US10742032B2 - Network access coordination of load control devices - Google Patents
Network access coordination of load control devices Download PDFInfo
- Publication number
- US10742032B2 US10742032B2 US16/102,357 US201816102357A US10742032B2 US 10742032 B2 US10742032 B2 US 10742032B2 US 201816102357 A US201816102357 A US 201816102357A US 10742032 B2 US10742032 B2 US 10742032B2
- Authority
- US
- United States
- Prior art keywords
- wireless communication
- protocol
- wireless
- dimmer switch
- communication network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims abstract description 246
- 230000004044 response Effects 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 description 43
- 238000010586 diagram Methods 0.000 description 26
- 230000006870 function Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 230000000007 visual effect Effects 0.000 description 14
- 239000004020 conductor Substances 0.000 description 10
- 230000003993 interaction Effects 0.000 description 7
- 230000011664 signaling Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000010267 cellular communication Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/12—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2807—Exchanging configuration information on appliance services in a home automation network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2823—Reporting information sensed by appliance or service execution status of appliance services in a home automation network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L2012/284—Home automation networks characterised by the type of medium used
- H04L2012/2841—Wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Definitions
- a load control device may control the amount of power delivered to an electrical load.
- Load control devices include, for example, lighting control devices (such as wall-mounted dimmer switches and plug-in lamp dimmers), motor control devices (for motor loads), temperature control devices, motorized window treatments, and remote controls.
- a load control device may be coupled in a series electrical connection between an alternating-current (AC) power source and the electrical load to control the power delivered from the AC power source to the electrical load.
- AC alternating-current
- the load control device may connect to a wireless network, such as a Wi-Fi network for example.
- a wireless network such as a Wi-Fi network
- Examples of Wi-Fi-enabled load control devices include those described in commonly-assigned U.S. application Ser. No. 13/538,555, filed Jun. 29, 2012, titled LOAD CONTROL DEVICE HAVING INTERNET CONNECTIVITY, the contents of which is hereby incorporated by reference herein in its entirety, for all purposes.
- AP wireless network access point
- AP wireless network access point
- APs and particularly home Wi-Fi routers, often have practical capacity limitations well below the theoretical protocol maximums.
- a typical IP subnet might theoretically support 254 addressable devices.
- a home Wi-Fi router may only have internal memory sized to support 30 addressable devices.
- These practical limitations are often unnoticed, even by the most voracious Internet households. Having more than 30 Wi-Fi devices, computers, tablets, cell phones, on a household network at one time is uncommon. And, even in a commercial setting, wireless networks are routinely engineered with 10-30 users per router. The traffic generated by 10-30 commercial users often reaches the practical traffic capacity for the router.
- FIG. 1 offers a partial illustration of the modern residential technological environment 10 .
- traditional network devices such as computers 18 and 46 , tablets 36 , smart phones 16 and 44 , and printer 20 , when few in number may be well served by a home Wi-Fi router 14 .
- a home using Wi-Fi-enabled load control devices such as lighting load controls 12 , 22 , 24 , 28 , 32 , 40 , 42 , and 50 , motorized window treatments 26 , 30 , and 38 , smart thermostats 34 and 48 , and the like, may have a total number of devices vying for network access from the home Wi-Fi router 14 that may well exceed the router's capacity.
- An apparatus such as a dimmer switch, may control the power delivered from an AC power source to at least one electrical load, such as one or more lights.
- the apparatus may comprise a controllably conductive device adapted to be coupled in series electrical connection between the source and the one or more lights.
- the apparatus may also comprise a controller that may be operatively coupled to a control input of the controllably conductive device.
- the apparatus may also include a first wireless communication circuit that may communicate via a first protocol and may be used to join a first wireless communication network.
- the first wireless communication network may communicate via the first protocol.
- the first wireless communication circuit may be in communication with the controller.
- the controller may control the controllably conductive device for rendering the controllably conductive device conductive and non-conductive, perhaps to increase and/or decrease the intensity of the one or more lights.
- the controller may also determine a first condition for communicating via the first protocol.
- the controller may control the first wireless communication circuit to join the first wireless communication network when the first condition being is.
- An apparatus such as a remote control device or an occupancy sensor, may be configured to provide information for the control of power delivered to at least one electrical load, such as sending commands to dimmer switches.
- the apparatus may comprise a controller and a sensor (e.g. for the occupancy sensor) or a manual operator (e.g., for the remote control device). Either the sensor and/or the manual operator may be in communication with the controller.
- the apparatus may further comprise a first wireless communication circuit that may communicate via a first protocol and may join a first wireless communication network.
- the first wireless communication network may be operable for communication via the first protocol.
- the first wireless communication circuit may communicate with the controller.
- the controller may determine the information based at least in part on a signal received from either the sensor and/or the manual operator.
- the controller may also determine a first condition for communicating via the first protocol. And the controller may also control the first wireless communication circuit to join the first wireless communication network when the first condition is satisfied.
- An apparatus may control the power delivered to at least one electrical load.
- the apparatus may comprise a controller and a first wireless communication circuit that may be operable to communicate via a first protocol and to join a first wireless communication network that may be operable to communicate via the first protocol.
- the first communication circuit may be in communication with the controller.
- the apparatus may also comprise a second communication circuit operable to communicate via a second protocol.
- the second communication circuit may be in communication with the controller.
- the controller may be operable to determine a first condition for communicating via the first protocol.
- the first condition may include a receipt of a signal via the second communication circuit and via the second protocol to join the first wireless communication network.
- the controller may also be operable to control the first wireless communication circuit to join the first wireless communication network upon the first condition being satisfied.
- a network node may be in communication with a load control device.
- the load control device may control the power delivered to at least one electrical load.
- the load control device may comprise a first controller.
- the load control device may also comprise a first wireless communication circuit that may be operable to communicate via first protocol and may be operable to join a first wireless communication network.
- the load control device may also comprise a second communication circuit that may be operable to communicate via a second protocol.
- the network node may comprise a second controller and a third communication circuit that may be operable to communicate via the second protocol.
- the third communication circuit may be in communication with the second controller.
- the second controller may be operable to determine a first condition for the load control device to communicate via the first protocol.
- the second controller may also be operable to send a first signal via the third communication circuit and via the second protocol to the load control device upon the first condition being satisfied.
- the first signal may cause the load control device to control the first wireless communication circuit to join the first wireless communication network.
- a wireless control device may be used in a load control system to control power delivered from a power source to an electrical load.
- the wireless control device may comprise a first wireless communication circuit that may be configured to communicate digital messages via a first wireless communication network.
- the wireless device may comprise a control circuit that may be in communication with the first wireless communication circuit.
- the control circuit may be configured to join the first wireless communication network.
- the control circuit may be configured to communicate digital messages via the first wireless communication network using a first protocol.
- the control circuit may be configured to determine an occurrence of a first condition.
- the control circuit may be configured to join the first wireless communication network upon the first condition being satisfied.
- the control circuit may be configured to determine an occurrence of a second condition.
- the control circuit may be configured to disconnect from the first wireless communication network upon the second condition being satisfied.
- FIG. 1 is an example environment that may utilize a number of contemplated load control devices, sensors, and/or remote control devices.
- FIG. 2 is a simple diagram of a radio-frequency (RF) lighting control system comprising a dimmer switch and a wireless control device, such as a smart phone.
- RF radio-frequency
- FIG. 3A is a diagram of a first example network in which one or more contemplated devices and techniques may be employed.
- FIG. 3B is a diagram of a second example network in which one or more contemplated devices and techniques may be employed.
- FIG. 3C is a diagram of a third example network in which one or more contemplated devices and techniques may be employed.
- FIG. 4A is a first simplified example block diagram of the dimmer switch of the RF lighting control system of FIG. 2 .
- FIG. 4B is a second simplified example block diagram of the dimmer switch of the RF lighting control system of FIG. 2 .
- FIG. 4C is a third simplified example block diagram of the dimmer switch of the RF lighting control system of FIG. 2 .
- FIG. 5A is a first simplified example block diagram of an input device like the remote control devices of FIGS. 3A-3C .
- FIG. 5B is a second simplified example block diagram of an input device like the remote control device of FIGS. 3A-3C .
- FIG. 5C is a first simplified example block diagram of a sensor device like the occupancy sensor of FIGS. 3A-3C .
- FIG. 5D is a second simplified example block diagram of a sensor device like the occupancy sensor of FIGS. 3A-3C .
- FIG. 5E is a simplified example block diagram of a contemplated combination input and sensor device which may be employed in the environments of FIGS. 3A-3C .
- FIG. 6 is a diagram that illustrates network access activity for one or more contemplated devices and techniques.
- FIG. 7 is an exemplary flow chart for Internet Protocol address assignments for load control devices.
- FIG. 2 is a simple diagram of a radio-frequency (RF) lighting control system 100 that may include a dimmer switch 110 and a wireless control device 120 .
- the wireless control device 120 may be any device capable of performing wireless communications, such as, a smart phone (e.g., an iPhone® smart phone, an Android® smart phone, or a Blackberry® smart phone), a personal computer, a laptop, a wireless-capable media device (e.g., MP3 player, gaming device, or television), or a tablet device, (for example, an iPad® hand-held computing device), a Wi-Fi or wireless-communication-capable television, or any other suitable Internet-Protocol-enabled device.
- a smart phone e.g., an iPhone® smart phone, an Android® smart phone, or a Blackberry® smart phone
- a personal computer e.g., a personal computer, a laptop, a wireless-capable media device (e.g., MP3 player, gaming device, or television), or a tablet device
- the wireless control device 120 may be operable to transmit digital messages to the dimmer switch 110 in one or more Internet Protocol (IP) packets.
- IP Internet Protocol
- the Internet Protocol layer is responsible for addressing hosts and routing datagrams (i.e., packets) from a source host to a destination host across one or more IP networks.
- the Internet Protocol layer defines an addressing system that has two functions: identifying hosts and providing a logical location service. This is accomplished by defining standard datagrams and a standard addressing system.
- Each datagram has two components, a header and a payload.
- the IP header includes the source IP address, destination IP address, and other meta-data needed to route and deliver the datagram.
- the payload is the data that is transported.
- the wireless control device 120 may transmit the digital messages (e.g., IP packets) via RF signals 106 either directly or via a wireless network that includes a standard wireless router 130 .
- the wireless control device 120 may transmit the RF signals 106 directly to the dimmer switch 110 via a point-to-point communication link, e.g., a Wi-Fi communication link, such as an 802.11 wireless local area network (LAN), or other direct wireless communication link, such as a Wi-MAX communication link or a Bluetooth® communication link.
- This point-to-point communication may be performed using a standardized communication, e.g., Wi-Fi Direct communication, or any non-standardized communication that allows a wireless device to connect to another wireless device without the use of a wireless access point.
- the wireless control device 120 and/or the dimmer switch 110 may download a software access point (AP) that provides a protected wireless communication between the devices.
- AP software access point
- the wireless control device 120 may also transmit RF signals 106 to the dimmer switch 110 via the wireless network (i.e., via the wireless router 130 ).
- the wireless network may enable wireless communications via one or more wireless communications links, e.g., a Wi-Fi communications link, a Wi-MAX communications link, a Bluetooth® communications link, a cellular communications link, a television white space (TVWS) communication link, or any combination thereof.
- the wireless control device 120 may communicate with a network server via a first wireless communications link (e.g., a cellular communications link), while the dimmer switch 110 communicates with the network server via a second communications link (e.g., a Wi-Fi communications link).
- the wireless control device 120 and the dimmer switch 110 may communicate with the network via the same type of communication link.
- the lighting control system 100 may also include a femtocell, a Home Node B, and/or other network entity for facilitating the configuration and operation of the lighting control system and for allowing wireless communications and connection to the Internet.
- the dimmer switch 110 may be coupled in series electrical connection between an AC power source 102 and a lighting load 104 for controlling the amount of power delivered to the lighting load.
- the dimmer switch 110 may be wall-mounted in a standard electrical wallbox, or alternatively implemented as a table-top load control device.
- the dimmer switch 110 comprises a faceplate 112 and a bezel 113 received in an opening of the faceplate.
- the dimmer switch 110 further comprises a toggle actuator 114 and an intensity adjustment actuator 116 . Actuations of the toggle actuator 114 toggle, e.g., alternatingly turn off and on, the lighting load 104 .
- Actuations of an upper portion 116 A or a lower portion 116 B of the intensity adjustment actuator 116 may respectively increase or decrease the amount of power delivered to the lighting load 104 and thus increase or decrease the intensity of the lighting load 104 from a minimum (i.e., low-end) intensity (e.g., approximately 1-10%) to a maximum (i.e., high-end) intensity (e.g., approximately 100%).
- a plurality of visual indicators 118 e.g., light-emitting diodes (LEDs), may be arranged in a linear array on the left side of the bezel 113 . The visual indicators 118 are illuminated to provide visual feedback of the intensity of the lighting load 104 .
- a dimmer switch having a toggle actuator and an intensity adjustment actuator is described in greater detail in U.S. Pat. No. 5,248,919 (“the 919 patent”), issued Sep. 28, 1993, entitled LIGHTING CONTROL DEVICE, the entire disclosure of which is hereby incorporated by reference.
- the dimmer switch 110 could be replaced by an electronic switch for simply turning the lighting load 104 on and off.
- the electronic switch may include a single visual indicator, e.g., the middle indicator of the visual indicators 118 of the dimmer switch 110 .
- the dimmer switch 110 may include an optical receiver 119 .
- the optical receiver 119 may be used to receive optical signals from the wireless control device 120 .
- Optical signals may be free-space optical communications or communications via physical connections.
- free space optical communications may include communications via air
- physical optical communications may include communications via optical fiber cable or an optical transmission pipe.
- the optical signals may also be included in visible light, e.g., a flashing light, or non-visible light, e.g., infrared, spectrums.
- the optical signals may provide instructions for programming and/or adjusting the operating parameters (e.g., the low-end intensity and the high-end intensity) of the dimmer switch 110 .
- the optical signals may be used to configure the dimmer switch such that the dimmer switch 110 is operable to receive the RF signals 106 from the wireless control device 120 as will be described in greater detail below.
- the optical signals may also be used to control or program the lighting configurations of the dimmer switch 110 .
- optical signals or other signals may be used to program or control any device that is capable of receiving instructions via such optical or other signals, such as shades, thermostats, plug-in devices, or the like.
- Examples of methods of communicating optical signals between the dimmer switch 110 and the wireless control device 120 are described in greater detail in commonly assigned U.S. patent application Ser. No. 13/538,665, filed on Jun. 29, 2012, titled METHOD OF OPTICALLY TRANSMITTING DIGITAL INFORMATION FROM A SMART PHONE TO A CONTROL DEVICE, the entire disclosure of which is hereby incorporated by reference.
- Wireless load control devices are described in greater detail in commonly-assigned U.S. Pat. No. 5,838,226, issued Nov. 17, 1998, entitled COMMUNICATION PROTOCOL FOR TRANSMISSION SYSTEM FOR CONTROLLING AND DETERMINING THE STATUS OF ELECTRICAL DEVICES FROM REMOTE LOCATIONS; U.S. Pat. No. 6,803,728, issued Oct. 12, 2004, entitled SYSTEM FOR CONTROL OF DEVICES; U.S. patent application Ser. No. 12/033,223, filed Feb. 19, 2008, entitled COMMUNICATION PROTOCOL FOR A RADIO-FREQUENCY LOAD CONTROL SYSTEM; and U.S. patent application Ser. No. 13/234,573, filed Sep. 16, 2011, entitled DYNAMIC KEYPAD FOR CONTROLLING ENERGY-SAVINGS SETTINGS OF A LOAD CONTROL SYSTEM; the entire disclosures of which are hereby incorporated by reference.
- the wireless control device 120 has a visual display 122 , which may comprise a touch screen having, for example, a capacitive touch pad displaced overtop the visual display, such that the visual display may display soft buttons that may be actuated by a user.
- the wireless control device 120 may comprise a plurality of hard buttons (e.g., physical buttons or manual operators) in addition to the visual display 122 .
- the wireless control device 120 may download a product control application for allowing the user to control the lighting load 104 .
- the wireless control device 120 transmits digital messages to the dimmer switch 110 directly or through other wireless communications described herein.
- the digital messages may be transmitted via Wi-Fi communication using the wireless router 130 .
- the dimmer switch 110 may adjust the intensity of the lighting load 104 in response to commands included in the digital messages, such that the dimmer switch controls the lighting load in response to actuations of the soft buttons or hard buttons of the wireless control device 120 .
- the wireless control device 120 may be controlled to transmit optical signals, near field communication (NFC) signals, or RF signals according to a proprietary RF communication protocol (such as, for example, the Clear ConnectTM protocol) as described herein.
- NFC near field communication
- RF radio frequency
- the visual display 122 may be controlled to transmit optical signals to the optical receiver 119 of the dimmer switch 110 (as will be described in greater detail below).
- the dimmer switch 110 and the wireless control device 120 may both be assigned a unique address for wireless communications via the wireless network (i.e., via the wireless router 130 ) as described herein. For example, where wireless communications are performed using a Wi-Fi communication link, a Media Access Control (MAC) address may be assigned (e.g., during manufacture).
- the wireless control device 120 may connect to the wireless LAN via the wireless router 130 using standard procedures.
- the wireless control device 120 is assigned an Internet Protocol (IP) address upon connecting to the wireless LAN.
- IP Internet Protocol
- the wireless control device 120 may store the service set identifier (SSID) and the SSID password of the wireless LAN.
- the wireless control device 120 After obtaining the IP address, the wireless control device 120 is able to assign an IP address (e.g., different from the IP address of the wireless control device 120 ) to the dimmer switch 110 .
- the dimmer switch 110 may be operable to obtain the IP address from the wireless router 130 using, for example, procedures defined by the Wi-Fi Protected Setup standard.
- the dimmer switch 110 may be associated with (e.g., assigned to) the wireless control device 120 , such that the wireless control device may transmit commands for controlling the intensity of the lighting load 104 or programming the dimmer switch 110 . Such commands may be transmitted to the dimmer switch 110 via the RF signals 106 . Digital messages transmitted to and from the dimmer switch 110 may include, for example, the MAC address and the IP address of the dimmer switch 110 .
- the dimmer switch 110 is operable to turn the lighting load 104 on and off.
- the dimmer switch 110 is also operable to adjust the intensity of the lighting load in response to received digital messages, including the MAC address and the IP address of the dimmer switch, for example.
- the wireless router 130 may be operable to receive commands for controlling the lighting load 104 from the Internet, and may wirelessly transmit corresponding digital messages to the dimmer switch 110 .
- the dimmer switch 110 may be assigned an IP address, an SSID, an SSID password, and/or a software AP at manufacture, such that the dimmer switch 110 may act as an AP for other communication devices in a LAN.
- the wireless control device 120 may recognize the dimmer switch 110 as an AP and may connect to the LAN via the dimmer switch 110 .
- the dimmer switch 110 may connect to router 130 or may perform the functions of the router 130 itself.
- the dimmer switch 110 may also connect to the wireless LAN to discover other dimmer switches (not shown).
- the dimmer switch 110 may discover the other dimmer switches using any discovery protocol, such as Bonjour, Simple Service Discovery Protocol (SSDP), Bluetooth® Service Discovery Protocol (SDP), DNS service discovery (DNS-SD), Dynamic Host Configuration Protocol (DHCP), Internet Storage Name Service (iSNS), Jini for Java objects, Service Location Protocol (SLP), Session Announcement Protocol (SAP) for RTP sessions, Simple Service Discovery Protocol (SSDP) for Universal Plug and Play (UPnP), Universal Description Discovery and Integration (UDDI) for web services, Web Proxy Autodiscovery protocol (WPAD), Web Services Dynamic Discovery (WS-Discovery), XMPP Service Discovery (XEP-0030), and/or XRDS for XRI, OpenID, OAuth, etc.
- Bonjour Simple Service Discovery Protocol
- SDP Bluetooth® Service Discovery Protocol
- DNS-SD DNS service discovery
- DHCP Dynamic Host Configuration Protocol
- the dimmer switch 110 may create a peer-to-peer network of dimmer switches capable of communicating with one another.
- the dimmer switches may communicate programming and/or control instructions received from the wireless control device 120 .
- the wireless control device 120 may control the lighting load 104 by communicating instructions to the dimmer switch 110 via the RF signals 106 that cause the dimmer switch 110 to execute control instructions that have been pre-programmed on the dimmer switch 110 .
- the dimmer switch 110 may be pre-programmed at manufacture or via an update to execute the control instructions.
- the control instructions may include pre-configured settings (e.g., protected or locked lighting presets), instructions for raising/lowering lighting level, instructions for fading, instructions for scheduling, instructions for turning lights on/off, or any other pre-programmed instruction, for example.
- the wireless control device 120 may also program the settings (i.e., the operating parameters) of the dimmer switch 110 (e.g., when the dimmer switch is in a programming mode).
- the dimmer switch 110 may be a dimmer switch that may have a limited user interface (UI) or may not have any user interface.
- the user interface of the wireless control device 120 may be used to program the dimmer switch 110 .
- various wireless communication links described herein, e.g., Wi-Fi signals, optical signals, near field communication (NFC) signals, or proprietary-protocol RF signals may be used to program any of a number of programmable features provided by the dimmer switch 110 . Such features may be selected via the wireless control device 120 .
- the wireless control device 120 may program the dimmer switch 110 with such features as protected or locked presets, high-end trim, low-end trim, adjustable delay, fade time, load type, performing communications via wireless communication modes (e.g., as described herein), or being compatible with different lamps.
- the wireless control device 120 may be operable to program the dimmer switch 110 to change between modes of operation, for example, between a switching mode, a dimming mode, and/or an electronic timer mode (i.e., a countdown timer mode).
- the programming signal may be a one-way or two-way serial communication with the dimmer switch 110 . Examples of method of programming the dimmer switch 110 using the wireless control device 120 are described in greater detail in commonly assigned U.S.
- FIG. 3A is a diagram of an exemplary network environment 300 A.
- the router 130 may communicate with one or more servers 304 , 306 via the Internet 308 , perhaps as accessed through the “cloud.”
- router 130 may establish at least one Internet Protocol (IP) connection with either server 304 and/or 306 .
- IP Internet Protocol
- the at least one IP connection between the router 130 and either server 304 and/or 306 may be made via a router's 130 public IP address (and the respective public IP addresses of server 304 and/or server 306 ).
- a gateway device 310 may communicate with the router 130 via a wired or wireless connection. Any number of devices in FIG.
- dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C may be connected to the AC power supply 102 , perhaps via a hardwired connection or via electrical outlets 316 and 316 A, for example.
- Dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C may operate lighting load 104 A lighting load 104 B, and/or lighting load 104 C, respectively, as described previously herein.
- Occupancy sensor 180 may communicate with the router 130 and/or dimmer switches 110 A, 110 B, and/or 110 C, perhaps to adjust the intensity of one or more of the dimmer switches 110 A, 110 B, and/or 110 C based on a detected occupancy of the environment 300 A.
- a user may activate one or more of the buttons (soft buttons or hard buttons (e.g. physical buttons or manual operators)) on a remote control device 184 , which may communicate with the router 130 and/or dimmer switches 110 A, 110 B, and/or 110 C to adjust the intensity of one or more of the dimmer switches 110 A, 110 B, and/or 110 C.
- a user may override the occupancy sensor's 180 control of the dimmer switches 110 A, 110 B, and/or 110 C, for example.
- the router 130 may establish a non-public (or private) IP address for the router 130 and may establish an IP connection and corresponding respective private IP addresses with the dimmer switch 110 A, 110 B, and/or 110 C, the gateway device 310 , and the laptops 312 and/or 314 .
- the router 130 may coordinate one or more of the respective private IP addresses with one or more IP connections (e.g., multimedia or data streams) that are received via the router's 130 public IP address (e.g., from the server 304 and/or 306 ).
- IP connections e.g., multimedia or data streams
- the router 130 may coordinate one or more of the respective public IP addresses (e.g., of the server 304 and/or server 306 ) with one or more IP connections (e.g., multimedia or data streams) that are sent to the router's 130 private IP address (e.g., from the gateway device 310 , laptop 312 , and/or laptop 314 ).
- the router 130 may perform such coordination via a Network Address Table (NAT) (not shown), or the like, for example.
- NAT Network Address Table
- the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 may be operable to transmit and receive RF signals 106 including Internet Protocol packets directly to dimmer switches 110 A, 110 B, and/or 110 C, or to dimmer switches 110 A, 110 B, and/or 110 C via the wireless router 130 (and perhaps also via the gateway device 310 ).
- the router 130 (and perhaps the gateway device 310 ) may be operable to transmit one or more digital messages via RF signals 106 that may correspond to the RF signals 106 received from the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 .
- the one or more digital messages may be transmitted according to a proprietary RF communication protocol (such as, for example, the Clear ConnectTM protocol) to the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via RF signals 108 .
- the dimmer switch 110 A, dimmer switch 110 B and/or dimmer switch 110 C may include a wireless communication module (e.g. circuit) operable to receive digital messages according to the proprietary RF communication protocol via the RF signals 108 .
- the wireless control device 120 , the occupancy sensor 106 , the remote control device 184 , the router 130 , the laptop 312 , and/or the laptop 314 may transmit the RF signals 106 directly to the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via a point-to-point communication, such as a Wi-Fi communication link, e.g., an 802.11 wireless local area network (LAN), or other direct wireless communication link, e.g., a Wi-MAX communication link or a Bluetooth® communication link.
- a Wi-Fi communication link e.g., an 802.11 wireless local area network (LAN), or other direct wireless communication link, e.g., a Wi-MAX communication link or a Bluetooth® communication link.
- LAN wireless local area network
- a communication dongle (not shown) could be connected to the wireless control device 120 that may allow for direct communication between the wireless control device 120 and the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C using the proprietary RF communication protocol via RF signals 108 .
- the communication dongle could be plugged into a headphone jack on the wireless control device 120 , or a USB port on 120 .
- the occupancy sensor 180 and/or the remote control device 184 may communicate with the dimmer switches 110 A, 110 B, and/or 110 C using the proprietary RF communication protocol via RF signals 108 .
- FIG. 3B is a diagram of an exemplary network environment 300 B.
- the router 130 may communicate with one or more servers 304 , 306 via the Internet 308 , perhaps as accessed through the “cloud.”
- router 130 may establish at least one Internet Protocol (IP) connection with either server 304 and/or 306 .
- IP Internet Protocol
- the at least one IP connection between the router 130 and either server 304 and/or 306 may be made via a router's 130 public IP address (and the respective public IP addresses of server 304 and/or server 306 ).
- a gateway device 310 may communicate with the router 130 via a wired or wireless connection. Any number of devices in FIG.
- Dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C may operate lighting load 104 A lighting load 104 B, and/or lighting load 104 C as described previously herein.
- Occupancy sensor 180 may communicate with the router 130 and/or dimmer switches 110 A, 110 B, and/or 110 C, perhaps to adjust the intensity of one or more of the dimmer switches 110 A, 110 B, and/or 110 C based on a detected occupancy of the environment 300 B.
- a user may activate one or more of the buttons (soft buttons or hard buttons (e.g. physical buttons or manual operators)) on the remote control device 184 , which may communicate with the router 130 and/or dimmer switches 110 A, 110 B, and/or 110 C to adjust the intensity of one or more of the dimmer switches 110 A, 110 B, and/or 110 C.
- a user may override the occupancy sensor's 180 control of the dimmer switches 110 A, 110 B, and/or 110 C, for example.
- the router 130 may establish a non-public (or private) IP address for the router 130 and may establish an IP connection and corresponding respective private IP addresses with the dimmer switches 110 A, 110 B, and/or 110 C, the gateway device 310 , and the laptop 312 and/or the laptop 314 .
- the router 130 may coordinate one or more of the respective private IP addresses with one or more IP connections (e.g., multimedia or data streams) that are received via the router's 130 public IP address (e.g., from the server 304 and/or 306 ).
- IP connections e.g., multimedia or data streams
- the router 130 may coordinate one or more of the respective public IP addresses (e.g., of the server 304 and/or server 306 ) with one or more IP connections (e.g., multimedia or data streams) that are sent to the router's 130 private IP address (e.g., from the gateway device 310 , laptop 312 , and/or laptop 314 ).
- the router 130 may perform such coordination via a Network Address Table (NAT) (not shown), or the like, for example.
- NAT Network Address Table
- the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 may be operable to transmit and receive RF signals 106 including Internet Protocol packets directly to and from dimmer switches 110 A, 110 B, and/or 110 C, or to amd from the dimmer switches 110 A, 110 B, and/or 110 C via the wireless router 130 (and perhaps also via the gateway device 310 ).
- the router 130 (and perhaps the gateway device 310 ) may be operable to transmit one or more digital messages via RF signals 106 that may correspond to the RF signals 106 received from the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 .
- the wireless control device 120 , the occupancy sensor 106 , the remote control device 184 , the router 130 , the laptop 312 , and/or the laptop 314 may transmit the RF signals 106 directly to the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via a point-to-point communication, such as a Wi-Fi communication link, e.g., an 802.11 wireless local area network (LAN), or other direct wireless communication link, e.g., a Wi-MAX communication link or a Bluetooth® communication link.
- a Wi-Fi communication link e.g., an 802.11 wireless local area network (LAN), or other direct wireless communication link, e.g., a Wi-MAX communication link or a Bluetooth® communication link.
- LAN wireless local area network
- the wireless control device 120 , the wireless router 130 , and the gateway device 310 , the occupancy sensor 180 , and/or the remote control device 184 may communicate with the laptop 314 , dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via one or more devices that have a private IP address and are connected to the AC powers source 102 via an Ethernet IP based protocol (e.g., the TCP/IP and/or “HomePlug” protocols) that may be carried via the conductors that deliver electrical energy from the AC power source 102 to the various devices (e.g., router 130 , gateway device 310 , dimmer switch 110 A, dimmer switch 110 B, dimmer switch 110 C, and/or laptop 314 ).
- Ethernet IP based protocol e.g., the TCP/IP and/or “HomePlug” protocols
- the gateway device 310 , the occupancy sensor 180 , the remote control device 184 , and the dimmer switches 110 A, 110 B, and/or 110 C may also transmit, receive, and/or interpret energy pulses that may be used to convey signals and/or information via the conductors may deliver electrical energy from the AC power source 102 to the gateway device 310 and the dimmer switches 110 A, 110 B, and/or 110 C (and perhaps the occupancy sensor 180 and the remote control device 184 ).
- FIG. 3C is a diagram of an exemplary network environment 300 C.
- the router 130 may communicate with one or more servers 304 , 306 via the Internet 308 , perhaps as accessed through the “cloud.”
- router 130 may establish at least one Internet Protocol (IP) connection with either server 304 and/or 306 .
- IP Internet Protocol
- the at least one IP connection between the router 130 and either server 304 and/or 306 may be made via a router's 130 public IP address (and the respective public IP addresses of server 304 and/or server 306 ).
- a gateway device 310 may communicate with the router 130 via a wired or wireless connection. Any number of devices in FIG.
- dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C may be connected to the AC power supply 102 , perhaps via a hardwired connection or via electrical outlets 316 and 316 A, for example.
- Dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C may operate lighting load 104 A lighting load 104 B, and/or lighting load 104 C as described previously herein.
- Occupancy sensor 180 may communicate with the router 130 and/or dimmer switches 110 A, 110 B, and/or 110 C, perhaps to adjust the intensity of one or more of the dimmer switches 110 A, 110 B, and/or 110 C based on a detected occupancy of the environment 300 C.
- a user may activate one or more of the buttons (soft buttons or hard buttons (e.g., physical buttons or manual operators)) on the remote control device 184 , which may communicate with the router 130 and/or dimmer switches 110 A, 110 B, and/or 110 C to adjust the intensity of one or more of the dimmer switches 110 A, 110 B, and/or 110 C.
- a user may override the occupancy sensor's 180 control of the dimmer switches 110 A, 110 B, and/or 110 C by activating one or more of the buttons of the remote control device 184 , for example.
- the router 130 may establish a non-public (or private) IP address for the router 130 and may establish an IP connection and corresponding respective private IP addresses with the gateway device 310 , the laptop 312 and/or the laptop 314 .
- the router 130 may coordinate one or more of the respective private IP addresses with one or more IP connections (e.g., multimedia or data streams) that are received via the router's 130 public IP address (e.g., from the server 304 and/or 306 ).
- IP connections e.g., multimedia or data streams
- the router 130 may coordinate one or more of the respective public IP addresses (e.g., of the server 304 and/or server 306 ) with one or more IP connections (e.g., multimedia or data streams) that are sent to the router's 130 private IP address (e.g., from the gateway device 310 , laptop 312 , and/or laptop 314 ).
- the router 130 may perform such coordination via a Network Address Table (NAT) (not shown), or the like, for example.
- NAT Network Address Table
- the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 may be operable to transmit and receive RF signals 106 including Internet Protocol packets directly to dimmer switches 110 A, 110 B, and/or 110 C, or to dimmer switches 110 A, 110 B, and/or 110 C via the gateway device 310 (and perhaps via the wireless router 130 ).
- the gateway device 310 may be operable to transmit one or more digital messages via RF signals 106 that may correspond to the RF signals 106 received from the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 (perhaps via the router 130 ).
- the one or more digital messages may be transmitted according to a proprietary RF communication protocol (such as, for example, the Clear ConnectTM protocol) to the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via RF signals 108 .
- the dimmer switch 110 A, dimmer switch 110 B and/or dimmer switch 110 C may include a wireless communication module (e.g. circuit) operable to receive digital messages according to the proprietary RF communication protocol via the RF signals 108 .
- the gateway device 310 may communicate with the laptop 314 , dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via an Ethernet based IP protocol (e.g., TCP/IP and/or “HomePlug” protocols) that may be carried via the conductors that deliver electrical energy from the AC power source 102 to the various devices such as the router 130 , the gateway device 310 , laptop 314 , dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C, among other devices illustrated in FIG. 3C .
- an Ethernet based IP protocol e.g., TCP/IP and/or “HomePlug” protocols
- a communication dongle (not shown) could be connected to the wireless control device 120 that may allow for direct communication between the wireless control device 120 and the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C using the proprietary RF communication protocol via RF signals 108 .
- the communication dongle could be plugged into a headphone jack on the wireless control device 120 , or a USB port on 120 .
- the occupancy sensor 180 and/or the remote control device 184 may communicate with the dimmer switches 110 A, 110 B, and/or 110 C using the proprietary RF communication protocol via RF signals 108 .
- the router 130 may further establish IP connections and corresponding respective private IP addresses with the occupancy sensor 180 , remote control device 184 , dimmer switch 110 A, 110 B, and/or 110 C. In such situations, the router 130 may coordinate one or more of the respective private IP addresses of the occupancy sensor 180 , remote control device 184 , dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C with one or more IP connections (e.g., multimedia or data streams) that are received via the router's 130 public IP address (e.g., from the server 304 and/or 306 ).
- IP connections e.g., multimedia or data streams
- the router 130 may coordinate one or more of the respective public IP addresses (e.g., of the server 304 and/or server 306 ) with one or more IP connections (e.g., multimedia or data streams) that are sent to the router's 130 private IP address (e.g., from the occupancy sensor 180 , remote control device 184 , dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C).
- IP connections e.g., multimedia or data streams
- dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C may be assigned private IP addresses
- the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 may transmit RF signals 106 including Internet Protocol packets to the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C.
- the wireless control device 120 , the occupancy sensor 106 , the remote control device 184 , the router 130 , the laptop 312 , and/or the laptop 314 may transmit the RF signals 106 directly to the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via a point-to-point communication, such as a Wi-Fi communication link, e.g., an 802.11 wireless local area network (LAN), or other direct wireless communication link, e.g., a Wi-MAX communication link or a Bluetooth® communication link.
- a Wi-Fi communication link e.g., an 802.11 wireless local area network (LAN), or other direct wireless communication link, e.g., a Wi-MAX communication link or a Bluetooth® communication link.
- LAN wireless local area network
- the wireless control device 120 , the occupancy sensor 180 , and/or the remote control device 184 may communicate with the laptop 314 , dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via one or more devices that have a private IP address and are connected to the AC powers source 102 via an Ethernet IP based protocol (e.g., the TCP/IP and/or “HomePlug” protocols) that may be carried via the conductors that deliver electrical energy from the AC power source 102 to the various devices (e.g., router 130 , gateway device 310 , dimmer switch 110 A, dimmer switch 110 B, dimmer switch 110 C, and/or laptop 314 ).
- Ethernet IP based protocol e.g., the TCP/IP and/or “HomePlug” protocols
- FIG. 4A is a simplified block diagram of a first example of a dimmer switch 400 A (e.g., one of the dimmer switches 110 A, 110 B, 110 C shown in FIG. 3A ).
- the example dimmer switch 400 A comprises a controllably conductive device 410 coupled in series electrical connection between the AC power source 102 and the lighting load 404 for control of the power delivered to the lighting load.
- the controllably conductive device 410 may comprise a relay or other switching device, or any suitable type of bidirectional semiconductor switch, such as, for example, a triac, a field-effect transistor (FET) in a rectifier bridge, or two FETs in anti-series connection.
- the controllably conductive device 410 includes a control input coupled to a drive circuit 412 .
- the dimmer switch 400 A further comprises a control circuit, e.g., a controller 414 , coupled to the drive circuit 412 for rendering the controllably conductive device 410 conductive or non-conductive to thus control the power delivered to the lighting load 404 .
- the controller 414 may comprise a microcontroller, a programmable logic device (PLD), a microprocessor, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or any suitable processing device or control circuit.
- a zero-crossing detector 415 determines the zero-crossings of the input AC waveform from the AC power supply 402 .
- a zero-crossing may be the time at which the AC supply voltage transitions from positive to negative polarity, or from negative to positive polarity, at the beginning of each half-cycle.
- the controller 414 receives the zero-crossing information from the zero-crossing detector 415 and provides the control inputs to the drive circuit 412 to render the controllably conductive device 410 conductive and non-conductive at predetermined times relative to the zero-crossing points of the AC waveform.
- the controller 414 receives inputs from mechanical switches 416 that are mounted on a printed circuit board (not shown) of the dimmer switch 400 A, and are arranged to be actuated by buttons (e.g., the toggle actuator 114 and the intensity adjustment actuator 116 ).
- the controller 414 also controls light-emitting diodes 418 , which are also mounted on the printed circuit board.
- the light emitting diodes 418 may be arranged to illuminate visual indicators (e.g., the visual indicators 118 ) on a front surface of the dimmer switch 400 A, for example, through a light pipe structure (not shown).
- the controller 414 is also coupled to a memory 420 for storage of unique identifiers (e.g., the MAC address and the IP address) of the dimmer switch 400 A, the SSID and the SSID password of the wireless LAN, instructions for controlling the lighting load 404 , programming instructions for communicating via a wireless communication link, or the like.
- the memory 420 may be implemented as an external integrated circuit (IC) or as an internal circuit of the controller 414 .
- a power supply 422 generates a direct-current (DC) voltage V CC for powering the controller 414 , the memory 420 , and other low-voltage circuitry of the dimmer switch 400 A.
- DC direct-current
- the dimmer switch 400 A further includes a wireless communication module (e.g. circuit) 430 for transmitting and receiving wireless signals (e.g., the RF signals 106 and/or 108 ) to and from a wireless device (e.g., the wireless control device 120 , the gateway device 310 , and/or the wireless router 130 ).
- a wireless device e.g., the wireless control device 120 , the gateway device 310 , and/or the wireless router 130 .
- the wireless communication module 430 may be configured to communicate via a Wi-Fi communication link, a Wi-MAX communication link, a Clear ConnectTM communication link, and/or a Bluetooth® communication link.
- the wireless communication module 430 may also include one or more other radio protocol modules (e.g.
- the dimmer switch 400 A may further include a second wireless communication module (e.g. circuit) 432 that may be configured to communicate via a Wi-Fi communication link, a Wi-MAX communication link, a Clear ConnectTM communication link, and/or a Bluetooth® communication link.
- the wireless communication module 432 may also include one or more other radio protocol modules (e.g. radios) that may be operable to communicate via a number of other protocols including Wi-Fi and/or a proprietary RF protocol such as the Clear ConnectTM protocol.
- the controller 414 is operable to control the lighting load 104 in response to received digital messages in Wi-Fi packets (i.e., Internet Protocol packets received via the Wi-Fi signals).
- Wi-Fi packets i.e., Internet Protocol packets received via the Wi-Fi signals.
- the modules may communication using different frequency channels.
- the wireless communication module 430 and/or 432 may comprise one or more RF transceivers and one or more antennas. Examples of antennas for wall-mounted dimmer switches are described in greater detail in U.S. Pat. No. 5,736,965, issued Apr. 7, 1998, and U.S. Pat. No. 7,362,285, issued Apr. 22, 2008, both entitled COMPACT RADIO FREQUENCY TRANSMITTING AND RECEIVING ANTENNA AND CONTROL DEVICE EMPLOYING SAME, the entire disclosures of which are hereby incorporated by reference.
- the dimmer switch 400 A further comprises an optical module (e.g. circuit) 440 , such as an optical signal receiving circuit for example.
- the optical module 440 may be optically coupled to an optical receiver (e.g., the optical receiver 119 ).
- the optical module 440 may be coupled to the optical receiver 119 on the front surface of the dimmer switch 400 A, for example, through a light pipe (not shown), such that the optical module 440 may receive the optical signals from the wireless control device 120 via the light pipe.
- the optical module 440 may comprise a photodiode (not shown) that is responsive to the optical signals transmitted by the wireless control device 120 .
- the photodiode of the optical module 440 may be controlled by the controller 414 , so as to transmit optical signals to the wireless control device 120 (as will be described in greater detail below), for example.
- the wireless control device 120 may control the controllably conductive device 410 using the optical signals and/or the digital messages received via the RF signals 106 and/or RF signals 108 .
- the controller 414 may determine the module from which the signals are received, e.g., from the wireless communication module 430 and/or 432 or the optical module 440 , and the controllably conductive device 410 may be controlled based on those signals.
- the controller 414 may also transmit messages to the wireless control device 120 via optical signals or digital messages transmitted via the RF signals 106 and/or RF signals 108 .
- the controller 414 of the dimmer switch 400 A may be used to transmit digital messages to the wireless control device 120 via wireless communication.
- the digital messages may include alerts and/or feedback and status information regarding the lighting load 104 .
- the digital messages may also include error messages or indications as to whether the dimmer switch 400 A is able to communicate via a wireless communication link or RF signals 106 and/or RF signals 108 , for example.
- FIG. 4B is a simplified block diagram of a second example of a dimmer switch 400 B (e.g., one of the dimmer switches 110 A, 110 B, 110 C shown in FIG. 3B ).
- the example dimmer switch 400 B comprises a controllably conductive device 410 , a drive circuit 412 , a controller 414 , a zero-crossing detector 415 , mechanical switches 416 , light-emitting diodes 418 , a memory 420 , a power supply 422 , and an optical module 440 .
- the elements within these devices, the functions of these devices, and/or interactions of and among these devices may be the same or similar as described with respect to FIG. 4A .
- the dimmer switch 400 B further includes a wireless communication module (e.g. circuit) 430 for transmitting and receiving RF signals (e.g., the RF signals 106 ) to and from a wireless device (e.g., the wireless control device 120 , the gateway device 310 , and/or the wireless router 130 ).
- a wireless device e.g., the wireless control device 120 , the gateway device 310 , and/or the wireless router 130 .
- the wireless communication module 430 may be configured to communicate via a Wi-Fi communication link, a Wi-MAX communication link, a Clear ConnectTM communication link, and/or a Bluetooth® communication link.
- the wireless communication module 430 may also include one or more other radio protocol modules (e.g. radios) that may be operable to communicate via a number of other protocols including Wi-Fi and/or a proprietary RF protocol such as the Clear ConnectTM protocol.
- the dimmer switch 400 B may further include a power line interface (e.g. circuit) module 434 for transmitting and receiving signals carried on the conductors connected to the AC power source 102 via an Ethernet IP based protocol (e.g. TCP/IP, and/or a power line communication protocol such as the “HomePlug” protocol) where the conductors may deliver electrical energy from the AC power source 402 to the dimmer switch 400 B.
- the power line interface module 434 may also transmit, receive, and/or interpret energy pulses that may be used to convey signals and/or information via the conductors may deliver electrical energy from the AC power source 402 to the dimmer switch 400 B.
- the controller 414 is operable to control the lighting load 404 in response to received digital messages in Wi-Fi packets (i.e., Internet Protocol packets received via the Wi-Fi signals).
- Wi-Fi packets i.e., Internet Protocol packets received via the Wi-Fi signals.
- the wireless communication module 430 may comprise one or more RF transceivers and one or more antennas.
- the wireless control device 120 may control the controllably conductive device 410 using the optical signals, the digital messages received via the RF signals 106 , and/or digital messages received via the Ethernet IP based power line protocol (e.g., TCP/IP and/or “HomePlug” protocols).
- the controller 414 may determine the module from which the signals are received, e.g., from the wireless communication module 430 , the power line interface module 434 , or the optical module 440 , and the controllably conductive device 410 may be controlled based on those signals.
- the controller 414 may also transmit messages to the wireless control device 120 via optical signals or digital messages transmitted via the RF signals 106 , and/or digital messages transmitted via the Ethernet IP based power line protocol.
- the controller 414 of the dimmer switch 400 B may be used to transmit digital messages to the wireless control device 120 via wireless communication.
- the digital messages may include alerts and/or feedback and status information regarding the lighting load 404 .
- the digital messages may also include error messages or indications as to whether the dimmer switch 400 B is able to communicate via a wireless communication link or RF signals 106 , for example.
- FIG. 4C is a simplified block diagram of a third example of a dimmer switch 400 C (e.g., one of the dimmer switches 110 A, 110 B, 110 C shown in FIG. 3C ).
- the example dimmer switch 400 C comprises a controllably conductive device 410 , a drive circuit 412 , a controller 414 , a zero-crossing detector 415 , mechanical switches 416 , light-emitting diodes 418 , a memory 420 , a power supply 422 , and an optical module 440 .
- the elements within these devices, the functions of these devices, and/or interactions of and among these devices may be the same or similar as described with respect to FIG. 4A .
- the dimmer switch 400 C further includes a wireless communication module (e.g. circuit) 430 for transmitting and receiving RF signals (e.g., the RF signals 106 and/or 108 ) to and from a wireless device (e.g., the wireless control device 120 , the gateway device 310 , and/or the wireless router 130 ).
- a wireless device e.g., the wireless control device 120 , the gateway device 310 , and/or the wireless router 130 .
- the wireless communication module 430 may be configured to communicate via a Wi-Fi communication link, a Wi-MAX communication link, a Clear ConnectTM communication link, and/or a Bluetooth® communication link.
- the wireless communication module 430 may also include one or more other radio protocol modules (e.g.
- the dimmer switch 400 C may further include a second wireless communication module (e.g. circuit) 432 that may be configured to communicate via a Wi-Fi communication link, a Wi-MAX communication link, a Clear ConnectTM communication link, and/or a Bluetooth® communication link.
- the wireless communication module 432 may also include one or more other radio protocol modules (e.g. radios) that may be operable to communicate via a number of other protocols including Wi-Fi and/or a proprietary RF protocol such as the Clear ConnectTM protocol.
- the dimmer switch 400 C may further include a power line interface module (e.g.
- the circuit 434 for transmitting and receiving signals carried on the conductors connected to the AC power source 402 via an Ethernet IP based protocol (e.g. TCP/IP, and/or a power line communication protocol such as the “HomePlug” protocol) where the conductors may deliver electrical energy from the AC power source 402 to the dimmer switch 400 C.
- the power line interface module 434 may also transmit, receive, and/or interpret energy pulses that may be used to convey signals and/or information via the conductors may deliver electrical energy from the AC power source 402 to the dimmer switch 400 C.
- the controller 414 is operable to control the lighting load 404 in response to received digital messages in Wi-Fi packets (i.e., Internet Protocol packets received via the Wi-Fi signals).
- Wi-Fi packets i.e., Internet Protocol packets received via the Wi-Fi signals.
- the wireless communication module 430 and/or 432 may comprise one or more RF transceivers and one or more antennas.
- the wireless control device 120 may control the controllably conductive device 410 using the optical signals and/or the digital messages received via the RF signals 106 and/or RF signals 108 .
- the controller 414 may determine the module from which the signals are received, e.g., from the wireless communication module 430 and/or 432 or the optical module 440 , and the controllably conductive device 410 may be controlled based on those signals.
- the controller 414 may also transmit messages to the wireless control device 120 via optical signals or digital messages transmitted via the RF signals 106 and/or RF signals 108 .
- the controller 414 of the dimmer switch 400 C may be used to transmit digital messages to the wireless control device 120 via wireless communication.
- the digital messages may include alerts and/or feedback and status information regarding the lighting load 404 .
- the digital messages may also include error messages or indications as to whether the dimmer switch 400 C is able to communicate via a wireless communication link or RF signals 106 and/or RF signals 108 , for example.
- FIG. 5A a first simplified example block diagram of an input device, e.g., a remote control device 500 A (such as, the remote control device 184 of FIGS. 3A-3C ).
- the example remote control device 500 A may include devices such as a controller 514 , a memory 520 , a wireless communication module 530 , and/or a wireless communication module 532 .
- One or more of the elements within these devices, one or more of the functions of these devices, and/or one or more of the interactions of and among these devices may be the same or similar as described with respect to FIG. 4A .
- the remote control device 500 A may also include a battery power supply 550 that may provide electrical power to the one or more devices included in the remote control device 500 A, such as the controller 514 .
- the example remote control device 500 A may also include buttons 552 , visual indicators 556 , and/or a battery 550 .
- the controller 514 of the remote control device 500 A may be configured to receive commands input via the one or more buttons 552 .
- the one or more buttons 552 may include one or more soft buttons or one or more hard buttons (e.g., physical buttons or manual operators).
- the controller 514 may interpret inputs via the one or more buttons 552 as user commands intended for one or more devices (e.g., a dimmer switch).
- a user may contact one button of the one or more buttons 552 of remote control device 500 A to order the appropriate dimmer switch (e.g., the dimmer switch 110 A) to adjust the intensity of a lighting load (e.g., the lighting load 104 A) to 50%, among many other configurable adjustments.
- the controller 514 of the remote control device 500 A may interpret the signal from the one button of the one or more buttons 552 as a command to order the dimmer switch 110 A to perform the adjustment to 50%.
- the controller 514 may communicate the command to the dimmer switch 110 A via one or more wireless signals sent via wireless communication module 530 and/or 532 (e.g., in a manner that is the same or similar to the functions described with respect to communication modules 430 and/or 432 as described with regard to FIG. 4A ).
- the controller 514 of the remote control device 500 A may be configured to control one or more visual indicators 556 to provide the user with one or more feedback or status indications (e.g. at least for a period of time).
- one indicator of the one or more indicators 556 may indicate (e.g. for some period of time) that one or more buttons 552 may have been activated by a user (e.g. as interpreted by the controller 514 ).
- one indicator of the one or more indicators 556 may indicate (e.g., for a period of time) that the dimmer switch 110 A has received the command from the controller 414 to perform an adjustment (e.g. as input by the user) of the lighting load 104 A. Also by way of example, one indicator of the one or more indicators 556 may indicate that that battery 550 is at a low level of charge.
- FIG. 5B a second simplified example block diagram of an input device, e.g., a remote control device 550 B (such as the remote control device 184 of FIGS. 3A-3C ).
- the remote control device 500 B may include one or more of the same or similar functional blocks as those included and described with respect to the remote control device 500 A of FIG. 5A .
- the one or more of the elements within these functional blocks, one or more of the functions of these functional blocks, and/or one or more of the interactions of and among these functional blocks may be the same or similar as described with respect to FIG. 4A and FIG. 5A .
- the remote control device 500 B may operate with just the wireless communication module 530 in lieu of both the wireless communication modules 530 and 532 .
- FIG. 5C is a first simplified example block diagram of a sensor device, e.g., an occupancy sensor 500 C (such as the occupancy sensor 180 of FIGS. 3A-3C ).
- the occupancy sensor 500 C may include one or more of the same or similar functional blocks as those included and described with respect to the remote control device 500 A of FIG. 5A .
- the one or more of the elements within these functional blocks, one or more of the functions of these functional blocks, and/or one or more of the interactions of and among these functional blocks may be the same or similar as described with respect to FIG. 4A and FIG. 5A .
- the occupancy sensor 500 C may also include at least one sensor circuit 554 .
- the at least one sensor circuit 554 may detect the presence (or lack thereof) of people in a given area of sensor effectiveness.
- the controller 514 of the occupancy sensor 500 C may be configured to receive a signal from the at least one sensor 554 , interpret the signal as indicating a presence or absence of people in the given area of sensor effectiveness (perhaps for a period of time), and/or send one or more commands to other devices based on the interpreted presence of people or lack thereof.
- the controller 514 of the occupancy sensor 500 C interpret the at least one sensor 554 to report the lack of presence in the given area of effectiveness (perhaps for some period of time, e.g., 60 seconds)
- the controller may send respective commands to wireless devices, e.g., to one or more of the dimmer switches 110 A, 110 B, and/or 110 C to lower the respective intensities of the lighting loads 104 A, 104 B, and/or 104 C (e.g., shutoff all the lights when all people have left the room).
- the controller 514 of the occupancy sensor 500 C interpret the at least one sensor 554 to report a transition from a lack of any presence to the presence of at least one person in the given area of effectiveness
- the controller may send respective commands to one or more of the dimmer switches 110 A, 110 B, and/or 110 C to increase the respective intensities of the lighting loads 104 A, 104 B, and/or 104 C (e.g., turn at least some of the lights when at least one person enters the area of sensor effectiveness).
- the controller 514 of the occupancy sensor 500 C may communicate the command to the dimmer switch 110 A, dimmer switch 110 B, and/or dimmer switch 110 C via one or more wireless signals sent via wireless communication module 530 and/or 532 (e.g., in a manner that is the same or similar to the functions described with respect to communication modules 430 and/or 432 as described with regard to FIG. 4A ).
- FIG. 5D a second simplified example block diagram of a sensor device (such as the occupancy sensor 180 of FIGS. 3A-3C ).
- the occupancy sensor 500 D may include one or more of the same or similar functional blocks as those included and described with respect to the occupancy sensor 500 C of FIG. 5C .
- the one or more of the elements within these functional blocks, one or more of the functions of these functional blocks, and/or one or more of the interactions of and among these functional blocks may be the same or similar as described with respect to FIG. 4A , FIG. 5A , and FIG. 5A .
- the occupancy sensor 500 D may operate with just the wireless communication module 530 in lieu of both the wireless communication modules 530 and 532 .
- FIG. 5E is a simplified example block diagram of a contemplated combination input and sensor device 500 E which may be employed in the environments of FIGS. 3A-3C .
- the combination input/sensor device 500 E may include one or more of the same or similar functional blocks as those included and described with respect to the remote control device 500 A and 500 B and the occupancy sensor 500 C and 500 D that may be employed in the environments of FIGS. 3A-3C .
- the one or more of the elements within these functional blocks, one or more of the functions of these functional blocks, and/or one or more of the interactions of and among these functional blocks may be the same or similar as described with respect to FIG. 4A , FIG. 5A , and FIG. 5C .
- any of the devices of the network environments 300 A- 300 C of FIGS. 3A-3C may include one or more radios.
- any of the devices of the network environments 300 A- 300 C may include at least one radio that may be operable to transmit via multiple protocols (e.g., the Wi-Fi and/or the Clear ConnectTM protocols) over multiple communication networks, wired and/or wireless, which may be operable to communicate with the respective protocols.
- any of the devices of the network environments 300 A- 300 C may include at least one radio that may be operable to transmit/receive via at least one protocol (e.g., the Wi-Fi protocol) and at least a second radio that may be operable to transmit/receive via at least another protocol (e.g., a proprietary RF protocol like the Clear ConnectTM protocol) over multiple communication networks, wired and/or wireless, that may be operable to communicate with the respective protocols.
- at least one protocol e.g., the Wi-Fi protocol
- a second radio may be operable to transmit/receive via at least another protocol (e.g., a proprietary RF protocol like the Clear ConnectTM protocol) over multiple communication networks, wired and/or wireless, that may be operable to communicate with the respective protocols.
- One or more, or any, of the devices of the network environments 300 A- 300 C may serve as a master gateway node (e.g., may be elected by the other devices to serve as the master gateway node).
- the master gateway node may serve as a Dynamic Host Configuration Protocol (DHCP) node (or function), for example.
- DHCP Dynamic Host Configuration Protocol
- the master gateway node may provide one or more, or any, of the other devices of the network environments 300 A- 300 C with information that may enable the one or more other devices to connect to the Wi-Fi network (e.g., an IP based protocol).
- the master gateway node may provide the one or more devices of the network environments 300 A- 300 C with a service set identifier (SSID), an SSID password, a wireless security password or key value such as a WEP password/key or a WPA password/key, and/or an IP address, and/or other credentials or access information to enable the respective devices to connect (or register) to the Wi-Fi protocol network (e.g., via the router 130 ).
- SSID service set identifier
- SSID password SSID password
- a wireless security password or key value such as a WEP password/key or a WPA password/key
- IP address e.g., IP address
- Wi-Fi access information may be preconfigured on any of the respective devices of the network environments 300 A- 300 C.
- the Wi-Fi access information may be provided to the one or more devices of the network environments 300 A- 300 C via a reliable broadcast-capable RF protocol, such as the previously described Clear ConnectTM protocol, either approximately at a time that it may be useful for the one or more devices to join the Wi-Fi communication network, or at some time earlier.
- a reliable broadcast-capable RF protocol such as the previously described Clear ConnectTM protocol
- the Wi-Fi access information (e.g., even if preconfigured) for the one or more devices may be updated by the master gateway node either periodically or under certain conditions.
- the master gateway node may provide an indication (e.g., via the Clear ConnectTM protocol) to the one or more devices of the network environments 300 A- 300 C that may invite the one or more devices to use the Wi-Fi protocol access information to communicate, at least temporarily (e.g., for a firmware upgrade), with one or more devices of the network environments 300 A- 300 C (e.g., the master gateway node or any other device of the network environments 300 A- 300 C).
- an indication e.g., via the Clear ConnectTM protocol
- the master gateway node may provide an indication (e.g., via the Clear ConnectTM protocol) to the one or more devices of the network environments 300 A- 300 C that may invite the one or more devices to use the Wi-Fi protocol access information to communicate, at least temporarily (e.g., for a firmware upgrade), with one or more devices of the network environments 300 A- 300 C (e.g., the master gateway node or any other device of the network environments 300 A- 300 C).
- the master gateway node may signal (e.g., via the Wi-Fi and/or Clear ConnectTM protocols) the invited node to discontinue Wi-Fi communication and/or to leave the Wi-Fi network.
- the burden on the router 130 and/or Wi-Fi communication may be minimized.
- the invited node may be configured to discontinue Wi-Fi communication and/or to leave the Wi-Fi network after the completion of the function for which it was invited to communicate via Wi-Fi and/or after the end of a timeout period (e.g., the invited node may leave the Wi-Fi network on its own determination and without being requested to leave the Wi-Fi network).
- the one or more devices of the network environments 300 A- 300 C may use the Wi-Fi access information to communicate with one or more other devices of the network environments 300 A- 300 C at a time and/or under a condition determined by the one or more devices of the network environments 300 A- 300 C that may be in possession of Wi-Fi access information.
- dimmer switch 110 A may use its respective Wi-Fi access information to join the Wi-Fi communication network to communicate data or information (e.g., to communication monitoring database information to one or other devices of the network environments 300 A- 300 C) via the Wi-Fi protocol, (e.g., perhaps because its monitoring database may have become full).
- the dimmer switch 110 A may discontinue communication via the Wi-Fi protocol until such time as the dimmer switch 110 A may be invited to (or may decide itself to) communicate once again via the Wi-Fi protocol.
- a button of an input device e.g., the remote control device 184
- the input device may use its respective Wi-Fi access information to join the Wi-Fi communication network to communicate information regarding an actuation of the button.
- a sensor device e.g., the occupancy sensor 180
- a sensor device such as a daylight sensor, may periodically use its respective Wi-Fi access information to join the Wi-Fi communication network to communicate information regarding an ambient light intensity measured in a space.
- the Wi-Fi protocol may be useful via which to communicate high bandwidth data (e.g. configuration data such as firmware upgrades and/or data for relatively sophisticated user interfaces, programming data, and/or database data management) among Wi-Fi capable (IP capable) devices.
- a reliable broadcast-capable RF protocol such as the previously described Clear ConnectTM protocol may be useful via which to communicate relatively low bandwidth data and/or relatively high performance signaling information (e.g. operational data such as operational commands, operational (runtime) error codes, programming error codes, and/or timing synchronization signals, among other relatively high performance data). It may be useful to allocate high bandwidth data signaling (e.g.
- radios using the Wi-Fi protocol may communicate at a frequency of 2.4 GHz. This frequency may be considered part of the industrial, scientific, and medical (ISM) radio band—which may fairly crowded, may be widely available, and may be generally considered to be an unlicensed band. Radios may communicate using the Wi-Fi protocol at a range of 120 to 300 feet (with 802.11n, up to double these ranges may be possible), for example. Radios may communicate using the Wi-Fi protocol at a rate of up to 54 Mbits/s (802.11g) and/or 300 Mbit/s (802.11n), with an average data rate of approximately 22 Mbit/s, for example. Radios may communicate via Wi-Fi with an output power of approximately 20-100 mW (13-20 dBm).
- ISM industrial, scientific, and medical
- radios using the Clear ConnectTM protocol may communicate at frequencies of 434 MHz and/or 868 MHz (perhaps based on regional factors).
- the 434 MHz and 868 MHz bands may be far less crowded than other bands and may be licensed, and may be subject to a relatively stringent set of regulations, including the United States' Federal Communications Commission (FCC) regulations that may limit transmit power and/or duty cycle, for example.
- Radios may communicate using the Clear ConnectTM protocol at a range of 30 to 60 feet indoor and/or 300 feet open air (perhaps extendable via repeaters), for example.
- Radios may communicate using the Clear ConnectTM protocol at a rate of up to 62.5 Kbit/s, for example.
- Radios may communicate via the Clear ConnectTM protocol with an output power of approximately 4 mW (5 dBm).
- FIG. 6 is a diagram that illustrates wireless communication network access activity for one or more contemplated devices and techniques.
- one or more devices such as the dimmer switch 110 A, dimmer switch 110 B, dimmer switch 110 C, the occupancy sensor 180 , and/or the remote control device 184 , and other devices from environments 300 A- 300 C (both shown and not shown), may not be communicating via a wireless communication network (e.g., a wireless local area network (LAN)) in which communication may be conducted via a particular wireless protocol, for example the Wi-Fi protocol.
- LAN wireless local area network
- the respective device or devices may not place a burden on the Wi-Fi communication network and/or the router 130 .
- the device or devices may or may not be operating on another wireless communication network (e.g. a Clear ConnectTM protocol network) and/or a wired communication network (e.g., a wired TCP/IP network or a power line protocol network).
- another wireless communication network e.g. a Clear ConnectTM protocol network
- a wired communication network e.g., a wired TCP/IP network or a power line protocol network.
- one or more of the devices may, perhaps to execute a particular task, receive a trigger from another device to access the Wi-Fi communication network. Alternatively or additionally, the device may determine an internal trigger condition to access the Wi-Fi communication network.
- the device or devices may access the Wi-Fi communication network, perhaps with access information provided by another device or preconfigured on the accessing device or devices. While on the Wi-Fi communication network the device or devices may execute the tasks or tasks that may have been part of the trigger for the device or devices to access the Wi-Fi communication network. At 6008 , perhaps either after completing the task, after some predetermined time, and/or after receiving a disconnect signal from another device, the device or devices may leave the Wi-Fi communication network.
- a contemplated technique 7000 may start at 7002 and may include, at 7004 , sending Wi-Fi connection information (e.g., from the master gateway node) to a targeted device of a network environment (e.g., dimmer switch 110 A or other load control device) via a proprietary RF protocol (e.g., the Clear ConnectTM protocol).
- a proprietary RF protocol e.g., the Clear ConnectTM protocol
- another node in the network environment may decide to communicate a firmware upgrade to the targeted device.
- the targeted node may be signaled (e.g. via the master gateway node) to use the Wi-Fi connection information to establish a Wi-Fi communication connection (e.g., with the router 130 ) via a proprietary RF protocol (e.g., Clear ConnectTM protocol).
- the targeted device may use the Wi-Fi connection information to establish itself on the Wi-Fi network and commence Wi-Fi communication (e.g., via the IP address provided by the master gateway node).
- the targeted device may receive a request (e.g., via the master gateway node) to terminate Wi-Fi communication and/or leave the Wi-Fi network.
- the targeted device may determine a condition and/or period of time to terminate Wi-Fi communication and/or leave the Wi-Fi network.
- the targeted device may terminate the Wi-Fi connection and/or leave the Wi-Fi network upon the condition being satisfied or the request being received.
- the technique may end and may resume at 7002 as often as required to accommodate user configured load control functions for the network environments 300 A- 300 C.
- any control devices that are operable to communicate with each other, such as, for example, dimming ballasts for driving gas-discharge lamps; light-emitting diode (LED) drivers for driving LED light sources; screw-in luminaires including integral dimmer circuits and incandescent or halogen lamps; screw-in luminaires including integral ballast circuits and compact fluorescent lamps; screw-in luminaires including integral LED drivers and LED light sources; electronic switches, controllable circuit breakers, or other switching devices for turning appliances on and off; plug-in load control devices, controllable electrical receptacles, or controllable power strips for each controlling one or more plug-in loads; motor control units for controlling motor loads, such as ceiling fans or exhaust fans; drive units for controlling motorized window treatments or projection screens; motorized interior or exterior shutters; thermostats for a heating and/or cooling systems; temperature control devices
- the techniques described herein may be implemented as a set of computer-executable instructions stored on a computer-readable medium, such as a random-access or read-only memory for example.
- a computer-readable medium such as a random-access or read-only memory for example.
- Such computer-executable instructions may be executed by a processor or microcontroller, such as a microprocessor, within the dimmer switch 110 or the wireless control device 120 , for example.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Selective Calling Equipment (AREA)
- Power Engineering (AREA)
Abstract
Description
Claims (17)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/102,357 US10742032B2 (en) | 2012-12-21 | 2018-08-13 | Network access coordination of load control devices |
US16/989,145 US11521482B2 (en) | 2012-12-21 | 2020-08-10 | Network access coordination of load control devices |
US18/075,028 US20230105057A1 (en) | 2012-12-21 | 2022-12-05 | Network access coordination of load control devices |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261745419P | 2012-12-21 | 2012-12-21 | |
US13/796,486 US9413171B2 (en) | 2012-12-21 | 2013-03-12 | Network access coordination of load control devices |
US15/011,257 US10050444B2 (en) | 2012-12-21 | 2016-01-29 | Network access coordination of load control devices |
US16/102,357 US10742032B2 (en) | 2012-12-21 | 2018-08-13 | Network access coordination of load control devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/011,257 Continuation US10050444B2 (en) | 2012-12-21 | 2016-01-29 | Network access coordination of load control devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/989,145 Continuation US11521482B2 (en) | 2012-12-21 | 2020-08-10 | Network access coordination of load control devices |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190006846A1 US20190006846A1 (en) | 2019-01-03 |
US10742032B2 true US10742032B2 (en) | 2020-08-11 |
Family
ID=50974546
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/796,486 Active US9413171B2 (en) | 2012-12-21 | 2013-03-12 | Network access coordination of load control devices |
US15/011,257 Active 2033-08-14 US10050444B2 (en) | 2012-12-21 | 2016-01-29 | Network access coordination of load control devices |
US16/102,357 Active US10742032B2 (en) | 2012-12-21 | 2018-08-13 | Network access coordination of load control devices |
US16/989,145 Active 2033-09-19 US11521482B2 (en) | 2012-12-21 | 2020-08-10 | Network access coordination of load control devices |
US18/075,028 Pending US20230105057A1 (en) | 2012-12-21 | 2022-12-05 | Network access coordination of load control devices |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/796,486 Active US9413171B2 (en) | 2012-12-21 | 2013-03-12 | Network access coordination of load control devices |
US15/011,257 Active 2033-08-14 US10050444B2 (en) | 2012-12-21 | 2016-01-29 | Network access coordination of load control devices |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/989,145 Active 2033-09-19 US11521482B2 (en) | 2012-12-21 | 2020-08-10 | Network access coordination of load control devices |
US18/075,028 Pending US20230105057A1 (en) | 2012-12-21 | 2022-12-05 | Network access coordination of load control devices |
Country Status (2)
Country | Link |
---|---|
US (5) | US9413171B2 (en) |
WO (1) | WO2014100757A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220095084A1 (en) * | 2020-09-22 | 2022-03-24 | Lutron Technology Company Llc | Transmission of control data on wireless network communication links |
US20230105057A1 (en) * | 2012-12-21 | 2023-04-06 | Lutron Technology Company Llc | Network access coordination of load control devices |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9544977B2 (en) | 2011-06-30 | 2017-01-10 | Lutron Electronics Co., Inc. | Method of programming a load control device using a smart phone |
US9386666B2 (en) | 2011-06-30 | 2016-07-05 | Lutron Electronics Co., Inc. | Method of optically transmitting digital information from a smart phone to a control device |
US10271407B2 (en) | 2011-06-30 | 2019-04-23 | Lutron Electronics Co., Inc. | Load control device having Internet connectivity |
US20130222122A1 (en) | 2011-08-29 | 2013-08-29 | Lutron Electronics Co., Inc. | Two-Part Load Control System Mountable To A Single Electrical Wallbox |
MX339940B (en) | 2012-03-21 | 2016-06-17 | Powercast Corp | Wireless sensor system, method and apparatus with switch and outlet control. |
US10019047B2 (en) * | 2012-12-21 | 2018-07-10 | Lutron Electronics Co., Inc. | Operational coordination of load control devices for control of electrical loads |
US10244086B2 (en) | 2012-12-21 | 2019-03-26 | Lutron Electronics Co., Inc. | Multiple network access load control devices |
AU2014228186B2 (en) | 2013-03-15 | 2019-11-07 | Hayward Industries, Inc. | Modular pool/spa control system |
US10135629B2 (en) | 2013-03-15 | 2018-11-20 | Lutron Electronics Co., Inc. | Load control device user interface and database management using near field communication (NFC) |
CN105766067B (en) * | 2013-10-23 | 2019-06-18 | 鲍尔卡斯特公司 | Automatic system for Lighting control |
US10797944B2 (en) * | 2013-11-29 | 2020-10-06 | Signify Holding B.V. | Zigbee light link network commissioning |
US9696701B2 (en) * | 2013-12-07 | 2017-07-04 | Svv Technology Innovations, Inc. | Radio frequency occupancy sensing load control |
US9848479B2 (en) * | 2013-12-26 | 2017-12-19 | Lutron Electronics Co., Inc. | Faceplate remote control device for use in a load control system |
US9386669B2 (en) | 2013-12-26 | 2016-07-05 | Lutron Electronics Co., Inc. | Controlling light intensity at a location |
US9674929B2 (en) * | 2014-03-10 | 2017-06-06 | Massachusetts Institute Of Technology | Methods and apparatus for illumination control |
GB2528297B (en) * | 2014-07-16 | 2020-03-25 | Rako Controls Ltd | Improvements in building automation systems |
JP5967265B2 (en) * | 2014-07-31 | 2016-08-10 | ダイキン工業株式会社 | Equipment control device |
CN104301917A (en) * | 2014-09-15 | 2015-01-21 | 浙江生辉照明有限公司 | Network anomaly self-healing method and system based on illumination devices |
EP3198790A2 (en) * | 2014-09-25 | 2017-08-02 | Philips Lighting Holding B.V. | Control of networked lighting devices |
US20160097545A1 (en) * | 2014-10-03 | 2016-04-07 | Kyungdong One Corporation | Remote control and management device for heating system using a smart phone application and method thereof |
US9964323B2 (en) * | 2015-01-19 | 2018-05-08 | Lennox Industries Inc. | Creation and configuration of a distributed heating, ventilation, and air conditioning network |
DE102015202791A1 (en) * | 2015-02-17 | 2016-08-18 | Robert Bosch Gmbh | A firmware update process wirelessly in a wide area network |
US10429809B2 (en) * | 2015-05-01 | 2019-10-01 | Lutron Technology Company Llc | Display and control of load control devices in a floorplan |
WO2016179253A1 (en) * | 2015-05-04 | 2016-11-10 | Greene Charles E | Automated system for lighting control |
CA3179801A1 (en) | 2015-08-05 | 2017-02-09 | Lutron Technology Company Llc | Commissioning and controlling load control devices |
WO2017024275A2 (en) | 2015-08-05 | 2017-02-09 | Lutron Electronics Co., Inc. | Load control system responsive to the location of an occupant and/or mobile device |
EP4247119A3 (en) | 2015-09-30 | 2023-09-27 | Lutron Technology Company LLC | System controller for controlling electrical loads |
WO2017075542A2 (en) | 2015-10-30 | 2017-05-04 | Lutron Electronics Co., Inc | Commissioning load control systems |
US11096862B2 (en) | 2016-01-22 | 2021-08-24 | Hayward Industries, Inc. | Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment |
US11720085B2 (en) | 2016-01-22 | 2023-08-08 | Hayward Industries, Inc. | Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment |
US10053911B2 (en) * | 2016-02-17 | 2018-08-21 | King Fahd University Of Petroleum And Minerals | System, device, and method for controlling smart windows |
TW201733400A (en) * | 2016-03-07 | 2017-09-16 | Luxul Tech Incorporation | Automatic switching system and method for smart switch |
TWI603634B (en) * | 2016-03-07 | 2017-10-21 | Wisdom switch control system and method with disconnection processing | |
CN109076686B (en) | 2016-03-22 | 2020-10-23 | 路创技术有限责任公司 | load control system |
US10187791B2 (en) * | 2016-04-06 | 2019-01-22 | Hrb Innovations, Inc. | Workstation and client device pairing |
CN105843059A (en) * | 2016-04-07 | 2016-08-10 | 杭州古北电子科技有限公司 | Intelligent control system realized through low-power long distance radio frequency wireless network and intelligent control method |
US9872369B2 (en) * | 2016-06-01 | 2018-01-16 | Xkglow Inc. | Lighting control system |
US11437814B2 (en) | 2016-07-05 | 2022-09-06 | Lutron Technology Company Llc | State retention load control system |
US10426017B2 (en) | 2016-07-05 | 2019-09-24 | Lutron Technology Company Llc | Controlling groups of electrical loads via multicast and/or unicast messages |
WO2018009563A1 (en) | 2016-07-05 | 2018-01-11 | Lutron Electronics Co., Inc. | State retention load control system |
WO2018029176A1 (en) * | 2016-08-12 | 2018-02-15 | Philips Lighting Holding B.V. | Controlled device and method for setting up same |
US10979961B2 (en) | 2016-10-07 | 2021-04-13 | Powercast Corporation | Automated system for lighting control |
MX2021014408A (en) | 2016-10-21 | 2022-12-14 | Lutron Tech Co Llc | Controlling groups of electrical loads. |
US10962384B2 (en) | 2016-10-28 | 2021-03-30 | Insight Energy Ventures, Llc | Method of disaggregating an energy usage signal of a usage area |
US11262093B2 (en) | 2016-10-28 | 2022-03-01 | Insight Energy Ventures, Llc | Method of intelligent demand response |
US10398007B2 (en) | 2017-05-05 | 2019-08-27 | Lutron Technology Company Llc | Control module for a lighting fixture |
DE102017113842A1 (en) * | 2017-06-22 | 2018-12-27 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Charging system for electric vehicles |
CN107463104A (en) * | 2017-08-20 | 2017-12-12 | 合肥智贤智能化科技有限公司 | A kind of air-conditioning system automatically adjusted |
BR102018068874A8 (en) * | 2017-09-19 | 2019-08-13 | Hunter Douglas | methods and apparatus for controlling architectural roofing |
WO2019126310A1 (en) | 2017-12-20 | 2019-06-27 | Hubbell Incorporated | Connected fan systems |
US11079421B2 (en) | 2018-02-09 | 2021-08-03 | Lutron Technology Company Llc | Self-test procedure for a control device |
EP3763170A2 (en) | 2018-03-08 | 2021-01-13 | Lutron Technology Company LLC | Backing up a load control system |
CN109028508B (en) * | 2018-06-01 | 2021-03-23 | 青岛海尔空调电子有限公司 | Power supply communication circuit of air conditioner wire controller |
US11049386B2 (en) | 2018-06-14 | 2021-06-29 | Eaton Intelligent Power Limited | Switch with current and voltage collection |
US10783772B2 (en) * | 2018-06-14 | 2020-09-22 | Eaton Intelligent Power Limited | Wireless switch with three-way control |
CN108965396A (en) * | 2018-06-21 | 2018-12-07 | 国网山东省电力公司电力科学研究院 | A kind of double gateway radio packet acquisition systems and acquisition method suitable for thermal test |
CN109068358B (en) * | 2018-07-05 | 2020-11-03 | 南京邮电大学 | A kind of handover method of short-range wireless optical communication system |
US10993110B2 (en) * | 2018-07-13 | 2021-04-27 | Nvidia Corp. | Connectionless fast method for configuring Wi-Fi on displayless Wi-Fi IoT device |
US10405404B1 (en) * | 2018-11-12 | 2019-09-03 | Abl Ip Holding Llc | Lighting controls data synchronization |
CA3121189C (en) | 2018-11-30 | 2023-09-19 | Lutron Technology Company Llc | Multi-location load control system |
MX2021010855A (en) | 2019-03-08 | 2022-01-19 | Lutron Tech Co Llc | Commissioning and controlling load control devices. |
US11388677B2 (en) | 2019-04-19 | 2022-07-12 | Lutron Technology Company, LLC | Control device having an adaptive transmit power |
US11564304B2 (en) * | 2019-04-30 | 2023-01-24 | Shafrir Romano | Dimmer system control |
CN114223187A (en) | 2019-06-21 | 2022-03-22 | 路创技术有限责任公司 | Coordinated start-up routine of control devices for a network |
US10873326B1 (en) | 2019-10-07 | 2020-12-22 | Eaton Intelligent Power Limited | Input voltage sensing using zero crossing detection |
CN110888363A (en) * | 2019-11-29 | 2020-03-17 | 乌鲁木齐明华智能电子科技有限公司 | Embedded service terminal based on linux system |
CA3160470A1 (en) | 2019-12-02 | 2021-06-10 | Galen Edgar Knode | Percentile floor link qualification |
US11770324B1 (en) | 2019-12-02 | 2023-09-26 | Lutron Technology Company Llc | Processing advertisement messages in a mesh network |
US20220385063A1 (en) | 2019-12-18 | 2022-12-01 | Lutron Technology Company Llc | Optimization of load control environments |
US12273256B2 (en) | 2020-05-08 | 2025-04-08 | Lutron Technology Company Llc | Assigning router devices in a mesh network |
EP3911123A1 (en) * | 2020-05-13 | 2021-11-17 | Harman Professional Denmark ApS | Settings yielding different spectra and similar color |
US12120798B2 (en) | 2020-12-04 | 2024-10-15 | Lutron Technology Company Llc | Real time locating system having lighting control devices |
US11259389B1 (en) | 2020-12-04 | 2022-02-22 | Lutron Technology Company Llc | Real time locating system having lighting control devices |
DE102021109689B4 (en) | 2021-04-16 | 2025-04-24 | Westnetz Gmbh | Transmitter communication device for cross-building acquisition of measurement data, receiver communication device, communication system and method |
Citations (266)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4864588A (en) | 1987-02-11 | 1989-09-05 | Hillier Technologies Limited Partnership | Remote control system, components and methods |
US4932037A (en) | 1987-02-11 | 1990-06-05 | Hillier Technologies Limited Partnership | Remote control system, components and methods |
US4995053A (en) | 1987-02-11 | 1991-02-19 | Hillier Technologies Limited Partnership | Remote control system, components and methods |
US5239205A (en) | 1991-05-02 | 1993-08-24 | Heath Company | Wireless multiple position switching system |
US5454077A (en) | 1990-04-17 | 1995-09-26 | Somfy | Communication system between a plurality of transmitters and receivers having relays responsive to those identifying codes of transmitters contained in its respective table memory |
US5488571A (en) | 1993-11-22 | 1996-01-30 | Timex Corporation | Method and apparatus for downloading information from a controllable light source to a portable information device |
US5519704A (en) | 1994-04-21 | 1996-05-21 | Cisco Systems, Inc. | Reliable transport protocol for internetwork routing |
US5602540A (en) | 1993-06-14 | 1997-02-11 | Simmonds Precision Products Inc. | Fluid gauging apparatus with inductive interrogation |
US5627863A (en) | 1994-07-15 | 1997-05-06 | Amati Communications Corporation | Frame synchronization in multicarrier transmission systems |
US5637964A (en) | 1995-03-21 | 1997-06-10 | Lutron Electronics Co., Inc. | Remote control system for individual control of spaced lighting fixtures |
US5637930A (en) | 1988-07-28 | 1997-06-10 | Lutron Electronics Co., Inc. | Wall-mountable switch & dimmer |
US5736965A (en) | 1996-02-07 | 1998-04-07 | Lutron Electronics Co. Inc. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US5812819A (en) | 1995-06-05 | 1998-09-22 | Shiva Corporation | Remote access apparatus and method which allow dynamic internet protocol (IP) address management |
US5838226A (en) | 1996-02-07 | 1998-11-17 | Lutron Electronics Co.Inc. | Communication protocol for transmission system for controlling and determining the status of electrical devices from remote locations |
US5848054A (en) | 1996-02-07 | 1998-12-08 | Lutron Electronics Co. Inc. | Repeater for transmission system for controlling and determining the status of electrical devices from remote locations |
US5905442A (en) | 1996-02-07 | 1999-05-18 | Lutron Electronics Co., Inc. | Method and apparatus for controlling and determining the status of electrical devices from remote locations |
WO1999046921A2 (en) | 1998-03-09 | 1999-09-16 | Nokia Mobile Phones Limited | A system for performing environmental measurements and for transferring measurement results |
US6167464A (en) | 1998-09-23 | 2000-12-26 | Rockwell Technologies, Llc | Mobile human/machine interface for use with industrial control systems for controlling the operation of process executed on spatially separate machines |
US6169377B1 (en) | 1996-03-13 | 2001-01-02 | Lutron Electronics Co., Inc. | Lighting control with wireless remote control and programmability |
WO2001052515A1 (en) | 2000-01-13 | 2001-07-19 | Thalia Products Inc. | Appliance communication and control system and appliances for use in same |
US20010024164A1 (en) | 2000-01-20 | 2001-09-27 | Hirofumi Kawamura | Terminal device, apparatus and method for controlling a terminal device, and method of controlling a process in a terminal device |
WO2001074045A1 (en) | 2000-03-24 | 2001-10-04 | Abb Metering Ltd. | Transmission of control information |
US6324089B1 (en) | 1999-04-16 | 2001-11-27 | Somfy | Actuators remotely controlled by transmitters possessing an identity number |
US20020043938A1 (en) | 2000-08-07 | 2002-04-18 | Lys Ihor A. | Automatic configuration systems and methods for lighting and other applications |
US6380696B1 (en) | 1998-12-24 | 2002-04-30 | Lutron Electronics Co., Inc. | Multi-scene preset lighting controller |
US20020073183A1 (en) | 2000-12-13 | 2002-06-13 | Yoon Sang Chul | Apparatus and method for remotely controlling household appliances |
US20020087436A1 (en) | 1996-06-20 | 2002-07-04 | Warren E. Guthrie | Random interval inventory system |
US6437692B1 (en) | 1998-06-22 | 2002-08-20 | Statsignal Systems, Inc. | System and method for monitoring and controlling remote devices |
US20020113909A1 (en) | 2001-02-21 | 2002-08-22 | Jeffrey Sherwood | Methods and devices for alternative designs of interior space |
EP0767551B1 (en) | 1995-10-02 | 2002-08-28 | Telia Ab | Method to increase capacity in DECT |
WO2002071689A2 (en) | 2001-03-08 | 2002-09-12 | Koninklijke Philips Electronics N.V. | Method and system for assigning and binding a network address of a ballast |
US20020154025A1 (en) | 2001-04-24 | 2002-10-24 | Koniklijke Philips Electronics N.V. | Wireless addressable lighting method and apparatus |
WO2003007665A1 (en) | 2001-07-12 | 2003-01-23 | Koninklijke Philips Electronics N.V. | Binding protocol using randmization |
US20030034898A1 (en) | 2001-08-20 | 2003-02-20 | Shamoon Charles G. | Thermostat and remote control system and method |
US6526581B1 (en) | 1999-08-03 | 2003-02-25 | Ucentric Holdings, Llc | Multi-service in-home network with an open interface |
US20030040813A1 (en) | 1999-12-30 | 2003-02-27 | C-Smart Corporation | Method and apparatus for providing distributed control of a home automation system |
US20030109270A1 (en) | 2001-06-01 | 2003-06-12 | Peter Shorty | System and a method for building routing tables and for routing signals in an automation system |
US20030151493A1 (en) | 2002-02-13 | 2003-08-14 | Swisscom Ag | Access control system, access control method and devices suitable therefor |
US20030197993A1 (en) | 2002-04-19 | 2003-10-23 | Marian Mirowski | Programmable power management switch |
US6687487B1 (en) | 1996-02-07 | 2004-02-03 | Lutron Electronics, Co., Inc. | Repeater for transmission system for controlling and determining the status of electrical devices from remote locations |
US20040036624A1 (en) | 2002-08-09 | 2004-02-26 | Ballew Michael A. | Virtual electronic remote control device |
US20040052076A1 (en) | 1997-08-26 | 2004-03-18 | Mueller George G. | Controlled lighting methods and apparatus |
WO2004023849A1 (en) | 2002-09-04 | 2004-03-18 | Koninklijke Philips Electronics N.V. | Master-slave oriented two-way rf wireless lighting control system |
US20040058706A1 (en) | 2001-11-01 | 2004-03-25 | Williamson Charles G. | Intelligent microwave oven |
US20040059840A1 (en) | 2002-06-20 | 2004-03-25 | Perego Richard E. | Method and apparatus for the dynamic scheduling of device commands |
WO2004056157A1 (en) | 2002-12-16 | 2004-07-01 | Koninklijke Philips Electronics N.V. | System and method for lighting control network recovery from master failure |
US20040193998A1 (en) | 2003-03-25 | 2004-09-30 | Wegener Communications, Inc. | Software download control system, apparatus and method |
US6803728B2 (en) | 2002-09-16 | 2004-10-12 | Lutron Electronics Co., Inc. | System for control of devices |
US20040217718A1 (en) | 2003-05-02 | 2004-11-04 | Russikesh Kumar | Digital addressable electronic ballast and control unit |
US20050030153A1 (en) | 2002-03-15 | 2005-02-10 | Wayne-Dalton Corp. | Operator for a movable barrier and method of use |
US6856236B2 (en) | 2000-04-10 | 2005-02-15 | Ensys A/S | RF home automation system comprising nodes with dual functionality |
US6859644B2 (en) | 2002-03-13 | 2005-02-22 | Koninklijke Philips Electronics N.V. | Initialization of wireless-controlled lighting systems |
US20050045429A1 (en) | 2003-08-01 | 2005-03-03 | Baker William J. | Coordinated lift system with user selectable RF channels |
US20050048944A1 (en) | 2003-09-02 | 2005-03-03 | Jeng-Shyong Wu | Wireless remotely controlled electronic equipment and the connecting devices for the same |
US6876295B1 (en) | 1998-12-16 | 2005-04-05 | Symbol Technologies, Inc. | Wireless communication devices configurable via passive tags |
US6891838B1 (en) | 1998-06-22 | 2005-05-10 | Statsignal Ipc, Llc | System and method for monitoring and controlling residential devices |
US6903650B2 (en) | 2002-05-20 | 2005-06-07 | Wayne-Dalton Corp. | Operator with transmitter storage overwrite protection and method of use |
US6914893B2 (en) | 1998-06-22 | 2005-07-05 | Statsignal Ipc, Llc | System and method for monitoring and controlling remote devices |
US6914533B2 (en) | 1998-06-22 | 2005-07-05 | Statsignal Ipc Llc | System and method for accessing residential monitoring devices |
US20050156708A1 (en) | 2004-01-16 | 2005-07-21 | Worldcom, Inc. | Method and system for secured wireless data transmission to and from a remote device |
US6927547B2 (en) | 2003-06-10 | 2005-08-09 | Lutron Electronics Co., Inc. | System bridge and timeclock for RF controlled lighting systems |
US20050253538A1 (en) | 2004-03-29 | 2005-11-17 | Suresh Shah | Remotely controlled lighting system and controller switch for operation on same |
US20050285547A1 (en) | 1997-08-26 | 2005-12-29 | Color Kinetics Incorporated | Light emitting diode based products |
US20060027081A1 (en) | 2004-08-06 | 2006-02-09 | Henry Chang | Lighting controller |
US7035270B2 (en) | 1999-12-30 | 2006-04-25 | General Instrument Corporation | Home networking gateway |
US20060109203A1 (en) | 2004-11-19 | 2006-05-25 | Patent-Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh | Method for the allocation of short addresses in illumination systems |
US20060154598A1 (en) | 2003-06-11 | 2006-07-13 | Rudland Philip A | Configuring a radio network for selective broadcast |
US7085627B2 (en) | 2003-12-12 | 2006-08-01 | Lutron Electronics Co., Inc. | Integrated system for controlling lights and shades |
US20060171332A1 (en) | 2005-02-03 | 2006-08-03 | Control4 Corporation | Device discovery and channel selection in a wireless networking environment |
US20060174102A1 (en) | 2005-01-28 | 2006-08-03 | Control4 Corporation | Method and apparatus for device detection and multi-mode security in a control network |
US7089066B2 (en) | 2003-04-24 | 2006-08-08 | Colorado Vnet, Llc | Distributed control systems and methods |
US20060192697A1 (en) | 2003-08-08 | 2006-08-31 | Quick Ashleigh G | Collision detection in a non-dominant bit radio network communication system |
US7103511B2 (en) | 1998-10-14 | 2006-09-05 | Statsignal Ipc, Llc | Wireless communication networks for providing remote monitoring of devices |
US7102502B2 (en) | 2001-12-05 | 2006-09-05 | Somfy Sas | Method for constituting a home automation network |
US7106261B2 (en) | 2004-02-25 | 2006-09-12 | Control4 Corporation | System for remotely controlling an electrical switching device |
US20060202851A1 (en) | 2005-03-12 | 2006-09-14 | Cash Audwin W | Handheld programmer for lighting control system |
US7126291B2 (en) | 2003-11-06 | 2006-10-24 | Lutron Electronics Co., Inc. | Radio frequency lighting control system programming device and method |
US20060251059A1 (en) | 2005-05-09 | 2006-11-09 | Sony Corporation | Remote control system, remote commander and remote control method, apparatus to be remotely controlled, and computer system |
US20060256798A1 (en) | 2003-08-08 | 2006-11-16 | Clipsal Integrated Systems Pty Ltd. | Radio network communication system and protocol |
EP1727399A2 (en) | 2005-05-24 | 2006-11-29 | ERCO Leuchten GmbH | Lamp with memory |
US20060273970A1 (en) | 2005-06-06 | 2006-12-07 | Lutron Electronics Co., Inc. | Load control device having a compact antenna |
WO2006133172A2 (en) | 2005-06-06 | 2006-12-14 | Lutron Electronics Co., Inc. | Remote control lighting control system |
US20060285150A1 (en) | 2005-01-31 | 2006-12-21 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Regional proximity for shared image device(s) |
US20070051529A1 (en) | 2005-03-03 | 2007-03-08 | Paul Soccoli | Programming template for a control device |
US20070083294A1 (en) | 2005-09-15 | 2007-04-12 | Bruno David A | Wireless data acquisition system |
US20070085699A1 (en) | 2005-09-12 | 2007-04-19 | Acuity Brands, Inc. | Network operation center for a light management system having networked intelligent luminaire managers |
US7211968B2 (en) | 2003-07-30 | 2007-05-01 | Colorado Vnet, Llc | Lighting control systems and methods |
US20070097993A1 (en) | 2005-11-02 | 2007-05-03 | Bojahra Richard D | System and method for remote control of local devices over a wide area network |
US7219141B2 (en) | 1999-01-22 | 2007-05-15 | Leviton Manufacturing Co., Inc. | Method of adding a device to a network |
US7218998B1 (en) | 2005-07-11 | 2007-05-15 | Neale Stephen D | System and method for limiting power demand in an energy delivery system |
US20070112939A1 (en) | 2005-11-17 | 2007-05-17 | Sbc Knowledge Ventures L.P. | System and method for home automation |
US20070110192A1 (en) | 2005-06-06 | 2007-05-17 | Steiner James P | Method of communicating between control devices of a load control system |
WO2007069129A2 (en) | 2005-12-15 | 2007-06-21 | Koninklijke Philips Electronics N.V. | Remote control with rf protocol |
US20070165997A1 (en) | 2003-12-26 | 2007-07-19 | Hidekazu Suzuki | Control signal receiving apparatus |
US20070176788A1 (en) | 2006-02-02 | 2007-08-02 | Zion Mor | Remote control system for controlling wall-mounted switches |
US20070229300A1 (en) | 2006-03-17 | 2007-10-04 | Tsuyoshi Masato | Remote control signal transfer system |
US7307542B1 (en) | 2003-09-03 | 2007-12-11 | Vantage Controls, Inc. | System and method for commissioning addressable lighting systems |
US7323991B1 (en) | 2005-05-12 | 2008-01-29 | Exavera Technologies Incorporated | System and method for locating and communicating with personnel and equipment in a facility |
US20080055073A1 (en) | 2006-09-06 | 2008-03-06 | Lutron Electronics Co., Inc. | Method of discovering a remotely-located wireless control device |
US7345270B1 (en) | 2006-08-03 | 2008-03-18 | Jones Richard S | Photocontrol with radio-controlled timer and a decoder |
US7346016B2 (en) | 2002-01-03 | 2008-03-18 | Homecontrol A/S | Method and system for transmission of signals to nodes in a system |
US20080068204A1 (en) | 2006-09-06 | 2008-03-20 | Lutron Electronics Co., Inc. | Method of restoring a remote wireless control device to a known state |
US20080068126A1 (en) | 2006-09-06 | 2008-03-20 | Lutron Electronics Co., Inc. | Procedure for addressing remotely-located radio frequency components of a control system |
DE102006046489A1 (en) | 2006-09-29 | 2008-04-03 | Tridonicatco Gmbh & Co. Kg | Operating device and method for operating light bulbs |
US7358927B2 (en) | 2004-10-26 | 2008-04-15 | Eaton Corporation | Antenna employing a cover |
US20080089266A1 (en) | 2004-10-26 | 2008-04-17 | Jean-Michel Orsat | Method For Communicating In A Network Comprising Wire And Wireless Nodes |
US7362285B2 (en) | 2004-06-21 | 2008-04-22 | Lutron Electronics Co., Ltd. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US20080111491A1 (en) | 2006-11-13 | 2008-05-15 | Spira Joel S | Radio-frequency lighting control system |
US20080136261A1 (en) | 2006-12-11 | 2008-06-12 | Lutron Electronics Co., Inc. | Load control system having a plurality of repeater devices |
US20080136663A1 (en) | 2006-09-06 | 2008-06-12 | Lutron Electronics Co., Inc. | Method of establishing communication with wireless control devices |
US20080136356A1 (en) | 2006-11-17 | 2008-06-12 | Thomas Lawrence Zampini | Apparatus and method of using lighting systems to enhance brand recognition |
US20080148359A1 (en) | 2006-07-07 | 2008-06-19 | Research In Motion Limited | Provisioning methods and apparatus with use of a provisioning essid derived from both predetermined criteria and network-specific criteria |
WO2008092082A2 (en) | 2007-01-26 | 2008-07-31 | Autani Corporation | Upgradeable automation devices, systems, architectures, and methods for energy management and other applications |
WO2008095250A1 (en) | 2007-02-09 | 2008-08-14 | Clipsal Australia Pty Ltd | Wireless network communications system |
US20080192767A1 (en) | 2007-02-08 | 2008-08-14 | Howe William H | Method of transmitting a high-priority message in a lighting control system |
US20080218099A1 (en) | 2007-03-05 | 2008-09-11 | Lutron Electronics Co., Inc. | Method of programming a lighting preset from a radio-frequency remote control |
US20080258650A1 (en) | 2007-04-23 | 2008-10-23 | Lutron Electronics Co., Inc. | Multiple Location Load Control System |
US20080265799A1 (en) * | 2007-04-20 | 2008-10-30 | Sibert W Olin | Illumination control network |
US20080284327A1 (en) | 2004-09-08 | 2008-11-20 | Tae-Wook Kang | Organic light emitting display and method of fabricating the same |
US20090001941A1 (en) | 2007-06-29 | 2009-01-01 | Microsoft Corporation | Inductive Powering Surface for Powering Portable Devices |
WO2009010916A2 (en) | 2007-07-16 | 2009-01-22 | Koninklijke Philips Electronics N.V. | Driving a light source |
US20090079268A1 (en) | 2007-03-02 | 2009-03-26 | Nigel Power, Llc | Transmitters and receivers for wireless energy transfer |
US20090085408A1 (en) | 2007-09-01 | 2009-04-02 | Maquet Gmbh & Co. Kg | Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device |
US7525928B2 (en) | 2003-06-16 | 2009-04-28 | Microsoft Corporation | System and process for discovery of network-connected devices at remote sites using audio-based discovery techniques |
US20090113229A1 (en) | 2007-10-29 | 2009-04-30 | Agilent Technologies, Inc. | Method and a system for synchronising respective state transitions in a group of devices |
US20090150004A1 (en) | 2005-09-30 | 2009-06-11 | Koninklijke Philips Electronics, N.V. | Wireless building automation and control network |
US20090167484A1 (en) | 2007-12-31 | 2009-07-02 | Intel Corporation | Rfid enabled light switches |
EP1693991B1 (en) | 2002-01-03 | 2009-07-08 | Homecontrol A/S | Method and system for transmission of signals to nodes in a system |
US20090206983A1 (en) | 2008-02-19 | 2009-08-20 | Lutron Electronics Co., Inc. | Communication System for a Radio-Frequency Load Control System |
US20090227205A1 (en) | 2008-03-04 | 2009-09-10 | Broadcom Corporation | Inductively coupled integrated circuit with multiple access protocol and methods for use therewith |
US7598684B2 (en) | 2001-05-30 | 2009-10-06 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling devices in a networked lighting system |
US20090251352A1 (en) | 2008-04-04 | 2009-10-08 | Lutron Electronics Co., Inc. | Wireless Battery-Powered Remote Control Having Multiple Mounting Means |
US20090302782A1 (en) * | 2008-06-10 | 2009-12-10 | Tesla Controls Corporation | Systems and methods for rules based, automated lighting control |
US20090315672A1 (en) | 2008-06-18 | 2009-12-24 | Lear Corporation | Method of programming a wireless transmitter to a wireless receiver |
US20090322251A1 (en) | 2006-06-27 | 2009-12-31 | Koninklijke Philips Electronics N.V. | Large area lighting |
US20100012738A1 (en) | 2006-03-17 | 2010-01-21 | Hee Wan Park | Thermostat Apparatus |
US20100031076A1 (en) | 2008-07-29 | 2010-02-04 | Square D Company | Configuration Management System for power monitoring and protection system devices |
US20100052574A1 (en) | 2008-09-03 | 2010-03-04 | Matthew Robert Blakeley | Battery-powered occupancy sensor |
US20100052576A1 (en) | 2008-09-03 | 2010-03-04 | Steiner James P | Radio-frequency lighting control system with occupancy sensing |
US7687744B2 (en) | 2002-05-13 | 2010-03-30 | S.C. Johnson & Son, Inc. | Coordinated emission of fragrance, light, and sound |
US20100081375A1 (en) | 2008-09-30 | 2010-04-01 | Apple Inc. | System and method for simplified control of electronic devices |
US20100104255A1 (en) | 2008-10-28 | 2010-04-29 | Jaekwan Yun | System and method for orchestral media service |
US20100114242A1 (en) | 2008-11-04 | 2010-05-06 | Thomas Doerr | Modular universal programming device |
US7714790B1 (en) | 2009-10-27 | 2010-05-11 | Crestron Electronics, Inc. | Wall-mounted electrical device with modular antenna bezel frame |
US20100127821A1 (en) | 2008-11-25 | 2010-05-27 | Jones Derek W | Access Control |
US20100134341A1 (en) | 2008-12-03 | 2010-06-03 | Priest Roger R | Track fan remote control system |
US20100141153A1 (en) | 2006-03-28 | 2010-06-10 | Recker Michael V | Wireless lighting devices and applications |
US7756556B2 (en) | 2006-11-14 | 2010-07-13 | Leviton Manufacturing Company, Inc. | RF antenna integrated into a control device installed into a wall switch box |
US7756097B2 (en) | 2005-12-19 | 2010-07-13 | Motorola, Inc. | Rapid push-to-send data exchange method and apparatus |
US7756086B2 (en) | 2004-03-03 | 2010-07-13 | Sipco, Llc | Method for communicating in dual-modes |
CN101789978A (en) | 2009-01-22 | 2010-07-28 | 敦泰科技(深圳)有限公司 | DMX512 data receivers and method thereof for automatic addressing in network |
US20100207532A1 (en) | 2006-12-05 | 2010-08-19 | C.P. Electronics Limited | Lighting controller |
US20100207759A1 (en) | 2009-02-13 | 2010-08-19 | Lutron Electronics Co., Inc. | Method and Apparatus for Configuring a Wireless Sensor |
US20100235008A1 (en) | 2007-08-28 | 2010-09-16 | Forbes Jr Joseph W | System and method for determining carbon credits utilizing two-way devices that report power usage data |
US20100238001A1 (en) | 2009-03-20 | 2010-09-23 | Lutron Electronics Co., Inc. | Method of Automatically Programming a Load Control Device Using a Remote Identification Tag |
US20100238003A1 (en) | 2009-03-17 | 2010-09-23 | Jetlun Corporation | Method and system for intelligent energy network management control system |
US7805134B2 (en) | 2007-04-03 | 2010-09-28 | Ricoh Company, Ltd. | Configuration and management of wireless network devices |
US20100244706A1 (en) | 2009-03-27 | 2010-09-30 | Lutron Electronics Co., Inc. | Method of Calibrating a Daylight Sensor |
US20100262296A1 (en) | 2008-06-25 | 2010-10-14 | HID Laboratories, Inc. | Lighting control system and method |
US7821160B1 (en) | 2010-01-05 | 2010-10-26 | Inncom International Inc. | Modular wall box system |
US20100289430A1 (en) | 2009-05-14 | 2010-11-18 | Cooper Technologies Company | Universal Lighting Source Controller with Integral Power Metering |
US20100303099A1 (en) | 2009-05-29 | 2010-12-02 | Aclara Power-Line Systems, Inc. | Point-to-point communications systems particularly for use in power distribution system |
US7852765B2 (en) | 2005-03-04 | 2010-12-14 | Somfy Sas | Actuator control method |
US7853221B2 (en) | 2004-11-12 | 2010-12-14 | Homerun Holdings Corp. | Network bridge device and methods for programming and using the same |
WO2010143130A1 (en) | 2009-06-10 | 2010-12-16 | Koninklijke Philips Electronics N.V. | Advanced commissioning of wireless network systems |
US20110006908A1 (en) | 2006-02-27 | 2011-01-13 | Frantz Frederick E | Synchronization of a Plurality of Devices in a Wireless Sensor Arrangement |
US20110012738A1 (en) | 2008-03-06 | 2011-01-20 | Panasonic Corporation | Appliance management system and gas supply system |
JP2011023819A (en) | 2009-07-13 | 2011-02-03 | Casio Computer Co Ltd | Image capturing apparatus and method, and program |
US7889051B1 (en) | 2003-09-05 | 2011-02-15 | The Watt Stopper Inc | Location-based addressing lighting and environmental control system, device and method |
US20110039137A1 (en) | 2009-08-11 | 2011-02-17 | Brian Allen Engle | Battery cell with integrated sensing platform |
US20110043163A1 (en) | 2009-08-24 | 2011-02-24 | Access Business Group International Llc | Wireless power distribution and control system |
US20110046792A1 (en) | 2009-08-21 | 2011-02-24 | Imes Kevin R | Energy Management System And Method |
US20110121654A1 (en) | 2006-03-28 | 2011-05-26 | Recker Michael V | Remote switch sensing in lighting devices |
DE102009056152A1 (en) | 2009-11-27 | 2011-06-01 | Ledon Lighting Jennersdorf Gmbh | Lighting Remote Control |
US20110202910A1 (en) | 2010-02-15 | 2011-08-18 | General Electric Company | Low cost and flexible energy management system |
US20110208369A1 (en) | 2010-02-19 | 2011-08-25 | Samsung Electronics Co., Ltd. | Demand response method, computer-readable medium and system |
US8031650B2 (en) | 2004-03-03 | 2011-10-04 | Sipco, Llc | System and method for monitoring remote devices with a dual-mode wireless communication protocol |
US20110244897A1 (en) | 2010-04-01 | 2011-10-06 | Olympus Corporation | Wireless communication terminal, wireless communication method, and wireless communication system |
US20110244798A1 (en) | 2010-02-24 | 2011-10-06 | Wherepro, Llc | Data Packet Generator and Implementations of Same |
US8035255B2 (en) | 2008-09-27 | 2011-10-11 | Witricity Corporation | Wireless energy transfer using planar capacitively loaded conducting loop resonators |
US20110282495A1 (en) | 2010-05-14 | 2011-11-17 | Brian Fischer | Modular seat actuation control system and communication method |
US20110282468A1 (en) * | 2009-01-29 | 2011-11-17 | Koninklijke Philips Electronics N.V. | Lighting control system responsive to ambient lighting conditions |
US20110305200A1 (en) | 2009-02-24 | 2011-12-15 | Koninklijke Philips Electronics N.V. | Method of controlling a lighting system |
US20120018578A1 (en) | 2010-07-22 | 2012-01-26 | Parker-Hannifin Corporation | Near synchronous controlled induction motor drive actuation system |
US20120039400A1 (en) | 2010-08-13 | 2012-02-16 | Aclara Power-Line Systems Inc. | Digital two way automatic communication system (twacs) outbound receiver and method |
US8146074B2 (en) | 2006-04-14 | 2012-03-27 | Fujitsu Limited | Computer-readable recording medium containing application management program, and method and apparatus for application management |
US20120086561A1 (en) | 2010-10-07 | 2012-04-12 | General Electric Company | Outdoor lighting system |
US20120086562A1 (en) | 2010-08-20 | 2012-04-12 | Ecofactor, Inc. | System and method for optimizing use of plug-in air conditioners and portable heaters |
US20120091910A1 (en) | 2010-10-13 | 2012-04-19 | Wanfeng Zhang | Dimming Control for Electronic Lamp |
US20120093039A1 (en) | 2010-09-30 | 2012-04-19 | Broadcom Corporation | Portable computing device having an rf based architecture |
US20120094658A1 (en) | 2010-10-18 | 2012-04-19 | Verizon Patent And Licensing, Inc. | Enterprise femtocell signaling |
US20120108230A1 (en) | 2005-08-19 | 2012-05-03 | Nexstep, Inc. | Consumer electronic registration, control and support concierge device and method |
US8173920B2 (en) | 2007-04-23 | 2012-05-08 | Lutron Electronics Co., Inc. | Load control device having a modular assembly |
US20120158203A1 (en) | 2010-12-17 | 2012-06-21 | Crestron Electronics, Inc. | Personal Energy Management System |
US20120163663A1 (en) | 2010-12-27 | 2012-06-28 | Medtronic, Inc. | Security use restrictions for a medical communication module and host device |
US20120175969A1 (en) | 2010-09-14 | 2012-07-12 | Maughan Thomas G | Wireless Power and Data Transfer Device for Harsh and Extreme Environments |
US8254838B2 (en) | 2009-05-15 | 2012-08-28 | Crestron Electronics Inc. | RF wireless device including an infrared beacon for presence detection |
US20120235579A1 (en) | 2008-04-14 | 2012-09-20 | Digital Lumens, Incorporated | Methods, apparatus and systems for providing occupancy-based variable lighting |
US20120235504A1 (en) | 2008-09-27 | 2012-09-20 | Kesler Morris P | Tunable wireless energy transfer for sensors |
US20120254961A1 (en) | 2011-03-31 | 2012-10-04 | Belkin International, Inc. | Method of Distributing Information Regarding One or More Electrical Devices and System for the Same |
US20120257543A1 (en) | 2011-04-08 | 2012-10-11 | Avraham Baum | Network configuration for devices with constrained resources |
US20120274670A1 (en) | 2011-04-29 | 2012-11-01 | Sang-Gon Lee | Method and system for controlling light by using image code |
US20120275391A1 (en) | 2011-04-29 | 2012-11-01 | Motorola Solutions, Inc. | Granting scheduling requests in a wireless communication system |
US20120303768A1 (en) | 2011-05-26 | 2012-11-29 | Electric Imp, Inc. | Modularized control system to enable networked control and sensing of other devices |
US20120306621A1 (en) | 2011-06-03 | 2012-12-06 | Leviton Manufacturing Co., Inc. | Lighting control network configuration with rfid devices |
US20120315848A1 (en) | 2011-06-10 | 2012-12-13 | Darin William Smith | Processing near field communications between active/passive devices and a control system |
US20120322370A1 (en) | 2011-06-16 | 2012-12-20 | Aq Co., Ltd. | Near field communication-enabled mobile communication terminal and method of controlling the same |
US8339247B2 (en) | 2006-09-06 | 2012-12-25 | Koninklijke Philips Electronics N.V. | Lighting control |
US20120328302A1 (en) | 2011-06-23 | 2012-12-27 | Casio Computer Co., Ltd. | Information transmission system, information sending device, information receiving device, information transmission method, information sending method, information receiving method and program product |
US20130014224A1 (en) | 2011-07-05 | 2013-01-10 | Texas Instruments Incorporated | Method, system and computer program product for wirelessly connecting a device to a network |
US20130010018A1 (en) | 2011-06-30 | 2013-01-10 | Lutron Electronics Co., Inc. | Method Of Optically Transmitting Digital Information From A Smart Phone To A Control Device |
US8364319B2 (en) | 2008-04-21 | 2013-01-29 | Inncom International Inc. | Smart wall box |
US20130030589A1 (en) | 2011-06-30 | 2013-01-31 | Lutron Electronics Co., Inc. | Load Control Device Having Internet Connectivity |
US20130026947A1 (en) | 2011-06-30 | 2013-01-31 | Lutron Electronics Co., Inc. | Method Of Programming A Load Control Device Using A Smart Phone |
US8368310B1 (en) | 2012-03-23 | 2013-02-05 | Inncom International, Inc. | System and method for distributed lighting device control |
US20130051375A1 (en) | 2011-08-24 | 2013-02-28 | Sergey Chemishkian | Passive rf devices that communicate using a wireless network protocol |
US8396007B2 (en) | 2010-04-16 | 2013-03-12 | Honeywell International Inc. | Wireless device deployment with reliable links |
US20130073431A1 (en) | 2011-03-18 | 2013-03-21 | Lutron Electronics Co., Inc. | Product Display For Wireless Load Control Devices |
US8416074B2 (en) | 2009-05-07 | 2013-04-09 | Laurence P. Sadwick | Solar powered portable control panel |
US20130100855A1 (en) | 2011-10-25 | 2013-04-25 | Samsung Electronics Co., Ltd. | Method and apparatus for wi-fi connection using wi-fi protected setup in portable terminal |
US20130134783A1 (en) | 2011-05-31 | 2013-05-30 | Shahriyar Mohammediyan | Adaptive load circuit |
US20130187563A1 (en) | 2012-01-19 | 2013-07-25 | Toshiba Lighting & Technology Corporation | Dimming device and lighting system |
US20130211844A1 (en) | 2010-05-06 | 2013-08-15 | Laurence P. Sadwick | Solar Powered Portable Control Panel |
US20130223279A1 (en) | 2012-02-24 | 2013-08-29 | Peerapol Tinnakornsrisuphap | Sensor based configuration and control of network devices |
US8525372B2 (en) | 2009-05-31 | 2013-09-03 | Huadao Huang | Feather-touch dimming switch |
US8548607B1 (en) | 2008-11-03 | 2013-10-01 | Autani Corp. | Automation system network management, architectures, and methods and applications thereof |
US20130261821A1 (en) * | 2011-10-04 | 2013-10-03 | Advanergy, Inc. | Power distribution system and method |
US20130286889A1 (en) | 2012-04-17 | 2013-10-31 | Qualcomm Incorporated | Using a mobile device to enable another device to connect to a wireless network |
US8598978B2 (en) | 2010-09-02 | 2013-12-03 | Lutron Electronics Co., Inc. | Method of configuring a two-way wireless load control system having one-way wireless remote control devices |
US20130322281A1 (en) | 2012-06-01 | 2013-12-05 | Crestron Electronics, Inc. | Commissioning of Wireless Devices in Personal Area Networks |
US20140070919A1 (en) | 2012-09-05 | 2014-03-13 | Crestron Electronics, Inc. | User Identification and Location Determination in Control Applications |
US20140106735A1 (en) | 2012-10-12 | 2014-04-17 | Crestron Electronics, Inc. | User Identification and Location Determination in Control Applications |
US8742686B2 (en) | 2007-09-24 | 2014-06-03 | Integrated Illumination Systems, Inc. | Systems and methods for providing an OEM level networked lighting system |
US20140163751A1 (en) * | 2011-02-16 | 2014-06-12 | Kortek Industries Pty Ltd. | Wireless power, light and automation control |
US20140175875A1 (en) | 2012-12-21 | 2014-06-26 | Lutron Electronics Co., Inc. | Multiple network access load control devices |
US20140180487A1 (en) | 2012-12-21 | 2014-06-26 | Lutron Electronics Co., Inc. | Operational coordination of load control devices |
US20140177469A1 (en) | 2012-12-21 | 2014-06-26 | Lutron Electronics Co., Inc. | Network access coordination of load control devices |
US8792401B2 (en) | 2008-10-16 | 2014-07-29 | Synapse Wireless, Inc. | Systems and methods for reducing power consumption in communication networks |
US20140277805A1 (en) | 2013-03-15 | 2014-09-18 | Lutron Electronics Co., Inc. | Load control device user interface and database management using near field communication (nfc) |
US20140289825A1 (en) | 2013-03-21 | 2014-09-25 | Nextbit Systems Inc. | Connecting to wi-fi network based off approval from another user device |
US20140304773A1 (en) | 2013-04-05 | 2014-10-09 | Greatbatch Ltd. | Systems, devices, components and methods for communicating with an imd using a portable electronic device and a mobile computing device |
US8892261B2 (en) | 2007-05-24 | 2014-11-18 | Koninklijke Philips N.V. | System and method for automatically creating a specific atmosphere by controlling contributions of sensorial perceptible stimulus means |
US20140375421A1 (en) | 2013-06-20 | 2014-12-25 | Honeywell International Inc. | Systems and methods for enabling access control via mobile devices |
US20140375428A1 (en) | 2012-03-05 | 2014-12-25 | Fitbit, Inc. | Near Field Communication System, and Method of Operating Same |
US20150017973A1 (en) | 2011-01-08 | 2015-01-15 | Steven K. Gold | Proximity-Enabled Remote Control |
US20150097666A1 (en) | 2013-10-07 | 2015-04-09 | Google Inc. | Hazard Detection Unit Providing Intuitive Illumination-Based Status Signaling |
US9049753B1 (en) * | 2011-08-19 | 2015-06-02 | Appalachian Lighting Systems, Inc. | Lighting device monitor and communication apparatus |
US9066381B2 (en) | 2011-03-16 | 2015-06-23 | Integrated Illumination Systems, Inc. | System and method for low level dimming |
US20150200925A1 (en) | 2012-07-27 | 2015-07-16 | Assa Abloy Ab | Presence-based credential updating |
US20150239353A1 (en) | 2012-06-21 | 2015-08-27 | Renault S.A.S. | Method for controlling the charging of a battery of an electric vehicle in a non-contact charging system |
US20150259078A1 (en) | 2014-03-15 | 2015-09-17 | Micro Mobio Corporation | Handy base station system, device and method |
US9178369B2 (en) | 2011-01-18 | 2015-11-03 | Mojo Mobility, Inc. | Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
CA2892464A1 (en) | 2014-05-23 | 2015-11-23 | Gecko Alliance Group Inc. | Light bulb, intelligent lighting device and method and system for use in configuring same |
US20150342011A1 (en) | 2014-05-23 | 2015-11-26 | Gecko Alliance Group Inc. | Light bulb and method and system for use in configuring same |
US9253857B2 (en) * | 2012-03-05 | 2016-02-02 | Empire Technology Development Llc | Integrated occupancy and ambient light sensors |
US9288228B2 (en) | 2011-08-05 | 2016-03-15 | Nokia Technologies Oy | Method, apparatus, and computer program product for connection setup in device-to-device communication |
US20160119032A1 (en) | 2011-02-11 | 2016-04-28 | Samsung Electronics Co., Ltd. | Mobile device and method for performing function based on short-range communication |
US20160148449A1 (en) | 2011-12-22 | 2016-05-26 | Airbus Operations Gmbh | Access system for a vehicle and method for managing access to a vehicle |
US9368025B2 (en) | 2011-08-29 | 2016-06-14 | Lutron Electronics Co., Inc. | Two-part load control system mountable to a single electrical wallbox |
GB2533675A (en) | 2013-07-30 | 2016-06-29 | Paxton Access Ltd | Communication method and system |
US9445485B2 (en) | 2014-10-24 | 2016-09-13 | Express Imaging Systems, Llc | Detection and correction of faulty photo controls in outdoor luminaires |
US9548797B1 (en) | 2016-02-16 | 2017-01-17 | Telensa Limited | Lighting unit with near field communication, integrated circuit and methods therefor |
US9641959B2 (en) | 2014-05-23 | 2017-05-02 | Gecko Alliance Group Inc. | Household for industrial device including programmable controller and method device and system for use in configuring same |
WO2018099793A1 (en) | 2016-11-30 | 2018-06-07 | Inventio Ag | Configuring accessing right to elevator control system |
US20180168019A1 (en) | 2016-12-09 | 2018-06-14 | Lutron Electronics Co., Inc. | Load control system having a visible light sensor |
US10314132B1 (en) * | 2018-07-26 | 2019-06-04 | California Eastern Laboratories, Inc. | Universal wireless luminaire controller and method of use |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3322308A (en) | 1966-05-24 | 1967-05-30 | Clark Mfg Co J L | Plastic container cover with hinged closures |
US5248919A (en) | 1992-03-31 | 1993-09-28 | Lutron Electronics Co., Inc. | Lighting control device |
US6813525B2 (en) | 2000-02-25 | 2004-11-02 | Square D Company | Energy management system |
US6519509B1 (en) * | 2000-06-22 | 2003-02-11 | Stonewater Software, Inc. | System and method for monitoring and controlling energy distribution |
CA2357382A1 (en) * | 2001-09-17 | 2003-03-17 | Soma Networks, Inc. | Software update method, apparatus and system |
US7463164B2 (en) | 2004-02-13 | 2008-12-09 | Williams Don P | Method and apparatus for remote control of electronic equipment |
US7847706B1 (en) * | 2004-06-23 | 2010-12-07 | Wireless Telematics Llc | Wireless electrical apparatus controller device and method of use |
US9418543B1 (en) * | 2004-06-23 | 2016-08-16 | Wireless Telematics Llc | Wireless electrical apparatus controller and method of use |
US8369264B2 (en) * | 2005-10-28 | 2013-02-05 | Skyhook Wireless, Inc. | Method and system for selecting and providing a relevant subset of Wi-Fi location information to a mobile client device so the client device may estimate its position with efficient utilization of resources |
ES2428375T3 (en) | 2006-03-07 | 2013-11-07 | Koninklijke Philips N.V. | Lighting system with lighting units using optical communication |
US7734572B2 (en) * | 2006-04-04 | 2010-06-08 | Panduit Corp. | Building automation system controller |
JP2010538564A (en) | 2007-09-07 | 2010-12-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Node for network and method for establishing a distributed security architecture for network |
US9013059B2 (en) * | 2009-07-30 | 2015-04-21 | Lutron Electronics Co., Inc. | Load control system having an energy savings mode |
US8866343B2 (en) * | 2009-07-30 | 2014-10-21 | Lutron Electronics Co., Inc. | Dynamic keypad for controlling energy-savings modes of a load control system |
US8352609B2 (en) | 2009-09-29 | 2013-01-08 | Amazon Technologies, Inc. | Dynamically modifying program execution capacity |
US9280365B2 (en) * | 2009-12-17 | 2016-03-08 | Honeywell International Inc. | Systems and methods for managing configuration data at disconnected remote devices |
WO2012018526A1 (en) * | 2010-07-26 | 2012-02-09 | Lightwaves Systems, Inc. | Improved high bandwidth data transport system for use in a smartgrid |
US8890435B2 (en) | 2011-03-11 | 2014-11-18 | Ilumi Solutions, Inc. | Wireless lighting control system |
EP2501127B1 (en) | 2011-03-14 | 2017-06-14 | EchoStar Technologies L.L.C. | Timing uninterruptible processes |
US8687780B2 (en) | 2011-03-28 | 2014-04-01 | Donald W. Gorecki, JR. | Communication signal distribution unit and methods |
US9696693B2 (en) | 2011-08-05 | 2017-07-04 | Richard Geraint Element | Apparatus and system for controlling window coverings to adjust admitted daylight |
US20130049633A1 (en) * | 2011-08-24 | 2013-02-28 | Fsp-Powerland Technology Inc. | Illumination system relating to light-emitting-diode lamps |
US8826046B2 (en) * | 2011-10-04 | 2014-09-02 | Advanergy, Inc. | Light fixture monitoring-controlling system and method for controlling light intensity based on a light fixture adapter program loaded from a web-server |
US9462210B2 (en) * | 2011-11-04 | 2016-10-04 | Remote TelePointer, LLC | Method and system for user interface for interactive devices using a mobile device |
CN104137486B (en) * | 2011-12-28 | 2017-06-20 | 卢特龙电子公司 | Broadcast Controller |
CA2921768A1 (en) * | 2012-08-21 | 2014-02-27 | N2 Global Solutions Incorporated | A system and apparatus for providing and managing electricity |
US20140075523A1 (en) * | 2012-09-10 | 2014-03-13 | Nokia Corporation | Method, apparatus, and computer program product for sharing wireless network credentials |
EP3427551B2 (en) | 2016-03-08 | 2025-02-05 | Signify Holding B.V. | Controllers for interconnected lighting devices |
EP3622672A1 (en) | 2017-05-08 | 2020-03-18 | Eaton Intelligent Power Limited | Lighting control with location based communication |
-
2013
- 2013-03-12 US US13/796,486 patent/US9413171B2/en active Active
- 2013-12-20 WO PCT/US2013/077296 patent/WO2014100757A1/en active Application Filing
-
2016
- 2016-01-29 US US15/011,257 patent/US10050444B2/en active Active
-
2018
- 2018-08-13 US US16/102,357 patent/US10742032B2/en active Active
-
2020
- 2020-08-10 US US16/989,145 patent/US11521482B2/en active Active
-
2022
- 2022-12-05 US US18/075,028 patent/US20230105057A1/en active Pending
Patent Citations (320)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4932037A (en) | 1987-02-11 | 1990-06-05 | Hillier Technologies Limited Partnership | Remote control system, components and methods |
US4995053A (en) | 1987-02-11 | 1991-02-19 | Hillier Technologies Limited Partnership | Remote control system, components and methods |
US4864588A (en) | 1987-02-11 | 1989-09-05 | Hillier Technologies Limited Partnership | Remote control system, components and methods |
US5637930A (en) | 1988-07-28 | 1997-06-10 | Lutron Electronics Co., Inc. | Wall-mountable switch & dimmer |
US5454077A (en) | 1990-04-17 | 1995-09-26 | Somfy | Communication system between a plurality of transmitters and receivers having relays responsive to those identifying codes of transmitters contained in its respective table memory |
US5239205A (en) | 1991-05-02 | 1993-08-24 | Heath Company | Wireless multiple position switching system |
US5340954A (en) | 1991-05-02 | 1994-08-23 | Heath Company | Wireless multiple position switching system |
US5818128A (en) | 1991-05-02 | 1998-10-06 | Heath Company | Wireless multiple position switching system |
US5602540A (en) | 1993-06-14 | 1997-02-11 | Simmonds Precision Products Inc. | Fluid gauging apparatus with inductive interrogation |
US5488571A (en) | 1993-11-22 | 1996-01-30 | Timex Corporation | Method and apparatus for downloading information from a controllable light source to a portable information device |
US5519704A (en) | 1994-04-21 | 1996-05-21 | Cisco Systems, Inc. | Reliable transport protocol for internetwork routing |
US5627863A (en) | 1994-07-15 | 1997-05-06 | Amati Communications Corporation | Frame synchronization in multicarrier transmission systems |
US5637964A (en) | 1995-03-21 | 1997-06-10 | Lutron Electronics Co., Inc. | Remote control system for individual control of spaced lighting fixtures |
US5812819A (en) | 1995-06-05 | 1998-09-22 | Shiva Corporation | Remote access apparatus and method which allow dynamic internet protocol (IP) address management |
EP0767551B1 (en) | 1995-10-02 | 2002-08-28 | Telia Ab | Method to increase capacity in DECT |
US5848054A (en) | 1996-02-07 | 1998-12-08 | Lutron Electronics Co. Inc. | Repeater for transmission system for controlling and determining the status of electrical devices from remote locations |
US5838226A (en) | 1996-02-07 | 1998-11-17 | Lutron Electronics Co.Inc. | Communication protocol for transmission system for controlling and determining the status of electrical devices from remote locations |
US5905442A (en) | 1996-02-07 | 1999-05-18 | Lutron Electronics Co., Inc. | Method and apparatus for controlling and determining the status of electrical devices from remote locations |
US5982103A (en) | 1996-02-07 | 1999-11-09 | Lutron Electronics Co., Inc. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US5736965A (en) | 1996-02-07 | 1998-04-07 | Lutron Electronics Co. Inc. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US6687487B1 (en) | 1996-02-07 | 2004-02-03 | Lutron Electronics, Co., Inc. | Repeater for transmission system for controlling and determining the status of electrical devices from remote locations |
US6300727B1 (en) | 1996-03-13 | 2001-10-09 | Lutron Electronics Co., Inc. | Lighting control with wireless remote control and programmability |
US6169377B1 (en) | 1996-03-13 | 2001-01-02 | Lutron Electronics Co., Inc. | Lighting control with wireless remote control and programmability |
US20020087436A1 (en) | 1996-06-20 | 2002-07-04 | Warren E. Guthrie | Random interval inventory system |
US20050285547A1 (en) | 1997-08-26 | 2005-12-29 | Color Kinetics Incorporated | Light emitting diode based products |
US20040052076A1 (en) | 1997-08-26 | 2004-03-18 | Mueller George G. | Controlled lighting methods and apparatus |
WO1999046921A2 (en) | 1998-03-09 | 1999-09-16 | Nokia Mobile Phones Limited | A system for performing environmental measurements and for transferring measurement results |
US6914893B2 (en) | 1998-06-22 | 2005-07-05 | Statsignal Ipc, Llc | System and method for monitoring and controlling remote devices |
US6914533B2 (en) | 1998-06-22 | 2005-07-05 | Statsignal Ipc Llc | System and method for accessing residential monitoring devices |
US7697492B2 (en) | 1998-06-22 | 2010-04-13 | Sipco, Llc | Systems and methods for monitoring and controlling remote devices |
US6891838B1 (en) | 1998-06-22 | 2005-05-10 | Statsignal Ipc, Llc | System and method for monitoring and controlling residential devices |
US7053767B2 (en) | 1998-06-22 | 2006-05-30 | Statsignal Systems, Inc. | System and method for monitoring and controlling remote devices |
US6437692B1 (en) | 1998-06-22 | 2002-08-20 | Statsignal Systems, Inc. | System and method for monitoring and controlling remote devices |
US8013732B2 (en) | 1998-06-22 | 2011-09-06 | Sipco, Llc | Systems and methods for monitoring and controlling remote devices |
US6167464A (en) | 1998-09-23 | 2000-12-26 | Rockwell Technologies, Llc | Mobile human/machine interface for use with industrial control systems for controlling the operation of process executed on spatially separate machines |
US7103511B2 (en) | 1998-10-14 | 2006-09-05 | Statsignal Ipc, Llc | Wireless communication networks for providing remote monitoring of devices |
US6876295B1 (en) | 1998-12-16 | 2005-04-05 | Symbol Technologies, Inc. | Wireless communication devices configurable via passive tags |
US20020060530A1 (en) | 1998-12-24 | 2002-05-23 | Lutron Electronics Co., Inc. | Multi-scene preset lighting controller |
US6545434B2 (en) | 1998-12-24 | 2003-04-08 | Lutron Electronics Co., Inc. | Multi-scene preset lighting controller |
US6380696B1 (en) | 1998-12-24 | 2002-04-30 | Lutron Electronics Co., Inc. | Multi-scene preset lighting controller |
US7219141B2 (en) | 1999-01-22 | 2007-05-15 | Leviton Manufacturing Co., Inc. | Method of adding a device to a network |
US6324089B1 (en) | 1999-04-16 | 2001-11-27 | Somfy | Actuators remotely controlled by transmitters possessing an identity number |
US6526581B1 (en) | 1999-08-03 | 2003-02-25 | Ucentric Holdings, Llc | Multi-service in-home network with an open interface |
US7035270B2 (en) | 1999-12-30 | 2006-04-25 | General Instrument Corporation | Home networking gateway |
US20030040813A1 (en) | 1999-12-30 | 2003-02-27 | C-Smart Corporation | Method and apparatus for providing distributed control of a home automation system |
US6807463B1 (en) | 2000-01-13 | 2004-10-19 | Sunbeam Products, Inc. | Processor-controlled mixture with weight sensors |
WO2001052515A1 (en) | 2000-01-13 | 2001-07-19 | Thalia Products Inc. | Appliance communication and control system and appliances for use in same |
US20010024164A1 (en) | 2000-01-20 | 2001-09-27 | Hirofumi Kawamura | Terminal device, apparatus and method for controlling a terminal device, and method of controlling a process in a terminal device |
WO2001074045A1 (en) | 2000-03-24 | 2001-10-04 | Abb Metering Ltd. | Transmission of control information |
US6856236B2 (en) | 2000-04-10 | 2005-02-15 | Ensys A/S | RF home automation system comprising nodes with dual functionality |
US6980080B2 (en) | 2000-04-10 | 2005-12-27 | Zensys A/S | RF home automation system with replicable controllers |
US20020043938A1 (en) | 2000-08-07 | 2002-04-18 | Lys Ihor A. | Automatic configuration systems and methods for lighting and other applications |
US20020073183A1 (en) | 2000-12-13 | 2002-06-13 | Yoon Sang Chul | Apparatus and method for remotely controlling household appliances |
US20020113909A1 (en) | 2001-02-21 | 2002-08-22 | Jeffrey Sherwood | Methods and devices for alternative designs of interior space |
WO2002071689A2 (en) | 2001-03-08 | 2002-09-12 | Koninklijke Philips Electronics N.V. | Method and system for assigning and binding a network address of a ballast |
US6831569B2 (en) | 2001-03-08 | 2004-12-14 | Koninklijke Philips Electronics N.V. | Method and system for assigning and binding a network address of a ballast |
US20020154025A1 (en) | 2001-04-24 | 2002-10-24 | Koniklijke Philips Electronics N.V. | Wireless addressable lighting method and apparatus |
US7598684B2 (en) | 2001-05-30 | 2009-10-06 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling devices in a networked lighting system |
US20030109270A1 (en) | 2001-06-01 | 2003-06-12 | Peter Shorty | System and a method for building routing tables and for routing signals in an automation system |
US6879806B2 (en) | 2001-06-01 | 2005-04-12 | Zensys A/S | System and a method for building routing tables and for routing signals in an automation system |
WO2003007665A1 (en) | 2001-07-12 | 2003-01-23 | Koninklijke Philips Electronics N.V. | Binding protocol using randmization |
US20030034898A1 (en) | 2001-08-20 | 2003-02-20 | Shamoon Charles G. | Thermostat and remote control system and method |
US20040058706A1 (en) | 2001-11-01 | 2004-03-25 | Williamson Charles G. | Intelligent microwave oven |
US7102502B2 (en) | 2001-12-05 | 2006-09-05 | Somfy Sas | Method for constituting a home automation network |
EP1693991B1 (en) | 2002-01-03 | 2009-07-08 | Homecontrol A/S | Method and system for transmission of signals to nodes in a system |
US7346016B2 (en) | 2002-01-03 | 2008-03-18 | Homecontrol A/S | Method and system for transmission of signals to nodes in a system |
US20030151493A1 (en) | 2002-02-13 | 2003-08-14 | Swisscom Ag | Access control system, access control method and devices suitable therefor |
US6859644B2 (en) | 2002-03-13 | 2005-02-22 | Koninklijke Philips Electronics N.V. | Initialization of wireless-controlled lighting systems |
US20050030153A1 (en) | 2002-03-15 | 2005-02-10 | Wayne-Dalton Corp. | Operator for a movable barrier and method of use |
US20030197993A1 (en) | 2002-04-19 | 2003-10-23 | Marian Mirowski | Programmable power management switch |
US7687744B2 (en) | 2002-05-13 | 2010-03-30 | S.C. Johnson & Son, Inc. | Coordinated emission of fragrance, light, and sound |
US6903650B2 (en) | 2002-05-20 | 2005-06-07 | Wayne-Dalton Corp. | Operator with transmitter storage overwrite protection and method of use |
US20040059840A1 (en) | 2002-06-20 | 2004-03-25 | Perego Richard E. | Method and apparatus for the dynamic scheduling of device commands |
US20040036624A1 (en) | 2002-08-09 | 2004-02-26 | Ballew Michael A. | Virtual electronic remote control device |
WO2004023849A1 (en) | 2002-09-04 | 2004-03-18 | Koninklijke Philips Electronics N.V. | Master-slave oriented two-way rf wireless lighting control system |
US20060044152A1 (en) | 2002-09-04 | 2006-03-02 | Ling Wang | Master-slave oriented two-way rf wireless lighting control system |
US6803728B2 (en) | 2002-09-16 | 2004-10-12 | Lutron Electronics Co., Inc. | System for control of devices |
WO2004056157A1 (en) | 2002-12-16 | 2004-07-01 | Koninklijke Philips Electronics N.V. | System and method for lighting control network recovery from master failure |
US20040193998A1 (en) | 2003-03-25 | 2004-09-30 | Wegener Communications, Inc. | Software download control system, apparatus and method |
US7089066B2 (en) | 2003-04-24 | 2006-08-08 | Colorado Vnet, Llc | Distributed control systems and methods |
US20040217718A1 (en) | 2003-05-02 | 2004-11-04 | Russikesh Kumar | Digital addressable electronic ballast and control unit |
US6927547B2 (en) | 2003-06-10 | 2005-08-09 | Lutron Electronics Co., Inc. | System bridge and timeclock for RF controlled lighting systems |
US20060154598A1 (en) | 2003-06-11 | 2006-07-13 | Rudland Philip A | Configuring a radio network for selective broadcast |
US7525928B2 (en) | 2003-06-16 | 2009-04-28 | Microsoft Corporation | System and process for discovery of network-connected devices at remote sites using audio-based discovery techniques |
US7211968B2 (en) | 2003-07-30 | 2007-05-01 | Colorado Vnet, Llc | Lighting control systems and methods |
US20050045429A1 (en) | 2003-08-01 | 2005-03-03 | Baker William J. | Coordinated lift system with user selectable RF channels |
US20060256798A1 (en) | 2003-08-08 | 2006-11-16 | Clipsal Integrated Systems Pty Ltd. | Radio network communication system and protocol |
US20060192697A1 (en) | 2003-08-08 | 2006-08-31 | Quick Ashleigh G | Collision detection in a non-dominant bit radio network communication system |
US20050048944A1 (en) | 2003-09-02 | 2005-03-03 | Jeng-Shyong Wu | Wireless remotely controlled electronic equipment and the connecting devices for the same |
US7307542B1 (en) | 2003-09-03 | 2007-12-11 | Vantage Controls, Inc. | System and method for commissioning addressable lighting systems |
US7889051B1 (en) | 2003-09-05 | 2011-02-15 | The Watt Stopper Inc | Location-based addressing lighting and environmental control system, device and method |
US7126291B2 (en) | 2003-11-06 | 2006-10-24 | Lutron Electronics Co., Inc. | Radio frequency lighting control system programming device and method |
US7085627B2 (en) | 2003-12-12 | 2006-08-01 | Lutron Electronics Co., Inc. | Integrated system for controlling lights and shades |
US20070165997A1 (en) | 2003-12-26 | 2007-07-19 | Hidekazu Suzuki | Control signal receiving apparatus |
US20050156708A1 (en) | 2004-01-16 | 2005-07-21 | Worldcom, Inc. | Method and system for secured wireless data transmission to and from a remote device |
US7106261B2 (en) | 2004-02-25 | 2006-09-12 | Control4 Corporation | System for remotely controlling an electrical switching device |
US7756086B2 (en) | 2004-03-03 | 2010-07-13 | Sipco, Llc | Method for communicating in dual-modes |
US8031650B2 (en) | 2004-03-03 | 2011-10-04 | Sipco, Llc | System and method for monitoring remote devices with a dual-mode wireless communication protocol |
US8379564B2 (en) | 2004-03-03 | 2013-02-19 | Sipco, Llc | System and method for monitoring remote devices with a dual-mode wireless communication protocol |
US20050253538A1 (en) | 2004-03-29 | 2005-11-17 | Suresh Shah | Remotely controlled lighting system and controller switch for operation on same |
US7408525B2 (en) | 2004-06-21 | 2008-08-05 | Lutron Electronics, Inc. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US7362285B2 (en) | 2004-06-21 | 2008-04-22 | Lutron Electronics Co., Ltd. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US7548216B2 (en) | 2004-06-21 | 2009-06-16 | Lutron Electronics Co., Inc. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US7573436B2 (en) | 2004-06-21 | 2009-08-11 | Lutron Electronics Co., Inc. | Compact radio frequency transmitting and receiving antenna and control device employing same |
US20060027081A1 (en) | 2004-08-06 | 2006-02-09 | Henry Chang | Lighting controller |
US20080284327A1 (en) | 2004-09-08 | 2008-11-20 | Tae-Wook Kang | Organic light emitting display and method of fabricating the same |
US7358927B2 (en) | 2004-10-26 | 2008-04-15 | Eaton Corporation | Antenna employing a cover |
US20080089266A1 (en) | 2004-10-26 | 2008-04-17 | Jean-Michel Orsat | Method For Communicating In A Network Comprising Wire And Wireless Nodes |
US7853221B2 (en) | 2004-11-12 | 2010-12-14 | Homerun Holdings Corp. | Network bridge device and methods for programming and using the same |
US20060109203A1 (en) | 2004-11-19 | 2006-05-25 | Patent-Treuhand-Gesellschaft Fur Elektrisch Gluhlampen Mbh | Method for the allocation of short addresses in illumination systems |
US20060174102A1 (en) | 2005-01-28 | 2006-08-03 | Control4 Corporation | Method and apparatus for device detection and multi-mode security in a control network |
US20060285150A1 (en) | 2005-01-31 | 2006-12-21 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Regional proximity for shared image device(s) |
US20060171332A1 (en) | 2005-02-03 | 2006-08-03 | Control4 Corporation | Device discovery and channel selection in a wireless networking environment |
US20070051529A1 (en) | 2005-03-03 | 2007-03-08 | Paul Soccoli | Programming template for a control device |
US7852765B2 (en) | 2005-03-04 | 2010-12-14 | Somfy Sas | Actuator control method |
US8228163B2 (en) | 2005-03-12 | 2012-07-24 | Lutron Electronics Co., Inc. | Handheld programmer for lighting control system |
US20060202851A1 (en) | 2005-03-12 | 2006-09-14 | Cash Audwin W | Handheld programmer for lighting control system |
US20060251059A1 (en) | 2005-05-09 | 2006-11-09 | Sony Corporation | Remote control system, remote commander and remote control method, apparatus to be remotely controlled, and computer system |
US7323991B1 (en) | 2005-05-12 | 2008-01-29 | Exavera Technologies Incorporated | System and method for locating and communicating with personnel and equipment in a facility |
EP1727399A2 (en) | 2005-05-24 | 2006-11-29 | ERCO Leuchten GmbH | Lamp with memory |
US20070121323A1 (en) | 2005-05-24 | 2007-05-31 | Erco Leuchten Gmbh | Light fixture with memory |
US20060284734A1 (en) | 2005-06-06 | 2006-12-21 | Lutron Electronics Co., Inc. | Remote control lighting control system |
US20080278297A1 (en) | 2005-06-06 | 2008-11-13 | Lutron Electronics Co., Inc. | System for control of lights and motors |
US20060273970A1 (en) | 2005-06-06 | 2006-12-07 | Lutron Electronics Co., Inc. | Load control device having a compact antenna |
WO2006133172A2 (en) | 2005-06-06 | 2006-12-14 | Lutron Electronics Co., Inc. | Remote control lighting control system |
US7498952B2 (en) | 2005-06-06 | 2009-03-03 | Lutron Electronics Co., Inc. | Remote control lighting control system |
US20070110192A1 (en) | 2005-06-06 | 2007-05-17 | Steiner James P | Method of communicating between control devices of a load control system |
US7218998B1 (en) | 2005-07-11 | 2007-05-15 | Neale Stephen D | System and method for limiting power demand in an energy delivery system |
US20120108230A1 (en) | 2005-08-19 | 2012-05-03 | Nexstep, Inc. | Consumer electronic registration, control and support concierge device and method |
US20080147337A1 (en) | 2005-09-12 | 2008-06-19 | Acuity Brands, Inc. | Light Management System Having Networked Intelligent Luminaire Managers with Enhanced Diagnostics Capabilities |
US20070085700A1 (en) | 2005-09-12 | 2007-04-19 | Acuity Brands, Inc. | Light management system having networked intelligent luminaire managers with enhanced diagnostics capabilities |
US20070085699A1 (en) | 2005-09-12 | 2007-04-19 | Acuity Brands, Inc. | Network operation center for a light management system having networked intelligent luminaire managers |
US20070085702A1 (en) | 2005-09-12 | 2007-04-19 | Acuity Brands, Inc. | Light management system having networked intelligent luminaire managers |
US20070085701A1 (en) | 2005-09-12 | 2007-04-19 | Acuity Brands, Inc. | Light management system having networked intelligent luminaire managers that support third-party applications |
US20070083294A1 (en) | 2005-09-15 | 2007-04-12 | Bruno David A | Wireless data acquisition system |
US20090150004A1 (en) | 2005-09-30 | 2009-06-11 | Koninklijke Philips Electronics, N.V. | Wireless building automation and control network |
US20070097993A1 (en) | 2005-11-02 | 2007-05-03 | Bojahra Richard D | System and method for remote control of local devices over a wide area network |
US20070112939A1 (en) | 2005-11-17 | 2007-05-17 | Sbc Knowledge Ventures L.P. | System and method for home automation |
WO2007069129A2 (en) | 2005-12-15 | 2007-06-21 | Koninklijke Philips Electronics N.V. | Remote control with rf protocol |
US7756097B2 (en) | 2005-12-19 | 2010-07-13 | Motorola, Inc. | Rapid push-to-send data exchange method and apparatus |
US20070176788A1 (en) | 2006-02-02 | 2007-08-02 | Zion Mor | Remote control system for controlling wall-mounted switches |
US20110006908A1 (en) | 2006-02-27 | 2011-01-13 | Frantz Frederick E | Synchronization of a Plurality of Devices in a Wireless Sensor Arrangement |
US20100012738A1 (en) | 2006-03-17 | 2010-01-21 | Hee Wan Park | Thermostat Apparatus |
US20070229300A1 (en) | 2006-03-17 | 2007-10-04 | Tsuyoshi Masato | Remote control signal transfer system |
US20100141153A1 (en) | 2006-03-28 | 2010-06-10 | Recker Michael V | Wireless lighting devices and applications |
US20110121654A1 (en) | 2006-03-28 | 2011-05-26 | Recker Michael V | Remote switch sensing in lighting devices |
US8146074B2 (en) | 2006-04-14 | 2012-03-27 | Fujitsu Limited | Computer-readable recording medium containing application management program, and method and apparatus for application management |
US20090322251A1 (en) | 2006-06-27 | 2009-12-31 | Koninklijke Philips Electronics N.V. | Large area lighting |
US20080148359A1 (en) | 2006-07-07 | 2008-06-19 | Research In Motion Limited | Provisioning methods and apparatus with use of a provisioning essid derived from both predetermined criteria and network-specific criteria |
US7345270B1 (en) | 2006-08-03 | 2008-03-18 | Jones Richard S | Photocontrol with radio-controlled timer and a decoder |
US8339247B2 (en) | 2006-09-06 | 2012-12-25 | Koninklijke Philips Electronics N.V. | Lighting control |
US20080136663A1 (en) | 2006-09-06 | 2008-06-12 | Lutron Electronics Co., Inc. | Method of establishing communication with wireless control devices |
US20080068126A1 (en) | 2006-09-06 | 2008-03-20 | Lutron Electronics Co., Inc. | Procedure for addressing remotely-located radio frequency components of a control system |
US20080068204A1 (en) | 2006-09-06 | 2008-03-20 | Lutron Electronics Co., Inc. | Method of restoring a remote wireless control device to a known state |
US20080055073A1 (en) | 2006-09-06 | 2008-03-06 | Lutron Electronics Co., Inc. | Method of discovering a remotely-located wireless control device |
US7755505B2 (en) | 2006-09-06 | 2010-07-13 | Lutron Electronics Co., Inc. | Procedure for addressing remotely-located radio frequency components of a control system |
WO2008040454A2 (en) | 2006-09-29 | 2008-04-10 | Tridonicatco Gmbh & Co. Kg | Operating device and method for operating luminous means |
DE102006046489A1 (en) | 2006-09-29 | 2008-04-03 | Tridonicatco Gmbh & Co. Kg | Operating device and method for operating light bulbs |
US20080111491A1 (en) | 2006-11-13 | 2008-05-15 | Spira Joel S | Radio-frequency lighting control system |
US7756556B2 (en) | 2006-11-14 | 2010-07-13 | Leviton Manufacturing Company, Inc. | RF antenna integrated into a control device installed into a wall switch box |
US20080136356A1 (en) | 2006-11-17 | 2008-06-12 | Thomas Lawrence Zampini | Apparatus and method of using lighting systems to enhance brand recognition |
US20100207532A1 (en) | 2006-12-05 | 2010-08-19 | C.P. Electronics Limited | Lighting controller |
US20080136261A1 (en) | 2006-12-11 | 2008-06-12 | Lutron Electronics Co., Inc. | Load control system having a plurality of repeater devices |
US20080183316A1 (en) | 2007-01-26 | 2008-07-31 | Autani Corporation | Upgradeable Automation Devices, Systems, Architectures, and Methods |
WO2008092082A2 (en) | 2007-01-26 | 2008-07-31 | Autani Corporation | Upgradeable automation devices, systems, architectures, and methods for energy management and other applications |
US20080192767A1 (en) | 2007-02-08 | 2008-08-14 | Howe William H | Method of transmitting a high-priority message in a lighting control system |
WO2008095250A1 (en) | 2007-02-09 | 2008-08-14 | Clipsal Australia Pty Ltd | Wireless network communications system |
US20090079268A1 (en) | 2007-03-02 | 2009-03-26 | Nigel Power, Llc | Transmitters and receivers for wireless energy transfer |
US20080218099A1 (en) | 2007-03-05 | 2008-09-11 | Lutron Electronics Co., Inc. | Method of programming a lighting preset from a radio-frequency remote control |
US7573208B2 (en) | 2007-03-05 | 2009-08-11 | Lutron Electronics Co., Inc. | Method of programming a lighting preset from a radio-frequency remote control |
US7805134B2 (en) | 2007-04-03 | 2010-09-28 | Ricoh Company, Ltd. | Configuration and management of wireless network devices |
US20080265799A1 (en) * | 2007-04-20 | 2008-10-30 | Sibert W Olin | Illumination control network |
US8173920B2 (en) | 2007-04-23 | 2012-05-08 | Lutron Electronics Co., Inc. | Load control device having a modular assembly |
US20080258650A1 (en) | 2007-04-23 | 2008-10-23 | Lutron Electronics Co., Inc. | Multiple Location Load Control System |
US8892261B2 (en) | 2007-05-24 | 2014-11-18 | Koninklijke Philips N.V. | System and method for automatically creating a specific atmosphere by controlling contributions of sensorial perceptible stimulus means |
US20090001941A1 (en) | 2007-06-29 | 2009-01-01 | Microsoft Corporation | Inductive Powering Surface for Powering Portable Devices |
WO2009010916A2 (en) | 2007-07-16 | 2009-01-22 | Koninklijke Philips Electronics N.V. | Driving a light source |
US20100235008A1 (en) | 2007-08-28 | 2010-09-16 | Forbes Jr Joseph W | System and method for determining carbon credits utilizing two-way devices that report power usage data |
US20090085408A1 (en) | 2007-09-01 | 2009-04-02 | Maquet Gmbh & Co. Kg | Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device |
US8742686B2 (en) | 2007-09-24 | 2014-06-03 | Integrated Illumination Systems, Inc. | Systems and methods for providing an OEM level networked lighting system |
US20090113229A1 (en) | 2007-10-29 | 2009-04-30 | Agilent Technologies, Inc. | Method and a system for synchronising respective state transitions in a group of devices |
US20090167484A1 (en) | 2007-12-31 | 2009-07-02 | Intel Corporation | Rfid enabled light switches |
US20090206983A1 (en) | 2008-02-19 | 2009-08-20 | Lutron Electronics Co., Inc. | Communication System for a Radio-Frequency Load Control System |
US20090227205A1 (en) | 2008-03-04 | 2009-09-10 | Broadcom Corporation | Inductively coupled integrated circuit with multiple access protocol and methods for use therewith |
US20110012738A1 (en) | 2008-03-06 | 2011-01-20 | Panasonic Corporation | Appliance management system and gas supply system |
US20090251352A1 (en) | 2008-04-04 | 2009-10-08 | Lutron Electronics Co., Inc. | Wireless Battery-Powered Remote Control Having Multiple Mounting Means |
US20120235579A1 (en) | 2008-04-14 | 2012-09-20 | Digital Lumens, Incorporated | Methods, apparatus and systems for providing occupancy-based variable lighting |
US8364319B2 (en) | 2008-04-21 | 2013-01-29 | Inncom International Inc. | Smart wall box |
US20090302782A1 (en) * | 2008-06-10 | 2009-12-10 | Tesla Controls Corporation | Systems and methods for rules based, automated lighting control |
US20090315672A1 (en) | 2008-06-18 | 2009-12-24 | Lear Corporation | Method of programming a wireless transmitter to a wireless receiver |
US20100262296A1 (en) | 2008-06-25 | 2010-10-14 | HID Laboratories, Inc. | Lighting control system and method |
US20100031076A1 (en) | 2008-07-29 | 2010-02-04 | Square D Company | Configuration Management System for power monitoring and protection system devices |
WO2010027412A1 (en) | 2008-09-03 | 2010-03-11 | Lutron Electronics Co., Inc. | Battery-powered occupancy sensor |
US20100052574A1 (en) | 2008-09-03 | 2010-03-04 | Matthew Robert Blakeley | Battery-powered occupancy sensor |
US20100052576A1 (en) | 2008-09-03 | 2010-03-04 | Steiner James P | Radio-frequency lighting control system with occupancy sensing |
US8035255B2 (en) | 2008-09-27 | 2011-10-11 | Witricity Corporation | Wireless energy transfer using planar capacitively loaded conducting loop resonators |
US20120235504A1 (en) | 2008-09-27 | 2012-09-20 | Kesler Morris P | Tunable wireless energy transfer for sensors |
US20100081375A1 (en) | 2008-09-30 | 2010-04-01 | Apple Inc. | System and method for simplified control of electronic devices |
US8792401B2 (en) | 2008-10-16 | 2014-07-29 | Synapse Wireless, Inc. | Systems and methods for reducing power consumption in communication networks |
US20100104255A1 (en) | 2008-10-28 | 2010-04-29 | Jaekwan Yun | System and method for orchestral media service |
US8548607B1 (en) | 2008-11-03 | 2013-10-01 | Autani Corp. | Automation system network management, architectures, and methods and applications thereof |
US9767249B1 (en) | 2008-11-03 | 2017-09-19 | Autani, Llc | Energy consumption via VPN configuration management |
US20100114242A1 (en) | 2008-11-04 | 2010-05-06 | Thomas Doerr | Modular universal programming device |
US20100127821A1 (en) | 2008-11-25 | 2010-05-27 | Jones Derek W | Access Control |
US20100134341A1 (en) | 2008-12-03 | 2010-06-03 | Priest Roger R | Track fan remote control system |
CN101789978A (en) | 2009-01-22 | 2010-07-28 | 敦泰科技(深圳)有限公司 | DMX512 data receivers and method thereof for automatic addressing in network |
US20110282468A1 (en) * | 2009-01-29 | 2011-11-17 | Koninklijke Philips Electronics N.V. | Lighting control system responsive to ambient lighting conditions |
US20100207759A1 (en) | 2009-02-13 | 2010-08-19 | Lutron Electronics Co., Inc. | Method and Apparatus for Configuring a Wireless Sensor |
US20110305200A1 (en) | 2009-02-24 | 2011-12-15 | Koninklijke Philips Electronics N.V. | Method of controlling a lighting system |
US20100238003A1 (en) | 2009-03-17 | 2010-09-23 | Jetlun Corporation | Method and system for intelligent energy network management control system |
US20100238001A1 (en) | 2009-03-20 | 2010-09-23 | Lutron Electronics Co., Inc. | Method of Automatically Programming a Load Control Device Using a Remote Identification Tag |
US20100244706A1 (en) | 2009-03-27 | 2010-09-30 | Lutron Electronics Co., Inc. | Method of Calibrating a Daylight Sensor |
US8416074B2 (en) | 2009-05-07 | 2013-04-09 | Laurence P. Sadwick | Solar powered portable control panel |
US20100289430A1 (en) | 2009-05-14 | 2010-11-18 | Cooper Technologies Company | Universal Lighting Source Controller with Integral Power Metering |
US8254838B2 (en) | 2009-05-15 | 2012-08-28 | Crestron Electronics Inc. | RF wireless device including an infrared beacon for presence detection |
US20100303099A1 (en) | 2009-05-29 | 2010-12-02 | Aclara Power-Line Systems, Inc. | Point-to-point communications systems particularly for use in power distribution system |
US8525372B2 (en) | 2009-05-31 | 2013-09-03 | Huadao Huang | Feather-touch dimming switch |
WO2010143130A1 (en) | 2009-06-10 | 2010-12-16 | Koninklijke Philips Electronics N.V. | Advanced commissioning of wireless network systems |
JP2011023819A (en) | 2009-07-13 | 2011-02-03 | Casio Computer Co Ltd | Image capturing apparatus and method, and program |
US20110039137A1 (en) | 2009-08-11 | 2011-02-17 | Brian Allen Engle | Battery cell with integrated sensing platform |
US20110046792A1 (en) | 2009-08-21 | 2011-02-24 | Imes Kevin R | Energy Management System And Method |
US9766645B2 (en) | 2009-08-21 | 2017-09-19 | Samsung Electronics Co., Ltd. | Energy management system and method |
US20110043163A1 (en) | 2009-08-24 | 2011-02-24 | Access Business Group International Llc | Wireless power distribution and control system |
US7714790B1 (en) | 2009-10-27 | 2010-05-11 | Crestron Electronics, Inc. | Wall-mounted electrical device with modular antenna bezel frame |
US20110095622A1 (en) | 2009-10-27 | 2011-04-28 | George Feldstein | Wall-mounted electrical device with modular antenna bezel frame |
WO2011064244A2 (en) | 2009-11-27 | 2011-06-03 | Tridonic Jennersdorf Gmbh | Remote control of lighting |
DE102009056152A1 (en) | 2009-11-27 | 2011-06-01 | Ledon Lighting Jennersdorf Gmbh | Lighting Remote Control |
US7821160B1 (en) | 2010-01-05 | 2010-10-26 | Inncom International Inc. | Modular wall box system |
US20110202910A1 (en) | 2010-02-15 | 2011-08-18 | General Electric Company | Low cost and flexible energy management system |
US20110208369A1 (en) | 2010-02-19 | 2011-08-25 | Samsung Electronics Co., Ltd. | Demand response method, computer-readable medium and system |
US20110244798A1 (en) | 2010-02-24 | 2011-10-06 | Wherepro, Llc | Data Packet Generator and Implementations of Same |
US20110244897A1 (en) | 2010-04-01 | 2011-10-06 | Olympus Corporation | Wireless communication terminal, wireless communication method, and wireless communication system |
US8396007B2 (en) | 2010-04-16 | 2013-03-12 | Honeywell International Inc. | Wireless device deployment with reliable links |
US20130211844A1 (en) | 2010-05-06 | 2013-08-15 | Laurence P. Sadwick | Solar Powered Portable Control Panel |
US20110282495A1 (en) | 2010-05-14 | 2011-11-17 | Brian Fischer | Modular seat actuation control system and communication method |
US20120018578A1 (en) | 2010-07-22 | 2012-01-26 | Parker-Hannifin Corporation | Near synchronous controlled induction motor drive actuation system |
US20120039400A1 (en) | 2010-08-13 | 2012-02-16 | Aclara Power-Line Systems Inc. | Digital two way automatic communication system (twacs) outbound receiver and method |
US20120086562A1 (en) | 2010-08-20 | 2012-04-12 | Ecofactor, Inc. | System and method for optimizing use of plug-in air conditioners and portable heaters |
US8598978B2 (en) | 2010-09-02 | 2013-12-03 | Lutron Electronics Co., Inc. | Method of configuring a two-way wireless load control system having one-way wireless remote control devices |
US20120175969A1 (en) | 2010-09-14 | 2012-07-12 | Maughan Thomas G | Wireless Power and Data Transfer Device for Harsh and Extreme Environments |
US20120093039A1 (en) | 2010-09-30 | 2012-04-19 | Broadcom Corporation | Portable computing device having an rf based architecture |
US20120086561A1 (en) | 2010-10-07 | 2012-04-12 | General Electric Company | Outdoor lighting system |
US20120091910A1 (en) | 2010-10-13 | 2012-04-19 | Wanfeng Zhang | Dimming Control for Electronic Lamp |
US20120094658A1 (en) | 2010-10-18 | 2012-04-19 | Verizon Patent And Licensing, Inc. | Enterprise femtocell signaling |
US20120158203A1 (en) | 2010-12-17 | 2012-06-21 | Crestron Electronics, Inc. | Personal Energy Management System |
US20120163663A1 (en) | 2010-12-27 | 2012-06-28 | Medtronic, Inc. | Security use restrictions for a medical communication module and host device |
US20150017973A1 (en) | 2011-01-08 | 2015-01-15 | Steven K. Gold | Proximity-Enabled Remote Control |
US9178369B2 (en) | 2011-01-18 | 2015-11-03 | Mojo Mobility, Inc. | Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
US20160119032A1 (en) | 2011-02-11 | 2016-04-28 | Samsung Electronics Co., Ltd. | Mobile device and method for performing function based on short-range communication |
US20140163751A1 (en) * | 2011-02-16 | 2014-06-12 | Kortek Industries Pty Ltd. | Wireless power, light and automation control |
US9066381B2 (en) | 2011-03-16 | 2015-06-23 | Integrated Illumination Systems, Inc. | System and method for low level dimming |
US20130073431A1 (en) | 2011-03-18 | 2013-03-21 | Lutron Electronics Co., Inc. | Product Display For Wireless Load Control Devices |
US20120254961A1 (en) | 2011-03-31 | 2012-10-04 | Belkin International, Inc. | Method of Distributing Information Regarding One or More Electrical Devices and System for the Same |
US20120257543A1 (en) | 2011-04-08 | 2012-10-11 | Avraham Baum | Network configuration for devices with constrained resources |
US20120274670A1 (en) | 2011-04-29 | 2012-11-01 | Sang-Gon Lee | Method and system for controlling light by using image code |
US20120275391A1 (en) | 2011-04-29 | 2012-11-01 | Motorola Solutions, Inc. | Granting scheduling requests in a wireless communication system |
US20120303768A1 (en) | 2011-05-26 | 2012-11-29 | Electric Imp, Inc. | Modularized control system to enable networked control and sensing of other devices |
US20130134783A1 (en) | 2011-05-31 | 2013-05-30 | Shahriyar Mohammediyan | Adaptive load circuit |
US20120306621A1 (en) | 2011-06-03 | 2012-12-06 | Leviton Manufacturing Co., Inc. | Lighting control network configuration with rfid devices |
US20120315848A1 (en) | 2011-06-10 | 2012-12-13 | Darin William Smith | Processing near field communications between active/passive devices and a control system |
US20120322370A1 (en) | 2011-06-16 | 2012-12-20 | Aq Co., Ltd. | Near field communication-enabled mobile communication terminal and method of controlling the same |
US20120328302A1 (en) | 2011-06-23 | 2012-12-27 | Casio Computer Co., Ltd. | Information transmission system, information sending device, information receiving device, information transmission method, information sending method, information receiving method and program product |
US20130010018A1 (en) | 2011-06-30 | 2013-01-10 | Lutron Electronics Co., Inc. | Method Of Optically Transmitting Digital Information From A Smart Phone To A Control Device |
US10271407B2 (en) | 2011-06-30 | 2019-04-23 | Lutron Electronics Co., Inc. | Load control device having Internet connectivity |
US20160285550A1 (en) | 2011-06-30 | 2016-09-29 | Lutron Electronics Co., Inc. | Method of optically transmitting digital information from a smart phone to a control device |
US20170064798A1 (en) | 2011-06-30 | 2017-03-02 | Lutron Electronics Co., Inc. | Method of programming a load control device |
US20130026947A1 (en) | 2011-06-30 | 2013-01-31 | Lutron Electronics Co., Inc. | Method Of Programming A Load Control Device Using A Smart Phone |
US20130030589A1 (en) | 2011-06-30 | 2013-01-31 | Lutron Electronics Co., Inc. | Load Control Device Having Internet Connectivity |
US20200092003A1 (en) | 2011-06-30 | 2020-03-19 | Lutron Technology Company Llc | Method of Optically Transmitting Digital Information from a Smart Phone to a Control Device |
US10588204B2 (en) | 2011-06-30 | 2020-03-10 | Lutron Technology Company Llc | Load control device having internet connectivity |
US20180205460A1 (en) | 2011-06-30 | 2018-07-19 | Lutron Electronics Co., Inc. | Method of Optically Transmitting Digital Information from a Smart Phone to a Control Device |
US20130014224A1 (en) | 2011-07-05 | 2013-01-10 | Texas Instruments Incorporated | Method, system and computer program product for wirelessly connecting a device to a network |
US9288228B2 (en) | 2011-08-05 | 2016-03-15 | Nokia Technologies Oy | Method, apparatus, and computer program product for connection setup in device-to-device communication |
US9049753B1 (en) * | 2011-08-19 | 2015-06-02 | Appalachian Lighting Systems, Inc. | Lighting device monitor and communication apparatus |
US20130051375A1 (en) | 2011-08-24 | 2013-02-28 | Sergey Chemishkian | Passive rf devices that communicate using a wireless network protocol |
US10587147B2 (en) | 2011-08-29 | 2020-03-10 | Lutron Technology Company Llc | Two-part load control system mountable to a single electrical wallbox |
US9368025B2 (en) | 2011-08-29 | 2016-06-14 | Lutron Electronics Co., Inc. | Two-part load control system mountable to a single electrical wallbox |
US20160254699A1 (en) | 2011-08-29 | 2016-09-01 | Lutron Electronics Co., Inc. | Two-part load control system mountable to a single electrical wallbox |
US20130261821A1 (en) * | 2011-10-04 | 2013-10-03 | Advanergy, Inc. | Power distribution system and method |
US20130100855A1 (en) | 2011-10-25 | 2013-04-25 | Samsung Electronics Co., Ltd. | Method and apparatus for wi-fi connection using wi-fi protected setup in portable terminal |
US20160148449A1 (en) | 2011-12-22 | 2016-05-26 | Airbus Operations Gmbh | Access system for a vehicle and method for managing access to a vehicle |
US20130187563A1 (en) | 2012-01-19 | 2013-07-25 | Toshiba Lighting & Technology Corporation | Dimming device and lighting system |
US20130223279A1 (en) | 2012-02-24 | 2013-08-29 | Peerapol Tinnakornsrisuphap | Sensor based configuration and control of network devices |
US20140375428A1 (en) | 2012-03-05 | 2014-12-25 | Fitbit, Inc. | Near Field Communication System, and Method of Operating Same |
US9253857B2 (en) * | 2012-03-05 | 2016-02-02 | Empire Technology Development Llc | Integrated occupancy and ambient light sensors |
US8368310B1 (en) | 2012-03-23 | 2013-02-05 | Inncom International, Inc. | System and method for distributed lighting device control |
US20130286889A1 (en) | 2012-04-17 | 2013-10-31 | Qualcomm Incorporated | Using a mobile device to enable another device to connect to a wireless network |
US20130322281A1 (en) | 2012-06-01 | 2013-12-05 | Crestron Electronics, Inc. | Commissioning of Wireless Devices in Personal Area Networks |
US20150239353A1 (en) | 2012-06-21 | 2015-08-27 | Renault S.A.S. | Method for controlling the charging of a battery of an electric vehicle in a non-contact charging system |
US20150200925A1 (en) | 2012-07-27 | 2015-07-16 | Assa Abloy Ab | Presence-based credential updating |
US20140070919A1 (en) | 2012-09-05 | 2014-03-13 | Crestron Electronics, Inc. | User Identification and Location Determination in Control Applications |
US20140106735A1 (en) | 2012-10-12 | 2014-04-17 | Crestron Electronics, Inc. | User Identification and Location Determination in Control Applications |
US20140177469A1 (en) | 2012-12-21 | 2014-06-26 | Lutron Electronics Co., Inc. | Network access coordination of load control devices |
US10244086B2 (en) | 2012-12-21 | 2019-03-26 | Lutron Electronics Co., Inc. | Multiple network access load control devices |
US10050444B2 (en) | 2012-12-21 | 2018-08-14 | Lutron Electronics Co., Inc. | Network access coordination of load control devices |
US9413171B2 (en) | 2012-12-21 | 2016-08-09 | Lutron Electronics Co., Inc. | Network access coordination of load control devices |
US20140175875A1 (en) | 2012-12-21 | 2014-06-26 | Lutron Electronics Co., Inc. | Multiple network access load control devices |
US20140180487A1 (en) | 2012-12-21 | 2014-06-26 | Lutron Electronics Co., Inc. | Operational coordination of load control devices |
US20180198893A1 (en) | 2012-12-21 | 2018-07-12 | Lutron Electronics Co., Inc. | Multiple Network Access Load Control Devices |
US20160149411A1 (en) | 2012-12-21 | 2016-05-26 | Lutron Electronics Co., Inc. | Network access coordination of load control devices |
US10019047B2 (en) | 2012-12-21 | 2018-07-10 | Lutron Electronics Co., Inc. | Operational coordination of load control devices for control of electrical loads |
US20180321722A1 (en) | 2012-12-21 | 2018-11-08 | Lutron Electronics Co., Inc. | Operational Coordination of Load Control Devices |
US10135629B2 (en) | 2013-03-15 | 2018-11-20 | Lutron Electronics Co., Inc. | Load control device user interface and database management using near field communication (NFC) |
US10516546B2 (en) | 2013-03-15 | 2019-12-24 | Lutron Technology Company Llc | Load control device user interface and database management using Near Field Communication (NFC) |
US20140277805A1 (en) | 2013-03-15 | 2014-09-18 | Lutron Electronics Co., Inc. | Load control device user interface and database management using near field communication (nfc) |
US20140289825A1 (en) | 2013-03-21 | 2014-09-25 | Nextbit Systems Inc. | Connecting to wi-fi network based off approval from another user device |
US20140304773A1 (en) | 2013-04-05 | 2014-10-09 | Greatbatch Ltd. | Systems, devices, components and methods for communicating with an imd using a portable electronic device and a mobile computing device |
US20140375421A1 (en) | 2013-06-20 | 2014-12-25 | Honeywell International Inc. | Systems and methods for enabling access control via mobile devices |
GB2533675A (en) | 2013-07-30 | 2016-06-29 | Paxton Access Ltd | Communication method and system |
US20150097666A1 (en) | 2013-10-07 | 2015-04-09 | Google Inc. | Hazard Detection Unit Providing Intuitive Illumination-Based Status Signaling |
US20150259078A1 (en) | 2014-03-15 | 2015-09-17 | Micro Mobio Corporation | Handy base station system, device and method |
CA2892464A1 (en) | 2014-05-23 | 2015-11-23 | Gecko Alliance Group Inc. | Light bulb, intelligent lighting device and method and system for use in configuring same |
US9641959B2 (en) | 2014-05-23 | 2017-05-02 | Gecko Alliance Group Inc. | Household for industrial device including programmable controller and method device and system for use in configuring same |
US9445482B2 (en) | 2014-05-23 | 2016-09-13 | Gecko Alliance Group Inc. | Light bulb and method and system for use in configuring same |
US20150342011A1 (en) | 2014-05-23 | 2015-11-26 | Gecko Alliance Group Inc. | Light bulb and method and system for use in configuring same |
US9445485B2 (en) | 2014-10-24 | 2016-09-13 | Express Imaging Systems, Llc | Detection and correction of faulty photo controls in outdoor luminaires |
US9548797B1 (en) | 2016-02-16 | 2017-01-17 | Telensa Limited | Lighting unit with near field communication, integrated circuit and methods therefor |
WO2018099793A1 (en) | 2016-11-30 | 2018-06-07 | Inventio Ag | Configuring accessing right to elevator control system |
US20180168019A1 (en) | 2016-12-09 | 2018-06-14 | Lutron Electronics Co., Inc. | Load control system having a visible light sensor |
US10314132B1 (en) * | 2018-07-26 | 2019-06-04 | California Eastern Laboratories, Inc. | Universal wireless luminaire controller and method of use |
Non-Patent Citations (21)
Title |
---|
"CEDIA 2012: Crestron Demos Home Technology Control Solution with NFC-Enabled Mobile Device" Available at http://www.youtube.com/watch?v=qXwoTJX14BE retrieved on Aug. 13, 2013 Video Provided on CD Media Sep. 8, 2012 pp. 1-2. |
"Crestron NFC Demo at CEDIA Expo 2012" Available at http://www.youtube.com/watch?v=FQ1f5vxwqnl Retrieved on Aug. 13, 2013 Transcript of Video provided on CD Media Sep. 10, 2012 pp. 1-2. |
"SimpleLink™ CC3000 Boosterpack Jump-Starts the Internet of Things" Available at http://www.youtube.com/watch?v=6kh0g0KMIQc retrieved on Aug. 13, 2013 Transcript of Video provided on CD Media Jun. 6, 2013 1 page. |
Black Rich "Clear Connect RF Technology" Lutron Electronics Company Inc. Aug. 2009 16 pages. |
Gade Lisa "PalmOne Treo 600 Palm OS Smartphone from Sprint PCS" Oct. 28, 2013 Mobile Tech Review Document Available at: <http://www.mobiletechreview.com/treo_600.htm> Retrieved on May 21, 2013 4 Pages. |
Gade Lisa "PalmOne Treo 650 Palm OS Smartphone: CDMA (Sprint) and GSM Versions" Dec. 10, 2004 Mobile Tech Review Document Available at: <http://web.archive.org/web/20050404004524/http://www.mobiletechreview.com/Treo_650.htm> Retrieved on May 21, 2013 6 Pages. |
International Patent Application No. PCT/US2012/045067, International Search Report dated Oct. 29, 2012, 6 pages. |
International Patent Application No. PCT/US2012/045114, International Search Report dated Oct. 24, 2012, 5 pages. |
International Patent Application No. PCT/US2012/45096, International Search Report dated Apr. 2, 2013, 8 pages. |
JSJSDesigns PLC "JS JS Products" Available at: <http://web.archive.org/web/20101111085355/http://www.jsjsdesigns.com/product.html> Nov. 11, 2010 4 pages. |
Myers Dana "SimpleLink™ Wi-Fi® CC3000-First Time Config Using PC" Available at http://www.youtube.com/watch?v=10U4NTgkjLs retrieved on Aug. 13, 2013 Transcript of Video provided on CD Media Dec. 18, 2012 pp. 1-2. |
Myers Dana "SimpleLink™ Wi-Fi® CC3000-First Time Config with Smartphone" Available at http://www.youtube.com/watch?v=fxP9hnZysgo Retrieved on Aug. 13, 2013 Transcript of Video provided on CD Media Sep. 19, 2012 pp. 1-2. |
Myers Dana "SimpleLink™ Wi-Fi® CC3000—First Time Config Using PC" Available at http://www.youtube.com/watch?v=10U4NTgkjLs retrieved on Aug. 13, 2013 Transcript of Video provided on CD Media Dec. 18, 2012 pp. 1-2. |
Myers Dana "SimpleLink™ Wi-Fi® CC3000—First Time Config with Smartphone" Available at http://www.youtube.com/watch?v=fxP9hnZysgo Retrieved on Aug. 13, 2013 Transcript of Video provided on CD Media Sep. 19, 2012 pp. 1-2. |
Rustybrick Inc. "iPhone 4 Morse Code Transmission App" Available at <http://www.rustybrick.com/iphone-morse-code.php> Jan. 4, 2011 3 pages. |
Texas Instruments "CC3000 Smart Config" Available at http://processors.wiki.ti.com/index.php/CC3000_Smart_Config retrieved in Feb. 2, 2016 pp. 1-5. |
U.S. Appl. No. 16/030,310, filed Jul. 9, 2018. |
U.S. Appl. No. 16/113,548, filed Aug. 27, 2018. |
U.S. Appl. No. 16/715,507, filed Dec. 16, 2019. |
U.S. Appl. No. 16/813,022, filed Mar. 9, 2020. |
U.S. Appl. No. 16/813,148, filed Mar. 9, 2020. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230105057A1 (en) * | 2012-12-21 | 2023-04-06 | Lutron Technology Company Llc | Network access coordination of load control devices |
US20220095084A1 (en) * | 2020-09-22 | 2022-03-24 | Lutron Technology Company Llc | Transmission of control data on wireless network communication links |
US11895564B2 (en) * | 2020-09-22 | 2024-02-06 | Lutron Technology Company Llc | Transmission of control data on wireless network communication links |
US20240121581A1 (en) * | 2020-09-22 | 2024-04-11 | Lutron Technology Company Llc | Transmission of control data on wireless network communication links |
US12231995B2 (en) * | 2020-09-22 | 2025-02-18 | Lutron Technology Company Llc | Transmission of control data on wireless network communication links |
Also Published As
Publication number | Publication date |
---|---|
US20210044113A1 (en) | 2021-02-11 |
US20230105057A1 (en) | 2023-04-06 |
US20190006846A1 (en) | 2019-01-03 |
US9413171B2 (en) | 2016-08-09 |
US11521482B2 (en) | 2022-12-06 |
US20160149411A1 (en) | 2016-05-26 |
US20140177469A1 (en) | 2014-06-26 |
WO2014100757A1 (en) | 2014-06-26 |
US10050444B2 (en) | 2018-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11521482B2 (en) | Network access coordination of load control devices | |
US12052331B2 (en) | Multiple network access load control devices | |
US12282367B2 (en) | Operational coordination of load control devices for control of electrical loads | |
US12144082B2 (en) | Load control device having internet connectivity | |
US12089318B2 (en) | Method of optically transmitting digital information from a smart phone to a control device | |
US12075321B2 (en) | Method of programming a load control device | |
US20250155945A1 (en) | Operational Coordination of Load Control Devices For Control of Electrical Loads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: LUTRON TECHNOLOGY COMPANY LLC, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUTRON ELECTRONICS CO., INC.;REEL/FRAME:049286/0001 Effective date: 20190304 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |