US10849554B2 - Nose sensor - Google Patents
Nose sensor Download PDFInfo
- Publication number
- US10849554B2 US10849554B2 US15/955,500 US201815955500A US10849554B2 US 10849554 B2 US10849554 B2 US 10849554B2 US 201815955500 A US201815955500 A US 201815955500A US 10849554 B2 US10849554 B2 US 10849554B2
- Authority
- US
- United States
- Prior art keywords
- nose
- prong
- patient
- post
- emitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 230000002238 attenuated effect Effects 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims description 122
- 238000010168 coupling process Methods 0.000 claims description 122
- 238000005859 coupling reaction Methods 0.000 claims description 122
- 230000001070 adhesive effect Effects 0.000 claims description 66
- 239000000853 adhesive Substances 0.000 claims description 63
- 238000012806 monitoring device Methods 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 41
- NOQGZXFMHARMLW-UHFFFAOYSA-N Daminozide Chemical compound CN(C)NC(=O)CCC(O)=O NOQGZXFMHARMLW-UHFFFAOYSA-N 0.000 claims description 4
- 210000001331 nose Anatomy 0.000 description 704
- 239000000463 material Substances 0.000 description 41
- 239000010410 layer Substances 0.000 description 25
- 239000011521 glass Substances 0.000 description 22
- 239000004033 plastic Substances 0.000 description 16
- 229920003023 plastic Polymers 0.000 description 16
- 229920001296 polysiloxane Polymers 0.000 description 15
- 238000004891 communication Methods 0.000 description 13
- 238000012544 monitoring process Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 230000008901 benefit Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 9
- 239000008280 blood Substances 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000023077 detection of light stimulus Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 210000001061 forehead Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000005337 ground glass Substances 0.000 description 3
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 3
- 239000011022 opal Substances 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920006289 polycarbonate film Polymers 0.000 description 3
- 238000002106 pulse oximetry Methods 0.000 description 3
- 230000036387 respiratory rate Effects 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 108010003320 Carboxyhemoglobin Proteins 0.000 description 1
- 108010061951 Methemoglobin Proteins 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 229910021418 black silicon Inorganic materials 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 210000000269 carotid artery external Anatomy 0.000 description 1
- 210000004004 carotid artery internal Anatomy 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000013515 script Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000009528 vital sign measurement Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6819—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02438—Measuring pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
Definitions
- the present disclosure relates to a wearable patient monitoring device, and methods and apparatuses for monitoring a patient's physiological information using the device. More specifically, the present disclosure relates to the connection of a patient monitoring device to a patient's nose.
- Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility.
- Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters such as blood oxygen saturation level, respiratory rate, pulse, and a myriad of other parameters, such as those monitored on commercially available patient monitors from Masimo Corporation of Irvine, Calif.
- Clinicians including doctors, nurses, and other medical personnel, use the physiological parameters and trends of those parameters obtained from patient monitors to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor patients during various clinical situations to determine whether to increase the level of medical care given to patients.
- Non-invasive patient monitoring devices include pulse oximeters.
- Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply.
- a pulse oximeter generally includes one or more light sources transmitting optical radiation into or reflecting off through a portion of the body, for example a digit such as a finger, a hand, a foot, a nose, an earlobe, or a forehead.
- the one or more light sources can emit radiation at a plurality of wavelengths including, one, two, four, eight, twelve, sixteen or more different wavelengths, or any number therebetween.
- one or more photodetection devices After attenuation of the radiation by tissue and fluids of the portion of the body, one or more photodetection devices detect the attenuated light and output one or more detector signals responsive to the detected attenuated light.
- the oximeter may calculate oxygen saturation (SpO 2 ), pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (HbMet), carboxyhemoglobin (HbCO), total hemoglobin (HbT), glucose, and/or otherwise, and the oximeter may display on one or more monitors the foregoing parameters individually, in groups, in trends, as combinations, or as an overall wellness or other index.
- noninvasive sensors In noninvasive devices and methods, a sensor is often adapted to position a portion of the body proximate the light source and light detector.
- noninvasive sensors often include a clothespin-shaped finger clip that includes a contoured bed conforming generally to the shape of a finger.
- An example of such a noninvasive sensor is described in U.S. application Ser. No. 12/829,352, filed Jul. 1, 2010, titled “Multi-Stream Data Collection System for Noninvasive Measurement of Blood Constituents,” now U.S. Pat. No. 9,277,880, the disclosure of which is hereby incorporated by reference in its entirety.
- noninvasive sensors can include one or more sensing components, such as the light source and/or the photodetectors on an adhesive tape, such as described in U.S. application Ser. No. 13/041,803, filed May 7, 2011, titled “Reprocessing of a physiological sensor,” now U.S. Pat. No. 8,584,345, the disclosure of which is hereby incorporated by reference in its entirety.
- the patient monitoring devices can also communicate with an acoustic sensor comprising an acoustic transducer, such as a piezoelectric element.
- the acoustic sensor can detect respiratory and other biological sounds of a patient and provide signals reflecting these sounds to a patient monitor.
- An example of such an acoustic sensor, which can implement any of the acoustic sensing functions described herein, is described in U.S. application Ser. No. 12/643,939, filed Dec. 21, 2009, titled “Acoustic Sensor Assembly,” now U.S. Pat. No. 8,771,204 and in U.S. Application No. 61/313,645, filed Mar.
- a noninvasive physiological monitoring device can be configured secure to a nose of a patient.
- the device can include an inner prong configured to be positioned on one of an inner or outer side of a nose.
- the inner prong can include an inner post.
- the monitoring device can include an outer prong configured to be positioned on one of an inner or outer side of a nose.
- the outer prong can include a first outer post and a second outer post.
- the monitoring device can include a detector configured to be secured to one of an inner or outer wall of the nose of the patient.
- the monitoring device can include one or more light emitters configured to be secured to the other of the inner and outer wall of the nose of the patient.
- the monitoring device can include a coupling portion configured to space the inner prong from the outer prong, wherein the coupling portion provides support to the inner and outer prongs to secure the device to the nose of the patient.
- the first and second outer posts of the outer prong can be curved to conform to a portion of the nose of the patient.
- the inner prong can be curved to conform to a portion of the nose of the patient.
- the first outer post can have a first radius of curvature and a first curve direction
- the second outer post can have a second radius of curvature and a second curve direction
- the first radius of curvature can be equal to the second radius of curvature and the first curve direction can be the same as the second curve direction.
- the inner prong can be curved along a third radius of curvature and in a third direction, and the third radius of curvature can be equal to the first and second radius of curvatures and the third direction can be the same as the first and second curve directions.
- the outer prong of the monitoring device can be U-shaped.
- the inner prong can include an intermediate region and the outer prong can include an intermediate region.
- the intermediate region of the inner prong can be curved such that the intermediate region of the inner prong extends towards the intermediate region of the outer prong.
- the monitoring device can include an adhesive configured to adhere the emitter or the detector to an outer surface of the nose of the patient.
- the monitoring device can include a lens proximate to the detector configured to focus light into the detector.
- the lens can comprise a simple lens.
- the monitoring device can include a diffuser positioned proximate to the emitter and configured to diffuse light emitted by the emitter prior to entering tissue of the nose of the patient.
- the diffuser can comprise silicone.
- the inner post can be coupled to the detector.
- the inner post can be substantially rigid.
- the emitter can include a liner configured to cover the adhesive of the emitter when the emitter is not in use.
- the inner prong can include an inner base, and the outer prong further can include an outer base.
- the coupling portion can be circular.
- the monitoring device can include a first central longitudinal axis of the inner post that is aligned with a second central longitudinal axis of the inner prong, wherein the first outer post of the outer prong is spaced from the second outer post of the outer prong such that the first outer post has a first side wall that is positioned adjacent a second side wall of the outer prong and the second outer post has a third side wall that is positioned adjacent to a fourth side wall of the outer prong that is positioned opposite the second side wall of the outer prong.
- the monitoring device can include a first central longitudinal axis of the inner post is aligned with a second central longitudinal axis of the inner prong, wherein the inner post includes a first side wall and a second side wall, wherein the first outer post and the second outer post are spaced laterally away from one another along the outer prong such that the first outer post is positioned laterally outward from the first side wall of the inner post and the second outer post is positioned laterally outward from the second side wall of the inner post.
- the inner post can be configured to apply pressure to an inner portion of the nose of the patient, and the first outer post can be configured to apply pressure to a first outer portion of the nose of the patient that is spaced laterally outwardly from the inner portion of the patient's nose, and the second outer post can be configured to apply pressure to a second outer portion of the nose of the patient that is spaced laterally outwardly from the inner portion of the patient's nose.
- the inner post can be configured to apply pressure to a portion of the nose of the patient and the portion of the nose of the patient can be configured to be positioned between the first outer post and the second outer post when the inner prong and the outer prong are secured to the patient.
- the coupling portion can include the inner base and the outer base, wherein the inner base includes a top surface and the outer base includes a top surface.
- the inner post can extend from a center of the inner base.
- the first outer post can be spaced apart from the second outer post, and the first outer post and the second outer post can extend from the outer base.
- the inner post can be wider than the first outer post and the second outer post.
- the first prong can be parallel to the second prong.
- the coupling portion can comprise a joint configured to rotatably connect the inner prong and the outer prong, the joint including a first joint portion coupled to the inner prong and a second joint portion coupled to the outer prong, wherein the first joint portion has a first slot and the second joint portion has a second slot, the first slot and the second slot configured to at least partially receive a pin.
- the monitoring device can include a biasing member configured to bias the inner prong from the outer prong.
- the biasing member can comprise a spring.
- the monitoring device can include a diffuser positioned proximate to the emitter and configured to diffuse light emitted by the emitter prior to entering tissue of the nose of the patient, and a lens proximate to the detector configured to focus light into the detector.
- a method of calculating a measurement of physiological parameters of a patient can include: transmitting light, by an emitter of a nose sensor, of at least first and second wavelengths through tissue of a nose of a patient to a detector; detecting, by the detector of the nose sensor, light attenuated by the tissue of the nose of the patient; generating an output signal, by the nose sensor, based on the light detected at the nose of the patient; and determining the measurement of the physiological parameters, by the nose sensor, based on the output signal.
- the nose sensor can include: an inner prong configured to be positioned on one of an inner or outer side of a nose, the inner prong including an inner post; an outer prong configured to be positioned on one of an inner or outer side of a nose, the outer prong including a first outer post and a second outer post wherein one of the detector or emitter is coupled to one of the inner or outer prongs, the detector configured to be secured to a wall of the nose of the patient.
- the nose sensor can include a coupling portion configured to space the inner prong from the outer prong, wherein the coupling portion provides support to the inner and outer prongs to secure the device to the nose of the patient.
- the nose sensor can further include a diffuser and the method can further comprise diffusing the light transmitted by the emitter of the nose sensor prior to entering the tissue of the nose of the patient.
- the nose sensor can further include a lens and the method can further comprise focusing the light transmitted by the emitter of the nose sensor into the detector after the light has passed through the tissue of the nose of the patient.
- the inner prong can include an intermediate region and the outer prong can include an intermediate region.
- the intermediate region of the inner prong can be curved such that the intermediate region of the inner prong extends towards the intermediate region of the outer prong.
- the method can include using an adhesive to adhere either the emitter or detector to the nose of the patient, wherein the adhesive is configured to adhere to an outer surface of the nose of the patient.
- the method can include removing a liner from the adhesive before adhering either the emitter or detector to the nose of the patient.
- the first and second outer posts of the outer prong can be curved to conform to the nose of the patient.
- the first outer post can have a first radius of curvature and a first curve direction
- the second outer post can have a second radius of curvature and a second curve direction, the first radius of curvature being equal to the second radius of curvature and the first curve direction being the same as the second curve direction.
- the inner prong can be curved along a third radius of curvature and in a third direction, wherein the third radius of curvature is equal to the first and second radius of curvatures and the third direction is the same as the first and second curve directions.
- the coupling portion can include a joint configured to rotatably connect the inner prong and the outer prong, the joint including a first joint portion coupled to the inner prong and a second joint portion coupled to the outer prong, wherein the first joint portion has a first slot and the second joint portion has a second slot, the first slot and the second slot configured to at least partially receive a pin.
- the method can include biasing the inner prong from the outer prong with a biasing member.
- the biasing member can comprise a spring.
- the detector of the nose sensor can be coupled to the inner post of the inner prong and configured to be secured to an inner wall of the patient's nose.
- the detector can be coupled to a first end of a flexible circuit and the emitter can be coupled to a second end of the flexible circuit, wherein the method further comprises adhering the emitter to an outer wall of the patient's nose.
- the first and second outer posts of the outer prong can have a substantially similar radius of curvature and curve in the same direction, thereby permitting the outer prong to conform to a portion of the nose of the patient.
- the inner prong can be curved along a second radius of curvature and in a second direction substantially similar to the radius of curvature and curve direction of the first and second outer posts of the outer prong.
- the outer prong can be U-shaped.
- a noninvasive physiological monitoring device configured to secure to a nose of a patient can include an emitter configured to emit light through the nose of the patient towards a detector, wherein the detector is configured to detect light attenuated through the nose of the patient.
- the emitter can be configured to emit light of at least a first and second wavelength.
- the monitoring device can include an adhesive configured to adhere the emitter to an outer surface of the nose of the patient.
- the monitoring device can include a liner configured to cover the adhesive of the emitter when the emitter is not in use.
- the monitoring device can include a lens configured to focus light into the detector.
- the lens can comprise glass, plastic, or both glass and plastic.
- the lens can comprise a simple lens.
- the lens can comprise one layer of material selected from the group consisting of glass and plastic.
- the lens can comprise at least two layers.
- the at least two layers can comprise a material selected from the group consisting of glass and plastic.
- the lens can comprise two or more simple lenses arranged about a common axis.
- the monitoring device can include a diffuser configured to diffuse light emitted by the emitter prior to entering tissue of the nose of the patient.
- the diffuser can be is located proximate to the emitter.
- the diffuser can comprise silicone.
- the diffuser can comprise white silicone, or alternatively, black silicon.
- the diffuser can comprise acrylic, plastic, and/or glass.
- the diffuser can comprise two or more layers. Each of the two or more layers can comprise a different material, or alternatively, the same material or materials.
- the monitoring device can include a transmitter configured to transmit an output signal from the detector.
- the transmitter can comprise a cable configured to connect the noninvasive physiological monitoring device to at least one of a monitor or a display.
- the transmitter can comprise a wireless transmitter.
- the wireless transmitter can be configured to operate on a protocol selected from the group consisting of Wi-Fi, Bluetooth, ZigBee, Z-wave, radio frequency, cellular telephony, infrared, and satellite transmission.
- the monitoring device can include: an inner prong configured to be positioned on one of an inner or outer side of a nose; and an outer prong configured to be positioned on one of an inner or outer side of a nose, wherein the detector is coupled to one of the inner or outer prongs and configured to be secured to one of the inner or outer side of the nose.
- the inner prong can be parallel, non-parallel, or perpendicular to the outer prong.
- the emitter can be coupled to a first end of a flexible circuit and the detector can be coupled to a second end of the flexible circuit, and wherein a first portion of the flexible circuit is contained within the noninvasive physiological monitoring device and a second portion of the flexible circuit is not contained within the noninvasive physiological monitoring device, wherein the second portion is closer to the first end of the flexible circuit than to the second end.
- the inner prong can include an inner post and the outer prong can include a first outer post and a second outer post.
- the monitoring device can include a first central longitudinal axis of the inner post aligned with a second central longitudinal axis of the inner prong, wherein the first outer post of the outer prong is spaced from the second outer post of the outer prong such that the first outer post has a first side wall that is positioned adjacent a second side wall of the outer prong and the second outer post has a third side wall that is positioned adjacent to a fourth side wall of the outer prong that is positioned opposite the second side wall of the outer prong.
- the monitoring device can include a first central longitudinal axis of the inner post aligned with a second central longitudinal axis of the inner prong, wherein the inner post includes a first side wall and a second side wall, wherein the first outer post and the second outer post are spaced laterally away from one another along the outer prong such that the first outer post is positioned laterally outward from the first side wall of the inner post and the second outer post is positioned laterally outward from the second side wall of the inner post.
- the inner post can be configured to apply pressure to an inner portion of the nose of the patient, and wherein the first outer post can be configured to apply pressure to a first outer portion of the nose of the patient that is spaced laterally outwardly from the inner portion of the patient's nose, and wherein the second outer post is configured to apply pressure to a second outer portion of the nose of the patient that is spaced laterally outwardly from the inner portion of the patient's nose.
- the inner post can be configured to apply pressure to a portion of the nose of the patient and the portion of the nose of the patient can be configured to be positioned between the first outer post and the second outer post when the inner prong and the outer prong are secured to the patient.
- the detector can be coupled to the inner post.
- the outer prong can include a third outer post comprising a flexible flap coupled to the emitter.
- the first and second outer posts of the outer prong can be curved to conform to a portion of the nose of the patient.
- the inner prong can be curved to conform to a portion of the nose of the patient.
- the first outer post can have a first radius of curvature and a first curve direction
- the second outer post can have a second radius of curvature and a second curve direction, the first radius of curvature being equal to the second radius of curvature and the first curve direction being the same as the second curve direction.
- the inner prong can be curved along a third radius of curvature and in a third direction, the third radius of curvature being equal to the first and second radius of curvature.
- the outer prong can be U-shaped.
- the inner prong can include an inner base, and the outer prong can include an outer base.
- the inner prong can include an intermediate region and the outer prong can include an intermediate region.
- the intermediate region of the inner prong can be curved such that the intermediate region of the inner prong extends towards the intermediate region of the outer prong.
- the monitoring device can include a coupling portion configured to space the inner prong from the outer prong, wherein the coupling portion provides support to the inner and outer prongs to secure the device to the nose of the patient.
- the inner prong can include an inner base, and the outer prong can include an outer base.
- the inner post can be wider than the first outer post and the second outer post.
- the coupling portion can include the inner base and the outer base and the inner base can include a top surface and the outer base can include a top surface.
- the inner post can extend from a center of the top surface of the inner base.
- the first outer post can be spaced apart from the second outer post on the top surface of the outer base, and the first outer post and the second outer post can extend from the top surface of the outer base.
- the monitoring device can include a joint configured to rotatably connect the inner prong and the outer prong, the joint including a first joint portion coupled to the inner prong and a second joint portion coupled to the outer prong, wherein the first joint portion has a first slot and the second joint portion has a second slot, the first slot and the second slot configured to at least partially receive a pin.
- the monitoring device can include a biasing member configured to bias the inner prong from the outer prong.
- the biasing member can comprise a spring.
- the spring can be cylindrical or non-cylindrical.
- At least one of the outer prong or the inner prong can comprise a recess configured to secure at least a portion of the spring.
- At least one of the outer prong or the inner prong can comprise two protruding rims configured to secure at least a portion of the spring.
- the two protruding rims can be configured to secure to at least a portion of the spring by a snap-fit, press-fit, and/or friction-fit.
- the spring can include coils, a first leg, and a second leg.
- the first leg of the spring can extend in the same direction, or alternatively, an opposite direction as the second leg.
- the first leg of the spring can be parallel, non-parallel, or perpendicular to the second leg.
- the coupling portion can comprise a joint configured to rotatably connect the inner prong and the outer prong, the joint including a first joint portion coupled to the inner prong and a second joint portion coupled to the outer prong, wherein the first joint portion has a first slot and the second joint portion has a second slot, the first slot and the second slot configured to at least partially receive a pin.
- a method of calculating a measurement of physiological parameters of a patient can comprise: transmitting light, by an emitter of a nose sensor, of at least first and second wavelengths through tissue of a nose of a patient to a detector; detecting, by the detector of the nose sensor, light attenuated by the tissue of the nose of the patient; generating an output signal, by the nose sensor, based on the light detected at the nose of the patient; and determining the measurement of the physiological parameters, by the nose sensor, based on the output signal.
- the method can include adhering the emitter with an adhesive to an outer surface of the nose of the patient.
- the method can include removing a liner from the emitter before adhering the emitter to the outer surface of the nose of the patient.
- the method can include focusing light into the detector with a lens.
- the lens can comprise glass, plastic, or both glass and plastic.
- the lens can comprise a simple lens.
- the lens can comprise one layer of material selected from the group consisting of glass and plastic.
- the lens can comprise at least two layers.
- the at least two layers can comprise a material selected from the group consisting of glass and plastic.
- the lens can comprise two or more simple lenses arranged about a common axis.
- the method can include diffusing light emitted by the emitter prior to entering the tissue of the nose of the patient with a diffuser.
- the diffuse can be located proximate to the emitter.
- the diffuser can comprise silicone.
- the diffuser can comprise white silicone, black silicone, acrylic, glass, and/or plastic.
- the diffuser can comprise two or more layers.
- the method can include transmitting the measurement of physiological parameters by the nose sensor based on the output signal with a transmitter.
- the transmitter can comprise a cable and/or a wireless transmitter.
- the wireless transmitter can be configured to operate on a protocol selected from the group consisting of Wi-Fi, Bluetooth, ZigBee, Z-wave, radio frequency, cellular telephony, infrared, and satellite transmission.
- the nose sensor can include: an inner prong configured to be positioned on one of an inner or outer side of a nose; and an outer prong configured to be positioned on one of an inner or outer side of a nose, wherein the detector is coupled to one of the inner or outer prongs and configured to be secured to a wall of the nose of the patient.
- the inner prong can be parallel, non-parallel, or perpendicular to the outer prong.
- the emitter can be coupled to a first end of a flexible circuit and the detector can be coupled to a second end of the flexible circuit, wherein a first portion of the flexible circuit is contained within the noninvasive physiological monitoring device and a second portion of the flexible circuit is not contained within the noninvasive physiological monitoring device, and the second portion is closer to the first end of the flexible circuit than to the second end, wherein the method further comprises securing the emitter to the nose of the patient.
- the inner prong can include an inner post and the outer prong can include a first outer post and a second outer post.
- the nose sensor of the method can include a first central longitudinal axis of the inner post aligned with a second central longitudinal axis of the inner prong, wherein the first outer post of the outer prong is spaced from the second outer post of the outer prong such that the first outer post has a first side wall that is positioned adjacent a second side wall of the outer prong and the second outer post has a third side wall that is positioned adjacent to a fourth side wall of the outer prong that is positioned opposite the second side wall of the outer prong.
- the nose sensor of the method can include a first central longitudinal axis of the inner post aligned with a second central longitudinal axis of the inner prong, wherein the inner post includes a first side wall and a second side wall, wherein the first outer post and the second outer post are spaced laterally away from one another along the outer prong such that the first outer post is positioned laterally outward from the first side wall of the inner post and the second outer post is positioned laterally outward from the second side wall of the inner post.
- the inner post can be configured to apply pressure to an inner portion of the nose of the patient, wherein the first outer post is configured to apply pressure to a first outer portion of the nose of the patient that is spaced laterally outwardly from the inner portion of the patient's nose, and wherein the second outer post is configured to apply pressure to a second outer portion of the nose of the patient that is spaced laterally outwardly from the inner portion of the patient's nose.
- the inner post can be configured to apply pressure to a portion of the nose of the patient and wherein the portion of the nose of the patient is configured to be positioned between the first outer post and the second outer post when the inner prong and the outer prong are secured to the patient.
- the outer prong can include a third outer post comprising a flexible flap coupled to the emitter.
- the first and second outer posts of the outer prong can be curved to conform to a portion of the nose of the patient.
- the inner prong can be curved to conform to a portion of the nose of the patient.
- the first outer post can have a first radius of curvature and a first curve direction
- the second outer post can have a second radius of curvature and a second curve direction, the first radius of curvature being equal to the second radius of curvature and the first curve direction being the same as the second curve direction.
- the inner prong can be curved along a third radius of curvature and in a third direction, the third radius of curvature being equal to the first and second radius of curvatures and the third direction being the same as the first and second curve directions.
- the outer prong can be U-shaped.
- the inner prong can include an inner base, and the outer prong can include an outer base.
- the inner prong can include an intermediate region and the outer prong can include an intermediate region.
- the intermediate region of the inner prong can be curved such that the intermediate region of the inner prong extends towards the intermediate region of the outer prong.
- the nose sensor of the method can include a coupling portion configured to space the inner prong from the outer prong, wherein the coupling portion provides support to the inner and outer prongs to secure the device to the nose of the patient.
- the inner prong can include an inner base, and the outer prong can include an outer base.
- the coupling portion can include the inner base and the outer base, wherein the inner base includes a first top surface and the outer base includes a second top surface.
- the inner post can extend from a center of the first top surface of the inner base.
- the first outer post can be spaced apart from the second outer post, and the first outer post and the second outer post can extend from the second top surface of the outer base.
- the inner post can be wider than the first outer post and the second outer post.
- the nose sensor of the method can include a joint configured to rotatably connect the inner prong and the outer prong, the joint including a first joint portion coupled to the inner prong and a second joint portion coupled to the outer prong, wherein the first joint portion has a first slot and the second joint portion has a second slot, the first slot and the second slot configured to at least partially receive a pin.
- the method can include biasing the inner prong from the outer prong with a biasing member.
- the biasing member can comprise a spring.
- the spring can be cylindrical or non-cylindrical.
- At least one of the outer prong or the inner prong can comprise a recess configured to secure at least a portion of the spring.
- At least one of the outer prong or the inner prong can comprise two protruding rims configured to secure at least a portion of the spring.
- the two protruding rims can be configured to secure at least a portion of the spring by a snap-fit, press-fit, and/or a friction-fit.
- the spring can comprise coils, a first leg, and a second leg.
- the first leg can extend in the same, or opposite, direction as the second leg.
- the first leg can be parallel, non-parallel, or perpendicular to the second leg.
- the first leg of the spring can extend in the same direction as the second leg.
- the coupling portion can comprise a joint configured to rotatably connect the inner prong and the outer prong, the joint including a first joint portion coupled to the inner prong and a second joint portion coupled to the outer prong, wherein the first joint portion has a first slot and the second joint portion has a second slot, the first slot and the second slot configured to at least partially receive a pin.
- FIG. 1 illustrates a block diagram depicting a computer hardware system configured to run software for implementing one or more examples of the sensor system described herein.
- FIG. 2 illustrates a front view of a nose sensor.
- FIG. 3 illustrates a front view of the nose sensor of FIG. 2 .
- FIG. 4 illustrates a side view of the nose sensor of FIG. 2 .
- FIG. 5 illustrates a top view of the nose sensor of FIG. 2 .
- FIG. 6 illustrates a perspective view of the nose sensor of FIG. 2 .
- FIG. 7 illustrates a perspective view of the nose sensor of FIG. 2 in use.
- FIG. 8 illustrates a perspective view of the nose sensor of FIG. 2 in use.
- FIG. 9 illustrates a front view of a nose sensor.
- FIG. 10 illustrates a front view of the nose sensor of FIG. 9 .
- FIG. 11 illustrates a perspective view of the nose sensor of FIG. 9 .
- FIG. 12 illustrates a top view of the nose sensor of FIG. 9 .
- FIG. 13 illustrates a side view of the nose sensor of FIG. 9 .
- FIG. 14 illustrates a perspective view of the nose sensor of FIG. 9 in use.
- FIG. 15 illustrates a perspective view of the nose sensor of FIG. 9 in use.
- FIG. 16 illustrates a perspective view of a nose sensor.
- FIG. 17 illustrates a side view of the nose sensor of FIG. 16 .
- FIG. 18 illustrates a perspective view of the nose sensor of FIG. 16 .
- FIG. 19 illustrates a perspective view of the nose sensor of FIG. 16 .
- FIG. 20 illustrates a perspective view of the nose sensor of FIG. 16 .
- FIG. 21 illustrates a perspective view of the nose sensor of FIG. 16 in use.
- FIG. 22 illustrates a perspective view of the nose sensor of FIG. 16 in use.
- FIG. 23 illustrates a perspective view of a biasing member that can be incorporated into the nose sensor of FIG. 16 .
- FIG. 24 illustrates a top view of a biasing member that can be incorporated into the nose sensor of FIG. 16 .
- FIG. 25 illustrates a side view of a biasing member that can be incorporated into the nose sensor of FIG. 16 .
- This disclosure describes noninvasive sensor systems that can enable a user to measure, view, compare, analyze, evaluate, and/or download information relating to the respiratory system, for example, via a computing device, which may contain more advanced functionality than traditional systems and devices.
- the computing device can be, for instance, a cellphone or smartphone, tablet, laptop, personal digital assistant (PDA), and/or the like.
- the embodiments described herein can involve, be integrated with, and/or depict several example user interfaces that may be implemented in a user computing device.
- the user interfaces shown, described, and/or discussed can depict example displays generated by the noninvasive sensor system and may be implemented in any of the user devices described herein.
- the user interfaces shown, described, and/or discussed may be implemented in a mobile application such as an application that runs on a mobile operating system such as the AndroidTM operating system available from GoogleTM or the iOSTM operating system available from AppleTM.
- a mobile application such as the AndroidTM operating system available from GoogleTM or the iOSTM operating system available from AppleTM.
- the user interfaces shown, described, and/or discussed can be implemented in a web application that runs in a browser.
- user interface controls shown may include buttons, touch-selective components and the like which may be altered to include any type of user interface control including, but not limited to, checkboxes, radio buttons, select boxes, dropdown boxes, textboxes or any combination of the same.
- the different user interface controls may be combined or their functionality may be spread apart amongst additional controls while retaining the similar or same functionality as shown and described herein.
- touchscreen interfaces are shown, other devices may implement similar user interfaces with other types of user input devices such as a mouse, keyboard, stylus, or the like.
- FIG. 1 illustrates a block diagram of an exemplary user monitoring system 100 .
- the system 100 can include a user monitor 102 comprising a processing board 104 and a host instrument 108 .
- the processing board 104 communicates with a sensor 106 to receive one or more intensity signal(s) indicative of one or more parameters of tissue of a user.
- the processing board 104 also communicates with a host instrument 108 to display determined values calculated using the one or more intensity signals.
- the processing board 104 can include processing circuitry arranged on one or more printed circuit boards capable of installation into the monitor 102 , or capable of being distributed as some or all of one or more OEM components for a wide variety of host instruments monitoring a wide variety of user information.
- the processing board 104 can include a sensor interface 110 , a digital signal processor and signal extractor (“DSP” or “processor”) 112 , and an instrument manager 114 .
- the sensor interface 110 can convert digital control signals into analog drive signals capable of driving sensor emitters, and converts composite analog intensity signal(s) from light sensitive detectors into digital data.
- the sensor interface 110 can manage communication with external computing devices.
- a multipurpose sensor port (or input/output port) can connect to the sensor 106 or alternatively connect to a computing device, such as a personal computer, a PDA, additional monitoring equipment or networks, or the like.
- the processing board 104 may upload various stored data for, for example, off-line analysis and diagnosis.
- the stored data may comprise trend data for any one or more of the measured parameter data, plethysmograph waveform data acoustic sound waveform, or the like.
- the processing board 104 may advantageously download from the computing device various upgrades or executable programs, may perform diagnosis on the hardware or software of the monitor 102 .
- processing board 104 may advantageously be used to view and examine user data, including raw data, at or away from a monitoring site, through data uploads/downloads, or network connections, combinations, or the like, such as for customer support purposes including software maintenance, customer technical support, and the like.
- Upgradable sensor ports are disclosed in U.S. Pat. No. 7,500,950, filed on Jul. 23, 2004, titled “Multipurpose Sensor Port,” incorporated by reference herein.
- the digital data is output to the DSP 112 .
- the DSP 112 can comprise a processing device based on the Super Harvard ARChitecture (“SHARC”), such as those commercially available from Analog Devices.
- SHARC Super Harvard ARChitecture
- the DSP 112 can comprise a wide variety of data and/or signal processors capable of executing programs for determining physiological parameters from input data.
- the DSP 112 includes program instructions capable of receiving multiple channels of data related to one or more intensity signals representative of the absorption (from transmissive or reflective sensor systems) of a plurality of wavelengths of emitted light by body tissue.
- the DSP 112 can accept data related to the absorption of eight (8) wavelengths of light, although an artisan will recognize from the disclosure herein that the data can be related to the absorption of two (2) to sixteen (16) or more wavelengths.
- FIG. 1 also shows the processing board 104 including the instrument manager 114 .
- the instrument manager 114 can comprise one or more microcontrollers controlling system management, including, for example, communications of calculated parameter data and the like to the host instrument 108 .
- the instrument manager 114 may also act as a watchdog circuit by, for example, monitoring the activity of the DSP 112 and resetting it when appropriate.
- the sensor 106 can comprise a reusable clip-type sensor, a disposable adhesive-type sensor, a combination sensor having reusable and disposable components, or the like. Moreover, an artisan will recognize from the disclosure herein that the sensor 106 can also comprise mechanical structures, adhesive or other tape structures, Velcro wraps or combination structures specialized for the type of user, type of monitoring, type of monitor, or the like. The sensor 106 can provide data to the board 104 and vice versa through, for example, a user cable. An artisan will also recognize from the disclosure herein that such communication can be wireless, over public or private networks or computing systems or devices, or the like.
- such communication can be via wireless protocols such as Wi-Fi, Bluetooth, ZigBee, Z-wave, or radio frequency such as near field communication, or other wireless protocols such as cellular telephony infrared, satellite transmission, proprietary protocols, combinations of the same, and the like.
- wireless protocols such as Wi-Fi, Bluetooth, ZigBee, Z-wave, or radio frequency such as near field communication, or other wireless protocols such as cellular telephony infrared, satellite transmission, proprietary protocols, combinations of the same, and the like.
- the sensor 106 includes a plurality of emitters 116 irradiating the body tissue 118 with differing wavelengths of light, and one or more detectors 120 capable of detecting the light after attenuation by the tissue 118 .
- the emitters 116 can include a matrix of eight (8) emission devices mounted on a flexible substrate, the emission devices being capable of emitting eight (8) differing wavelengths of light.
- the emitters 116 can comprise twelve (12) or sixteen (16) emitters, although other numbers of emitters are contemplated, including two (2) or more, three (3) or more, four (4) or more, five (5) or more, six (6) or more, or seven (7) or more emitters, for example. As shown in FIG.
- the sensor 106 may include other electrical components such as, for example, a memory device 122 comprising an EPROM, EEPROM, ROM, RAM, microcontroller, combinations of the same, or the like.
- Other sensor components may include an optional temperature determination device 123 or other mechanisms for, for example, determining real-time emission wavelengths of the emitters 116 .
- the memory 122 may advantageously store some or all of a wide variety data and information, including, for example, information on the type or operation of the sensor 106 ; type or identification of sensor buyer or distributor or groups of buyer or distributors, sensor manufacturer information, sensor characteristics including the number of emitting devices, the number of emission wavelengths, data relating to emission centroids, data relating to a change in emission characteristics based on varying temperature, history of the sensor temperature, current, or voltage, emitter specifications, emitter drive requirements, demodulation data, calculation mode data, the parameters for which the sensor is capable of supplying sufficient measurement data (e.g., HbCO, HbMet, HbT, or the like), calibration or parameter coefficient data, software such as scripts, executable code, or the like, sensor electronic elements, whether the sensor is a disposable, reusable, multi-site, partially reusable, partially disposable sensor, whether it is an adhesive or non-adhesive sensor, whether the sensor is a reflectance, transmittance, or transreflectance sensor, whether the sensor is a finger
- FIG. 1 also shows the user monitor 102 including the host instrument 108 .
- the host instrument 108 can communicate with the board 104 to receive signals indicative of the physiological parameter information calculated by the DSP 112 .
- the host instrument 108 preferably includes one or more display devices 124 capable of displaying indicia representative of the calculated physiological parameters of the tissue 118 at the measurement site.
- the host instrument 108 can advantageously include a handheld housing capable of displaying one or more of a pulse rate, plethysmograph data, perfusion quality such as a perfusion quality index (“PFM”), signal or measurement quality (“SQ”), values of blood constituents in body tissue, including for example, SpO 2 , HbCO, HbMet, HbT, or the like.
- PFM perfusion quality index
- SQ signal or measurement quality
- the host instrument 108 can display values for one or more of HbT, Hb, blood glucose, bilirubin, or the like.
- the host instrument 108 may be capable of storing or displaying historical or trending data related to one or more of the measured values, combinations of the measured values, plethysmograph data, or the like.
- the host instrument 108 also includes an audio indicator 126 and user input device 128 , such as, for example, a keypad, touch screen, pointing device, voice recognition device, or the like.
- the host instrument 108 can include audio or visual alarms that alert caregivers that one or more physiological parameters are falling below predetermined safe thresholds.
- the host instrument 108 can include indications of the confidence a caregiver should have in the displayed data.
- the host instrument 108 can advantageously include circuitry capable of determining the expiration or overuse of components of the sensor 106 , including, for example, reusable elements, disposable elements, or combinations of the same.
- the monitor 102 may comprise one or more monitoring systems monitoring parameters, such as, for example, vital signs, blood pressure, ECG or EKG, respiration, glucose, bilirubin, or the like. Such systems may combine other information with intensity-derived information to influence diagnosis or device operation.
- the monitor 102 may advantageously include an audio system, preferably comprising a high quality audio processor and high quality speakers to provide for voiced alarms, messaging, or the like.
- the monitor 102 can advantageously include an audio out jack, conventional audio jacks, headphone jacks, or the like, such that any of the display information disclosed herein may be audibilized for a listener.
- the monitor 102 may include an audible transducer input (such as a microphone, piezoelectric sensor, or the like) for collecting one or more of heart sounds, lung sounds, trachea sounds, or other body sounds and such sounds may be reproduced through the audio system and output from the monitor 102 .
- wired or wireless communications such as Bluetooth® or WiFi, including IEEE 801.11a, b, or g
- mobile communications may be used to transmit the audio output to other audio transducers separate from the monitor 102 .
- Such communication can be via wireless protocols such as ZigBee, Z-wave, or radio frequency such as near field communication, or other wireless protocols such as cellular telephony infrared, satellite transmission, proprietary protocols, combinations of the same, and the like.
- wireless protocols such as ZigBee, Z-wave, or radio frequency such as near field communication
- wireless protocols such as cellular telephony infrared, satellite transmission, proprietary protocols, combinations of the same, and the like.
- Patterns or changes in the continuous noninvasive monitoring of intensity-derived information may cause the activation of other vital sign measurement devices, such as, for example, blood pressure cuffs.
- patient monitoring devices can include one or more sensors that can be worn by a patient.
- the patient monitoring devices discussed in this disclosure can include one or more, two or more, three or more, four or more, or five or more sensors that can be worn by a patient.
- the systems described herein and shown in the attached drawings include sensors and sensor systems for measuring physiological parameters.
- Sensors and physiological monitors described herein include hardware and/or software capable of determining, comparing, analyzing, and/or monitoring blood oxygenation levels in veins, arteries, a heart rate, a blood flow, respiratory rates, and/or other physiological parameters.
- a pulse oximetry system can use an optical sensor clipped onto a patient's nose, to measure a relative volume of oxygenated hemoglobin in pulsatile arterial blood flowing within, the fingertip, foot, ear, forehead, or other measurement sites.
- the patient monitoring device discussed herein can be shaped and sized for use in various environmental settings and/or for use in various applications.
- a medical patient can be monitored using one or more sensors, each of which can transmit a signal over a cable or other communication link or medium such as those discussed herein to a physiological monitor.
- a nose sensor can be placed on the alar region of the nose.
- “nose” can include any portion of a patient's nose.
- the patient's nose can include at least a portion of the patient's nostril, the alar region of the nose, an inner surface of the nose, and/or an outer surface of the nose, among other portions.
- the nose sensor can measure internal and/or external carotid arteries, veins, and/or other vessels to determine blood oxygenation levels and/or changes, heart rates, blood flow measurements, respiratory rates, and/or the like.
- the nose sensor can also include sensing elements such as, for example, acoustic piezoelectric devices, electrical ECG leads, pulse oximetry sensors, and/or the like.
- the sensors can generate respective signals by measuring one or more physiological parameters of the patient.
- the sensors can generate respective signals by measuring one or more, two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, or nine or more physiological parameters of the patient, for example.
- the signals can then be processed by one or more processors.
- the one or more processors then can communicate the processed signal to a display if a display is provided.
- the display can be incorporated in the physiological monitor.
- the display can be separate from the physiological monitor.
- the nose sensor can have one or more cables connecting the sensor to a monitor, other sensors, and/or a display, among other components.
- the nose sensor can have a wireless transmitter, receiver, or transceiver for receiving and/or transmitting information regarding physiological parameters to a display or stand-alone monitor.
- the wireless transmitter, receiver, or transceiver of the nose sensor can utilize the communication links or protocols discussed herein.
- such communication can be via wireless protocols such as Wi-Fi, Bluetooth, ZigBee, Z-wave, or radio frequency such as near field communication, or other wireless protocols such as cellular telephony infrared, satellite transmission, proprietary protocols, combinations of the same, and the like.
- FIGS. 2-8 illustrate a nose sensor system 200 .
- the nose sensor system 200 can include an inner prong 202 and an outer prong 204 .
- the inner prong 202 can be coupled to the outer prong 204 by a coupling portion 220 (see FIGS. 4 and 6 ).
- the coupling portion 220 can be formed at an intersection between the inner prong 202 and the outer prong 204 .
- the coupling portion 220 can be positioned approximately at a center of the outer prong 204 .
- the inner prong 202 and the outer prong 204 can be coupled by the coupling portion 220 .
- the coupling portion 220 can be generally rounded.
- the coupling portion 220 can be square, rectangular, and/or triangular.
- the coupling portion 220 can comprise a combination of these styles and/or shapes.
- the coupling portion 220 can help to maintain the rigidity of the sensor 200 .
- the coupling portion 220 can bias the outer prong 204 towards the inner prong 202 and/or the inner prong 202 towards the outer prong 204 .
- the coupling portion 220 can space the outer prong 204 from the inner prong 202 to accommodate various nose geometries.
- the inner prong 202 and the outer prong 204 can be integrally formed.
- the inner prong 202 , outer prong 204 , and/or the coupling portion 220 can be integrally formed.
- the inner prong 202 and/or the outer prong 204 can be formed separately and/or can be connected by the coupling portion 220 .
- the outer prong 204 can be adhered, bonded, formed with, and/or otherwise connected to the inner prong 202 .
- the outer prong 204 and/or the inner prong 202 can be adhered, bonded, formed with, and/or otherwise connected to the coupling portion 220 .
- the outer prong 204 and/or the inner prong 202 can connect to the coupling portion 220 by a snap-fit connection.
- the outer prong 204 can snap into and thereby secure to the coupling portion 220 , and/or the coupling portion 220 can snap into and thereby secure to the outer prong 204 .
- the inner prong 202 can snap into and thereby secure to the coupling portion 220 , and/or the coupling portion 220 can snap into and thereby secure to the inner prong 202 .
- the inner prong 202 can extend away from the outer prong 204 .
- the inner prong 202 can extend away from the coupling portion 220 in a first and/or second direction.
- the inner prong 202 can include a detector 212 as described in more detail below.
- At least a portion of the inner prong 202 can be configured to be positioned within a patient's nose.
- At least a portion of the inner prong 202 can be positioned adjacent an inner surface of a patient's nose.
- At least a portion of the inner prong 202 can engage at least a portion of an inner surface of a patient's nose.
- At least a portion of the inner prong 202 can be positioned within a patient's nose and/or at least a portion of the inner prong 202 can remain outside of the patient's nose when the nose sensor 200 is in use.
- at least a portion of the inner prong 202 can be configured to be positioned outside a patient's nose.
- At least a portion of the inner prong 202 can be positioned adjacent an outer surface of a patient's nose.
- At least a portion of the inner prong 202 can engage at least a portion of an outer surface of a patient's nose.
- the inner prong 202 can include at least one inner post 203 .
- the inner post 203 can be coupled with the detector 212 as discussed in more detail below.
- the inner post 203 can be configured to be positioned within the patient's nose.
- the outer prong 204 can be generally U-shaped.
- the outer prong 204 can comprise other shapes, however, such as a V-shape.
- the outer prong 204 can include at least one outer post 205 .
- the outer prong 204 can include one or more, two or more, three or more, or four or more outer posts 205 .
- the outer prong 204 can include two outer posts 205 A, 205 B.
- the outer posts 205 A, 205 B can be integrally formed.
- the outer posts 205 A, 205 B can be formed with the outer prong 204 .
- the outer posts 205 A, 205 B can be connected directly to the coupling portion 220 .
- the outer prong 204 , the coupling portion 220 , and/or the inner prong 202 can comprise various lengths.
- the outer prong 204 and/or the outer posts of the outer prong 204 can be longer than the inner prong 202 , inner post 203 , and/or the coupling portion 220 .
- the outer prong 204 and/or the outer posts of the outer prong 204 can be shorter than the inner prong 202 , inner post 203 and/or the coupling portion 220 .
- the outer prong 204 , coupling portion 220 , the inner prong 202 , and/or the inner post 203 can comprise various lengths so as to aid securement to patient's having varying sizes and/or shapes of noses.
- the outer prong 204 , the coupling portion 220 , the inner prong 202 , and/or the inner post 203 can also comprise various lengths so as to aid comfort to patient's having varying sizes and/or shapes of noses when the nose sensor 200 or a portion thereof is attached to the patient.
- the outer prong 204 can be generally U-shaped.
- the outer prong 204 can be rectangular-shaped, square-shaped, and/or triangle-shaped, among other shapes.
- the outer posts 205 A, 205 B can extend outwardly from the coupling portion 220 .
- the outer posts 205 A, 205 B can be curved as the outer posts 205 A, 205 B extend away from the coupling portion 220 .
- a lower portion of the outer posts 205 A, 205 B can be generally curved.
- An upper portion of the outer posts 205 A, 205 B can extend generally upwardly from the lower portion.
- the upper portion of the outer posts 205 A, 205 B can extend inwardly towards one another and/or towards a coupling region 206 (see FIG. 4 ).
- the outer prong 204 can be curved at an intermediate portion.
- the intermediate portion of the outer prong 204 and/or of the outer posts 205 A, 205 B can be curved towards the inner prong 202 .
- the intermediate portion of the outer prong 204 and/or the outer posts 205 A, 205 B can be generally straight such that the outer prong 204 extends generally upwardly and/or parallel to the inner prong 202 .
- the shape of the outer prong 204 can beneficially help to secure the nose sensor 200 to the patient's nose.
- the shape of the outer prong 204 relative to the shape of the inner prong 202 can help to secure the nose sensor 200 to the patient's nose.
- an intermediate portion of the inner prong 202 and the outer prong 204 are curved towards one another to help to secure the nose sensor 200 to the patient's nose in use. This can advantageously help to minimize contact with the patient's nose to reduce the chance of irritating the patient's skin while also securing the nose sensor to the patient's nose.
- only the intermediate region of the outer prong 204 and/or the inner prong 202 can contact the patient's tissue. At least a portion of a lower, intermediate, and/or upper portion of the outer prong 204 and/or at least a portion of a lower, intermediate, and/or lower portion of the inner prong 202 can contact the patient's tissue.
- the outer prong 204 can be biased inwardly relative to the inner prong 202 and/or the inner prong 202 can be biased inwardly relative to the outer prong 204 .
- the inner prong 202 and/or the outer prong 204 can be biased such that the nose sensor 200 can be secured to the patient's nose between the inner prong 202 and the outer prong 204 . This can enhance comfort to the patient when the nose sensor 200 is secured to the patient.
- the nose sensor 200 can be configured to accommodate various shaped and sized noses, and in particular, the alar of the nose.
- the outer prong 204 can be pulled away from the inner prong 202 and/or the inner prong 202 can be pulled away from the outer prong 204 .
- the nose sensor 200 can slide onto the patient's nose.
- the outer prong 204 and/or the inner prong 202 can bend and/or be pushed outwardly by the patient's tissue. This can help to ensure that the nose sensor 200 remains secured to the patient's nose and/or is comfortable to the patient. This can help to allow the nose sensor 200 to sit flush against the patient's tissue, inside, and/or outside of the patient's nose.
- the nose sensor 200 may be less bulky and/or occupy less space on the patient's tissue.
- the reduced profile of the inner prong 202 can allow for a larger breathing space within the patient's nasal passages if the inner prong 202 is configured to be inserted into the patient's nose when nose sensor 200 is secured to the patient.
- the outer prong 204 , outer posts 205 A and 205 B, the inner post 203 , the third post 205 C (see FIG. 7, 8 ), and/or the coupling portion 220 can comprise a cross-section that is circular.
- the outer prong 204 , outer posts 205 A and 205 B, the inner post 203 , the third post 205 C, and/or the coupling portion 220 can comprise a cross-section that is non-circular.
- the outer prong 204 , outer posts 205 A and 205 B, the inner post 203 , the third post 205 C, and/or the coupling portion 220 can comprise a cross-section that is polygonal.
- the outer prong 204 , outer posts 205 A and 205 B, the inner post 203 , the third post 205 C, and/or the coupling portion 220 can comprise a cross-section that is triangle, quadrilateral, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or otherwise shaped.
- the outer prong 204 , outer posts 205 A and 205 B, the inner post 203 , the third post 205 C, and/or the coupling portion 220 can comprise a cross-section that is some combination of these circular and/or polygonal shapes.
- the outer prong 204 , outer posts 205 A and 205 B, the inner post 203 , the third post 205 C, and/or the coupling portion 220 can comprise a cross-section that is partially circular and partially polygonal.
- FIGS. 7 and 8 illustrate the nose sensor 200 in use.
- the inner post 203 can slide into the patient's nose and engage an inner surface of the patient's nose.
- At least a portion of the outer posts 205 A, 205 B can slide along an outer region of the patient's nose and engage an outer surface of the patient's nose.
- at least a portion of the inner prong 202 and/or the inner post 203 can slide along an outer region of the patient's nose and engage an outer surface of the patient's nose
- at least a portion of the outer posts 205 A, 205 B can slide into the patient's nose and engage an inner surface of the patient's nose.
- a central longitudinal axis of the inner post 203 can be aligned with or parallel to a central longitudinal axis of the inner prong 202 .
- the first outer post 205 A can be spaced from the second outer post 205 B.
- first outer post 205 A can have a side wall that is positioned adjacent a first side wall of the outer prong 204 and the second outer post 205 B can have a side wall that is positioned adjacent an second side wall of the outer prong 204 .
- the inner post 203 can include a first side wall 209 A and a second side wall 209 B.
- the first outer post 205 A and/or the second outer post 205 B can be spaced laterally away from one another along the outer prong 204 .
- the first outer post 205 A can be positioned laterally outward from the first side wall 209 A of the inner post 203 .
- the second outer post 205 B can be positioned laterally outward from the second side wall 209 B of the inner post 203 .
- the inner prong 202 (or a portion thereof) can apply pressure to an inner portion of the nose of the patient when the nose sensor 200 is secured to at least a portion of the patient's nose.
- the first outer post 205 A can apply pressure to a portion of the nose of the patient that can be spaced laterally outwardly from at least a portion of the inner portion of the patient's nose where the inner prong 202 (or portion thereof) applies a pressure when the nose sensor 200 is secured to the patient.
- the second outer post 205 B can apply pressure to a portion of the nose of the patient that can be spaced laterally outwardly from the inner portion of the patient's nose where the inner prong 202 (or portion thereof) applies a pressure when the nose sensor 200 is secured to the patient.
- the inner post 203 can apply pressure to a portion of the nose of the patient, as discussed above.
- the portion of the nose of the patient can be positioned between the first outer post 205 A and/or the second outer post 205 B when the inner prong 202 and the outer prong 204 of the nose sensor 200 are secured to the patient.
- the inner prong 202 (or portion thereof) can apply pressure to a portion of the nose of the patient.
- the portion of the nose of the patient can be positioned between the first outer post 205 A and the second outer post 205 B when the inner prong 202 and the outer prong 204 are secured to the patient.
- the inner prong 202 can apply pressure to an inner surface of the patient's nose, as discussed above.
- the inner prong 202 (or portion thereof) can apply pressure from the inside of the patient's nose towards the outside of the patient's nose.
- the first outer post 205 A and/or the second outer post 205 B can apply pressure to the outer surface of the patient's nose.
- the first and/or second outer posts 205 A, 205 B can apply pressure from the outside of the patient's nose towards the inside of the patient's nose.
- the inner prong 202 (or portion thereof) can apply pressure to a portion of the patient's nose that is positioned at least partially between the outer posts 205 A, 205 B.
- the outer posts 205 A, 205 B can apply pressure to a portion of the patient's nose that is positioned at least partially outwardly from the inner prong 202 (or portion thereof).
- the positioning of the inner prong 202 and/or the outer prong 204 of the nose sensor 200 can advantageously help to secure the nose sensor 200 to the patient while also minimizing the contact of portions of the nose sensor 200 with the patient.
- varying the positioning of portions of the nose sensor 200 and/or minimizing the contact between portions of the nose sensor 200 and the patient can aid patient comfort and improve securement.
- the inner prong 202 (or portions thereof), the outer prong 204 , and/or the coupling portion 220 can secure to the patient by contacting one or more points, areas, or portions of the patient's nose.
- the inner prong 202 can contact an inner or outer portion of the patient's nose and the first and second outer posts 205 A, 205 B of the outer prong 204 can contact a different inner or outer portion of the patient's nose when the nose sensor 200 is secured to the patient.
- the configuration of the inner prong 202 and/or outer prong 204 of the nose sensor 200 can contact less of a portion or region of a patient's nose when the nose sensor 200 is secured to a patient.
- the inner prong 202 and/or outer prong 204 of the nose sensor 200 can be configured to contact a minimal amount of a portion or region of a patient's nose when the nose sensor 200 is secured to a patient.
- the nose sensor 200 can measure various physiological parameters of a patient, as discussed above. As shown in FIGS. 2-8 , for example, the nose sensor 200 can include an emitter 210 and a detector 212 to allow the nose sensor 200 to measure the patient's physiological parameters, such as those discussed herein.
- the emitter 210 and/or the detector 212 can allow the nose sensor 200 to take more accurate measurements.
- the emitter can be a light-emitting diode (LED).
- the emitter 210 can emit light of a certain wavelength.
- the light emitter 210 can emit light of different wavelengths in sequence with only one emitter emitting light at a given time, thereby forming a pulse sequence.
- the number of emitters is not limiting and can range from two to eight, or more in some instances. Detailed descriptions and additional examples of the light emitters are provided in U.S. Pat. No. 9,277,880, referenced above.
- the detector 212 can detect light from the emitter 210 after the light passes through and is attenuated by tissue of the patient's nose.
- the detector 212 can comprise photodetectors, photodiodes, phototransistors, and/or the like. Additional details of the photodetector are described in U.S. Pat. No. 9,277,880, referenced above.
- the detector 212 can generate an electrical signal based on the detected light from the emitter 210 .
- the signal of the detected light from the emitter 210 can be input into a signal processor described herein, such that the signal processor can process an output of the sensor 200 .
- FIGS. 2-8 illustrate a detector 212 .
- the detector 212 can be positioned along the inner prong 202 .
- the detector 212 can be coupled with an end of the inner post 203 of the inner prong 202 .
- the detector 212 can be coupled with an upper edge of the inner post 203 .
- the detector 212 can be coupled with an inner surface of the inner post 203 .
- the detector 212 can be adhered, bonded, formed into, and/or otherwise attached to the inner post 203 .
- the detector 212 can be configured to connect to the inner post 203 by a snap-fit connection.
- the inner post 203 and the detector 212 can be integrally formed.
- the detector 212 can be secured to an inner surface of the patient's tissue within the patient's nose.
- the detector 212 can be secured to the inner surface of the patient's nose by an adhesive. Alternatively, the detector 212 can be secured to the inner surface of the patient's nose without adhesives. For example, the engagement of the outer prong 204 and/or the inner prong 202 with the patient's nose can hold the detector 212 against the inner surface of the patient's nose without the use of adhesives.
- the detector 212 can be secured to the outer surface of the patient's nose by an adhesive. Alternatively, the detector 212 can be secured to the outer surface of the patient's nose without adhesives. For example, the engagement of the outer prong 204 and/or the inner prong 202 with the patient's nose can hold the detector 212 against the outer surface of the patient's nose without the use of adhesives.
- the emitter 210 can be secured to the inner surface of the patient's nose by an adhesive. Alternatively, the emitter 210 can be secured to the inner surface of the patient's nose without adhesives. For example, the engagement of the outer prong 204 and/or the inner prong 202 with the patient's nose can hold the emitter 210 against the inner surface of the patient's nose without the use of adhesives.
- the emitter 210 can be secured to the outer surface of the patient's nose by an adhesive.
- the emitter 210 can be secured to the outer surface of the patient's nose without adhesives.
- the engagement of the outer prong 204 and/or the inner prong 202 with the patient's nose can hold the emitter 210 against the outer surface of the patient's nose without the use of adhesives.
- the emitter 210 and/or the detector 212 can include an adhesive layer and a release liner overtop the adhesive layer. The release liner can be removed when the emitter 210 and/or the detector 212 is ready to be secured to a patient's skins surface, such as an interior or exterior portion of a patient's nose.
- the securement of the nose sensor 200 to the patient can be configured to maintain an alignment between the emitter 210 and detector 212 when the nose sensor 200 is in use, as discussed below.
- the detector 212 can be angled away from the outer prong 204 , the outer posts 205 A, 205 B, 205 C and/or the emitter 210 .
- the nose sensor 200 shape and/or size can be varied so as to reduce the bulkiness and/or the obtrusiveness of the nose sensor 200 .
- the nose sensor 200 can maintain a generally low profile.
- the nose sensor 200 can include a diffuser positioned proximate to the emitter 210 .
- the diffuser can be positioned in front of the emitter 210 .
- the diffuser can comprise silicone.
- the diffuser can include white and/or black silicone or a combination thereof to scatter a greater amount of light and/or more accurately measure a patient's physiological parameters.
- an inner part of the diffuser can be white or of a more translucent material and the outer part can be black or of a less translucent material in order to prevent scattering of light beyond the area of interest and to prevent stray ambient light from entering the tissue site.
- the diffuser can comprise materials other than silicone.
- the diffuser can comprise acrylic and/or plastics such as polycarbonate and/or polycarbonate film or sheets.
- the diffuser can comprise glass such as opal glass, ground glass, patterned glass, and/or a combination of such materials.
- the diffuser can also comprise other materials with varying material properties and/or characteristics.
- the diffuser can comprise one or more layers with different material properties and/or characteristics.
- the diffuser can comprise, two or more, three or more, four or more, five or more, six or more, seven or more, or eight or more layers with different material properties and/or characteristics.
- the diffuser can comprise one or more layers with similar material properties and/or characteristics.
- the diffuser can comprise, two or more, three or more, four or more, five or more, six or more, seven or more, or eight or more layers with similar material properties and/or characteristics.
- the diffuser of the nose sensor 200 can diffuse emitted light prior to entering the tissue.
- the diffuser can advantageously spread out, disseminate, and/or scatter light exiting from the emitter 210 into and/or around a portion of a patient's body, for example the nose. This can permit light originating from the emitter 210 to pass through a wider region or area of a patient's body, and thus better facilitate collection of physiological parameters (such as those discussed above).
- the detector 212 can be sized and shaped to receive the optical radiation after it attenuates through tissue and fluids of a portion of a body. Diffusing light prior to entering the tissue can be advantageous because the light is allowed to pass through more tissue. This allows the light to sample more of the body tissue before being detected. It also provides for more even and consistent light across a larger portion of tissue.
- the diffusion of light by the diffuser of the nose sensor 200 can be performed through a light diffusion layer on or proximate to the emitter 210 structure.
- the size and/or shape of the diffuser can help to avoid edge effects.
- the thickness and/or diameter of the diffuser can help to avoid edge effects.
- the proximity of the diffuser relative to the emitter 210 can help to avoid edge effects.
- Such configurations can advantageously help to desensitize the nose sensor 200 to geometric variability.
- the size and/or shape of the diffuser and/or the positioning of the diffuser can allow the nose sensor 200 to accommodate various nose shapes and/or sizes, and/or accurately measure a patient's physiological parameters when light is emitted from the emitter 210 , diffused by the diffuser, transmitted through a portion of the patient's body, and detected by the detector 212 .
- the nose sensor 200 can include an emitter 210 .
- the emitter 210 can be coupled to a third post 205 C of the outer prong 204 .
- the third post 205 C can be formed with or integral with the first post 205 A, the second post 205 B, and/or the outer prong 204 .
- the third post 205 C can be separate from or not integral with the first post 205 A, the second post 205 B, and/or the outer prong 204 .
- the third post 205 C can be configured to be inserted into a portion of the outer prong 204 .
- the third post 205 C can be inserted into an aperture (not shown) along the outer prong 204 .
- the third post 205 C can be configured to be secured to the outer prong 204 or other portion of the nose sensor 200 via an adhesive, fastener, or another securement method.
- the third post 205 C can form a flap.
- the flap can be rigid or substantially rigid.
- the flap can be flexible.
- the flap can be flexible relative to the first and/or second outer posts 205 A, 205 B, which can be substantially rigid.
- the flap can be pulled, bent, and/or peeled away from a patient's nose 207 in use.
- the emitter 210 can be secured to an outer surface of the patient's nose 207 , as described below.
- the emitter 210 can be secured to an inner surface of the patient's nose 207 .
- the nose sensor 200 does not include a third post 205 C.
- the nose sensor 200 can have an inner prong 202 including an inner post 203 and a detector 212 , and an outer prong 204 with a first post 205 a second post 205 B, and a coupling portion 220 .
- Such a configuration for a nose sensor 200 can be used alongside a separate emitter which can attach to an inside or outside portion of a patient's nose to interact with the detector 212 of nose sensor 200 .
- Such an emitter can be electronically coupled to the detector 212 through wiring or a flexible circuit.
- the third post 205 C can form a flap.
- the emitter 210 can be coupled with the flap.
- the emitter 210 can be coupled with an end of the flap.
- the emitter 210 can be positioned on an inner and/or outer surface of the flap.
- the flap configuration can advantageously allow the nose sensor 200 to accommodate various nose geometries.
- the flap can allow the emitter 210 to be positioned approximately parallel to the detector 212 in use.
- the emitter 210 can be positioned such that the emitter 210 remains in alignment with the detector 212 as the nose sensor 200 is attached to a patient.
- the emitter can remain in alignment with the detector 212 regardless of the shape and/or size of the patient's nose.
- the third post 205 C can have a length that is different than the length of the inner post 203 .
- the third post 205 C can have a shorter length than the length of the inner post 203 .
- the third post 205 C can have a greater length than the length of the inner post 203 .
- a nose sensor 200 having an inner post 203 with a different length than the third post 205 can allow an emitter 210 coupled to the third post 205 C to be offset or not aligned with a detector 212 coupled to the inner post 203 . Such an offset can advantageously increase the path length between the emitter 210 and the detector 212 .
- such an offset can advantageously allow for light emitted from the emitter 210 to have to pass through more tissue before arriving and being detected by the detector 212 .
- misalignment between the emitter 210 and the detector 212 may result more scattering of light emitted from the emitter 210 and less emitted light getting to the detector 212
- the misalignment and resulting increase in path length can advantageously allow light to pass through more body tissue, which can result in more accurate measurement of physiological parameters.
- the emitter 210 and/or the detector 212 can be spaced away from the intermediate region of the outer prong 204 and/or the inner prong 202 , or other region of the inner prong 202 and/or the outer prong 204 that contacts the patient's tissue. This can help to space the measurement location, for example the space between the emitter 210 and the detector 212 , from the points, areas, and/or regions where the nose sensor 200 or portions thereof are secured to and/or contacting the patient. Spacing the measurement location from these securement locations can help to reduce false and/or inaccurate readings of physiological parameters such as those discussed herein.
- a pressure region created by contact between the nose sensor 200 or portions thereof and the patient's tissue at and/or proximate to these securement locations may alter blood flow in the patient's tissue or otherwise affect the values of physiological parameters measured by the nose sensor 200 .
- the nose sensor 200 can allow for more accurate measurements of physiological parameters.
- the third post 205 C can be coupled with an emitter 210 .
- the third post 205 C can be flexible.
- the third post 205 C can apply little or no pressure on a patient's nose when the third post 205 C and/or the emitter 210 is secured to an inside or outside portion of a patient's nose.
- the emitter 210 can be coupled to the third post 205 C and the emitter 210 can have an adhesive surrounding the emitter 210 that helps secure the emitter 210 and/or the third post 205 C to an inside or outside portions of a patient's nose.
- the third post 205 C and/or the emitter 210 can advantageously apply little or no pressure to the patient's nose, which can allow for more accurate measurements of physiological parameters.
- An open side of the emitter 210 (for example, the side configured to face the patient's tissue) can be secured to and/or positioned against an outside surface of the patient's nose.
- the emitter 210 and/or the detector 212 can be secured to the patient's nose before, during, and/or after securement of the outer prong 204 and/or the inner prong 202 to the patient's nose.
- the outer prong 204 and/or the inner prong 202 can be secured to the patient's nose before, during, and/or after the emitter 210 and/or the detector 212 is secured to the patient's nose.
- the emitter 210 can be placed approximately aligned with the detector 212 along an outer surface of the patient's nose 207 .
- the emitter 210 can be placed approximately aligned with the detector 212 along an inner surface of the patient's nose 207
- the emitter 210 can include an adhesive that can be configured to couple the emitter 210 with the patient's nose.
- the adhesive can secure the emitter 210 to the patient's nose at a position approximately aligned with the detector 212 .
- the emitter 210 can include a liner.
- the liner can cover the emitter 210 when the emitter 210 is not in use.
- the liner can help to prevent the emitter 210 from inadvertently adhering to another object.
- the liner can help to keep the emitter 210 clean.
- the liner can help to maintain the adhesive properties of the adhesive backing of the emitter 210 and prevent errant readings due to detection of light before the nose sensor 200 is in place.
- the liner can be removed.
- the nose sensor 200 can include a lens on and/or around the detector 212 .
- This lens can advantageously help focus light into the detector 212 .
- the lens can help focus light transmitted through a portion of a patient's body, such as a nose, and originating from the emitter 210 .
- the lens can comprise various materials.
- the lens can comprise glass and/or plastic.
- the lens can also comprise various optical refractive properties.
- the lens can vary in thickness, curvature, refractive index, focal length, and/or other properties.
- the lens can be a simple lens.
- the lens can comprise a single piece of transparent material.
- the lens can be a compound lens.
- the lens can comprise one or more simple lenses arranged about a common axis.
- the lens can comprise two or more, three or more, four or more, five or more, or six or more simple lenses arranged about a common axis.
- the lens can be paired with a diffuser to even out light distribution before detection and/or be surrounded by a black or dark colored border in order to block ambient stray light.
- the nose sensor 200 can include wiring or a flexible circuit for electronically coupling the emitter 210 and the detector 212 .
- the nose sensor 200 can include wiring or a flexible circuit that couples the emitter 210 and the detector 212 and that is positioned within a portion of the nose sensor 200 .
- the nose sensor 200 can including wiring or a flexible circuit that connects to the emitter 210 in an interior portion of the third post 205 C and that travels through an interior portions of the outer prong 204 , coupling portion 220 , and/or inner post 203 to connect to the detector 212 .
- the wiring or flexible circuit can be configured to fit within interior portions of the outer prong 204 , coupling portion 220 , and/or inner post 203 of nose sensor 200 .
- the wiring or flexible circuit can be configured to be outside of interior portions of the nose sensor 200 .
- the emitter 210 can be electronically coupled to the detector 212 by wiring or a flexible circuit that travels outside the nose sensor 200 or components of the nose sensor 200 .
- the nose sensor 200 can have an emitter 210 and no third post 205 C.
- the nose sensor 200 can have a detector 212 connected to a flexible circuit on one end of the flexible circuit and can have the other end of the flexible circuit connected to the emitter 210 .
- the flexible circuit can connect to the detector 212 at an end of the inner post 203 , pass through an interior portion of the inner post 203 , inner prong 202 , coupling portion 220 , and/or an opening in the outer prong 204 (not shown) and connect to the emitter 210 .
- a portion of the flexible circuit can be confined or secured within an interior portion of the nose sensor 200 and a portion of the flexible circuit connected to the emitter 210 can be freely moveable outside the nose sensor 200 and can be secured to a portion of a patient's nose, such as an exterior portion.
- FIGS. 9-15 illustrate a nose sensor 300 .
- the nose sensor 300 can be similar to or identical to the nose sensor discussed above in some or many respects.
- the nose sensor 300 can include an inner prong 302 and an outer prong 304 , which can be respectively similar to the inner prong 202 and the outer prong 204 described above in connection with the nose sensor 200 in some or many respects.
- the nose sensor 300 can include any one, or any combination, of features of the nose sensor 200 .
- the nose sensor 300 can include an emitter and/or a detector similar to the emitter 210 and the detector 212 of the nose sensor 200 .
- the inner prong 302 and the outer prong 304 can be coupled by a coupling portion 320 .
- the coupling portion 320 can be generally rounded.
- the coupling portion 320 can be square, rectangular, and/or triangular.
- the coupling portion 320 can comprise a combination of these styles and/or shapes.
- the coupling portion 320 can help to maintain the rigidity of the sensor 300 .
- the coupling portion 320 can bias the outer prong 304 towards the inner prong 302 and/or the inner prong 302 towards the outer prong 304 .
- the coupling portion 320 can bias the outer prong 304 towards the inner prong 302 and/or the inner prong 302 towards the outer prong 304 .
- the coupling portion 320 can space the outer prong 304 from the inner prong 302 to accommodate various nose geometries.
- the inner prong 302 and the outer prong 304 can be integrally formed.
- the inner prong 302 , outer prong 304 , and/or the coupling portion 320 can be integrally formed.
- the inner prong 302 and/or the outer prong 304 can be formed separately and/or can be connected by the coupling portion 320 .
- the outer prong 304 and/or the inner prong 302 can be adhered, bonded, formed with, and/or otherwise connected to the coupling portion 320 .
- the outer prong 304 and/or the inner prong 302 can connect to the coupling portion 320 by a snap-fit connection.
- the outer prong 304 can snap into and thereby secure to the coupling portion 320 , and/or the coupling portion 320 can snap into and thereby secure to the outer prong 304 .
- the inner prong 302 can snap into and thereby secure to the coupling portion 320 , and/or the coupling portion 320 can snap into and thereby secure to the inner prong 302 .
- the inner prong 302 can extend away from the outer prong 304 .
- the inner prong 302 can extend away from the coupling portion 320 in a first and/or second direction.
- the inner prong 302 can include a detector as described in more detail below. At least a portion of the inner prong 302 can be configured to be positioned within a patient's nose. At least a portion of the inner prong 302 can be positioned adjacent an inner surface of a patient's nose. At least a portion of the inner prong 302 can engage at least a portion of an inner surface of a patient's nose.
- At least a portion of the inner prong 302 can be positioned within a patient's nose and/or at least a portion of the inner prong 302 can remain outside of the patient's nose when the nose sensor 300 is in use. Alternatively, at least a portion of the inner prong 302 can be configured to be positioned outside a patient's nose. At least a portion of the inner prong 302 can be positioned adjacent an outer surface of a patient's nose. At least a portion of the inner prong 302 can engage at least a portion of an outer surface of a patient's nose.
- the outer prong 304 , outer posts 305 A, 305 B, 305 C, the inner prong 302 and/or the inner post 303 can be curved.
- the curvature of the outer prong 304 , outer posts 305 A, 305 B, 305 C, the inner prong 302 and/or the inner post 303 can help to conform to the shape of the patient's nose. This can help to accommodate a variety of nasal geometries and/or can be more comfortable to the user.
- the outer prong 304 , outer posts 305 A, 305 B, 305 C, the inner prong 302 and/or the inner post 303 can be generally straight such that the outer prong 304 and/or outer posts 305 A, 305 B, 305 C, and inner prong 302 and/or inner post 303 extend outwardly from the outer base 324 , inner base 322 , and/or the coupling portion 320 .
- the outer posts 305 A and 305 B can be curved along a radius of curvature and in a direction similar to a curvature and direction of the inner prong 302 and/or inner post 303 . As can be seen by FIGS.
- this curvature and direction can advantageously allow the nose sensor 303 to secure to a patient's nose and also accommodate various shapes and/or sizes of noses of patient's while maintaining patient comfort.
- This similar curvature and direction of curvature can also allow the emitter coupled to an outer post 305 C to align or substantially align with a detector coupled to the inner post 303 .
- the outer prong 304 can be approximately parallel to the inner prong 302 . This can help to maintain an alignment between the emitter and detector in use.
- the inner prong 302 can include an inner post 303 and/or an inner base 322 .
- the inner post 303 can be coupled with the detector as discussed in more detail below.
- the inner post 303 can be configured to be positioned within the patient's nose, as discussed above.
- the inner base 322 can be coupled to and/or formed with the coupling portion 320 at one side and to the inner post 303 at the other side.
- the inner base 322 can be wider than the inner post 303 .
- the inner base 322 can be generally trapezoidal.
- an outer surface of the inner base 322 can have a width that is shorter than a width of an inner surface of the base 322 .
- the inner base 322 can be square, rectangular, circular, and/or oval-shaped.
- the inner base 322 can also comprise other polygonal shapes, such as pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or otherwise shaped.
- the inner post 303 can extend from the inner base 322 .
- the inner post 303 can extend upwardly from the inner base 322 .
- the inner post 303 can be positioned at approximately the center of the inner base 322 .
- the inner post 303 can be positioned in a non-centered location of the inner base 322 , for example, on a location of the inner base 322 that is closer to an edge of the inner base 322 .
- the outer prong 304 can include one or more outer posts 305 .
- the outer prong 304 can include one or more, two or more, three or more, four or more, five or more, or six or more outer posts 305 .
- the outer prong 304 can include outer posts 305 A, 305 B, 305 C and an outer base 324 .
- the outer base 324 can be coupled to and/or formed with the coupling portion 320 at one side and/or to the outer posts 305 A, 305 B, and/or 305 C at the other side.
- the outer posts 305 A, 305 B can be spaced apart along the outer base 324 .
- the outer posts 305 A, 305 B can be spaced apart along a top portion of the outer base 324 .
- the outer posts 305 A, 305 B, and/or 305 C can extend perpendicular from a top surface of the outer base 324 .
- the outer posts 305 A, 305 B, and/or 305 C can extend at an angle that is not perpendicular from a top surface of the outer base 324 .
- the outer posts 305 A, 305 B, and/or 305 C can have the same and/or varying widths and/or lengths.
- the outer posts 305 A, 305 B, and/or 305 C can have widths and the inner post 303 can have a width.
- the width of the inner post 303 can be wider than the respective widths of the outer posts 305 A, 305 B, and/or 305 C. This can help to secure the nose sensor 300 to the patient's nose.
- the nose sensor 300 can have a reduced profile and/or incorporate reduced material, thereby reducing the overall bulkiness of the nose sensor 300 . Thus, the nose sensor 300 can be more comfortable to the patient.
- the nose sensor 300 can include an emitter.
- the emitter can be coupled to the outer post 305 C of the outer prong 304 .
- the outer post 305 C can be formed or integral with the outer post 305 A, the outer post 305 B, and/or the outer prong 304 .
- the outer post 305 C can be separate from or not integral with the outer post 305 A, the outer post 305 B, and/or the outer prong 304 .
- the outer post 305 C can be configured to be inserted into a portion of the outer prong 304 .
- outer post 305 C can be inserted into an aperture (not shown) along the outer prong 304 and/or outer base 324 .
- the outer post 305 C can be configured to be secured to the outer prong 304 , outer base 324 , or other portion of the nose sensor 300 via an adhesive, fastener, or another securement method.
- the outer post 305 C can form a flap.
- the flap can be rigid or substantially rigid.
- the flap can be flexible.
- the flap can be flexible relative to the outer posts 305 A, 305 B, which can be substantially rigid.
- the flap can be pulled, bent, and/or peeled away from a patient's nose 307 in use. In use, the emitter can be secured to an outer surface of the patient's nose 307 , as described below.
- the emitter can be secured to an inner surface of the patient's nose 307 .
- the nose sensor 300 does not include an outer post 305 C.
- the nose sensor 300 can have an inner prong 302 including an inner post 303 and a detector 312 , and an outer prong 304 with an outer post 305 A, an outer post 305 B, an outer base 324 , and a coupling portion 320 .
- Such a configuration for a nose sensor 300 can be used alongside a separate emitter which can attach to an inside or outside portion of a patient's nose to interact with the detector of nose sensor 300 .
- Such an emitter can be electronically coupled to the detector through wiring or a flexible circuit.
- the emitter of nose sensor 300 can be coupled with the outer post 305 C which can comprise a flap.
- the emitter can be coupled with an end of the flap.
- the emitter can be positioned on an inner and/or outer surface of the flap.
- the flap configuration can advantageously allow the nose sensor 300 to accommodate various nose geometries.
- the flap can allow the emitter to be positioned approximately parallel to the detector in use.
- the emitter can be positioned such that the emitter remains in alignment with the detector as the nose sensor 300 is attached to a patient.
- the emitter can remain in alignment with the detector regardless of the shape and/or size of the patient's nose.
- the outer post 305 C can have a length that is different than the length of the inner post 303 .
- the outer post 305 C can have a shorter length than the length of the inner post 303 .
- the outer post 305 C can have a greater length than the length of the inner post 303 .
- a nose sensor 300 having an inner post 303 with a different length than the outer post 305 C can allow an emitter coupled to the outer post 305 C to be offset or not aligned with a detector coupled to the inner post 303 .
- Such an offset can advantageously increase the path length between the emitter and the detector.
- such an offset can advantageously allow for light emitted from the emitter to have to pass through more tissue before arriving and being detected by the detector.
- misalignment between the emitter and the detector may result more scattering of light emitted from the emitter and less emitted light getting to the detector
- the misalignment and resulting increase in path length can advantageously allow light to pass through more body tissue, which can result in more accurate measurement of physiological parameters.
- the outer prong 304 and the outer posts 305 A, 305 B, 305 C of the outer prong 304 , the coupling portion 320 , and/or the inner prong 302 can comprise various lengths.
- the outer prong 304 and/or the outer posts of the outer prong 304 can be longer than the inner prong 302 and/or the coupling portion 320 .
- the outer prong 304 and/or the outer posts of the outer prong 304 can be shorter than the inner prong 302 and/or the coupling portion 320 .
- the outer prong 304 , coupling portion 320 , and/or the inner prong 302 can comprise various lengths so as to aid securement to patient's having varying sizes and/or shapes of noses.
- the outer prong 304 , the coupling portion 320 , and/or the inner prong 302 can also comprise various lengths so as to aid comfort to patient's having varying sizes and/or shapes of noses when the nose sensor 300 or a portion thereof is attached to the patient.
- the outer posts 305 A, 305 B, 305 C can extend outwardly from the outer base 324 .
- the outer posts 305 A, 305 B, 305 C can be curved as the outer posts 305 A, 305 B, 305 C extend away from the outer base 324 .
- a lower portion of the outer posts 305 A, 305 B, 305 C can be generally curved.
- An upper portion of the outer posts 305 A, 305 B, 305 C can extend generally upwardly from the lower portion.
- the upper portion of the outer posts 305 A, 305 B, 305 C can extend inwardly towards one another and/or towards a coupling region 306 (see FIG. 13 ).
- the upper portion of the outer posts 305 A, 305 B, 305 C can curve in the same direction, such as is shown in FIG. 13 . This curvature can advantageously help the nose sensor 300 conform more comfortably to a patient's nose or a portion thereof.
- the outer base 324 can be coupled to and/or formed with the coupling portion 320 at one side and to the outer prong 304 at the other side.
- the outer base 324 can be coupled to and/or formed with the coupling portion 320 at one side and to the outer post 305 A, 305 B, and/or 305 C at the other side.
- the outer base 324 can be wider than the outer post 305 A, 305 B, and/or 305 C.
- the outer base 324 can be generally trapezoidal.
- an outer surface of the outer base 324 can have a width that is shorter than a width of an inner surface of the outer base 324 .
- the outer base 324 can be square, rectangular, circular, and/or oval-shaped.
- the outer base 324 can also comprise other polygonal shapes, such as pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or otherwise shaped.
- the outer prong 304 , outer posts 305 A, 305 B, and 305 C, the inner post 303 , inner base 322 , outer base 324 , and/or the coupling portion 320 can comprise a cross-section that is circular.
- the outer prong 304 , outer posts 305 A, 305 B, and 305 C, the inner post 303 , inner base 322 , outer base 324 , and/or the coupling portion 320 can comprise a cross-section that is non-circular.
- the outer prong 304 , outer posts 305 A, 305 B, and 305 C, the inner post 303 , inner base 322 , outer base 324 , and/or the coupling portion 320 can comprise a cross-section that is polygonal.
- the outer prong 304 , outer posts 305 A, 305 B, and 305 C, the inner post 303 , inner base 322 , outer base 324 , and/or the coupling portion 320 can comprise a cross-section that is triangle, quadrilateral, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or otherwise shaped.
- the outer prong 304 , outer posts 305 A, 305 B, and 305 C, the inner post 303 , inner base 322 , outer base 324 , and/or the coupling portion 320 can comprise a cross-section that is some combination of these circular and/or polygonal shapes.
- the outer prong 304 , outer posts 305 A, 305 B, and 305 C, the inner post 303 , inner base 322 , outer base 324 , and/or the coupling portion 320 can comprise a cross-section that is partially circular and partially polygonal. As shown in at least FIGS.
- the outer posts 305 A and 305 B can comprise a cross section that is square shaped and the outer posts 305 A and 305 B can be curved along their length to better accommodate various nose sizes and/or shapes.
- the inner post 303 can comprise a rectangular shape and can have a cross sectional width that is larger than the cross sectional width of the outer post 305 A and/or the outer post 305 B, which can aid securement of the inner post 303 to an interior portion of a patient's nose or an exterior portion of the patient's nose when the nose sensor 303 is secured to the patient.
- the outer base 324 can have a rectangular cross section and can be curved along its length, which can help to accommodate various nose sizes and/or shapes in the region where the outer base 324 is secured or proximate to a portion of a patient's nose when the nose sensor 303 is secured to the patient.
- the coupling portion 320 can comprise a quadrilateral shape where a back side of the coupling portion 320 (proximate to the inner base 322 ) has a width that is smaller than a front side of the coupling portion 320 (proximate to the outer base 324 ).
- This shape of the coupling portion can advantageously maintain the spacing of the outer posts 305 A and 305 B along the outer base 324 while also minimizing the amount of material and/or weight of the nose sensor 303 by having right and left sides of the coupling portion extend partially toward one another to culminate in the back side of the coupling portion 320 near the inner base 322 .
- the outer prong 304 and/or the outer posts 305 A, 305 B, 305 C of nose sensor 300 can be curved at an intermediate portion.
- the intermediate portion of the outer prong 304 and/or of the outer posts 305 A, 305 B, 305 C can be curved towards the inner prong 302 and/or inner port 303 .
- the intermediate portion of the outer prong 304 and/or the outer posts 305 A, 305 B, 305 C can be generally straight such that the outer prong 304 extends generally upwardly and/or parallel to the inner prong 302 and/or the inner post 303 .
- the shape of the outer prong 304 , outer posts 305 A, 305 B, 305 C, the inner prong 302 and/or inner post 303 can beneficially help to secure the nose sensor 300 to the patient's nose.
- the shape of the outer prong 304 or outer post 305 A, 305 B, 305 C relative to the shape of the inner prong 302 and/or the inner post 303 can help to secure the nose sensor 300 to the patient's nose and can accommodate various nose sizes and/or shapes.
- FIGS. 14 and 15 illustrate the nose sensor 300 when secured to the nose of a patient.
- the inner post 303 can slide into the patient's nose and engage an inner surface of the patient's nose.
- At least a portion of the outer posts 305 A, 305 B, 305 C can slide along an outer region of the patient's nose and engage an outer surface of the patient's nose.
- at least a portion of the inner post 303 can slide along an outer region of the patient's nose and engage an outer surface of the patient's nose
- at least a portion of the outer posts 305 A, 305 B, 305 C can slide into the patient's nose and engage an inner surface of the patient's nose.
- a central longitudinal axis of the inner post 303 can be aligned with or parallel to a central longitudinal axis of the inner prong 202 . As also shown in FIG. 9 ,
- a central longitudinal axis of the inner post 303 can be aligned with a central longitudinal axis of the outer post 305 C, which can help ensure that the emitter and the detector are aligned to accurately measure physiological parameters when the nose sensor 300 is in us.
- the outer post 305 A can be spaced from the outer post 305 B.
- the outer post 305 A can have a side wall that is positioned adjacent a first side wall of the outer prong 304 and the second outer post 305 B can have a side wall that is positioned adjacent a second side wall of the outer prong 304 .
- the inner post 303 can include a first side wall and a second side wall.
- the outer post 205 A and/or the outer post 205 B can be spaced laterally away from one another along the outer prong 304 and/or the outer base 324 .
- the outer post 305 A can be positioned laterally outward from the first side wall of the inner post 303 .
- the outer post 305 B can be positioned laterally outward from the second side wall of the inner post 303 .
- the inner post 303 can apply pressure to an inner portion of the nose of the patient when the nose sensor 300 is secured to at least a portion of the patient's nose.
- the outer post 305 A can apply pressure to a portion of the nose of the patient that can be spaced laterally outwardly from at least a portion of the inner portion of the patient's nose where the inner post 303 applies a pressure when the nose sensor 300 is secured to the patient.
- the outer post 305 B can apply pressure to a portion of the nose of the patient that can be spaced laterally outwardly from the inner portion of the patient's nose where the inner post 303 applies a pressure when the nose sensor 300 is secured to the patient.
- the inner post 303 can apply pressure to a portion of the nose of the patient, as discussed above.
- the portion of the nose of the patient can be positioned between the outer post 305 A and/or the outer post 305 B when the inner prong 302 and the outer prong 304 of the nose sensor 300 are secured to the patient.
- the inner post 303 of the inner prong 302 can apply pressure to a portion of the nose of the patient.
- the portion of the nose of the patient can be positioned between the outer post 305 A and the outer post 305 B when the inner prong 302 and the outer prong 304 are secured to the patient.
- the inner post 303 can apply pressure to an inner surface of the patient's nose, as discussed above.
- the inner post 303 can apply pressure from the inside of the patient's nose towards the outside of the patient's nose.
- the outer post 305 A and/or the outer post 305 B can apply pressure to the outer surface of the patient's nose.
- the outer post 205 A and/or the outer post 205 B can apply pressure from the outside of the patient's nose towards the inside of the patient's nose.
- the inner post 303 can apply pressure to a portion of the patient's nose that is positioned at least partially between the outer posts 305 A, 305 B.
- the outer posts 305 A, 305 B can apply pressure to a portion of the patient's nose that is positioned at least partially outwardly from the inner post 303 .
- the positioning of the inner prong 302 and/or the outer prong 304 of the nose sensor 300 can advantageously help to secure the nose sensor 300 to the patient while also minimizing the contact of portions of the nose sensor 300 with the patient.
- varying the positioning of portions of the nose sensor 300 and/or minimizing the contact between portions of the nose sensor 300 and the patient can aid patient comfort and improve securement.
- the inner prong 302 (or portions thereof), the outer prong 304 (or portions thereof), the coupling portion 220 (or portions thereof) can secure to the patient by contacting one or more points, areas, or portions of the patient's nose.
- the inner prong 302 can contact an inner or outer portion of the patient's nose and the outer posts 305 A, 305 B of the outer prong 304 can contact a different inner or outer portion of the patient's nose when the nose sensor 300 is secured to the patient.
- the configuration of the inner prong 302 and/or outer prong 304 of the nose sensor 300 can contact less of a portion or region of a patient's nose when the nose sensor 300 is secured to a patient.
- the inner prong 302 and/or outer prong 304 of the nose sensor 300 can be configured to contact a minimal amount of a portion or region of a patient's nose when the nose sensor 300 is secured to a patient.
- the nose sensor 300 can measure various physiological parameters of a patient, like those discussed above. As discussed above, the nose sensor 300 can include an emitter and a detector to allow the nose sensor 300 to measure the patient's physiological parameters, such as those discussed herein.
- the emitter can be a light-emitting diode (LED).
- the emitter can emit light of a certain wavelength.
- the light emitter can emit light of different wavelengths in sequence with only one emitter emitting light at a given time, thereby forming a pulse sequence.
- the number of emitters is not limiting and can range from two to eight, or more in some instances. Detailed descriptions and additional examples of the light emitters are provided in U.S. Pat. No. 9,277,880, referenced above.
- the detector can detect light from the emitter after the light passes through and is attenuated by tissue of the patient's nose.
- the detector can comprise photodetectors, photodiodes, phototransistors, and/or the like. Additional details of the photodetector are described in U.S. Pat. No. 9,277,880, referenced above.
- the detector can generate an electrical signal based on the detected light from the emitter.
- the signal of the detected light from the emitter can be input into a signal processor described herein, such that the signal processor can process an output of the sensor 300 .
- the detector can be positioned along the inner prong 302 .
- the detector can be coupled with an end of the inner post 303 of the inner prong 302 .
- the detector can be coupled with an upper edge of the inner post 303 .
- the detector can be coupled with an inner surface of the inner post 303 .
- the detector can be adhered, bonded, formed into, and/or otherwise attached to the inner post 303 .
- the detector can be configured to connect to the inner post 303 by a snap-fit connection.
- the inner post 303 and the detector can be integrally formed.
- the detector can be secured to an inner surface of the patient's tissue within the patient's nose.
- the detector and/or the emitter can advantageously assist in desensitizing the nose sensor 300 to various geometric variations.
- the detector can be secured to the inner surface of the patient's nose by an adhesive.
- the detector can be secured to the inner surface of the patient's nose without adhesives.
- the engagement of the outer prong 304 and/or the inner prong 302 with the patient's nose can hold the detector against the inner surface of the patient's nose without the use of adhesives.
- the detector can be secured to the outer surface of the patient's nose by an adhesive.
- the detector can be secured to the outer surface of the patient's nose without adhesives.
- the engagement of the outer prong 304 and/or the inner prong 302 with the patient's nose can hold the detector against the outer surface of the patient's nose without the use of adhesives.
- the emitter can be secured to the inner surface of the patient's nose by an adhesive.
- the emitter can be secured to the inner surface of the patient's nose without adhesives.
- the engagement of the outer prong 304 and/or the inner prong 202 with the patient's nose can hold the emitter against the inner surface of the patient's nose without the use of adhesives.
- the emitter can be secured to the outer surface of the patient's nose by an adhesive.
- the emitter can be secured to the outer surface of the patient's nose without adhesives.
- the engagement of the outer prong 304 and/or the inner prong 302 with the patient's nose can hold the emitter against the outer surface of the patient's nose without the use of adhesives.
- the emitter and/or the detector can include an adhesive layer and a release liner overtop the adhesive layer. The release liner can be removed when the emitter and/or the detector is ready to be secured to a patient's skins surface, such as an interior or exterior portion of a patient's nose.
- the securement of the nose sensor 300 to the patient can be configured to maintain an alignment between the emitter and detector when the nose sensor 300 is in use, as discussed below.
- the detector can be angled away from the outer prong 304 , the outer posts 305 A, 305 B, 305 C and/or the emitter.
- the nose sensor 300 shape and/or size can be varied so as to reduce the bulkiness and/or the obtrusiveness of the nose sensor 300 .
- the nose sensor 300 can maintain a generally low profile.
- the nose sensor 300 can include a diffuser positioned proximate to the emitter.
- the diffuser can be positioned in front of the emitter.
- the diffuser can comprise silicone.
- the diffuser can include white and/or black silicone to scatter a greater amount of light and/or more accurately measure a patient's physiological parameters.
- the diffuser can comprise materials other than silicone.
- the diffuser can comprise acrylic and/or plastics such as polycarbonate and/or polycarbonate film or sheets.
- the diffuser can comprise glass such as opal glass, ground glass, patterned glass, and/or a combination of such materials.
- the diffuser can also comprise other materials with varying material properties and/or characteristics.
- the diffuser can comprise one or more layers with different material properties and/or characteristics.
- the diffuser can comprise, two or more, three or more, four or more, five or more, six or more, seven or more, or eight or more layers with different material properties and/or characteristics.
- the diffuser can comprise one or more layers with similar material properties and/or characteristics.
- the diffuser can comprise, two or more, three or more, four or more, five or more, six or more, seven or more, or eight or more layers with similar material properties and/or characteristics.
- the diffuser of the nose sensor 300 can diffuse emitted light prior to entering the tissue.
- the diffuser can advantageously spread out, disseminate, and/or scatter light exiting from the emitter into and/or around a portion of a patient's body, for example the nose. This can permit light originating from the emitter to pass through a wider region or area of a patient's body, and thus better facilitate collection of physiological parameters (such as those discussed above).
- the detector can be sized and shaped to receive the optical radiation after it attenuates through tissue and fluids of a portion of a body. Diffusing light prior to entering the tissue can be advantageous because the light is allowed to pass through more tissue. This allows the light to sample more of the body tissue before being detected. It also provides for more even and consistent light across a larger portion of tissue.
- the diffusion of light by the diffuser of the nose sensor 300 can be performed through a light diffusion layer on or proximate to the emitter structure.
- the size and/or shape of the diffuser can help to avoid edge effects.
- the thickness and/or diameter of the diffuser can help to avoid edge effects.
- the proximity of the diffuser relative to the emitter can help to avoid edge effects.
- Such configurations can advantageously help to desensitize the nose sensor 300 to geometric variability.
- the size and/or shape of the diffuser and/or the positioning of the diffuser can allow the nose sensor 300 to accommodate various nose shapes and/or sizes, and/or accurately measure a patient's physiological parameters when light is emitted from the emitter, diffused by the diffuser, transmitted through a portion of the patient's body, and detected by the detector.
- the emitter and/or the detector can be spaced away from the intermediate region of the outer prong 304 and/or the inner prong 302 , or other region of the inner prong 302 and/or the outer prong 304 that contacts the patient's tissue when the nose sensor 300 is secured to the patient.
- the emitter and/or the detector can be spaced away from the outer post 305 A, 305 B, 305 C, the inner prong 302 and/or the inner post 303 that contacts the patient's tissue when the nose sensor 300 is secured to the patient. This can help to space the measurement location, for example the space between the emitter and the detector, from the points, areas, and/or regions where the nose sensor 300 or portions thereof are secured to and/or contacting the patient.
- the nose sensor 300 can allow for more accurate measurements of physiological parameters.
- the outer post 305 C can be coupled with an emitter.
- the outer post 305 C can be flexible.
- the outer post 305 C can apply little or no pressure on a patient's nose when the outer post 305 C and/or the emitter is secured to an inside or outside portion of a patient's nose.
- the emitter can be coupled to the outer post 305 C and the emitter can have an adhesive which surrounds the emitter and secures the emitter and/or the outer post 305 C to an inside or outside portion of a patient's nose.
- the outer post 305 C and/or the emitter can advantageously apply little or no pressure to the patient's nose, which can allow for more accurate measurements of physiological parameters.
- An open side of the emitter (for example, the side configured to face the patient's tissue) can be secured to and/or positioned against an outside surface of the patient's nose.
- the emitter and/or the detector can be secured to the patient's nose before, during, and/or after securement of the outer prong 304 and/or the inner prong 302 to the patient's nose.
- the outer prong 304 and/or the inner prong 302 can be secured to the patient's nose before the emitter and/or the detector is secured to the patient's nose.
- the emitter can be placed approximately aligned with the detector along an outer surface of the patient's nose 307 .
- the emitter can be placed approximately aligned with the detector along an inner surface of the patient's nose 307
- the emitter can include an adhesive that can be configured to couple the emitter with the patient's nose.
- the adhesive can secure the emitter to the patient's nose at a position approximately aligned with the detector.
- the emitter can include a liner.
- the liner can cover the emitter when the emitter is not in use.
- the liner can help to prevent the emitter from inadvertently adhering to another object.
- the liner can help to keep the emitter clean.
- the liner can help to maintain the adhesive properties of the adhesive backing of the emitter and prevent errant readings due to detection of light before the nose sensor 300 is in place. To secure the emitter to the patient, the liner can be removed.
- the nose sensor 300 can include a lens on and/or around the detector.
- This lens can advantageously help focus light into the detector.
- the lens can help focus light transmitted through a portion of a patient's body, such as a nose, and originating from the emitter.
- the lens can comprise various materials.
- the lens can comprise glass and/or plastic.
- the lens can also comprise various optical refractive properties.
- the lens can vary in thickness, curvature, refractive index, focal length, and/or other properties.
- the lens can be a simple lens.
- the lens can comprise a single piece of transparent material.
- the lens can be a compound lens.
- the lens can comprise one or more simple lenses arranged about a common axis.
- the lens can comprise two or more, three or more, four or more, five or more, or six or more simple lenses arranged about a common axis.
- the lens can be paired with a diffuser to even out light distribution before detection and/or be surrounded by a black or dark colored border in order to block ambient stray light.
- the nose sensor 300 can include wiring or a flexible circuit for electronically coupling the emitter and the detector.
- the nose sensor 300 can include wiring or a flexible circuit that couples the emitter and the detector and that is positioned within a portion of the nose sensor 300 .
- the nose sensor can including wiring or a flexible circuit that connects to the emitter in an interior portion of the outer post 305 C and that travels through an interior portions of the outer prong 304 , outer base 324 , coupling portion 320 , and/or inner post 303 to connect to the detector.
- the wiring or flexible circuit can be configured to fit within interior portions of the outer prong 304 , coupling portion 3 , and/or inner post 303 of nose sensor 300 .
- the wiring or flexible circuit can be configured to be outside of interior portions of the nose sensor 300 .
- the emitter can be electronically coupled to the detector by wiring or a flexible circuit that travels outside the nose sensor 300 or components of the nose sensor 300 .
- the nose sensor 300 can have an emitter and no outer post 305 C.
- the nose sensor 300 can have a detector connected to a flexible circuit on one end of the flexible circuit and can have the other end of the flexible circuit connected to the emitter.
- the flexible circuit can connect to the detector at an end of the inner post 303 , pass through an interior portion of the inner post 303 , inner prong 302 , inner base 322 , coupling portion 320 , outer base 324 , and/or an opening in the outer base 324 (not shown) and/or outer prong 304 and connect to the emitter.
- a portion of the flexible circuit can be confined or secured within an interior portion of the nose sensor 300 and a portion of the flexible circuit connected to the emitter can be freely moveable outside the nose sensor 300 and can be secured to a portion of a patient's nose, such as an exterior portion.
- FIGS. 16-22 illustrate a nose sensor 400 .
- the nose sensor 400 is similar to or identical to the nose sensor discussed above in many respects.
- the nose sensor 400 can include an inner prong 402 and an outer prong 404 , which can be respectively similar to the inner prong 202 , 302 and the outer prong 204 , 304 described above in connection with the nose sensor 200 , 300 .
- the nose sensor 400 can include any one, or any combination, of features of the nose sensor 200 , 300 .
- the nose sensor 400 can include a clip-type arrangement.
- the inner prong 402 and the outer prong 404 can be coupled by a coupling portion 420 .
- the coupling portion 420 can form a joint 421 .
- the joint 421 can include a pivot pin 430 .
- the inner prong 402 can include at least one pivot hole 432 and/or the outer prong 404 can include at least one pivot hole 434 .
- the pivot pin 430 can be configured to pass through the pivot holes 432 , 434 to pivotally connect the outer prong 404 with the inner prong 402 .
- the joint 421 can include one or more, two or more, three or more, four or more, or five or more joint portions. As shown in FIG. 16 , the joint 421 can include an inner joint portion 421 A and an outer joint portion 421 B. The inner joint portion 421 A can be coupled to and/or formed with the inner prong 402 . The outer joint portion 421 B can be coupled to and/or formed with the outer prong 404 . As shown, the joint 421 can include at least two outer joint portions 421 B and at least two inner joint portions 421 A. The outer joint portions 421 B can extend inwardly from the outer prong 404 and/or towards the inner prong 402 when assembled. The inner joint portions 421 A can extend inwardly from the inner prong 402 and/or towards the outer prong 404 when assembled.
- the outer joint portions 421 B can be formed along opposite outer edges of the outer prong 404 . This can allow the inner joint portions 421 A to be positioned between the outer joint portions 421 B.
- the inner joint portions 421 A can form a single protrusion.
- the inner joint portions 421 A can include two or more protrusions. As shown, the pivot pin 430 can extend through the outer joint portions 421 B and the inner joint portions 421 A when assembled.
- the joint 421 can allow the outer prong 404 and/or the inner prong 402 to pivot with respect to one another. This can advantageously accommodate various shaped nasal geometries. This can also advantageously help a caregiver or other person to position and secure the nose sensor 400 to the nose of a patient.
- the inner prong 402 can include an inner base 422 and an inner post 403 .
- the inner post 403 can be formed or integral with inner base 422 .
- the inner base 422 can have substantially flat inner and/or outer surfaces. At least one end of the inner base 422 can be rounded and/or squared. As shown in FIG. 16 , one end of the inner base 422 can be rounded and an opposite end can be substantially flat.
- the outer prong 404 can include an outer base 424 and an outer posts 405 A and 405 B.
- the outer base 424 can have substantially flat inner and/or outer surfaces. At least one end of the outer base 424 can be rounded and/or squared. As shown in FIG. 16 , one end of the outer base 424 can be rounded and an opposite end can be substantially flat.
- the inner post 403 can extend from the inner base 422 .
- the inner post 403 can be positioned on one side of the joint 421 .
- a portion of the inner prong 402 can be inserted into a patient's nose.
- the inner post 403 can be inserted into a patient's nose to be secured to the inner surface of the patient's nose while the inner base 422 of the inner prong 402 can lie outside or substantially outside a patient's nose.
- a portion of the inner prong 402 can be secured to an outside portion of a patient's nose when the nose sensor 400 is in use.
- the outer prong 404 can be approximately parallel to the inner prong 402 . This can help to maintain an alignment between the emitter and/or the detector in use, as described above.
- the inner post 403 can be positioned approximately at a center region of an end or surface of the inner base 422 . As shown in FIGS. 16-22 , at least a portion of the outer prong 404 and/or the inner prong 402 can be curved. For example, at least the inner post 403 and the outer posts 405 A, 405 B can be curved. The curvature of the inner post 403 and/or the outer posts 405 A, 405 B can help to conform to the shape of the patient's nose, as discussed with respect to the nose sensor 200 , 300 previously. This can help to accommodate a variety of nasal geometries and/or can be more comfortable to the user.
- the outer prong 404 and/or the inner prong 402 can be generally straight such that the outer and inner prongs 404 , 402 extend outwardly from the coupling portion 420 .
- the inner post 403 , the inner base 422 , and or the joint portion 421 A can be integrally formed.
- the inner post 403 , the inner base 422 , and or the joint portion 421 A can be not integrally formed, but rather, can be secured or connected to one another prior to assembly of the nose sensor 400 .
- the inner post 403 , the inner base 422 , and or the joint portion 421 A can be adhered or bonded to one another.
- the outer posts 405 A, 405 B, and/or 405 C, the outer base 424 , and/or the joint portion 421 B can be integrally formed.
- the outer posts 405 A, 405 B, and/or 405 C, the outer base 424 , and/or the joint portion 421 B can be not integrally formed, but rather, can be secured or connected to one another prior to assembly of the nose sensor 400 .
- the outer posts 405 A, 405 B, and/or 405 C, the outer base 424 , and/or the joint portion 421 B can be adhered or bonded to one another.
- the inner prong 402 and the outer prong 404 can be secured to one another by a snap-fit connection.
- the inner prong 402 and the outer prong 404 could include a snap-fit connection whereby the inner prong 402 and the outer prong 404 snap into place to secure to one another.
- This snap-fit connection could also be configured to allow rotation, such as rotation similar to the rotation permitted in the joint 421 configuration.
- the inner post 403 can extend away from the coupling portion 420 in a first and/or second direction.
- the inner prong 302 can include a detector coupled to the inner post 303 as described in more detail below.
- At least a portion of the inner prong 402 can be configured to be positioned within a patient's nose.
- At least a portion of the inner prong 402 can be positioned adjacent an inner surface of a patient's nose.
- At least a portion of the inner prong 402 can engage at least a portion of an inner surface of a patient's nose.
- At least a portion of the inner prong 402 can be positioned within a patient's nose and/or at least a portion of the inner prong 402 can remain outside of the patient's nose when the nose sensor 400 is in use.
- At least a portion of the inner prong 402 can be configured to be positioned outside a patient's nose. At least a portion of the inner prong 402 can be positioned adjacent an outer surface of a patient's nose. At least a portion of the inner prong 402 can engage at least a portion of an outer surface of a patient's nose.
- the inner prong 402 can include at least one inner post 403 .
- the inner post 403 can be coupled with the detector as discussed in more detail below.
- the inner post 403 can be configured to be positioned within the patient's nose, as discussed above.
- the inner post 403 can be configured to be positioned along an exterior portion of a patient's nose.
- the outer prong 404 and/or the inner prong 402 can comprise various lengths.
- the outer posts 405 A, 405 B, and/or 405 C of the outer prong 404 can be longer than the inner post 403 of the inner prong 202 .
- the outer posts 405 A, 405 B, and/or 405 C of the outer prong 404 can be shorter than the inner post 403 of the inner prong 202 .
- the outer posts 405 A, 405 B, and/or 405 C of the outer prong 404 and the inner post 403 of the inner prong 202 can comprise various lengths so as to aid securement to patient's having varying sizes and/or shapes of noses.
- the outer posts 405 A, 405 B, and/or 405 C of the outer prong 404 and the inner post 403 of the inner prong 402 can comprise various lengths so as to aid comfort to patient's having varying sizes and/or shapes of noses when the nose sensor 400 or a portion thereof is attached to the patient.
- the outer posts 405 A, 405 B, 405 C, the inner post 403 , and/or the inner post 405 C can comprise a cross-section that is circular.
- the outer posts 405 A, 405 B, 405 C, the inner post 403 , and/or the inner post 405 C can comprise a cross-section that is non-circular.
- the outer posts 405 A, 405 B, 405 C, the inner post 403 , and/or the inner post 405 C can comprise a cross-section that is polygonal.
- the outer posts 405 A, 405 B, 405 C, the inner post 403 , and/or the inner post 405 C can comprise a cross-section that is triangle, quadrilateral, pentagonal, hexagonal, heptagonal, octagonal, nonagonal, decagonal, or otherwise shaped.
- the outer posts 405 A, 405 B, 405 C, the inner post 403 , and/or the inner post 405 C can comprise a cross-section that is some combination of these circular and/or polygonal shapes.
- the outer posts 405 A, 405 B, 405 C, the inner post 403 , and/or the inner post 405 C can comprise a cross-section that is partially circular and partially polygonal.
- the outer posts 405 A, 405 B, and/or 405 C can be curved towards the inner prong 402 and/or inner post 403 .
- the outer posts 405 A, 405 B, and/or 405 C can be generally straight such that the outer posts 405 A, 405 B, and/or 405 C extend generally upwardly from the coupling portion 420 and/or the outer base 424 .
- the shape of the outer prong 204 and/or outer posts 405 A, 405 B, 405 C can beneficially help to secure the nose sensor 400 to the patient's nose.
- the shape of the outer prong 204 relative to the shape of the inner prong 202 can help to secure the nose sensor 200 to the patient's nose.
- an intermediate portion of the inner post 403 of the inner prong 202 and an intermediate portion of the outer posts 405 A, 405 B of the outer prong 204 are curved in a similar direction and at a similar radius of curvature to one another to help to secure the nose sensor 400 to the patient's nose in use.
- FIGS. 21 and 22 illustrate the nose sensor 400 when secured to a patient's nose.
- the inner post 403 can slide into the patient's nose and engage an inner surface of the patient's nose.
- At least a portion of the outer posts 405 A, 405 B, 405 C can slide along an outer region of the patient's nose and engage an outer surface of the patient's nose.
- at least a portion of the inner post 403 can slide along an outer region of the patient's nose and engage an outer surface of the patient's nose
- at least a portion of the outer posts 405 A, 405 B, 405 C can slide into the patient's nose and engage an inner surface of the patient's nose.
- These configurations can help to ensure that the nose sensor 400 remains secured to the patient's nose and/or is comfortable when secured to the patient. These configurations can help to allow the nose sensor 400 to sit flush against the patient's tissue, inside and/or outside of the patient's nose.
- the sensor 400 may be less bulky and/or occupy less space on the patient's tissue.
- a central longitudinal axis of the inner post 403 can be aligned with or parallel to a central longitudinal axis of the inner prong 402 .
- a central longitudinal axis of the inner post 403 can be aligned with a central longitudinal axis of the outer post 405 C, which can help ensure that the emitter and the detector are aligned to accurately measure physiological parameters when the nose sensor 400 is in use.
- the outer post 405 A can be spaced from the outer post 405 B.
- the outer prong 404 can include outer posts 405 A, 405 B and an outer base 424 .
- the outer base 424 can be coupled to and/or formed with the coupling portion 420 at one side and to the outer posts 405 A, 405 B at another side.
- the outer posts 405 A, 405 B can be spaced apart along a portion of the outer base 424 .
- the outer posts 405 A, 405 B can be spaced apart along a top portion of the outer base 424 .
- the inner post 403 can be positioned between the outer posts 405 A, 405 B in a top view of the nose sensor 400 (for example, as shown in FIG. 18 ).
- the inner post 403 can include a first side wall and a second side wall.
- the outer post 405 A and/or the outer post 405 B can be spaced laterally away from one another along the outer prong 404 and/or the outer base 424 .
- the outer post 405 A can be positioned laterally outward from the first side wall of the inner post 403 .
- the outer post 405 B can be positioned laterally outward from the second side wall of the inner post 403 .
- the inner post 403 can apply pressure to an inner portion of the nose of the patient when the nose sensor 400 is secured to at least a portion of the patient's nose.
- the outer post 405 A can apply pressure to a portion of the nose of the patient that can be spaced laterally outwardly from at least a portion of the inner portion of the patient's nose where the inner post 403 applies a pressure when the nose sensor 400 is secured to the patient.
- the outer post 405 B can apply pressure to a portion of the nose of the patient that can be spaced laterally outwardly from the inner portion of the patient's nose where the inner post 403 applies a pressure when the nose sensor 400 is secured to the patient.
- the inner post 403 can apply pressure to a portion of the nose of the patient, as discussed above.
- the portion of the nose of the patient can be positioned between the outer post 405 A and/or the outer post 405 B when the inner prong 402 and the outer prong 404 of the nose sensor 400 are secured to the patient.
- the inner post 403 of the inner prong 402 can apply pressure to a portion of the nose of the patient.
- the portion of the nose of the patient can be positioned between the outer post 405 A and the outer post 405 B when the inner prong 402 and the outer prong 404 are secured to the patient.
- the inner post 403 can apply pressure to an inner surface of the patient's nose, as discussed above.
- the inner post 403 can apply pressure from the inside of the patient's nose towards the outside of the patient's nose.
- the outer post 405 A and/or the second outer post 405 B can apply pressure to the outer surface of the patient's nose.
- the outer post 205 A and/or the outer post 405 B can apply pressure from the outside of the patient's nose towards the inside of the patient's nose.
- the inner post 403 can apply pressure to a portion of the patient's nose that is positioned at least partially between the outer posts 405 A, 405 B.
- the outer posts 405 A, 405 B can apply pressure to a portion of the patient's nose that is positioned at least partially outwardly from the inner post 403 .
- the positioning of the inner prong 402 and/or the outer prong 404 of the nose sensor 400 can advantageously help to secure the nose sensor 400 to the patient while also minimizing the contact of portions of the nose sensor 400 with the patient.
- varying the positioning of portions of the nose sensor 400 and/or minimizing the contact between portions of the nose sensor 400 and the patient can aid patient comfort and improve securement.
- the inner prong 402 (or portions thereof), the outer prong 404 (or portions thereof), and/or the coupling portion 420 can secure to the patient by contacting one or more points, areas, or portions of the patient's nose.
- the inner prong 402 can contact an inner or outer portion of the patient's nose and the outer posts 405 A, 405 B of the outer prong 404 can contact a different inner or outer portion of the patient's nose when the nose sensor 400 is secured to the patient.
- the configuration of the inner prong 402 and/or outer prong 404 of the nose sensor 400 can contact less of a portion or region of a patient's nose when the nose sensor 400 is secured to a patient.
- the inner prong 402 and/or outer prong 404 of the nose sensor 400 can be configured to contact a minimal amount of a portion or region of a patient's nose when the nose sensor 400 is secured to a patient.
- the nose sensor 400 can measure various physiological parameters of a patient, as discussed above. Similar to nose sensor 200 and/or 300 , the nose sensor 400 can include an emitter and a detector to allow the nose sensor 400 to measure the patient's physiological parameters, such as those discussed herein.
- the emitter can be a light-emitting diode (LED).
- the emitter can emit light of a certain wavelength.
- the light emitter can emit light of different wavelengths in sequence with only one emitter emitting light at a given time, thereby forming a pulse sequence.
- the number of emitters is not limiting and can range from two to eight, or more in some instances. Detailed descriptions and additional examples of the light emitters are provided in U.S. Pat. No. 9,277,880, referenced above.
- the detector can detect light from the emitter after the light passes through and is attenuated by tissue of the patient's nose.
- the detector can comprise photodetectors, photodiodes, phototransistors, and/or the like. Additional details of the photodetector are described in U.S. Pat. No. 9,277,880, referenced above.
- the detector can generate an electrical signal based on the detected light from the emitter.
- the signal of the detected light from the emitter can be input into a signal processor described herein, such that the signal processor can process an output of the sensor 400 .
- the detector of nose sensor 400 can be positioned along the inner prong 402 .
- the detector can be coupled with an end of the inner post 403 of the inner prong 202 , similar to nose sensor 200 and/or 300 .
- the detector can be coupled with an upper edge of the inner post 403 .
- the detector can be coupled with an inner surface of the inner post 403 .
- the detector can be adhered, bonded, formed into, and/or otherwise attached to the inner post 403 .
- the detector can be configured to connect to the inner post 403 by a snap-fit connection.
- the inner post 403 and the detector can be integrally formed.
- the detector can be secured to an inner surface of the patient's tissue within the patient's nose.
- the detector and/or the emitter can advantageously assist in desensitizing the nose sensor 400 to various geometric variations.
- the detector can be secured to the inner surface of the patient's nose by an adhesive.
- the detector can be secured to the inner surface of the patient's nose without adhesives.
- the engagement of the outer prong 404 and/or the inner prong 402 with the patient's nose can hold the detector against the inner surface of the patient's nose without the use of adhesives.
- the detector can be secured to the outer surface of the patient's nose by an adhesive.
- the detector can be secured to the outer surface of the patient's nose without adhesives.
- the engagement of the outer prong 404 and/or the inner prong 402 with the patient's nose can hold the detector against the outer surface of the patient's nose without the use of adhesives.
- the emitter can be secured to the inner surface of the patient's nose by an adhesive.
- the emitter can be secured to the inner surface of the patient's nose without adhesives.
- the engagement of the outer prong 404 and/or the inner prong 402 with the patient's nose can hold the emitter against the inner surface of the patient's nose without the use of adhesives.
- the emitter can be secured to the outer surface of the patient's nose by an adhesive.
- the emitter can be secured to the outer surface of the patient's nose without adhesives.
- the engagement of the outer prong 404 and/or the inner prong 402 with the patient's nose can hold the emitter against the outer surface of the patient's nose without the use of adhesives.
- the emitter and/or the detector can include an adhesive layer and a release liner overtop the adhesive layer. The release liner can be removed when the emitter and/or the detector is ready to be secured to a patient's skins surface, such as an interior or exterior portion of a patient's nose.
- the securement of the nose sensor 400 to the patient can be configured to maintain an alignment between the emitter and detector when the nose sensor 400 is in use, as discussed below.
- the detector can be angled away from the outer prong 404 , the outer posts 405 A, 405 B, 405 C and/or the emitter.
- the nose sensor 400 shape and/or size can be varied so as to reduce the bulkiness and/or the obtrusiveness of the nose sensor 400 .
- the nose sensor 400 can maintain a generally low profile.
- the nose sensor 400 can include a diffuser positioned proximate to the emitter.
- the diffuser can be positioned in front of the emitter.
- the diffuser can comprise silicone.
- the diffuser can include white and/or black silicone to scatter a greater amount of light and/or more accurately measure a patient's physiological parameters.
- the diffuser can comprise materials other than silicone.
- the diffuser can comprise acrylic and/or plastics such as polycarbonate and/or polycarbonate film or sheets.
- the diffuser can comprise glass such as opal glass, ground glass, patterned glass, and/or a combination of such materials.
- the diffuser can also comprise other materials with varying material properties and/or characteristics.
- the diffuser can comprise one or more layers with different material properties and/or characteristics.
- the diffuser can comprise, two or more, three or more, four or more, five or more, six or more, seven or more, or eight or more layers with different material properties and/or characteristics.
- the diffuser can comprise one or more layers with similar material properties and/or characteristics.
- the diffuser can comprise, two or more, three or more, four or more, five or more, six or more, seven or more, or eight or more layers with similar material properties and/or characteristics.
- the diffuser of the nose sensor 400 can diffuse emitted light prior to entering the tissue.
- the diffuser can advantageously spread out, disseminate, and/or scatter light exiting from the emitter into and/or around a portion of a patient's body, for example the nose. This can permit light originating from the emitter to pass through a wider region or area of a patient's body, and thus better facilitate collection of physiological parameters (such as those discussed above).
- the detector can be sized and shaped to receive the optical radiation after it attenuates through tissue and fluids of a portion of a body. Diffusing light prior to entering the tissue can be advantageous because the light is allowed to pass through more tissue. This allows the light to sample more of the body tissue before being detected. It also provides for more even and consistent light across a larger portion of tissue.
- the diffusion of light by the diffuser of the nose sensor 400 can be performed through a light diffusion layer on or proximate to the emitter structure.
- the size and/or shape of the diffuser can help to avoid edge effects.
- the thickness and/or diameter of the diffuser can help to avoid edge effects.
- the proximity of the diffuser relative to the emitter can help to avoid edge effects.
- Such configurations can advantageously help to desensitize the nose sensor 400 to geometric variability.
- the size and/or shape of the diffuser and/or the positioning of the diffuser can allow the nose sensor 400 to accommodate various nose shapes and/or sizes, and/or accurately measure a patient's physiological parameters when light is emitted from the emitter, diffused by the diffuser, transmitted through a portion of the patient's body, and detected by the detector
- the nose sensor 400 can include an emitter.
- the emitter can be coupled to outer post 405 C of the outer prong 404 .
- the outer post 405 C can be formed or integral with the outer post 405 A, the outer post 405 B, and/or the outer prong 404 .
- the outer post 405 C can be separate from or not integral with the outer post 405 A, the outer post 405 B, and/or the outer prong 404 .
- the outer post 405 C can be configured to be inserted into a portion of the outer prong 404 .
- the outer post 405 C can be inserted into an aperture (not shown) along the outer prong 404 .
- the outer post 405 C can be configured to be secured to the outer prong 404 or other portion of the nose sensor 400 via an adhesive, fastener, or another securement method.
- the outer post 405 C can form a flap.
- the flap can be rigid or substantially rigid.
- the flap can be flexible.
- the flap can be flexible relative to the outer posts 405 A, 405 B, which can be substantially rigid.
- the flap can be pulled, bent, and/or peeled away from a patient's nose 407 in use.
- the emitter can be secured to an outer surface of the patient's nose 407 , as described below.
- the emitter can be secured to an inner surface of the patient's nose 407 .
- the nose sensor 400 does not include an outer post 405 C.
- the nose sensor 400 can have an inner prong 402 including an inner post 403 and a detector, and an outer prong 404 with an outer post 405 A, an outer post 405 B, and a coupling portion 420 .
- Such a configuration for a nose sensor 400 can be used alongside a separate emitter which can attach to an inside or outside portion of a patient's nose to interact with the detector of nose sensor 400 .
- Such an emitter can be electronically coupled to the detector through wiring or a flexible circuit, as discussed herein.
- the outer post 405 C can form a flap.
- the emitter can be coupled with the flap.
- the emitter can be coupled with an end of the flap.
- the emitter can be positioned on an inner and/or outer surface of the flap.
- the flap configuration can advantageously allow the nose sensor 400 to accommodate various nose geometries.
- the flap can allow the emitter to be positioned approximately parallel to the detector in use.
- the emitter can be positioned such that the emitter remains in alignment with the detector as the nose sensor 400 is attached to a patient.
- the emitter can remain in alignment with the detector regardless of the shape and/or size of the patient's nose.
- the outer post 405 C can have a length that is different than the length of the inner post 403 .
- the outer post 405 C can have a shorter length than the length of the inner post 403 .
- the outer post 405 C can have a greater length than the length of the inner post 403 .
- a nose sensor 400 having an inner post 403 with a different length than the outer post 405 C can allow an emitter coupled to the outer post 405 C to be offset or not aligned with a detector coupled to the inner post 403 .
- Such an offset can advantageously increase the path length between the emitter and the detector.
- such an offset can advantageously allow for light emitted from the emitter to have to pass through more tissue before arriving and being detected by the detector.
- misalignment between the emitter and the detector may result more scattering of light emitted from the emitter and less emitted light getting to the detector
- the misalignment and resulting increase in path length can advantageously allow light to pass through more body tissue, which can result in more accurate measurement of physiological parameters.
- the emitter and/or the detector can be spaced away from an intermediate region of the outer prong 404 and/or the inner prong 402 , or other region of the inner prong 402 and/or the outer prong 404 that contacts the patient's tissue. This can help to space the measurement location, for example the space between the emitter and the detector, from the points, areas, and/or regions where the nose sensor 400 or portions thereof are secured to and/or contacting the patient. Spacing the measurement location from these securement locations can help to reduce false and/or inaccurate readings of physiological parameters such as those discussed herein.
- a pressure region created by contact between the nose sensor 400 or portions thereof and the patient's tissue at and/or proximate to these securement locations may alter blood flow in the patient's tissue or otherwise affect the values of physiological parameters measured by the nose sensor 400 .
- the nose sensor 400 can allow for more accurate measurements of physiological parameters.
- the outer post 405 C can be coupled with an emitter.
- the outer post 405 C can be flexible.
- the outer post 405 C can apply little or no pressure on a patient's nose when the outer post 405 C and/or the emitter is secured to an inside or outside portion of a patient's nose.
- the emitter can be coupled to the outer post 405 C and the emitter can have an adhesive surrounding the emitter that helps secure the emitter and/or the outer post 405 C to an inside or outside portion of a patient's nose.
- the outer post 405 C and/or the emitter can advantageously apply little or no pressure to the patient's nose, which can allow for more accurate measurements of physiological parameters.
- An open side of the emitter (for example, the side configured to face the patient's tissue) can be secured to and/or positioned against an outside surface of the patient's nose.
- the emitter and/or the detector can be secured to the patient's nose before, during, and/or after securement of the outer prong 404 and/or the inner prong 402 to the patient's nose.
- the outer prong 404 and/or the inner prong 402 can be secured to the patient's nose before the emitter and/or the detector is secured to the patient's nose.
- the emitter can be placed approximately aligned with the detector along an outer surface of the patient's nose 407 .
- the emitter can be placed approximately aligned with the detector along an inner surface of the patient's nose 407 .
- the emitter can include an adhesive that can be configured to couple the emitter with the patient's nose.
- the adhesive can secure the emitter to the patient's nose at a position approximately aligned with the detector.
- the emitter can include a liner.
- the liner can cover the emitter when the emitter is not in use.
- the liner can help to prevent the emitter from inadvertently adhering to another object.
- the liner can help to keep the emitter clean.
- the liner can help to maintain the adhesive properties of the adhesive backing of the emitter and prevent errant readings due to detection of light before the nose sensor 400 is in place. To secure the emitter to the patient, the liner can be removed.
- the nose sensor 400 can include a lens on and/or around the detector.
- This lens can advantageously help focus light into the detector.
- the lens can help focus light transmitted through a portion of a patient's body, such as a nose, and originating from the emitter.
- the lens can comprise various materials.
- the lens can comprise glass and/or plastic.
- the lens can also comprise various optical refractive properties.
- the lens can vary in thickness, curvature, refractive index, focal length, and/or other properties.
- the lens can be a simple lens.
- the lens can comprise a single piece of transparent material.
- the lens can be a compound lens.
- the lens can comprise one or more simple lenses arranged about a common axis.
- the lens can comprise two or more, three or more, four or more, five or more, or six or more simple lenses arranged about a common axis.
- the lens can be paired with a diffuser to even out light distribution before detection and/or be surrounded by a black or dark colored border in order to block ambient stray light.
- the nose sensor 400 can include wiring or a flexible circuit for electronically coupling the emitter and the detector.
- the nose sensor 400 can include wiring or a flexible circuit that couples the emitter and the detector and that is positioned within a portion of the nose sensor 400 .
- the nose sensor 400 can including wiring or a flexible circuit that connects to the emitter in an interior portion of the outer post 405 C and that travels through an interior portion of the outer prong 404 , passes up from the outer base 424 to the inner base 422 and travels through an interior of the inner prong 402 and/or the inner post 403 to connect to the detector.
- the wiring or flexible circuit can be configured to fit within interior portions of the outer prong 404 , coupling portion 420 , and/or inner post 403 of nose sensor 400 . This can advantageously simplify the attachment and/or securement of the nose sensor 400 .
- the wiring or flexible circuit can be configured to be outside of interior portions of the nose sensor 400 .
- the emitter can be electronically coupled to the detector by wiring or a flexible circuit that travels outside the nose sensor 400 or components of the nose sensor 400 .
- the nose sensor 400 can have an emitter and no outer post 405 C.
- the nose sensor 400 can have a detector connected to a flexible circuit on one end of the flexible circuit and can have the other end of the flexible circuit connected to the emitter.
- the flexible circuit can connect to the detector at an end of the inner post 403 , pass through an interior portion of the inner post 403 , inner prong 402 , inner base 422 , outer base 424 , and/or an opening in the outer prong 404 and connect to the emitter.
- a portion of the flexible circuit can be confined or secured within an interior portion of the nose sensor 400 and a portion of the flexible circuit connected to the emitter can be freely moveable outside the nose sensor 400 and can be secured to a portion of a patient's nose, such as an exterior portion.
- the nose sensor 400 can include a biasing member 416 .
- the biasing member 416 can include a spring, for example.
- the spring can comprise various strength and/or stiffness properties, and/or other material properties.
- the biasing member 416 can bias the outer prong 404 towards the inner prong 402 and/or the inner prong 402 towards the outer prong 404 .
- the biasing member 416 can help to secure the nose sensor 400 to the patient.
- a force can be applied to the inner base 422 and the outer base 424 such that the inner base 422 and the outer base 424 rotate about the pivot pin 430 towards one another. This can allow the nose sensor 400 to easily fit over the patient's nose.
- the nose sensor 400 can be secured to the patient's nose.
- the inner prong 402 can have a protruding rim that extends outward toward the outer prong 404 .
- the inner prong 402 can have a recess configured to receive an end of the biasing member 416 .
- the protruding rim and/or recess can help confine, align, and/or secure an end of the biasing member 416 to the inner prong 402 .
- the outer prong 404 can have a protruding rim that extends outward toward the inner prong 402 .
- the outer prong 404 can have a recess configured to receive an end of the biasing member 416 .
- the protruding rim and/or recess can help confine, align, and/or secure an end of the biasing member 416 to the outer prong 404 .
- the inner prong 402 and/or the outer prong 404 can include two or more protruding rims or skirts that can secure a portion of the biasing member 416 .
- the inner prong 402 and/or the outer prong 404 can include two or more, three or more, four or more, five or more, or six or more protruding rims or skirts.
- the inner prong 402 and/or the outer prong 404 can include two protruding rims along a surface portion of the inner prong 402 and/or the outer prong 404 .
- the two protruding rims can permit a portion of the biasing member 416 to at least partially fit within, and the two protruding rims can secure the portion of the biasing member 416 by a snap-fit, press-fit, and/or friction fit.
- the biasing member 416 can be adhered to a surface of the inner prong 402 and/or a surface of the outer prong 404 . This can help secure an end of the biasing member 416 to a surface of the inner prong 402 and/or a surface of the outer prong 404 .
- the biasing member 416 can be cylindrical (see FIG. 17 ). Alternatively, the biasing member 416 can be non-cylindrical.
- FIGS. 23-25 illustrate an alternative biasing member 516 that can be incorporated into the nose sensor 400 .
- the biasing member 516 can be a spring.
- the spring 516 can be configured to urge together and/or push apart the inner prong 402 and the outer prong 404 .
- the outer prong 404 can be rotatably connected to the inner prong 402 and/or the inner prong 402 can be rotatably connected to the outer prong 404 .
- the spring 516 can be disposed between the inner prong 402 and the outer prong 404 and can be adapted to create a pivot point along a portion of a patient's nose that is gripped between the inner and outer prongs 402 , 404 .
- the spring 516 can have coils 518 , a first leg 520 , and a second leg 522 .
- the first leg 520 can press against the outer prong 404 or the inner prong 402 .
- the first leg 520 can press against the outer or inner prong 404 , 402 .
- the second leg 522 can press against the outer prong 404 or the inner prong 402 .
- second leg 522 can press against the outer or inner prong 404 , 402 .
- the inner prong 402 and/or the outer prong 404 can include recesses sized and shaped to fit at least a portion of the spring 516 .
- a portion of the first leg 520 can be configured to fit within a recess in the outer prong 404 to hold the first leg 520 in place.
- the second leg 522 can be configured to fit within a recess in the outer prong 404 , or alternatively, the inner prong 402 , to hold the second leg 522 in place.
- the inner prong 402 and/or the outer prong 404 can include protrusions sized and shaped to secure at least a portion of the spring 516 .
- a portion of the first leg 520 can be configured to fit between two protrusions or skirts that extend outward from a surface of the outer prong 404 or inner prong 402 , thus holding the first leg 520 in place.
- a portion of the second leg 522 can be configured to fit between two protrusions or skirts that extend outward from a surface of the outer prong 404 or inner prong 402 , thus holding the second leg 522 in place.
- the first leg 520 can extend in an opposite direction as the second leg 522 .
- the coils 518 of the spring 516 can be configured and/or wound so that the first leg 520 extends in the same direction as the second leg 522 .
- the first leg 520 can extend so that it is parallel or substantially parallel to the second leg 522 .
- the first leg 520 can extend so that it is non-parallel or perpendicular to the second leg 522 .
- Conditional language such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain systems include, while other systems do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more systems or that one or more systems necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular system.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Otolaryngology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/955,500 US10849554B2 (en) | 2017-04-18 | 2018-04-17 | Nose sensor |
US17/079,028 US11534110B2 (en) | 2017-04-18 | 2020-10-23 | Nose sensor |
US18/058,228 US12004875B2 (en) | 2017-04-18 | 2022-11-22 | Nose sensor |
US18/654,562 US12220257B2 (en) | 2017-04-18 | 2024-05-03 | Nose sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762486886P | 2017-04-18 | 2017-04-18 | |
US15/955,500 US10849554B2 (en) | 2017-04-18 | 2018-04-17 | Nose sensor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/079,028 Continuation US11534110B2 (en) | 2017-04-18 | 2020-10-23 | Nose sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180296161A1 US20180296161A1 (en) | 2018-10-18 |
US10849554B2 true US10849554B2 (en) | 2020-12-01 |
Family
ID=63791820
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/955,500 Active 2039-02-14 US10849554B2 (en) | 2017-04-18 | 2018-04-17 | Nose sensor |
US17/079,028 Active 2038-11-26 US11534110B2 (en) | 2017-04-18 | 2020-10-23 | Nose sensor |
US18/058,228 Active 2038-05-05 US12004875B2 (en) | 2017-04-18 | 2022-11-22 | Nose sensor |
US18/654,562 Active US12220257B2 (en) | 2017-04-18 | 2024-05-03 | Nose sensor |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/079,028 Active 2038-11-26 US11534110B2 (en) | 2017-04-18 | 2020-10-23 | Nose sensor |
US18/058,228 Active 2038-05-05 US12004875B2 (en) | 2017-04-18 | 2022-11-22 | Nose sensor |
US18/654,562 Active US12220257B2 (en) | 2017-04-18 | 2024-05-03 | Nose sensor |
Country Status (2)
Country | Link |
---|---|
US (4) | US10849554B2 (en) |
WO (1) | WO2018194992A1 (en) |
Cited By (211)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10959652B2 (en) | 2001-07-02 | 2021-03-30 | Masimo Corporation | Low power pulse oximeter |
USD916135S1 (en) | 2018-10-11 | 2021-04-13 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
US10984911B2 (en) | 2005-03-01 | 2021-04-20 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US10980457B2 (en) | 2007-04-21 | 2021-04-20 | Masimo Corporation | Tissue profile wellness monitor |
US10991135B2 (en) | 2015-08-11 | 2021-04-27 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
USD917550S1 (en) | 2018-10-11 | 2021-04-27 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
US10987066B2 (en) | 2017-10-31 | 2021-04-27 | Masimo Corporation | System for displaying oxygen state indications |
USD917564S1 (en) | 2018-10-11 | 2021-04-27 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US10993643B2 (en) | 2006-10-12 | 2021-05-04 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
US10993662B2 (en) | 2016-03-04 | 2021-05-04 | Masimo Corporation | Nose sensor |
US11000232B2 (en) | 2014-06-19 | 2021-05-11 | Masimo Corporation | Proximity sensor in pulse oximeter |
US11006867B2 (en) | 2006-10-12 | 2021-05-18 | Masimo Corporation | Perfusion index smoother |
US11022466B2 (en) | 2013-07-17 | 2021-06-01 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
US11026604B2 (en) | 2017-07-13 | 2021-06-08 | Cercacor Laboratories, Inc. | Medical monitoring device for harmonizing physiological measurements |
US11069461B2 (en) | 2012-08-01 | 2021-07-20 | Masimo Corporation | Automated assembly sensor cable |
USD925597S1 (en) | 2017-10-31 | 2021-07-20 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US11071480B2 (en) | 2012-04-17 | 2021-07-27 | Masimo Corporation | Hypersaturation index |
US11076777B2 (en) | 2016-10-13 | 2021-08-03 | Masimo Corporation | Systems and methods for monitoring orientation to reduce pressure ulcer formation |
US11076782B2 (en) | 2013-10-07 | 2021-08-03 | Masimo Corporation | Regional oximetry user interface |
US11083397B2 (en) | 2012-02-09 | 2021-08-10 | Masimo Corporation | Wireless patient monitoring device |
USD927699S1 (en) | 2019-10-18 | 2021-08-10 | Masimo Corporation | Electrode pad |
US11086609B2 (en) | 2017-02-24 | 2021-08-10 | Masimo Corporation | Medical monitoring hub |
US11087875B2 (en) | 2009-03-04 | 2021-08-10 | Masimo Corporation | Medical monitoring system |
US11089963B2 (en) | 2015-08-31 | 2021-08-17 | Masimo Corporation | Systems and methods for patient fall detection |
US11089982B2 (en) | 2011-10-13 | 2021-08-17 | Masimo Corporation | Robust fractional saturation determination |
US11096631B2 (en) | 2017-02-24 | 2021-08-24 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US11103134B2 (en) | 2014-09-18 | 2021-08-31 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US11109770B2 (en) | 2011-06-21 | 2021-09-07 | Masimo Corporation | Patient monitoring system |
US11109818B2 (en) | 2018-04-19 | 2021-09-07 | Masimo Corporation | Mobile patient alarm display |
US11133105B2 (en) | 2009-03-04 | 2021-09-28 | Masimo Corporation | Medical monitoring system |
US11132117B2 (en) | 2012-03-25 | 2021-09-28 | Masimo Corporation | Physiological monitor touchscreen interface |
USD933232S1 (en) | 2020-05-11 | 2021-10-12 | Masimo Corporation | Blood pressure monitor |
USD933233S1 (en) | 2019-08-16 | 2021-10-12 | Masimo Corporation | Blood pressure device |
US11145408B2 (en) | 2009-03-04 | 2021-10-12 | Masimo Corporation | Medical communication protocol translator |
USD933234S1 (en) | 2019-08-16 | 2021-10-12 | Masimo Corporation | Patient monitor |
US11147518B1 (en) | 2013-10-07 | 2021-10-19 | Masimo Corporation | Regional oximetry signal processor |
US11176801B2 (en) | 2011-08-19 | 2021-11-16 | Masimo Corporation | Health care sanitation monitoring system |
US11172890B2 (en) | 2012-01-04 | 2021-11-16 | Masimo Corporation | Automated condition screening and detection |
US11178776B2 (en) | 2015-02-06 | 2021-11-16 | Masimo Corporation | Fold flex circuit for LNOP |
US11179114B2 (en) | 2011-10-13 | 2021-11-23 | Masimo Corporation | Medical monitoring hub |
US11179111B2 (en) | 2012-01-04 | 2021-11-23 | Masimo Corporation | Automated CCHD screening and detection |
US11185262B2 (en) | 2017-03-10 | 2021-11-30 | Masimo Corporation | Pneumonia screener |
US11191484B2 (en) | 2016-04-29 | 2021-12-07 | Masimo Corporation | Optical sensor tape |
US11191485B2 (en) | 2006-06-05 | 2021-12-07 | Masimo Corporation | Parameter upgrade system |
US11202571B2 (en) | 2016-07-07 | 2021-12-21 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
US11224363B2 (en) | 2013-01-16 | 2022-01-18 | Masimo Corporation | Active-pulse blood analysis system |
US11229374B2 (en) | 2006-12-09 | 2022-01-25 | Masimo Corporation | Plethysmograph variability processor |
US11234655B2 (en) | 2007-01-20 | 2022-02-01 | Masimo Corporation | Perfusion trend indicator |
US11241199B2 (en) | 2011-10-13 | 2022-02-08 | Masimo Corporation | System for displaying medical monitoring data |
US11259745B2 (en) | 2014-01-28 | 2022-03-01 | Masimo Corporation | Autonomous drug delivery system |
US11272852B2 (en) | 2011-06-21 | 2022-03-15 | Masimo Corporation | Patient monitoring system |
US11272839B2 (en) | 2018-10-12 | 2022-03-15 | Ma Simo Corporation | System for transmission of sensor data using dual communication protocol |
US11272883B2 (en) | 2016-03-04 | 2022-03-15 | Masimo Corporation | Physiological sensor |
US11291061B2 (en) | 2017-01-18 | 2022-03-29 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
US11289199B2 (en) | 2010-01-19 | 2022-03-29 | Masimo Corporation | Wellness analysis system |
USRE49007E1 (en) | 2010-03-01 | 2022-04-05 | Masimo Corporation | Adaptive alarm system |
US11291415B2 (en) | 2015-05-04 | 2022-04-05 | Cercacor Laboratories, Inc. | Noninvasive sensor system with visual infographic display |
USRE49034E1 (en) | 2002-01-24 | 2022-04-19 | Masimo Corporation | Physiological trend monitor |
US11317837B2 (en) | 2006-10-12 | 2022-05-03 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US11330996B2 (en) | 2010-05-06 | 2022-05-17 | Masimo Corporation | Patient monitor for determining microcirculation state |
US11331013B2 (en) | 2014-09-04 | 2022-05-17 | Masimo Corporation | Total hemoglobin screening sensor |
US11342072B2 (en) | 2009-10-06 | 2022-05-24 | Cercacor Laboratories, Inc. | Optical sensing systems and methods for detecting a physiological condition of a patient |
US11367529B2 (en) | 2012-11-05 | 2022-06-21 | Cercacor Laboratories, Inc. | Physiological test credit method |
US11363960B2 (en) | 2011-02-25 | 2022-06-21 | Masimo Corporation | Patient monitor for monitoring microcirculation |
USD957648S1 (en) | 2018-10-12 | 2022-07-12 | Masimo Corporation | Dongle |
US11389093B2 (en) | 2018-10-11 | 2022-07-19 | Masimo Corporation | Low noise oximetry cable |
US11399774B2 (en) | 2010-10-13 | 2022-08-02 | Masimo Corporation | Physiological measurement logic engine |
US11399722B2 (en) | 2010-03-30 | 2022-08-02 | Masimo Corporation | Plethysmographic respiration rate detection |
US11410507B2 (en) | 2017-02-24 | 2022-08-09 | Masimo Corporation | Localized projection of audible noises in medical settings |
US11406286B2 (en) | 2018-10-11 | 2022-08-09 | Masimo Corporation | Patient monitoring device with improved user interface |
US11412964B2 (en) | 2008-05-05 | 2022-08-16 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
US11426103B2 (en) | 2008-07-03 | 2022-08-30 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US11426125B2 (en) | 2009-02-16 | 2022-08-30 | Masimo Corporation | Physiological measurement device |
US11437768B2 (en) | 2015-02-06 | 2022-09-06 | Masimo Corporation | Pogo pin connector |
US11439329B2 (en) | 2011-07-13 | 2022-09-13 | Masimo Corporation | Multiple measurement mode in a physiological sensor |
US11452449B2 (en) | 2012-10-30 | 2022-09-27 | Masimo Corporation | Universal medical system |
US11464410B2 (en) | 2018-10-12 | 2022-10-11 | Masimo Corporation | Medical systems and methods |
US11484205B2 (en) | 2002-03-25 | 2022-11-01 | Masimo Corporation | Physiological measurement device |
US11488711B2 (en) | 2013-10-11 | 2022-11-01 | Masimo Corporation | Alarm notification system |
US11488715B2 (en) | 2011-02-13 | 2022-11-01 | Masimo Corporation | Medical characterization system |
US11504002B2 (en) | 2012-09-20 | 2022-11-22 | Masimo Corporation | Physiological monitoring system |
US11504058B1 (en) | 2016-12-02 | 2022-11-22 | Masimo Corporation | Multi-site noninvasive measurement of a physiological parameter |
US11504062B2 (en) | 2013-03-14 | 2022-11-22 | Masimo Corporation | Patient monitor placement indicator |
US11504066B1 (en) | 2015-09-04 | 2022-11-22 | Cercacor Laboratories, Inc. | Low-noise sensor system |
US11515664B2 (en) | 2009-03-11 | 2022-11-29 | Masimo Corporation | Magnetic connector |
USD973072S1 (en) | 2020-09-30 | 2022-12-20 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US11534110B2 (en) | 2017-04-18 | 2022-12-27 | Masimo Corporation | Nose sensor |
USD973686S1 (en) | 2020-09-30 | 2022-12-27 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD973685S1 (en) | 2020-09-30 | 2022-12-27 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US11534087B2 (en) | 2009-11-24 | 2022-12-27 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
USD974193S1 (en) | 2020-07-27 | 2023-01-03 | Masimo Corporation | Wearable temperature measurement device |
US11559275B2 (en) | 2008-12-30 | 2023-01-24 | Masimo Corporation | Acoustic sensor assembly |
US11559227B2 (en) | 2009-07-29 | 2023-01-24 | Masimo Corporation | Non-invasive physiological sensor cover |
US11564642B2 (en) | 2018-06-06 | 2023-01-31 | Masimo Corporation | Opioid overdose monitoring |
US11564593B2 (en) | 2008-09-15 | 2023-01-31 | Masimo Corporation | Gas sampling line |
US11571152B2 (en) | 2009-12-04 | 2023-02-07 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US11581091B2 (en) | 2014-08-26 | 2023-02-14 | Vccb Holdings, Inc. | Real-time monitoring systems and methods in a healthcare environment |
USD979516S1 (en) | 2020-05-11 | 2023-02-28 | Masimo Corporation | Connector |
USD980091S1 (en) | 2020-07-27 | 2023-03-07 | Masimo Corporation | Wearable temperature measurement device |
US11596363B2 (en) | 2013-09-12 | 2023-03-07 | Cercacor Laboratories, Inc. | Medical device management system |
US11602289B2 (en) | 2015-02-06 | 2023-03-14 | Masimo Corporation | Soft boot pulse oximetry sensor |
US11607139B2 (en) | 2006-09-20 | 2023-03-21 | Masimo Corporation | Congenital heart disease monitor |
US11622733B2 (en) | 2008-05-02 | 2023-04-11 | Masimo Corporation | Monitor configuration system |
US11637437B2 (en) | 2019-04-17 | 2023-04-25 | Masimo Corporation | Charging station for physiological monitoring device |
US11638532B2 (en) | 2008-07-03 | 2023-05-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11645905B2 (en) | 2013-03-13 | 2023-05-09 | Masimo Corporation | Systems and methods for monitoring a patient health network |
USD985498S1 (en) | 2019-08-16 | 2023-05-09 | Masimo Corporation | Connector |
US11653862B2 (en) | 2015-05-22 | 2023-05-23 | Cercacor Laboratories, Inc. | Non-invasive optical physiological differential pathlength sensor |
US11660028B2 (en) | 2008-03-04 | 2023-05-30 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
US11672447B2 (en) | 2006-10-12 | 2023-06-13 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
USD989327S1 (en) | 2018-10-12 | 2023-06-13 | Masimo Corporation | Holder |
US11673041B2 (en) | 2013-12-13 | 2023-06-13 | Masimo Corporation | Avatar-incentive healthcare therapy |
US11679579B2 (en) | 2015-12-17 | 2023-06-20 | Masimo Corporation | Varnish-coated release liner |
US11684296B2 (en) | 2018-12-21 | 2023-06-27 | Cercacor Laboratories, Inc. | Noninvasive physiological sensor |
US11690574B2 (en) | 2003-11-05 | 2023-07-04 | Masimo Corporation | Pulse oximeter access apparatus and method |
US11696712B2 (en) | 2014-06-13 | 2023-07-11 | Vccb Holdings, Inc. | Alarm fatigue management systems and methods |
US11705666B2 (en) | 2017-08-15 | 2023-07-18 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
US11706029B2 (en) | 2016-07-06 | 2023-07-18 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
US11717218B2 (en) | 2014-10-07 | 2023-08-08 | Masimo Corporation | Modular physiological sensor |
US11721105B2 (en) | 2020-02-13 | 2023-08-08 | Masimo Corporation | System and method for monitoring clinical activities |
US11717210B2 (en) | 2010-09-28 | 2023-08-08 | Masimo Corporation | Depth of consciousness monitor including oximeter |
US11730379B2 (en) | 2020-03-20 | 2023-08-22 | Masimo Corporation | Remote patient management and monitoring systems and methods |
USD997365S1 (en) | 2021-06-24 | 2023-08-29 | Masimo Corporation | Physiological nose sensor |
US11744471B2 (en) | 2009-09-17 | 2023-09-05 | Masimo Corporation | Optical-based physiological monitoring system |
US11747178B2 (en) | 2011-10-27 | 2023-09-05 | Masimo Corporation | Physiological monitor gauge panel |
US11752262B2 (en) | 2009-05-20 | 2023-09-12 | Masimo Corporation | Hemoglobin display and patient treatment |
USD998630S1 (en) | 2018-10-11 | 2023-09-12 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD998631S1 (en) | 2018-10-11 | 2023-09-12 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD999246S1 (en) | 2018-10-11 | 2023-09-19 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
US11766198B2 (en) | 2018-02-02 | 2023-09-26 | Cercacor Laboratories, Inc. | Limb-worn patient monitoring device |
USD1000975S1 (en) | 2021-09-22 | 2023-10-10 | Masimo Corporation | Wearable temperature measurement device |
US11803623B2 (en) | 2019-10-18 | 2023-10-31 | Masimo Corporation | Display layout and interactive objects for patient monitoring |
US11812229B2 (en) | 2018-07-10 | 2023-11-07 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US11816771B2 (en) | 2017-02-24 | 2023-11-14 | Masimo Corporation | Augmented reality system for displaying patient data |
US11813036B2 (en) | 2017-04-26 | 2023-11-14 | Masimo Corporation | Medical monitoring device having multiple configurations |
US11832940B2 (en) | 2019-08-27 | 2023-12-05 | Cercacor Laboratories, Inc. | Non-invasive medical monitoring device for blood analyte measurements |
US11839498B2 (en) | 2005-10-14 | 2023-12-12 | Masimo Corporation | Robust alarm system |
US11864890B2 (en) | 2016-12-22 | 2024-01-09 | Cercacor Laboratories, Inc. | Methods and devices for detecting intensity of light with translucent detector |
US11872156B2 (en) | 2018-08-22 | 2024-01-16 | Masimo Corporation | Core body temperature measurement |
US11877824B2 (en) | 2011-08-17 | 2024-01-23 | Masimo Corporation | Modulated physiological sensor |
US11879960B2 (en) | 2020-02-13 | 2024-01-23 | Masimo Corporation | System and method for monitoring clinical activities |
USD1013179S1 (en) | 2018-10-12 | 2024-01-30 | Masimo Corporation | Sensor device |
US11887728B2 (en) | 2012-09-20 | 2024-01-30 | Masimo Corporation | Intelligent medical escalation process |
US11883129B2 (en) | 2018-04-24 | 2024-01-30 | Cercacor Laboratories, Inc. | Easy insert finger sensor for transmission based spectroscopy sensor |
US11900775B2 (en) | 2009-12-21 | 2024-02-13 | Masimo Corporation | Modular patient monitor |
US11901070B2 (en) | 2017-02-24 | 2024-02-13 | Masimo Corporation | System for displaying medical monitoring data |
US11937949B2 (en) | 2004-03-08 | 2024-03-26 | Masimo Corporation | Physiological parameter system |
US11944415B2 (en) | 2013-08-05 | 2024-04-02 | Masimo Corporation | Systems and methods for measuring blood pressure |
US11944431B2 (en) | 2006-03-17 | 2024-04-02 | Masimo Corportation | Apparatus and method for creating a stable optical interface |
US11951186B2 (en) | 2019-10-25 | 2024-04-09 | Willow Laboratories, Inc. | Indicator compounds, devices comprising indicator compounds, and methods of making and using the same |
US11963736B2 (en) | 2009-07-20 | 2024-04-23 | Masimo Corporation | Wireless patient monitoring system |
US11963749B2 (en) | 2013-03-13 | 2024-04-23 | Masimo Corporation | Acoustic physiological monitoring system |
US11974841B2 (en) | 2009-10-16 | 2024-05-07 | Masimo Corporation | Respiration processor |
US11986289B2 (en) | 2018-11-27 | 2024-05-21 | Willow Laboratories, Inc. | Assembly for medical monitoring device with multiple physiological sensors |
US11990706B2 (en) | 2012-02-08 | 2024-05-21 | Masimo Corporation | Cable tether system |
US11986067B2 (en) | 2020-08-19 | 2024-05-21 | Masimo Corporation | Strap for a wearable device |
US11992342B2 (en) | 2013-01-02 | 2024-05-28 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US11992361B2 (en) | 2012-09-20 | 2024-05-28 | Masimo Corporation | Acoustic patient sensor coupler |
US11998362B2 (en) | 2009-10-15 | 2024-06-04 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US12004881B2 (en) | 2012-01-04 | 2024-06-11 | Masimo Corporation | Automated condition screening and detection |
US12004869B2 (en) | 2018-11-05 | 2024-06-11 | Masimo Corporation | System to monitor and manage patient hydration via plethysmograph variablity index in response to the passive leg raising |
US12014328B2 (en) | 2005-07-13 | 2024-06-18 | Vccb Holdings, Inc. | Medicine bottle cap with electronic embedded curved display |
US12011264B2 (en) | 2017-05-08 | 2024-06-18 | Masimo Corporation | System for displaying and controlling medical monitoring data |
USD1031729S1 (en) | 2017-08-15 | 2024-06-18 | Masimo Corporation | Connector |
US12016661B2 (en) | 2011-01-10 | 2024-06-25 | Masimo Corporation | Non-invasive intravascular volume index monitor |
US12016721B2 (en) | 2013-10-11 | 2024-06-25 | Masimo Corporation | Acoustic sensor with attachment portion |
US12029844B2 (en) | 2020-06-25 | 2024-07-09 | Willow Laboratories, Inc. | Combination spirometer-inhaler |
US12029586B2 (en) | 2006-10-12 | 2024-07-09 | Masimo Corporation | Oximeter probe off indicator defining probe off space |
US12036014B2 (en) | 2015-01-23 | 2024-07-16 | Masimo Corporation | Nasal/oral cannula system and manufacturing |
US12042285B1 (en) | 2012-08-29 | 2024-07-23 | Masimo Corporation | Physiological measurement calibration |
USD1036293S1 (en) | 2021-08-17 | 2024-07-23 | Masimo Corporation | Straps for a wearable device |
USD1037462S1 (en) | 2019-08-16 | 2024-07-30 | Masimo Corporation | Holder for a patient monitor |
US12048534B2 (en) | 2020-03-04 | 2024-07-30 | Willow Laboratories, Inc. | Systems and methods for securing a tissue site to a sensor |
US12066426B1 (en) | 2019-01-16 | 2024-08-20 | Masimo Corporation | Pulsed micro-chip laser for malaria detection |
US12076159B2 (en) | 2019-02-07 | 2024-09-03 | Masimo Corporation | Combining multiple QEEG features to estimate drug-independent sedation level using machine learning |
US12082926B2 (en) | 2020-08-04 | 2024-09-10 | Masimo Corporation | Optical sensor with multiple detectors or multiple emitters |
USD1041511S1 (en) | 2018-10-11 | 2024-09-10 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
US12089968B2 (en) | 2006-12-22 | 2024-09-17 | Masimo Corporation | Optical patient monitor |
USD1042596S1 (en) | 2022-12-12 | 2024-09-17 | Masimo Corporation | Monitoring camera |
US12097043B2 (en) | 2018-06-06 | 2024-09-24 | Masimo Corporation | Locating a locally stored medication |
US12109021B2 (en) | 2010-03-08 | 2024-10-08 | Masimo Corporation | Reprocessing of a physiological sensor |
US12114974B2 (en) | 2020-01-13 | 2024-10-15 | Masimo Corporation | Wearable device with physiological parameters monitoring |
US12126683B2 (en) | 2021-08-31 | 2024-10-22 | Masimo Corporation | Privacy switch for mobile communications device |
US12121333B2 (en) | 2010-12-01 | 2024-10-22 | Willow Laboratories, Inc. | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
USD1048571S1 (en) | 2021-10-07 | 2024-10-22 | Masimo Corporation | Bite block |
US12131661B2 (en) | 2019-10-03 | 2024-10-29 | Willow Laboratories, Inc. | Personalized health coaching system |
US12128213B2 (en) | 2020-01-30 | 2024-10-29 | Willow Laboratories, Inc. | Method of operating redundant staggered disease management systems |
US12127838B2 (en) | 2020-04-22 | 2024-10-29 | Willow Laboratories, Inc. | Self-contained minimal action invasive blood constituent system |
USD1048908S1 (en) | 2022-10-04 | 2024-10-29 | Masimo Corporation | Wearable sensor |
US12138079B2 (en) | 2016-11-30 | 2024-11-12 | Masimo Corporation | Haemodynamic monitor with improved filtering |
US12156732B2 (en) | 2018-10-11 | 2024-12-03 | Masimo Corporation | Patient connector assembly with vertical detents |
US12178572B1 (en) | 2013-06-11 | 2024-12-31 | Masimo Corporation | Blood glucose sensing system |
US12178852B2 (en) | 2020-09-30 | 2024-12-31 | Willow Laboratories, Inc. | Insulin formulations and uses in infusion devices |
USD1057159S1 (en) | 2022-03-29 | 2025-01-07 | Masimo Corporation | Electronic measurement device |
USD1057160S1 (en) | 2022-03-29 | 2025-01-07 | Masimo Corporation | Electronic measurement device |
US12198790B1 (en) | 2010-10-07 | 2025-01-14 | Masimo Corporation | Physiological monitor sensor systems and methods |
US12201702B1 (en) | 2016-02-12 | 2025-01-21 | Masimo Corporation | Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles |
US12207901B1 (en) | 2019-08-16 | 2025-01-28 | Masimo Corporation | Optical detection of transient vapor nanobubbles in a microfluidic device |
US12220207B2 (en) | 2019-02-26 | 2025-02-11 | Masimo Corporation | Non-contact core body temperature measurement systems and methods |
USD1061585S1 (en) | 2020-10-16 | 2025-02-11 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD1063893S1 (en) | 2022-03-11 | 2025-02-25 | Masimo Corporation | Electronic device |
US12236767B2 (en) | 2022-01-11 | 2025-02-25 | Masimo Corporation | Machine learning based monitoring system |
USD1066244S1 (en) | 2023-05-11 | 2025-03-11 | Masimo Corporation | Charger |
US12257081B2 (en) | 2009-10-15 | 2025-03-25 | Masimo Corporation | Bidirectional physiological information display |
US12263018B2 (en) | 2017-04-28 | 2025-04-01 | Masimo Corporation | Spot check measurement system |
USD1068656S1 (en) | 2023-05-11 | 2025-04-01 | Masimo Corporation | Charger |
US12272445B1 (en) | 2019-12-05 | 2025-04-08 | Masimo Corporation | Automated medical coding |
USD1071195S1 (en) | 2022-10-06 | 2025-04-15 | Masimo Corporation | Mounting device for a medical transducer |
USD1072836S1 (en) | 2020-10-16 | 2025-04-29 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD1072837S1 (en) | 2020-10-27 | 2025-04-29 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US12295708B2 (en) | 2024-06-11 | 2025-05-13 | Masimo Corporation | Remote patient management and monitoring systems and methods |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002516689A (en) | 1998-06-03 | 2002-06-11 | マシモ・コーポレイション | Stereo pulse oximeter |
US6920345B2 (en) | 2003-01-24 | 2005-07-19 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US7500950B2 (en) | 2003-07-25 | 2009-03-10 | Masimo Corporation | Multipurpose sensor port |
EP1874178A4 (en) | 2005-04-13 | 2009-12-09 | Glucolight Corp | Method for data reduction and calibration of an oct-based blood glucose monitor |
US8182443B1 (en) | 2006-01-17 | 2012-05-22 | Masimo Corporation | Drug administration controller |
US8840549B2 (en) | 2006-09-22 | 2014-09-23 | Masimo Corporation | Modular patient monitor |
US8600467B2 (en) | 2006-11-29 | 2013-12-03 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US8989831B2 (en) | 2009-05-19 | 2015-03-24 | Masimo Corporation | Disposable components for reusable physiological sensor |
US10852069B2 (en) | 2010-05-04 | 2020-12-01 | Fractal Heatsink Technologies, LLC | System and method for maintaining efficiency of a fractal heat sink |
EP2765909B1 (en) | 2011-10-13 | 2019-06-26 | Masimo Corporation | Physiological acoustic monitoring system |
WO2013184965A1 (en) | 2012-06-07 | 2013-12-12 | Masimo Corporation | Depth of consciousness monitor |
US10448871B2 (en) | 2015-07-02 | 2019-10-22 | Masimo Corporation | Advanced pulse oximetry sensor |
WO2018156648A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | Managing dynamic licenses for physiological parameters in a patient monitoring environment |
USD890708S1 (en) | 2017-08-15 | 2020-07-21 | Masimo Corporation | Connector |
USD906970S1 (en) | 2017-08-15 | 2021-01-05 | Masimo Corporation | Connector |
KR20200074175A (en) | 2017-10-19 | 2020-06-24 | 마시모 코오퍼레이션 | Display configuration for medical monitoring systems |
USD921202S1 (en) | 2019-08-16 | 2021-06-01 | Masimo Corporation | Holder for a blood pressure device |
US12251201B2 (en) | 2019-08-16 | 2025-03-18 | Poltorak Technologies Llc | Device and method for medical diagnostics |
WO2022240765A1 (en) * | 2021-05-11 | 2022-11-17 | Masimo Corporation | Optical physiological nose sensor |
Citations (522)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543146A (en) | 1983-04-22 | 1985-09-24 | Coburn Optical Industries, Inc. | Wrinkle prevention in glass/plastic composite lenses |
US4685464A (en) | 1985-07-05 | 1987-08-11 | Nellcor Incorporated | Durable sensor for detecting optical pulses |
US4960128A (en) | 1988-11-14 | 1990-10-02 | Paramed Technology Incorporated | Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient |
US4964408A (en) | 1988-04-29 | 1990-10-23 | Thor Technology Corporation | Oximeter sensor assembly with integral cable |
US5041187A (en) | 1988-04-29 | 1991-08-20 | Thor Technology Corporation | Oximeter sensor assembly with integral cable and method of forming the same |
US5069213A (en) | 1988-04-29 | 1991-12-03 | Thor Technology Corporation | Oximeter sensor assembly with integral cable and encoder |
US5163438A (en) | 1988-11-14 | 1992-11-17 | Paramed Technology Incorporated | Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient |
US5190048A (en) | 1991-09-17 | 1993-03-02 | Healthdyne, Inc. | Thermistor airflow sensor assembly |
US5247931A (en) | 1991-09-16 | 1993-09-28 | Mine Safety Appliances Company | Diagnostic sensor clasp utilizing a slot, pivot and spring hinge mechanism |
US5319355A (en) | 1991-03-06 | 1994-06-07 | Russek Linda G | Alarm for patient monitor and life support equipment system |
US5335659A (en) | 1993-04-12 | 1994-08-09 | Ohmeda Inc. | Nasal septum probe for photoplethysmographic measurements |
US5337744A (en) | 1993-07-14 | 1994-08-16 | Masimo Corporation | Low noise finger cot probe |
US5341805A (en) | 1993-04-06 | 1994-08-30 | Cedars-Sinai Medical Center | Glucose fluorescence monitor and method |
USD353196S (en) | 1993-05-28 | 1994-12-06 | Gary Savage | Stethoscope head |
USD353195S (en) | 1993-05-28 | 1994-12-06 | Gary Savage | Electronic stethoscope housing |
US5377676A (en) | 1991-04-03 | 1995-01-03 | Cedars-Sinai Medical Center | Method for determining the biodistribution of substances using fluorescence spectroscopy |
US5383469A (en) | 1992-01-31 | 1995-01-24 | Board Of Trustees Of The Leland Stanford Junior University | Neonatal hemolysis detection using end-tidal breath sampler and analyzer apparatus |
USD359546S (en) | 1994-01-27 | 1995-06-20 | The Ratechnologies Inc. | Housing for a dental unit disinfecting device |
US5431170A (en) | 1990-05-26 | 1995-07-11 | Mathews; Geoffrey R. | Pulse responsive device |
US5436499A (en) | 1994-03-11 | 1995-07-25 | Spire Corporation | High performance GaAs devices and method |
USD361840S (en) | 1994-04-21 | 1995-08-29 | Gary Savage | Stethoscope head |
USD362063S (en) | 1994-04-21 | 1995-09-05 | Gary Savage | Stethoscope headset |
US5452717A (en) | 1993-07-14 | 1995-09-26 | Masimo Corporation | Finger-cot probe |
US5456252A (en) | 1993-09-30 | 1995-10-10 | Cedars-Sinai Medical Center | Induced fluorescence spectroscopy blood perfusion and pH monitor and method |
USD363120S (en) | 1994-04-21 | 1995-10-10 | Gary Savage | Stethoscope ear tip |
US5479934A (en) | 1991-11-08 | 1996-01-02 | Physiometrix, Inc. | EEG headpiece with disposable electrodes and apparatus and system and method for use therewith |
US5482036A (en) | 1991-03-07 | 1996-01-09 | Masimo Corporation | Signal processing apparatus and method |
US5490505A (en) | 1991-03-07 | 1996-02-13 | Masimo Corporation | Signal processing apparatus |
US5494043A (en) | 1993-05-04 | 1996-02-27 | Vital Insite, Inc. | Arterial sensor |
WO1996013208A1 (en) | 1994-11-01 | 1996-05-09 | Masimo Corporation | Low noise optical probe |
US5533511A (en) | 1994-01-05 | 1996-07-09 | Vital Insite, Incorporated | Apparatus and method for noninvasive blood pressure measurement |
US5561275A (en) | 1994-04-28 | 1996-10-01 | Delstar Services Informatiques (1993) Inc. | Headset for electronic stethoscope |
US5562002A (en) | 1995-02-03 | 1996-10-08 | Sensidyne Inc. | Positive displacement piston flow meter with damping assembly |
US5590649A (en) | 1994-04-15 | 1997-01-07 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine blood pressure |
US5602924A (en) | 1992-12-07 | 1997-02-11 | Theratechnologies Inc. | Electronic stethescope |
US5632272A (en) | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
US5638816A (en) | 1995-06-07 | 1997-06-17 | Masimo Corporation | Active pulse blood constituent monitoring |
US5645440A (en) | 1995-10-16 | 1997-07-08 | Masimo Corporation | Patient cable connector |
US5671914A (en) | 1995-11-06 | 1997-09-30 | Spire Corporation | Multi-band spectroscopic photodetector array |
US5726440A (en) | 1995-11-06 | 1998-03-10 | Spire Corporation | Wavelength selective photodetector |
USD393830S (en) | 1995-10-16 | 1998-04-28 | Masimo Corporation | Patient cable connector |
US5743262A (en) | 1995-06-07 | 1998-04-28 | Masimo Corporation | Blood glucose monitoring system |
US5747806A (en) | 1996-02-02 | 1998-05-05 | Instrumentation Metrics, Inc | Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy |
US5750994A (en) | 1995-07-31 | 1998-05-12 | Instrumentation Metrics, Inc. | Positive correlation filter systems and methods of use thereof |
US5758644A (en) | 1995-06-07 | 1998-06-02 | Masimo Corporation | Manual and automatic probe calibration |
US5760910A (en) | 1995-06-07 | 1998-06-02 | Masimo Corporation | Optical filter for spectroscopic measurement and method of producing the optical filter |
US5785659A (en) | 1994-04-15 | 1998-07-28 | Vital Insite, Inc. | Automatically activated blood pressure measurement device |
US5791347A (en) | 1994-04-15 | 1998-08-11 | Vital Insite, Inc. | Motion insensitive pulse detector |
US5810724A (en) | 1995-12-01 | 1998-09-22 | Nellcor Puritan Bennett Incorporated | Reusable sensor accessory containing a conformable spring activated rubber sleeved clip |
US5810734A (en) | 1994-04-15 | 1998-09-22 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine a physiological parameter |
US5890929A (en) | 1996-06-19 | 1999-04-06 | Masimo Corporation | Shielded medical connector |
US5904654A (en) | 1995-10-20 | 1999-05-18 | Vital Insite, Inc. | Exciter-detector unit for measuring physiological parameters |
US5919134A (en) | 1997-04-14 | 1999-07-06 | Masimo Corp. | Method and apparatus for demodulating signals in a pulse oximetry system |
US5987343A (en) | 1997-11-07 | 1999-11-16 | Datascope Investment Corp. | Method for storing pulse oximetry sensor characteristics |
US5995855A (en) | 1998-02-11 | 1999-11-30 | Masimo Corporation | Pulse oximetry sensor adapter |
US5997343A (en) | 1998-03-19 | 1999-12-07 | Masimo Corporation | Patient cable sensor switch |
US6002952A (en) | 1997-04-14 | 1999-12-14 | Masimo Corporation | Signal processing apparatus and method |
US6010937A (en) | 1995-09-05 | 2000-01-04 | Spire Corporation | Reduction of dislocations in a heteroepitaxial semiconductor structure |
US6027452A (en) | 1996-06-26 | 2000-02-22 | Vital Insite, Inc. | Rapid non-invasive blood pressure measuring device |
US6040578A (en) | 1996-02-02 | 2000-03-21 | Instrumentation Metrics, Inc. | Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy |
US6066204A (en) | 1997-01-08 | 2000-05-23 | Bandwidth Semiconductor, Llc | High pressure MOCVD reactor system |
US6115621A (en) | 1997-07-30 | 2000-09-05 | Nellcor Puritan Bennett Incorporated | Oximetry sensor with offset emitters and detector |
US6115673A (en) | 1997-08-14 | 2000-09-05 | Instrumentation Metrics, Inc. | Method and apparatus for generating basis sets for use in spectroscopic analysis |
US6124597A (en) | 1997-07-07 | 2000-09-26 | Cedars-Sinai Medical Center | Method and devices for laser induced fluorescence attenuation spectroscopy |
US6128521A (en) | 1998-07-10 | 2000-10-03 | Physiometrix, Inc. | Self adjusting headgear appliance using reservoir electrodes |
US6129675A (en) | 1998-09-11 | 2000-10-10 | Jay; Gregory D. | Device and method for measuring pulsus paradoxus |
US6144868A (en) | 1998-10-15 | 2000-11-07 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US6152754A (en) | 1999-12-21 | 2000-11-28 | Masimo Corporation | Circuit board based cable connector |
US6165005A (en) | 1998-03-19 | 2000-12-26 | Masimo Corporation | Patient cable sensor switch |
US6184521B1 (en) | 1998-01-06 | 2001-02-06 | Masimo Corporation | Photodiode detector with integrated noise shielding |
US6229856B1 (en) | 1997-04-14 | 2001-05-08 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US6232609B1 (en) | 1995-12-01 | 2001-05-15 | Cedars-Sinai Medical Center | Glucose monitoring apparatus and method using laser-induced emission spectroscopy |
US6241683B1 (en) | 1998-02-20 | 2001-06-05 | INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) | Phonospirometry for non-invasive monitoring of respiration |
US6253097B1 (en) | 1996-03-06 | 2001-06-26 | Datex-Ohmeda, Inc. | Noninvasive medical monitoring instrument using surface emitting laser devices |
US6255708B1 (en) | 1997-10-10 | 2001-07-03 | Rengarajan Sudharsanan | Semiconductor P-I-N detector |
US6280381B1 (en) | 1999-07-22 | 2001-08-28 | Instrumentation Metrics, Inc. | Intelligent system for noninvasive blood analyte prediction |
US6285896B1 (en) | 1998-07-13 | 2001-09-04 | Masimo Corporation | Fetal pulse oximetry sensor |
US6301493B1 (en) | 1999-07-10 | 2001-10-09 | Physiometrix, Inc. | Reservoir electrodes for electroencephalograph headgear appliance |
US6308089B1 (en) | 1999-04-14 | 2001-10-23 | O.B. Scientific, Inc. | Limited use medical probe |
US20010034477A1 (en) | 2000-02-18 | 2001-10-25 | James Mansfield | Multivariate analysis of green to ultraviolet spectra of cell and tissue samples |
US20010039483A1 (en) | 2000-02-18 | 2001-11-08 | Derek Brand | Reduction of inter-subject variation via transfer standardization |
US6317627B1 (en) | 1999-11-02 | 2001-11-13 | Physiometrix, Inc. | Anesthesia monitoring system based on electroencephalographic signals |
US6321100B1 (en) | 1999-07-13 | 2001-11-20 | Sensidyne, Inc. | Reusable pulse oximeter probe with disposable liner |
US6334065B1 (en) | 1998-06-03 | 2001-12-25 | Masimo Corporation | Stereo pulse oximeter |
US20020010401A1 (en) | 2000-05-18 | 2002-01-24 | Andrew Bushmakin | Pre- and post-processing of spectral data for calibration using mutivariate analysis techniques |
US6343224B1 (en) | 1998-10-15 | 2002-01-29 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US6360114B1 (en) | 1999-03-25 | 2002-03-19 | Masimo Corporation | Pulse oximeter probe-off detector |
US6368283B1 (en) | 2000-09-08 | 2002-04-09 | Institut De Recherches Cliniques De Montreal | Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient |
US6371921B1 (en) | 1994-04-15 | 2002-04-16 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US6377829B1 (en) | 1999-12-09 | 2002-04-23 | Masimo Corporation | Resposable pulse oximetry sensor |
US6388240B2 (en) | 1999-08-26 | 2002-05-14 | Masimo Corporation | Shielded optical probe and method having a longevity indication |
US20020058864A1 (en) | 2000-11-13 | 2002-05-16 | Mansfield James R. | Reduction of spectral site to site variation |
US6411373B1 (en) | 1999-10-08 | 2002-06-25 | Instrumentation Metrics, Inc. | Fiber optic illumination and detection patterns, shapes, and locations for use in spectroscopic analysis |
US6415167B1 (en) | 2000-05-02 | 2002-07-02 | Instrumentation Metrics, Inc. | Fiber optic probe placement guide |
US6430437B1 (en) | 1999-10-27 | 2002-08-06 | Physiometrix, Inc. | Module for acquiring electroencephalograph signals from a patient |
US6430525B1 (en) | 2000-06-05 | 2002-08-06 | Masimo Corporation | Variable mode averager |
US20020133080A1 (en) | 2001-02-06 | 2002-09-19 | William Apruzzese | Layered calibration standard for tissue sampling |
US6463311B1 (en) | 1998-12-30 | 2002-10-08 | Masimo Corporation | Plethysmograph pulse recognition processor |
US6470199B1 (en) | 2000-06-21 | 2002-10-22 | Masimo Corporation | Elastic sock for positioning an optical probe |
US6487429B2 (en) | 2000-05-30 | 2002-11-26 | Sensys Medical, Inc. | Use of targeted glycemic profiles in the calibration of a noninvasive blood glucose monitor |
US6505059B1 (en) | 1998-04-06 | 2003-01-07 | The General Hospital Corporation | Non-invasive tissue glucose level monitoring |
US20030013975A1 (en) | 2001-07-12 | 2003-01-16 | Kiani Massi E. | Method of selling a continuous mode blood pressure monitor |
US20030018243A1 (en) | 1999-07-07 | 2003-01-23 | Gerhardt Thomas J. | Selectively plated sensor |
US6515273B2 (en) | 1999-08-26 | 2003-02-04 | Masimo Corporation | System for indicating the expiration of the useful operating life of a pulse oximetry sensor |
US6519487B1 (en) | 1998-10-15 | 2003-02-11 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US6525386B1 (en) | 1998-03-10 | 2003-02-25 | Masimo Corporation | Non-protruding optoelectronic lens |
US6526300B1 (en) | 1999-06-18 | 2003-02-25 | Masimo Corporation | Pulse oximeter probe-off detection system |
US6535714B2 (en) | 2000-06-30 | 2003-03-18 | University Of Florida | Method, system, and apparatus for medical device training |
US6534012B1 (en) | 2000-08-02 | 2003-03-18 | Sensys Medical, Inc. | Apparatus and method for reproducibly modifying localized absorption and scattering coefficients at a tissue measurement site during optical sampling |
US6542764B1 (en) | 1999-12-01 | 2003-04-01 | Masimo Corporation | Pulse oximeter monitor for expressing the urgency of the patient's condition |
US6541756B2 (en) | 1991-03-21 | 2003-04-01 | Masimo Corporation | Shielded optical probe having an electrical connector |
US6584336B1 (en) | 1999-01-25 | 2003-06-24 | Masimo Corporation | Universal/upgrading pulse oximeter |
US6587196B1 (en) | 2000-01-26 | 2003-07-01 | Sensys Medical, Inc. | Oscillating mechanism driven monochromator |
US6587199B1 (en) | 2000-02-25 | 2003-07-01 | Sensys Medical, Inc. | Embedded data acquisition and control system for non-invasive glucose prediction instrument |
US6595316B2 (en) | 2001-07-18 | 2003-07-22 | Andromed, Inc. | Tension-adjustable mechanism for stethoscope earpieces |
US6597932B2 (en) | 2000-02-18 | 2003-07-22 | Argose, Inc. | Generation of spatially-averaged excitation-emission map in heterogeneous tissue |
US20030144582A1 (en) | 2001-09-07 | 2003-07-31 | Carl Cohen | Portable non-invasive glucose monitor |
US6606511B1 (en) | 1999-01-07 | 2003-08-12 | Masimo Corporation | Pulse oximetry pulse indicator |
US20030156288A1 (en) | 2002-02-20 | 2003-08-21 | Barnum P. T. | Sensor band for aligning an emitter and a detector |
US6635559B2 (en) | 2001-09-06 | 2003-10-21 | Spire Corporation | Formation of insulating aluminum oxide in semiconductor substrates |
US6639668B1 (en) | 1999-11-03 | 2003-10-28 | Argose, Inc. | Asynchronous fluorescence scan |
US6640117B2 (en) | 2000-09-26 | 2003-10-28 | Sensys Medical, Inc. | Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination |
US6640116B2 (en) | 2000-08-18 | 2003-10-28 | Masimo Corporation | Optical spectroscopy pathlength measurement system |
US20030212312A1 (en) | 2002-01-07 | 2003-11-13 | Coffin James P. | Low noise patient cable |
US6650917B2 (en) | 1991-03-07 | 2003-11-18 | Masimo Corporation | Signal processing apparatus |
US6658276B2 (en) | 1999-01-25 | 2003-12-02 | Masimo Corporation | Pulse oximeter user interface |
US6661161B1 (en) | 2002-06-27 | 2003-12-09 | Andromed Inc. | Piezoelectric biological sound monitor with printed circuit board |
US6671531B2 (en) | 1999-12-09 | 2003-12-30 | Masimo Corporation | Sensor wrap including foldable applicator |
US6684090B2 (en) | 1999-01-07 | 2004-01-27 | Masimo Corporation | Pulse oximetry data confidence indicator |
US6684091B2 (en) | 1998-10-15 | 2004-01-27 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage method |
US6697656B1 (en) | 2000-06-27 | 2004-02-24 | Masimo Corporation | Pulse oximetry sensor compatible with multiple pulse oximetry systems |
US6697658B2 (en) | 2001-07-02 | 2004-02-24 | Masimo Corporation | Low power pulse oximeter |
US6721582B2 (en) | 1999-04-06 | 2004-04-13 | Argose, Inc. | Non-invasive tissue glucose level monitoring |
US6721585B1 (en) | 1998-10-15 | 2004-04-13 | Sensidyne, Inc. | Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices |
US6728560B2 (en) | 1998-04-06 | 2004-04-27 | The General Hospital Corporation | Non-invasive tissue glucose level monitoring |
US6738652B2 (en) | 2000-06-15 | 2004-05-18 | Sensys Medical, Inc. | Classification and screening of test subjects according to optical thickness of skin |
US20040106163A1 (en) | 2002-11-12 | 2004-06-03 | Workman Jerome James | Non-invasive measurement of analytes |
US6760607B2 (en) | 2000-12-29 | 2004-07-06 | Masimo Corporation | Ribbon cable substrate pulse oximetry sensor |
US6770028B1 (en) | 1999-01-25 | 2004-08-03 | Masimo Corporation | Dual-mode pulse oximeter |
US6788965B2 (en) | 2001-08-03 | 2004-09-07 | Sensys Medical, Inc. | Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes |
US6816241B2 (en) | 2000-09-26 | 2004-11-09 | Sensys Medical, Inc. | LED light source-based instrument for non-invasive blood analyte determination |
US20040230108A1 (en) | 2002-06-20 | 2004-11-18 | Melker Richard J. | Novel specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same |
US6822564B2 (en) | 2002-01-24 | 2004-11-23 | Masimo Corporation | Parallel measurement alarm processor |
US6850787B2 (en) | 2001-06-29 | 2005-02-01 | Masimo Laboratories, Inc. | Signal component processor |
US6850788B2 (en) | 2002-03-25 | 2005-02-01 | Masimo Corporation | Physiological measurement communications adapter |
US20050055276A1 (en) | 2003-06-26 | 2005-03-10 | Kiani Massi E. | Sensor incentive method |
US6876931B2 (en) | 2001-08-03 | 2005-04-05 | Sensys Medical Inc. | Automatic process for sample selection during multivariate calibration |
US6909912B2 (en) | 2002-06-20 | 2005-06-21 | University Of Florida | Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes |
US6920345B2 (en) | 2003-01-24 | 2005-07-19 | Masimo Corporation | Optical sensor including disposable and reusable elements |
WO2005065540A1 (en) | 2003-12-30 | 2005-07-21 | University Of Florida Research Foundation, Inc. | Novel specially configured nasal pulse oximeter |
US6931268B1 (en) | 1995-06-07 | 2005-08-16 | Masimo Laboratories, Inc. | Active pulse blood constituent monitoring |
US6934570B2 (en) | 2002-01-08 | 2005-08-23 | Masimo Corporation | Physiological sensor combination |
US6943348B1 (en) | 1999-10-19 | 2005-09-13 | Masimo Corporation | System for detecting injection holding material |
US6950687B2 (en) | 1999-12-09 | 2005-09-27 | Masimo Corporation | Isolation and communication element for a resposable pulse oximetry sensor |
US6956649B2 (en) | 2002-11-26 | 2005-10-18 | Sensys Medical, Inc. | Spectroscopic system and method using a ceramic optical reference |
US20050234317A1 (en) | 2004-03-19 | 2005-10-20 | Kiani Massi E | Low power and personal pulse oximetry systems |
US6961598B2 (en) | 2002-02-22 | 2005-11-01 | Masimo Corporation | Pulse and active pulse spectraphotometry |
US6970792B1 (en) | 2002-12-04 | 2005-11-29 | Masimo Laboratories, Inc. | Systems and methods for determining blood oxygen saturation values using complex number encoding |
US6985764B2 (en) | 2001-05-03 | 2006-01-10 | Masimo Corporation | Flex circuit shielded optical sensor |
US6990364B2 (en) | 2001-01-26 | 2006-01-24 | Sensys Medical, Inc. | Noninvasive measurement of glucose through the optical properties of tissue |
US6998247B2 (en) | 2002-03-08 | 2006-02-14 | Sensys Medical, Inc. | Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers |
US7003338B2 (en) | 2003-07-08 | 2006-02-21 | Masimo Corporation | Method and apparatus for reducing coupling between signals |
US7015451B2 (en) | 2002-01-25 | 2006-03-21 | Masimo Corporation | Power supply rail controller |
US20060073719A1 (en) | 2004-09-29 | 2006-04-06 | Kiani Massi E | Multiple key position plug |
US7027849B2 (en) | 2002-11-22 | 2006-04-11 | Masimo Laboratories, Inc. | Blood parameter measurement system |
USD526719S1 (en) | 2004-11-19 | 2006-08-15 | Sensys Medical, Inc. | Noninvasive glucose analyzer |
US7096052B2 (en) | 2002-10-04 | 2006-08-22 | Masimo Corporation | Optical probe including predetermined emission wavelength based on patient type |
US7096054B2 (en) | 2002-08-01 | 2006-08-22 | Masimo Corporation | Low noise optical housing |
US20060189871A1 (en) | 2005-02-18 | 2006-08-24 | Ammar Al-Ali | Portable patient monitor |
USD529616S1 (en) | 2004-11-19 | 2006-10-03 | Sensys Medical, Inc. | Noninvasive glucose analyzer |
US7133710B2 (en) | 2002-03-08 | 2006-11-07 | Sensys Medical, Inc. | Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy |
US7142901B2 (en) | 2002-09-25 | 2006-11-28 | Masimo Corporation | Parameter compensated physiological monitor |
US20070073116A1 (en) | 2005-08-17 | 2007-03-29 | Kiani Massi E | Patient identification using physiological sensor |
US20070078315A1 (en) | 2005-09-30 | 2007-04-05 | Carl Kling | Clip-style medical sensor and technique for using the same |
US7225006B2 (en) | 2003-01-23 | 2007-05-29 | Masimo Corporation | Attachment and optical probe |
US7239905B2 (en) | 1995-06-07 | 2007-07-03 | Masimo Laboratories, Inc. | Active pulse blood constituent monitoring |
US7245953B1 (en) | 1999-04-12 | 2007-07-17 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatii |
US20070180140A1 (en) | 2005-12-03 | 2007-08-02 | Welch James P | Physiological alarm notification system |
US7254429B2 (en) | 2004-08-11 | 2007-08-07 | Glucolight Corporation | Method and apparatus for monitoring glucose levels in a biological tissue |
US7254434B2 (en) | 2003-10-14 | 2007-08-07 | Masimo Corporation | Variable pressure reusable sensor |
US7254431B2 (en) | 2003-08-28 | 2007-08-07 | Masimo Corporation | Physiological parameter tracking system |
US7274955B2 (en) | 2002-09-25 | 2007-09-25 | Masimo Corporation | Parameter compensated pulse oximeter |
US7280858B2 (en) | 2004-01-05 | 2007-10-09 | Masimo Corporation | Pulse oximetry sensor |
US20070244377A1 (en) | 2006-03-14 | 2007-10-18 | Cozad Jenny L | Pulse oximeter sleeve |
USD554263S1 (en) | 2005-02-18 | 2007-10-30 | Masimo Corporation | Portable patient monitor |
US7292883B2 (en) | 2004-03-31 | 2007-11-06 | Masimo Corporation | Physiological assessment system |
US20070282478A1 (en) | 2006-06-05 | 2007-12-06 | Ammar Al-Ali | Parameter upgrade system |
US7313425B2 (en) | 2004-07-08 | 2007-12-25 | Orsense Ltd. | Device and method for non-invasive optical measurements |
US7341559B2 (en) | 2002-09-14 | 2008-03-11 | Masimo Corporation | Pulse oximetry ear sensor |
US7343186B2 (en) | 2004-07-07 | 2008-03-11 | Masimo Laboratories, Inc. | Multi-wavelength physiological monitor |
US20080064965A1 (en) | 2006-09-08 | 2008-03-13 | Jay Gregory D | Devices and methods for measuring pulsus paradoxus |
US7356365B2 (en) | 2003-07-09 | 2008-04-08 | Glucolight Corporation | Method and apparatus for tissue oximetry |
USD566282S1 (en) | 2005-02-18 | 2008-04-08 | Masimo Corporation | Stand for a portable patient monitor |
US7355512B1 (en) | 2002-01-24 | 2008-04-08 | Masimo Corporation | Parallel alarm processor |
US20080092898A1 (en) | 2004-08-27 | 2008-04-24 | John Hopkins University | Disposable Sleep And Breathing Monitor |
US20080094228A1 (en) | 2006-10-12 | 2008-04-24 | Welch James P | Patient monitor using radio frequency identification tags |
US7371981B2 (en) | 2004-02-20 | 2008-05-13 | Masimo Corporation | Connector switch |
US7373193B2 (en) | 2003-11-07 | 2008-05-13 | Masimo Corporation | Pulse oximetry data capture system |
US7376453B1 (en) | 1993-10-06 | 2008-05-20 | Masimo Corporation | Signal processing apparatus |
US7377794B2 (en) | 2005-03-01 | 2008-05-27 | Masimo Corporation | Multiple wavelength sensor interconnect |
US7395158B2 (en) | 2000-05-30 | 2008-07-01 | Sensys Medical, Inc. | Method of screening for disorders of glucose metabolism |
US7415297B2 (en) | 2004-03-08 | 2008-08-19 | Masimo Corporation | Physiological parameter system |
US20080221418A1 (en) | 2007-03-09 | 2008-09-11 | Masimo Corporation | Noninvasive multi-parameter patient monitor |
US7428432B2 (en) | 1999-01-25 | 2008-09-23 | Masimo Corporation | Systems and methods for acquiring calibration data usable in a pulse oximeter |
US7438683B2 (en) | 2004-03-04 | 2008-10-21 | Masimo Corporation | Application identification sensor |
US7483729B2 (en) | 2003-11-05 | 2009-01-27 | Masimo Corporation | Pulse oximeter access apparatus and method |
US20090036759A1 (en) | 2007-08-01 | 2009-02-05 | Ault Timothy E | Collapsible noninvasive analyzer method and apparatus |
USD587657S1 (en) | 2007-10-12 | 2009-03-03 | Masimo Corporation | Connector assembly |
US7500950B2 (en) | 2003-07-25 | 2009-03-10 | Masimo Corporation | Multipurpose sensor port |
US7509494B2 (en) | 2002-03-01 | 2009-03-24 | Masimo Corporation | Interface cable |
US7510849B2 (en) | 2004-01-29 | 2009-03-31 | Glucolight Corporation | OCT based method for diagnosis and therapy |
US7514725B2 (en) | 2004-11-30 | 2009-04-07 | Spire Corporation | Nanophotovoltaic devices |
US20090093687A1 (en) | 2007-03-08 | 2009-04-09 | Telfort Valery G | Systems and methods for determining a physiological condition using an acoustic monitor |
US7519406B2 (en) | 2004-04-28 | 2009-04-14 | Sensys Medical, Inc. | Noninvasive analyzer sample probe interface method and apparatus |
US20090095926A1 (en) | 2007-10-12 | 2009-04-16 | Macneish Iii William Jack | Physiological parameter detector |
US7530942B1 (en) | 2005-10-18 | 2009-05-12 | Masimo Corporation | Remote sensing infant warmer |
USD592507S1 (en) | 2006-07-06 | 2009-05-19 | Vitality, Inc. | Top for medicine container |
US7593230B2 (en) | 2005-05-05 | 2009-09-22 | Sensys Medical, Inc. | Apparatus for absorbing and dissipating excess heat generated by a system |
US20090247984A1 (en) | 2007-10-24 | 2009-10-01 | Masimo Laboratories, Inc. | Use of microneedles for small molecule metabolite reporter delivery |
US7606608B2 (en) | 2000-05-02 | 2009-10-20 | Sensys Medical, Inc. | Optical sampling interface system for in-vivo measurement of tissue |
US20090275844A1 (en) | 2008-05-02 | 2009-11-05 | Masimo Corporation | Monitor configuration system |
US20090275813A1 (en) | 2008-05-02 | 2009-11-05 | The Regents Of The Univeristy Of California | External ear-placed non-invasive physiological sensor |
US7620674B2 (en) | 2003-03-07 | 2009-11-17 | Sensys Medical, Inc. | Method and apparatus for enhanced estimation of an analyte property through multiple region transformation |
US7629039B2 (en) | 2003-04-25 | 2009-12-08 | Phasein Ab | Air gas analyzer window and a method for producing such a window |
USD606659S1 (en) | 2008-08-25 | 2009-12-22 | Masimo Laboratories, Inc. | Patient monitor |
US7640140B2 (en) | 2003-03-07 | 2009-12-29 | Sensys Medical, Inc. | Method of processing noninvasive spectra |
US20100004518A1 (en) | 2008-07-03 | 2010-01-07 | Masimo Laboratories, Inc. | Heat sink for noninvasive medical sensor |
USD609193S1 (en) | 2007-10-12 | 2010-02-02 | Masimo Corporation | Connector assembly |
US20100030040A1 (en) | 2008-08-04 | 2010-02-04 | Masimo Laboratories, Inc. | Multi-stream data collection system for noninvasive measurement of blood constituents |
US20100085537A1 (en) | 2008-10-06 | 2010-04-08 | The Catholic University Of America | Lenslet array for retinal oximetry |
US20100085527A1 (en) | 1993-07-22 | 2010-04-08 | Semiconductor Energy Laboratory Co., Ltd. | Liquid-crystal electro-optical apparatus and method of manufacturing the same |
US7698105B2 (en) | 2005-05-23 | 2010-04-13 | Sensys Medical, Inc. | Method and apparatus for improving performance of noninvasive analyte property estimation |
US7697966B2 (en) | 2002-03-08 | 2010-04-13 | Sensys Medical, Inc. | Noninvasive targeting system method and apparatus |
USD614305S1 (en) | 2008-02-29 | 2010-04-20 | Masimo Corporation | Connector assembly |
US20100099964A1 (en) | 2008-09-15 | 2010-04-22 | Masimo Corporation | Hemoglobin monitor |
USRE41333E1 (en) | 1999-07-22 | 2010-05-11 | Sensys Medical, Inc. | Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction |
USD621516S1 (en) | 2008-08-25 | 2010-08-10 | Masimo Laboratories, Inc. | Patient monitoring sensor |
US7785262B2 (en) | 2005-04-25 | 2010-08-31 | University Of Florida Research Foundation, Inc. | Method and apparatus for diagnosing respiratory disorders and determining the degree of exacerbations |
US7791155B2 (en) | 2006-12-22 | 2010-09-07 | Masimo Laboratories, Inc. | Detector shield |
US20100234718A1 (en) | 2009-03-12 | 2010-09-16 | Anand Sampath | Open architecture medical communication system |
US7820108B2 (en) | 1999-11-08 | 2010-10-26 | University Of Florida Research Foundation, Inc. | Marker detection method and apparatus to monitor drug compliance |
US7822452B2 (en) | 2004-08-11 | 2010-10-26 | Glt Acquisition Corp. | Method for data reduction and calibration of an OCT-based blood glucose monitor |
US20100270257A1 (en) | 2005-07-13 | 2010-10-28 | Vitality, Inc. | Medicine Bottle Cap With Electronic Embedded Curved Display |
USRE41912E1 (en) | 1998-10-15 | 2010-11-02 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatus |
US7880626B2 (en) | 2006-10-12 | 2011-02-01 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US20110028806A1 (en) | 2009-07-29 | 2011-02-03 | Sean Merritt | Reflectance calibration of fluorescence-based glucose measurements |
US20110028809A1 (en) | 2009-07-29 | 2011-02-03 | Masimo Corporation | Patient monitor ambient display device |
US7887502B2 (en) | 2006-09-15 | 2011-02-15 | University Of Florida Research Foundation, Inc. | Method for using photoplethysmography to optimize fluid removal during renal replacement therapy by hemodialysis or hemofiltration |
US20110040197A1 (en) | 2009-07-20 | 2011-02-17 | Masimo Corporation | Wireless patient monitoring system |
US7899518B2 (en) | 1998-04-06 | 2011-03-01 | Masimo Laboratories, Inc. | Non-invasive tissue glucose level monitoring |
US7909772B2 (en) | 2004-04-16 | 2011-03-22 | Masimo Corporation | Non-invasive measurement of second heart sound components |
US7914460B2 (en) | 2006-08-15 | 2011-03-29 | University Of Florida Research Foundation, Inc. | Condensate glucose analyzer |
US7919713B2 (en) | 2007-04-16 | 2011-04-05 | Masimo Corporation | Low noise oximetry cable including conductive cords |
US20110082711A1 (en) | 2009-10-06 | 2011-04-07 | Masimo Laboratories, Inc. | Personal digital assistant or organizer for monitoring glucose levels |
US20110087081A1 (en) | 2009-08-03 | 2011-04-14 | Kiani Massi Joe E | Personalized physiological monitor |
US7937129B2 (en) | 2005-03-21 | 2011-05-03 | Masimo Corporation | Variable aperture sensor |
US7937128B2 (en) | 2004-07-09 | 2011-05-03 | Masimo Corporation | Cyanotic infant sensor |
US20110105854A1 (en) | 2009-03-04 | 2011-05-05 | Masimo Corporation | Medical monitoring system |
US7941199B2 (en) | 2006-05-15 | 2011-05-10 | Masimo Laboratories, Inc. | Sepsis monitor |
US20110118561A1 (en) | 2009-11-13 | 2011-05-19 | Masimo Corporation | Remote control for a medical monitoring device |
US20110125060A1 (en) | 2009-10-15 | 2011-05-26 | Telfort Valery G | Acoustic respiratory monitoring systems and methods |
US20110137297A1 (en) | 2009-09-17 | 2011-06-09 | Kiani Massi Joe E | Pharmacological management system |
US7962188B2 (en) | 2005-10-14 | 2011-06-14 | Masimo Corporation | Robust alarm system |
US7976472B2 (en) | 2004-09-07 | 2011-07-12 | Masimo Corporation | Noninvasive hypovolemia monitor |
US20110172498A1 (en) | 2009-09-14 | 2011-07-14 | Olsen Gregory A | Spot check monitor credit system |
US7990382B2 (en) | 2006-01-03 | 2011-08-02 | Masimo Corporation | Virtual display |
US20110208015A1 (en) | 2009-07-20 | 2011-08-25 | Masimo Corporation | Wireless patient monitoring system |
US8008088B2 (en) | 2003-12-24 | 2011-08-30 | Masimo Laboratories, Inc. | SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors |
US8019400B2 (en) | 1994-10-07 | 2011-09-13 | Masimo Corporation | Signal processing apparatus |
US20110230733A1 (en) | 2010-01-19 | 2011-09-22 | Masimo Corporation | Wellness analysis system |
US20110227740A1 (en) | 2008-11-12 | 2011-09-22 | Xhale, Inc. | Personnel location and monitoring system and method for enclosed facilities |
US20110237969A1 (en) | 2008-09-15 | 2011-09-29 | Anders Eckerbom | Gas sampling line |
US8028701B2 (en) | 2006-05-31 | 2011-10-04 | Masimo Corporation | Respiratory monitoring |
US8036727B2 (en) | 2004-08-11 | 2011-10-11 | Glt Acquisition Corp. | Methods for noninvasively measuring analyte levels in a subject |
US8048040B2 (en) | 2007-09-13 | 2011-11-01 | Masimo Corporation | Fluid titration system |
US8073518B2 (en) | 2006-05-02 | 2011-12-06 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US8118620B2 (en) | 2007-10-12 | 2012-02-21 | Masimo Corporation | Connector assembly with reduced unshielded area |
US20120123231A1 (en) | 2010-11-11 | 2012-05-17 | O'reilly Michael | Monitoring cardiac output and vessel fluid volume |
US8182443B1 (en) | 2006-01-17 | 2012-05-22 | Masimo Corporation | Drug administration controller |
US8203438B2 (en) | 2008-07-29 | 2012-06-19 | Masimo Corporation | Alarm suspend system |
US20120165629A1 (en) | 2010-09-30 | 2012-06-28 | Sean Merritt | Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy |
US8211035B2 (en) | 2002-01-22 | 2012-07-03 | University Of Florida Research Foundation, Inc. | System and method for monitoring health using exhaled breath |
US8219172B2 (en) | 2006-03-17 | 2012-07-10 | Glt Acquisition Corp. | System and method for creating a stable optical interface |
US8233955B2 (en) | 2005-11-29 | 2012-07-31 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US20120209084A1 (en) | 2011-01-21 | 2012-08-16 | Masimo Corporation | Respiratory event alert system |
US20120209082A1 (en) | 2011-02-13 | 2012-08-16 | Masimo Corporation | Medical characterization system |
US8255026B1 (en) | 2006-10-12 | 2012-08-28 | Masimo Corporation, Inc. | Patient monitor capable of monitoring the quality of attached probes and accessories |
US20120226117A1 (en) | 2010-12-01 | 2012-09-06 | Lamego Marcelo M | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
US8265723B1 (en) | 2006-10-12 | 2012-09-11 | Cercacor Laboratories, Inc. | Oximeter probe off indicator defining probe off space |
US8274360B2 (en) | 2007-10-12 | 2012-09-25 | Masimo Corporation | Systems and methods for storing, analyzing, and retrieving medical data |
US8280473B2 (en) | 2006-10-12 | 2012-10-02 | Masino Corporation, Inc. | Perfusion index smoother |
US8281787B2 (en) | 1999-12-16 | 2012-10-09 | Compumedics Limited | Bio-mask with integral sensors |
US20120272963A1 (en) | 2009-06-09 | 2012-11-01 | Koninklijke Philips Electronics N.V. | Interface appliance carrying one or more sensors detecting parameters related to a flow of fluid delivered through the appliance |
US20120283524A1 (en) | 2011-04-18 | 2012-11-08 | Cercacor Laboratories, Inc. | Pediatric monitor sensor steady game |
US8310336B2 (en) | 2008-10-10 | 2012-11-13 | Masimo Corporation | Systems and methods for storing, analyzing, retrieving and displaying streaming medical data |
US8315683B2 (en) | 2006-09-20 | 2012-11-20 | Masimo Corporation | Duo connector patient cable |
US8346330B2 (en) | 2008-10-13 | 2013-01-01 | Masimo Corporation | Reflection-detector sensor position indicator |
US8355766B2 (en) | 2007-10-12 | 2013-01-15 | Masimo Corporation | Ceramic emitter substrate |
US20130023775A1 (en) | 2011-07-20 | 2013-01-24 | Cercacor Laboratories, Inc. | Magnetic Reusable Sensor |
US8374665B2 (en) | 2007-04-21 | 2013-02-12 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
US20130041591A1 (en) | 2011-07-13 | 2013-02-14 | Cercacor Laboratories, Inc. | Multiple measurement mode in a physiological sensor |
US8388353B2 (en) | 2009-03-11 | 2013-03-05 | Cercacor Laboratories, Inc. | Magnetic connector |
US20130060147A1 (en) | 2011-08-04 | 2013-03-07 | Masimo Corporation | Occlusive non-inflatable blood pressure device |
US8401602B2 (en) | 2008-10-13 | 2013-03-19 | Masimo Corporation | Secondary-emitter sensor position indicator |
US8414499B2 (en) | 2006-12-09 | 2013-04-09 | Masimo Corporation | Plethysmograph variability processor |
US8418524B2 (en) | 2009-06-12 | 2013-04-16 | Masimo Corporation | Non-invasive sensor calibration device |
US20130096405A1 (en) | 2011-08-12 | 2013-04-18 | Masimo Corporation | Fingertip pulse oximeter |
US8430817B1 (en) | 2009-10-15 | 2013-04-30 | Masimo Corporation | System for determining confidence in respiratory rate measurements |
US8444570B2 (en) | 2009-06-09 | 2013-05-21 | Nellcor Puritan Bennett Ireland | Signal processing techniques for aiding the interpretation of respiration signals |
US8455290B2 (en) | 2010-09-04 | 2013-06-04 | Masimo Semiconductor, Inc. | Method of fabricating epitaxial structures |
US8457707B2 (en) | 2006-09-20 | 2013-06-04 | Masimo Corporation | Congenital heart disease monitor |
US8471713B2 (en) | 2009-07-24 | 2013-06-25 | Cercacor Laboratories, Inc. | Interference detector for patient monitor |
US8473020B2 (en) | 2009-07-29 | 2013-06-25 | Cercacor Laboratories, Inc. | Non-invasive physiological sensor cover |
US8504128B2 (en) | 2002-03-08 | 2013-08-06 | Glt Acquisition Corp. | Method and apparatus for coupling a channeled sample probe to tissue |
US8509867B2 (en) | 2002-11-12 | 2013-08-13 | Cercacor Laboratories, Inc. | Non-invasive measurement of analytes |
US8525666B2 (en) | 2007-06-08 | 2013-09-03 | University Of Florida Research Foundation, Inc. | Handwashing compliance detection system |
US8523781B2 (en) | 2009-10-15 | 2013-09-03 | Masimo Corporation | Bidirectional physiological information display |
US8529459B2 (en) | 2007-08-08 | 2013-09-10 | Convergent Engineering, Inc. | Processing of photoplethysmography signals |
US8532727B2 (en) | 1999-01-25 | 2013-09-10 | Masimo Corporation | Dual-mode pulse oximeter |
US20130253334A1 (en) | 2012-02-09 | 2013-09-26 | Masimo Corporation | Wireless patient monitoring device |
US8560034B1 (en) | 1993-10-06 | 2013-10-15 | Masimo Corporation | Signal processing apparatus |
USD692145S1 (en) | 2012-09-20 | 2013-10-22 | Masimo Corporation | Medical proximity detection token |
US8571619B2 (en) | 2009-05-20 | 2013-10-29 | Masimo Corporation | Hemoglobin display and patient treatment |
US8571618B1 (en) | 2009-09-28 | 2013-10-29 | Cercacor Laboratories, Inc. | Adaptive calibration system for spectrophotometric measurements |
US8571617B2 (en) | 2008-03-04 | 2013-10-29 | Glt Acquisition Corp. | Flowometry in optical coherence tomography for analyte level estimation |
US20130296672A1 (en) | 2012-05-02 | 2013-11-07 | Masimo Corporation | Noninvasive physiological sensor cover |
US8588880B2 (en) | 2009-02-16 | 2013-11-19 | Masimo Corporation | Ear sensor |
US8584345B2 (en) | 2010-03-08 | 2013-11-19 | Masimo Corporation | Reprocessing of a physiological sensor |
US8600467B2 (en) | 2006-11-29 | 2013-12-03 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US20130331660A1 (en) | 2012-06-07 | 2013-12-12 | Masimo Corporation | Depth of consciousness monitor |
US20130345921A1 (en) | 2012-06-22 | 2013-12-26 | Masimo Corporation | Physiological monitoring of moving vehicle operators |
US20140005557A1 (en) | 2012-06-29 | 2014-01-02 | David Rich | Photoplethysmography Sensors |
US8641635B2 (en) | 2006-08-15 | 2014-02-04 | University Of Florida Research Foundation, Inc. | Methods and devices for central photoplethysmographic monitoring methods |
US8641631B2 (en) | 2004-04-08 | 2014-02-04 | Masimo Corporation | Non-invasive monitoring of respiratory rate, heart rate and apnea |
US8652060B2 (en) | 2007-01-20 | 2014-02-18 | Masimo Corporation | Perfusion trend indicator |
US8666468B1 (en) | 2010-05-06 | 2014-03-04 | Masimo Corporation | Patient monitor for determining microcirculation state |
US8670811B2 (en) | 2009-06-30 | 2014-03-11 | Masimo Corporation | Pulse oximetry system for adjusting medical ventilation |
US20140081175A1 (en) | 2012-09-20 | 2014-03-20 | Masimo Corporation | Acoustic patient sensor coupler |
US20140081100A1 (en) | 2012-09-20 | 2014-03-20 | Masimo Corporation | Physiological monitor with mobile computing device connectivity |
US8679028B2 (en) | 2004-08-11 | 2014-03-25 | University Of Florida Research Foundation, Inc. | Methods and devices for countering grativity induced loss of consciousness and novel pulse oximeter probes |
US8688183B2 (en) | 2009-09-03 | 2014-04-01 | Ceracor Laboratories, Inc. | Emitter driver for noninvasive patient monitor |
US8690799B2 (en) | 2009-10-15 | 2014-04-08 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US8712494B1 (en) | 2010-05-03 | 2014-04-29 | Masimo Corporation | Reflective non-invasive sensor |
US8718738B2 (en) | 2002-03-08 | 2014-05-06 | Glt Acquisition Corp. | Method and apparatus for coupling a sample probe with a sample site |
US8723677B1 (en) | 2010-10-20 | 2014-05-13 | Masimo Corporation | Patient safety system with automatically adjusting bed |
US20140135588A1 (en) | 2009-03-04 | 2014-05-15 | Masimo Corporation | Medical monitoring system |
US8740792B1 (en) | 2010-07-12 | 2014-06-03 | Masimo Corporation | Patient monitor capable of accounting for environmental conditions |
US8740808B2 (en) | 2008-06-06 | 2014-06-03 | Salter Labs | Adaptive temperature sensor for breath monitoring device |
US20140163402A1 (en) | 2011-06-21 | 2014-06-12 | Cercacor Laboratories, Inc. | Patient monitoring system |
US8755872B1 (en) | 2011-07-28 | 2014-06-17 | Masimo Corporation | Patient monitoring system for indicating an abnormal condition |
US20140166076A1 (en) | 2012-12-17 | 2014-06-19 | Masimo Semiconductor, Inc | Pool solar power generator |
US20140180160A1 (en) | 2012-10-12 | 2014-06-26 | Emery N. Brown | System and method for monitoring and controlling a state of a patient during and after administration of anesthetic compound |
US8764671B2 (en) | 2007-06-28 | 2014-07-01 | Masimo Corporation | Disposable active pulse sensor |
US20140187973A1 (en) | 2011-05-06 | 2014-07-03 | Emery N. Brown | System and method for tracking brain states during administration of anesthesia |
US8771204B2 (en) | 2008-12-30 | 2014-07-08 | Masimo Corporation | Acoustic sensor assembly |
US8781544B2 (en) | 2007-03-27 | 2014-07-15 | Cercacor Laboratories, Inc. | Multiple wavelength optical sensor |
US8801613B2 (en) | 2009-12-04 | 2014-08-12 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US8821397B2 (en) | 2010-09-28 | 2014-09-02 | Masimo Corporation | Depth of consciousness monitor including oximeter |
US8830449B1 (en) | 2011-04-18 | 2014-09-09 | Cercacor Laboratories, Inc. | Blood analysis system |
US20140266790A1 (en) | 2013-03-13 | 2014-09-18 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US20140275808A1 (en) | 2013-03-14 | 2014-09-18 | Cercacor Laboratories, Inc. | Patient monitor placement indicator |
US20140275872A1 (en) | 2013-03-14 | 2014-09-18 | Cercacor Laboratories, Inc. | Systems and methods for testing patient monitors |
US20140275871A1 (en) | 2013-03-14 | 2014-09-18 | Cercacor Laboratories, Inc. | Wireless optical communication between noninvasive physiological sensors and patient monitors |
US20140275930A1 (en) | 2013-03-15 | 2014-09-18 | Xhale, Inc. | Methods, Devices And Systems For Photoplethysmography At The Nasal Columella |
US20140275887A1 (en) | 2013-03-15 | 2014-09-18 | Nellcor Puritan Bennett Ireland | Systems And Methods For Monitoring Respiratory Depression |
US20140276115A1 (en) | 2013-03-14 | 2014-09-18 | Cercacar Laboratories, Inc. | Heart sound simulator |
US20140275835A1 (en) | 2013-03-15 | 2014-09-18 | Cercacor Laboratories, Inc. | Cloud-based physiological monitoring system |
US8840549B2 (en) | 2006-09-22 | 2014-09-23 | Masimo Corporation | Modular patient monitor |
US8852094B2 (en) | 2006-12-22 | 2014-10-07 | Masimo Corporation | Physiological parameter system |
US8852994B2 (en) | 2010-05-24 | 2014-10-07 | Masimo Semiconductor, Inc. | Method of fabricating bifacial tandem solar cells |
US8868147B2 (en) | 2004-04-28 | 2014-10-21 | Glt Acquisition Corp. | Method and apparatus for controlling positioning of a noninvasive analyzer sample probe |
US20140316217A1 (en) | 2013-04-23 | 2014-10-23 | Patrick L. Purdon | System and method for monitoring anesthesia and sedation using measures of brain coherence and synchrony |
US20140316218A1 (en) | 2013-04-23 | 2014-10-23 | Patrick L. Purdon | Systems and methods for monitoring brain metabolism and activity using electroencephalogram and optical imaging |
US8870792B2 (en) | 2009-10-15 | 2014-10-28 | Masimo Corporation | Physiological acoustic monitoring system |
US20140323897A1 (en) | 2013-04-24 | 2014-10-30 | Emery N. Brown | System and method for estimating high time-frequency resolution eeg spectrograms to monitor patient state |
US20140323898A1 (en) | 2013-04-24 | 2014-10-30 | Patrick L. Purdon | System and Method for Monitoring Level of Dexmedatomidine-Induced Sedation |
USD717192S1 (en) | 2013-05-30 | 2014-11-11 | University Of Florida Research Foundation, Incorporated | Miniature portable gas chromatograph |
US20140343382A1 (en) | 2013-05-17 | 2014-11-20 | Xhale, Inc. | Methods And Systems For Using A Thermistor In Probe Identification Circuits In Or Associated With Pulse Oximeter Sensors |
US8897847B2 (en) | 2009-03-23 | 2014-11-25 | Masimo Corporation | Digit gauge for noninvasive optical sensor |
US8911377B2 (en) | 2008-09-15 | 2014-12-16 | Masimo Corporation | Patient monitor including multi-parameter graphical display |
US20150005600A1 (en) | 2013-03-13 | 2015-01-01 | Cercacor Laboratories, Inc. | Finger-placement sensor tape |
US20150011907A1 (en) | 2013-06-28 | 2015-01-08 | Patrick L. Purdon | Systems and Methods To Infer Brain State During Burst Suppression |
US20150038859A1 (en) | 2013-08-05 | 2015-02-05 | Cercacor Laboratories, Inc | Blood pressure monitor with valve-chamber assembly |
US20150045637A1 (en) | 2013-07-17 | 2015-02-12 | Cercacor Laboratories, Inc. | Double-bearing position encoder |
US20150073241A1 (en) | 2013-09-12 | 2015-03-12 | Cercacor Laboratories, Inc. | Medical device management system |
US20150073233A1 (en) | 2013-09-06 | 2015-03-12 | Xhale, Inc. | Systems and methods for physiological monitoring using multiple signal processing devices |
US20150080754A1 (en) | 2013-09-13 | 2015-03-19 | Patrick L. Purdon | Systems and Methods For Improved Brain Monitoring During General Anesthesia And Sedation |
US8989831B2 (en) | 2009-05-19 | 2015-03-24 | Masimo Corporation | Disposable components for reusable physiological sensor |
US8998809B2 (en) | 2006-05-15 | 2015-04-07 | Cercacor Laboratories, Inc. | Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices |
US20150097701A1 (en) | 2011-10-13 | 2015-04-09 | Masimo Corporation | System for displaying medical monitoring data |
US20150099955A1 (en) | 2013-10-07 | 2015-04-09 | Masimo Corporation | Regional oximetry user interface |
US20150106121A1 (en) | 2013-10-11 | 2015-04-16 | Masimo Corporation | Alarm notification system |
US20150105632A1 (en) | 2013-10-11 | 2015-04-16 | Xhale, Inc. | Fusion of data from multiple sources for non-invasive detection of respiratory parameters |
US20150112151A1 (en) | 2012-02-09 | 2015-04-23 | Masimo Corporation | Patient position detection system |
US20150165312A1 (en) | 2013-12-13 | 2015-06-18 | Masimo Corporation | Avatar-incentive healthcare therapy |
US9066666B2 (en) | 2011-02-25 | 2015-06-30 | Cercacor Laboratories, Inc. | Patient monitor for monitoring microcirculation |
US20150196249A1 (en) | 2010-09-01 | 2015-07-16 | The General Hospital Corporation | Reversal of General Anesthesia by Administration of Methylphenidate, Amphetamine, Modafinil, Amantadine, and/or Caffeine |
US9095316B2 (en) | 2011-04-20 | 2015-08-04 | Masimo Corporation | System for generating alarms based on alarm patterns |
US9106038B2 (en) | 2009-10-15 | 2015-08-11 | Masimo Corporation | Pulse oximetry system with low noise cable hub |
US9107625B2 (en) | 2008-05-05 | 2015-08-18 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
US20150238722A1 (en) | 2014-02-21 | 2015-08-27 | Masimo Corporation | Assistive capnography device |
US9131881B2 (en) | 2012-04-17 | 2015-09-15 | Masimo Corporation | Hypersaturation index |
US20150257689A1 (en) | 2006-05-15 | 2015-09-17 | Cercacor Laboratories, Inc. | Physiological monitor calibration system |
US9138180B1 (en) | 2010-05-03 | 2015-09-22 | Masimo Corporation | Sensor adapter cable |
US9153112B1 (en) | 2009-12-21 | 2015-10-06 | Masimo Corporation | Modular patient monitor |
US9161696B2 (en) | 2006-09-22 | 2015-10-20 | Masimo Corporation | Modular patient monitor |
US20150297137A1 (en) | 2011-08-11 | 2015-10-22 | Reflectance Medical, Inc. | Patient interface for reusable optical sensor |
US9192351B1 (en) | 2011-07-22 | 2015-11-24 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US9192329B2 (en) | 2006-10-12 | 2015-11-24 | Masimo Corporation | Variable mode pulse indicator |
US9195385B2 (en) | 2012-03-25 | 2015-11-24 | Masimo Corporation | Physiological monitor touchscreen interface |
US20150342480A1 (en) | 2014-05-30 | 2015-12-03 | Microsoft Corporation | Optical pulse-rate sensing |
US9211095B1 (en) | 2010-10-13 | 2015-12-15 | Masimo Corporation | Physiological measurement logic engine |
US9218454B2 (en) | 2009-03-04 | 2015-12-22 | Masimo Corporation | Medical monitoring system |
US20150366507A1 (en) | 2014-06-19 | 2015-12-24 | Cercacor Laboratories, Inc. | Proximity sensor in pulse oximeter |
USD748274S1 (en) | 2012-06-29 | 2016-01-26 | David Rich | Nasal alar photoplethysmography probe housing |
US9245668B1 (en) | 2011-06-29 | 2016-01-26 | Cercacor Laboratories, Inc. | Low noise cable providing communication between electronic sensor components and patient monitor |
USD748774S1 (en) | 2012-12-26 | 2016-02-02 | Angiodynamics, Inc | Introducer hub |
US9267572B2 (en) | 2012-02-08 | 2016-02-23 | Masimo Corporation | Cable tether system |
US20160066824A1 (en) | 2014-09-04 | 2016-03-10 | Masimo Corporation | Total hemoglobin screening sensor |
US20160081552A1 (en) | 2014-09-18 | 2016-03-24 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US20160095548A1 (en) | 2014-10-07 | 2016-04-07 | Masimo Corporation | Modular physiological sensors |
US9307928B1 (en) | 2010-03-30 | 2016-04-12 | Masimo Corporation | Plethysmographic respiration processor |
US9323894B2 (en) | 2011-08-19 | 2016-04-26 | Masimo Corporation | Health care sanitation monitoring system |
USD755392S1 (en) | 2015-02-06 | 2016-05-03 | Masimo Corporation | Pulse oximetry sensor |
US9326712B1 (en) | 2010-06-02 | 2016-05-03 | Masimo Corporation | Opticoustic sensor |
US9341565B2 (en) | 2004-07-07 | 2016-05-17 | Masimo Corporation | Multiple-wavelength physiological monitor |
US20160174855A1 (en) | 2009-05-27 | 2016-06-23 | Analog Devices, Inc. | Multiuse optical sensor |
US9386961B2 (en) | 2009-10-15 | 2016-07-12 | Masimo Corporation | Physiological acoustic monitoring system |
US9392945B2 (en) | 2012-01-04 | 2016-07-19 | Masimo Corporation | Automated CCHD screening and detection |
US20160213281A1 (en) | 2015-01-23 | 2016-07-28 | Masimo Sweden Ab | Nasal/oral cannula system and manufacturing |
US9408542B1 (en) | 2010-07-22 | 2016-08-09 | Masimo Corporation | Non-invasive blood pressure measurement system |
US20160233632A1 (en) | 2015-02-06 | 2016-08-11 | Masimo Corporation | Pogo pin connector |
US20160234944A1 (en) | 2015-02-06 | 2016-08-11 | Masimo Corporation | Fold flex circuit for lnop |
US20160228043A1 (en) | 2015-02-06 | 2016-08-11 | Masimo Corporation | Soft boot pulse oximetry sensor |
US9436645B2 (en) | 2011-10-13 | 2016-09-06 | Masimo Corporation | Medical monitoring hub |
US9445759B1 (en) | 2011-12-22 | 2016-09-20 | Cercacor Laboratories, Inc. | Blood glucose calibration system |
US9474474B2 (en) | 2013-03-14 | 2016-10-25 | Masimo Corporation | Patient monitor as a minimally invasive glucometer |
US9480435B2 (en) | 2012-02-09 | 2016-11-01 | Masimo Corporation | Configurable patient monitoring system |
US20160324488A1 (en) | 2015-05-04 | 2016-11-10 | Cercacor Laboratories, Inc. | Noninvasive sensor system with visual infographic display |
US9510779B2 (en) | 2009-09-17 | 2016-12-06 | Masimo Corporation | Analyte monitoring using one or more accelerometers |
US20160367173A1 (en) | 2015-05-22 | 2016-12-22 | Cercacor Laboratories, Inc. | Non-invasive optical physiological differential pathlength sensor |
US9532722B2 (en) | 2011-06-21 | 2017-01-03 | Masimo Corporation | Patient monitoring system |
US20170000394A1 (en) | 2015-07-02 | 2017-01-05 | Masimo Corporation | Advanced pulse oximetry sensor |
US20170024748A1 (en) | 2015-07-22 | 2017-01-26 | Patient Doctor Technologies, Inc. | Guided discussion platform for multiple parties |
US9560996B2 (en) | 2012-10-30 | 2017-02-07 | Masimo Corporation | Universal medical system |
US20170042488A1 (en) | 2015-08-11 | 2017-02-16 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
US9579039B2 (en) | 2011-01-10 | 2017-02-28 | Masimo Corporation | Non-invasive intravascular volume index monitor |
US20170055882A1 (en) | 2015-08-31 | 2017-03-02 | Masimo Corporation | Systems and methods for patient fall detection |
US9622692B2 (en) | 2011-05-16 | 2017-04-18 | Masimo Corporation | Personal health device |
US9649054B2 (en) | 2010-08-26 | 2017-05-16 | Cercacor Laboratories, Inc. | Blood pressure measurement method |
US9668695B2 (en) | 2004-08-11 | 2017-06-06 | University Of Florida Research Foundation, Inc. | Pulse oximeter probes and methods for using the same |
US20170173632A1 (en) | 2015-12-17 | 2017-06-22 | Masimo Corporation | Varnish-coated release liner |
US9697928B2 (en) | 2012-08-01 | 2017-07-04 | Masimo Corporation | Automated assembly sensor cable |
US9717458B2 (en) | 2012-10-20 | 2017-08-01 | Masimo Corporation | Magnetic-flap optical sensor |
US9724024B2 (en) | 2010-03-01 | 2017-08-08 | Masimo Corporation | Adaptive alarm system |
US9724025B1 (en) | 2013-01-16 | 2017-08-08 | Masimo Corporation | Active-pulse blood analysis system |
US9724016B1 (en) | 2009-10-16 | 2017-08-08 | Masimo Corp. | Respiration processor |
US20170228516A1 (en) | 2012-09-20 | 2017-08-10 | Masimo Corporation | Intelligent medical escalation process |
US9750442B2 (en) | 2013-03-09 | 2017-09-05 | Masimo Corporation | Physiological status monitor |
US9750461B1 (en) | 2013-01-02 | 2017-09-05 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US20170251974A1 (en) | 2016-03-04 | 2017-09-07 | Masimo Corporation | Nose sensor |
US9775545B2 (en) | 2010-09-28 | 2017-10-03 | Masimo Corporation | Magnetic electrical connector for patient monitors |
US9778079B1 (en) | 2011-10-27 | 2017-10-03 | Masimo Corporation | Physiological monitor gauge panel |
US9787568B2 (en) | 2012-11-05 | 2017-10-10 | Cercacor Laboratories, Inc. | Physiological test credit method |
US9782077B2 (en) | 2011-08-17 | 2017-10-10 | Masimo Corporation | Modulated physiological sensor |
US20170311891A1 (en) | 2016-04-29 | 2017-11-02 | Masimo Corporation | Optical sensor tape |
USD802152S1 (en) | 2015-07-27 | 2017-11-07 | Scott Wakefield | Nasal alar photoplethysmography probe housing |
US9808188B1 (en) | 2011-10-13 | 2017-11-07 | Masimo Corporation | Robust fractional saturation determination |
US9839381B1 (en) | 2009-11-24 | 2017-12-12 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US9861305B1 (en) | 2006-10-12 | 2018-01-09 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
US9924897B1 (en) | 2014-06-12 | 2018-03-27 | Masimo Corporation | Heated reprocessing of physiological sensors |
US20180103874A1 (en) | 2016-10-13 | 2018-04-19 | Masimo Corporation | Systems and methods for patient fall detection |
US9950112B2 (en) | 2010-08-17 | 2018-04-24 | University Of Florida Research Foundation, Incorporated | Intelligent drug and/or fluid delivery system to optimizing medical treatment or therapy using pharmacodynamic and/or pharamacokinetic data |
USD822216S1 (en) | 2017-04-28 | 2018-07-03 | Masimo Corporation | Medical monitoring device |
USD822215S1 (en) | 2017-04-26 | 2018-07-03 | Masimo Corporation | Medical monitoring device |
US20180199871A1 (en) | 2016-12-22 | 2018-07-19 | Cercacor Laboratories, Inc. | Methods and devices for detecting intensity of light with translucent detector |
US20180213583A1 (en) | 2017-01-18 | 2018-07-26 | Masimo Corporation | Patient-worn wireless physiological sensor wtih pairing functionality |
US20180242926A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | System for displaying medical monitoring data |
US20180247353A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | Managing dynamic licenses for physiological parameters in a patient monitoring environment |
US20180256087A1 (en) | 2017-03-10 | 2018-09-13 | Masimo Corporation | Pneumonia screener |
US10086138B1 (en) | 2014-01-28 | 2018-10-02 | Masimo Corporation | Autonomous drug delivery system |
US20180300919A1 (en) | 2017-02-24 | 2018-10-18 | Masimo Corporation | Augmented reality system for displaying patient data |
WO2018194992A1 (en) | 2017-04-18 | 2018-10-25 | Masimo Corporation | Nose sensor |
US10111591B2 (en) | 2014-08-26 | 2018-10-30 | Nanthealth, Inc. | Real-time monitoring systems and methods in a healthcare environment |
US20180310822A1 (en) | 2017-04-28 | 2018-11-01 | Masimo Corporation | Spot check measurement system |
US20180310823A1 (en) | 2017-04-26 | 2018-11-01 | Masimo Corporation | Medical monitoring device having multiple configurations |
US20180317826A1 (en) | 2017-05-08 | 2018-11-08 | Masimo Corporation | System for displaying and controlling medical monitoring data |
USD833624S1 (en) | 2017-05-09 | 2018-11-13 | Masimo Corporation | Medical device |
US10123729B2 (en) | 2014-06-13 | 2018-11-13 | Nanthealth, Inc. | Alarm fatigue management systems and methods |
USD835285S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD835283S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD835284S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD835282S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
US20190015023A1 (en) | 2017-07-13 | 2019-01-17 | Cercacor Laboratories, Inc. | Medical monitoring device for harmonizing physiological measurements |
USD844793S1 (en) | 2017-05-19 | 2019-04-02 | Xhale Assurance, Inc. | Nasal photoplethysmography sensor housing |
US20190117070A1 (en) | 2017-10-19 | 2019-04-25 | Masimo Corporation | Medical monitoring system |
US10327713B2 (en) | 2017-02-24 | 2019-06-25 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US20190200941A1 (en) | 2017-10-31 | 2019-07-04 | Masimo Corporation | System for displaying oxygen state indications |
US20190239787A1 (en) | 2018-02-02 | 2019-08-08 | Cercacor Laboratories, Inc. | Limb-worn patient monitoring device |
US10388120B2 (en) | 2017-02-24 | 2019-08-20 | Masimo Corporation | Localized projection of audible noises in medical settings |
US10441181B1 (en) | 2013-03-13 | 2019-10-15 | Masimo Corporation | Acoustic pulse and respiration monitoring system |
USD864120S1 (en) | 2017-08-15 | 2019-10-22 | Masimo Corporation | Connector |
US20190320906A1 (en) | 2018-04-24 | 2019-10-24 | Cercacor Laboratories, Inc. | Easy insert finger sensor for transmission based spectroscopy sensor |
US10471159B1 (en) | 2016-02-12 | 2019-11-12 | Masimo Corporation | Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles |
US10505311B2 (en) | 2017-08-15 | 2019-12-10 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
US20190374173A1 (en) | 2018-06-06 | 2019-12-12 | Masimo Corporation | Opioid overdose monitoring |
US20200021930A1 (en) | 2018-07-10 | 2020-01-16 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US10537285B2 (en) | 2016-03-04 | 2020-01-21 | Masimo Corporation | Nose sensor |
US20200060869A1 (en) | 2018-08-22 | 2020-02-27 | Masimo Corporation | Core body temperature measurement |
US10608817B2 (en) | 2016-07-06 | 2020-03-31 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
USD880477S1 (en) | 2017-08-15 | 2020-04-07 | Masimo Corporation | Connector |
US20200111552A1 (en) | 2018-10-08 | 2020-04-09 | Masimo Corporation | Patient database analytics |
US10617302B2 (en) | 2016-07-07 | 2020-04-14 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
US20200113488A1 (en) | 2018-10-11 | 2020-04-16 | Masimo Corporation | Patient monitoring device with improved user interface |
US20200113520A1 (en) | 2018-10-16 | 2020-04-16 | Masimo Corporation | Stretch band with indicators or limiters |
US20200113496A1 (en) | 2018-10-11 | 2020-04-16 | Masimo Corporation | Patient connector assembly with vertical detents |
US20200113497A1 (en) | 2018-10-11 | 2020-04-16 | Masimo Corporation | Low noise oximetry cable |
US20200113435A1 (en) | 2018-10-12 | 2020-04-16 | Masimo Corporation | Medical systems and methods |
US20200138368A1 (en) | 2018-11-05 | 2020-05-07 | Masimo Corporation | System to manage patient hydration |
US20200138288A1 (en) | 2018-10-12 | 2020-05-07 | Masimo Corporation | System for transmission of sensor data using dual communication protocol |
US20200163597A1 (en) | 2018-11-27 | 2020-05-28 | Cercacor Laboratories, Inc. | Assembly for medical monitoring device with multiple physiological sensors |
US10667764B2 (en) | 2018-04-19 | 2020-06-02 | Masimo Corporation | Mobile patient alarm display |
Family Cites Families (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5551423A (en) | 1993-01-26 | 1996-09-03 | Nihon Kohden Corporation | Pulse oximeter probe |
US20080103375A1 (en) | 2006-09-22 | 2008-05-01 | Kiani Massi E | Patient monitor user interface |
US8897850B2 (en) | 2007-12-31 | 2014-11-25 | Covidien Lp | Sensor with integrated living hinge and spring |
USD670396S1 (en) | 2011-10-17 | 2012-11-06 | Jonathan Reid Doogan | Acupressure therapy device |
US10827961B1 (en) | 2012-08-29 | 2020-11-10 | Masimo Corporation | Physiological measurement calibration |
CN108937908B (en) | 2013-01-28 | 2021-08-10 | 瓦伦赛尔公司 | Physiological monitoring device with sensing element decoupled from body motion |
US11147518B1 (en) | 2013-10-07 | 2021-10-19 | Masimo Corporation | Regional oximetry signal processor |
US10828007B1 (en) | 2013-10-11 | 2020-11-10 | Masimo Corporation | Acoustic sensor with attachment portion |
US11504066B1 (en) | 2015-09-04 | 2022-11-22 | Cercacor Laboratories, Inc. | Low-noise sensor system |
GB2557199B (en) | 2016-11-30 | 2020-11-04 | Lidco Group Plc | Haemodynamic monitor with improved filtering |
US11504058B1 (en) | 2016-12-02 | 2022-11-22 | Masimo Corporation | Multi-site noninvasive measurement of a physiological parameter |
USD890708S1 (en) | 2017-08-15 | 2020-07-21 | Masimo Corporation | Connector |
USD906970S1 (en) | 2017-08-15 | 2021-01-05 | Masimo Corporation | Connector |
USD925597S1 (en) | 2017-10-31 | 2021-07-20 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD903878S1 (en) | 2018-01-29 | 2020-12-01 | Socrates Health Solutions, Inc. | Ear clip |
US20220296161A1 (en) | 2018-06-06 | 2022-09-22 | Masimo Corporation | Time-based critical opioid blood oxygen monitoring |
US20210161465A1 (en) | 2018-06-06 | 2021-06-03 | Masimo Corporation | Kit for opioid overdose monitoring |
USD887548S1 (en) | 2018-09-10 | 2020-06-16 | Masimo Corporation | Flow alarm device housing |
USD887549S1 (en) | 2018-09-10 | 2020-06-16 | Masino Corporation | Cap for a flow alarm device |
USD916135S1 (en) | 2018-10-11 | 2021-04-13 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD998630S1 (en) | 2018-10-11 | 2023-09-12 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD917564S1 (en) | 2018-10-11 | 2021-04-27 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD999246S1 (en) | 2018-10-11 | 2023-09-19 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD998631S1 (en) | 2018-10-11 | 2023-09-12 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD917550S1 (en) | 2018-10-11 | 2021-04-27 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD897098S1 (en) | 2018-10-12 | 2020-09-29 | Masimo Corporation | Card holder set |
USD957648S1 (en) | 2018-10-12 | 2022-07-12 | Masimo Corporation | Dongle |
USD1013179S1 (en) | 2018-10-12 | 2024-01-30 | Masimo Corporation | Sensor device |
US20200253474A1 (en) | 2018-12-18 | 2020-08-13 | Masimo Corporation | Modular wireless physiological parameter system |
US11684296B2 (en) | 2018-12-21 | 2023-06-27 | Cercacor Laboratories, Inc. | Noninvasive physiological sensor |
US12076159B2 (en) | 2019-02-07 | 2024-09-03 | Masimo Corporation | Combining multiple QEEG features to estimate drug-independent sedation level using machine learning |
US12220207B2 (en) | 2019-02-26 | 2025-02-11 | Masimo Corporation | Non-contact core body temperature measurement systems and methods |
US20200288983A1 (en) | 2019-02-26 | 2020-09-17 | Masimo Corporation | Respiratory core body temperature measurement systems and methods |
WO2020214826A1 (en) | 2019-04-17 | 2020-10-22 | Masimo Corporation | Patient monitoring systems, devices, and methods |
USD916291S1 (en) | 2019-06-17 | 2021-04-13 | Oxiwear, Inc. | Earpiece |
USD1015325S1 (en) | 2019-08-02 | 2024-02-20 | Hangzhou Megasens Technologies Co., Ltd. | Smart ring |
USD919100S1 (en) | 2019-08-16 | 2021-05-11 | Masimo Corporation | Holder for a patient monitor |
USD917704S1 (en) | 2019-08-16 | 2021-04-27 | Masimo Corporation | Patient monitor |
USD919094S1 (en) | 2019-08-16 | 2021-05-11 | Masimo Corporation | Blood pressure device |
USD921202S1 (en) | 2019-08-16 | 2021-06-01 | Masimo Corporation | Holder for a blood pressure device |
USD985498S1 (en) | 2019-08-16 | 2023-05-09 | Masimo Corporation | Connector |
US11832940B2 (en) | 2019-08-27 | 2023-12-05 | Cercacor Laboratories, Inc. | Non-invasive medical monitoring device for blood analyte measurements |
US12131661B2 (en) | 2019-10-03 | 2024-10-29 | Willow Laboratories, Inc. | Personalized health coaching system |
USD927699S1 (en) | 2019-10-18 | 2021-08-10 | Masimo Corporation | Electrode pad |
JP2022552007A (en) | 2019-10-18 | 2022-12-14 | マシモ・コーポレイション | Display layouts and interactive objects for patient monitoring |
KR20220115927A (en) | 2019-10-25 | 2022-08-19 | 세르카코르 래버러토리즈, 인크. | Indicator compounds, devices comprising indicator compounds, and methods of making and using the same |
USD967966S1 (en) | 2019-10-31 | 2022-10-25 | Circadia Technologies Ltd. | Patient monitor |
EP4248847B1 (en) | 2020-01-13 | 2024-11-06 | Masimo Corporation | Wearable device with physiological parameters monitoring |
CN115361981A (en) | 2020-01-30 | 2022-11-18 | 塞卡科实验室有限公司 | Redundant interleaved glucose sensor disease management system |
US11721105B2 (en) | 2020-02-13 | 2023-08-08 | Masimo Corporation | System and method for monitoring clinical activities |
US11879960B2 (en) | 2020-02-13 | 2024-01-23 | Masimo Corporation | System and method for monitoring clinical activities |
USD997938S1 (en) | 2020-02-20 | 2023-09-05 | Analog Devices, Inc. | Health monitor device with sensors |
US12048534B2 (en) | 2020-03-04 | 2024-07-30 | Willow Laboratories, Inc. | Systems and methods for securing a tissue site to a sensor |
US12064217B2 (en) | 2020-03-20 | 2024-08-20 | Masimo Corporation | Remote patient management and monitoring systems and methods |
USD933232S1 (en) | 2020-05-11 | 2021-10-12 | Masimo Corporation | Blood pressure monitor |
US12127838B2 (en) | 2020-04-22 | 2024-10-29 | Willow Laboratories, Inc. | Self-contained minimal action invasive blood constituent system |
USD979516S1 (en) | 2020-05-11 | 2023-02-28 | Masimo Corporation | Connector |
US20210386382A1 (en) | 2020-06-11 | 2021-12-16 | Cercacor Laboratories, Inc. | Blood glucose disease management system |
WO2021262877A1 (en) | 2020-06-25 | 2021-12-30 | Cercacor Laboratories, Inc. | Combination spirometer-inhaler |
US11692934B2 (en) | 2020-07-23 | 2023-07-04 | Masimo Corporation | Solid-state spectrometer |
USD980091S1 (en) | 2020-07-27 | 2023-03-07 | Masimo Corporation | Wearable temperature measurement device |
USD974193S1 (en) | 2020-07-27 | 2023-01-03 | Masimo Corporation | Wearable temperature measurement device |
US12082926B2 (en) | 2020-08-04 | 2024-09-10 | Masimo Corporation | Optical sensor with multiple detectors or multiple emitters |
EP4199778A1 (en) | 2020-08-19 | 2023-06-28 | Masimo Corporation | Strap for a wearable device |
US20220071562A1 (en) | 2020-09-08 | 2022-03-10 | Masimo Corporation | Face mask with integrated physiological sensors |
USD971933S1 (en) | 2020-09-30 | 2022-12-06 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US12178852B2 (en) | 2020-09-30 | 2024-12-31 | Willow Laboratories, Inc. | Insulin formulations and uses in infusion devices |
USD946598S1 (en) | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD950599S1 (en) | 2020-09-30 | 2022-05-03 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD946597S1 (en) | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD946617S1 (en) | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD950580S1 (en) | 2020-09-30 | 2022-05-03 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD946596S1 (en) | 2020-09-30 | 2022-03-22 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD972151S1 (en) | 2020-10-29 | 2022-12-06 | Greenteg Ag | Wearable body temperature sensor |
WO2022087651A1 (en) | 2020-10-30 | 2022-05-05 | Canaria Technologies Pty Ltd | Subject monitoring |
KR20230123944A (en) | 2020-11-18 | 2023-08-24 | 세르카코르 래버러토리즈, 인크. | Glucose sensor and manufacturing method |
US20220287574A1 (en) | 2020-12-23 | 2022-09-15 | Masimo Corporation | Patient monitoring systems, devices, and methods |
US20220218244A1 (en) | 2021-01-11 | 2022-07-14 | Masimo Corporation | Wearable pulse oximeter for tennis players |
USD972737S1 (en) | 2021-05-07 | 2022-12-13 | Zetroz Systems Llc | Wireless ultrasound device |
WO2022240765A1 (en) | 2021-05-11 | 2022-11-17 | Masimo Corporation | Optical physiological nose sensor |
US20220379059A1 (en) | 2021-05-26 | 2022-12-01 | Masimo Corporation | Low deadspace airway adapter |
US20220392610A1 (en) | 2021-06-03 | 2022-12-08 | Cercacor Laboratories, Inc. | Individualized meal kit with real-time feedback and continuous adjustments based on lifestyle tracking |
USD997365S1 (en) | 2021-06-24 | 2023-08-29 | Masimo Corporation | Physiological nose sensor |
JP2024527614A (en) | 2021-07-13 | 2024-07-25 | マシモ・コーポレイション | Wearable devices with physiological parameter monitoring |
US20230058052A1 (en) | 2021-07-21 | 2023-02-23 | Masimo Corporation | Wearable band for health monitoring device |
TWD217869S (en) | 2021-07-26 | 2022-03-21 | 澔心科技股份有限公司 | Baby physiological signal detector |
US20230038389A1 (en) | 2021-08-04 | 2023-02-09 | Cercacor Laboratories, Inc. | Systems and methods for kink detection in a cannula |
US20230045647A1 (en) | 2021-08-04 | 2023-02-09 | Cercacor Laboratories, Inc. | Applicator for disease management system |
JP2024528287A (en) | 2021-08-04 | 2024-07-26 | ウィロー・ラボラトリーズ・インコーポレイテッド | Drug delivery pump for a redundant staggered glucose sensor insulin dosing system |
US20230147750A1 (en) | 2021-08-19 | 2023-05-11 | Masimo Corporation | Wearable physiological monitoring devices |
US20230058342A1 (en) | 2021-08-20 | 2023-02-23 | Masimo Corporation | Physiological monitoring chair |
WO2023034879A1 (en) | 2021-08-31 | 2023-03-09 | Masimo Corporation | Privacy switch for mobile communications device |
US20230078479A1 (en) | 2021-09-11 | 2023-03-16 | SiriuXense Co., Ltd. | Real-time monitoring device for human body |
USD1000975S1 (en) | 2021-09-22 | 2023-10-10 | Masimo Corporation | Wearable temperature measurement device |
CN118510440A (en) | 2021-09-22 | 2024-08-16 | 迈心诺公司 | Wearable device for noninvasive body temperature measurement |
US20230107113A1 (en) | 2021-10-04 | 2023-04-06 | Mission Support and Test Services, LLC | Nasal device and associated method of measuring an aspect of gas flowing through a user's nose |
USD1025372S1 (en) | 2021-10-05 | 2024-04-30 | Alivecor, Inc. | Multi-electrode device |
US20230138098A1 (en) | 2021-10-07 | 2023-05-04 | Masimo Corporation | Opioid overdose detection using pattern recognition |
US20230110152A1 (en) | 2021-10-07 | 2023-04-13 | Masimo Corporation | System and devices for monitoring a hemodynamic status of a patient |
US20230111198A1 (en) | 2021-10-07 | 2023-04-13 | Masimo Corporation | Bite block and assemblies including same |
US20230145155A1 (en) | 2021-10-29 | 2023-05-11 | Cercacor Laboratories, Inc. | Implantable micro-electrochemical cell |
JP2024539334A (en) | 2021-10-29 | 2024-10-28 | ウィロー・ラボラトリーズ・インコーポレイテッド | Electrode systems for electrochemical sensors. |
US20230210417A1 (en) | 2022-01-05 | 2023-07-06 | Masimo Corporation | Wrist and finger worn pulse oximetry system |
US12236767B2 (en) | 2022-01-11 | 2025-02-25 | Masimo Corporation | Machine learning based monitoring system |
US20230226331A1 (en) | 2022-01-18 | 2023-07-20 | Cercacor Laboratories, Inc. | Modular wearable device for patient monitoring and drug administration |
USD999652S1 (en) | 2022-02-28 | 2023-09-26 | Iowise Technologies, Inc. | Personal tracking device and strap |
KR20250005100A (en) | 2022-03-10 | 2025-01-09 | 마시모 코오퍼레이션 | Foot-mounted physiological sensor and system including same |
EP4489659A1 (en) | 2022-03-11 | 2025-01-15 | Masimo Corporation | Continuous noninvasive blood pressure measurement |
USD1017051S1 (en) | 2022-04-22 | 2024-03-05 | ZBeats, Inc. | Wearable ECG patch |
US20230346993A1 (en) | 2022-04-27 | 2023-11-02 | Cercacor Laboratories, Inc. | Ultraviolet sterilization for minimally invasive systems |
WO2023215836A2 (en) | 2022-05-05 | 2023-11-09 | Cercacor Laboratories, Inc. | An analyte sensor for measuring at varying depths within a user |
US20230371893A1 (en) | 2022-05-17 | 2023-11-23 | Masimo Corporation | Hydration measurement using optical sensors |
WO2024020324A1 (en) | 2022-07-18 | 2024-01-25 | Cercacor Laboratories, Inc. | Electrochemical glucose sensing by equilibrium glucose binding to genetically engineered glucose binding proteins |
WO2024020325A1 (en) | 2022-07-18 | 2024-01-25 | Cercacor Laboratories, Inc. | Electrochemical devices and methods for accurate determination of analyte |
KR20250049295A (en) | 2022-08-05 | 2025-04-11 | 마시모 코오퍼레이션 | Wireless monitoring transmission with reduced data loss |
WO2024036327A1 (en) | 2022-08-12 | 2024-02-15 | Masimo Corporation | Wearable physiological monitoring device |
US20240081656A1 (en) | 2022-09-09 | 2024-03-14 | Masimo Corporation | Wearable physiological monitoring system |
US20240122486A1 (en) | 2022-10-17 | 2024-04-18 | Masimo Corporation | Physiological monitoring soundbar |
US20240180456A1 (en) | 2022-12-05 | 2024-06-06 | Masimo Corporation | Clip-on optical or ecg light based physiological measurement device |
US20240188872A1 (en) | 2022-12-07 | 2024-06-13 | Masimo Corporation | Wearable device with physiological parameters monitoring |
USD994130S1 (en) | 2023-04-17 | 2023-08-01 | Shenzhen Boruida E-Commerce Co., Ltd | U line neck photontherapy device |
-
2018
- 2018-04-16 WO PCT/US2018/027833 patent/WO2018194992A1/en active Application Filing
- 2018-04-17 US US15/955,500 patent/US10849554B2/en active Active
-
2020
- 2020-10-23 US US17/079,028 patent/US11534110B2/en active Active
-
2022
- 2022-11-22 US US18/058,228 patent/US12004875B2/en active Active
-
2024
- 2024-05-03 US US18/654,562 patent/US12220257B2/en active Active
Patent Citations (1000)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543146A (en) | 1983-04-22 | 1985-09-24 | Coburn Optical Industries, Inc. | Wrinkle prevention in glass/plastic composite lenses |
US4685464A (en) | 1985-07-05 | 1987-08-11 | Nellcor Incorporated | Durable sensor for detecting optical pulses |
US4964408A (en) | 1988-04-29 | 1990-10-23 | Thor Technology Corporation | Oximeter sensor assembly with integral cable |
US5041187A (en) | 1988-04-29 | 1991-08-20 | Thor Technology Corporation | Oximeter sensor assembly with integral cable and method of forming the same |
US5069213A (en) | 1988-04-29 | 1991-12-03 | Thor Technology Corporation | Oximeter sensor assembly with integral cable and encoder |
US4960128A (en) | 1988-11-14 | 1990-10-02 | Paramed Technology Incorporated | Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient |
US5163438A (en) | 1988-11-14 | 1992-11-17 | Paramed Technology Incorporated | Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient |
US5431170A (en) | 1990-05-26 | 1995-07-11 | Mathews; Geoffrey R. | Pulse responsive device |
US5319355A (en) | 1991-03-06 | 1994-06-07 | Russek Linda G | Alarm for patient monitor and life support equipment system |
US5534851A (en) | 1991-03-06 | 1996-07-09 | Russek; Linda G. | Alarm for patient monitor and life support equipment |
US6036642A (en) | 1991-03-07 | 2000-03-14 | Masimo Corporation | Signal processing apparatus and method |
US5482036A (en) | 1991-03-07 | 1996-01-09 | Masimo Corporation | Signal processing apparatus and method |
US6745060B2 (en) | 1991-03-07 | 2004-06-01 | Masimo Corporation | Signal processing apparatus |
US7469157B2 (en) | 1991-03-07 | 2008-12-23 | Masimo Corporation | Signal processing apparatus |
US7454240B2 (en) | 1991-03-07 | 2008-11-18 | Masimo Corporation | Signal processing apparatus |
US6263222B1 (en) | 1991-03-07 | 2001-07-17 | Masimo Corporation | Signal processing apparatus |
US7383070B2 (en) | 1991-03-07 | 2008-06-03 | Masimo Corporation | Signal processing apparatus |
US8942777B2 (en) | 1991-03-07 | 2015-01-27 | Masimo Corporation | Signal processing apparatus |
US7509154B2 (en) | 1991-03-07 | 2009-03-24 | Masimo Corporation | Signal processing apparatus |
US8948834B2 (en) | 1991-03-07 | 2015-02-03 | Masimo Corporation | Signal processing apparatus |
US8046042B2 (en) | 1991-03-07 | 2011-10-25 | Masimo Corporation | Signal processing apparatus |
US6236872B1 (en) | 1991-03-07 | 2001-05-22 | Masimo Corporation | Signal processing apparatus |
US8128572B2 (en) | 1991-03-07 | 2012-03-06 | Masimo Corporation | Signal processing apparatus |
US6081735A (en) | 1991-03-07 | 2000-06-27 | Masimo Corporation | Signal processing apparatus |
US7254433B2 (en) | 1991-03-07 | 2007-08-07 | Masimo Corporation | Signal processing apparatus |
US6206830B1 (en) | 1991-03-07 | 2001-03-27 | Masimo Corporation | Signal processing apparatus and method |
US7530955B2 (en) | 1991-03-07 | 2009-05-12 | Masimo Corporation | Signal processing apparatus |
US7937130B2 (en) | 1991-03-07 | 2011-05-03 | Masimo Corporation | Signal processing apparatus |
US5490505A (en) | 1991-03-07 | 1996-02-13 | Masimo Corporation | Signal processing apparatus |
US7496393B2 (en) | 1991-03-07 | 2009-02-24 | Masimo Corporation | Signal processing apparatus |
US7215986B2 (en) | 1991-03-07 | 2007-05-08 | Masimo Corporation | Signal processing apparatus |
US8046041B2 (en) | 1991-03-07 | 2011-10-25 | Masimo Corporation | Signal processing apparatus |
US5769785A (en) | 1991-03-07 | 1998-06-23 | Masimo Corporation | Signal processing apparatus and method |
US6157850A (en) | 1991-03-07 | 2000-12-05 | Masimo Corporation | Signal processing apparatus |
US8036728B2 (en) | 1991-03-07 | 2011-10-11 | Masimo Corporation | Signal processing apparatus |
US8364226B2 (en) | 1991-03-07 | 2013-01-29 | Masimo Corporation | Signal processing apparatus |
US7215984B2 (en) | 1991-03-07 | 2007-05-08 | Masimo Corporation | Signal processing apparatus |
US5632272A (en) | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
US6650917B2 (en) | 1991-03-07 | 2003-11-18 | Masimo Corporation | Signal processing apparatus |
US6501975B2 (en) | 1991-03-07 | 2002-12-31 | Masimo Corporation | Signal processing apparatus and method |
US7962190B1 (en) | 1991-03-07 | 2011-06-14 | Masimo Corporation | Signal processing apparatus |
US6826419B2 (en) | 1991-03-07 | 2004-11-30 | Masimo Corporation | Signal processing apparatus and method |
US5685299A (en) | 1991-03-07 | 1997-11-11 | Masimo Corporation | Signal processing apparatus |
USRE38492E1 (en) | 1991-03-07 | 2004-04-06 | Masimo Corporation | Signal processing apparatus and method |
USRE38476E1 (en) | 1991-03-07 | 2004-03-30 | Masimo Corporation | Signal processing apparatus |
US5638818A (en) | 1991-03-21 | 1997-06-17 | Masimo Corporation | Low noise optical probe |
US7132641B2 (en) | 1991-03-21 | 2006-11-07 | Masimo Corporation | Shielded optical probe having an electrical connector |
US6792300B1 (en) | 1991-03-21 | 2004-09-14 | Masimo Corporation | Low-noise optical probes for reducing light piping |
US7483730B2 (en) | 1991-03-21 | 2009-01-27 | Masimo Corporation | Low-noise optical probes for reducing ambient noise |
US5782757A (en) | 1991-03-21 | 1998-07-21 | Masimo Corporation | Low-noise optical probes |
US6813511B2 (en) | 1991-03-21 | 2004-11-02 | Masimo Corporation | Low-noise optical probes for reducing ambient noise |
US8670814B2 (en) | 1991-03-21 | 2014-03-11 | Masimo Corporation | Low-noise optical probes for reducing ambient noise |
US6541756B2 (en) | 1991-03-21 | 2003-04-01 | Masimo Corporation | Shielded optical probe having an electrical connector |
US6256523B1 (en) | 1991-03-21 | 2001-07-03 | Masimo Corporation | Low-noise optical probes |
US8229533B2 (en) | 1991-03-21 | 2012-07-24 | Masimo Corporation | Low-noise optical probes for reducing ambient noise |
US6088607A (en) | 1991-03-21 | 2000-07-11 | Masimo Corporation | Low noise optical probe |
US5377676A (en) | 1991-04-03 | 1995-01-03 | Cedars-Sinai Medical Center | Method for determining the biodistribution of substances using fluorescence spectroscopy |
US5247931A (en) | 1991-09-16 | 1993-09-28 | Mine Safety Appliances Company | Diagnostic sensor clasp utilizing a slot, pivot and spring hinge mechanism |
US5190048A (en) | 1991-09-17 | 1993-03-02 | Healthdyne, Inc. | Thermistor airflow sensor assembly |
WO1993005710A1 (en) | 1991-09-17 | 1993-04-01 | Healthdyne, Inc. | Thermistor airflow sensor assembly |
US5479934A (en) | 1991-11-08 | 1996-01-02 | Physiometrix, Inc. | EEG headpiece with disposable electrodes and apparatus and system and method for use therewith |
US5383469A (en) | 1992-01-31 | 1995-01-24 | Board Of Trustees Of The Leland Stanford Junior University | Neonatal hemolysis detection using end-tidal breath sampler and analyzer apparatus |
US5602924A (en) | 1992-12-07 | 1997-02-11 | Theratechnologies Inc. | Electronic stethescope |
US5341805A (en) | 1993-04-06 | 1994-08-30 | Cedars-Sinai Medical Center | Glucose fluorescence monitor and method |
US5335659A (en) | 1993-04-12 | 1994-08-09 | Ohmeda Inc. | Nasal septum probe for photoplethysmographic measurements |
US5494043A (en) | 1993-05-04 | 1996-02-27 | Vital Insite, Inc. | Arterial sensor |
USD353195S (en) | 1993-05-28 | 1994-12-06 | Gary Savage | Electronic stethoscope housing |
USD353196S (en) | 1993-05-28 | 1994-12-06 | Gary Savage | Stethoscope head |
US5452717A (en) | 1993-07-14 | 1995-09-26 | Masimo Corporation | Finger-cot probe |
US5337744A (en) | 1993-07-14 | 1994-08-16 | Masimo Corporation | Low noise finger cot probe |
US20100085527A1 (en) | 1993-07-22 | 2010-04-08 | Semiconductor Energy Laboratory Co., Ltd. | Liquid-crystal electro-optical apparatus and method of manufacturing the same |
US5456252A (en) | 1993-09-30 | 1995-10-10 | Cedars-Sinai Medical Center | Induced fluorescence spectroscopy blood perfusion and pH monitor and method |
US7376453B1 (en) | 1993-10-06 | 2008-05-20 | Masimo Corporation | Signal processing apparatus |
US7328053B1 (en) | 1993-10-06 | 2008-02-05 | Masimo Corporation | Signal processing apparatus |
US8560034B1 (en) | 1993-10-06 | 2013-10-15 | Masimo Corporation | Signal processing apparatus |
US5533511A (en) | 1994-01-05 | 1996-07-09 | Vital Insite, Incorporated | Apparatus and method for noninvasive blood pressure measurement |
USD359546S (en) | 1994-01-27 | 1995-06-20 | The Ratechnologies Inc. | Housing for a dental unit disinfecting device |
US5436499A (en) | 1994-03-11 | 1995-07-25 | Spire Corporation | High performance GaAs devices and method |
US5833618A (en) | 1994-04-15 | 1998-11-10 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine a physiological parameter |
US5785659A (en) | 1994-04-15 | 1998-07-28 | Vital Insite, Inc. | Automatically activated blood pressure measurement device |
US6045509A (en) | 1994-04-15 | 2000-04-04 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine a physiological parameter |
US5791347A (en) | 1994-04-15 | 1998-08-11 | Vital Insite, Inc. | Motion insensitive pulse detector |
US6371921B1 (en) | 1994-04-15 | 2002-04-16 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US6852083B2 (en) | 1994-04-15 | 2005-02-08 | Masimo Corporation | System and method of determining whether to recalibrate a blood pressure monitor |
US5830131A (en) | 1994-04-15 | 1998-11-03 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system |
US5590649A (en) | 1994-04-15 | 1997-01-07 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine blood pressure |
US5810734A (en) | 1994-04-15 | 1998-09-22 | Vital Insite, Inc. | Apparatus and method for measuring an induced perturbation to determine a physiological parameter |
USD363120S (en) | 1994-04-21 | 1995-10-10 | Gary Savage | Stethoscope ear tip |
USD362063S (en) | 1994-04-21 | 1995-09-05 | Gary Savage | Stethoscope headset |
USD361840S (en) | 1994-04-21 | 1995-08-29 | Gary Savage | Stethoscope head |
US5561275A (en) | 1994-04-28 | 1996-10-01 | Delstar Services Informatiques (1993) Inc. | Headset for electronic stethoscope |
US8359080B2 (en) | 1994-10-07 | 2013-01-22 | Masimo Corporation | Signal processing apparatus |
US8019400B2 (en) | 1994-10-07 | 2011-09-13 | Masimo Corporation | Signal processing apparatus |
US8463349B2 (en) | 1994-10-07 | 2013-06-11 | Masimo Corporation | Signal processing apparatus |
US8126528B2 (en) | 1994-10-07 | 2012-02-28 | Masimo Corporation | Signal processing apparatus |
US8755856B2 (en) | 1994-10-07 | 2014-06-17 | Masimo Corporation | Signal processing apparatus |
WO1996013208A1 (en) | 1994-11-01 | 1996-05-09 | Masimo Corporation | Low noise optical probe |
US5562002A (en) | 1995-02-03 | 1996-10-08 | Sensidyne Inc. | Positive displacement piston flow meter with damping assembly |
USRE44875E1 (en) | 1995-06-07 | 2014-04-29 | Cercacor Laboratories, Inc. | Active pulse blood constituent monitoring |
US20140288400A1 (en) | 1995-06-07 | 2014-09-25 | Masimo Corporation | Manual and automatic probe calibration |
US6278522B1 (en) | 1995-06-07 | 2001-08-21 | Masimo Laboratories | Optical filter for spectroscopic measurement and method of producing the optical filter |
US8781543B2 (en) | 1995-06-07 | 2014-07-15 | Jpmorgan Chase Bank, National Association | Manual and automatic probe calibration |
US5940182A (en) | 1995-06-07 | 1999-08-17 | Masimo Corporation | Optical filter for spectroscopic measurement and method of producing the optical filter |
US5638816A (en) | 1995-06-07 | 1997-06-17 | Masimo Corporation | Active pulse blood constituent monitoring |
US5860919A (en) | 1995-06-07 | 1999-01-19 | Masimo Corporation | Active pulse blood constituent monitoring method |
US5823950A (en) | 1995-06-07 | 1998-10-20 | Masimo Corporation | Manual and automatic probe calibration |
US8145287B2 (en) | 1995-06-07 | 2012-03-27 | Masimo Corporation | Manual and automatic probe calibration |
US7239905B2 (en) | 1995-06-07 | 2007-07-03 | Masimo Laboratories, Inc. | Active pulse blood constituent monitoring |
US6011986A (en) | 1995-06-07 | 2000-01-04 | Masimo Corporation | Manual and automatic probe calibration |
US7526328B2 (en) | 1995-06-07 | 2009-04-28 | Masimo Corporation | Manual and automatic probe calibration |
US5743262A (en) | 1995-06-07 | 1998-04-28 | Masimo Corporation | Blood glucose monitoring system |
US6397091B2 (en) | 1995-06-07 | 2002-05-28 | Masimo Corporation | Manual and automatic probe calibration |
US6931268B1 (en) | 1995-06-07 | 2005-08-16 | Masimo Laboratories, Inc. | Active pulse blood constituent monitoring |
US6151516A (en) | 1995-06-07 | 2000-11-21 | Masimo Laboratories | Active pulse blood constituent monitoring |
US7496391B2 (en) | 1995-06-07 | 2009-02-24 | Masimo Corporation | Manual and automatic probe calibration |
USRE42753E1 (en) | 1995-06-07 | 2011-09-27 | Masimo Laboratories, Inc. | Active pulse blood constituent monitoring |
US5760910A (en) | 1995-06-07 | 1998-06-02 | Masimo Corporation | Optical filter for spectroscopic measurement and method of producing the optical filter |
US6678543B2 (en) | 1995-06-07 | 2004-01-13 | Masimo Corporation | Optical probe and positioning wrap |
US5758644A (en) | 1995-06-07 | 1998-06-02 | Masimo Corporation | Manual and automatic probe calibration |
US6110522A (en) | 1995-06-07 | 2000-08-29 | Masimo Laboratories | Blood glucose monitoring system |
US5750994A (en) | 1995-07-31 | 1998-05-12 | Instrumentation Metrics, Inc. | Positive correlation filter systems and methods of use thereof |
US6010937A (en) | 1995-09-05 | 2000-01-04 | Spire Corporation | Reduction of dislocations in a heteroepitaxial semiconductor structure |
USD393830S (en) | 1995-10-16 | 1998-04-28 | Masimo Corporation | Patient cable connector |
US6280213B1 (en) | 1995-10-16 | 2001-08-28 | Masimo Corporation | Patient cable connector |
US5934925A (en) | 1995-10-16 | 1999-08-10 | Masimo Corporation | Patient cable connector |
US5645440A (en) | 1995-10-16 | 1997-07-08 | Masimo Corporation | Patient cable connector |
US5904654A (en) | 1995-10-20 | 1999-05-18 | Vital Insite, Inc. | Exciter-detector unit for measuring physiological parameters |
US5726440A (en) | 1995-11-06 | 1998-03-10 | Spire Corporation | Wavelength selective photodetector |
US5671914A (en) | 1995-11-06 | 1997-09-30 | Spire Corporation | Multi-band spectroscopic photodetector array |
US6232609B1 (en) | 1995-12-01 | 2001-05-15 | Cedars-Sinai Medical Center | Glucose monitoring apparatus and method using laser-induced emission spectroscopy |
US5810724A (en) | 1995-12-01 | 1998-09-22 | Nellcor Puritan Bennett Incorporated | Reusable sensor accessory containing a conformable spring activated rubber sleeved clip |
US5747806A (en) | 1996-02-02 | 1998-05-05 | Instrumentation Metrics, Inc | Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy |
US6040578A (en) | 1996-02-02 | 2000-03-21 | Instrumentation Metrics, Inc. | Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy |
US6253097B1 (en) | 1996-03-06 | 2001-06-26 | Datex-Ohmeda, Inc. | Noninvasive medical monitoring instrument using surface emitting laser devices |
US5890929A (en) | 1996-06-19 | 1999-04-06 | Masimo Corporation | Shielded medical connector |
US6632181B2 (en) | 1996-06-26 | 2003-10-14 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US6939305B2 (en) | 1996-06-26 | 2005-09-06 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US7951086B2 (en) | 1996-06-26 | 2011-05-31 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US7041060B2 (en) | 1996-06-26 | 2006-05-09 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US6027452A (en) | 1996-06-26 | 2000-02-22 | Vital Insite, Inc. | Rapid non-invasive blood pressure measuring device |
US7618375B2 (en) | 1996-06-26 | 2009-11-17 | Masimo Corporation | Rapid non-invasive blood pressure measuring device |
US6066204A (en) | 1997-01-08 | 2000-05-23 | Bandwidth Semiconductor, Llc | High pressure MOCVD reactor system |
US8718737B2 (en) | 1997-04-14 | 2014-05-06 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US6067462A (en) | 1997-04-14 | 2000-05-23 | Masimo Corporation | Signal processing apparatus and method |
US5919134A (en) | 1997-04-14 | 1999-07-06 | Masimo Corp. | Method and apparatus for demodulating signals in a pulse oximetry system |
US8150487B2 (en) | 1997-04-14 | 2012-04-03 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US8180420B2 (en) | 1997-04-14 | 2012-05-15 | Masimo Corporation | Signal processing apparatus and method |
US8185180B2 (en) | 1997-04-14 | 2012-05-22 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US9289167B2 (en) | 1997-04-14 | 2016-03-22 | Masimo Corporation | Signal processing apparatus and method |
US8190227B2 (en) | 1997-04-14 | 2012-05-29 | Masimo Corporation | Signal processing apparatus and method |
US9351673B2 (en) | 1997-04-14 | 2016-05-31 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US7471971B2 (en) | 1997-04-14 | 2008-12-30 | Masimo Corporation | Signal processing apparatus and method |
US6002952A (en) | 1997-04-14 | 1999-12-14 | Masimo Corporation | Signal processing apparatus and method |
US6699194B1 (en) | 1997-04-14 | 2004-03-02 | Masimo Corporation | Signal processing apparatus and method |
US7221971B2 (en) | 1997-04-14 | 2007-05-22 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US7489958B2 (en) | 1997-04-14 | 2009-02-10 | Masimo Corporation | Signal processing apparatus and method |
US7499741B2 (en) | 1997-04-14 | 2009-03-03 | Masimo Corporation | Signal processing apparatus and method |
US6643530B2 (en) | 1997-04-14 | 2003-11-04 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US20160270735A1 (en) | 1997-04-14 | 2016-09-22 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US8888708B2 (en) | 1997-04-14 | 2014-11-18 | Masimo Corporation | Signal processing apparatus and method |
US6229856B1 (en) | 1997-04-14 | 2001-05-08 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US20170014083A1 (en) | 1997-04-14 | 2017-01-19 | Masimo Corporation | Signal processing apparatus and method |
US7003339B2 (en) | 1997-04-14 | 2006-02-21 | Masimo Corporation | Method and apparatus for demodulating signals in a pulse oximetry system |
US6124597A (en) | 1997-07-07 | 2000-09-26 | Cedars-Sinai Medical Center | Method and devices for laser induced fluorescence attenuation spectroscopy |
USRE39672E1 (en) | 1997-07-07 | 2007-06-05 | Cedars-Sinai Medical Center | Method and devices for laser induced fluorescence attenuation spectroscopy |
US6697657B1 (en) | 1997-07-07 | 2004-02-24 | Cedars-Sinai Medical Center | Method and devices for laser induced fluorescence attenuation spectroscopy (LIFAS) |
US6115621A (en) | 1997-07-30 | 2000-09-05 | Nellcor Puritan Bennett Incorporated | Oximetry sensor with offset emitters and detector |
US6115673A (en) | 1997-08-14 | 2000-09-05 | Instrumentation Metrics, Inc. | Method and apparatus for generating basis sets for use in spectroscopic analysis |
US6255708B1 (en) | 1997-10-10 | 2001-07-03 | Rengarajan Sudharsanan | Semiconductor P-I-N detector |
US5987343A (en) | 1997-11-07 | 1999-11-16 | Datascope Investment Corp. | Method for storing pulse oximetry sensor characteristics |
US6184521B1 (en) | 1998-01-06 | 2001-02-06 | Masimo Corporation | Photodiode detector with integrated noise shielding |
US6349228B1 (en) | 1998-02-11 | 2002-02-19 | Masimo Corporation | Pulse oximetry sensor adapter |
US5995855A (en) | 1998-02-11 | 1999-11-30 | Masimo Corporation | Pulse oximetry sensor adapter |
US6993371B2 (en) | 1998-02-11 | 2006-01-31 | Masimo Corporation | Pulse oximetry sensor adaptor |
US6597933B2 (en) | 1998-02-11 | 2003-07-22 | Masimo Corporation | Pulse oximetry sensor adapter |
US7844313B2 (en) | 1998-02-11 | 2010-11-30 | Masimo Corporation | Pulse oximetry sensor adapter |
US6241683B1 (en) | 1998-02-20 | 2001-06-05 | INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) | Phonospirometry for non-invasive monitoring of respiration |
US6830711B2 (en) | 1998-03-10 | 2004-12-14 | Masimo Corporation | Mold tool for an optoelectronic element |
US6525386B1 (en) | 1998-03-10 | 2003-02-25 | Masimo Corporation | Non-protruding optoelectronic lens |
US7332784B2 (en) | 1998-03-10 | 2008-02-19 | Masimo Corporation | Method of providing an optoelectronic element with a non-protruding lens |
US7067893B2 (en) | 1998-03-10 | 2006-06-27 | Masimo Corporation | Optoelectronic element with a non-protruding lens |
US5997343A (en) | 1998-03-19 | 1999-12-07 | Masimo Corporation | Patient cable sensor switch |
US6165005A (en) | 1998-03-19 | 2000-12-26 | Masimo Corporation | Patient cable sensor switch |
US6505059B1 (en) | 1998-04-06 | 2003-01-07 | The General Hospital Corporation | Non-invasive tissue glucose level monitoring |
US6728560B2 (en) | 1998-04-06 | 2004-04-27 | The General Hospital Corporation | Non-invasive tissue glucose level monitoring |
US7899518B2 (en) | 1998-04-06 | 2011-03-01 | Masimo Laboratories, Inc. | Non-invasive tissue glucose level monitoring |
US8721541B2 (en) | 1998-06-03 | 2014-05-13 | Masimo Corporation | Physiological monitor |
US6714804B2 (en) | 1998-06-03 | 2004-03-30 | Masimo Corporation | Stereo pulse oximeter |
US7761128B2 (en) | 1998-06-03 | 2010-07-20 | Masimo Corporation | Physiological monitor |
US6334065B1 (en) | 1998-06-03 | 2001-12-25 | Masimo Corporation | Stereo pulse oximeter |
US8255028B2 (en) | 1998-06-03 | 2012-08-28 | Masimo Corporation, Inc. | Physiological monitor |
US9492110B2 (en) | 1998-06-03 | 2016-11-15 | Masimo Corporation | Physiological monitor |
US8364223B2 (en) | 1998-06-03 | 2013-01-29 | Masimo Corporation | Physiological monitor |
US6898452B2 (en) | 1998-06-03 | 2005-05-24 | Masimo Corporation | Stereo pulse oximeter |
US7899507B2 (en) | 1998-06-03 | 2011-03-01 | Masimo Corporation | Physiological monitor |
US7891355B2 (en) | 1998-06-03 | 2011-02-22 | Masimo Corporation | Physiological monitor |
US7894868B2 (en) | 1998-06-03 | 2011-02-22 | Masimo Corporation | Physiological monitor |
US20170188919A1 (en) | 1998-06-03 | 2017-07-06 | Masimo Corporation | Physiological monitor |
US6128521A (en) | 1998-07-10 | 2000-10-03 | Physiometrix, Inc. | Self adjusting headgear appliance using reservoir electrodes |
US6285896B1 (en) | 1998-07-13 | 2001-09-04 | Masimo Corporation | Fetal pulse oximetry sensor |
US6129675A (en) | 1998-09-11 | 2000-10-10 | Jay; Gregory D. | Device and method for measuring pulsus paradoxus |
US6325761B1 (en) | 1998-09-11 | 2001-12-04 | Gregory D. Jay | Device and method for measuring pulsus paradoxus |
US8706179B2 (en) | 1998-10-15 | 2014-04-22 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatii |
US6721585B1 (en) | 1998-10-15 | 2004-04-13 | Sensidyne, Inc. | Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices |
USRE44823E1 (en) | 1998-10-15 | 2014-04-01 | Masimo Corporation | Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices |
US6519487B1 (en) | 1998-10-15 | 2003-02-11 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US6684091B2 (en) | 1998-10-15 | 2004-01-27 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage method |
USRE41317E1 (en) | 1998-10-15 | 2010-05-04 | Masimo Corporation | Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices |
USRE41912E1 (en) | 1998-10-15 | 2010-11-02 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatus |
US6343224B1 (en) | 1998-10-15 | 2002-01-29 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US6735459B2 (en) | 1998-10-15 | 2004-05-11 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
USRE43860E1 (en) | 1998-10-15 | 2012-12-11 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatus |
USRE43169E1 (en) | 1998-10-15 | 2012-02-07 | Masimo Corporation | Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices |
US6144868A (en) | 1998-10-15 | 2000-11-07 | Sensidyne, Inc. | Reusable pulse oximeter probe and disposable bandage apparatus |
US6816741B2 (en) | 1998-12-30 | 2004-11-09 | Masimo Corporation | Plethysmograph pulse recognition processor |
US6463311B1 (en) | 1998-12-30 | 2002-10-08 | Masimo Corporation | Plethysmograph pulse recognition processor |
US7044918B2 (en) | 1998-12-30 | 2006-05-16 | Masimo Corporation | Plethysmograph pulse recognition processor |
US9675286B2 (en) | 1998-12-30 | 2017-06-13 | Masimo Corporation | Plethysmograph pulse recognition processor |
US7988637B2 (en) | 1998-12-30 | 2011-08-02 | Masimo Corporation | Plethysmograph pulse recognition processor |
US7024233B2 (en) | 1999-01-07 | 2006-04-04 | Masimo Corporation | Pulse oximetry data confidence indicator |
US9636055B2 (en) | 1999-01-07 | 2017-05-02 | Masimo Corporation | Pulse and confidence indicator displayed proximate plethysmograph |
US8046040B2 (en) | 1999-01-07 | 2011-10-25 | Masimo Corporation | Pulse oximetry data confidence indicator |
US6684090B2 (en) | 1999-01-07 | 2004-01-27 | Masimo Corporation | Pulse oximetry data confidence indicator |
US6996427B2 (en) | 1999-01-07 | 2006-02-07 | Masimo Corporation | Pulse oximetry data confidence indicator |
US6606511B1 (en) | 1999-01-07 | 2003-08-12 | Masimo Corporation | Pulse oximetry pulse indicator |
US20140012100A1 (en) | 1999-01-25 | 2014-01-09 | Masimo Corporation | Dual-mode patient monitor |
US6770028B1 (en) | 1999-01-25 | 2004-08-03 | Masimo Corporation | Dual-mode pulse oximeter |
US7991446B2 (en) | 1999-01-25 | 2011-08-02 | Masimo Corporation | Systems and methods for acquiring calibration data usable in a pulse oximeter |
US7428432B2 (en) | 1999-01-25 | 2008-09-23 | Masimo Corporation | Systems and methods for acquiring calibration data usable in a pulse oximeter |
US7530949B2 (en) | 1999-01-25 | 2009-05-12 | Masimo Corporation | Dual-mode pulse oximeter |
US8532727B2 (en) | 1999-01-25 | 2013-09-10 | Masimo Corporation | Dual-mode pulse oximeter |
US9375185B2 (en) | 1999-01-25 | 2016-06-28 | Masimo Corporation | Systems and methods for acquiring calibration data usable in a pulse oximeter |
US20140323825A1 (en) | 1999-01-25 | 2014-10-30 | Masimo Corporation | Systems and methods for acquiring calibration data usable in a pulse oximeter |
US8405608B2 (en) | 1999-01-25 | 2013-03-26 | Masimo Corporation | System and method for altering a display mode |
US6584336B1 (en) | 1999-01-25 | 2003-06-24 | Masimo Corporation | Universal/upgrading pulse oximeter |
US6658276B2 (en) | 1999-01-25 | 2003-12-02 | Masimo Corporation | Pulse oximeter user interface |
US7471969B2 (en) | 1999-03-25 | 2008-12-30 | Masimo Corporation | Pulse oximeter probe-off detector |
US8532728B2 (en) | 1999-03-25 | 2013-09-10 | Masimo Corporation | Pulse oximeter probe-off detector |
US9730640B2 (en) | 1999-03-25 | 2017-08-15 | Masimo Corporation | Pulse oximeter probe-off detector |
US6360114B1 (en) | 1999-03-25 | 2002-03-19 | Masimo Corporation | Pulse oximeter probe-off detector |
US6654624B2 (en) | 1999-03-25 | 2003-11-25 | Masimo Corporation | Pulse oximeter probe-off detector |
US6721582B2 (en) | 1999-04-06 | 2004-04-13 | Argose, Inc. | Non-invasive tissue glucose level monitoring |
US8175672B2 (en) | 1999-04-12 | 2012-05-08 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatii |
US7245953B1 (en) | 1999-04-12 | 2007-07-17 | Masimo Corporation | Reusable pulse oximeter probe and disposable bandage apparatii |
US7048687B1 (en) | 1999-04-14 | 2006-05-23 | Ob Scientific, Inc. | Limited use medical probe |
US20060161054A1 (en) | 1999-04-14 | 2006-07-20 | Reuss James L | Limited use medical probe |
US6308089B1 (en) | 1999-04-14 | 2001-10-23 | O.B. Scientific, Inc. | Limited use medical probe |
US6771994B2 (en) | 1999-06-18 | 2004-08-03 | Masimo Corporation | Pulse oximeter probe-off detection system |
US6526300B1 (en) | 1999-06-18 | 2003-02-25 | Masimo Corporation | Pulse oximeter probe-off detection system |
US20030018243A1 (en) | 1999-07-07 | 2003-01-23 | Gerhardt Thomas J. | Selectively plated sensor |
US6301493B1 (en) | 1999-07-10 | 2001-10-09 | Physiometrix, Inc. | Reservoir electrodes for electroencephalograph headgear appliance |
US6321100B1 (en) | 1999-07-13 | 2001-11-20 | Sensidyne, Inc. | Reusable pulse oximeter probe with disposable liner |
USRE41333E1 (en) | 1999-07-22 | 2010-05-11 | Sensys Medical, Inc. | Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction |
US6280381B1 (en) | 1999-07-22 | 2001-08-28 | Instrumentation Metrics, Inc. | Intelligent system for noninvasive blood analyte prediction |
US6979812B2 (en) | 1999-08-26 | 2005-12-27 | Masimo Corporation | Systems and methods for indicating an amount of use of a sensor |
US6580086B1 (en) | 1999-08-26 | 2003-06-17 | Masimo Corporation | Shielded optical probe and method |
US7186966B2 (en) | 1999-08-26 | 2007-03-06 | Masimo Corporation | Amount of use tracking device and method for medical product |
US6388240B2 (en) | 1999-08-26 | 2002-05-14 | Masimo Corporation | Shielded optical probe and method having a longevity indication |
US6515273B2 (en) | 1999-08-26 | 2003-02-04 | Masimo Corporation | System for indicating the expiration of the useful operating life of a pulse oximetry sensor |
US8399822B2 (en) | 1999-08-26 | 2013-03-19 | Masimo Corporation | Systems and methods for indicating an amount of use of a sensor |
US6861639B2 (en) | 1999-08-26 | 2005-03-01 | Masimo Corporation | Systems and methods for indicating an amount of use of a sensor |
US7910875B2 (en) | 1999-08-26 | 2011-03-22 | Masimo Corporation | Systems and methods for indicating an amount of use of a sensor |
US6411373B1 (en) | 1999-10-08 | 2002-06-25 | Instrumentation Metrics, Inc. | Fiber optic illumination and detection patterns, shapes, and locations for use in spectroscopic analysis |
US6943348B1 (en) | 1999-10-19 | 2005-09-13 | Masimo Corporation | System for detecting injection holding material |
US6430437B1 (en) | 1999-10-27 | 2002-08-06 | Physiometrix, Inc. | Module for acquiring electroencephalograph signals from a patient |
US6317627B1 (en) | 1999-11-02 | 2001-11-13 | Physiometrix, Inc. | Anesthesia monitoring system based on electroencephalographic signals |
US6639668B1 (en) | 1999-11-03 | 2003-10-28 | Argose, Inc. | Asynchronous fluorescence scan |
US7820108B2 (en) | 1999-11-08 | 2010-10-26 | University Of Florida Research Foundation, Inc. | Marker detection method and apparatus to monitor drug compliance |
US6542764B1 (en) | 1999-12-01 | 2003-04-01 | Masimo Corporation | Pulse oximeter monitor for expressing the urgency of the patient's condition |
US7039449B2 (en) | 1999-12-09 | 2006-05-02 | Masimo Corporation | Resposable pulse oximetry sensor |
US6377829B1 (en) | 1999-12-09 | 2002-04-23 | Masimo Corporation | Resposable pulse oximetry sensor |
US9386953B2 (en) | 1999-12-09 | 2016-07-12 | Masimo Corporation | Method of sterilizing a reusable portion of a noninvasive optical probe |
US7272425B2 (en) | 1999-12-09 | 2007-09-18 | Masimo Corporation | Pulse oximetry sensor including stored sensor data |
US8000761B2 (en) | 1999-12-09 | 2011-08-16 | Masimo Corporation | Resposable pulse oximetry sensor |
US6725075B2 (en) | 1999-12-09 | 2004-04-20 | Masimo Corporation | Resposable pulse oximetry sensor |
US6671531B2 (en) | 1999-12-09 | 2003-12-30 | Masimo Corporation | Sensor wrap including foldable applicator |
US7734320B2 (en) | 1999-12-09 | 2010-06-08 | Masimo Corporation | Sensor isolation |
US6950687B2 (en) | 1999-12-09 | 2005-09-27 | Masimo Corporation | Isolation and communication element for a resposable pulse oximetry sensor |
US8281787B2 (en) | 1999-12-16 | 2012-10-09 | Compumedics Limited | Bio-mask with integral sensors |
US6152754A (en) | 1999-12-21 | 2000-11-28 | Masimo Corporation | Circuit board based cable connector |
US6587196B1 (en) | 2000-01-26 | 2003-07-01 | Sensys Medical, Inc. | Oscillating mechanism driven monochromator |
US20010039483A1 (en) | 2000-02-18 | 2001-11-08 | Derek Brand | Reduction of inter-subject variation via transfer standardization |
US7289835B2 (en) | 2000-02-18 | 2007-10-30 | Masimo Laboratories, Inc. | Multivariate analysis of green to ultraviolet spectra of cell and tissue samples |
US20010034477A1 (en) | 2000-02-18 | 2001-10-25 | James Mansfield | Multivariate analysis of green to ultraviolet spectra of cell and tissue samples |
US6597932B2 (en) | 2000-02-18 | 2003-07-22 | Argose, Inc. | Generation of spatially-averaged excitation-emission map in heterogeneous tissue |
US6587199B1 (en) | 2000-02-25 | 2003-07-01 | Sensys Medical, Inc. | Embedded data acquisition and control system for non-invasive glucose prediction instrument |
US6415167B1 (en) | 2000-05-02 | 2002-07-02 | Instrumentation Metrics, Inc. | Fiber optic probe placement guide |
US7606608B2 (en) | 2000-05-02 | 2009-10-20 | Sensys Medical, Inc. | Optical sampling interface system for in-vivo measurement of tissue |
US20020010401A1 (en) | 2000-05-18 | 2002-01-24 | Andrew Bushmakin | Pre- and post-processing of spectral data for calibration using mutivariate analysis techniques |
US6487429B2 (en) | 2000-05-30 | 2002-11-26 | Sensys Medical, Inc. | Use of targeted glycemic profiles in the calibration of a noninvasive blood glucose monitor |
US7395158B2 (en) | 2000-05-30 | 2008-07-01 | Sensys Medical, Inc. | Method of screening for disorders of glucose metabolism |
US9138192B2 (en) | 2000-06-05 | 2015-09-22 | Masimo Corporation | Variable indication estimator |
US8260577B2 (en) | 2000-06-05 | 2012-09-04 | Masimo Corporation | Variable indication estimator |
US20150351697A1 (en) | 2000-06-05 | 2015-12-10 | Masimo Corporation | Variable indication estimator |
US8489364B2 (en) | 2000-06-05 | 2013-07-16 | Masimo Corporation | Variable indication estimator |
US6999904B2 (en) | 2000-06-05 | 2006-02-14 | Masimo Corporation | Variable indication estimator |
US6430525B1 (en) | 2000-06-05 | 2002-08-06 | Masimo Corporation | Variable mode averager |
US7499835B2 (en) | 2000-06-05 | 2009-03-03 | Masimo Corporation | Variable indication estimator |
US7873497B2 (en) | 2000-06-05 | 2011-01-18 | Masimo Corporation | Variable indication estimator |
US6738652B2 (en) | 2000-06-15 | 2004-05-18 | Sensys Medical, Inc. | Classification and screening of test subjects according to optical thickness of skin |
US6470199B1 (en) | 2000-06-21 | 2002-10-22 | Masimo Corporation | Elastic sock for positioning an optical probe |
US6697656B1 (en) | 2000-06-27 | 2004-02-24 | Masimo Corporation | Pulse oximetry sensor compatible with multiple pulse oximetry systems |
US6535714B2 (en) | 2000-06-30 | 2003-03-18 | University Of Florida | Method, system, and apparatus for medical device training |
US6534012B1 (en) | 2000-08-02 | 2003-03-18 | Sensys Medical, Inc. | Apparatus and method for reproducibly modifying localized absorption and scattering coefficients at a tissue measurement site during optical sampling |
US7801581B2 (en) | 2000-08-18 | 2010-09-21 | Masimo Laboratories, Inc. | Optical spectroscopy pathlength measurement system |
US7149561B2 (en) | 2000-08-18 | 2006-12-12 | Masimo Corporation | Optical spectroscopy pathlength measurement system |
US6640116B2 (en) | 2000-08-18 | 2003-10-28 | Masimo Corporation | Optical spectroscopy pathlength measurement system |
US6368283B1 (en) | 2000-09-08 | 2002-04-09 | Institut De Recherches Cliniques De Montreal | Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient |
US6640117B2 (en) | 2000-09-26 | 2003-10-28 | Sensys Medical, Inc. | Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination |
US6816241B2 (en) | 2000-09-26 | 2004-11-09 | Sensys Medical, Inc. | LED light source-based instrument for non-invasive blood analyte determination |
US20020058864A1 (en) | 2000-11-13 | 2002-05-16 | Mansfield James R. | Reduction of spectral site to site variation |
US6760607B2 (en) | 2000-12-29 | 2004-07-06 | Masimo Corporation | Ribbon cable substrate pulse oximetry sensor |
US6990364B2 (en) | 2001-01-26 | 2006-01-24 | Sensys Medical, Inc. | Noninvasive measurement of glucose through the optical properties of tissue |
US20020133080A1 (en) | 2001-02-06 | 2002-09-19 | William Apruzzese | Layered calibration standard for tissue sampling |
US6985764B2 (en) | 2001-05-03 | 2006-01-10 | Masimo Corporation | Flex circuit shielded optical sensor |
US7340287B2 (en) | 2001-05-03 | 2008-03-04 | Masimo Corporation | Flex circuit shielded optical sensor |
US7377899B2 (en) | 2001-06-29 | 2008-05-27 | Masimo Corporation | Sine saturation transform |
US6850787B2 (en) | 2001-06-29 | 2005-02-01 | Masimo Laboratories, Inc. | Signal component processor |
US7904132B2 (en) | 2001-06-29 | 2011-03-08 | Masimo Corporation | Sine saturation transform |
US8892180B2 (en) | 2001-06-29 | 2014-11-18 | Masimo Corporation | Sine saturation transform |
US7373194B2 (en) | 2001-06-29 | 2008-05-13 | Masimo Corporation | Signal component processor |
US8498684B2 (en) | 2001-06-29 | 2013-07-30 | Masimo Corporation | Sine saturation transform |
US9814418B2 (en) | 2001-06-29 | 2017-11-14 | Masimo Corporation | Sine saturation transform |
US7467002B2 (en) | 2001-06-29 | 2008-12-16 | Masimo Corporation | Sine saturation transform |
US8457703B2 (en) | 2001-07-02 | 2013-06-04 | Masimo Corporation | Low power pulse oximeter |
US6697658B2 (en) | 2001-07-02 | 2004-02-24 | Masimo Corporation | Low power pulse oximeter |
US7295866B2 (en) | 2001-07-02 | 2007-11-13 | Masimo Corporation | Low power pulse oximeter |
US20130267804A1 (en) | 2001-07-02 | 2013-10-10 | Masimo Corporation | Low power pulse oximeter |
US20030013975A1 (en) | 2001-07-12 | 2003-01-16 | Kiani Massi E. | Method of selling a continuous mode blood pressure monitor |
US6595316B2 (en) | 2001-07-18 | 2003-07-22 | Andromed, Inc. | Tension-adjustable mechanism for stethoscope earpieces |
US6876931B2 (en) | 2001-08-03 | 2005-04-05 | Sensys Medical Inc. | Automatic process for sample selection during multivariate calibration |
US6788965B2 (en) | 2001-08-03 | 2004-09-07 | Sensys Medical, Inc. | Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes |
US6635559B2 (en) | 2001-09-06 | 2003-10-21 | Spire Corporation | Formation of insulating aluminum oxide in semiconductor substrates |
US20030144582A1 (en) | 2001-09-07 | 2003-07-31 | Carl Cohen | Portable non-invasive glucose monitor |
US20030212312A1 (en) | 2002-01-07 | 2003-11-13 | Coffin James P. | Low noise patient cable |
US6934570B2 (en) | 2002-01-08 | 2005-08-23 | Masimo Corporation | Physiological sensor combination |
US9364181B2 (en) | 2002-01-08 | 2016-06-14 | Masimo Corporation | Physiological sensor combination |
US8211035B2 (en) | 2002-01-22 | 2012-07-03 | University Of Florida Research Foundation, Inc. | System and method for monitoring health using exhaled breath |
US6822564B2 (en) | 2002-01-24 | 2004-11-23 | Masimo Corporation | Parallel measurement alarm processor |
US7355512B1 (en) | 2002-01-24 | 2008-04-08 | Masimo Corporation | Parallel alarm processor |
US7880606B2 (en) | 2002-01-24 | 2011-02-01 | Masimo Corporation | Physiological trend monitor |
US7030749B2 (en) | 2002-01-24 | 2006-04-18 | Masimo Corporation | Parallel measurement alarm processor |
US9636056B2 (en) | 2002-01-24 | 2017-05-02 | Masimo Corporation | Physiological trend monitor |
US8228181B2 (en) | 2002-01-24 | 2012-07-24 | Masimo Corporation | Physiological trend monitor |
US7190261B2 (en) | 2002-01-24 | 2007-03-13 | Masimo Corporation | Arrhythmia alarm processor |
US9131883B2 (en) | 2002-01-24 | 2015-09-15 | Masimo Corporation | Physiological trend monitor |
US8570167B2 (en) | 2002-01-24 | 2013-10-29 | Masimo Corporation | Physiological trend monitor |
US7015451B2 (en) | 2002-01-25 | 2006-03-21 | Masimo Corporation | Power supply rail controller |
US20030156288A1 (en) | 2002-02-20 | 2003-08-21 | Barnum P. T. | Sensor band for aligning an emitter and a detector |
US20140171763A1 (en) | 2002-02-22 | 2014-06-19 | Cercacor Laboratories, Inc. | Pulse and active pulse spectraphotometry |
US8606342B2 (en) | 2002-02-22 | 2013-12-10 | Cercacor Laboratories, Inc. | Pulse and active pulse spectraphotometry |
US6961598B2 (en) | 2002-02-22 | 2005-11-01 | Masimo Corporation | Pulse and active pulse spectraphotometry |
US7509494B2 (en) | 2002-03-01 | 2009-03-24 | Masimo Corporation | Interface cable |
US7133710B2 (en) | 2002-03-08 | 2006-11-07 | Sensys Medical, Inc. | Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy |
US7697966B2 (en) | 2002-03-08 | 2010-04-13 | Sensys Medical, Inc. | Noninvasive targeting system method and apparatus |
US6998247B2 (en) | 2002-03-08 | 2006-02-14 | Sensys Medical, Inc. | Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers |
US8718738B2 (en) | 2002-03-08 | 2014-05-06 | Glt Acquisition Corp. | Method and apparatus for coupling a sample probe with a sample site |
US20140316228A1 (en) | 2002-03-08 | 2014-10-23 | Glt Acquisition Corp. | Method and apparatus for coupling a sample probe with a sample site |
US8504128B2 (en) | 2002-03-08 | 2013-08-06 | Glt Acquisition Corp. | Method and apparatus for coupling a channeled sample probe to tissue |
US20170224231A1 (en) | 2002-03-25 | 2017-08-10 | Masimo Corporation | Arm mountable portable patient monitor |
US8548548B2 (en) | 2002-03-25 | 2013-10-01 | Masimo Corporation | Physiological measurement communications adapter |
US7844314B2 (en) | 2002-03-25 | 2010-11-30 | Masimo Corporation | Physiological measurement communications adapter |
US7844315B2 (en) | 2002-03-25 | 2010-11-30 | Masimo Corporation | Physiological measurement communications adapter |
US9113832B2 (en) | 2002-03-25 | 2015-08-25 | Masimo Corporation | Wrist-mounted physiological measurement device |
US9113831B2 (en) | 2002-03-25 | 2015-08-25 | Masimo Corporation | Physiological measurement communications adapter |
US9788735B2 (en) | 2002-03-25 | 2017-10-17 | Masimo Corporation | Body worn mobile medical patient monitor |
US6850788B2 (en) | 2002-03-25 | 2005-02-01 | Masimo Corporation | Physiological measurement communications adapter |
US20160029932A1 (en) | 2002-03-25 | 2016-02-04 | Masimo Corporation | Physiological measurement communications adapter |
US20170224262A1 (en) | 2002-03-25 | 2017-08-10 | Masimo Corporation | Arm mountable portable patient monitor |
US9795300B2 (en) | 2002-03-25 | 2017-10-24 | Masimo Corporation | Wearable portable patient monitor |
US9198586B2 (en) | 2002-06-20 | 2015-12-01 | University Of Florida Research Foundation, Inc. | Methods of monitoring oxygenation by positive end expiratory pressure using photoplethysmography |
US9668661B2 (en) | 2002-06-20 | 2017-06-06 | University Of Florida Research Foundation, Inc. | Devices, systems and methods for plethysmographic monitoring at the nose |
US8755857B2 (en) | 2002-06-20 | 2014-06-17 | University Of Florida Research Foundation, Inc. | Optimized gas supply using photoplethysmography |
US7024235B2 (en) | 2002-06-20 | 2006-04-04 | University Of Florida Research Foundation, Inc. | Specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same |
US6909912B2 (en) | 2002-06-20 | 2005-06-21 | University Of Florida | Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes |
US7127278B2 (en) | 2002-06-20 | 2006-10-24 | University Of Florida Research Foundation, Inc. | Specially configured lip/cheek pulse oximeter/photoplethysmography probes, selectively with sampler for capnography, and covering sleeves for same |
US20040230108A1 (en) | 2002-06-20 | 2004-11-18 | Melker Richard J. | Novel specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same |
US20120078069A1 (en) | 2002-06-20 | 2012-03-29 | Melker Richard J | Blood Flow Monitoring |
US6661161B1 (en) | 2002-06-27 | 2003-12-09 | Andromed Inc. | Piezoelectric biological sound monitor with printed circuit board |
US7096054B2 (en) | 2002-08-01 | 2006-08-22 | Masimo Corporation | Low noise optical housing |
US7341559B2 (en) | 2002-09-14 | 2008-03-11 | Masimo Corporation | Pulse oximetry ear sensor |
US7142901B2 (en) | 2002-09-25 | 2006-11-28 | Masimo Corporation | Parameter compensated physiological monitor |
US7274955B2 (en) | 2002-09-25 | 2007-09-25 | Masimo Corporation | Parameter compensated pulse oximeter |
US7096052B2 (en) | 2002-10-04 | 2006-08-22 | Masimo Corporation | Optical probe including predetermined emission wavelength based on patient type |
US8509867B2 (en) | 2002-11-12 | 2013-08-13 | Cercacor Laboratories, Inc. | Non-invasive measurement of analytes |
US20140120564A1 (en) | 2002-11-12 | 2014-05-01 | Cercacor Laboratories, Inc. | Non-invasive measurement of analytes |
US20040106163A1 (en) | 2002-11-12 | 2004-06-03 | Workman Jerome James | Non-invasive measurement of analytes |
US7027849B2 (en) | 2002-11-22 | 2006-04-11 | Masimo Laboratories, Inc. | Blood parameter measurement system |
US6956649B2 (en) | 2002-11-26 | 2005-10-18 | Sensys Medical, Inc. | Spectroscopic system and method using a ceramic optical reference |
US9622693B2 (en) | 2002-12-04 | 2017-04-18 | Masimo Corporation | Systems and methods for determining blood oxygen saturation values using complex number encoding |
US7440787B2 (en) | 2002-12-04 | 2008-10-21 | Masimo Laboratories, Inc. | Systems and methods for determining blood oxygen saturation values using complex number encoding |
US6970792B1 (en) | 2002-12-04 | 2005-11-29 | Masimo Laboratories, Inc. | Systems and methods for determining blood oxygen saturation values using complex number encoding |
US8948835B2 (en) | 2002-12-04 | 2015-02-03 | Cercacor Laboratories, Inc. | Systems and methods for determining blood oxygen saturation values using complex number encoding |
US20150101844A1 (en) | 2002-12-19 | 2015-04-16 | Masimo Corporation | Low noise oximetry cable including conductive cords |
US8921699B2 (en) | 2002-12-19 | 2014-12-30 | Masimo Corporation | Low noise oximetry cable including conductive cords |
US7225006B2 (en) | 2003-01-23 | 2007-05-29 | Masimo Corporation | Attachment and optical probe |
US8244325B2 (en) | 2003-01-24 | 2012-08-14 | Cercacor Laboratories, Inc. | Noninvasive oximetry optical sensor including disposable and reusable elements |
US7225007B2 (en) | 2003-01-24 | 2007-05-29 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US6920345B2 (en) | 2003-01-24 | 2005-07-19 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US8781549B2 (en) | 2003-01-24 | 2014-07-15 | Cercacor Laboratories, Inc. | Noninvasive oximetry optical sensor including disposable and reusable elements |
US9693719B2 (en) | 2003-01-24 | 2017-07-04 | Masimo Corporation | Noninvasive oximetry optical sensor including disposable and reusable elements |
US7620674B2 (en) | 2003-03-07 | 2009-11-17 | Sensys Medical, Inc. | Method and apparatus for enhanced estimation of an analyte property through multiple region transformation |
US7640140B2 (en) | 2003-03-07 | 2009-12-29 | Sensys Medical, Inc. | Method of processing noninvasive spectra |
US7629039B2 (en) | 2003-04-25 | 2009-12-08 | Phasein Ab | Air gas analyzer window and a method for producing such a window |
US20050055276A1 (en) | 2003-06-26 | 2005-03-10 | Kiani Massi E. | Sensor incentive method |
US9084569B2 (en) | 2003-07-08 | 2015-07-21 | Cercacor Laboratories, Inc. | Method and apparatus for reducing coupling between signals in a measurement system |
US9801588B2 (en) | 2003-07-08 | 2017-10-31 | Cercacor Laboratories, Inc. | Method and apparatus for reducing coupling between signals in a measurement system |
US8676286B2 (en) | 2003-07-08 | 2014-03-18 | Cercacor Laboratories, Inc. | Method and apparatus for reducing coupling between signals in a measurement system |
US7865222B2 (en) | 2003-07-08 | 2011-01-04 | Masimo Laboratories | Method and apparatus for reducing coupling between signals in a measurement system |
US7003338B2 (en) | 2003-07-08 | 2006-02-21 | Masimo Corporation | Method and apparatus for reducing coupling between signals |
US7356365B2 (en) | 2003-07-09 | 2008-04-08 | Glucolight Corporation | Method and apparatus for tissue oximetry |
US7500950B2 (en) | 2003-07-25 | 2009-03-10 | Masimo Corporation | Multipurpose sensor port |
US8920317B2 (en) | 2003-07-25 | 2014-12-30 | Masimo Corporation | Multipurpose sensor port |
US20150116076A1 (en) | 2003-07-25 | 2015-04-30 | Masimo Corporation | Multipurpose sensor port |
US7254431B2 (en) | 2003-08-28 | 2007-08-07 | Masimo Corporation | Physiological parameter tracking system |
US9788768B2 (en) | 2003-08-28 | 2017-10-17 | Masimo Corporation | Physiological parameter tracking system |
US8385995B2 (en) | 2003-08-28 | 2013-02-26 | Masimo Corporation | Physiological parameter tracking system |
US7254434B2 (en) | 2003-10-14 | 2007-08-07 | Masimo Corporation | Variable pressure reusable sensor |
US9072474B2 (en) | 2003-11-05 | 2015-07-07 | Masimo Corporation | Pulse oximeter access apparatus and method |
US9743887B2 (en) | 2003-11-05 | 2017-08-29 | Masimo Corporation | Pulse oximeter access apparatus and method |
US7483729B2 (en) | 2003-11-05 | 2009-01-27 | Masimo Corporation | Pulse oximeter access apparatus and method |
US7373193B2 (en) | 2003-11-07 | 2008-05-13 | Masimo Corporation | Pulse oximetry data capture system |
US8008088B2 (en) | 2003-12-24 | 2011-08-30 | Masimo Laboratories, Inc. | SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors |
US20140127137A1 (en) | 2003-12-24 | 2014-05-08 | Cercacor Laboratories, Inc | Smmr (small molecule metabolite reporters) for use as in vivo glucose biosensors |
US8466286B2 (en) | 2003-12-24 | 2013-06-18 | Cercacor Laboratories, Inc. | SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors |
US8029765B2 (en) | 2003-12-24 | 2011-10-04 | Masimo Laboratories, Inc. | SMMR (small molecule metabolite reporters) for use as in vivo glucose biosensors |
WO2005065540A1 (en) | 2003-12-30 | 2005-07-21 | University Of Florida Research Foundation, Inc. | Novel specially configured nasal pulse oximeter |
US7280858B2 (en) | 2004-01-05 | 2007-10-09 | Masimo Corporation | Pulse oximetry sensor |
US7510849B2 (en) | 2004-01-29 | 2009-03-31 | Glucolight Corporation | OCT based method for diagnosis and therapy |
US7371981B2 (en) | 2004-02-20 | 2008-05-13 | Masimo Corporation | Connector switch |
US7438683B2 (en) | 2004-03-04 | 2008-10-21 | Masimo Corporation | Application identification sensor |
US8337403B2 (en) | 2004-03-04 | 2012-12-25 | Masimo Corporation | Patient monitor having context-based sensitivity adjustments |
US9161713B2 (en) | 2004-03-04 | 2015-10-20 | Masimo Corporation | Multi-mode patient monitor configured to self-configure for a selected or determined mode of operation |
US20140330092A1 (en) | 2004-03-08 | 2014-11-06 | Masimo Corporation | Physiological parameter system |
US7415297B2 (en) | 2004-03-08 | 2008-08-19 | Masimo Corporation | Physiological parameter system |
US8721542B2 (en) | 2004-03-08 | 2014-05-13 | Masimo Corporation | Physiological parameter system |
US20050234317A1 (en) | 2004-03-19 | 2005-10-20 | Kiani Massi E | Low power and personal pulse oximetry systems |
US7292883B2 (en) | 2004-03-31 | 2007-11-06 | Masimo Corporation | Physiological assessment system |
US20140180154A1 (en) | 2004-04-08 | 2014-06-26 | Masimo Corporation | Non-invasive monitoring of respiratory rate, heart rate and apnea |
US8641631B2 (en) | 2004-04-08 | 2014-02-04 | Masimo Corporation | Non-invasive monitoring of respiratory rate, heart rate and apnea |
US7909772B2 (en) | 2004-04-16 | 2011-03-22 | Masimo Corporation | Non-invasive measurement of second heart sound components |
US8868147B2 (en) | 2004-04-28 | 2014-10-21 | Glt Acquisition Corp. | Method and apparatus for controlling positioning of a noninvasive analyzer sample probe |
US7519406B2 (en) | 2004-04-28 | 2009-04-14 | Sensys Medical, Inc. | Noninvasive analyzer sample probe interface method and apparatus |
US8423106B2 (en) | 2004-07-07 | 2013-04-16 | Cercacor Laboratories, Inc. | Multi-wavelength physiological monitor |
US9341565B2 (en) | 2004-07-07 | 2016-05-17 | Masimo Corporation | Multiple-wavelength physiological monitor |
US9339220B2 (en) | 2004-07-07 | 2016-05-17 | Masimo Corporation | Multi-wavelength physiological monitor |
US7343186B2 (en) | 2004-07-07 | 2008-03-11 | Masimo Laboratories, Inc. | Multi-wavelength physiological monitor |
US7313425B2 (en) | 2004-07-08 | 2007-12-25 | Orsense Ltd. | Device and method for non-invasive optical measurements |
US9480422B2 (en) | 2004-07-09 | 2016-11-01 | Masimo Corporation | Cyanotic infant sensor |
US8682407B2 (en) | 2004-07-09 | 2014-03-25 | Masimo Corporation | Cyanotic infant sensor |
US7937128B2 (en) | 2004-07-09 | 2011-05-03 | Masimo Corporation | Cyanotic infant sensor |
US8788003B2 (en) | 2004-08-11 | 2014-07-22 | Glt Acquisition Corp. | Monitoring blood constituent levels in biological tissue |
US8679028B2 (en) | 2004-08-11 | 2014-03-25 | University Of Florida Research Foundation, Inc. | Methods and devices for countering grativity induced loss of consciousness and novel pulse oximeter probes |
US8204566B2 (en) | 2004-08-11 | 2012-06-19 | Glt Acquisition Corp. | Method and apparatus for monitoring blood constituent levels in biological tissue |
US7822452B2 (en) | 2004-08-11 | 2010-10-26 | Glt Acquisition Corp. | Method for data reduction and calibration of an OCT-based blood glucose monitor |
US9668695B2 (en) | 2004-08-11 | 2017-06-06 | University Of Florida Research Foundation, Inc. | Pulse oximeter probes and methods for using the same |
US8548549B2 (en) | 2004-08-11 | 2013-10-01 | Glt Acquisition Corp. | Methods for noninvasively measuring analyte levels in a subject |
US8306596B2 (en) | 2004-08-11 | 2012-11-06 | Glt Acquisition Corp. | Method for data reduction and calibration of an OCT-based physiological monitor |
US8036727B2 (en) | 2004-08-11 | 2011-10-11 | Glt Acquisition Corp. | Methods for noninvasively measuring analyte levels in a subject |
US9078560B2 (en) | 2004-08-11 | 2015-07-14 | Glt Acquisition Corp. | Method for data reduction and calibration of an OCT-based physiological monitor |
US7254429B2 (en) | 2004-08-11 | 2007-08-07 | Glucolight Corporation | Method and apparatus for monitoring glucose levels in a biological tissue |
US9668679B2 (en) | 2004-08-11 | 2017-06-06 | Masimo Corporation | Method for data reduction and calibration of an OCT-based physiological monitor |
US9554737B2 (en) | 2004-08-11 | 2017-01-31 | Masimo Corporation | Noninvasively measuring analyte levels in a subject |
US20080092898A1 (en) | 2004-08-27 | 2008-04-24 | John Hopkins University | Disposable Sleep And Breathing Monitor |
US7976472B2 (en) | 2004-09-07 | 2011-07-12 | Masimo Corporation | Noninvasive hypovolemia monitor |
US20060073719A1 (en) | 2004-09-29 | 2006-04-06 | Kiani Massi E | Multiple key position plug |
USD526719S1 (en) | 2004-11-19 | 2006-08-15 | Sensys Medical, Inc. | Noninvasive glucose analyzer |
USD529616S1 (en) | 2004-11-19 | 2006-10-03 | Sensys Medical, Inc. | Noninvasive glucose analyzer |
US7514725B2 (en) | 2004-11-30 | 2009-04-07 | Spire Corporation | Nanophotovoltaic devices |
US8353842B2 (en) | 2005-02-18 | 2013-01-15 | Masimo Corporation | Portable patient monitor |
USD566282S1 (en) | 2005-02-18 | 2008-04-08 | Masimo Corporation | Stand for a portable patient monitor |
USD554263S1 (en) | 2005-02-18 | 2007-10-30 | Masimo Corporation | Portable patient monitor |
US20060189871A1 (en) | 2005-02-18 | 2006-08-24 | Ammar Al-Ali | Portable patient monitor |
US9167995B2 (en) | 2005-03-01 | 2015-10-27 | Cercacor Laboratories, Inc. | Physiological parameter confidence measure |
US8929964B2 (en) | 2005-03-01 | 2015-01-06 | Cercacor Laboratories, Inc. | Multiple wavelength sensor drivers |
US8581732B2 (en) | 2005-03-01 | 2013-11-12 | Carcacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US9750443B2 (en) | 2005-03-01 | 2017-09-05 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US9131882B2 (en) | 2005-03-01 | 2015-09-15 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US7377794B2 (en) | 2005-03-01 | 2008-05-27 | Masimo Corporation | Multiple wavelength sensor interconnect |
US7563110B2 (en) | 2005-03-01 | 2009-07-21 | Masimo Laboratories, Inc. | Multiple wavelength sensor interconnect |
US7647083B2 (en) | 2005-03-01 | 2010-01-12 | Masimo Laboratories, Inc. | Multiple wavelength sensor equalization |
US7764982B2 (en) | 2005-03-01 | 2010-07-27 | Masimo Laboratories, Inc. | Multiple wavelength sensor emitters |
US9241662B2 (en) | 2005-03-01 | 2016-01-26 | Cercacor Laboratories, Inc. | Configurable physiological measurement system |
US8190223B2 (en) | 2005-03-01 | 2012-05-29 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US8130105B2 (en) | 2005-03-01 | 2012-03-06 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US8718735B2 (en) | 2005-03-01 | 2014-05-06 | Cercacor Laboratories, Inc. | Physiological parameter confidence measure |
US9549696B2 (en) | 2005-03-01 | 2017-01-24 | Cercacor Laboratories, Inc. | Physiological parameter confidence measure |
US8849365B2 (en) | 2005-03-01 | 2014-09-30 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US8301217B2 (en) | 2005-03-01 | 2012-10-30 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US8560032B2 (en) | 2005-03-01 | 2013-10-15 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US7729733B2 (en) | 2005-03-01 | 2010-06-01 | Masimo Laboratories, Inc. | Configurable physiological measurement system |
US9351675B2 (en) | 2005-03-01 | 2016-05-31 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US7761127B2 (en) | 2005-03-01 | 2010-07-20 | Masimo Laboratories, Inc. | Multiple wavelength sensor substrate |
US8050728B2 (en) | 2005-03-01 | 2011-11-01 | Masimo Laboratories, Inc. | Multiple wavelength sensor drivers |
US20160166182A1 (en) | 2005-03-01 | 2016-06-16 | Cercacor Laboratories, Inc. | Configurable physiological measurement system |
US8626255B2 (en) | 2005-03-01 | 2014-01-07 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US8483787B2 (en) | 2005-03-01 | 2013-07-09 | Cercacor Laboratories, Inc. | Multiple wavelength sensor drivers |
US7957780B2 (en) | 2005-03-01 | 2011-06-07 | Masimo Laboratories, Inc. | Physiological parameter confidence measure |
US8385996B2 (en) | 2005-03-01 | 2013-02-26 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US7596398B2 (en) | 2005-03-01 | 2009-09-29 | Masimo Laboratories, Inc. | Multiple wavelength sensor attachment |
US8255027B2 (en) | 2005-03-01 | 2012-08-28 | Cercacor Laboratories, Inc. | Multiple wavelength sensor substrate |
US8634889B2 (en) | 2005-03-01 | 2014-01-21 | Cercacor Laboratories, Inc. | Configurable physiological measurement system |
US20160310052A1 (en) | 2005-03-01 | 2016-10-27 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US8912909B2 (en) | 2005-03-01 | 2014-12-16 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US8224411B2 (en) | 2005-03-01 | 2012-07-17 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US7937129B2 (en) | 2005-03-21 | 2011-05-03 | Masimo Corporation | Variable aperture sensor |
US8801620B2 (en) | 2005-04-25 | 2014-08-12 | University Of Florida Research Foundation, Inc. | Method and apparatus for diagnosing respiratory disorders and determining the degree of exacerbations |
US7785262B2 (en) | 2005-04-25 | 2010-08-31 | University Of Florida Research Foundation, Inc. | Method and apparatus for diagnosing respiratory disorders and determining the degree of exacerbations |
US9974479B2 (en) | 2005-04-25 | 2018-05-22 | University Of Florida Research Foundation, Inc. | Monitoring asthma and other respiratory disorders with calibrated photoplethysmography devices and methods of using the same |
US9370634B2 (en) | 2005-04-25 | 2016-06-21 | University Of Florida Research Foundation, Inc. | Monitoring positive end expiratory pressure with photoplethysmography |
US7593230B2 (en) | 2005-05-05 | 2009-09-22 | Sensys Medical, Inc. | Apparatus for absorbing and dissipating excess heat generated by a system |
US7698105B2 (en) | 2005-05-23 | 2010-04-13 | Sensys Medical, Inc. | Method and apparatus for improving performance of noninvasive analyte property estimation |
US20100270257A1 (en) | 2005-07-13 | 2010-10-28 | Vitality, Inc. | Medicine Bottle Cap With Electronic Embedded Curved Display |
US20070073116A1 (en) | 2005-08-17 | 2007-03-29 | Kiani Massi E | Patient identification using physiological sensor |
US20070078315A1 (en) | 2005-09-30 | 2007-04-05 | Carl Kling | Clip-style medical sensor and technique for using the same |
US8996085B2 (en) | 2005-10-14 | 2015-03-31 | Masimo Corporation | Robust alarm system |
US20150272514A1 (en) | 2005-10-14 | 2015-10-01 | Masimo Corporation | Robust alarm system |
US7962188B2 (en) | 2005-10-14 | 2011-06-14 | Masimo Corporation | Robust alarm system |
US7530942B1 (en) | 2005-10-18 | 2009-05-12 | Masimo Corporation | Remote sensing infant warmer |
US8548550B2 (en) | 2005-11-29 | 2013-10-01 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US8868150B2 (en) | 2005-11-29 | 2014-10-21 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US20150216459A1 (en) | 2005-11-29 | 2015-08-06 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US20170086723A1 (en) | 2005-11-29 | 2017-03-30 | Masimo Corporation | Optical sensor including disposable and reusable elements |
US8233955B2 (en) | 2005-11-29 | 2012-07-31 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US20070180140A1 (en) | 2005-12-03 | 2007-08-02 | Welch James P | Physiological alarm notification system |
US7990382B2 (en) | 2006-01-03 | 2011-08-02 | Masimo Corporation | Virtual display |
US8182443B1 (en) | 2006-01-17 | 2012-05-22 | Masimo Corporation | Drug administration controller |
US20160287786A1 (en) | 2006-01-17 | 2016-10-06 | Masimo Corporation | Drug administration controller |
US9333316B2 (en) | 2006-01-17 | 2016-05-10 | Masimo Corporation | Drug administration controller |
US20070244377A1 (en) | 2006-03-14 | 2007-10-18 | Cozad Jenny L | Pulse oximeter sleeve |
US20150126830A1 (en) | 2006-03-17 | 2015-05-07 | Glt Acquisition Corp. | Apparatus and method for creating a stable optical interface |
US8831700B2 (en) | 2006-03-17 | 2014-09-09 | Glt Acquisition Corp. | Apparatus and method for creating a stable optical interface |
US8219172B2 (en) | 2006-03-17 | 2012-07-10 | Glt Acquisition Corp. | System and method for creating a stable optical interface |
US8073518B2 (en) | 2006-05-02 | 2011-12-06 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US20140180038A1 (en) | 2006-05-15 | 2014-06-26 | Cercacor Laboratories, Inc. | Sepsis monitor |
US20150257689A1 (en) | 2006-05-15 | 2015-09-17 | Cercacor Laboratories, Inc. | Physiological monitor calibration system |
US8998809B2 (en) | 2006-05-15 | 2015-04-07 | Cercacor Laboratories, Inc. | Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices |
US9176141B2 (en) | 2006-05-15 | 2015-11-03 | Cercacor Laboratories, Inc. | Physiological monitor calibration system |
US8663107B2 (en) | 2006-05-15 | 2014-03-04 | Cercacor Laboratories, Inc. | Sepsis monitor |
US7941199B2 (en) | 2006-05-15 | 2011-05-10 | Masimo Laboratories, Inc. | Sepsis monitor |
US8028701B2 (en) | 2006-05-31 | 2011-10-04 | Masimo Corporation | Respiratory monitoring |
US9566019B2 (en) | 2006-05-31 | 2017-02-14 | Masimo Corporation | Respiratory monitoring |
US8667967B2 (en) | 2006-05-31 | 2014-03-11 | Masimo Corporation | Respiratory monitoring |
US20070282478A1 (en) | 2006-06-05 | 2007-12-06 | Ammar Al-Ali | Parameter upgrade system |
US10188348B2 (en) | 2006-06-05 | 2019-01-29 | Masimo Corporation | Parameter upgrade system |
USD592507S1 (en) | 2006-07-06 | 2009-05-19 | Vitality, Inc. | Top for medicine container |
US8641635B2 (en) | 2006-08-15 | 2014-02-04 | University Of Florida Research Foundation, Inc. | Methods and devices for central photoplethysmographic monitoring methods |
US7914460B2 (en) | 2006-08-15 | 2011-03-29 | University Of Florida Research Foundation, Inc. | Condensate glucose analyzer |
US20080064965A1 (en) | 2006-09-08 | 2008-03-13 | Jay Gregory D | Devices and methods for measuring pulsus paradoxus |
US7887502B2 (en) | 2006-09-15 | 2011-02-15 | University Of Florida Research Foundation, Inc. | Method for using photoplethysmography to optimize fluid removal during renal replacement therapy by hemodialysis or hemofiltration |
US9717836B2 (en) | 2006-09-15 | 2017-08-01 | University Of Florida Research Foundation, Inc. | Method for monitoring blood flow and volume using photoplethysmography |
US9155826B2 (en) | 2006-09-15 | 2015-10-13 | University Of Florida Research Foundation, Inc. | Method for using photoplethysmography to optimize fluid removal during renal replacement therapy by hemodialysis or hemofiltration |
US9687160B2 (en) | 2006-09-20 | 2017-06-27 | Masimo Corporation | Congenital heart disease monitor |
US8315683B2 (en) | 2006-09-20 | 2012-11-20 | Masimo Corporation | Duo connector patient cable |
US20130324808A1 (en) | 2006-09-20 | 2013-12-05 | Masimo Corporation | Duo connector patient cable |
US8457707B2 (en) | 2006-09-20 | 2013-06-04 | Masimo Corporation | Congenital heart disease monitor |
US9397448B2 (en) | 2006-09-20 | 2016-07-19 | Masimo Corporation | Shielded connector assembly |
US8840549B2 (en) | 2006-09-22 | 2014-09-23 | Masimo Corporation | Modular patient monitor |
US20140357966A1 (en) | 2006-09-22 | 2014-12-04 | Masimo Corporation | Modular patient monitor |
US9161696B2 (en) | 2006-09-22 | 2015-10-20 | Masimo Corporation | Modular patient monitor |
US20170202490A1 (en) | 2006-10-12 | 2017-07-20 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US9107626B2 (en) | 2006-10-12 | 2015-08-18 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US9861305B1 (en) | 2006-10-12 | 2018-01-09 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
US8922382B2 (en) | 2006-10-12 | 2014-12-30 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US20080094228A1 (en) | 2006-10-12 | 2008-04-24 | Welch James P | Patient monitor using radio frequency identification tags |
US7880626B2 (en) | 2006-10-12 | 2011-02-01 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US8255026B1 (en) | 2006-10-12 | 2012-08-28 | Masimo Corporation, Inc. | Patient monitor capable of monitoring the quality of attached probes and accessories |
US8265723B1 (en) | 2006-10-12 | 2012-09-11 | Cercacor Laboratories, Inc. | Oximeter probe off indicator defining probe off space |
US9192329B2 (en) | 2006-10-12 | 2015-11-24 | Masimo Corporation | Variable mode pulse indicator |
US20160296169A1 (en) | 2006-10-12 | 2016-10-13 | Masimo Corporation | Oximeter probe off indicator defining probe off space |
US9560998B2 (en) | 2006-10-12 | 2017-02-07 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US8280473B2 (en) | 2006-10-12 | 2012-10-02 | Masino Corporation, Inc. | Perfusion index smoother |
US8983564B2 (en) | 2006-10-12 | 2015-03-17 | Masimo Corporation | Perfusion index smoother |
US20120319816A1 (en) | 2006-10-12 | 2012-12-20 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
US20160143548A1 (en) | 2006-10-12 | 2016-05-26 | Masimo Corporation | Variable mode pulse indicator |
US9370326B2 (en) | 2006-10-12 | 2016-06-21 | Masimo Corporation | Oximeter probe off indicator defining probe off space |
US20150245794A1 (en) | 2006-10-12 | 2015-09-03 | Masimo Corporation | Perfusion index smoother |
US9138182B2 (en) | 2006-11-29 | 2015-09-22 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US8600467B2 (en) | 2006-11-29 | 2013-12-03 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US20160066823A1 (en) | 2006-11-29 | 2016-03-10 | Cercacor Laboratories, Inc. | Optical sensor including disposable and reusable elements |
US20130296713A1 (en) | 2006-12-09 | 2013-11-07 | Masimo Corporation | Plethysmograph variability processor |
US8414499B2 (en) | 2006-12-09 | 2013-04-09 | Masimo Corporation | Plethysmograph variability processor |
US7791155B2 (en) | 2006-12-22 | 2010-09-07 | Masimo Laboratories, Inc. | Detector shield |
US8852094B2 (en) | 2006-12-22 | 2014-10-07 | Masimo Corporation | Physiological parameter system |
US20150087936A1 (en) | 2006-12-22 | 2015-03-26 | Masimo Corporation | Physiological parameter system |
US20140163344A1 (en) | 2007-01-20 | 2014-06-12 | Masimo Corporation | Perfusion trend indicator |
US8652060B2 (en) | 2007-01-20 | 2014-02-18 | Masimo Corporation | Perfusion trend indicator |
US20090093687A1 (en) | 2007-03-08 | 2009-04-09 | Telfort Valery G | Systems and methods for determining a physiological condition using an acoustic monitor |
US20080221418A1 (en) | 2007-03-09 | 2008-09-11 | Masimo Corporation | Noninvasive multi-parameter patient monitor |
US8781544B2 (en) | 2007-03-27 | 2014-07-15 | Cercacor Laboratories, Inc. | Multiple wavelength optical sensor |
US7919713B2 (en) | 2007-04-16 | 2011-04-05 | Masimo Corporation | Low noise oximetry cable including conductive cords |
US20150196237A1 (en) | 2007-04-21 | 2015-07-16 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
US8374665B2 (en) | 2007-04-21 | 2013-02-12 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
US8965471B2 (en) | 2007-04-21 | 2015-02-24 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
US8525666B2 (en) | 2007-06-08 | 2013-09-03 | University Of Florida Research Foundation, Inc. | Handwashing compliance detection system |
US9211072B2 (en) | 2007-06-28 | 2015-12-15 | Masimo Corporation | Disposable active pulse sensor |
US8764671B2 (en) | 2007-06-28 | 2014-07-01 | Masimo Corporation | Disposable active pulse sensor |
US20090036759A1 (en) | 2007-08-01 | 2009-02-05 | Ault Timothy E | Collapsible noninvasive analyzer method and apparatus |
US8529459B2 (en) | 2007-08-08 | 2013-09-10 | Convergent Engineering, Inc. | Processing of photoplethysmography signals |
US8048040B2 (en) | 2007-09-13 | 2011-11-01 | Masimo Corporation | Fluid titration system |
US9820691B2 (en) | 2007-09-13 | 2017-11-21 | Masimo Corporation | Fluid titration system |
US8355766B2 (en) | 2007-10-12 | 2013-01-15 | Masimo Corporation | Ceramic emitter substrate |
US20130096936A1 (en) | 2007-10-12 | 2013-04-18 | Masimo Corporation | Systems and methods for storing, analyzing, and retrieving medical data |
US8529301B2 (en) | 2007-10-12 | 2013-09-10 | Masimo Corporation | Shielded connector assembly |
US9142117B2 (en) | 2007-10-12 | 2015-09-22 | Masimo Corporation | Systems and methods for storing, analyzing, retrieving and displaying streaming medical data |
US8274360B2 (en) | 2007-10-12 | 2012-09-25 | Masimo Corporation | Systems and methods for storing, analyzing, and retrieving medical data |
USD609193S1 (en) | 2007-10-12 | 2010-02-02 | Masimo Corporation | Connector assembly |
US8118620B2 (en) | 2007-10-12 | 2012-02-21 | Masimo Corporation | Connector assembly with reduced unshielded area |
US20090095926A1 (en) | 2007-10-12 | 2009-04-16 | Macneish Iii William Jack | Physiological parameter detector |
US8888539B2 (en) | 2007-10-12 | 2014-11-18 | Masimo Corporation | Shielded connector assembly |
USD587657S1 (en) | 2007-10-12 | 2009-03-03 | Masimo Corporation | Connector assembly |
US20090247984A1 (en) | 2007-10-24 | 2009-10-01 | Masimo Laboratories, Inc. | Use of microneedles for small molecule metabolite reporter delivery |
USD614305S1 (en) | 2008-02-29 | 2010-04-20 | Masimo Corporation | Connector assembly |
US9833180B2 (en) | 2008-03-04 | 2017-12-05 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
US8768423B2 (en) | 2008-03-04 | 2014-07-01 | Glt Acquisition Corp. | Multispot monitoring for use in optical coherence tomography |
US8571617B2 (en) | 2008-03-04 | 2013-10-29 | Glt Acquisition Corp. | Flowometry in optical coherence tomography for analyte level estimation |
US20160058347A1 (en) | 2008-03-04 | 2016-03-03 | Glt Acquisition Corp. | Flowometry in optical coherence tomography for analyte level estimation |
US9060721B2 (en) | 2008-03-04 | 2015-06-23 | Glt Acquisition Corp. | Flowometry in optical coherence tomography for analyte level estimation |
US20090275813A1 (en) | 2008-05-02 | 2009-11-05 | The Regents Of The Univeristy Of California | External ear-placed non-invasive physiological sensor |
US20090275844A1 (en) | 2008-05-02 | 2009-11-05 | Masimo Corporation | Monitor configuration system |
US10292664B2 (en) | 2008-05-02 | 2019-05-21 | Masimo Corporation | Monitor configuration system |
US20160331332A1 (en) | 2008-05-02 | 2016-11-17 | Masimo Corporation | Monitor configuration system |
US9107625B2 (en) | 2008-05-05 | 2015-08-18 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
US20160095543A1 (en) | 2008-05-05 | 2016-04-07 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
US8740808B2 (en) | 2008-06-06 | 2014-06-03 | Salter Labs | Adaptive temperature sensor for breath monitoring device |
US8577431B2 (en) | 2008-07-03 | 2013-11-05 | Cercacor Laboratories, Inc. | Noise shielding for a noninvasive device |
US9717425B2 (en) | 2008-07-03 | 2017-08-01 | Masimo Corporation | Noise shielding for a noninvaise device |
US8437825B2 (en) | 2008-07-03 | 2013-05-07 | Cercacor Laboratories, Inc. | Contoured protrusion for improving spectroscopic measurement of blood constituents |
US20160166183A1 (en) | 2008-07-03 | 2016-06-16 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US9591975B2 (en) | 2008-07-03 | 2017-03-14 | Masimo Corporation | Contoured protrusion for improving spectroscopic measurement of blood constituents |
US9277880B2 (en) | 2008-07-03 | 2016-03-08 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US20100004518A1 (en) | 2008-07-03 | 2010-01-07 | Masimo Laboratories, Inc. | Heat sink for noninvasive medical sensor |
USRE47249E1 (en) | 2008-07-29 | 2019-02-19 | Masimo Corporation | Alarm suspend system |
US9153121B2 (en) | 2008-07-29 | 2015-10-06 | Masimo Corporation | Alarm suspend system |
USRE47353E1 (en) | 2008-07-29 | 2019-04-16 | Masimo Corporation | Alarm suspend system |
USRE47244E1 (en) | 2008-07-29 | 2019-02-19 | Masimo Corporation | Alarm suspend system |
US8547209B2 (en) | 2008-07-29 | 2013-10-01 | Masimo Corporation | Alarm suspend system |
US8203438B2 (en) | 2008-07-29 | 2012-06-19 | Masimo Corporation | Alarm suspend system |
US8847740B2 (en) | 2008-07-29 | 2014-09-30 | Masimo Corporation | Alarm suspend system |
US8515509B2 (en) | 2008-08-04 | 2013-08-20 | Cercacor Laboratories, Inc. | Multi-stream emitter for noninvasive measurement of blood constituents |
US20140121482A1 (en) | 2008-08-04 | 2014-05-01 | Cercacor Laboratories, Inc. | Multi-stream sensor for noninvasive measurement of blood constituents |
US8630691B2 (en) | 2008-08-04 | 2014-01-14 | Cercacor Laboratories, Inc. | Multi-stream sensor front ends for noninvasive measurement of blood constituents |
US8909310B2 (en) | 2008-08-04 | 2014-12-09 | Cercacor Laboratories, Inc. | Multi-stream sensor front ends for noninvasive measurement of blood constituents |
US8203704B2 (en) | 2008-08-04 | 2012-06-19 | Cercacor Laboratories, Inc. | Multi-stream sensor for noninvasive measurement of blood constituents |
US8570503B2 (en) | 2008-08-04 | 2013-10-29 | Cercacor Laboratories, Inc. | Heat sink for noninvasive medical sensor |
US20100030040A1 (en) | 2008-08-04 | 2010-02-04 | Masimo Laboratories, Inc. | Multi-stream data collection system for noninvasive measurement of blood constituents |
USD606659S1 (en) | 2008-08-25 | 2009-12-22 | Masimo Laboratories, Inc. | Patient monitor |
USD621516S1 (en) | 2008-08-25 | 2010-08-10 | Masimo Laboratories, Inc. | Patient monitoring sensor |
US20110237969A1 (en) | 2008-09-15 | 2011-09-29 | Anders Eckerbom | Gas sampling line |
US20150094546A1 (en) | 2008-09-15 | 2015-04-02 | Masimo Corporation | Patient monitor including multi-parameter graphical display |
US9861298B2 (en) | 2008-09-15 | 2018-01-09 | Masimo Corporation | Gas sampling line |
US8911377B2 (en) | 2008-09-15 | 2014-12-16 | Masimo Corporation | Patient monitor including multi-parameter graphical display |
US20100099964A1 (en) | 2008-09-15 | 2010-04-22 | Masimo Corporation | Hemoglobin monitor |
US20100085537A1 (en) | 2008-10-06 | 2010-04-08 | The Catholic University Of America | Lenslet array for retinal oximetry |
US8310336B2 (en) | 2008-10-10 | 2012-11-13 | Masimo Corporation | Systems and methods for storing, analyzing, retrieving and displaying streaming medical data |
US9119595B2 (en) | 2008-10-13 | 2015-09-01 | Masimo Corporation | Reflection-detector sensor position indicator |
US8700112B2 (en) | 2008-10-13 | 2014-04-15 | Masimo Corporation | Secondary-emitter sensor position indicator |
US8761850B2 (en) | 2008-10-13 | 2014-06-24 | Masimo Corporation | Reflection-detector sensor position indicator |
US8346330B2 (en) | 2008-10-13 | 2013-01-01 | Masimo Corporation | Reflection-detector sensor position indicator |
US8401602B2 (en) | 2008-10-13 | 2013-03-19 | Masimo Corporation | Secondary-emitter sensor position indicator |
US8279063B2 (en) | 2008-11-12 | 2012-10-02 | Xhale, Inc. | Personnel location and monitoring system and method for enclosed facilities |
US20110227740A1 (en) | 2008-11-12 | 2011-09-22 | Xhale, Inc. | Personnel location and monitoring system and method for enclosed facilities |
US9795358B2 (en) | 2008-12-30 | 2017-10-24 | Masimo Corporation | Acoustic sensor assembly |
US9131917B2 (en) | 2008-12-30 | 2015-09-15 | Masimo Corporation | Acoustic sensor assembly |
US8771204B2 (en) | 2008-12-30 | 2014-07-08 | Masimo Corporation | Acoustic sensor assembly |
US9028429B2 (en) | 2008-12-30 | 2015-05-12 | Masimo Corporation | Acoustic sensor assembly |
US20170258403A1 (en) | 2009-02-16 | 2017-09-14 | Masimo Corporation | Ear sensor |
US20140213864A1 (en) | 2009-02-16 | 2014-07-31 | Masimo Corporation | Ear sensor |
US8588880B2 (en) | 2009-02-16 | 2013-11-19 | Masimo Corporation | Ear sensor |
US9259185B2 (en) | 2009-02-16 | 2016-02-16 | Masimo Corporation | Ear sensor |
US20140135588A1 (en) | 2009-03-04 | 2014-05-15 | Masimo Corporation | Medical monitoring system |
US20160283665A1 (en) | 2009-03-04 | 2016-09-29 | Masimo Corporation | Medical communication protocol translator |
US9218454B2 (en) | 2009-03-04 | 2015-12-22 | Masimo Corporation | Medical monitoring system |
US20110105854A1 (en) | 2009-03-04 | 2011-05-05 | Masimo Corporation | Medical monitoring system |
US8777634B2 (en) | 2009-03-11 | 2014-07-15 | Cercacor Laboratories, Inc. | Magnetic connector |
US20170187146A1 (en) | 2009-03-11 | 2017-06-29 | Masimo Corporation | Magnetic connector |
US8388353B2 (en) | 2009-03-11 | 2013-03-05 | Cercacor Laboratories, Inc. | Magnetic connector |
US9466919B2 (en) | 2009-03-11 | 2016-10-11 | Cercacor Laboratories, Inc. | Magnetic connector |
US20100234718A1 (en) | 2009-03-12 | 2010-09-16 | Anand Sampath | Open architecture medical communication system |
US8897847B2 (en) | 2009-03-23 | 2014-11-25 | Masimo Corporation | Digit gauge for noninvasive optical sensor |
US20150230755A1 (en) | 2009-05-19 | 2015-08-20 | Masimo Corporation | Disposable components for reusable physiological sensor |
US8989831B2 (en) | 2009-05-19 | 2015-03-24 | Masimo Corporation | Disposable components for reusable physiological sensor |
US8571619B2 (en) | 2009-05-20 | 2013-10-29 | Masimo Corporation | Hemoglobin display and patient treatment |
US9370325B2 (en) | 2009-05-20 | 2016-06-21 | Masimo Corporation | Hemoglobin display and patient treatment |
US9037207B2 (en) | 2009-05-20 | 2015-05-19 | Masimo Corporation | Hemoglobin display and patient treatment |
US9795739B2 (en) | 2009-05-20 | 2017-10-24 | Masimo Corporation | Hemoglobin display and patient treatment |
US20160174855A1 (en) | 2009-05-27 | 2016-06-23 | Analog Devices, Inc. | Multiuse optical sensor |
US8444570B2 (en) | 2009-06-09 | 2013-05-21 | Nellcor Puritan Bennett Ireland | Signal processing techniques for aiding the interpretation of respiration signals |
US20120272963A1 (en) | 2009-06-09 | 2012-11-01 | Koninklijke Philips Electronics N.V. | Interface appliance carrying one or more sensors detecting parameters related to a flow of fluid delivered through the appliance |
US8720249B2 (en) | 2009-06-12 | 2014-05-13 | Masimo Corporation | Non-invasive sensor calibration device |
US8418524B2 (en) | 2009-06-12 | 2013-04-16 | Masimo Corporation | Non-invasive sensor calibration device |
US8670811B2 (en) | 2009-06-30 | 2014-03-11 | Masimo Corporation | Pulse oximetry system for adjusting medical ventilation |
US20110208015A1 (en) | 2009-07-20 | 2011-08-25 | Masimo Corporation | Wireless patient monitoring system |
US20110040197A1 (en) | 2009-07-20 | 2011-02-17 | Masimo Corporation | Wireless patient monitoring system |
US8754776B2 (en) | 2009-07-24 | 2014-06-17 | Cercacor Laboratories, Inc. | Interference detector for patient monitor |
US8471713B2 (en) | 2009-07-24 | 2013-06-25 | Cercacor Laboratories, Inc. | Interference detector for patient monitor |
US20150012231A1 (en) | 2009-07-24 | 2015-01-08 | Cercacor Laboratories, Inc. | Interference detector for patient monitor |
US20160192869A1 (en) | 2009-07-29 | 2016-07-07 | Masimo Corporation | Non-invasive physiological sensor cover |
US20110028806A1 (en) | 2009-07-29 | 2011-02-03 | Sean Merritt | Reflectance calibration of fluorescence-based glucose measurements |
US20110028809A1 (en) | 2009-07-29 | 2011-02-03 | Masimo Corporation | Patient monitor ambient display device |
US20140330098A1 (en) | 2009-07-29 | 2014-11-06 | Cercacor Laboratories, Inc. | Reflectance calibration of fluorescence-based glucose measurements |
US9295421B2 (en) | 2009-07-29 | 2016-03-29 | Masimo Corporation | Non-invasive physiological sensor cover |
US8886271B2 (en) | 2009-07-29 | 2014-11-11 | Cercacor Laboratories, Inc. | Non-invasive physiological sensor cover |
US8473020B2 (en) | 2009-07-29 | 2013-06-25 | Cercacor Laboratories, Inc. | Non-invasive physiological sensor cover |
US20110087081A1 (en) | 2009-08-03 | 2011-04-14 | Kiani Massi Joe E | Personalized physiological monitor |
US9186102B2 (en) | 2009-09-03 | 2015-11-17 | Cercacor Laboratories, Inc. | Emitter driver for noninvasive patient monitor |
US9668680B2 (en) | 2009-09-03 | 2017-06-06 | Masimo Corporation | Emitter driver for noninvasive patient monitor |
US8688183B2 (en) | 2009-09-03 | 2014-04-01 | Ceracor Laboratories, Inc. | Emitter driver for noninvasive patient monitor |
US20110172498A1 (en) | 2009-09-14 | 2011-07-14 | Olsen Gregory A | Spot check monitor credit system |
US8428967B2 (en) | 2009-09-14 | 2013-04-23 | Cercacor Laboratories, Inc. | Spot check monitor credit system |
US20170196464A1 (en) | 2009-09-15 | 2017-07-13 | Masimo Corporation | Non-invasive intravascular volume index monitor |
US9517024B2 (en) | 2009-09-17 | 2016-12-13 | Masimo Corporation | Optical-based physiological monitoring system |
US9510779B2 (en) | 2009-09-17 | 2016-12-06 | Masimo Corporation | Analyte monitoring using one or more accelerometers |
US20110137297A1 (en) | 2009-09-17 | 2011-06-09 | Kiani Massi Joe E | Pharmacological management system |
US9833152B2 (en) | 2009-09-17 | 2017-12-05 | Masimo Corporation | Optical-based physiological monitoring system |
US20140051953A1 (en) | 2009-09-28 | 2014-02-20 | Cercacor Laboratories, Inc. | Adaptive calibration system for spectrophotometric measurements |
US8571618B1 (en) | 2009-09-28 | 2013-10-29 | Cercacor Laboratories, Inc. | Adaptive calibration system for spectrophotometric measurements |
US20110082711A1 (en) | 2009-10-06 | 2011-04-07 | Masimo Laboratories, Inc. | Personal digital assistant or organizer for monitoring glucose levels |
US8870792B2 (en) | 2009-10-15 | 2014-10-28 | Masimo Corporation | Physiological acoustic monitoring system |
US8702627B2 (en) | 2009-10-15 | 2014-04-22 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US8523781B2 (en) | 2009-10-15 | 2013-09-03 | Masimo Corporation | Bidirectional physiological information display |
US9668703B2 (en) | 2009-10-15 | 2017-06-06 | Masimo Corporation | Bidirectional physiological information display |
US9066680B1 (en) | 2009-10-15 | 2015-06-30 | Masimo Corporation | System for determining confidence in respiratory rate measurements |
US9106038B2 (en) | 2009-10-15 | 2015-08-11 | Masimo Corporation | Pulse oximetry system with low noise cable hub |
US8755535B2 (en) | 2009-10-15 | 2014-06-17 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US9370335B2 (en) | 2009-10-15 | 2016-06-21 | Masimo Corporation | Physiological acoustic monitoring system |
US8715206B2 (en) | 2009-10-15 | 2014-05-06 | Masimo Corporation | Acoustic patient sensor |
US10463340B2 (en) | 2009-10-15 | 2019-11-05 | Masimo Corporation | Acoustic respiratory monitoring systems and methods |
US20170079594A1 (en) | 2009-10-15 | 2017-03-23 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US8821415B2 (en) | 2009-10-15 | 2014-09-02 | Masimo Corporation | Physiological acoustic monitoring system |
US9386961B2 (en) | 2009-10-15 | 2016-07-12 | Masimo Corporation | Physiological acoustic monitoring system |
US20170007198A1 (en) | 2009-10-15 | 2017-01-12 | Masimo Corporation | Physiological acoustic monitoring system |
US20170007190A1 (en) | 2009-10-15 | 2017-01-12 | Masimo Corporation | Physiological acoustic monitoring system |
US8690799B2 (en) | 2009-10-15 | 2014-04-08 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US9538980B2 (en) | 2009-10-15 | 2017-01-10 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US20110125060A1 (en) | 2009-10-15 | 2011-05-26 | Telfort Valery G | Acoustic respiratory monitoring systems and methods |
US8790268B2 (en) | 2009-10-15 | 2014-07-29 | Masimo Corporation | Bidirectional physiological information display |
US20160051205A1 (en) | 2009-10-15 | 2016-02-25 | Masimo Corporation | System for determining confidence in respiratory rate measurements |
US8430817B1 (en) | 2009-10-15 | 2013-04-30 | Masimo Corporation | System for determining confidence in respiratory rate measurements |
US9724016B1 (en) | 2009-10-16 | 2017-08-08 | Masimo Corp. | Respiration processor |
US9848800B1 (en) | 2009-10-16 | 2017-12-26 | Masimo Corporation | Respiratory pause detector |
US20110118561A1 (en) | 2009-11-13 | 2011-05-19 | Masimo Corporation | Remote control for a medical monitoring device |
US9839381B1 (en) | 2009-11-24 | 2017-12-12 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US20150032029A1 (en) | 2009-12-04 | 2015-01-29 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US8801613B2 (en) | 2009-12-04 | 2014-08-12 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US20150351704A1 (en) | 2009-12-21 | 2015-12-10 | Masimo Corporation | Modular patient monitor |
US9153112B1 (en) | 2009-12-21 | 2015-10-06 | Masimo Corporation | Modular patient monitor |
US20110230733A1 (en) | 2010-01-19 | 2011-09-22 | Masimo Corporation | Wellness analysis system |
USRE47882E1 (en) | 2010-03-01 | 2020-03-03 | Masimo Corporation | Adaptive alarm system |
USRE47218E1 (en) | 2010-03-01 | 2019-02-05 | Masimo Corporation | Adaptive alarm system |
US9775570B2 (en) | 2010-03-01 | 2017-10-03 | Masimo Corporation | Adaptive alarm system |
US9724024B2 (en) | 2010-03-01 | 2017-08-08 | Masimo Corporation | Adaptive alarm system |
US20170245790A1 (en) | 2010-03-08 | 2017-08-31 | Masimo Corporation | Reprocessing of a physiological sensor |
US9662052B2 (en) | 2010-03-08 | 2017-05-30 | Masimo Corporation | Reprocessing of a physiological sensor |
US8584345B2 (en) | 2010-03-08 | 2013-11-19 | Masimo Corporation | Reprocessing of a physiological sensor |
US20160287090A1 (en) | 2010-03-30 | 2016-10-06 | Masimo Corporation | Plethysmographic respiration processor |
US9307928B1 (en) | 2010-03-30 | 2016-04-12 | Masimo Corporation | Plethysmographic respiration processor |
US20150380875A1 (en) | 2010-05-03 | 2015-12-31 | Masimo Corporation | Sensor adapter cable |
US9138180B1 (en) | 2010-05-03 | 2015-09-22 | Masimo Corporation | Sensor adapter cable |
US8712494B1 (en) | 2010-05-03 | 2014-04-29 | Masimo Corporation | Reflective non-invasive sensor |
US8666468B1 (en) | 2010-05-06 | 2014-03-04 | Masimo Corporation | Patient monitor for determining microcirculation state |
US9192312B2 (en) | 2010-05-06 | 2015-11-24 | Masimo Corporation | Patient monitor for determining microcirculation state |
US9795310B2 (en) | 2010-05-06 | 2017-10-24 | Masimo Corporation | Patient monitor for determining microcirculation state |
US8852994B2 (en) | 2010-05-24 | 2014-10-07 | Masimo Semiconductor, Inc. | Method of fabricating bifacial tandem solar cells |
US9368671B2 (en) | 2010-05-24 | 2016-06-14 | Masimo Semiconductor, Inc. | Bifacial tandem solar cells |
US9782110B2 (en) | 2010-06-02 | 2017-10-10 | Masimo Corporation | Opticoustic sensor |
US20180153446A1 (en) | 2010-06-02 | 2018-06-07 | Masimo Corporation | Opticoustic sensor |
US9326712B1 (en) | 2010-06-02 | 2016-05-03 | Masimo Corporation | Opticoustic sensor |
US8740792B1 (en) | 2010-07-12 | 2014-06-03 | Masimo Corporation | Patient monitor capable of accounting for environmental conditions |
US9408542B1 (en) | 2010-07-22 | 2016-08-09 | Masimo Corporation | Non-invasive blood pressure measurement system |
US20170027456A1 (en) | 2010-07-22 | 2017-02-02 | Masimo Corporation | Non-invasive blood pressure measurement system |
US9950112B2 (en) | 2010-08-17 | 2018-04-24 | University Of Florida Research Foundation, Incorporated | Intelligent drug and/or fluid delivery system to optimizing medical treatment or therapy using pharmacodynamic and/or pharamacokinetic data |
US9649054B2 (en) | 2010-08-26 | 2017-05-16 | Cercacor Laboratories, Inc. | Blood pressure measurement method |
US10299720B2 (en) | 2010-09-01 | 2019-05-28 | The General Hospital Corporation | Reversal of general anesthesia by administration of methylphenidate, amphetamine, modafinil, amantadine, and/or caffeine |
US20150196249A1 (en) | 2010-09-01 | 2015-07-16 | The General Hospital Corporation | Reversal of General Anesthesia by Administration of Methylphenidate, Amphetamine, Modafinil, Amantadine, and/or Caffeine |
US8455290B2 (en) | 2010-09-04 | 2013-06-04 | Masimo Semiconductor, Inc. | Method of fabricating epitaxial structures |
US20130243021A1 (en) | 2010-09-04 | 2013-09-19 | Masimo Semiconductor, Inc. | Epitaxial structures on sides of a substrate |
US9538949B2 (en) | 2010-09-28 | 2017-01-10 | Masimo Corporation | Depth of consciousness monitor including oximeter |
US9775545B2 (en) | 2010-09-28 | 2017-10-03 | Masimo Corporation | Magnetic electrical connector for patient monitors |
US8821397B2 (en) | 2010-09-28 | 2014-09-02 | Masimo Corporation | Depth of consciousness monitor including oximeter |
US20170156620A1 (en) | 2010-09-28 | 2017-06-08 | Masimo Corporation | Depth of consciousness monitor including oximeter |
US20120165629A1 (en) | 2010-09-30 | 2012-06-28 | Sean Merritt | Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy |
US9693737B2 (en) | 2010-10-13 | 2017-07-04 | Masimo Corporation | Physiological measurement logic engine |
US9211095B1 (en) | 2010-10-13 | 2015-12-15 | Masimo Corporation | Physiological measurement logic engine |
US9226696B2 (en) | 2010-10-20 | 2016-01-05 | Masimo Corporation | Patient safety system with automatically adjusting bed |
US8723677B1 (en) | 2010-10-20 | 2014-05-13 | Masimo Corporation | Patient safety system with automatically adjusting bed |
US20120123231A1 (en) | 2010-11-11 | 2012-05-17 | O'reilly Michael | Monitoring cardiac output and vessel fluid volume |
US20120226117A1 (en) | 2010-12-01 | 2012-09-06 | Lamego Marcelo M | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
US10159412B2 (en) | 2010-12-01 | 2018-12-25 | Cercacor Laboratories, Inc. | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
US20150245773A1 (en) | 2010-12-01 | 2015-09-03 | Cercacor Laboratories, Inc. | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
US9579039B2 (en) | 2011-01-10 | 2017-02-28 | Masimo Corporation | Non-invasive intravascular volume index monitor |
US20120209084A1 (en) | 2011-01-21 | 2012-08-16 | Masimo Corporation | Respiratory event alert system |
US10332630B2 (en) | 2011-02-13 | 2019-06-25 | Masimo Corporation | Medical characterization system |
US20120209082A1 (en) | 2011-02-13 | 2012-08-16 | Masimo Corporation | Medical characterization system |
US9801556B2 (en) | 2011-02-25 | 2017-10-31 | Masimo Corporation | Patient monitor for monitoring microcirculation |
US9066666B2 (en) | 2011-02-25 | 2015-06-30 | Cercacor Laboratories, Inc. | Patient monitor for monitoring microcirculation |
US20120283524A1 (en) | 2011-04-18 | 2012-11-08 | Cercacor Laboratories, Inc. | Pediatric monitor sensor steady game |
US8830449B1 (en) | 2011-04-18 | 2014-09-09 | Cercacor Laboratories, Inc. | Blood analysis system |
US9095316B2 (en) | 2011-04-20 | 2015-08-04 | Masimo Corporation | System for generating alarms based on alarm patterns |
US20140187973A1 (en) | 2011-05-06 | 2014-07-03 | Emery N. Brown | System and method for tracking brain states during administration of anesthesia |
US9622692B2 (en) | 2011-05-16 | 2017-04-18 | Masimo Corporation | Personal health device |
US9532722B2 (en) | 2011-06-21 | 2017-01-03 | Masimo Corporation | Patient monitoring system |
US20140163402A1 (en) | 2011-06-21 | 2014-06-12 | Cercacor Laboratories, Inc. | Patient monitoring system |
US20170196470A1 (en) | 2011-06-21 | 2017-07-13 | Masimo Corporation | Patient monitoring system |
US9245668B1 (en) | 2011-06-29 | 2016-01-26 | Cercacor Laboratories, Inc. | Low noise cable providing communication between electronic sensor components and patient monitor |
US20130041591A1 (en) | 2011-07-13 | 2013-02-14 | Cercacor Laboratories, Inc. | Multiple measurement mode in a physiological sensor |
US20130023775A1 (en) | 2011-07-20 | 2013-01-24 | Cercacor Laboratories, Inc. | Magnetic Reusable Sensor |
US9192351B1 (en) | 2011-07-22 | 2015-11-24 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US8755872B1 (en) | 2011-07-28 | 2014-06-17 | Masimo Corporation | Patient monitoring system for indicating an abnormal condition |
US20130060147A1 (en) | 2011-08-04 | 2013-03-07 | Masimo Corporation | Occlusive non-inflatable blood pressure device |
US20150297137A1 (en) | 2011-08-11 | 2015-10-22 | Reflectance Medical, Inc. | Patient interface for reusable optical sensor |
US20130096405A1 (en) | 2011-08-12 | 2013-04-18 | Masimo Corporation | Fingertip pulse oximeter |
US9782077B2 (en) | 2011-08-17 | 2017-10-10 | Masimo Corporation | Modulated physiological sensor |
US20160314260A1 (en) | 2011-08-19 | 2016-10-27 | Masimo Corporation | Health care sanitation monitoring system |
US9323894B2 (en) | 2011-08-19 | 2016-04-26 | Masimo Corporation | Health care sanitation monitoring system |
US20160327984A1 (en) | 2011-10-13 | 2016-11-10 | Masimo Corporation | Medical monitoring hub |
US9808188B1 (en) | 2011-10-13 | 2017-11-07 | Masimo Corporation | Robust fractional saturation determination |
US9436645B2 (en) | 2011-10-13 | 2016-09-06 | Masimo Corporation | Medical monitoring hub |
US20160324486A1 (en) | 2011-10-13 | 2016-11-10 | Masimo Corporation | Medical monitoring hub |
US20160328528A1 (en) | 2011-10-13 | 2016-11-10 | Masimo Corporation | Medical monitoring hub |
US20150097701A1 (en) | 2011-10-13 | 2015-04-09 | Masimo Corporation | System for displaying medical monitoring data |
US9778079B1 (en) | 2011-10-27 | 2017-10-03 | Masimo Corporation | Physiological monitor gauge panel |
US9445759B1 (en) | 2011-12-22 | 2016-09-20 | Cercacor Laboratories, Inc. | Blood glucose calibration system |
US20170007134A1 (en) | 2012-01-04 | 2017-01-12 | Masimo Corporation | Automated cchd screening and detection |
US20170014084A1 (en) | 2012-01-04 | 2017-01-19 | Masimo Corporation | Automated cchd screening and detection |
US9392945B2 (en) | 2012-01-04 | 2016-07-19 | Masimo Corporation | Automated CCHD screening and detection |
US9267572B2 (en) | 2012-02-08 | 2016-02-23 | Masimo Corporation | Cable tether system |
US20160197436A1 (en) | 2012-02-08 | 2016-07-07 | Masimo Corporation | Cable tether system |
US10307111B2 (en) | 2012-02-09 | 2019-06-04 | Masimo Corporation | Patient position detection system |
US10149616B2 (en) | 2012-02-09 | 2018-12-11 | Masimo Corporation | Wireless patient monitoring device |
US20130253334A1 (en) | 2012-02-09 | 2013-09-26 | Masimo Corporation | Wireless patient monitoring device |
US10188296B2 (en) | 2012-02-09 | 2019-01-29 | Masimo Corporation | Wireless patient monitoring device |
US20170143281A1 (en) | 2012-02-09 | 2017-05-25 | Masimo Corporation | Configurable patient monitoring system |
US9480435B2 (en) | 2012-02-09 | 2016-11-01 | Masimo Corporation | Configurable patient monitoring system |
USD788312S1 (en) | 2012-02-09 | 2017-05-30 | Masimo Corporation | Wireless patient monitoring device |
US20150359429A1 (en) | 2012-02-09 | 2015-12-17 | Masimo Corporation | Wireless patient monitoring device |
US20150112151A1 (en) | 2012-02-09 | 2015-04-23 | Masimo Corporation | Patient position detection system |
US20160103598A1 (en) | 2012-03-25 | 2016-04-14 | Masimo Corporation | Physiological monitor touchscreen interface |
US9195385B2 (en) | 2012-03-25 | 2015-11-24 | Masimo Corporation | Physiological monitor touchscreen interface |
US9131881B2 (en) | 2012-04-17 | 2015-09-15 | Masimo Corporation | Hypersaturation index |
US9775546B2 (en) | 2012-04-17 | 2017-10-03 | Masimo Corporation | Hypersaturation index |
US20130296672A1 (en) | 2012-05-02 | 2013-11-07 | Masimo Corporation | Noninvasive physiological sensor cover |
US20130331660A1 (en) | 2012-06-07 | 2013-12-12 | Masimo Corporation | Depth of consciousness monitor |
US10542903B2 (en) | 2012-06-07 | 2020-01-28 | Masimo Corporation | Depth of consciousness monitor |
US20130345921A1 (en) | 2012-06-22 | 2013-12-26 | Masimo Corporation | Physiological monitoring of moving vehicle operators |
US20140005557A1 (en) | 2012-06-29 | 2014-01-02 | David Rich | Photoplethysmography Sensors |
USD748274S1 (en) | 2012-06-29 | 2016-01-26 | David Rich | Nasal alar photoplethysmography probe housing |
US9697928B2 (en) | 2012-08-01 | 2017-07-04 | Masimo Corporation | Automated assembly sensor cable |
US9955937B2 (en) | 2012-09-20 | 2018-05-01 | Masimo Corporation | Acoustic patient sensor coupler |
US20170228516A1 (en) | 2012-09-20 | 2017-08-10 | Masimo Corporation | Intelligent medical escalation process |
USD692145S1 (en) | 2012-09-20 | 2013-10-22 | Masimo Corporation | Medical proximity detection token |
US9877650B2 (en) | 2012-09-20 | 2018-01-30 | Masimo Corporation | Physiological monitor with mobile computing device connectivity |
US9749232B2 (en) | 2012-09-20 | 2017-08-29 | Masimo Corporation | Intelligent medical network edge router |
USD820865S1 (en) | 2012-09-20 | 2018-06-19 | Masimo Corporation | Display screen or portion thereof for graphical user interface for physiological monitoring |
US20140081175A1 (en) | 2012-09-20 | 2014-03-20 | Masimo Corporation | Acoustic patient sensor coupler |
US20140081100A1 (en) | 2012-09-20 | 2014-03-20 | Masimo Corporation | Physiological monitor with mobile computing device connectivity |
US20140180160A1 (en) | 2012-10-12 | 2014-06-26 | Emery N. Brown | System and method for monitoring and controlling a state of a patient during and after administration of anesthetic compound |
US9717458B2 (en) | 2012-10-20 | 2017-08-01 | Masimo Corporation | Magnetic-flap optical sensor |
US20170147774A1 (en) | 2012-10-30 | 2017-05-25 | Masimo Corporation | Universal medical system |
US9560996B2 (en) | 2012-10-30 | 2017-02-07 | Masimo Corporation | Universal medical system |
US9787568B2 (en) | 2012-11-05 | 2017-10-10 | Cercacor Laboratories, Inc. | Physiological test credit method |
US9847749B2 (en) | 2012-12-17 | 2017-12-19 | Masimo Semiconductor, Inc. | Pool solar power generator |
US20160072429A1 (en) | 2012-12-17 | 2016-03-10 | Masimo Semiconductor, Inc. | Pool solar power generator |
US20140166076A1 (en) | 2012-12-17 | 2014-06-19 | Masimo Semiconductor, Inc | Pool solar power generator |
USD748774S1 (en) | 2012-12-26 | 2016-02-02 | Angiodynamics, Inc | Introducer hub |
US9750461B1 (en) | 2013-01-02 | 2017-09-05 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US9724025B1 (en) | 2013-01-16 | 2017-08-08 | Masimo Corporation | Active-pulse blood analysis system |
US9750442B2 (en) | 2013-03-09 | 2017-09-05 | Masimo Corporation | Physiological status monitor |
US20140266790A1 (en) | 2013-03-13 | 2014-09-18 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US20150005600A1 (en) | 2013-03-13 | 2015-01-01 | Cercacor Laboratories, Inc. | Finger-placement sensor tape |
US10441181B1 (en) | 2013-03-13 | 2019-10-15 | Masimo Corporation | Acoustic pulse and respiration monitoring system |
US9965946B2 (en) | 2013-03-13 | 2018-05-08 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US20140276115A1 (en) | 2013-03-14 | 2014-09-18 | Cercacar Laboratories, Inc. | Heart sound simulator |
US9986952B2 (en) | 2013-03-14 | 2018-06-05 | Masimo Corporation | Heart sound simulator |
US9474474B2 (en) | 2013-03-14 | 2016-10-25 | Masimo Corporation | Patient monitor as a minimally invasive glucometer |
US20140275871A1 (en) | 2013-03-14 | 2014-09-18 | Cercacor Laboratories, Inc. | Wireless optical communication between noninvasive physiological sensors and patient monitors |
US9936917B2 (en) | 2013-03-14 | 2018-04-10 | Masimo Laboratories, Inc. | Patient monitor placement indicator |
US20140275872A1 (en) | 2013-03-14 | 2014-09-18 | Cercacor Laboratories, Inc. | Systems and methods for testing patient monitors |
US20140275808A1 (en) | 2013-03-14 | 2014-09-18 | Cercacor Laboratories, Inc. | Patient monitor placement indicator |
US20140275887A1 (en) | 2013-03-15 | 2014-09-18 | Nellcor Puritan Bennett Ireland | Systems And Methods For Monitoring Respiratory Depression |
US20140275930A1 (en) | 2013-03-15 | 2014-09-18 | Xhale, Inc. | Methods, Devices And Systems For Photoplethysmography At The Nasal Columella |
US9724002B2 (en) | 2013-03-15 | 2017-08-08 | David Rich | Methods, devices and systems for photoplethysmography at the nasal columella |
US20140275835A1 (en) | 2013-03-15 | 2014-09-18 | Cercacor Laboratories, Inc. | Cloud-based physiological monitoring system |
US10456038B2 (en) | 2013-03-15 | 2019-10-29 | Cercacor Laboratories, Inc. | Cloud-based physiological monitoring system |
US20140316218A1 (en) | 2013-04-23 | 2014-10-23 | Patrick L. Purdon | Systems and methods for monitoring brain metabolism and activity using electroencephalogram and optical imaging |
US20140316217A1 (en) | 2013-04-23 | 2014-10-23 | Patrick L. Purdon | System and method for monitoring anesthesia and sedation using measures of brain coherence and synchrony |
US20140323897A1 (en) | 2013-04-24 | 2014-10-30 | Emery N. Brown | System and method for estimating high time-frequency resolution eeg spectrograms to monitor patient state |
US20140323898A1 (en) | 2013-04-24 | 2014-10-30 | Patrick L. Purdon | System and Method for Monitoring Level of Dexmedatomidine-Induced Sedation |
US20140343382A1 (en) | 2013-05-17 | 2014-11-20 | Xhale, Inc. | Methods And Systems For Using A Thermistor In Probe Identification Circuits In Or Associated With Pulse Oximeter Sensors |
USD717192S1 (en) | 2013-05-30 | 2014-11-11 | University Of Florida Research Foundation, Incorporated | Miniature portable gas chromatograph |
US20150011907A1 (en) | 2013-06-28 | 2015-01-08 | Patrick L. Purdon | Systems and Methods To Infer Brain State During Burst Suppression |
US9891079B2 (en) | 2013-07-17 | 2018-02-13 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
US20150045637A1 (en) | 2013-07-17 | 2015-02-12 | Cercacor Laboratories, Inc. | Double-bearing position encoder |
US10555678B2 (en) | 2013-08-05 | 2020-02-11 | Masimo Corporation | Blood pressure monitor with valve-chamber assembly |
US20150038859A1 (en) | 2013-08-05 | 2015-02-05 | Cercacor Laboratories, Inc | Blood pressure monitor with valve-chamber assembly |
US20150073233A1 (en) | 2013-09-06 | 2015-03-12 | Xhale, Inc. | Systems and methods for physiological monitoring using multiple signal processing devices |
US20150073241A1 (en) | 2013-09-12 | 2015-03-12 | Cercacor Laboratories, Inc. | Medical device management system |
US20160196388A1 (en) | 2013-09-12 | 2016-07-07 | Cercacor Laboratories, Inc. | Medical device management system |
US20150080754A1 (en) | 2013-09-13 | 2015-03-19 | Patrick L. Purdon | Systems and Methods For Improved Brain Monitoring During General Anesthesia And Sedation |
US20150099950A1 (en) | 2013-10-07 | 2015-04-09 | Masimo Corporation | Regional oximetry sensor |
US10010276B2 (en) | 2013-10-07 | 2018-07-03 | Masimo Corporation | Regional oximetry user interface |
US9839379B2 (en) | 2013-10-07 | 2017-12-12 | Masimo Corporation | Regional oximetry pod |
US10617335B2 (en) | 2013-10-07 | 2020-04-14 | Masimo Corporation | Regional oximetry sensor |
US20150099955A1 (en) | 2013-10-07 | 2015-04-09 | Masimo Corporation | Regional oximetry user interface |
US20150105632A1 (en) | 2013-10-11 | 2015-04-16 | Xhale, Inc. | Fusion of data from multiple sources for non-invasive detection of respiratory parameters |
US20150106121A1 (en) | 2013-10-11 | 2015-04-16 | Masimo Corporation | Alarm notification system |
US10279247B2 (en) | 2013-12-13 | 2019-05-07 | Masimo Corporation | Avatar-incentive healthcare therapy |
US20150165312A1 (en) | 2013-12-13 | 2015-06-18 | Masimo Corporation | Avatar-incentive healthcare therapy |
US10086138B1 (en) | 2014-01-28 | 2018-10-02 | Masimo Corporation | Autonomous drug delivery system |
US10532174B2 (en) | 2014-02-21 | 2020-01-14 | Masimo Corporation | Assistive capnography device |
US20150238722A1 (en) | 2014-02-21 | 2015-08-27 | Masimo Corporation | Assistive capnography device |
US20150342480A1 (en) | 2014-05-30 | 2015-12-03 | Microsoft Corporation | Optical pulse-rate sensing |
US9924897B1 (en) | 2014-06-12 | 2018-03-27 | Masimo Corporation | Heated reprocessing of physiological sensors |
US10123729B2 (en) | 2014-06-13 | 2018-11-13 | Nanthealth, Inc. | Alarm fatigue management systems and methods |
US20150366507A1 (en) | 2014-06-19 | 2015-12-24 | Cercacor Laboratories, Inc. | Proximity sensor in pulse oximeter |
US10231670B2 (en) | 2014-06-19 | 2019-03-19 | Masimo Corporation | Proximity sensor in pulse oximeter |
US10111591B2 (en) | 2014-08-26 | 2018-10-30 | Nanthealth, Inc. | Real-time monitoring systems and methods in a healthcare environment |
US20160066824A1 (en) | 2014-09-04 | 2016-03-10 | Masimo Corporation | Total hemoglobin screening sensor |
US10231657B2 (en) | 2014-09-04 | 2019-03-19 | Masimo Corporation | Total hemoglobin screening sensor |
US20160081552A1 (en) | 2014-09-18 | 2016-03-24 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US10383520B2 (en) | 2014-09-18 | 2019-08-20 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US20160095548A1 (en) | 2014-10-07 | 2016-04-07 | Masimo Corporation | Modular physiological sensors |
US10154815B2 (en) | 2014-10-07 | 2018-12-18 | Masimo Corporation | Modular physiological sensors |
US20160213281A1 (en) | 2015-01-23 | 2016-07-28 | Masimo Sweden Ab | Nasal/oral cannula system and manufacturing |
US10441196B2 (en) | 2015-01-23 | 2019-10-15 | Masimo Corporation | Nasal/oral cannula system and manufacturing |
US20160234944A1 (en) | 2015-02-06 | 2016-08-11 | Masimo Corporation | Fold flex circuit for lnop |
US10568553B2 (en) | 2015-02-06 | 2020-02-25 | Masimo Corporation | Soft boot pulse oximetry sensor |
USD755392S1 (en) | 2015-02-06 | 2016-05-03 | Masimo Corporation | Pulse oximetry sensor |
US20160233632A1 (en) | 2015-02-06 | 2016-08-11 | Masimo Corporation | Pogo pin connector |
US10205291B2 (en) | 2015-02-06 | 2019-02-12 | Masimo Corporation | Pogo pin connector |
US20160228043A1 (en) | 2015-02-06 | 2016-08-11 | Masimo Corporation | Soft boot pulse oximetry sensor |
US10327337B2 (en) | 2015-02-06 | 2019-06-18 | Masimo Corporation | Fold flex circuit for LNOP |
US20160324488A1 (en) | 2015-05-04 | 2016-11-10 | Cercacor Laboratories, Inc. | Noninvasive sensor system with visual infographic display |
US10524738B2 (en) | 2015-05-04 | 2020-01-07 | Cercacor Laboratories, Inc. | Noninvasive sensor system with visual infographic display |
US20160367173A1 (en) | 2015-05-22 | 2016-12-22 | Cercacor Laboratories, Inc. | Non-invasive optical physiological differential pathlength sensor |
US10448871B2 (en) | 2015-07-02 | 2019-10-22 | Masimo Corporation | Advanced pulse oximetry sensor |
US20170000394A1 (en) | 2015-07-02 | 2017-01-05 | Masimo Corporation | Advanced pulse oximetry sensor |
US20170024748A1 (en) | 2015-07-22 | 2017-01-26 | Patient Doctor Technologies, Inc. | Guided discussion platform for multiple parties |
USD802152S1 (en) | 2015-07-27 | 2017-11-07 | Scott Wakefield | Nasal alar photoplethysmography probe housing |
US20170042488A1 (en) | 2015-08-11 | 2017-02-16 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
US10383527B2 (en) | 2015-08-31 | 2019-08-20 | Masimo Corporation | Wireless patient monitoring systems and methods |
US20170055882A1 (en) | 2015-08-31 | 2017-03-02 | Masimo Corporation | Systems and methods for patient fall detection |
US10448844B2 (en) | 2015-08-31 | 2019-10-22 | Masimo Corporation | Systems and methods for patient fall detection |
US20170055851A1 (en) | 2015-08-31 | 2017-03-02 | Masimo Corporation | Patient-worn wireless physiological sensor |
US20170055896A1 (en) | 2015-08-31 | 2017-03-02 | Masimo Corporation | Systems and methods to monitor repositioning of a patient |
US10226187B2 (en) | 2015-08-31 | 2019-03-12 | Masimo Corporation | Patient-worn wireless physiological sensor |
US20170055887A1 (en) | 2015-08-31 | 2017-03-02 | Masimo Corporation | Wireless patient monitoring systems and methods |
US20170173632A1 (en) | 2015-12-17 | 2017-06-22 | Masimo Corporation | Varnish-coated release liner |
US10471159B1 (en) | 2016-02-12 | 2019-11-12 | Masimo Corporation | Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles |
US20170251974A1 (en) | 2016-03-04 | 2017-09-07 | Masimo Corporation | Nose sensor |
US10537285B2 (en) | 2016-03-04 | 2020-01-21 | Masimo Corporation | Nose sensor |
US20170311891A1 (en) | 2016-04-29 | 2017-11-02 | Masimo Corporation | Optical sensor tape |
US10608817B2 (en) | 2016-07-06 | 2020-03-31 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
US10617302B2 (en) | 2016-07-07 | 2020-04-14 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
US20180103874A1 (en) | 2016-10-13 | 2018-04-19 | Masimo Corporation | Systems and methods for patient fall detection |
US20180199871A1 (en) | 2016-12-22 | 2018-07-19 | Cercacor Laboratories, Inc. | Methods and devices for detecting intensity of light with translucent detector |
US20180213583A1 (en) | 2017-01-18 | 2018-07-26 | Masimo Corporation | Patient-worn wireless physiological sensor wtih pairing functionality |
US20180300919A1 (en) | 2017-02-24 | 2018-10-18 | Masimo Corporation | Augmented reality system for displaying patient data |
US10327713B2 (en) | 2017-02-24 | 2019-06-25 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US20180242926A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | System for displaying medical monitoring data |
US10388120B2 (en) | 2017-02-24 | 2019-08-20 | Masimo Corporation | Localized projection of audible noises in medical settings |
US20180247712A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | System for displaying medical monitoring data |
US20180247353A1 (en) | 2017-02-24 | 2018-08-30 | Masimo Corporation | Managing dynamic licenses for physiological parameters in a patient monitoring environment |
US20180256087A1 (en) | 2017-03-10 | 2018-09-13 | Masimo Corporation | Pneumonia screener |
WO2018194992A1 (en) | 2017-04-18 | 2018-10-25 | Masimo Corporation | Nose sensor |
USD822215S1 (en) | 2017-04-26 | 2018-07-03 | Masimo Corporation | Medical monitoring device |
US20180310823A1 (en) | 2017-04-26 | 2018-11-01 | Masimo Corporation | Medical monitoring device having multiple configurations |
USD835285S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD822216S1 (en) | 2017-04-28 | 2018-07-03 | Masimo Corporation | Medical monitoring device |
USD835284S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
USD835282S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
US20180310822A1 (en) | 2017-04-28 | 2018-11-01 | Masimo Corporation | Spot check measurement system |
USD835283S1 (en) | 2017-04-28 | 2018-12-04 | Masimo Corporation | Medical monitoring device |
US20180317826A1 (en) | 2017-05-08 | 2018-11-08 | Masimo Corporation | System for displaying and controlling medical monitoring data |
USD833624S1 (en) | 2017-05-09 | 2018-11-13 | Masimo Corporation | Medical device |
USD844793S1 (en) | 2017-05-19 | 2019-04-02 | Xhale Assurance, Inc. | Nasal photoplethysmography sensor housing |
US20190015023A1 (en) | 2017-07-13 | 2019-01-17 | Cercacor Laboratories, Inc. | Medical monitoring device for harmonizing physiological measurements |
US10637181B2 (en) | 2017-08-15 | 2020-04-28 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
US10505311B2 (en) | 2017-08-15 | 2019-12-10 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
USD864120S1 (en) | 2017-08-15 | 2019-10-22 | Masimo Corporation | Connector |
USD880477S1 (en) | 2017-08-15 | 2020-04-07 | Masimo Corporation | Connector |
US20190117070A1 (en) | 2017-10-19 | 2019-04-25 | Masimo Corporation | Medical monitoring system |
US20190200941A1 (en) | 2017-10-31 | 2019-07-04 | Masimo Corporation | System for displaying oxygen state indications |
US20190239787A1 (en) | 2018-02-02 | 2019-08-08 | Cercacor Laboratories, Inc. | Limb-worn patient monitoring device |
US10667764B2 (en) | 2018-04-19 | 2020-06-02 | Masimo Corporation | Mobile patient alarm display |
US20190320906A1 (en) | 2018-04-24 | 2019-10-24 | Cercacor Laboratories, Inc. | Easy insert finger sensor for transmission based spectroscopy sensor |
US20190374713A1 (en) | 2018-06-06 | 2019-12-12 | Masimo Corporation | Opioid overdose monitoring |
US20190374139A1 (en) | 2018-06-06 | 2019-12-12 | Masimo Corporation | Opioid overdose monitoring |
US20190374173A1 (en) | 2018-06-06 | 2019-12-12 | Masimo Corporation | Opioid overdose monitoring |
US20200021930A1 (en) | 2018-07-10 | 2020-01-16 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US20200060869A1 (en) | 2018-08-22 | 2020-02-27 | Masimo Corporation | Core body temperature measurement |
US20200111552A1 (en) | 2018-10-08 | 2020-04-09 | Masimo Corporation | Patient database analytics |
US20200113497A1 (en) | 2018-10-11 | 2020-04-16 | Masimo Corporation | Low noise oximetry cable |
US20200113488A1 (en) | 2018-10-11 | 2020-04-16 | Masimo Corporation | Patient monitoring device with improved user interface |
US20200113496A1 (en) | 2018-10-11 | 2020-04-16 | Masimo Corporation | Patient connector assembly with vertical detents |
US20200113435A1 (en) | 2018-10-12 | 2020-04-16 | Masimo Corporation | Medical systems and methods |
US20200138288A1 (en) | 2018-10-12 | 2020-05-07 | Masimo Corporation | System for transmission of sensor data using dual communication protocol |
US20200113520A1 (en) | 2018-10-16 | 2020-04-16 | Masimo Corporation | Stretch band with indicators or limiters |
US20200138368A1 (en) | 2018-11-05 | 2020-05-07 | Masimo Corporation | System to manage patient hydration |
US20200163597A1 (en) | 2018-11-27 | 2020-05-28 | Cercacor Laboratories, Inc. | Assembly for medical monitoring device with multiple physiological sensors |
Non-Patent Citations (2)
Title |
---|
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2018/027833, dated Oct. 31, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US18/27833 dated Jul. 5, 2018 in 42 pages. |
Cited By (340)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10959652B2 (en) | 2001-07-02 | 2021-03-30 | Masimo Corporation | Low power pulse oximeter |
US10980455B2 (en) | 2001-07-02 | 2021-04-20 | Masimo Corporation | Low power pulse oximeter |
US11219391B2 (en) | 2001-07-02 | 2022-01-11 | Masimo Corporation | Low power pulse oximeter |
USRE49034E1 (en) | 2002-01-24 | 2022-04-19 | Masimo Corporation | Physiological trend monitor |
US11484205B2 (en) | 2002-03-25 | 2022-11-01 | Masimo Corporation | Physiological measurement device |
US11690574B2 (en) | 2003-11-05 | 2023-07-04 | Masimo Corporation | Pulse oximeter access apparatus and method |
US11937949B2 (en) | 2004-03-08 | 2024-03-26 | Masimo Corporation | Physiological parameter system |
US11430572B2 (en) | 2005-03-01 | 2022-08-30 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US11545263B2 (en) | 2005-03-01 | 2023-01-03 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US12230393B2 (en) | 2005-03-01 | 2025-02-18 | Willow Laboratories, Inc. | Multiple wavelength sensor emitters |
US10984911B2 (en) | 2005-03-01 | 2021-04-20 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US12283374B2 (en) | 2005-03-01 | 2025-04-22 | Willow Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US12014328B2 (en) | 2005-07-13 | 2024-06-18 | Vccb Holdings, Inc. | Medicine bottle cap with electronic embedded curved display |
US12178620B2 (en) | 2005-10-14 | 2024-12-31 | Masimo Corporation | Robust alarm system |
US11839498B2 (en) | 2005-10-14 | 2023-12-12 | Masimo Corporation | Robust alarm system |
US11944431B2 (en) | 2006-03-17 | 2024-04-02 | Masimo Corportation | Apparatus and method for creating a stable optical interface |
US11191485B2 (en) | 2006-06-05 | 2021-12-07 | Masimo Corporation | Parameter upgrade system |
US12109048B2 (en) | 2006-06-05 | 2024-10-08 | Masimo Corporation | Parameter upgrade system |
US11607139B2 (en) | 2006-09-20 | 2023-03-21 | Masimo Corporation | Congenital heart disease monitor |
US10993643B2 (en) | 2006-10-12 | 2021-05-04 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
US12127835B2 (en) | 2006-10-12 | 2024-10-29 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US11857315B2 (en) | 2006-10-12 | 2024-01-02 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
US11317837B2 (en) | 2006-10-12 | 2022-05-03 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US12171552B2 (en) | 2006-10-12 | 2024-12-24 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
US11857319B2 (en) | 2006-10-12 | 2024-01-02 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US12029586B2 (en) | 2006-10-12 | 2024-07-09 | Masimo Corporation | Oximeter probe off indicator defining probe off space |
US11672447B2 (en) | 2006-10-12 | 2023-06-13 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
US11759130B2 (en) | 2006-10-12 | 2023-09-19 | Masimo Corporation | Perfusion index smoother |
US11006867B2 (en) | 2006-10-12 | 2021-05-18 | Masimo Corporation | Perfusion index smoother |
US11229374B2 (en) | 2006-12-09 | 2022-01-25 | Masimo Corporation | Plethysmograph variability processor |
US12109012B2 (en) | 2006-12-09 | 2024-10-08 | Masimo Corporation | Plethysmograph variability processor |
US12089968B2 (en) | 2006-12-22 | 2024-09-17 | Masimo Corporation | Optical patient monitor |
US11234655B2 (en) | 2007-01-20 | 2022-02-01 | Masimo Corporation | Perfusion trend indicator |
US11647923B2 (en) | 2007-04-21 | 2023-05-16 | Masimo Corporation | Tissue profile wellness monitor |
US12156733B2 (en) | 2007-04-21 | 2024-12-03 | Masimo Corporation | Tissue profile wellness monitor |
US10980457B2 (en) | 2007-04-21 | 2021-04-20 | Masimo Corporation | Tissue profile wellness monitor |
US11660028B2 (en) | 2008-03-04 | 2023-05-30 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
US11622733B2 (en) | 2008-05-02 | 2023-04-11 | Masimo Corporation | Monitor configuration system |
US11412964B2 (en) | 2008-05-05 | 2022-08-16 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
US11484230B2 (en) | 2008-07-03 | 2022-11-01 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11484229B2 (en) | 2008-07-03 | 2022-11-01 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11642037B2 (en) | 2008-07-03 | 2023-05-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11638532B2 (en) | 2008-07-03 | 2023-05-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US12036009B1 (en) | 2008-07-03 | 2024-07-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11426103B2 (en) | 2008-07-03 | 2022-08-30 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US12023139B1 (en) | 2008-07-03 | 2024-07-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11647914B2 (en) | 2008-07-03 | 2023-05-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11642036B2 (en) | 2008-07-03 | 2023-05-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11751773B2 (en) | 2008-07-03 | 2023-09-12 | Masimo Corporation | Emitter arrangement for physiological measurements |
US11564593B2 (en) | 2008-09-15 | 2023-01-31 | Masimo Corporation | Gas sampling line |
US12232905B2 (en) | 2008-12-30 | 2025-02-25 | Masimo Corporation | Acoustic sensor assembly |
US11559275B2 (en) | 2008-12-30 | 2023-01-24 | Masimo Corporation | Acoustic sensor assembly |
US11877867B2 (en) | 2009-02-16 | 2024-01-23 | Masimo Corporation | Physiological measurement device |
US11432771B2 (en) | 2009-02-16 | 2022-09-06 | Masimo Corporation | Physiological measurement device |
US11426125B2 (en) | 2009-02-16 | 2022-08-30 | Masimo Corporation | Physiological measurement device |
US11087875B2 (en) | 2009-03-04 | 2021-08-10 | Masimo Corporation | Medical monitoring system |
US11158421B2 (en) | 2009-03-04 | 2021-10-26 | Masimo Corporation | Physiological parameter alarm delay |
US11133105B2 (en) | 2009-03-04 | 2021-09-28 | Masimo Corporation | Medical monitoring system |
US11145408B2 (en) | 2009-03-04 | 2021-10-12 | Masimo Corporation | Medical communication protocol translator |
US11923080B2 (en) | 2009-03-04 | 2024-03-05 | Masimo Corporation | Medical monitoring system |
US12057222B2 (en) | 2009-03-04 | 2024-08-06 | Masimo Corporation | Physiological alarm threshold determination |
US11515664B2 (en) | 2009-03-11 | 2022-11-29 | Masimo Corporation | Magnetic connector |
US11848515B1 (en) | 2009-03-11 | 2023-12-19 | Masimo Corporation | Magnetic connector |
US11752262B2 (en) | 2009-05-20 | 2023-09-12 | Masimo Corporation | Hemoglobin display and patient treatment |
US11963736B2 (en) | 2009-07-20 | 2024-04-23 | Masimo Corporation | Wireless patient monitoring system |
US11779247B2 (en) | 2009-07-29 | 2023-10-10 | Masimo Corporation | Non-invasive physiological sensor cover |
US12042283B2 (en) | 2009-07-29 | 2024-07-23 | Masimo Corporation | Non-invasive physiological sensor cover |
US11559227B2 (en) | 2009-07-29 | 2023-01-24 | Masimo Corporation | Non-invasive physiological sensor cover |
US11744471B2 (en) | 2009-09-17 | 2023-09-05 | Masimo Corporation | Optical-based physiological monitoring system |
US11342072B2 (en) | 2009-10-06 | 2022-05-24 | Cercacor Laboratories, Inc. | Optical sensing systems and methods for detecting a physiological condition of a patient |
US11998362B2 (en) | 2009-10-15 | 2024-06-04 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US12257081B2 (en) | 2009-10-15 | 2025-03-25 | Masimo Corporation | Bidirectional physiological information display |
US11974841B2 (en) | 2009-10-16 | 2024-05-07 | Masimo Corporation | Respiration processor |
US11534087B2 (en) | 2009-11-24 | 2022-12-27 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US12127833B2 (en) | 2009-11-24 | 2024-10-29 | Willow Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US12186079B2 (en) | 2009-12-04 | 2025-01-07 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US11571152B2 (en) | 2009-12-04 | 2023-02-07 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US11900775B2 (en) | 2009-12-21 | 2024-02-13 | Masimo Corporation | Modular patient monitor |
US11289199B2 (en) | 2010-01-19 | 2022-03-29 | Masimo Corporation | Wellness analysis system |
USRE49007E1 (en) | 2010-03-01 | 2022-04-05 | Masimo Corporation | Adaptive alarm system |
US12109021B2 (en) | 2010-03-08 | 2024-10-08 | Masimo Corporation | Reprocessing of a physiological sensor |
US11399722B2 (en) | 2010-03-30 | 2022-08-02 | Masimo Corporation | Plethysmographic respiration rate detection |
US11330996B2 (en) | 2010-05-06 | 2022-05-17 | Masimo Corporation | Patient monitor for determining microcirculation state |
US12178559B2 (en) | 2010-05-06 | 2024-12-31 | Masimo Corporation | Patient monitor for determining microcirculation state |
US11717210B2 (en) | 2010-09-28 | 2023-08-08 | Masimo Corporation | Depth of consciousness monitor including oximeter |
US12198790B1 (en) | 2010-10-07 | 2025-01-14 | Masimo Corporation | Physiological monitor sensor systems and methods |
US11399774B2 (en) | 2010-10-13 | 2022-08-02 | Masimo Corporation | Physiological measurement logic engine |
US12121333B2 (en) | 2010-12-01 | 2024-10-22 | Willow Laboratories, Inc. | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
US12016661B2 (en) | 2011-01-10 | 2024-06-25 | Masimo Corporation | Non-invasive intravascular volume index monitor |
US11488715B2 (en) | 2011-02-13 | 2022-11-01 | Masimo Corporation | Medical characterization system |
US11363960B2 (en) | 2011-02-25 | 2022-06-21 | Masimo Corporation | Patient monitor for monitoring microcirculation |
US11272852B2 (en) | 2011-06-21 | 2022-03-15 | Masimo Corporation | Patient monitoring system |
US11925445B2 (en) | 2011-06-21 | 2024-03-12 | Masimo Corporation | Patient monitoring system |
US11109770B2 (en) | 2011-06-21 | 2021-09-07 | Masimo Corporation | Patient monitoring system |
US11439329B2 (en) | 2011-07-13 | 2022-09-13 | Masimo Corporation | Multiple measurement mode in a physiological sensor |
US11877824B2 (en) | 2011-08-17 | 2024-01-23 | Masimo Corporation | Modulated physiological sensor |
US11816973B2 (en) | 2011-08-19 | 2023-11-14 | Masimo Corporation | Health care sanitation monitoring system |
US11176801B2 (en) | 2011-08-19 | 2021-11-16 | Masimo Corporation | Health care sanitation monitoring system |
US11241199B2 (en) | 2011-10-13 | 2022-02-08 | Masimo Corporation | System for displaying medical monitoring data |
US11786183B2 (en) | 2011-10-13 | 2023-10-17 | Masimo Corporation | Medical monitoring hub |
US12226206B2 (en) | 2011-10-13 | 2025-02-18 | Masimo Corporation | Robust fractional saturation determination |
US11179114B2 (en) | 2011-10-13 | 2021-11-23 | Masimo Corporation | Medical monitoring hub |
US11089982B2 (en) | 2011-10-13 | 2021-08-17 | Masimo Corporation | Robust fractional saturation determination |
US11747178B2 (en) | 2011-10-27 | 2023-09-05 | Masimo Corporation | Physiological monitor gauge panel |
US12011300B2 (en) | 2012-01-04 | 2024-06-18 | Masimo Corporation | Automated condition screening and detection |
US11172890B2 (en) | 2012-01-04 | 2021-11-16 | Masimo Corporation | Automated condition screening and detection |
US12004881B2 (en) | 2012-01-04 | 2024-06-11 | Masimo Corporation | Automated condition screening and detection |
US11179111B2 (en) | 2012-01-04 | 2021-11-23 | Masimo Corporation | Automated CCHD screening and detection |
US11990706B2 (en) | 2012-02-08 | 2024-05-21 | Masimo Corporation | Cable tether system |
US11918353B2 (en) | 2012-02-09 | 2024-03-05 | Masimo Corporation | Wireless patient monitoring device |
US11083397B2 (en) | 2012-02-09 | 2021-08-10 | Masimo Corporation | Wireless patient monitoring device |
US12109022B2 (en) | 2012-02-09 | 2024-10-08 | Masimo Corporation | Wireless patient monitoring device |
US11132117B2 (en) | 2012-03-25 | 2021-09-28 | Masimo Corporation | Physiological monitor touchscreen interface |
US11071480B2 (en) | 2012-04-17 | 2021-07-27 | Masimo Corporation | Hypersaturation index |
US12167913B2 (en) | 2012-04-17 | 2024-12-17 | Masimo Corporation | Hypersaturation index |
US11557407B2 (en) | 2012-08-01 | 2023-01-17 | Masimo Corporation | Automated assembly sensor cable |
US11069461B2 (en) | 2012-08-01 | 2021-07-20 | Masimo Corporation | Automated assembly sensor cable |
US12042285B1 (en) | 2012-08-29 | 2024-07-23 | Masimo Corporation | Physiological measurement calibration |
US11887728B2 (en) | 2012-09-20 | 2024-01-30 | Masimo Corporation | Intelligent medical escalation process |
USD989112S1 (en) | 2012-09-20 | 2023-06-13 | Masimo Corporation | Display screen or portion thereof with a graphical user interface for physiological monitoring |
US11504002B2 (en) | 2012-09-20 | 2022-11-22 | Masimo Corporation | Physiological monitoring system |
US11992361B2 (en) | 2012-09-20 | 2024-05-28 | Masimo Corporation | Acoustic patient sensor coupler |
US11452449B2 (en) | 2012-10-30 | 2022-09-27 | Masimo Corporation | Universal medical system |
US12230391B2 (en) | 2012-11-05 | 2025-02-18 | Willow Laboratories, Inc. | Physiological test credit method |
US11367529B2 (en) | 2012-11-05 | 2022-06-21 | Cercacor Laboratories, Inc. | Physiological test credit method |
US11992342B2 (en) | 2013-01-02 | 2024-05-28 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US11224363B2 (en) | 2013-01-16 | 2022-01-18 | Masimo Corporation | Active-pulse blood analysis system |
US11839470B2 (en) | 2013-01-16 | 2023-12-12 | Masimo Corporation | Active-pulse blood analysis system |
US12193813B2 (en) | 2013-01-16 | 2025-01-14 | Masimo Corporation | Active-pulse blood analysis system |
US11645905B2 (en) | 2013-03-13 | 2023-05-09 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US11963749B2 (en) | 2013-03-13 | 2024-04-23 | Masimo Corporation | Acoustic physiological monitoring system |
US12142136B2 (en) | 2013-03-13 | 2024-11-12 | Masimo Corporation | Systems and methods for monitoring a patient health network |
US12042300B2 (en) | 2013-03-14 | 2024-07-23 | Masimo Corporation | Patient monitor placement indicator |
US11504062B2 (en) | 2013-03-14 | 2022-11-22 | Masimo Corporation | Patient monitor placement indicator |
US12178572B1 (en) | 2013-06-11 | 2024-12-31 | Masimo Corporation | Blood glucose sensing system |
US11022466B2 (en) | 2013-07-17 | 2021-06-01 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
US11988532B2 (en) | 2013-07-17 | 2024-05-21 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
US11944415B2 (en) | 2013-08-05 | 2024-04-02 | Masimo Corporation | Systems and methods for measuring blood pressure |
US11596363B2 (en) | 2013-09-12 | 2023-03-07 | Cercacor Laboratories, Inc. | Medical device management system |
US11076782B2 (en) | 2013-10-07 | 2021-08-03 | Masimo Corporation | Regional oximetry user interface |
US11147518B1 (en) | 2013-10-07 | 2021-10-19 | Masimo Corporation | Regional oximetry signal processor |
US11717194B2 (en) | 2013-10-07 | 2023-08-08 | Masimo Corporation | Regional oximetry pod |
US11751780B2 (en) | 2013-10-07 | 2023-09-12 | Masimo Corporation | Regional oximetry sensor |
US12009098B2 (en) | 2013-10-11 | 2024-06-11 | Masimo Corporation | Alarm notification system |
US12016721B2 (en) | 2013-10-11 | 2024-06-25 | Masimo Corporation | Acoustic sensor with attachment portion |
US12230396B2 (en) | 2013-10-11 | 2025-02-18 | Masimo Corporation | Alarm notification system |
US11488711B2 (en) | 2013-10-11 | 2022-11-01 | Masimo Corporation | Alarm notification system |
US11699526B2 (en) | 2013-10-11 | 2023-07-11 | Masimo Corporation | Alarm notification system |
US12214274B2 (en) | 2013-12-13 | 2025-02-04 | Masimo Corporation | Avatar-incentive healthcare therapy |
US11969645B2 (en) | 2013-12-13 | 2024-04-30 | Masimo Corporation | Avatar-incentive healthcare therapy |
US11673041B2 (en) | 2013-12-13 | 2023-06-13 | Masimo Corporation | Avatar-incentive healthcare therapy |
US11883190B2 (en) | 2014-01-28 | 2024-01-30 | Masimo Corporation | Autonomous drug delivery system |
US11259745B2 (en) | 2014-01-28 | 2022-03-01 | Masimo Corporation | Autonomous drug delivery system |
US11696712B2 (en) | 2014-06-13 | 2023-07-11 | Vccb Holdings, Inc. | Alarm fatigue management systems and methods |
US12011292B2 (en) | 2014-06-19 | 2024-06-18 | Masimo Corporation | Proximity sensor in pulse oximeter |
US11000232B2 (en) | 2014-06-19 | 2021-05-11 | Masimo Corporation | Proximity sensor in pulse oximeter |
US11961616B2 (en) | 2014-08-26 | 2024-04-16 | Vccb Holdings, Inc. | Real-time monitoring systems and methods in a healthcare environment |
US12237081B2 (en) | 2014-08-26 | 2025-02-25 | Vccb Holdings, Inc. | Real-time monitoring systems and methods in a healthcare environment |
US11581091B2 (en) | 2014-08-26 | 2023-02-14 | Vccb Holdings, Inc. | Real-time monitoring systems and methods in a healthcare environment |
US12201420B2 (en) | 2014-09-04 | 2025-01-21 | Masimo Corporation | Total hemoglobin screening sensor |
US11331013B2 (en) | 2014-09-04 | 2022-05-17 | Masimo Corporation | Total hemoglobin screening sensor |
US11103134B2 (en) | 2014-09-18 | 2021-08-31 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US11850024B2 (en) | 2014-09-18 | 2023-12-26 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US12220205B2 (en) | 2014-09-18 | 2025-02-11 | Masimo Semiconductor, Inc. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
US11717218B2 (en) | 2014-10-07 | 2023-08-08 | Masimo Corporation | Modular physiological sensor |
US12036014B2 (en) | 2015-01-23 | 2024-07-16 | Masimo Corporation | Nasal/oral cannula system and manufacturing |
US12207419B2 (en) | 2015-02-06 | 2025-01-21 | Masimo Corporation | Fold flex circuit for LNOP |
US11602289B2 (en) | 2015-02-06 | 2023-03-14 | Masimo Corporation | Soft boot pulse oximetry sensor |
US12127834B2 (en) | 2015-02-06 | 2024-10-29 | Masimo Corporation | Soft boot pulse oximetry sensor |
US11894640B2 (en) | 2015-02-06 | 2024-02-06 | Masimo Corporation | Pogo pin connector |
US11178776B2 (en) | 2015-02-06 | 2021-11-16 | Masimo Corporation | Fold flex circuit for LNOP |
US11903140B2 (en) | 2015-02-06 | 2024-02-13 | Masimo Corporation | Fold flex circuit for LNOP |
US11437768B2 (en) | 2015-02-06 | 2022-09-06 | Masimo Corporation | Pogo pin connector |
US12015226B2 (en) | 2015-02-06 | 2024-06-18 | Masimo Corporation | Pogo pin connector |
US12004883B2 (en) | 2015-05-04 | 2024-06-11 | Willow Laboratories, Inc. | Noninvasive sensor system with visual infographic display |
US11291415B2 (en) | 2015-05-04 | 2022-04-05 | Cercacor Laboratories, Inc. | Noninvasive sensor system with visual infographic display |
US11653862B2 (en) | 2015-05-22 | 2023-05-23 | Cercacor Laboratories, Inc. | Non-invasive optical physiological differential pathlength sensor |
US12150760B2 (en) | 2015-05-22 | 2024-11-26 | Willow Laboratories, Inc. | Non-invasive optical physiological differential pathlength sensor |
US10991135B2 (en) | 2015-08-11 | 2021-04-27 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
US11605188B2 (en) | 2015-08-11 | 2023-03-14 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
US11967009B2 (en) | 2015-08-11 | 2024-04-23 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
US12133717B2 (en) | 2015-08-31 | 2024-11-05 | Masimo Corporation | Systems and methods for patient fall detection |
US11089963B2 (en) | 2015-08-31 | 2021-08-17 | Masimo Corporation | Systems and methods for patient fall detection |
US12150739B2 (en) | 2015-08-31 | 2024-11-26 | Masimo Corporation | Systems and methods for patient fall detection |
US11576582B2 (en) | 2015-08-31 | 2023-02-14 | Masimo Corporation | Patient-worn wireless physiological sensor |
US11864922B2 (en) | 2015-09-04 | 2024-01-09 | Cercacor Laboratories, Inc. | Low-noise sensor system |
US11504066B1 (en) | 2015-09-04 | 2022-11-22 | Cercacor Laboratories, Inc. | Low-noise sensor system |
US11679579B2 (en) | 2015-12-17 | 2023-06-20 | Masimo Corporation | Varnish-coated release liner |
US12201702B1 (en) | 2016-02-12 | 2025-01-21 | Masimo Corporation | Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles |
US10993662B2 (en) | 2016-03-04 | 2021-05-04 | Masimo Corporation | Nose sensor |
US11272883B2 (en) | 2016-03-04 | 2022-03-15 | Masimo Corporation | Physiological sensor |
US11931176B2 (en) | 2016-03-04 | 2024-03-19 | Masimo Corporation | Nose sensor |
US11191484B2 (en) | 2016-04-29 | 2021-12-07 | Masimo Corporation | Optical sensor tape |
US12004877B2 (en) | 2016-04-29 | 2024-06-11 | Masimo Corporation | Optical sensor tape |
US11706029B2 (en) | 2016-07-06 | 2023-07-18 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
US12107960B2 (en) | 2016-07-06 | 2024-10-01 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
US11202571B2 (en) | 2016-07-07 | 2021-12-21 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
US12070293B2 (en) | 2016-07-07 | 2024-08-27 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
US11076777B2 (en) | 2016-10-13 | 2021-08-03 | Masimo Corporation | Systems and methods for monitoring orientation to reduce pressure ulcer formation |
US12138079B2 (en) | 2016-11-30 | 2024-11-12 | Masimo Corporation | Haemodynamic monitor with improved filtering |
US12232888B2 (en) | 2016-12-02 | 2025-02-25 | Masimo Corporation | Multi-site noninvasive measurement of a physiological parameter |
US11504058B1 (en) | 2016-12-02 | 2022-11-22 | Masimo Corporation | Multi-site noninvasive measurement of a physiological parameter |
US11864890B2 (en) | 2016-12-22 | 2024-01-09 | Cercacor Laboratories, Inc. | Methods and devices for detecting intensity of light with translucent detector |
US11291061B2 (en) | 2017-01-18 | 2022-03-29 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
US11825536B2 (en) | 2017-01-18 | 2023-11-21 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
US11830349B2 (en) | 2017-02-24 | 2023-11-28 | Masimo Corporation | Localized projection of audible noises in medical settings |
US11816771B2 (en) | 2017-02-24 | 2023-11-14 | Masimo Corporation | Augmented reality system for displaying patient data |
US11969269B2 (en) | 2017-02-24 | 2024-04-30 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US11086609B2 (en) | 2017-02-24 | 2021-08-10 | Masimo Corporation | Medical monitoring hub |
US11901070B2 (en) | 2017-02-24 | 2024-02-13 | Masimo Corporation | System for displaying medical monitoring data |
US11096631B2 (en) | 2017-02-24 | 2021-08-24 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US11596365B2 (en) | 2017-02-24 | 2023-03-07 | Masimo Corporation | Modular multi-parameter patient monitoring device |
US11410507B2 (en) | 2017-02-24 | 2022-08-09 | Masimo Corporation | Localized projection of audible noises in medical settings |
US12205208B2 (en) | 2017-02-24 | 2025-01-21 | Masimo Corporation | Augmented reality system for displaying patient data |
US12211617B2 (en) | 2017-02-24 | 2025-01-28 | Masimo Corporation | System for displaying medical monitoring data |
US11886858B2 (en) | 2017-02-24 | 2024-01-30 | Masimo Corporation | Medical monitoring hub |
US11185262B2 (en) | 2017-03-10 | 2021-11-30 | Masimo Corporation | Pneumonia screener |
US11534110B2 (en) | 2017-04-18 | 2022-12-27 | Masimo Corporation | Nose sensor |
US12220257B2 (en) | 2017-04-18 | 2025-02-11 | Masimo Corporation | Nose sensor |
US12004875B2 (en) | 2017-04-18 | 2024-06-11 | Masimo Corporation | Nose sensor |
US11813036B2 (en) | 2017-04-26 | 2023-11-14 | Masimo Corporation | Medical monitoring device having multiple configurations |
US12263018B2 (en) | 2017-04-28 | 2025-04-01 | Masimo Corporation | Spot check measurement system |
US12011264B2 (en) | 2017-05-08 | 2024-06-18 | Masimo Corporation | System for displaying and controlling medical monitoring data |
US11992311B2 (en) | 2017-07-13 | 2024-05-28 | Willow Laboratories, Inc. | Medical monitoring device for harmonizing physiological measurements |
US11026604B2 (en) | 2017-07-13 | 2021-06-08 | Cercacor Laboratories, Inc. | Medical monitoring device for harmonizing physiological measurements |
US11705666B2 (en) | 2017-08-15 | 2023-07-18 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
US12142875B2 (en) | 2017-08-15 | 2024-11-12 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
USD1031729S1 (en) | 2017-08-15 | 2024-06-18 | Masimo Corporation | Connector |
USD925597S1 (en) | 2017-10-31 | 2021-07-20 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US10987066B2 (en) | 2017-10-31 | 2021-04-27 | Masimo Corporation | System for displaying oxygen state indications |
USD1044828S1 (en) | 2017-10-31 | 2024-10-01 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US12059274B2 (en) | 2017-10-31 | 2024-08-13 | Masimo Corporation | System for displaying oxygen state indications |
US11766198B2 (en) | 2018-02-02 | 2023-09-26 | Cercacor Laboratories, Inc. | Limb-worn patient monitoring device |
US11109818B2 (en) | 2018-04-19 | 2021-09-07 | Masimo Corporation | Mobile patient alarm display |
US11844634B2 (en) | 2018-04-19 | 2023-12-19 | Masimo Corporation | Mobile patient alarm display |
US12193849B2 (en) | 2018-04-19 | 2025-01-14 | Masimo Corporation | Mobile patient alarm display |
US11883129B2 (en) | 2018-04-24 | 2024-01-30 | Cercacor Laboratories, Inc. | Easy insert finger sensor for transmission based spectroscopy sensor |
US12097043B2 (en) | 2018-06-06 | 2024-09-24 | Masimo Corporation | Locating a locally stored medication |
US11627919B2 (en) | 2018-06-06 | 2023-04-18 | Masimo Corporation | Opioid overdose monitoring |
US11564642B2 (en) | 2018-06-06 | 2023-01-31 | Masimo Corporation | Opioid overdose monitoring |
US12238489B2 (en) | 2018-07-10 | 2025-02-25 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US11812229B2 (en) | 2018-07-10 | 2023-11-07 | Masimo Corporation | Patient monitor alarm speaker analyzer |
US12257183B2 (en) | 2018-08-22 | 2025-03-25 | Masimo Corporation | Core body temperature measurement |
US11872156B2 (en) | 2018-08-22 | 2024-01-16 | Masimo Corporation | Core body temperature measurement |
USD917564S1 (en) | 2018-10-11 | 2021-04-27 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
US11406286B2 (en) | 2018-10-11 | 2022-08-09 | Masimo Corporation | Patient monitoring device with improved user interface |
US12156732B2 (en) | 2018-10-11 | 2024-12-03 | Masimo Corporation | Patient connector assembly with vertical detents |
USD916135S1 (en) | 2018-10-11 | 2021-04-13 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
US12053280B2 (en) | 2018-10-11 | 2024-08-06 | Masimo Corporation | Low noise oximetry cable |
USD917550S1 (en) | 2018-10-11 | 2021-04-27 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD998630S1 (en) | 2018-10-11 | 2023-09-12 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
US11389093B2 (en) | 2018-10-11 | 2022-07-19 | Masimo Corporation | Low noise oximetry cable |
USD998631S1 (en) | 2018-10-11 | 2023-09-12 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD998625S1 (en) | 2018-10-11 | 2023-09-12 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
US11992308B2 (en) | 2018-10-11 | 2024-05-28 | Masimo Corporation | Patient monitoring device with improved user interface |
USD999244S1 (en) | 2018-10-11 | 2023-09-19 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD999245S1 (en) | 2018-10-11 | 2023-09-19 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD999246S1 (en) | 2018-10-11 | 2023-09-19 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD1041511S1 (en) | 2018-10-11 | 2024-09-10 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
USD989327S1 (en) | 2018-10-12 | 2023-06-13 | Masimo Corporation | Holder |
USD1013179S1 (en) | 2018-10-12 | 2024-01-30 | Masimo Corporation | Sensor device |
US12257022B2 (en) | 2018-10-12 | 2025-03-25 | Masimo Corporation | System for transmission of sensor data using dual communication protocol |
US11272839B2 (en) | 2018-10-12 | 2022-03-15 | Ma Simo Corporation | System for transmission of sensor data using dual communication protocol |
USD957648S1 (en) | 2018-10-12 | 2022-07-12 | Masimo Corporation | Dongle |
US12042245B2 (en) | 2018-10-12 | 2024-07-23 | Masimo Corporation | Medical systems and methods |
US11464410B2 (en) | 2018-10-12 | 2022-10-11 | Masimo Corporation | Medical systems and methods |
US12004869B2 (en) | 2018-11-05 | 2024-06-11 | Masimo Corporation | System to monitor and manage patient hydration via plethysmograph variablity index in response to the passive leg raising |
US11986289B2 (en) | 2018-11-27 | 2024-05-21 | Willow Laboratories, Inc. | Assembly for medical monitoring device with multiple physiological sensors |
US11684296B2 (en) | 2018-12-21 | 2023-06-27 | Cercacor Laboratories, Inc. | Noninvasive physiological sensor |
US12064240B2 (en) | 2018-12-21 | 2024-08-20 | Willow Laboratories, Inc. | Noninvasive physiological sensor |
US12066426B1 (en) | 2019-01-16 | 2024-08-20 | Masimo Corporation | Pulsed micro-chip laser for malaria detection |
US12076159B2 (en) | 2019-02-07 | 2024-09-03 | Masimo Corporation | Combining multiple QEEG features to estimate drug-independent sedation level using machine learning |
US12220207B2 (en) | 2019-02-26 | 2025-02-11 | Masimo Corporation | Non-contact core body temperature measurement systems and methods |
US12178581B2 (en) | 2019-04-17 | 2024-12-31 | Masimo Corporation | Patient monitoring systems, devices, and methods |
US11701043B2 (en) | 2019-04-17 | 2023-07-18 | Masimo Corporation | Blood pressure monitor attachment assembly |
US11637437B2 (en) | 2019-04-17 | 2023-04-25 | Masimo Corporation | Charging station for physiological monitoring device |
US11986305B2 (en) | 2019-04-17 | 2024-05-21 | Masimo Corporation | Liquid inhibiting air intake for blood pressure monitor |
US11678829B2 (en) | 2019-04-17 | 2023-06-20 | Masimo Corporation | Physiological monitoring device attachment assembly |
USD933234S1 (en) | 2019-08-16 | 2021-10-12 | Masimo Corporation | Patient monitor |
USD1066672S1 (en) | 2019-08-16 | 2025-03-11 | Masimo Corporation | Patient monitor and holder |
USD985498S1 (en) | 2019-08-16 | 2023-05-09 | Masimo Corporation | Connector |
US12207901B1 (en) | 2019-08-16 | 2025-01-28 | Masimo Corporation | Optical detection of transient vapor nanobubbles in a microfluidic device |
USD967433S1 (en) | 2019-08-16 | 2022-10-18 | Masimo Corporation | Patient monitor |
USD1037462S1 (en) | 2019-08-16 | 2024-07-30 | Masimo Corporation | Holder for a patient monitor |
USD933233S1 (en) | 2019-08-16 | 2021-10-12 | Masimo Corporation | Blood pressure device |
US11832940B2 (en) | 2019-08-27 | 2023-12-05 | Cercacor Laboratories, Inc. | Non-invasive medical monitoring device for blood analyte measurements |
US12131661B2 (en) | 2019-10-03 | 2024-10-29 | Willow Laboratories, Inc. | Personalized health coaching system |
USD950738S1 (en) | 2019-10-18 | 2022-05-03 | Masimo Corporation | Electrode pad |
USD927699S1 (en) | 2019-10-18 | 2021-08-10 | Masimo Corporation | Electrode pad |
US12235941B2 (en) | 2019-10-18 | 2025-02-25 | Masimo Corporation | Display layout and interactive objects for patient monitoring |
US11803623B2 (en) | 2019-10-18 | 2023-10-31 | Masimo Corporation | Display layout and interactive objects for patient monitoring |
US12235947B2 (en) | 2019-10-18 | 2025-02-25 | Masimo Corporation | Display layout and interactive objects for patient monitoring |
US11951186B2 (en) | 2019-10-25 | 2024-04-09 | Willow Laboratories, Inc. | Indicator compounds, devices comprising indicator compounds, and methods of making and using the same |
US12272445B1 (en) | 2019-12-05 | 2025-04-08 | Masimo Corporation | Automated medical coding |
US12114974B2 (en) | 2020-01-13 | 2024-10-15 | Masimo Corporation | Wearable device with physiological parameters monitoring |
US12128213B2 (en) | 2020-01-30 | 2024-10-29 | Willow Laboratories, Inc. | Method of operating redundant staggered disease management systems |
US11721105B2 (en) | 2020-02-13 | 2023-08-08 | Masimo Corporation | System and method for monitoring clinical activities |
US11879960B2 (en) | 2020-02-13 | 2024-01-23 | Masimo Corporation | System and method for monitoring clinical activities |
US12067783B2 (en) | 2020-02-13 | 2024-08-20 | Masimo Corporation | System and method for monitoring clinical activities |
US12048534B2 (en) | 2020-03-04 | 2024-07-30 | Willow Laboratories, Inc. | Systems and methods for securing a tissue site to a sensor |
US12042252B2 (en) | 2020-03-20 | 2024-07-23 | Masimo Corporation | Remote patient management and monitoring systems and methods |
US11730379B2 (en) | 2020-03-20 | 2023-08-22 | Masimo Corporation | Remote patient management and monitoring systems and methods |
US11974833B2 (en) | 2020-03-20 | 2024-05-07 | Masimo Corporation | Wearable device for noninvasive body temperature measurement |
US12064217B2 (en) | 2020-03-20 | 2024-08-20 | Masimo Corporation | Remote patient management and monitoring systems and methods |
US12127838B2 (en) | 2020-04-22 | 2024-10-29 | Willow Laboratories, Inc. | Self-contained minimal action invasive blood constituent system |
USD1060680S1 (en) | 2020-05-11 | 2025-02-04 | Masimo Corporation | Blood pressure monitor |
USD979516S1 (en) | 2020-05-11 | 2023-02-28 | Masimo Corporation | Connector |
USD965789S1 (en) | 2020-05-11 | 2022-10-04 | Masimo Corporation | Blood pressure monitor |
USD933232S1 (en) | 2020-05-11 | 2021-10-12 | Masimo Corporation | Blood pressure monitor |
US12029844B2 (en) | 2020-06-25 | 2024-07-09 | Willow Laboratories, Inc. | Combination spirometer-inhaler |
USD980091S1 (en) | 2020-07-27 | 2023-03-07 | Masimo Corporation | Wearable temperature measurement device |
USD1022729S1 (en) | 2020-07-27 | 2024-04-16 | Masimo Corporation | Wearable temperature measurement device |
USD974193S1 (en) | 2020-07-27 | 2023-01-03 | Masimo Corporation | Wearable temperature measurement device |
US12082926B2 (en) | 2020-08-04 | 2024-09-10 | Masimo Corporation | Optical sensor with multiple detectors or multiple emitters |
US11986067B2 (en) | 2020-08-19 | 2024-05-21 | Masimo Corporation | Strap for a wearable device |
US12178852B2 (en) | 2020-09-30 | 2024-12-31 | Willow Laboratories, Inc. | Insulin formulations and uses in infusion devices |
USD973685S1 (en) | 2020-09-30 | 2022-12-27 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD973686S1 (en) | 2020-09-30 | 2022-12-27 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD973072S1 (en) | 2020-09-30 | 2022-12-20 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD1061585S1 (en) | 2020-10-16 | 2025-02-11 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD1072836S1 (en) | 2020-10-16 | 2025-04-29 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD1072837S1 (en) | 2020-10-27 | 2025-04-29 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
USD997365S1 (en) | 2021-06-24 | 2023-08-29 | Masimo Corporation | Physiological nose sensor |
USD1042852S1 (en) | 2021-06-24 | 2024-09-17 | Masimo Corporation | Physiological nose sensor |
USD1036293S1 (en) | 2021-08-17 | 2024-07-23 | Masimo Corporation | Straps for a wearable device |
US12126683B2 (en) | 2021-08-31 | 2024-10-22 | Masimo Corporation | Privacy switch for mobile communications device |
USD1000975S1 (en) | 2021-09-22 | 2023-10-10 | Masimo Corporation | Wearable temperature measurement device |
USD1050910S1 (en) | 2021-09-22 | 2024-11-12 | Masimo Corporation | Portion of a wearable temperature measurement device |
USD1048571S1 (en) | 2021-10-07 | 2024-10-22 | Masimo Corporation | Bite block |
US12236767B2 (en) | 2022-01-11 | 2025-02-25 | Masimo Corporation | Machine learning based monitoring system |
USD1063893S1 (en) | 2022-03-11 | 2025-02-25 | Masimo Corporation | Electronic device |
USD1057159S1 (en) | 2022-03-29 | 2025-01-07 | Masimo Corporation | Electronic measurement device |
USD1057160S1 (en) | 2022-03-29 | 2025-01-07 | Masimo Corporation | Electronic measurement device |
USD1048908S1 (en) | 2022-10-04 | 2024-10-29 | Masimo Corporation | Wearable sensor |
USD1071195S1 (en) | 2022-10-06 | 2025-04-15 | Masimo Corporation | Mounting device for a medical transducer |
USD1042596S1 (en) | 2022-12-12 | 2024-09-17 | Masimo Corporation | Monitoring camera |
USD1068656S1 (en) | 2023-05-11 | 2025-04-01 | Masimo Corporation | Charger |
USD1066244S1 (en) | 2023-05-11 | 2025-03-11 | Masimo Corporation | Charger |
US12302426B2 (en) | 2023-09-28 | 2025-05-13 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
US12295708B2 (en) | 2024-06-11 | 2025-05-13 | Masimo Corporation | Remote patient management and monitoring systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US20210169418A1 (en) | 2021-06-10 |
US12220257B2 (en) | 2025-02-11 |
US11534110B2 (en) | 2022-12-27 |
US12004875B2 (en) | 2024-06-11 |
US20240398344A1 (en) | 2024-12-05 |
WO2018194992A1 (en) | 2018-10-25 |
US20180296161A1 (en) | 2018-10-18 |
US20230181111A1 (en) | 2023-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12220257B2 (en) | Nose sensor | |
US11931176B2 (en) | Nose sensor | |
US11272883B2 (en) | Physiological sensor | |
US20170251974A1 (en) | Nose sensor | |
US10856788B2 (en) | Noninvasive multi-parameter patient monitor | |
US8145288B2 (en) | Medical sensor for reducing signal artifacts and technique for using the same | |
JP2019502422A (en) | Pulse oximeter using disposable multi-material stretch bandage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: MASIMO CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARMA, VIKRANT;PEREA, PHILIP;RINES, JENNIFER;AND OTHERS;SIGNING DATES FROM 20180621 TO 20180719;REEL/FRAME:048459/0285 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |