | System and method for determining a location area of a mobile user |
US8417715B1 (en) | 2007-12-19 | 2013-04-09 | Tilmann Bruckhaus | Platform independent plug-in methods and systems for data mining and analytics |
US8001482B2 (en) | 2007-12-21 | 2011-08-16 | International Business Machines Corporation | Method of displaying tab titles |
US20090164934A1 (en) | 2007-12-21 | 2009-06-25 | Sukadev Bhattiprolu | Method of displaying tab titles |
US20090177962A1 (en) | 2008-01-04 | 2009-07-09 | Microsoft Corporation | Intelligently representing files in a view |
US20090187546A1 (en) | 2008-01-21 | 2009-07-23 | International Business Machines Corporation | Method, System and Computer Program Product for Duplicate Detection |
US20090187548A1 (en) | 2008-01-22 | 2009-07-23 | Sungkyungkwan University Foundation For Corporate Collaboration | System and method for automatically classifying search results |
US20090199102A1 (en) * | 2008-01-31 | 2009-08-06 | Phm Associates Limited | Communication method, apparatus and system for a retail organization |
US20090199106A1 (en) | 2008-02-05 | 2009-08-06 | Sony Ericsson Mobile Communications Ab | Communication terminal including graphical bookmark manager |
US7805457B1 (en) | 2008-02-14 | 2010-09-28 | Securus Technologies, Inc. | System and method for identifying members of a gang or security threat group |
US20090216562A1 (en) | 2008-02-22 | 2009-08-27 | Faulkner Judith R | Method and apparatus for accommodating diverse healthcare record centers |
US20090217173A1 (en) * | 2008-02-23 | 2009-08-27 | Josh Manheimer | Method and System For A Rich Media User Interface |
US20140089339A1 (en) | 2008-02-25 | 2014-03-27 | Cisco Technology, Inc. | Unified communication audit tool |
US7765489B1 (en) | 2008-03-03 | 2010-07-27 | Shah Shalin N | Presenting notifications related to a medical study on a toolbar |
US20090228365A1 (en) | 2008-03-04 | 2009-09-10 | Brad Michael Tomchek | Methods and systems for managing merchant identifiers |
US20090318775A1 (en) | 2008-03-26 | 2009-12-24 | Seth Michelson | Methods and systems for assessing clinical outcomes |
US20090248757A1 (en) | 2008-04-01 | 2009-10-01 | Microsoft Corporation | Application-Managed File Versioning |
US20090249178A1 (en) | 2008-04-01 | 2009-10-01 | Ambrosino Timothy J | Document linking |
US20090254970A1 (en) | 2008-04-04 | 2009-10-08 | Avaya Inc. | Multi-tier security event correlation and mitigation |
US20090265105A1 (en) | 2008-04-21 | 2009-10-22 | Igt | Real-time navigation devices, systems and methods |
US8498969B2 (en) | 2008-04-24 | 2013-07-30 | Lexisnexis Risk Solutions Fl Inc. | Statistical record linkage calibration for reflexive, symmetric and transitive distance measures at the field and field value levels without the need for human interaction |
US8046362B2 (en) | 2008-04-24 | 2011-10-25 | Lexisnexis Risk & Information Analytics Group, Inc. | Statistical record linkage calibration for reflexive and symmetric distance measures at the field and field value levels without the need for human interaction |
US8135719B2 (en) | 2008-04-24 | 2012-03-13 | Lexisnexis Risk Solutions Fl Inc. | Statistical record linkage calibration at the field and field value levels without the need for human interaction |
US8495077B2 (en) | 2008-04-24 | 2013-07-23 | Lexisnexis Risk Solutions Fl Inc. | Database systems and methods for linking records and entity representations with sufficiently high confidence |
US8484168B2 (en) | 2008-04-24 | 2013-07-09 | Lexisnexis Risk & Information Analytics Group, Inc. | Statistical record linkage calibration for multi token fields without the need for human interaction |
US20090271359A1 (en) | 2008-04-24 | 2009-10-29 | Lexisnexis Risk & Information Analytics Group Inc. | Statistical record linkage calibration for reflexive and symmetric distance measures at the field and field value levels without the need for human interaction |
US8135679B2 (en) | 2008-04-24 | 2012-03-13 | Lexisnexis Risk Solutions Fl Inc. | Statistical record linkage calibration for multi token fields without the need for human interaction |
US8266168B2 (en) | 2008-04-24 | 2012-09-11 | Lexisnexis Risk & Information Analytics Group Inc. | Database systems and methods for linking records and entity representations with sufficiently high confidence |
US20090271343A1 (en) | 2008-04-25 | 2009-10-29 | Anthony Vaiciulis | Automated entity identification for efficient profiling in an event probability prediction system |
US20090282068A1 (en) | 2008-05-12 | 2009-11-12 | Shockro John J | Semantic packager |
US8620641B2 (en) | 2008-05-16 | 2013-12-31 | Blackberry Limited | Intelligent elision |
US20090287470A1 (en) | 2008-05-16 | 2009-11-19 | Research In Motion Limited | Intelligent elision |
US20110167493A1 (en) | 2008-05-27 | 2011-07-07 | Yingbo Song | Systems, methods, ane media for detecting network anomalies |
US20090319515A1 (en) | 2008-06-02 | 2009-12-24 | Steven Minton | System and method for managing entity knowledgebases |
US20110161409A1 (en) | 2008-06-02 | 2011-06-30 | Azuki Systems, Inc. | Media mashup system |
US20090300589A1 (en) | 2008-06-03 | 2009-12-03 | Isight Partners, Inc. | Electronic Crime Detection and Tracking |
US20090307049A1 (en) | 2008-06-05 | 2009-12-10 | Fair Isaac Corporation | Soft Co-Clustering of Data |
US20120084184A1 (en) | 2008-06-05 | 2012-04-05 | Raleigh Gregory G | Enterprise Access Control and Accounting Allocation for Access Networks |
US20090313311A1 (en) | 2008-06-12 | 2009-12-17 | Gravic, Inc. | Mixed mode synchronous and asynchronous replication system |
US20100191884A1 (en) | 2008-06-12 | 2010-07-29 | Gravic, Inc. | Method for replicating locks in a data replication engine |
US20090319891A1 (en) | 2008-06-22 | 2009-12-24 | Mackinlay Jock Douglas | Methods and systems of automatically generating marks in a graphical view |
US8301904B1 (en) | 2008-06-24 | 2012-10-30 | Mcafee, Inc. | System, method, and computer program product for automatically identifying potentially unwanted data as unwanted |
US20090315679A1 (en) | 2008-06-24 | 2009-12-24 | Frederic Bauchot | Location localization method and system |
US20100004857A1 (en) | 2008-07-02 | 2010-01-07 | Palm, Inc. | User defined names for displaying monitored location |
US20100030722A1 (en) | 2008-08-04 | 2010-02-04 | Goodson Robert B | Entity Performance Analysis Engines |
US20100058212A1 (en) | 2008-08-28 | 2010-03-04 | Nokia Corporation | User interface, device and method for displaying special locations on a map |
US9348499B2 (en) | 2008-09-15 | 2016-05-24 | Palantir Technologies, Inc. | Sharing objects that rely on local resources with outside servers |
US20100070842A1 (en) | 2008-09-15 | 2010-03-18 | Andrew Aymeloglu | One-click sharing for screenshots and related documents |
WO2010030913A2 (en) | 2008-09-15 | 2010-03-18 | Palantir Technologies, Inc. | Modal-less interface enhancements |
US20100070844A1 (en) | 2008-09-15 | 2010-03-18 | Andrew Aymeloglu | Automatic creation and server push of drafts |
US20100070531A1 (en) | 2008-09-15 | 2010-03-18 | Andrew Aymeloglu | Sharing objects that rely on local resources with outside servers |
US8984390B2 (en) | 2008-09-15 | 2015-03-17 | Palantir Technologies, Inc. | One-click sharing for screenshots and related documents |
WO2010030914A2 (en) | 2008-09-15 | 2010-03-18 | Palantir Technologies, Inc. | One-click sharing for screenshots and related documents |
WO2010030919A2 (en) | 2008-09-15 | 2010-03-18 | Palantir Technologies, Inc. | Sharing objects that rely on local resources with outside servers |
US20100077481A1 (en) | 2008-09-22 | 2010-03-25 | Microsoft Corporation | Collecting and analyzing malware data |
US20100076821A1 (en) * | 2008-09-23 | 2010-03-25 | Sap Ag | Automated performance appraisal system with a compensation simulator |
US20100076813A1 (en) | 2008-09-24 | 2010-03-25 | Bank Of America Corporation | Market dynamics |
US20100073315A1 (en) | 2008-09-24 | 2010-03-25 | Samsung Electrronics Co., Ltd. | Mobile terminal and data display method for the same |
US20100082671A1 (en) | 2008-09-26 | 2010-04-01 | International Business Machines Corporation | Joining Tables in Multiple Heterogeneous Distributed Databases |
US20100082842A1 (en) | 2008-09-30 | 2010-04-01 | Latista Technologies | Computer program product, system and method for field management and mobile inspection |
US20100114887A1 (en) | 2008-10-17 | 2010-05-06 | Google Inc. | Textual Disambiguation Using Social Connections |
US20100098318A1 (en) | 2008-10-20 | 2010-04-22 | Jpmorgan Chase Bank, N.A. | Method and System for Duplicate Check Detection |
US20100100963A1 (en) | 2008-10-21 | 2010-04-22 | Flexilis, Inc. | System and method for attack and malware prevention |
US20100106611A1 (en) | 2008-10-24 | 2010-04-29 | Uc Group Ltd. | Financial transactions systems and methods |
US20100114831A1 (en) | 2008-10-30 | 2010-05-06 | Gilbert Gary M | Building a Synchronized Target Database |
US20100114817A1 (en) | 2008-10-30 | 2010-05-06 | Broeder Sean L | Replication of operations on objects distributed in a storage system |
US20100122546A1 (en) | 2008-11-14 | 2010-05-20 | Lg Electronics Inc. | Ice dispensing technology |
US20100131502A1 (en) | 2008-11-25 | 2010-05-27 | Fordham Bradley S | Cohort group generation and automatic updating |
US20100185984A1 (en) | 2008-12-02 | 2010-07-22 | William Wright | System and method for visualizing connected temporal and spatial information as an integrated visual representation on a user interface |
US20100145909A1 (en) | 2008-12-10 | 2010-06-10 | Commvault Systems, Inc. | Systems and methods for managing replicated database data |
US20110238570A1 (en) | 2008-12-15 | 2011-09-29 | Alibaba Group Holding Limited | System of Online Trading Through Intermediary Platform and Methods Thereof |
US20100161735A1 (en) | 2008-12-23 | 2010-06-24 | Sanjeev Sharma | Email addressee verification |
US20100169237A1 (en) | 2008-12-29 | 2010-07-01 | Athenainvest, Inc. | Investment classification and tracking system using diamond ratings |
US20100173619A1 (en) | 2009-01-07 | 2010-07-08 | Lucent Technologies Inc. | Healthy weight reminder service via wireless networks |
US20100185691A1 (en) | 2009-01-20 | 2010-07-22 | Yahoo! Inc. | Scalable semi-structured named entity detection |
US20100262688A1 (en) | 2009-01-21 | 2010-10-14 | Daniar Hussain | Systems, methods, and devices for detecting security vulnerabilities in ip networks |
US20100191563A1 (en) | 2009-01-23 | 2010-07-29 | Doctors' Administrative Solutions, Llc | Physician Practice Optimization Tracking |
US20110213655A1 (en) | 2009-01-24 | 2011-09-01 | Kontera Technologies, Inc. | Hybrid contextual advertising and related content analysis and display techniques |
US8073857B2 (en) | 2009-02-17 | 2011-12-06 | International Business Machines Corporation | Semantics-based data transformation over a wire in mashups |
US20100214117A1 (en) | 2009-02-22 | 2010-08-26 | Verint Systems Ltd. | System and method for predicting future meetings of wireless users |
US20100223543A1 (en) | 2009-03-02 | 2010-09-02 | International Business Machines Corporation | Automating Interrogative Population of Electronic Forms Using a Real-Time Communication Platform |
US8473454B2 (en) | 2009-03-10 | 2013-06-25 | Xerox Corporation | System and method of on-demand document processing |
US20100235915A1 (en) | 2009-03-12 | 2010-09-16 | Nasir Memon | Using host symptoms, host roles, and/or host reputation for detection of host infection |
US20100238174A1 (en) | 2009-03-18 | 2010-09-23 | Andreas Peter Haub | Cursor Synchronization in a Plurality of Graphs |
US20100281458A1 (en) | 2009-04-30 | 2010-11-04 | Business Objects, S.A. | Application modification framework |
US20100306285A1 (en) | 2009-05-28 | 2010-12-02 | Arcsight, Inc. | Specifying a Parser Using a Properties File |
US20130246316A1 (en) | 2009-05-29 | 2013-09-19 | Aspen Technology, Inc. | Apparatus and Method for Automated Data Selection in Model Identification and Adaptation in Multivariable Process Control |
US20100306713A1 (en) | 2009-05-29 | 2010-12-02 | Microsoft Corporation | Gesture Tool |
US20100306722A1 (en) | 2009-05-29 | 2010-12-02 | Lehoty David A | Implementing A Circuit Using An Integrated Circuit Including Parametric Analog Elements |
US20100306029A1 (en) | 2009-06-01 | 2010-12-02 | Ryan Jolley | Cardholder Clusters |
US20100312837A1 (en) | 2009-06-05 | 2010-12-09 | Chandra Bodapati | Methods and systems for determining email addresses |
US20100313239A1 (en) | 2009-06-09 | 2010-12-09 | International Business Machines Corporation | Automated access control for rendered output |
US20100330801A1 (en) | 2009-06-26 | 2010-12-30 | Hynix Semiconductor Inc. | Method of Fabricating Landing Plug in Semiconductor Device |
US20110004498A1 (en) | 2009-07-01 | 2011-01-06 | International Business Machines Corporation | Method and System for Identification By A Cardholder of Credit Card Fraud |
US20110004626A1 (en) | 2009-07-06 | 2011-01-06 | Intelligent Medical Objects, Inc. | System and Process for Record Duplication Analysis |
US20120191446A1 (en) | 2009-07-15 | 2012-07-26 | Proviciel - Mlstate | System and method for creating a parser generator and associated computer program |
US8392556B2 (en) | 2009-07-16 | 2013-03-05 | Ca, Inc. | Selective reporting of upstream transaction trace data |
US20110022312A1 (en) | 2009-07-23 | 2011-01-27 | Fmr Llc | Generating and Tracking Activity Patterns for Mobile Devices |
US20150338233A1 (en) | 2009-07-27 | 2015-11-26 | Palantir Technologies, Inc. | Geotagging Structured Data |
US8321943B1 (en) | 2009-07-30 | 2012-11-27 | Symantec Corporation | Programmatic communication in the event of host malware infection |
US20110047540A1 (en) | 2009-08-24 | 2011-02-24 | Embarcadero Technologies Inc. | System and Methodology for Automating Delivery, Licensing, and Availability of Software Products |
US20110055140A1 (en) | 2009-09-01 | 2011-03-03 | Oracle International Corporation | Expediting k-means cluster analysis data mining using subsample elimination preprocessing |
US20110061013A1 (en) | 2009-09-08 | 2011-03-10 | Target Brands, Inc. | Operations dashboard |
US20110066497A1 (en) | 2009-09-14 | 2011-03-17 | Choicestream, Inc. | Personalized advertising and recommendation |
US8214490B1 (en) | 2009-09-15 | 2012-07-03 | Symantec Corporation | Compact input compensating reputation data tracking mechanism |
US8347398B1 (en) | 2009-09-23 | 2013-01-01 | Savvystuff Property Trust | Selected text obfuscation and encryption in a local, network and cloud computing environment |
US20110078173A1 (en) | 2009-09-30 | 2011-03-31 | Avaya Inc. | Social Network User Interface |
US20110074788A1 (en) | 2009-09-30 | 2011-03-31 | Mckesson Financial Holdings Limited | Methods, apparatuses, and computer program products for facilitating visualization and analysis of medical data |
US20120013684A1 (en) | 2009-09-30 | 2012-01-19 | Videojet Technologies Inc. | Thermal ink jet ink compostion |
US20110087519A1 (en) | 2009-10-09 | 2011-04-14 | Visa U.S.A. Inc. | Systems and Methods for Panel Enhancement with Transaction Data |
US20110093327A1 (en) | 2009-10-15 | 2011-04-21 | Visa U.S.A. Inc. | Systems and Methods to Match Identifiers |
US20110093440A1 (en) | 2009-10-19 | 2011-04-21 | International Business Machines Corporation | Device and method for generating copy of database |
US20120226523A1 (en) | 2009-10-23 | 2012-09-06 | Cadio, Inc. | Performing studies of consumer behavior determined using electronically-captured consumer location data |
CN102054015A (en) | 2009-10-28 | 2011-05-11 | 财团法人工业技术研究院 | System and method for organizing community intelligence information using an organic object data model |
US20110099133A1 (en) | 2009-10-28 | 2011-04-28 | Industrial Technology Research Institute | Systems and methods for capturing and managing collective social intelligence information |
US20110107196A1 (en) | 2009-10-30 | 2011-05-05 | Synopsys, Inc. | Technique for dynamically sizing columns in a table |
US8312367B2 (en) | 2009-10-30 | 2012-11-13 | Synopsys, Inc. | Technique for dynamically sizing columns in a table |
US20140040371A1 (en) | 2009-12-01 | 2014-02-06 | Topsy Labs, Inc. | Systems and methods for identifying geographic locations of social media content collected over social networks |
US20110131122A1 (en) | 2009-12-01 | 2011-06-02 | Bank Of America Corporation | Behavioral baseline scoring and risk scoring |
US20130246537A1 (en) | 2009-12-10 | 2013-09-19 | Satish Kumar Gaddala | System and method for monitoring social engineering in a computer network environment |
US20110153384A1 (en) | 2009-12-17 | 2011-06-23 | Matthew Donald Horne | Visual comps builder |
US8849254B2 (en) | 2009-12-18 | 2014-09-30 | Trueposition, Inc. | Location intelligence management system |
US20110158469A1 (en) | 2009-12-29 | 2011-06-30 | Mastykarz Justin P | Methods and apparatus for management of field operations, projects and/or collected samples |
US20110167054A1 (en) | 2010-01-06 | 2011-07-07 | Microsoft Corporation | Automated discovery aggregation and organization of subject area discussions |
US20120059853A1 (en) | 2010-01-18 | 2012-03-08 | Salesforce.Com, Inc. | System and method of learning-based matching |
US20110178842A1 (en) | 2010-01-20 | 2011-07-21 | American Express Travel Related Services Company, Inc. | System and method for identifying attributes of a population using spend level data |
US20110202557A1 (en) | 2010-02-18 | 2011-08-18 | Alon Atsmon | System and method for crowdsourced template based search |
US20110208822A1 (en) | 2010-02-22 | 2011-08-25 | Yogesh Chunilal Rathod | Method and system for customized, contextual, dynamic and unified communication, zero click advertisement and prospective customers search engine |
US20110208565A1 (en) | 2010-02-23 | 2011-08-25 | Michael Ross | complex process management |
US20110205231A1 (en) * | 2010-02-24 | 2011-08-25 | Oracle International Corporation | Mapping data in enterprise applications for operational visibility |
US20150101062A1 (en) | 2010-02-25 | 2015-04-09 | American Express Travel Related Services Company, Inc. | System and method for online data processing |
US20110218955A1 (en) | 2010-03-08 | 2011-09-08 | Hsiu-Khuern Tang | Evaluation of Client Status for Likelihood of Churn |
US20110219450A1 (en) | 2010-03-08 | 2011-09-08 | Raytheon Company | System And Method For Malware Detection |
US20110225650A1 (en) | 2010-03-11 | 2011-09-15 | Accenture Global Services Limited | Systems and methods for detecting and investigating insider fraud |
US20110225586A1 (en) | 2010-03-11 | 2011-09-15 | Avaya Inc. | Intelligent Transaction Merging |
US20110225482A1 (en) | 2010-03-15 | 2011-09-15 | Wizpatent Pte Ltd | Managing and generating citations in scholarly work |
US20130246170A1 (en) | 2010-03-16 | 2013-09-19 | UberMedia, Inc. | Systems and methods for interacting with messages, authors, and followers |
US20110231223A1 (en) | 2010-03-19 | 2011-09-22 | Visa U.S.A. Inc. | Systems and Methods to Enhance Search Data with Transaction Based Data |
US20110238553A1 (en) | 2010-03-26 | 2011-09-29 | Ashwin Raj | Electronic account-to-account funds transfer |
US20110252282A1 (en) | 2010-04-08 | 2011-10-13 | Microsoft Corporation | Pragmatic mapping specification, compilation and validation |
US20120084117A1 (en) | 2010-04-12 | 2012-04-05 | First Data Corporation | Transaction location analytics systems and methods |
US20110251951A1 (en) | 2010-04-13 | 2011-10-13 | Dan Kolkowitz | Anti-fraud event correlation |
US20110258216A1 (en) | 2010-04-20 | 2011-10-20 | International Business Machines Corporation | Usability enhancements for bookmarks of browsers |
US20110270604A1 (en) | 2010-04-28 | 2011-11-03 | Nec Laboratories America, Inc. | Systems and methods for semi-supervised relationship extraction |
US20110270834A1 (en) | 2010-04-28 | 2011-11-03 | Microsoft Corporation | Data Classifier |
US20110307382A1 (en) | 2010-05-04 | 2011-12-15 | Kevin Paul Siegel | System and method for identifying a point of compromise in a payment transaction processing system |
US20120116828A1 (en) | 2010-05-10 | 2012-05-10 | Shannon Jeffrey L | Promotions and advertising system |
US20110289397A1 (en) | 2010-05-19 | 2011-11-24 | Mauricio Eastmond | Displaying Table Data in a Limited Display Area |
US20110295649A1 (en) | 2010-05-31 | 2011-12-01 | International Business Machines Corporation | Automatic churn prediction |
US20110314007A1 (en) | 2010-06-16 | 2011-12-22 | Guy Dassa | Methods, systems, and media for content ranking using real-time data |
US20110310005A1 (en) | 2010-06-17 | 2011-12-22 | Qualcomm Incorporated | Methods and apparatus for contactless gesture recognition |
US20110314024A1 (en) | 2010-06-18 | 2011-12-22 | Microsoft Corporation | Semantic content searching |
EP2400448A1 (en) | 2010-06-23 | 2011-12-28 | Quality Inspection Inc. Phoenix | System and method for real time inspection information recording and reporting |
US20120004904A1 (en) | 2010-07-05 | 2012-01-05 | Nhn Corporation | Method and system for providing representative phrase |
US8812444B2 (en) | 2010-07-07 | 2014-08-19 | Palantir Technologies, Inc. | Managing disconnected investigations |
US20130005362A1 (en) | 2010-07-07 | 2013-01-03 | Apple Inc. | Ad Hoc Formation and Tracking of Location-Sharing Groups |
US9275069B1 (en) | 2010-07-07 | 2016-03-01 | Palantir Technologies, Inc. | Managing disconnected investigations |
US8364642B1 (en) | 2010-07-07 | 2013-01-29 | Palantir Technologies, Inc. | Managing disconnected investigations |
US20130132348A1 (en) | 2010-07-07 | 2013-05-23 | Palantir Technologies, Inc. | Managing disconnected investigations |
US20120284670A1 (en) | 2010-07-08 | 2012-11-08 | Alexey Kashik | Analysis of complex data objects and multiple parameter systems |
US20120011245A1 (en) | 2010-07-09 | 2012-01-12 | Bank Of America Corporation | Monitoring communications |
US9301103B1 (en) | 2010-07-12 | 2016-03-29 | Palantir Technologies Inc. | Method and system for determining position of an inertial computing device in a distributed network |
US20120010812A1 (en) | 2010-07-12 | 2012-01-12 | James Thompson | Method and System for Determining Position of an Inertial Computing Device in a Distributed Network |
US9037407B2 (en) | 2010-07-12 | 2015-05-19 | Palantir Technologies Inc. | Method and system for determining position of an inertial computing device in a distributed network |
US8554653B2 (en) | 2010-07-22 | 2013-10-08 | Visa International Service Association | Systems and methods to identify payment accounts having business spending activities |
US20120022945A1 (en) | 2010-07-22 | 2012-01-26 | Visa International Service Association | Systems and Methods to Identify Payment Accounts Having Business Spending Activities |
US20120036434A1 (en) | 2010-08-06 | 2012-02-09 | Tavendo Gmbh | Configurable Pie Menu |
US20120054284A1 (en) | 2010-08-25 | 2012-03-01 | International Business Machines Corporation | Communication management method and system |
US20130143597A1 (en) | 2010-09-09 | 2013-06-06 | Koshiro Mitsuya | Position estimating apparatus, position estimating method, and computer program product |
US20120065987A1 (en) | 2010-09-09 | 2012-03-15 | Siemens Medical Solutions Usa, Inc. | Computer-Based Patient Management for Healthcare |
US20120066166A1 (en) | 2010-09-10 | 2012-03-15 | International Business Machines Corporation | Predictive Analytics for Semi-Structured Case Oriented Processes |
US20120078595A1 (en) | 2010-09-24 | 2012-03-29 | Nokia Corporation | Method and apparatus for ontology matching |
US20130185320A1 (en) | 2010-09-29 | 2013-07-18 | Rakuten, Inc. | Display program, display apparatus, information processing method, recording medium, and information processing apparatus |
US20120084287A1 (en) | 2010-09-30 | 2012-04-05 | Choudur Lakshminarayan | Estimation of unique database values |
US20120084135A1 (en) | 2010-10-01 | 2012-04-05 | Smartslips Inc. | System and method for tracking transaction records in a network |
US20120089606A1 (en) | 2010-10-11 | 2012-04-12 | International Business Machines Corporation | Grouping identity records to generate candidate lists to use in an entity and relationship resolution process |
US20130235749A1 (en) | 2010-10-22 | 2013-09-12 | Sk Telecom Co., Ltd. | Method device and system for estimating access points using log data |
WO2012061162A1 (en) | 2010-10-25 | 2012-05-10 | Intelius Inc. | Cost-sensitive alternating decision trees for record linkage |
US20120123989A1 (en) | 2010-11-15 | 2012-05-17 | Business Objects Software Limited | Dashboard evaluator |
US20120131107A1 (en) | 2010-11-18 | 2012-05-24 | Microsoft Corporation | Email Filtering Using Relationship and Reputation Data |
US20120131512A1 (en) | 2010-11-22 | 2012-05-24 | International Business Machines Corporation | Displaying posts in real time along axes on a computer screen |
US20140012796A1 (en) | 2010-11-24 | 2014-01-09 | Logrhythm, Inc. | Advanced intelligence engine |
US20120136804A1 (en) | 2010-11-30 | 2012-05-31 | Raymond J. Lucia, SR. | Wealth Management System and Method |
US20120150578A1 (en) | 2010-12-08 | 2012-06-14 | Motorola Solutions, Inc. | Task management in a workforce environment using an acoustic map constructed from aggregated audio |
US20130262171A1 (en) | 2010-12-10 | 2013-10-03 | Solodko Properties, Llc | System and Method for Directing and Monitoring the Activities of Remote Agents |
CN102546446A (en) | 2010-12-13 | 2012-07-04 | 太仓市浏河镇亿网行网络技术服务部 | Email device |
US20120159362A1 (en) | 2010-12-15 | 2012-06-21 | International Business Machines Corporation | User Interface Construction |
US20120158626A1 (en) | 2010-12-15 | 2012-06-21 | Microsoft Corporation | Detection and categorization of malicious urls |
US8521135B2 (en) | 2010-12-20 | 2013-08-27 | Research In Motion Limited | Message relay host for delivering messages to out of coverage communications devices |
US20130276799A1 (en) | 2010-12-22 | 2013-10-24 | Exonoid Medical Devices Ltd. | Method and system for drug delivery |
US8682812B1 (en) | 2010-12-23 | 2014-03-25 | Narus, Inc. | Machine learning based botnet detection using real-time extracted traffic features |
US20120166929A1 (en) | 2010-12-28 | 2012-06-28 | International Business Machines Corporation | System and method for providing a context-sensitive user interface |
US20120173381A1 (en) | 2011-01-03 | 2012-07-05 | Stanley Benjamin Smith | Process and system for pricing and processing weighted data in a federated or subscription based data source |
US20130318594A1 (en) | 2011-01-27 | 2013-11-28 | L-3 Communications Corporation | Internet isolation for avoiding internet security threats |
US20120197660A1 (en) | 2011-01-31 | 2012-08-02 | Ez Derm, Llc | Systems and methods to faciliate medical services |
US20120197657A1 (en) | 2011-01-31 | 2012-08-02 | Ez Derm, Llc | Systems and methods to facilitate medical services |
EP2487610A2 (en) | 2011-02-10 | 2012-08-15 | Deutsche Telekom AG | A method for generating a randomized data structure for representing sets, based on bloom filters |
US20120215898A1 (en) | 2011-02-17 | 2012-08-23 | Nitin Jayant Shah | Applications of a Network-Centric Information Distribution Platform on the Internet |
US20120216106A1 (en) | 2011-02-23 | 2012-08-23 | Casey Martin D | Computer-implemented system and method for conducting field inspections and generating reports |
US20120221553A1 (en) | 2011-02-24 | 2012-08-30 | Lexisnexis, A Division Of Reed Elsevier Inc. | Methods for electronic document searching and graphically representing electronic document searches |
WO2012119008A2 (en) | 2011-03-01 | 2012-09-07 | Early Warning Services, Llc | System and method for suspect entity detection and mitigation |
US20120226590A1 (en) | 2011-03-01 | 2012-09-06 | Early Warning Services, Llc | System and method for suspect entity detection and mitigation |
US20120254129A1 (en) | 2011-04-02 | 2012-10-04 | Recursion Software, Inc. | System and method for managing sensitive data using intelligent mobile agents on a network |
US20120266245A1 (en) | 2011-04-15 | 2012-10-18 | Raytheon Company | Multi-Nodal Malware Analysis |
US20120268269A1 (en) | 2011-04-19 | 2012-10-25 | Qualcomm Incorporated | Threat score generation |
US20120304244A1 (en) | 2011-05-24 | 2012-11-29 | Palo Alto Networks, Inc. | Malware analysis system |
US20120310838A1 (en) | 2011-06-02 | 2012-12-06 | Visa International Service Association | Local usage of electronic tokens in a transaction processing system |
US20120310831A1 (en) | 2011-06-02 | 2012-12-06 | Visa International Service Association | Reputation management in a transaction processing system |
US20120311684A1 (en) | 2011-06-03 | 2012-12-06 | Uc Group Limited | Systems and methods for registering a user across multiple websites |
US20120323888A1 (en) | 2011-06-17 | 2012-12-20 | Osann Jr Robert | Automatic Webpage Characterization and Search Results Annotation |
US20120323829A1 (en) | 2011-06-17 | 2012-12-20 | Microsoft Corporation | Graph-based classification based on file relationships |
US20130006426A1 (en) | 2011-06-28 | 2013-01-03 | Christopher Healey | System and method for measurement aided prediction of temperature and airflow values in a data center |
US20130006655A1 (en) | 2011-06-30 | 2013-01-03 | Verizon Patent And Licensing Inc. | Near real-time healthcare fraud detection |
US20130006668A1 (en) | 2011-06-30 | 2013-01-03 | Verizon Patent And Licensing Inc. | Predictive modeling processes for healthcare fraud detection |
US20130006947A1 (en) | 2011-07-03 | 2013-01-03 | Microsoft Corporation | Conflict resolution via metadata examination |
US20130013642A1 (en) | 2011-07-05 | 2013-01-10 | Michael Klein | Web based template reporting system |
US20130024307A1 (en) | 2011-07-13 | 2013-01-24 | Visa International Service Association | Systems and Methods to Communicate with Transaction Terminals |
US20140366132A1 (en) | 2011-07-15 | 2014-12-11 | Norse Corporation | Systems and Methods for Dynamic Protection from Electronic Attacks |
US20130018796A1 (en) | 2011-07-15 | 2013-01-17 | Kolhatkar Jayashree S | Multi-Channel Data Driven, Real-Time Anti-Money Laundering System For Electronic Payment Cards |
US8726379B1 (en) | 2011-07-15 | 2014-05-13 | Norse Corporation | Systems and methods for dynamic protection from electronic attacks |
US20130016106A1 (en) | 2011-07-15 | 2013-01-17 | Green Charge Networks Llc | Cluster mapping to highlight areas of electrical congestion |
US8762870B2 (en) | 2011-07-19 | 2014-06-24 | Salesforce.Com, Inc. | Multifunction drag-and-drop selection tool for selection of data objects in a social network application |
US8447674B2 (en) | 2011-07-21 | 2013-05-21 | Bank Of America Corporation | Multi-stage filtering for fraud detection with customer history filters |
US20130024339A1 (en) | 2011-07-21 | 2013-01-24 | Bank Of America Corporation | Multi-stage filtering for fraud detection with customer history filters |
US20130030873A1 (en) * | 2011-07-26 | 2013-01-31 | United Parcel Service Of America, Inc. | Systems and methods for assessing mobile asset efficiencies |
EP2555153A1 (en) | 2011-08-02 | 2013-02-06 | Tata Consultancy Services Limited | Financial activity monitoring system |
US20140108074A1 (en) | 2011-08-17 | 2014-04-17 | Roundhouse One Llc | Multidimensional digital platform for building integration and analysis |
US8732574B2 (en) | 2011-08-25 | 2014-05-20 | Palantir Technologies, Inc. | System and method for parameterizing documents for automatic workflow generation |
US20130055264A1 (en) | 2011-08-25 | 2013-02-28 | Brandon Lawrence BURR | System and method for parameterizing documents for automatic workflow generation |
US20150254220A1 (en) | 2011-08-25 | 2015-09-10 | Palantir Technologies, Inc. | System and method for parameterizing documents for automatic workflow generation |
US9058315B2 (en) | 2011-08-25 | 2015-06-16 | Palantir Technologies, Inc. | System and method for parameterizing documents for automatic workflow generation |
US20130054306A1 (en) | 2011-08-31 | 2013-02-28 | Anuj Bhalla | Churn analysis system |
US8949164B1 (en) | 2011-09-08 | 2015-02-03 | George O. Mohler | Event forecasting system |
US20130226318A1 (en) | 2011-09-22 | 2013-08-29 | Dariusz Procyk | Process transformation and transitioning apparatuses, methods and systems |
US8807948B2 (en) | 2011-09-29 | 2014-08-19 | Cadence Design Systems, Inc. | System and method for automated real-time design checking |
US20130096988A1 (en) | 2011-10-05 | 2013-04-18 | Mastercard International, Inc. | Nomination engine |
US20130097482A1 (en) | 2011-10-13 | 2013-04-18 | Microsoft Corporation | Search result entry truncation using pixel-based approximation |
US20130096968A1 (en) | 2011-10-17 | 2013-04-18 | Christopher R. Van Pelt | Performance data in a worker profile aggregated by a job distribution platform for workers that perform crowd sourced tasks |
US20130097130A1 (en) | 2011-10-17 | 2013-04-18 | Yahoo! Inc. | Method and system for resolving data inconsistency |
US9760840B1 (en) * | 2011-10-27 | 2017-09-12 | Tango Analytics LLC | Geospatial data analysis |
US20130110746A1 (en) | 2011-11-01 | 2013-05-02 | Accenture Global Services Limited | Identification of entities likely to engage in a behavior |
US20130113815A1 (en) * | 2011-11-09 | 2013-05-09 | International Business Machines Corporation | Interactive comparative analysis of multiple object data visualizations |
US20130124567A1 (en) | 2011-11-14 | 2013-05-16 | Helen Balinsky | Automatic prioritization of policies |
US20130124193A1 (en) | 2011-11-15 | 2013-05-16 | Business Objects Software Limited | System and Method Implementing a Text Analysis Service |
US20130151453A1 (en) | 2011-12-07 | 2013-06-13 | Inkiru, Inc. | Real-time predictive intelligence platform |
CN103167093A (en) | 2011-12-08 | 2013-06-19 | 青岛海信移动通信技术股份有限公司 | Filling method of mobile phone email address |
US20130151305A1 (en) | 2011-12-09 | 2013-06-13 | Sap Ag | Method and Apparatus for Business Drivers and Outcomes to Enable Scenario Planning and Simulation |
US20130151388A1 (en) | 2011-12-12 | 2013-06-13 | Visa International Service Association | Systems and methods to identify affluence levels of accounts |
US20130160120A1 (en) | 2011-12-20 | 2013-06-20 | Yahoo! Inc. | Protecting end users from malware using advertising virtual machine |
US20130166550A1 (en) | 2011-12-21 | 2013-06-27 | Sap Ag | Integration of Tags and Object Data |
US20130166480A1 (en) | 2011-12-21 | 2013-06-27 | Telenav, Inc. | Navigation system with point of interest classification mechanism and method of operation thereof |
US20130165069A1 (en) | 2011-12-26 | 2013-06-27 | Fujitsu Limited | Base station apparatus, wireless communication system, and wireless communication method |
US20130166348A1 (en) | 2011-12-27 | 2013-06-27 | Stefano Alexander Scotto | Utility for Creating Heatmaps for the Study of Competitive Advantage in the Restaurant Marketplace |
US20130185245A1 (en) | 2012-01-16 | 2013-07-18 | International Business Machines Corporation | Social network analysis for churn prediction |
US20130185307A1 (en) | 2012-01-18 | 2013-07-18 | Technion Research & Development Foundation Ltd. | Methods and systems of supervised learning of semantic relatedness |
US20130196614A1 (en) | 2012-01-29 | 2013-08-01 | Crimepush Llc | Mobile alert reporting and monitoring systems and methods |
US20130197925A1 (en) | 2012-01-31 | 2013-08-01 | Optumlnsight, Inc. | Behavioral clustering for removing outlying healthcare providers |
US20130208565A1 (en) | 2012-02-09 | 2013-08-15 | Pgs Geophysical As | Methods and systems for correction of streamer-depth bias in marine seismic surveys |
WO2013126281A1 (en) | 2012-02-24 | 2013-08-29 | Lexisnexis Risk Solutions Fl Inc. | Systems and methods for putative cluster analysis |
US20130226944A1 (en) | 2012-02-24 | 2013-08-29 | Microsoft Corporation | Format independent data transformation |
US20130226879A1 (en) | 2012-02-28 | 2013-08-29 | Qatar Foundation | Detecting Inconsistent Data Records |
US20130232045A1 (en) | 2012-03-04 | 2013-09-05 | Oracle International Corporation | Automatic Detection Of Fraud And Error Using A Vector-Cluster Model |
US20130246597A1 (en) | 2012-03-15 | 2013-09-19 | Fujitsu Limited | Processor, computer readable recording medium recording program therein, and processing system |
US20130262528A1 (en) | 2012-03-29 | 2013-10-03 | Touchstone Media Group, Llc | Mobile Sales Tracking System |
US20130263019A1 (en) | 2012-03-30 | 2013-10-03 | Maria G. Castellanos | Analyzing social media |
US20130262527A1 (en) | 2012-04-02 | 2013-10-03 | Nicolas M. Hunter | Smart progress indicator |
US20130262497A1 (en) | 2012-04-02 | 2013-10-03 | Caterpillar Inc. | Inspection Tool |
US20130282696A1 (en) | 2012-04-23 | 2013-10-24 | Sap Ag | Interactive data exploration and visualization tool |
US8798354B1 (en) | 2012-04-25 | 2014-08-05 | Intuit Inc. | Method and system for automatic correlation of check-based payments to customer accounts and/or invoices |
US20130290825A1 (en) | 2012-04-26 | 2013-10-31 | Henrik Arndt | Switch control in report generation |
US20130288719A1 (en) | 2012-04-27 | 2013-10-31 | Oracle International Corporation | Augmented reality for maintenance management, asset management, or real estate management |
US20130295970A1 (en) | 2012-05-01 | 2013-11-07 | Qualcomm Incorporated | Geofence breach confidence |
US20130297619A1 (en) | 2012-05-07 | 2013-11-07 | The Nasdaq Omx Group, Inc. | Social media profiling |
US20130304770A1 (en) | 2012-05-10 | 2013-11-14 | Siemens Aktiengesellschaft | Method and system for storing data in a database |
US20130325826A1 (en) | 2012-05-30 | 2013-12-05 | International Business Machines Corporation | Matching transactions in multi-level records |
US20140032506A1 (en) | 2012-06-12 | 2014-01-30 | Quality Attributes Software, Inc. | System and methods for real-time detection, correction, and transformation of time series data |
US20130339514A1 (en) | 2012-06-13 | 2013-12-19 | Zscaler, Inc. | Systems and methods for interactive analytics of internet traffic |
US20140058763A1 (en) | 2012-07-24 | 2014-02-27 | Deloitte Development Llc | Fraud detection methods and systems |
US20140149272A1 (en) | 2012-08-17 | 2014-05-29 | Trueex Group Llc | Interoffice bank offered rate financial product and implementation |
US20140058914A1 (en) | 2012-08-27 | 2014-02-27 | Yuh-Shen Song | Transactional monitoring system |
US20140068487A1 (en) | 2012-09-05 | 2014-03-06 | Roche Diagnostics Operations, Inc. | Computer Implemented Methods For Visualizing Correlations Between Blood Glucose Data And Events And Apparatuses Thereof |
US20140081652A1 (en) | 2012-09-14 | 2014-03-20 | Risk Management Solutions Llc | Automated Healthcare Risk Management System Utilizing Real-time Predictive Models, Risk Adjusted Provider Cost Index, Edit Analytics, Strategy Management, Managed Learning Environment, Contact Management, Forensic GUI, Case Management And Reporting System For Preventing And Detecting Healthcare Fraud, Abuse, Waste And Errors |
US20140095363A1 (en) | 2012-09-25 | 2014-04-03 | Moneydesktop, Inc. | Aggregation data source matching and merging |
US20140095509A1 (en) | 2012-10-02 | 2014-04-03 | Banjo, Inc. | Method of tagging content lacking geotags with a location |
US20140108985A1 (en) | 2012-10-08 | 2014-04-17 | Fisher-Rosemount Systems, Inc. | Configurable User Displays in a Process Control System |
US20140108380A1 (en) | 2012-10-12 | 2014-04-17 | International Business Machines Corporation | Iterative Refinement of Cohorts Using Visual Exploration and Data Analytics |
US8688573B1 (en) | 2012-10-16 | 2014-04-01 | Intuit Inc. | Method and system for identifying a merchant payee associated with a cash transaction |
US20140123279A1 (en) | 2012-10-29 | 2014-05-01 | Michael G. Bishop | Dynamic quarantining for malware detection |
AU2013251186B2 (en) | 2012-11-05 | 2015-11-19 | Palantir Technologies, Inc. | System and Method for Sharing Investigation Result Data |
US20140129936A1 (en) | 2012-11-05 | 2014-05-08 | Palantir Technologies, Inc. | System and method for sharing investigation results |
US20140129261A1 (en) | 2012-11-08 | 2014-05-08 | Hartford Fire Insurance Company | System and method for determination of insurance classification of entities |
US8930874B2 (en) | 2012-11-09 | 2015-01-06 | Analog Devices, Inc. | Filter design tool |
US20140136285A1 (en) | 2012-11-15 | 2014-05-15 | Homer Tlc, Inc. | System and method for classifying relevant competitors |
US20140143009A1 (en) | 2012-11-16 | 2014-05-22 | International Business Machines Corporation | Risk reward estimation for company-country pairs |
US20140149436A1 (en) | 2012-11-26 | 2014-05-29 | The Boeing Company | System and Method of Reduction of Irrelevant Information during Search |
US20140149130A1 (en) | 2012-11-29 | 2014-05-29 | Verizon Patent And Licensing Inc. | Healthcare fraud detection based on statistics, learning, and parameters |
US20140157172A1 (en) | 2012-11-30 | 2014-06-05 | Drillmap | Geographic layout of petroleum drilling data and methods for processing data |
US20140156527A1 (en) | 2012-11-30 | 2014-06-05 | Bank Of America Corporation | Pre-payment authorization categorization |
US20150073954A1 (en) | 2012-12-06 | 2015-03-12 | Jpmorgan Chase Bank, N.A. | System and Method for Data Analytics |
US20140164502A1 (en) | 2012-12-07 | 2014-06-12 | Alex Khodorenko | System and method for social message classification based on influence |
US20140189536A1 (en) | 2013-01-02 | 2014-07-03 | Microsoft Corporation | Social media impact assessment |
US20140195515A1 (en) | 2013-01-10 | 2014-07-10 | I3 Analytics | Methods and systems for querying and displaying data using interactive three-dimensional representations |
US20140208281A1 (en) | 2013-01-20 | 2014-07-24 | International Business Machines Corporation | Real-time display of electronic device design changes between schematic and/or physical representation and simplified physical representation of design |
US8639552B1 (en) | 2013-01-24 | 2014-01-28 | Broadvision, Inc. | Systems and methods for creating and sharing tasks |
US20150331919A1 (en) | 2013-01-31 | 2015-11-19 | Palantir Technologies, Inc. | Populating property values of event objects of an object-centric data model using image metadata |
US9123086B1 (en) | 2013-01-31 | 2015-09-01 | Palantir Technologies, Inc. | Automatically generating event objects from images |
US20140222793A1 (en) | 2013-02-07 | 2014-08-07 | Parlance Corporation | System and Method for Automatically Importing, Refreshing, Maintaining, and Merging Contact Sets |
US20140222521A1 (en) | 2013-02-07 | 2014-08-07 | Ibms, Llc | Intelligent management and compliance verification in distributed work flow environments |
US20140229554A1 (en) | 2013-02-13 | 2014-08-14 | International Business Machines Corporation | Mail server-based dynamic workflow management |
US8744890B1 (en) | 2013-02-14 | 2014-06-03 | Aktana, Inc. | System and method for managing system-level workflow strategy and individual workflow activity |
US20140244284A1 (en) | 2013-02-25 | 2014-08-28 | Complete Consent, Llc | Communication of medical claims |
US20140258827A1 (en) | 2013-03-07 | 2014-09-11 | Ricoh Co., Ltd. | Form Filling Based on Classification and Identification of Multimedia Data |
US20140258246A1 (en) | 2013-03-08 | 2014-09-11 | Mastercard International Incorporated | Recognizing and combining redundant merchant deisgnations in a transaction database |
GB2513472A (en) | 2013-03-14 | 2014-10-29 | Palantir Technologies Inc | Resolving similar entities from a database |
DE102014204827A1 (en) | 2013-03-14 | 2014-09-18 | Palantir Technologies, Inc. | Explode similar entities from a transactional database |
EP2816513A1 (en) | 2013-03-14 | 2014-12-24 | Palantir Technologies, Inc. | Mobile reports |
US9171334B1 (en) | 2013-03-15 | 2015-10-27 | Palantir Technologies Inc. | Tax data clustering |
US8818892B1 (en) | 2013-03-15 | 2014-08-26 | Palantir Technologies, Inc. | Prioritizing data clusters with customizable scoring strategies |
US9286373B2 (en) | 2013-03-15 | 2016-03-15 | Palantir Technologies Inc. | Computer-implemented systems and methods for comparing and associating objects |
US8903717B2 (en) | 2013-03-15 | 2014-12-02 | Palantir Technologies Inc. | Method and system for generating a parser and parsing complex data |
US20150106379A1 (en) | 2013-03-15 | 2015-04-16 | Palantir Technologies Inc. | Computer-implemented systems and methods for comparing and associating objects |
US8924389B2 (en) | 2013-03-15 | 2014-12-30 | Palantir Technologies Inc. | Computer-implemented systems and methods for comparing and associating objects |
US8924388B2 (en) | 2013-03-15 | 2014-12-30 | Palantir Technologies Inc. | Computer-implemented systems and methods for comparing and associating objects |
US8788407B1 (en) | 2013-03-15 | 2014-07-22 | Palantir Technologies Inc. | Malware data clustering |
DE102014204834A1 (en) | 2013-03-15 | 2014-09-18 | Palantir Technologies, Inc. | Computer-implemented systems and methods for comparing and associating objects |
US9135658B2 (en) | 2013-03-15 | 2015-09-15 | Palantir Technologies Inc. | Generating data clusters |
US9165299B1 (en) | 2013-03-15 | 2015-10-20 | Palantir Technologies Inc. | User-agent data clustering |
US20140302783A1 (en) | 2013-03-15 | 2014-10-09 | Whistle Labs, Inc. | Detecting interaction among entities via proximity |
US20140283067A1 (en) | 2013-03-15 | 2014-09-18 | Shape Security Inc. | Detecting the introduction of alien content |
DE102014204830A1 (en) | 2013-03-15 | 2014-09-18 | Palantir Technologies, Inc. | Computer-implemented systems and methods for comparing and associating objects |
US9177344B1 (en) | 2013-03-15 | 2015-11-03 | Palantir Technologies Inc. | Trend data clustering |
US9230280B1 (en) | 2013-03-15 | 2016-01-05 | Palantir Technologies Inc. | Clustering data based on indications of financial malfeasance |
US20150046481A1 (en) | 2013-03-15 | 2015-02-12 | Palantir Technologies Inc. | Method and system for generating a parser and parsing complex data |
EP2778913A1 (en) | 2013-03-15 | 2014-09-17 | Palantir Technologies, Inc. | Method and system for generating a parser and parsing complex data |
EP2778914A1 (en) | 2013-03-15 | 2014-09-17 | Palantir Technologies, Inc. | Method and system for generating a parser and parsing complex data |
GB2513721A (en) | 2013-03-15 | 2014-11-05 | Palantir Technologies Inc | Computer-implemented systems and methods for comparing and associating objects |
GB2513247A (en) | 2013-03-15 | 2014-10-22 | Palantir Technologies Inc | Data clustering |
US20140310282A1 (en) | 2013-03-15 | 2014-10-16 | Palantir Technologies, Inc. | Generating data clusters |
US20160034470A1 (en) | 2013-03-15 | 2016-02-04 | Palantir Technologies Inc. | Prioritizing data clusters with customizable scoring strategies |
US8855999B1 (en) | 2013-03-15 | 2014-10-07 | Palantir Technologies Inc. | Method and system for generating a parser and parsing complex data |
US8788405B1 (en) | 2013-03-15 | 2014-07-22 | Palantir Technologies, Inc. | Generating data clusters with customizable analysis strategies |
US20140344230A1 (en) | 2013-03-20 | 2014-11-20 | Securboration Inc | Methods and systems for node and link identification |
US20140310266A1 (en) * | 2013-04-10 | 2014-10-16 | Google Inc. | Systems and Methods for Suggesting Places for Persons to Meet |
US20140331119A1 (en) | 2013-05-06 | 2014-11-06 | Mcafee, Inc. | Indicating website reputations during user interactions |
US20140351070A1 (en) | 2013-05-22 | 2014-11-27 | Cube, Co. | Role-based transaction management system for multi-point merchants |
US20140357299A1 (en) | 2013-05-30 | 2014-12-04 | Hong Kong Baptist University | System and method for providing proximity information |
US20140358829A1 (en) | 2013-06-01 | 2014-12-04 | Adam M. Hurwitz | System and method for sharing record linkage information |
US20140379812A1 (en) | 2013-06-21 | 2014-12-25 | International Business Machines Corporation | Methodology that uses culture information as a means to detect spam |
DE102014213036A1 (en) | 2013-07-05 | 2015-01-22 | Palantir Technologies, Inc. | Data Quality Monitors |
US9348851B2 (en) | 2013-07-05 | 2016-05-24 | Palantir Technologies Inc. | Data quality monitors |
GB2517582A (en) | 2013-07-05 | 2015-02-25 | Palantir Technologies Inc | Data quality monitors |
AU2014203669A1 (en) | 2013-07-05 | 2015-01-22 | Palantir Technologies, Inc. | Data quality monitors |
US8601326B1 (en) | 2013-07-05 | 2013-12-03 | Palantir Technologies, Inc. | Data quality monitors |
US20150012509A1 (en) | 2013-07-05 | 2015-01-08 | Palantir Technologies, Inc. | Data quality monitors |
NL2013134A (en) | 2013-07-05 | 2015-01-06 | Palantir Technologies | Data quality monitors. |
US20150026622A1 (en) | 2013-07-19 | 2015-01-22 | General Electric Company | Systems and methods for dynamically controlling content displayed on a condition monitoring system |
US8838538B1 (en) | 2013-07-31 | 2014-09-16 | Palantir Technologies, Inc. | Techniques for replicating changes to access control lists on investigative analysis data |
US20150067533A1 (en) | 2013-08-29 | 2015-03-05 | Pecan Technologies, Inc. | Social profiling of electronic messages |
US9313233B2 (en) | 2013-09-13 | 2016-04-12 | Plantir Technologies Inc. | Systems and methods for detecting associated devices |
US20150080012A1 (en) | 2013-09-13 | 2015-03-19 | Palantir Technologies, Inc. | Systems and methods for detecting associated devices |
US20150089353A1 (en) | 2013-09-24 | 2015-03-26 | Chad Folkening | Platform for building virtual entities using equity systems |
US20150095773A1 (en) | 2013-10-01 | 2015-04-02 | Aetherpal, Inc. | Method and apparatus for interactive mobile device guidance |
US20150100907A1 (en) | 2013-10-03 | 2015-04-09 | Palantir Technologies Inc. | Systems and methods for analyzing performance of an entity |
US8938686B1 (en) | 2013-10-03 | 2015-01-20 | Palantir Technologies Inc. | Systems and methods for analyzing performance of an entity |
US8812960B1 (en) | 2013-10-07 | 2014-08-19 | Palantir Technologies Inc. | Cohort-based presentation of user interaction data |
US20150100897A1 (en) | 2013-10-07 | 2015-04-09 | Palantir Technologies Inc. | Cohort-based presentation of user interaction data |
EP2858018A1 (en) | 2013-10-07 | 2015-04-08 | Palantir Technologies, Inc. | Interactive user interface |
EP2869211A2 (en) | 2013-11-04 | 2015-05-06 | Palantir Technologies, Inc. | Optimized display of multi-column table |
US9262529B2 (en) | 2013-11-11 | 2016-02-16 | Palantir Technologies, Inc. | Simple web search |
US20160110458A1 (en) | 2013-11-11 | 2016-04-21 | Palantir Technologies, Inc. | Simple web search |
US20150135256A1 (en) | 2013-11-13 | 2015-05-14 | International Business Machines Corporation | Disambiguating conflicting content filter rules |
US9165100B2 (en) | 2013-12-05 | 2015-10-20 | Honeywell International Inc. | Methods and apparatus to map schematic elements into a database |
US9105000B1 (en) | 2013-12-10 | 2015-08-11 | Palantir Technologies Inc. | Aggregating data from a plurality of data sources |
US20160048937A1 (en) | 2013-12-20 | 2016-02-18 | Palantir Technologies Inc. | Automated database analysis to detect malfeasance |
US20150178825A1 (en) | 2013-12-23 | 2015-06-25 | Citibank, N.A. | Methods and Apparatus for Quantitative Assessment of Behavior in Financial Entities and Transactions |
EP2889814A1 (en) | 2013-12-26 | 2015-07-01 | Palantir Technologies, Inc. | System and method for detecting confidential information emails |
US20150188872A1 (en) | 2013-12-26 | 2015-07-02 | Palantir Technologies, Inc. | System and method for detecting confidential information emails |
US20150186483A1 (en) | 2013-12-27 | 2015-07-02 | General Electric Company | Systems and methods for dynamically grouping data analysis content |
EP2892197A1 (en) | 2014-01-03 | 2015-07-08 | Palantir Technologies, Inc. | IP reputation |
US9100428B1 (en) | 2014-01-03 | 2015-08-04 | Palantir Technologies Inc. | System and method for evaluating network threats |
US20150212663A1 (en) | 2014-01-30 | 2015-07-30 | Splunk Inc. | Panel templates for visualization of data within an interactive dashboard |
EP2911078A2 (en) | 2014-02-20 | 2015-08-26 | Palantir Technologies, Inc. | Security sharing system |
US20150235334A1 (en) | 2014-02-20 | 2015-08-20 | Palantir Technologies Inc. | Healthcare fraud sharing system |
US9009827B1 (en) | 2014-02-20 | 2015-04-14 | Palantir Technologies Inc. | Security sharing system |
EP2916276A1 (en) | 2014-03-04 | 2015-09-09 | Palantir Technologies, Inc. | System including a data repository and a data importing component |
US20150379413A1 (en) | 2014-06-30 | 2015-12-31 | Palantir Technologies, Inc. | Crime risk forecasting |
EP2963595A1 (en) | 2014-06-30 | 2016-01-06 | Palantir Technologies, Inc. | Crime risk forecasting |
US9129219B1 (en) | 2014-06-30 | 2015-09-08 | Palantir Technologies, Inc. | Crime risk forecasting |
EP2963577A1 (en) | 2014-07-03 | 2016-01-06 | Palantir Technologies, Inc. | Method for malware analysis based on data clustering |
US9256664B2 (en) | 2014-07-03 | 2016-02-09 | Palantir Technologies Inc. | System and method for news events detection and visualization |
US9202249B1 (en) | 2014-07-03 | 2015-12-01 | Palantir Technologies Inc. | Data item clustering and analysis |
US20160004764A1 (en) | 2014-07-03 | 2016-01-07 | Palantir Technologies Inc. | System and method for news events detection and visualization |
US9344447B2 (en) | 2014-07-03 | 2016-05-17 | Palantir Technologies Inc. | Internal malware data item clustering and analysis |
US20160026923A1 (en) | 2014-07-22 | 2016-01-28 | Palantir Technologies Inc. | System and method for determining a propensity of entity to take a specified action |
EP2985729A1 (en) | 2014-08-12 | 2016-02-17 | Palantir Technologies, Inc. | Automated database analysis to detect malfeasance |
US20160055501A1 (en) | 2014-08-19 | 2016-02-25 | Palantir Technologies Inc. | System and method for determining a cohort |
EP2988258A1 (en) | 2014-08-19 | 2016-02-24 | Palantir Technologies, Inc. | System and method for determining a cohort |
EP2993595A1 (en) | 2014-09-03 | 2016-03-09 | Palantir Technologies, Inc. | Dynamic user interface |
US20160062555A1 (en) | 2014-09-03 | 2016-03-03 | Palantir Technologies Inc. | System for providing dynamic linked panels in user interface |
US20160098176A1 (en) | 2014-10-03 | 2016-04-07 | Palantir Technologies Inc. | Time-series analysis system |
EP3002691A1 (en) | 2014-10-03 | 2016-04-06 | Palantir Technologies, Inc. | Time-series analysis system |
US20160110369A1 (en) | 2014-10-16 | 2016-04-21 | Palantir Technologies Inc. | Schematic and database linking system |
EP3009943A1 (en) | 2014-10-16 | 2016-04-20 | Palantir Technologies, Inc. | Schematic and database linking system |
EP3018879A1 (en) | 2014-11-06 | 2016-05-11 | Palantir Technologies, Inc. | Malicious software detection in a computing system |
US9043894B1 (en) | 2014-11-06 | 2015-05-26 | Palantir Technologies Inc. | Malicious software detection in a computing system |
EP3032441A2 (en) | 2014-12-08 | 2016-06-15 | Palantir Technologies, Inc. | Distributed acoustic sensing data analysis system |
US20160162519A1 (en) | 2014-12-08 | 2016-06-09 | Palantir Technologies Inc. | Distributed acoustic sensing data analysis system |
EP3035214A1 (en) | 2014-12-15 | 2016-06-22 | Palantir Technologies, Inc. | Associating related records to common entities across multiple lists |
US9367872B1 (en) | 2014-12-22 | 2016-06-14 | Palantir Technologies Inc. | Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures |
US20160180451A1 (en) | 2014-12-22 | 2016-06-23 | Palantir Technologies Inc. | Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures |
EP3037991A1 (en) | 2014-12-22 | 2016-06-29 | Palantir Technologies, Inc. | Systems and user interfaces for dynamic and interactive investigation of bad actor behavior based on automatic clustering of related data in various data structures |
EP3038046A1 (en) | 2014-12-23 | 2016-06-29 | Palantir Technologies, Inc. | System and methods for detecting fraudulent transactions |
US9348880B1 (en) | 2015-04-01 | 2016-05-24 | Palantir Technologies, Inc. | Federated search of multiple sources with conflict resolution |
Non-Patent Citations (349)
Title |
---|
"A Tour of Pinboard", [Online] Retrieved from the internet: <https://pinboard.in/tour/>, (May 15, 2014), 1-6. |
"A Word About Banks and the Laundering of Drug Money," Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/. |
"Australian Application Serial No. 2013251186, First Examiner's Report dated Mar. 12, 2015", 3 pgs. |
"Australian Application Serial No. 2013251186, Notice of Acceptance dated Nov. 6, 2015", 2 pgs. |
"Australian Application Serial No. 2014201506, Office Action dated Feb. 27, 2015", 3 pgs. |
"Australian Application Serial No. 2014201507, Office Action dated Feb. 27, 2015", 2 pgs. |
"Australian Application Serial No. 2014203669, Notice of Acceptance dated Jan. 21, 2016", 2 pgs. |
"Australian Application Serial No. 2014203669, Office Action dated May 29, 2015", 2 pgs. |
"Canadian Application Serial No. 2,831,660, Office Action dated Jun. 9, 2015", 4 pgs. |
"Clip2Net—Share files, folders and screenshots easily", Online Tech Tips, [Online]. Retrieved from the Internet: <URL: http://www.online-tech-tips.com/free-software-downloads/share-files-folders-screenshots/>, (Apr. 2, 2008), 5 pgs. |
"Delicious", [Online]. Retrieved from the Internet: <URL: http://delicious.com/>, (accessed May 15, 2014), 1 pg. |
"E-MailRelay", Internet Archive Wayback Machine [Online]. Retrieved from the Internet: <URL: http://emailrelay.sourceforge.net/, (accessed Aug. 21, 2008), 2 pgs. |
"Entity Resolution—A Real-World Problem of Matching Records", Techniques: Minhashing, Locality-Sensitive Hashing Measuring the Quality of the Results, [Online] retrieved from the internet: <http://grupoweb.upf.es/bd-web/slides/ullman.pdf>, (Nov. 2006), 1-16. |
"European Application Serial No. 09813700.3, Extended European Search Report dated Apr. 3, 2014", 9 pgs. |
"European Application Serial No. 10188239.7, Non Final Office Action dated Mar. 24, 16", 6 pgs. |
"European Application Serial No. 12181585.6, Communication pursuant to Article 94(3) EPC dated Sep. 4, 2015", 9 pgs. |
"European Application Serial No. 14158958.0, Communication Pursuant to Article 94(3) EPC dated Apr. 16, 2015", 9 pgs. |
"European Application Serial No. 14158958.0, Communication Pursuant to Article 94(3) EPC dated Mar. 11, 2016", 5 pgs. |
"European Application Serial No. 14158958.0, Extended European Search Report dated Jun. 3, 2014", 11 pgs. |
"European Application Serial No. 14158977.0, Communication Pursuant to Article 94(3) EPC dated Apr. 16, 2015", 8 pgs. |
"European Application Serial No. 14158977.0, Communication Pursuant to Article 94(3) EPC dated Mar. 11, 2016", 5 pgs. |
"European Application Serial No. 14158977.0, Extended European Search Report dated Jun. 10, 2014", 10 pgs. |
"European Application Serial No. 14187996.5, Extended European Search Report dated Feb. 12, 2015", 7 pgs. |
"European Application Serial No. 14189344.6, Office Action dated Feb. 29, 2016", 9 pgs. |
"European Application Serial No. 14191540.5, Extended European Search Report dated May 27, 2015", 9 pgs. |
"European Application Serial No. 15188106.7, Extended European Search Report dated Feb. 3, 2016", 8 pgs. |
"European Application Serial No. 15190307.7, Extended Search Report dated Feb. 19, 2016", 8 pgs. |
"European Application Serial No. 15193287.8, Extended European Search Report dated Apr. 1, 2016", 6 pgs. |
"European Application Serial No. 15200073.3, Extended European Search Report dated Mar. 30, 2016", 16 pgs. |
"European Application Serial No. 15201727.3, Extended European Search Report dated May 23, 2016", 11 pgs. |
"European Application Serial No. 15202090.5, Extended European Search Report dated May 13, 2016", 8 pgs. |
"GrabUp—What a Timesaver!", [Online]. Retrieved from the Internet: <URL http://atlchris.com/191/grabup/>, (Aug. 11, 2008), 10 pgs. |
"Great Britain Application Serial No. 1411984.6, Office Action dated Dec. 22, 2014", 6 pgs. |
"Great Britain Application Serial No. 1411984.6, Office Action dated Jan. 8, 2016", 8 pgs. |
"HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis," Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages. |
"Kwout", [Online]. Retrieved from the Internet: <URL: http://web.archive.org/web/20080905132448/http://www.kwout.com/>, (Sep. 5, 2008), 2 pgs. |
"Managing Business Performance and Detecting Outliers in Financial Services", Quartet FS-White Paper, [Online]. Retrieved from the Internet: <URL: https://quartetfs.com/images/pdf/white-papers/Quartet_FS_White_Paper_-_ActivePivot_Sentinel.pdf>, (Accessed: Oct. 10, 2016), 15 pgs. |
"Microsoft CRM duplicate detection", Pythagoras—1 pg, [Online]. Retrieved from the Internet: <URL: https://www.youtube.com/watch?v=j-7Qis0D0Kc>, (Uploaded: Sep. 13, 2011), Time: 5:09. |
"Microsoft Windows Version 2002 Print Out 2", Microsoft Windows, (2002), 6 pgs. |
"Money Laundering Risks and E-Gaming: A European Overview and Assessment," 2009, http://www.cf.ac.uk/socsi/resources/Levi_Final_Money_Laundering_Risks_egaming.pdf. |
"Netherlands Application Serial No. 2011729, Search Report dated Aug. 13, 2015", 8 pgs. |
"Netherlands Application Serial No. 2012433, Netherlands Search Report dated Mar. 11, 2016", W/ English Translation, 10 pgs. |
"Netherlands Application Serial No. 2013134, Netherlands Search Report dated Apr. 20, 2015", 6 pgs. |
"New Zealand Application Serial No. 622389, Office Action dated Mar. 20, 2014", 2 pgs. |
"New Zealand Application Serial No. 622404, Office Action dated Mar. 20, 2014", 2 pgs. |
"New Zealand Application Serial No. 622439, Office Action dated Jun. 6, 2014", 2 pgs. |
"New Zealand Application Serial No. 622439, Office Action dated Mar. 24, 2014", 2 pgs. |
"O'Reilly.com", [Online]. Retrieved from the Internet: <URL: http://oreilly.com/digitalmedia/2006/01/01/mac-os-x-screenshot-secrets.html, (Jan. 1, 2006), 10 pgs. |
"Potential Money Laundering Warning Signs," snapshot taken 2003, http://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf. |
"Refresh CSS Ellipsis When Resizing Container—Stack Overflow," Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015. |
"Registering an Application to a URI Scheme", Microsoft, [Online]. Retrieved from the Internet: <URL: http://msdn.microsoft.com/en-us/library/aa767914.aspx>, (accessed Apr. 4, 2009), 4 pgs. |
"Resource Center", Quartert FS-White Papers, [Online] Retrieved from the Internet: <https://web.archive.org/web/20141016044306/http://quartetfs.com/resource-center/white-papers> retrieved May 3, 2016, (Oct. 16, 2014), 6 pgs. |
"Share Screenshots via Internet in Seconds", JetScreenshot.com, [Online]. Retrieved from the Internet: <URL: http://web.archive.org/web/20130807164204/http://www.jetscreenshot.com/>, (Aug. 7, 2013), 1 pg. |
"SnagIt 8.1.0 Print Out 2", Snagit-Software release date Jun. 15, 2006, (Jun. 15, 2006), 1-3. |
"SnagIt 8.1.0 Print Out", SnagIt Software release date Jun. 15, 2006, (Jun. 15, 2006), 6 pgs. |
"SnagIt Online Help Guide", TechSmith Corp., Version 8.1, http://download.techsmith.com/snagit/docs/onlinehelp/enu/snagit_help.pdf>, (accessed Feb. 7, 2007), 284 pgs. |
"Trick: How to Capture a Screenshot as PDF, Annotate, Then Share It", Nitro, [Online]. Retrieved from the Internet: <URL: http://blog.nitropdf.com/2008/03/04/trick-how-to-capture-a-screenshot-as-pdf-annotate-it-then-share/>, (Mar. 4, 2008), 2 pgs. |
"U.S. Appl. No. 12/556,307, Final Office Action dated Feb. 13, 2012", 27 pgs. |
"U.S. Appl. No. 12/556,307, Final Office Action dated Mar. 14, 2014", 27 pgs. |
"U.S. Appl. No. 12/556,307, Non Final Office Action dated Jun. 9, 2015", 33 pgs. |
"U.S. Appl. No. 12/556,307, Non Final Office Action dated Oct. 1, 2013", 24 pgs. |
"U.S. Appl. No. 12/556,307, Non Final Office Action dated Sep. 2, 2011", 23 pgs. |
"U.S. Appl. No. 12/556,307, Notice of Allowance dated Jan. 4, 2016", 8 pgs. |
"U.S. Appl. No. 12/556,307, Notice of Allowance dated Mar. 21, 2016", 11 pgs. |
"U.S. Appl. No. 12/556,318, Notice of Allowance dated Apr. 11, 2016", 65 pgs. |
"U.S. Appl. No. 12/556,321, Final Office Action dated Feb. 25, 2016", 26 pgs. |
"U.S. Appl. No. 12/556,321, Final Office Action dated Jun. 6, 2012", 27 pgs. |
"U.S. Appl. No. 12/556,321, Non Final Office Action dated Dec. 7, 2011", 18 pgs. |
"U.S. Appl. No. 12/556,321, Non Final Office Action dated Jul. 7, 2015", 18 pgs. |
"U.S. Appl. No. 13/669,274, Advisory Action dated Aug. 26, 2015", 7 pgs. |
"U.S. Appl. No. 13/669,274, Final Office Action dated May 6, 2015", 12 pgs. |
"U.S. Appl. No. 13/669,274, Non Final Office Action dated May 2, 2016", 25 pgs. |
"U.S. Appl. No. 13/827,491, Non Final Office Action dated Mar. 30, 2016", 25 pgs. |
"U.S. Appl. No. 13/831,199, Non Final Office Action dated May 9, 2016", 12 pgs. |
"U.S. Appl. No. 13/839,026, Notice of Allowance dated Mar. 11, 2016", 27 pgs. |
"U.S. Appl. No. 14/014,313, Final Office Action dated Feb. 26, 2016", 16 pgs. |
"U.S. Appl. No. 14/014,313, First Action Interview Pre-Interview Communication dated Jun. 18, 2015", 4 pgs. |
"U.S. Appl. No. 14/088,251, Final Office Action dated Apr. 18, 2016", 32 pgs. |
"U.S. Appl. No. 14/094,418, Notice of Allowance dated Jan. 25, 2016", 22 pgs. |
"U.S. Appl. No. 14/102,394, Office Action dated Mar. 27, 2014", 16 pgs. |
"U.S. Appl. No. 14/108,187, Applicant-Initiated Interview Summary dated Apr. 17, 2014", 8 pgs. |
"U.S. Appl. No. 14/108,187, First Action Interview dated Mar. 20, 2014", 7 pgs. |
"U.S. Appl. No. 14/135,289, First Action Interview Office Action Summary dated Jul. 7, 2014", 12 pgs. |
"U.S. Appl. No. 14/135,289, First Action Interview Pilot Program Pre-Interview Communication dated Apr. 16, 2014", 8 pgs. |
"U.S. Appl. No. 14/192,767 Corrected Notice of Allowability dated Apr. 20, 2015", 6 pgs. |
"U.S. Appl. No. 14/192,767, First Action Interview Office Action Summary dated Sep. 24, 2014", 8 pgs. |
"U.S. Appl. No. 14/192,767, First Action Interview Pilot Program Pre-Interview Communication dated May 6, 2014", 23 pgs. |
"U.S. Appl. No. 14/196,814, Final Office Action dated Jun. 13, 2016", 23 pgs. |
"U.S. Appl. No. 14/196,814, First Action Interview Office Action Summary dated Aug. 13, 2014", 8 pgs. |
"U.S. Appl. No. 14/222,364, Non Final Office Action dated Dec. 9, 2015", 38 pgs. |
"U.S. Appl. No. 14/265,637, First Action Interview Pre-Interview Communication dated Sep. 26, 2014", 6 pgs. |
"U.S. Appl. No. 14/265,637, Notice of Allowance dated Feb. 13, 2015", 11 pgs. |
"U.S. Appl. No. 14/268,964, Non Final Office Action dated Jul. 11, 2014", 10 pgs. |
"U.S. Appl. No. 14/289,596, Final Office Action dated Aug. 5, 2015", 15 pgs. |
"U.S. Appl. No. 14/304,741, Final Office Action dated Mar. 3, 2015", 24 pgs. |
"U.S. Appl. No. 14/304,741, Notice of Allowance dated Apr. 7, 2015", 22 pgs. |
"U.S. Appl. No. 14/304,741, Pre-Interview Communication dated Aug. 6, 2014", 13 pgs. |
"U.S. Appl. No. 14/306,138, Non Final Office Action dated Mar. 17, 2016", 23 pgs. |
"U.S. Appl. No. 14/306,147, Non Final Office Action dated Jun. 3, 2016", 43 pgs. |
"U.S. Appl. No. 14/306,154, Non Final Office Action dated Mar. 17, 2016", 31 pgs. |
"U.S. Appl. No. 14/332,306, First Action Interview Pre-Interview Communication dated May 20, 2016", 5 pgs. |
"U.S. Appl. No. 14/463,615, Advisory Action dated Aug. 19, 2016", 3 pgs. |
"U.S. Appl. No. 14/463,615, Examiner Interview Summary dated Mar. 21, 2016", 3 pgs. |
"U.S. Appl. No. 14/463,615, Final Office Action dated May 12, 2016", 44 pgs. |
"U.S. Appl. No. 14/473,860, First Action Interview dated Nov. 4, 2014", 23 pgs. |
"U.S. Appl. No. 14/479,160, First Action Interview Pre-Interview Communication dated Apr. 20, 2016", 7 pgs. |
"U.S. Appl. No. 14/526,066, Final Office Action dated May 6, 2016", 16 pgs. |
"U.S. Appl. No. 14/526,066, Non Final Office Action dated Jan. 21, 2016", 24 pgs. |
"U.S. Appl. No. 14/571,098, Final Office Action dated Feb. 23, 2016", 37 pgs. |
"U.S. Appl. No. 14/579,752, Notice of Allowance dated Apr. 4, 2016", 8 pgs. |
"U.S. Appl. No. 14/581,920, First Action Interview Pre-Interview Communication dated Jun. 13, 2016", 7 pgs. |
"U.S. Appl. No. 14/581,920, Office Action Summary dated May 3, 2016", 7 pgs. |
"U.S. Appl. No. 14/639,606, Non Final Office Action dated Apr. 5, 2016", 31 pgs. |
"U.S. Appl. No. 14/676,621, Notice of Allowance dated Feb. 10, 2016", 5 pgs. |
"U.S. Appl. No. 14/698,432, Non Final Office Action dated Jun. 3, 2016", 44 pgs. |
"U.S. Appl. No. 14/715,834, Final Office Action dated Jun. 28, 2016", 13 pgs. |
"U.S. Appl. No. 14/715,834, First Action Interview Pre-Interview Communication dated Apr. 13, 2016", 21 pgs. |
"U.S. Appl. No. 14/715,834, First Action Interview Pre-Interview Communication dated Feb. 19, 2016", 19 pgs. |
"U.S. Appl. No. 14/741,256, Restriction Requirement dated Feb. 9, 2016", 6 pgs. |
"U.S. Appl. No. 14/800,447, Examiner Interview Summary dated Mar. 3, 2016", 28 pgs. |
"U.S. Appl. No. 14/800,447, Final Office Action dated Jun. 6, 2016", 27 pgs. |
"U.S. Appl. No. 14/800,447, Non Final Office Action dated Aug. 15, 2017", 20 pgs. |
"U.S. Appl. No. 14/800,447, Notice of Allowance dated Jun. 4, 2018", 12 pgs. |
"U.S. Appl. No. 14/811,649, Office Action dated May 18, 2016", 24 pgs. |
"U.S. Appl. No. 14/841,338, Non Final Office Action dated Feb. 18, 2016", 39 pgs. |
"U.S. Appl. No. 14/871,465, First Action Interview Pre-Interview Communication dated Apr. 11, 2016", 7 pgs. |
"U.S. Appl. No. 14/871,465, First Action Interview Pre-Interview Communication dated Feb. 9, 2016", 32 pgs. |
"U.S. Appl. No. 14/883,498, First Action Interview Pre-Interview Communication dated Dec. 24, 2015", 33 pgs. |
"U.S. Appl. No. 14/883,498, Non Final Office Action dated Mar. 17, 2016", 18 pgs. |
"U.S. Appl. No. 14/961,481, Notice of Allowance dated May 2, 2016", 6 pgs. |
"U.S. Appl. No. 14/961,481, Pre-Interview Communication dated Mar. 2, 2016", 12 pgs. |
"U.S. Appl. No. 14/975,215, First Action Interview Pre-Interview Communication dated May 19, 2016", 5 pgs. |
"U.S. Appl. No. 15/047,405, Non Final Office Action dated Apr. 1, 2016", 20 pgs. |
"U.S. Appl. No. 15/072,174, First Action Interview Pre-Interview Communication dated Jun. 1, 2016", 5 pgs. |
"Using the Clipboard", Microsoft, [Online]. Retrieved from the Internet: <URL: http://msdn.microsoft.com/en-us/library/ms649016.aspx>, (accessed Jun. 8, 2009), 20 pgs. |
"Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations," http://wseas.us/e-library/conferences/2013/Dubrovnik/TELECIRC/TELECIRC-32.pdf. |
Abbey, Kristen, "Review of Google Docs", 2007: Currents in Electronic Literacy, http://currents.dwrl.utexas.edu/spring07/abbey.html, (May 1, 2007), 2 pgs. |
Adams, Michael, et al., "Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows", OTM 2006, LNCS 4275, (2006), 291-308. |
Alfred, Rayner "Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques", Journal of Computer Science, 2010, vol. 6, No. 7, pp. 775-784. |
Amnet, "5 Great Tools for Visualizing Your Twitter Followers," posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html. |
Appacts, "Smart Thinking for Super Apps," <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages. |
Apsalar, "Data Powered Mobile Advertising," "Free Mobile App Analytics" and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages. |
Bhosale, Safal V, "Holy Grail of Outlier Detection Technique: A Macro Level Take on the State of the Art", International Journal of Computer Science and Information Technologies, vol. 5(4), (2014), 5872-5874. |
Bluttman, et al., "Excel Formulas and Functions for Dummies", Wiley Publishing, Inc.,, (2005), 280, 284-286. |
Brandel, Mary, "Data Loss Prevention Dos and Don'ts", CSO—Data loss prevention tools provide powerful security capabilities—if used correctly, (Oct. 10, 2007), 5 pgs. |
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages. |
Celik, Tantek, "CSS Basic User Interface Module Level 3 (CSS3 UI)," Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015. |
Chaudhuri et al., "An Overview of Business Intelligence Technology," Communications of the ACM, Aug. 2011, vol. 54, No. 8. |
Cohn et al., "Semi-supervised Clustering with User Feedback," Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1, 2003, pp. 17-32. |
Conner, Nancy, "Remove a published document or blog post", Google Apps: The Missing Manual: The Missing Manual section-Sharing and Collaborating on Documents, XP-002721325, (2008), 15 pgs. |
Conner, Nancy, "Google Apps: The Missing Manual", (May 1, 2008), 15 pgs. |
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages. |
DISTIMO—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages. |
Ferreira, Lucas De Carvalho, et al., "A Scheme for Analyzing Electronic Payment Systems", (1997), 10 pgs. |
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages. |
Galliford, Miles, "SnagIt Versus Free Screen Capture Software: Critical Tools for Website Owners", [Online]. Retrieved from the Internet: <URL: http://www.subhub.com/articles/free-screen-capture-software>, (Mar. 27, 2008), 10 pgs. |
Gill, Leicester, et al., "Computerised linking of medical records: methodological guidelines", Journal of Epidemiology and Community Health 1993; 47, (Feb. 1993), 316-319. |
Golmohammadi, et al., "Data Mining Applications for Fraud Detection in Securities Market", Intelligence and Security Informatics Conference (EISIC) 2012 European, IEEE, (Aug. 22, 2012), 107-114. |
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages. |
Gorr et al., "Crime Hot Spot Forecasting: Modeling and Comparative Evaluation," Grant 98-IJ-CX-K005, May 6, 2002, 37 pages. |
Gu et al., "Record Linkage: Current Practice and Future Directions," Jan. 15, 2004, pp. 32. |
Gu, et al., "BotMiner: Clustering Analysis of Network Traffice for Protocol-and-Structure-Independent Botnet Detection", USENIX Security Symposium, (2008), 17 pgs. |
Hansen et al. "Analyzing Social Media Networks with NodeXL: Insights from a Connected World", Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010. |
Hodge, et al., "A Survey of Outlier Detection Methodologies", Artificial Intelligence Review, vol. 22, No. 2, (Oct. 1, 2004), 42 pgs. |
Hua et al., "A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services" HiPC 2006, LNCS 4297, pp. 277-288, 2006. |
IBM, "Determining Business Object Structure," IBM, 2004, 9 pages. |
Johnson, Maggie, "Introduction to YACC and Bison", (Jul. 8, 2005), 11 pgs. |
Johnson, Steve, "Access 2013 on demand", Que Publishing, (May 9, 2013), 22 pgs. |
Keylines.com, "An Introduction to KeyLines and Network Visualization," Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages. |
Keylines.com, "KeyLines Datasheet," Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages. |
Keylines.com, "Visualizing Threats: Improved Cyber Security Through Network Visualization," Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10 pages. |
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages. |
Li, Shing-Han, et al., "Identifying the signs of fraudulent accounts using data mining techniques", Computers in Human Behavior, vol. 28, (2012), 1002-1013. |
Lim, Ee-Peng, et al., "Resolving Attribute Incompatibility in Database Integration: An Evidential Reasoning Approach", Proceedings. 10th International Conference Data Engineering. Department of Computer Science, University of Minnesota, [Online] retrieved from the internet: <http://reference.kfupm.edu.sa/content/r/e/resolving_attribute_incompatibility_in_d_531691.pdf>, (Feb. 1994), 154-163. |
Litwin, Witold, et al., "Multidatabase Interoperability", Institute National de Recherche en Informatique et an Automatique, [Online] retrieved from the internet: <http://www.lamsade.dauphine.fr/˜litwin/mdb-interoperability.pdf>, (Dec. 1986), 9 pgs. |
Localytics—Mobile App Marketing & Analytics, <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages. |
Manno et al., "Introducing Collaboration in Single-user Applications through the Centralized Control Architecture," 2010, pp. 10. |
McClave, James T., et al., "Statistics for Business and Economics", Chap.2 Methods for Describing Sets of Data; p. 86-96, (2001), 13 pgs. |
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages. |
Nadeau, David, et al., "A survey of named entity recognition and classification", Lingvisticae Investigationes, 30(1), (Jan. 15, 2004), 20 pgs. |
NANCY CONNER: "Google Apps: The Missing Manual", 1 May 2008, O'REILLY, Sebastopol, Calif. [u.a.], ISBN: 978-0-596-51579-9, article "Google Apps: The Missing Manual, Chapter 2: Word Processing with Google Docs; Chapter 3: Working with Docs Spreadsheets", pages: 93 - 121, XP002721325 |
Ngai, E.W.T., et al., "The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature", Decision Support Systems 50 (2011), (2011), 559-569. |
Nin, Jordi, et al., "On the Use of Semantic Blocking Techniques for Data Cleansing and Integration", 11th International Database Engineering and Applications Symposium (IDEAS 2007), (2007), 9 pgs. |
Nolan et al., MCARTA: A Malicious Code Automated Run-Time Analysis Framework, Homeland Security, 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17. |
Notice of Allowance for U.S. Appl. No. 13/181,392 dated Jan. 22, 2015. |
Notice of Allowance for U.S. Appl. No. 13/838,815 dated Jan. 29, 2015. |
Notice of Allowance for U.S. Appl. No. 13/838,815 dated Jun. 19, 2015. |
Notice of Allowance for U.S. Appl. No. 14/027,118 dated Feb. 4, 2016. |
Notice of Allowance for U.S. Appl. No. 14/139,628 dated Jun. 24, 2015. |
Notice of Allowance for U.S. Appl. No. 14/139,640 dated Jun. 17, 2015. |
Notice of Allowance for U.S. Appl. No. 14/139,713 dated Jun. 12, 2015. |
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/264,445 dated May 14, 2015. |
Notice of Allowance for U.S. Appl. No. 14/278,963 dated Sep. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 14/319,161 dated May 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015. |
Notice of Allowance for U.S. Appl. No. 14/334,232 dated Nov. 10, 2015. |
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015. |
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015. |
Notice of Allowance for U.S. Appl. No. 14/479,863 dated Mar. 31, 2015. |
Notice of Allowance for U.S. Appl. No. 14/486,991 dated May 1, 2015. |
Notice of Allowance for U.S. Appl. No. 14/487,342 dated Sep. 23, 2015. |
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015. |
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 14/690,905 dated Nov. 23, 2015. |
Notice of Allowance for U.S. Appl. No. 14/746,671 dated Jan. 21, 2016. |
Official Communication for European Patent Application No. 14159447.3 dated Jan. 8, 2015. |
Official Communication for European Patent Application No. 14159447.3 dated Nov. 25, 2014. |
Official Communication for European Patent Application No. 14159535.5 dated May 22, 2014. |
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015. |
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015. |
Official Communication for European Patent Application No. 14200246.8 dated May 29, 2015. |
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015. |
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015. |
Official Communication for European Patent Application No. 15156004.2 dated Aug. 24, 2015. |
Official Communication for European Patent Application No. 15157642.8 dated Jul. 20, 2015. |
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015. |
Official Communication for European Patent Application No. 15180515.7 dated Dec. 14, 2015. |
Official Communication for European Patent Application No. 15181419.1 dated Sep. 29, 2015. |
Official Communication for European Patent Application No. 15184764.7 dated Dec. 14, 2015. |
Official Communication for Great Britain Application No. 1404457.2 dated Aug. 14, 2014. |
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014. |
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated Oct. 6, 2014. |
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014. |
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015. |
Official Communication for Great Britain Patent Application No. 1404499.4 dated Sep. 29, 2014. |
Official Communication for Netherlands Patent Application 2012438 dated Sep. 21, 2015. |
Official Communication for Netherlands Patents Application No. 2012417 dated Sep. 18, 2015. |
Official Communication for Netherlands Patents Application No. 2012421 dated Sep. 18, 2015. |
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014. |
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014. |
Official Communication for New Zealand Patent Application No. 622501 dated Apr. 1, 2014. |
Official Communication for New Zealand Patent Application No. 622501 dated Jun. 5, 2014. |
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014. |
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014. |
Official Communication for U.S. Appl. No. 13/181,392 dated Aug. 28, 2014. |
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014. |
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015. |
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015. |
Official Communication for U.S. Appl. No. 13/831,199 dated Jun. 3, 2015. |
Official Communication for U.S. Appl. No. 13/831,199 dated Oct. 6, 2015. |
Official Communication for U.S. Appl. No. 13/839,026 dated Aug. 4, 2015. |
Official Communication for U.S. Appl. No. 14/027,118 dated May 12, 2015. |
Official Communication for U.S. Appl. No. 14/027,118 dated Sep. 16, 2015. |
Official Communication for U.S. Appl. No. 14/088,251 dated Aug. 26, 2015. |
Official Communication for U.S. Appl. No. 14/088,251 dated Feb. 12, 2015. |
Official Communication for U.S. Appl. No. 14/088,251 dated Jun. 30, 2015. |
Official Communication for U.S. Appl. No. 14/088,251 dated May 20, 2015. |
Official Communication for U.S. Appl. No. 14/141,252 dated Oct. 8, 2015. |
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015. |
Official Communication for U.S. Appl. No. 14/196,814 dated Oct. 7, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014. |
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014. |
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014. |
Official Communication for U.S. Appl. No. 14/251,485 dated Oct. 1, 2015. |
Official Communication for U.S. Appl. No. 14/264,445 dated Apr. 17, 2015. |
Official Communication for U.S. Appl. No. 14/278,963 dated Jan. 30, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Mar. 4, 2016. |
Official Communication for U.S. Appl. No. 14/306,154 dated Feb. 1, 2016. |
Official Communication for U.S. Appl. No. 14/319,161 dated Jan. 23, 2015. |
Official Communication for U.S. Appl. No. 14/334,232 dated Jul. 10, 2015. |
Official Communication for U.S. Appl. No. 14/451,221 dated Oct. 21, 2014. |
Official Communication for U.S. Appl. No. 14/463,615 dated Dec. 9, 2015. |
Official Communication for U.S. Appl. No. 14/463,615 dated Jan. 28, 2015. |
Official Communication for U.S. Appl. No. 14/463,615 dated May 21, 2015. |
Official Communication for U.S. Appl. No. 14/463,615 dated Nov. 13, 2014. |
Official Communication for U.S. Appl. No. 14/463,615 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015. |
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014. |
Official Communication for U.S. Appl. No. 14/483,527 dated Jan. 28, 2015. |
Official Communication for U.S. Appl. No. 14/483,527 dated Jun. 22, 2015. |
Official Communication for U.S. Appl. No. 14/483,527 dated Oct. 28, 2015. |
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015. |
Official Communication for U.S. Appl. No. 14/487,342 dated Apr. 23, 2015. |
Official Communication for U.S. Appl. No. 14/518,757 dated Apr. 2, 2015. |
Official Communication for U.S. Appl. No. 14/518,757 dated Dec. 1, 2015. |
Official Communication for U.S. Appl. No. 14/518,757 dated Jul. 20, 2015. |
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015. |
Official Communication for U.S. Appl. No. 14/562,524 dated Feb. 18, 2016. |
Official Communication for U.S. Appl. No. 14/562,524 dated Nov. 10, 2015. |
Official Communication for U.S. Appl. No. 14/562,524 dated Sep. 14, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 24, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated Dec. 9, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015. |
Official Communication for U.S. Appl. No. 14/580,218 dated Jan. 7, 2016. |
Official Communication for U.S. Appl. No. 14/581,920 dated Mar. 1, 2016. |
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015. |
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015. |
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015. |
Official Communication for U.S. Appl. No. 14/690,905 dated Oct. 7, 2015. |
Official Communication for U.S. Appl. No. 14/726,353 dated Mar. 1, 2016. |
Official Communication for U.S. Appl. No. 14/726,353 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/746,671 dated Nov. 12, 2015. |
Official Communication for U.S. Appl. No. 14/746,671 dated Sep. 28, 2015. |
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015. |
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015. |
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015. |
Official Communication for U.S. Appl. No. 14/857,071 dated Mar. 2, 2016. |
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages. |
Perdisci et al., "Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces," USENIX, Mar. 18, 2010, pp. 1-14. |
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in18 pages. |
Qiang, Bao-Hua, et al., "A Mutual-Information-Based Approach to Entity Reconciliation in Heterogeneous Databases", 2008 International Conference on Computer Science and Software Engineering, (2008), 666-669. |
Restriction Requirement for U.S. Appl. No. 13/839,026 dated Apr. 2, 2015. |
Restriction Requirement for U.S. Appl. No. 14/857,071 dated Dec. 11, 2015. |
Schroder, Stan, "15 Ways to Create Website Screenshots", [Online]. Retrieved from the Internet: <URL: http://mashable.com/2007/08/24/web-screenshots/>, (Aug. 24, 2007), 2 pgs. |
Sekine, Satoshi, et al., "Definition, dictionaries and tagger for Extended Named Entity Hierarchy", LREC, (2004), 1977-1980. |
Shah, Chintan, "Periodic Connections to Control Server Offer New Way to Detect Botnets," Oct. 24, 2013 in 6 pages, <http://www.blogs.mcafee.com/mcafee-labs/periodic-links-to-control-server-offer-new-way-to-detect-botnets>. |
Shi et al., "A Scalable Implementation of Malware Detection Based on Network Connection Behaviors," 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66. |
Sigrist et al., "PROSITE, a Protein Domain Database for Functional Characterization and Annotation," Nucleic Acids Research 38.Suppl 1, 2010, pp. D161-D166. |
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages. |
Symantec Corporation, "E-Security Begins with Sound Security Policies," Announcement Symantec, Jun. 14, 2001. |
TestFlight—Beta Testing On The Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages. |
trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages. |
U.S. Appl. No. 14/306,138, filed Jun. 16, 2014, Methods and Systems for Analyzing Entity Performance. |
U.S. Appl. No. 14/306,147, U.S. Pat. No. 10,025,834, filed Jun. 16, 2014, Methods and Systems for Analyzing Entity Performance. |
U.S. Appl. No. 14/306,154, filed Jun. 16, 2014, Methods and Systems for Analyzing Entity Performance. |
US 8,712,906 B1, 04/2014, Sprague et al. (withdrawn) |
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages. |
Valentini et al., "Ensembles of Learning Machines," M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20. |
Vose et al., "Help File for ModelRisk Version 5," 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts]. |
Wang et al., "Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter," IEEE 2010, 5 pages. |
Warren, Christina, "TUAW Faceoff: Screenshot apps on the firing line", [Online]. Retrieved from the Internet: <URL: http://www.tuaw.com/2008/05/05/tuaw-faceoff-screenshot-apps-on-the-firing-line/>, (May 5, 2008), 11 pgs. |
Wiggerts, T.A., "Using Clustering Algorithms in Legacy Systems Remodularization," Reverse Engineering, Proceedings of the Fourth Working Conference, Netherlands, Oct. 6-8, 1997, IEEE Computer Soc., pp. 33-43. |
Wikipedia, "Multimap," Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748. |
Winkler, William E, et al., "Bureau of the Census Statistical Research Division Record Linkage Software and Methods for Merging Administrative Lists", Statistical Research Report Series, No. RR2001/03, (Jul. 23, 2001), 11 pgs. |
Zhao, et al., "Entity Matching Across Heterogeneous Data Sources: An Approach Based on Constrained Cascade Generalization", Data & Knowledge Engineering, vol. 66, No. 3, (Sep. 2008), 368-381. |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11636540B1 (en) * | 2008-08-14 | 2023-04-25 | Experian Information Solutions, Inc. | Multi-bureau credit file freeze and unfreeze |
US11004147B1 (en) * | 2008-08-14 | 2021-05-11 | Experian Information Solutions, Inc. | Multi-bureau credit file freeze and unfreeze |
US20240005393A1 (en) * | 2008-08-14 | 2024-01-04 | Experian Information Solutions, Inc. | Multi-bureau credit file freeze and unfreeze |
US11715088B2 (en) * | 2012-11-05 | 2023-08-01 | Fidelity Information Services, Llc | Cloud-based systems and methods for providing consumer financial data |
US20210182828A1 (en) * | 2012-11-05 | 2021-06-17 | Mfoundry, Inc. | Cloud-based systems and methods for providing consumer financial data |
US11729230B1 (en) | 2015-11-24 | 2023-08-15 | Experian Information Solutions, Inc. | Real-time event-based notification system |
US11227001B2 (en) | 2017-01-31 | 2022-01-18 | Experian Information Solutions, Inc. | Massive scale heterogeneous data ingestion and user resolution |
US11681733B2 (en) | 2017-01-31 | 2023-06-20 | Experian Information Solutions, Inc. | Massive scale heterogeneous data ingestion and user resolution |
US11164198B2 (en) * | 2017-03-31 | 2021-11-02 | ASK Chemicals LLC | Graphical user interface for visualizing market share analysis |
US11652607B1 (en) | 2017-06-30 | 2023-05-16 | Experian Information Solutions, Inc. | Symmetric encryption for private smart contracts among multiple parties in a private peer-to-peer network |
US11962681B2 (en) | 2017-06-30 | 2024-04-16 | Experian Information Solutions, Inc. | Symmetric encryption for private smart contracts among multiple parties in a private peer-to-peer network |
US10902445B2 (en) * | 2017-11-13 | 2021-01-26 | International Business Machines Corporation | Location evaluation |
US11620403B2 (en) | 2019-01-11 | 2023-04-04 | Experian Information Solutions, Inc. | Systems and methods for secure data aggregation and computation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10025834B2 (en) | Methods and systems for analyzing entity performance | |
EP2884441A1 (en) | Methods and systems for analyzing entity performance | |
US10579647B1 (en) | Methods and systems for analyzing entity performance | |
US11989789B2 (en) | Systems and methods for locating merchant terminals based on transaction data | |
US20190020557A1 (en) | Methods and systems for analyzing entity performance | |
US9996229B2 (en) | Systems and methods for analyzing performance of an entity | |
EP2988258A1 (en) | System and method for determining a cohort | |
US10163147B2 (en) | Systems and methods of location based merchant recommendations | |
RU2541890C2 (en) | Systems, devices and methods of using contextual information | |
JP6232495B2 (en) | Digital receipt economy | |
US10706434B1 (en) | Methods and systems for determining location information | |
Pan et al. | Monitoring and forecasting tourist activities with big data | |
US20150134675A1 (en) | Context association | |
US11782936B2 (en) | Entity data attribution using disparate data sets | |
KR102137230B1 (en) | Server for providing artificial intelligence based real estate auction information service using analysis of real estate title and deeds | |
Suhara et al. | Validating gravity-based market share models using large-scale transactional data | |
US20230078260A1 (en) | Systems and methods for providing recommendations of computer applications based on similarity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |