US11734115B2 - Method and system for facilitating write latency reduction in a queue depth of one scenario - Google Patents
Method and system for facilitating write latency reduction in a queue depth of one scenario Download PDFInfo
- Publication number
- US11734115B2 US11734115B2 US17/135,404 US202017135404A US11734115B2 US 11734115 B2 US11734115 B2 US 11734115B2 US 202017135404 A US202017135404 A US 202017135404A US 11734115 B2 US11734115 B2 US 11734115B2
- Authority
- US
- United States
- Prior art keywords
- data
- channels
- garbage collection
- operations
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims description 42
- 230000009467 reduction Effects 0.000 title description 10
- 238000012545 processing Methods 0.000 claims description 23
- 238000012937 correction Methods 0.000 claims description 10
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000026676 system process Effects 0.000 abstract description 4
- 238000013523 data management Methods 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 description 19
- 238000004891 communication Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 238000005192 partition Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1076—Parity data used in redundant arrays of independent storages, e.g. in RAID systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3034—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a storage system, e.g. DASD based or network based
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
- G06F12/0246—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0253—Garbage collection, i.e. reclamation of unreferenced memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
- G06F13/1673—Details of memory controller using buffers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1041—Resource optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7203—Temporary buffering, e.g. using volatile buffer or dedicated buffer blocks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7205—Cleaning, compaction, garbage collection, erase control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7209—Validity control, e.g. using flags, time stamps or sequence numbers
Definitions
- This disclosure is generally related to the field of data storage. More specifically, this disclosure is related to a method and system for facilitating a write latency reduction in a queue depth of one scenario.
- a storage system can include storage servers with one or more storage devices or drives (such as a solid-state drive (SSD)). Data can be stored in a non-volatile storage media of an SSD, e.g., in Not-And flash (NAND) flash.
- SSD solid-state drive
- NAND Not-And flash
- Performance-demanding applications continue to result in increasing the queue depth of a storage device to the order of the hundreds in order to achieve an enhanced throughput.
- parallelism continues to grow at an increasing pace in order to address or overcome the generally long write latency associated with NAND flash. While the performance of an SSD in handling a queue depth of one may not be a practical scenario, the performance in handling a queue depth of one may still be used to evaluate an SSD as a non-trivial metric of the qualifications and features of the SSD.
- PCIe Peripheral Component Interconnect Express
- NVMe Non-Volatile Memory Express
- a write request and associated data must travel through the PCIe interface four times (as depicted below in relation to FIG. 1 ), which can lead to challenges with reducing the latency, and also presents a challenge in obtaining a decreased write latency in the queue depth of one scenario.
- reducing the write latency in a queue depth of one scenario remains a challenge.
- One embodiment provides a system which facilitates data management.
- the system processes, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device.
- the system writes the data to a first data buffer of the storage device while bypassing a first interface and a memory controller.
- the system sends the write request to the memory controller via the first interface.
- the system writes, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory.
- the system performs a garbage collection operation on the data, which comprises accessing the data via a second channel allocated for garbage collection operations.
- the system performs the garbage collection operation on the data by the following operations.
- the system detects a condition which triggers performing the garbage collection operation on the data.
- the system retrieves the data from the non-volatile memory.
- the system performs the garbage collection operation on the retrieved data while bypassing an error correction code (ECC)-encoding module.
- ECC error correction code
- the system performs the garbage collection operation on the retrieved data while bypassing an ECC-encoding module by the following operations.
- the system performs an error correction code (ECC) decoding on the retrieved data.
- ECC error correction code
- the system stores the decoded data in a second data buffer which stores only data related to garbage collection operations.
- the system performs, by a first module which protects only data related to the garbage collection operations, a data-protecting operation on the decoded data.
- the second data buffer and the first module comprise hardware or firmware associated with a controller of the storage device, and the first module is a redundant array of independent disks (RAID) encoding module.
- RAID redundant array of independent disks
- the first interface is a Peripheral Component Interconnect Express (PCIe) interface
- the memory controller is a Non-Volatile Memory Express (NVMe) controller.
- PCIe Peripheral Component Interconnect Express
- NVMe Non-Volatile Memory Express
- the system dynamically allocates the plurality of channels as: a first group of a first set of channels which comprise the first channel and channels allocated for only host write operations; and a second group of a second set of channels which comprise the second channel and channels allocated for only garbage collection operations. Responsive to detecting a first predetermined threshold, the system shifts the allocation of the channels between the first group and the second group.
- the system shifts the allocation of the channels between the first group and the second group by the following operations.
- the system allocates a different set of channels in the second group for only garbage collection operations, wherein the different set of channels is distinct from the second set of channels, and the system allocates a remainder of the plurality of channels in the first group for only host write operations.
- the write request and the data associated with the write request are processed in parallel or at a similar time by the storage device.
- FIG. 1 presents a flowchart illustrating a method for facilitating a write operation, in accordance with the prior art.
- FIG. 2 A illustrates an exemplary environment for a write flow, including the command transfer and the data transfer in a linear process, in accordance with the prior art.
- FIG. 2 B illustrates an exemplary environment for a write flow, including a data transfer and a command transfer in a parallel process, in accordance with an embodiment of the present application.
- FIG. 3 illustrates an exemplary controller, including dedicated hardware for garbage collection operations, in accordance with an embodiment of the present application.
- FIG. 4 illustrates a diagram of allocated physical bands for host write operations and garbage collection operations, in accordance with an embodiment of the present application.
- FIG. 5 presents a diagram illustrating horizontal band rotation for isolation of garbage collection operations, in accordance with an embodiment of the present application.
- FIG. 6 A presents a flowchart illustrating a method for facilitating a write latency reduction, in accordance with an embodiment of the present application.
- FIG. 6 B presents a flowchart illustrating a method for facilitating a write latency reduction, in accordance with an embodiment of the present application.
- FIG. 6 C presents a flowchart illustrating a method for facilitating a write latency reduction, in accordance with an embodiment of the present application.
- FIG. 7 illustrates an exemplary computer system that facilitates data movement while bypassing system memory, in accordance with an embodiment of the present application.
- FIG. 8 illustrates an exemplary apparatus that facilitates data movement by bypassing system memory, in accordance with an embodiment of the present application.
- the embodiments described herein provide a system which facilitates a reduction in the write latency associated with handling a queue depth of one by providing: a command transfer and a data transfer in parallel; dedicated hardware for garbage collection; and a dynamic allocation and rotation of NAND channels for each of host write operations and garbage collection operations.
- performance-demanding applications continue to result in increasing the queue depth of a storage device to the order of the hundreds in order to achieve an enhanced throughput.
- parallelism continues to grow at an increasing pace in order to address or overcome the generally long write latency associated with NAND flash. While the performance of an SSD in handling a queue depth of one may not be a practical scenario, the performance in handling a queue depth of one may still be used to evaluate an SSD as a non-trivial metric of the qualifications and features of the SSD.
- One current solution for increasing the performance of an SSD involves using a PCIe interface, which places the storage drive closer to the host and can provide a lower latency.
- the NVMe protocol can utilize the PCIe interface in order to communicate with the host.
- a write request and associated data must travel through the PCIe interface four times (as depicted below in relation to FIG. 1 ), which can lead to challenges in reducing the latency.
- These multiple data communications can also present a challenge in obtaining a decreased write latency in the queue depth of one scenario.
- reducing the write latency in a queue depth of one scenario remains a challenge.
- the embodiments described herein address the challenge of reducing the write latency associated with a queue depth of one scenario by providing a system with several features.
- the system can transfer a write command and its associated data in parallel, which can result in saving time which may otherwise be spent on additional communications between the NVMe controller, the PCIe interface, and the host, as described below in relation to FIGS. 2 A and 2 B .
- the system can isolate the impact of garbage collection operations in the queue depth of one scenario by utilizing a stand-alone buffer and a redundant array of independent disks (RAID) circuit to handle the garbage collection operations, as described below in relation to FIG. 3 .
- RAID redundant array of independent disks
- the system can allocate specific bands or channels (e.g., into partitions) for host write operations and for garbage collection operations, which can eliminate the conflict between a garbage collection operation (read or write) and a host write operation, as described below in relation to FIG. 4 .
- the system can also rotate the partitions of bands or channels in order to balance the NAND usage and the load on each channel, as described below in relation to FIG. 5 .
- the described embodiments provide a system which can reduce the write latency associated with a queue depth of one scenario, by: improving the host data movement (via a parallel transfer of a write request and associated data); removing occupation of the backend controller (via dedicated hardware for garbage collection); and eliminating conflicts between NAND channels (via dynamic rotation of allocated bands specifically for garbage collection operations and host write operations).
- the parallel data transfer can result in reducing the redundant wait time involved with the host interface protocol in the conventional storage system, while the isolation of the backend resources and the dynamic allocation of the NAND channels can ensure a non-interrupted and continuous programming flow to execute host write operations.
- a “distributed storage system” or a “storage system” can include multiple storage servers.
- a “storage server” or a “storage system” can refer to a computing device which can include multiple storage devices or storage drives.
- a “storage device” or a “storage drive” refers to a device or a drive with a non-volatile memory which can provide persistent storage of data, e.g., a solid-state drive (SSD), or a flash-based storage device.
- SSD solid-state drive
- a storage system can also be a computer system.
- Non-volatile memory refers to storage media which may be used for persistent storage of data, e.g., flash memory of a NAND die of an SSD, magnetoresistive random access memory (MRAM), phase change memory (PCM), resistive random access memory (ReRAM), or another non-volatile memory.
- MRAM magnetoresistive random access memory
- PCM phase change memory
- ReRAM resistive random access memory
- a “computing device” refers to any server, device, node, entity, drive, or any other entity which can provide any computing capabilities.
- queue depth refers to the number of pending input/output (I/O) requests for a volume, storage unit, or other storage device.
- queue depth of one refers to a scenario in which the number of pending I/O requests for the volume, storage unit, or other storage device is one.
- FIG. 1 presents a flowchart illustrating a method 100 for facilitating a write operation, in accordance with the prior art.
- a storage system can include a host which communicates with an SSD.
- the SSD can include a controller, a Peripheral Component Interconnect Express (PCIe) interface, a Non-Volatile Memory express (NVMe) controller which can provide support for submission and completion queues, and a data buffer.
- PCIe Peripheral Component Interconnect Express
- NVMe Non-Volatile Memory express
- the host can set the doorknob in the submission queue, which is subsequently observed by the SSD controller.
- the SSD controller can receive the host request and respond by retrieving the host data through the PCIe interface.
- the SSD controller can notify the host of the completion of the data write by inserting the entry into the completion queue.
- the system can write the data from the data buffer to the NAND flash in an asynchronous manner.
- the host can access the completion queue through an interrupt mode or a polling mode in order to obtain acknowledgment for completion of the write request.
- the system inserts one entry (e.g., associated with a write request) into the submission queue (operation 102 ).
- the system sets the doorknob of the submission queue and notifies the SSD controller of the same (operation 104 ).
- the system accesses, by the controller, the submission queue to obtain the entry to be processed (operation 106 ).
- the system analyzes, by the NVMe controller, the command and processes the write request (operation 108 ).
- the system moves host data from the host memory into the SSD data buffer (operation 110 ).
- the system inserts one entry into the completion queue (operation 112 ).
- the system observes, by the host, the entry into the completion queue, and the system processes, by the host, the I/O callback (operation 114 ).
- the system notifies the SSD controller of completion of the I/O callback (operation 116 ), and the operation returns.
- FIG. 2 A illustrates an exemplary environment 200 for a write flow, including a command transfer and a data transfer in a linear process, in accordance with the prior art.
- Environment 200 can include a host 210 which communicates with an SSD 220 , which can include: a PCIe interface 222 ; an NVMe controller 224 ; a flash controller 226 ; a write buffer 228 ; a NAND interface 230 ; and NAND flash memory 232 , 234 , and 236 .
- the submission queue entry and the NVMe command analysis (e.g., communications 240 and 242 , corresponding to operations 102 - 108 of a write operation in a conventional system) occur prior to the actual data transfer from the host to the write buffer (e.g., as indicated by the dashed arrows 244 , 246 , and 248 ).
- the data can subsequently be written from write buffer 228 to NAND flash 232 - 236 via flash controller 226 and NAND interface 230 .
- the data transfer from host 210 to write buffer 228 cannot occur until the write request has first been processed by PCIe interface 272 and NVMe controller 274 (via communications 240 and 242 ), which can result in an increased latency in executing the write operation.
- FIG. 2 B illustrates an exemplary environment 250 for a write flow, including the data transfer and the command transfer in a parallel process, in accordance with an embodiment of the present application.
- environment 250 can include a host 260 which communicates with an SSD 270 , which can include: a PCIe interface 272 ; an NVMe controller 274 ; a flash controller 276 ; a write buffer 278 ; a NAND interface 280 ; and NAND flash memory 282 , 284 , and 286 .
- Write buffer 278 can include a host memory 279 , which can be used to store data which is transferred from or received directly from host 260 while bypassing PCIe interface 272 and NVMe controller 274 .
- Host memory 279 can be a region or portion of write buffer 278 , which region is physically allocated from write buffer 278 and can be logically associated with host 260 . That is, host memory 279 can logically belong to or operate under the control of host 260 , but the data can physically accomplish traveling from host 260 to SSD 270 through PCIe 272 .
- the submission queue entry and the NVMe command analysis can occur in parallel with the actual data transfer from host 260 to host memory 279 of write buffer 278 (e.g., as indicated by dashed arrows 294 and 296 ). That is, host 260 can send a write request and associated data, where the write request is processed via communications 290 and 292 by PCIe interface 272 and NVMe controller 274 , and the data can be processed by a direct transfer to host memory 279 via communications 294 and 296 .
- the associated data may already be stored in host memory 279 of write buffer 279 of SSD 270 . Because the data is already stored in write buffer 278 , the system can write the data from write buffer 278 to NAND flash 282 - 286 without waiting for communications 290 and 292 to finish, and without waiting for SSD 270 to retrieve the associated data from host 260 (as depicted above in relation to FIG. 2 A ).
- the data transfer from the host to the write buffer can occur in parallel and separate from the write request being processed by the PCIe interface and the NVMe controller, which in turn can result in the data being written to the NAND flash without waiting for completion of the write request processing (e.g., communications 290 and 292 ).
- This parallel processing of the write command and the associated data can result in a reduced latency in executing the write operation, which in turn can result in a reduced latency for the queue depth of one scenario.
- performing a sequential write operation can be straightforward, as the asynchronous write from the data buffer (e.g., write buffer 278 ) to the NAND flash (e.g., 282 - 286 ) can depend mainly on the throughput of the backend operations.
- the system may trigger a garbage collection operation, which can, from time to time, consume the resources of the SSD controller and the NAND channels. This can result in an unstable performance for the SSD, e.g., based on the introduction of the uncontrollable (or uncontrolled) garbage collection operations.
- read operations generally take higher priority than write operations.
- a garbage collection read operation would take priority over a host write operation, which can result in delaying the host write operation and may also result in congestion or delay in executing the host write operation.
- the embodiments described herein address the instability associated with these uncontrollable garbage collection operations by providing dedicated hardware (or firmware) to isolate the impact of the garbage collection operations in the queue depth of one scenario.
- the system reads valid data from a block or other unit to be recycled from NAND flash, and writes the valid data back into a new block or other unit of the NAND flash.
- the data buffer and the RAID module are shared by both garbage collection operations and host write operations.
- the described embodiments instead provide a stand-alone data buffer and a RAID circuit to handle solely and specifically the garbage collection operations.
- the stand-alone data buffer and RAID circuit can be implemented to handle only operations and data related to garbage collection operations.
- the system can read raw data from the NAND, an ECC decoder can remove the errors from the raw data to obtain a decoded codeword, and a cyclic redundancy check (CRC) module can check the sanity or integrity of the data. Because the decoded codeword includes the ECC parity, the recycled data can bypass the ECC encoder and use its specific RAID circuit to accumulate the RAID parity, which can also be written into the NAND flash, as described below in relation to FIG. 3 .
- CRC cyclic redundancy check
- FIG. 3 illustrates an exemplary controller 310 , including dedicated hardware for garbage collection operations, in accordance with an embodiment of the present application.
- Controller 310 in an environment 300 , can include: a host interface 312 ; a CRC module 314 ; an ECC encoder 316 ; a garbage collection (GC) RAID module 318 ; a garbage collection (GC) buffer 320 ; an ECC decoder 322 ; and a NAND interface 280 , which communicates with NAND flash memory 282 , 284 , and 286 , via, respectively, a channel_1 330 , a channel_2 332 , and a channel_N 334 .
- GC garbage collection
- NAND interface 280 which communicates with NAND flash memory 282 , 284 , and 286 , via, respectively, a channel_1 330 , a channel_2 332 , and a channel_N 334 .
- the system can detect a condition which triggers performing a garbage collection process on certain data (e.g., valid data associated with a block to be recycled).
- the system can retrieve the certain data from, e.g., NAND flash 284 via channel_2 332 , via NAND interface 280 .
- the data can be transmitted to ECC decoder 322 , which can perform an ECC decoding on the certain data to obtain a decoded codeword.
- ECC decoder 322 can send the decoded codeword to CRC module 314 , which can perform a CRC to ensure the sanity or integrity of the data.
- the decoded (and CRC checked) data can then be stored in a specific GC buffer 320 .
- GC buffer 320 can be a data buffer which stores only data related to garbage collection operations.
- the stored GC data can be sent to GC RAID module 318 , which can protect only data related to garbage collection operations.
- the data can be subsequently written to an appropriate block (e.g., an available or open block) of NAND flash 282 , 284 , or 286 , via, respectively, one of channels 330 , 332 , 334 , thus bypassing ECC encoder 316 .
- GC RAID module 318 and GC buffer 320 can be implemented as dedicated hardware or firmware of SSD controller 310 .
- the described embodiments can eliminate the shared usage of backend components (by both background garbage collection operations and host write operations) while processing data to be written to the non-volatile memory. This can result in solving the bottleneck in the performance (latency) of a host write operation which is conventionally caused by a read engine (which, in a conventional system, would need to handle both host flow operations and garbage collection operations). In turn, this can result in reducing the write latency associated with host write operations, including the queue depth of one scenario.
- the described embodiments can dynamically allocate bands, which can include a set of channels, to each of host write operations and garbage collection operations. That is, when writing data from the controller to the NAND flash, the system can allocate specific bands of channels, such that host write operations can be processed on a first set of channels, while garbage collection operations can be processed on a different second set of channels, as described below in relation to FIG. 4 .
- the system can also rotate the allocated bands or groups or set of channels, to balance both the usage of the NAND flash and the load on each channel, as described below in relation to FIG. 5 .
- FIG. 4 illustrates a diagram 400 of allocated physical bands for host write operations and garbage collection operations, in accordance with an embodiment of the present application.
- Diagram 400 can include: an SSD controller 402 ; NAND blocks 410 and 426 , including at least, respectively, blocks 412 and 428 , and accessed via a channel_ 1 (CH_ 1 ) 442 ; NAND blocks 414 and 430 , including at least, respectively, blocks 416 and 432 , and accessed via a channel_k (CH_k) 444 ; NAND blocks 418 and 434 , including at least, respectively, blocks 420 and 436 , and accessed via a channel_k+1 (CH_k+1) 446 ; and NAND blocks 422 and 438 , including at least, respectively, blocks 424 and 440 , and accessed via a channel_n (CH_n) 448 .
- NAND blocks 410 and 426 including at least, respectively, blocks 412 and 428 , and accessed via a channel_ 1 (CH
- the system can allocate for host write operations a host write band 460 , such as a first group of a first set of channels for host write operations.
- the system can also allocate for garbage collection operations a garbage collection band 470 , such as a second group of a second set of channels for garbage collection operations.
- Host write band 460 can include channels 442 and 444
- garbage collection band 470 can include channels 446 and 448 .
- a host read operation can occur on any channel at any time, e.g., at indicated by a host read 464 occurring via channel_k 444 of host write band 460 and a host read operation 476 occurring via channel_n 448 of garbage collection band 470 .
- the system can process a host write operation 462 by accessing a block of NAND flash memory via an allocated channel of host write band 460 , e.g., via channel_1 442 .
- the system can also process a garbage collection read 472 or a garbage collection write 474 by accessing a block of NAND flash memory via an allocated channel of garbage collection band 470 , e.g., via channel_k+1 446 .
- garbage collection operations can occur on (a channel of) a specifically GC-allocated band, which does not occupy or share space or resources of the page buffer and NAND channels used to execute host write operations.
- the queue depth of one scenario does not generate a throughput high enough to saturate multiple NAND channels in the backend, thus the host write band is sufficient to ensure the Quality of Service (QoS) for the performance of a random write operation.
- QoS Quality of Service
- the system can dynamically rotate the partition all of the NAND channels to transverse the NAND pages in a RAID group.
- the first predetermined threshold can be based on, e.g., a periodic interval; another predetermined time interval; historical usage of a channel or channels; a current load across the channels; an expected, predicted, or estimated load; a current traffic analysis; and an algorithm which ensures wear-leveling. This allows the system to balance out the both the usage of the NAND flash and the load on each channel.
- FIG. 5 presents a diagram 500 illustrating horizontal band rotation for isolation of garbage collection operations, in accordance with an embodiment of the present application.
- Diagram 500 illustrates a dynamic allocation or shifting of channels in a host write band and a garbage collection band at a plurality of times t 0 , t 1 , t 2 , and t 3 .
- a host write band 510 can include channels (e.g., 1-6) allocated for host write operations, while a garbage collection band 512 can include channels (e.g., 7-8) allocated for garbage collection operations.
- a garbage collection band 520 can include channels (e.g., 1-2) allocated for garbage collection operations, while a host write band 522 can include channels (e.g., 3-8) allocated for host write operations.
- a host write band 530 and a host write band 534 can include channels (e.g., respectively, 1-2 and 5-8) allocated for host write operations, while a garbage collection band 532 can include channels (e.g., 3-4) allocated for garbage collection operations.
- a host write band 540 and a host write band 544 can include channels (e.g., respectively, 1-4 and 7-8) allocated for host write operations, while a garbage collection band 542 can include channels (e.g., 5-6) allocated for garbage collection operations.
- diagram 500 depicts how the system can partition the NAND channels into bands, and can further adjust the partition of the NAND channels into the bands over time.
- the system can rotate or shift the allocation of the channels into each band, which allows the GC band to rotate through all other pages covered in the same RAID group.
- This dynamic partition, allocation, and rotation can ensure that all pages in a RAID group are covered, while also ensuring a decrease in the write latency associated with host write operations, including a queue depth of one scenario.
- FIG. 6 A presents a flowchart 600 illustrating a method for facilitating a write latency reduction, in accordance with an embodiment of the present application.
- the system processes, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device (operation 602 ).
- the system writes the data to a first data buffer of the storage device while bypassing a first interface and a memory controller (operation 604 ).
- the system sends the write request to the memory controller via the first interface (operation 606 ).
- the system writes, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory (operation 608 ).
- the system performs a garbage collection operation on the data, which comprises accessing the data via a second channel allocated for garbage collection operations (operation 610 ).
- the operation continues at Label A of FIG. 6 B .
- FIG. 6 B presents a flowchart 620 illustrating a method for facilitating a write latency reduction, in accordance with an embodiment of the present application.
- the system can perform a garbage collection operation on retrieved data while bypassing an ECC-encoding module.
- the system performs an error correction code (ECC) decoding on the retrieved data (operation 622 ).
- ECC error correction code
- the system stores the decoded data in a second data buffer which stores only data related to garbage collection operations (operation 624 ).
- the system performs, by a first module which protects only data related to the garbage collection operations, a data-protecting operation on the decoded data (operation 626 ).
- the second data buffer and the first module can comprise hardware or firmware associated with a controller of the storage device, and the first module can be a redundant array of independent disks (RAID) encoding module, as described above in relation to FIG. 3 .
- RAID redundant array of independent disks
- FIG. 6 C presents a flowchart 640 illustrating a method for facilitating a write latency reduction, in accordance with an embodiment of the present application.
- the operations of flowchart 640 can occur prior to or concurrent with the operations of flowcharts 600 and 620 .
- the system dynamically allocates the plurality of channels as: a first group of a first set of channels which comprise the first channel and channels allocated for only host write operations; and a second group of a second set of channels which comprise the second channel and channels allocated for only garbage collection operations (operation 642 ). If the system does not detect a first predetermined threshold (decision 644 ), the operation returns to decision 644 until the first predetermined threshold is detected.
- the system shifts the allocation of the channels between the first group and the second group (operation 646 ).
- the system allocates a different set of channels in the second group for only garbage collection operations, wherein the different set of channels is distinct from the second set of channels (operation 648 ), and the system allocates a remainder of the plurality of channels in the first group for only host write operations (operation 650 ).
- FIG. 7 illustrates an exemplary computer system 700 that facilitates data movement while bypassing system memory, in accordance with an embodiment of the present application.
- Computer system 700 includes a processor 702 , a volatile memory 706 , and a storage device 708 .
- computer system 700 can include a controller 704 (indicated by the dashed lines).
- Volatile memory 706 can include, e.g., random access memory (RAM), that serves as a managed memory, and can be used to store one or more memory pools.
- Storage device 708 can include persistent storage which can be managed or accessed via processor 702 (or controller 704 ).
- computer system 700 can be coupled to peripheral input/output (I/O) user devices 710 , e.g., a display device 711 , a keyboard 712 , and a pointing device 714 .
- I/O peripheral input/output
- Storage device 708 can store an operating system 716 , a content-processing system 718 , and data 734 .
- Content-processing system 718 can include instructions, which when executed by computer system 700 , can cause computer system 700 or processor 702 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 718 can include instructions for receiving and transmitting data packets, including data to be read or written, and an input/output (I/O) request (e.g., a read request or a write request) (communication module 720 ).
- I/O input/output
- Content-processing system 718 can further include instructions for processing, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device (request-processing module 722 ).
- Content-processing system 718 can include instructions for writing the data to a first data buffer of the storage device while bypassing a first interface and a memory controller (data-writing module 724 ).
- Content-processing system 718 can include instructions for sending the write request to the memory controller via the first interface (request-processing module 722 ).
- Content-processing system 718 can include instructions for writing, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory (data-writing module 724 ).
- Content-processing system 718 can include instructions for performing a garbage collection operation on the data, which comprises accessing the data via a second channel allocated for garbage collection operations (garbage collection-managing module 728 ).
- Content-processing system 718 can additionally include instructions for detecting a condition which triggers performing the garbage collection operation on the data (threshold-detecting module 732 ).
- Content-processing system 718 can include instructions for retrieving the data from the non-volatile memory (communication module 720 ).
- Content-processing system 718 can include instructions for performing the garbage collection operation on the retrieved data while bypassing an error correction code (ECC)-encoding module (garbage collection-managing module 728 and ECC-bypassing module 730 ).
- ECC error correction code
- Data 734 can include any data that is required as input or generated as output by the methods and/or processes described in this disclosure. Specifically, data 734 can store at least: data; a request; a read request; a write request; an input/output (I/O) request; data or metadata associated with a read request, a write request, or an I/O request; formatted data; encoded data; CRC data; CRC-checked data; ECC-encoded or ECC-decoded data; an indicator or identifier of a storage drive, an interface, a memory controller, a write buffer, a host memory in the write buffer, a channel, and a NAND flash block or unit; a condition which triggers a garbage collection process; a predetermined threshold for shifting an allocation of channels to bands; data marked to be recycled or on which a garbage collection process is to be performed; an indicator of a GC-specific data buffer or a GC-specific RAID or data-protecting module; raw data; ECC-encoded data;
- FIG. 8 illustrates an exemplary apparatus 800 that facilitates data movement by bypassing system memory, in accordance with an embodiment of the present application.
- Apparatus 800 can comprise a plurality of units or apparatuses which may communicate with one another via a wired, wireless, quantum light, or electrical communication channel.
- Apparatus 800 may be realized using one or more integrated circuits, and may include fewer or more units or apparatuses than those shown in FIG. 8 .
- apparatus 800 may be integrated in a computer system, or realized as a separate device or devices capable of communicating with other computer systems and/or devices.
- Apparatus 800 can comprise modules or units 802 - 814 which are configured to perform functions or operations similar to modules 720 - 732 of computer system 700 of FIG. 7 , including: a communication unit 802 ; a request-processing unit 804 ; a data-writing unit 806 ; a channel-allocating unit 808 ; a garbage collection-managing unit 810 ; an ECC-bypassing unit 812 ; and a threshold-detecting unit 814 .
- the data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system.
- the computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
- the methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above.
- a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
- the methods and processes described above can be included in hardware modules.
- the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed.
- ASIC application-specific integrated circuit
- FPGA field-programmable gate arrays
- the hardware modules When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
Abstract
One embodiment provides a system which facilitates data management. During operation, the system processes, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device. The system writes the data to a first data buffer of the storage device while bypassing a first interface and a memory controller. The system sends the write request to the memory controller via the first interface. The system writes, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory. The system performs a garbage collection operation on the data, which comprises accessing the data via a second channel allocated for garbage collection operations.
Description
This disclosure is generally related to the field of data storage. More specifically, this disclosure is related to a method and system for facilitating a write latency reduction in a queue depth of one scenario.
Today, various storage systems are being used to store and access the ever-increasing amount of digital content. A storage system can include storage servers with one or more storage devices or drives (such as a solid-state drive (SSD)). Data can be stored in a non-volatile storage media of an SSD, e.g., in Not-And flash (NAND) flash. Performance-demanding applications continue to result in increasing the queue depth of a storage device to the order of the hundreds in order to achieve an enhanced throughput. In addition, parallelism continues to grow at an increasing pace in order to address or overcome the generally long write latency associated with NAND flash. While the performance of an SSD in handling a queue depth of one may not be a practical scenario, the performance in handling a queue depth of one may still be used to evaluate an SSD as a non-trivial metric of the qualifications and features of the SSD.
One current solution for increasing the performance of an SSD involves using a Peripheral Component Interconnect Express (PCIe) interface, which places the storage drive closer to the host and provide a lower latency. The Non-Volatile Memory Express (NVMe) protocol can utilize the PCIe interface in order to communicate with the host. However, a write request and associated data must travel through the PCIe interface four times (as depicted below in relation to FIG. 1 ), which can lead to challenges with reducing the latency, and also presents a challenge in obtaining a decreased write latency in the queue depth of one scenario. Thus, reducing the write latency in a queue depth of one scenario remains a challenge.
One embodiment provides a system which facilitates data management. During operation, the system processes, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device. The system writes the data to a first data buffer of the storage device while bypassing a first interface and a memory controller. The system sends the write request to the memory controller via the first interface. The system writes, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory. The system performs a garbage collection operation on the data, which comprises accessing the data via a second channel allocated for garbage collection operations.
In some embodiments, the system performs the garbage collection operation on the data by the following operations. The system detects a condition which triggers performing the garbage collection operation on the data. The system retrieves the data from the non-volatile memory. The system performs the garbage collection operation on the retrieved data while bypassing an error correction code (ECC)-encoding module.
In some embodiments, the system performs the garbage collection operation on the retrieved data while bypassing an ECC-encoding module by the following operations. The system performs an error correction code (ECC) decoding on the retrieved data. The system stores the decoded data in a second data buffer which stores only data related to garbage collection operations. The system performs, by a first module which protects only data related to the garbage collection operations, a data-protecting operation on the decoded data.
In some embodiments, the second data buffer and the first module comprise hardware or firmware associated with a controller of the storage device, and the first module is a redundant array of independent disks (RAID) encoding module.
In some embodiments, the first interface is a Peripheral Component Interconnect Express (PCIe) interface, and the memory controller is a Non-Volatile Memory Express (NVMe) controller.
In some embodiments, the system dynamically allocates the plurality of channels as: a first group of a first set of channels which comprise the first channel and channels allocated for only host write operations; and a second group of a second set of channels which comprise the second channel and channels allocated for only garbage collection operations. Responsive to detecting a first predetermined threshold, the system shifts the allocation of the channels between the first group and the second group.
In some embodiments, the system shifts the allocation of the channels between the first group and the second group by the following operations. The system allocates a different set of channels in the second group for only garbage collection operations, wherein the different set of channels is distinct from the second set of channels, and the system allocates a remainder of the plurality of channels in the first group for only host write operations.
In some embodiments, the write request and the data associated with the write request are processed in parallel or at a similar time by the storage device.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the embodiments described herein are not limited to the embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
The embodiments described herein provide a system which facilitates a reduction in the write latency associated with handling a queue depth of one by providing: a command transfer and a data transfer in parallel; dedicated hardware for garbage collection; and a dynamic allocation and rotation of NAND channels for each of host write operations and garbage collection operations.
As described above, performance-demanding applications continue to result in increasing the queue depth of a storage device to the order of the hundreds in order to achieve an enhanced throughput. In addition, parallelism continues to grow at an increasing pace in order to address or overcome the generally long write latency associated with NAND flash. While the performance of an SSD in handling a queue depth of one may not be a practical scenario, the performance in handling a queue depth of one may still be used to evaluate an SSD as a non-trivial metric of the qualifications and features of the SSD.
One current solution for increasing the performance of an SSD involves using a PCIe interface, which places the storage drive closer to the host and can provide a lower latency. The NVMe protocol can utilize the PCIe interface in order to communicate with the host. However, a write request and associated data must travel through the PCIe interface four times (as depicted below in relation to FIG. 1 ), which can lead to challenges in reducing the latency. These multiple data communications can also present a challenge in obtaining a decreased write latency in the queue depth of one scenario. Thus, reducing the write latency in a queue depth of one scenario remains a challenge.
The embodiments described herein address the challenge of reducing the write latency associated with a queue depth of one scenario by providing a system with several features. First, the system can transfer a write command and its associated data in parallel, which can result in saving time which may otherwise be spent on additional communications between the NVMe controller, the PCIe interface, and the host, as described below in relation to FIGS. 2A and 2B . Second, the system can isolate the impact of garbage collection operations in the queue depth of one scenario by utilizing a stand-alone buffer and a redundant array of independent disks (RAID) circuit to handle the garbage collection operations, as described below in relation to FIG. 3 . Third, the system can allocate specific bands or channels (e.g., into partitions) for host write operations and for garbage collection operations, which can eliminate the conflict between a garbage collection operation (read or write) and a host write operation, as described below in relation to FIG. 4 . The system can also rotate the partitions of bands or channels in order to balance the NAND usage and the load on each channel, as described below in relation to FIG. 5 .
Thus, the described embodiments provide a system which can reduce the write latency associated with a queue depth of one scenario, by: improving the host data movement (via a parallel transfer of a write request and associated data); removing occupation of the backend controller (via dedicated hardware for garbage collection); and eliminating conflicts between NAND channels (via dynamic rotation of allocated bands specifically for garbage collection operations and host write operations). The parallel data transfer can result in reducing the redundant wait time involved with the host interface protocol in the conventional storage system, while the isolation of the backend resources and the dynamic allocation of the NAND channels can ensure a non-interrupted and continuous programming flow to execute host write operations. These technical and technological improvements can result in addressing the challenges associated with the performance of a random write versus a sequential write pattern.
A “distributed storage system” or a “storage system” can include multiple storage servers. A “storage server” or a “storage system” can refer to a computing device which can include multiple storage devices or storage drives. A “storage device” or a “storage drive” refers to a device or a drive with a non-volatile memory which can provide persistent storage of data, e.g., a solid-state drive (SSD), or a flash-based storage device. A storage system can also be a computer system.
“Non-volatile memory” refers to storage media which may be used for persistent storage of data, e.g., flash memory of a NAND die of an SSD, magnetoresistive random access memory (MRAM), phase change memory (PCM), resistive random access memory (ReRAM), or another non-volatile memory.
A “computing device” refers to any server, device, node, entity, drive, or any other entity which can provide any computing capabilities.
The term “queue depth” refers to the number of pending input/output (I/O) requests for a volume, storage unit, or other storage device. The term “queue depth of one” refers to a scenario in which the number of pending I/O requests for the volume, storage unit, or other storage device is one.
Exemplary Write Operation in the Prior Art
Specifically, the system inserts one entry (e.g., associated with a write request) into the submission queue (operation 102). The system sets the doorknob of the submission queue and notifies the SSD controller of the same (operation 104). The system accesses, by the controller, the submission queue to obtain the entry to be processed (operation 106). The system analyzes, by the NVMe controller, the command and processes the write request (operation 108). The system moves host data from the host memory into the SSD data buffer (operation 110). The system inserts one entry into the completion queue (operation 112). The system observes, by the host, the entry into the completion queue, and the system processes, by the host, the I/O callback (operation 114). The system notifies the SSD controller of completion of the I/O callback (operation 116), and the operation returns.
Write Operation in the Prior Art vs. Embodiment with Parallel Command/Data Transfer
During operation, in processing a write request, the submission queue entry and the NVMe command analysis (e.g., communications 240 and 242, corresponding to operations 102-108 of a write operation in a conventional system) can occur in parallel with the actual data transfer from host 260 to host memory 279 of write buffer 278 (e.g., as indicated by dashed arrows 294 and 296). That is, host 260 can send a write request and associated data, where the write request is processed via communications 290 and 292 by PCIe interface 272 and NVMe controller 274, and the data can be processed by a direct transfer to host memory 279 via communications 294 and 296. By the time of completion of analysis of the write request by NVMe controller 274 (via communications 290 and 292), the associated data may already be stored in host memory 279 of write buffer 279 of SSD 270. Because the data is already stored in write buffer 278, the system can write the data from write buffer 278 to NAND flash 282-286 without waiting for communications 290 and 292 to finish, and without waiting for SSD 270 to retrieve the associated data from host 260 (as depicted above in relation to FIG. 2A ).
Thus, the data transfer from the host to the write buffer can occur in parallel and separate from the write request being processed by the PCIe interface and the NVMe controller, which in turn can result in the data being written to the NAND flash without waiting for completion of the write request processing (e.g., communications 290 and 292). This parallel processing of the write command and the associated data can result in a reduced latency in executing the write operation, which in turn can result in a reduced latency for the queue depth of one scenario.
Exemplary SSD Controller with Dedicated Hardware for Garbage Collection Operations
As depicted above in relation to environment 250 of FIG. 2B , performing a sequential write operation can be straightforward, as the asynchronous write from the data buffer (e.g., write buffer 278) to the NAND flash (e.g., 282-286) can depend mainly on the throughput of the backend operations. However, in performing a random write operation, the system may trigger a garbage collection operation, which can, from time to time, consume the resources of the SSD controller and the NAND channels. This can result in an unstable performance for the SSD, e.g., based on the introduction of the uncontrollable (or uncontrolled) garbage collection operations. Furthermore, read operations generally take higher priority than write operations. Thus, on a given channel, a garbage collection read operation would take priority over a host write operation, which can result in delaying the host write operation and may also result in congestion or delay in executing the host write operation.
The embodiments described herein address the instability associated with these uncontrollable garbage collection operations by providing dedicated hardware (or firmware) to isolate the impact of the garbage collection operations in the queue depth of one scenario. In general, during a garbage collection operation, the system reads valid data from a block or other unit to be recycled from NAND flash, and writes the valid data back into a new block or other unit of the NAND flash. In a conventional operation, the data buffer and the RAID module are shared by both garbage collection operations and host write operations.
The described embodiments instead provide a stand-alone data buffer and a RAID circuit to handle solely and specifically the garbage collection operations. The stand-alone data buffer and RAID circuit can be implemented to handle only operations and data related to garbage collection operations. The system can read raw data from the NAND, an ECC decoder can remove the errors from the raw data to obtain a decoded codeword, and a cyclic redundancy check (CRC) module can check the sanity or integrity of the data. Because the decoded codeword includes the ECC parity, the recycled data can bypass the ECC encoder and use its specific RAID circuit to accumulate the RAID parity, which can also be written into the NAND flash, as described below in relation to FIG. 3 .
During operation, the system can detect a condition which triggers performing a garbage collection process on certain data (e.g., valid data associated with a block to be recycled). The system can retrieve the certain data from, e.g., NAND flash 284 via channel_2 332, via NAND interface 280. The data can be transmitted to ECC decoder 322, which can perform an ECC decoding on the certain data to obtain a decoded codeword. ECC decoder 322 can send the decoded codeword to CRC module 314, which can perform a CRC to ensure the sanity or integrity of the data. The decoded (and CRC checked) data can then be stored in a specific GC buffer 320. GC buffer 320 can be a data buffer which stores only data related to garbage collection operations. The stored GC data can be sent to GC RAID module 318, which can protect only data related to garbage collection operations. The data can be subsequently written to an appropriate block (e.g., an available or open block) of NAND flash 282, 284, or 286, via, respectively, one of channels 330, 332, 334, thus bypassing ECC encoder 316.
Allocated Bands/Channels for Host Write Operations and Garbage Collection Operations; and Exemplary Band Rotation
Additionally, the described embodiments can dynamically allocate bands, which can include a set of channels, to each of host write operations and garbage collection operations. That is, when writing data from the controller to the NAND flash, the system can allocate specific bands of channels, such that host write operations can be processed on a first set of channels, while garbage collection operations can be processed on a different second set of channels, as described below in relation to FIG. 4 . The system can also rotate the allocated bands or groups or set of channels, to balance both the usage of the NAND flash and the load on each channel, as described below in relation to FIG. 5 .
The system can allocate for host write operations a host write band 460, such as a first group of a first set of channels for host write operations. The system can also allocate for garbage collection operations a garbage collection band 470, such as a second group of a second set of channels for garbage collection operations. Host write band 460 can include channels 442 and 444, while garbage collection band 470 can include channels 446 and 448.
During operation, a host read operation can occur on any channel at any time, e.g., at indicated by a host read 464 occurring via channel_k 444 of host write band 460 and a host read operation 476 occurring via channel_n 448 of garbage collection band 470. The system can process a host write operation 462 by accessing a block of NAND flash memory via an allocated channel of host write band 460, e.g., via channel_1 442. The system can also process a garbage collection read 472 or a garbage collection write 474 by accessing a block of NAND flash memory via an allocated channel of garbage collection band 470, e.g., via channel_k+1 446.
Thus, garbage collection operations (such as 472 and 474) can occur on (a channel of) a specifically GC-allocated band, which does not occupy or share space or resources of the page buffer and NAND channels used to execute host write operations. In general, the queue depth of one scenario does not generate a throughput high enough to saturate multiple NAND channels in the backend, thus the host write band is sufficient to ensure the Quality of Service (QoS) for the performance of a random write operation.
Furthermore, based a first predetermined threshold, the system can dynamically rotate the partition all of the NAND channels to transverse the NAND pages in a RAID group. The first predetermined threshold can be based on, e.g., a periodic interval; another predetermined time interval; historical usage of a channel or channels; a current load across the channels; an expected, predicted, or estimated load; a current traffic analysis; and an algorithm which ensures wear-leveling. This allows the system to balance out the both the usage of the NAND flash and the load on each channel.
At a time t0, a host write band 510 can include channels (e.g., 1-6) allocated for host write operations, while a garbage collection band 512 can include channels (e.g., 7-8) allocated for garbage collection operations. At a subsequent time t1, a garbage collection band 520 can include channels (e.g., 1-2) allocated for garbage collection operations, while a host write band 522 can include channels (e.g., 3-8) allocated for host write operations. At a time t2, a host write band 530 and a host write band 534 can include channels (e.g., respectively, 1-2 and 5-8) allocated for host write operations, while a garbage collection band 532 can include channels (e.g., 3-4) allocated for garbage collection operations. At a time t3, a host write band 540 and a host write band 544 can include channels (e.g., respectively, 1-4 and 7-8) allocated for host write operations, while a garbage collection band 542 can include channels (e.g., 5-6) allocated for garbage collection operations.
Thus, diagram 500 depicts how the system can partition the NAND channels into bands, and can further adjust the partition of the NAND channels into the bands over time. The system can rotate or shift the allocation of the channels into each band, which allows the GC band to rotate through all other pages covered in the same RAID group. This dynamic partition, allocation, and rotation can ensure that all pages in a RAID group are covered, while also ensuring a decrease in the write latency associated with host write operations, including a queue depth of one scenario.
Exemplary Method for Facilitating a Write Latency Reduction
If the system does not detect a first predetermined threshold (decision 644), the system shifts the allocation of the channels between the first group and the second group (operation 646). The system allocates a different set of channels in the second group for only garbage collection operations, wherein the different set of channels is distinct from the second set of channels (operation 648), and the system allocates a remainder of the plurality of channels in the first group for only host write operations (operation 650).
Exemplary Computer System and Apparatus
Content-processing system 718 can include instructions, which when executed by computer system 700, can cause computer system 700 or processor 702 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 718 can include instructions for receiving and transmitting data packets, including data to be read or written, and an input/output (I/O) request (e.g., a read request or a write request) (communication module 720).
Content-processing system 718 can further include instructions for processing, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device (request-processing module 722). Content-processing system 718 can include instructions for writing the data to a first data buffer of the storage device while bypassing a first interface and a memory controller (data-writing module 724). Content-processing system 718 can include instructions for sending the write request to the memory controller via the first interface (request-processing module 722). Content-processing system 718 can include instructions for writing, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory (data-writing module 724). Content-processing system 718 can include instructions for performing a garbage collection operation on the data, which comprises accessing the data via a second channel allocated for garbage collection operations (garbage collection-managing module 728).
Content-processing system 718 can additionally include instructions for detecting a condition which triggers performing the garbage collection operation on the data (threshold-detecting module 732). Content-processing system 718 can include instructions for retrieving the data from the non-volatile memory (communication module 720). Content-processing system 718 can include instructions for performing the garbage collection operation on the retrieved data while bypassing an error correction code (ECC)-encoding module (garbage collection-managing module 728 and ECC-bypassing module 730).
Apparatus 800 can comprise modules or units 802-814 which are configured to perform functions or operations similar to modules 720-732 of computer system 700 of FIG. 7 , including: a communication unit 802; a request-processing unit 804; a data-writing unit 806; a channel-allocating unit 808; a garbage collection-managing unit 810; an ECC-bypassing unit 812; and a threshold-detecting unit 814.
The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
The foregoing embodiments described herein have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the embodiments described herein to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the embodiments described herein. The scope of the embodiments described herein is defined by the appended claims.
Claims (17)
1. A computer-implemented method, comprising:
processing, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device;
writing the data to a first data buffer of the storage device while bypassing a first interface and a memory controller;
sending the write request to the memory controller via the first interface;
writing, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory; and
performing a garbage collection operation on the data, which comprises:
detecting a condition which triggers performing the garbage collection operation on the data;
accessing the data via a second channel allocated for garbage collection operations;
retrieving the data from the non-volatile memory; and
performing the garbage collection operation on the retrieved data while bypassing an error correction code (ECC)-encoding module.
2. The method of claim 1 , wherein performing the garbage collection operation on the retrieved data while bypassing an ECC-encoding module comprises:
performing an error correction code (ECC) decoding on the retrieved data;
storing the decoded data in a second data buffer which stores only data related to garbage collection operations; and
performing, by a first module which protects only data related to the garbage collection operations, a data-protecting operation on the decoded data.
3. The method of claim 2 ,
wherein the second data buffer and the first module comprise hardware or firmware associated with a controller of the storage device, and
wherein the first module is a redundant array of independent disks (RAID) encoding module.
4. The method of claim 1 ,
wherein the first interface is a Peripheral Component Interconnect Express (PCIe) interface, and
wherein the memory controller is a Non-Volatile Memory Express (NVMe) controller.
5. The method of claim 1 , further comprising:
dynamically allocating the plurality of channels as:
a first group of a first set of channels which comprise the first channel and channels allocated for only host write operations; and
a second group of a second set of channels which comprise the second channel and channels allocated for only garbage collection operations; and
responsive to detecting a first predetermined threshold, shifting the allocation of the channels between the first group and the second group.
6. The method of claim 5 , wherein shifting the allocation of the channels between the first group and the second group comprises:
allocating a different set of channels in the second group for only garbage collection operations, wherein the different set of channels is distinct from the second set of channels; and
allocating a remainder of the plurality of channels in the first group for only host write operations.
7. The method of claim 1 , wherein the write request and the data associated with the write request are processed in parallel or at a similar time by the storage device.
8. A computer system, comprising:
a processor; and
a memory coupled to the processor and storing instructions which, when executed by the processor, cause the processor to perform a method, the method comprising:
processing, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device;
writing the data to a first data buffer of the storage device while bypassing a first interface and a memory controller;
sending the write request to the memory controller via the first interface;
writing, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory; and
performing a garbage collection operation on the data, which comprises:
detecting a condition which triggers performing the garbage collection operation on the data;
accessing the data via a second channel allocated for garbage collection operations;
retrieving the data from the non-volatile memory; and
performing the garbage collection operation on the retrieved data while bypassing an error correction code (ECC)-encoding module.
9. The computer system of claim 8 , wherein performing the garbage collection operation on the retrieved data while bypassing an ECC-encoding module comprises:
performing an error correction code (ECC) decoding on the retrieved data;
storing the decoded data in a second data buffer which stores only data related to garbage collection operations; and
performing, by a first module which protects only data related to the garbage collection operations, a data-protecting operation on the decoded data.
10. The computer system of claim 9 ,
wherein the second data buffer and the first module comprise hardware or firmware associated with a controller of the storage device, and
wherein the first module is a redundant array of independent disks (RAID) encoding module.
11. The computer system of claim 8 ,
wherein the first interface is a Peripheral Component Interconnect Express (PCIe) interface, and
wherein the memory controller is a Non-Volatile Memory Express (NVMe) controller.
12. The computer system of claim 8 , wherein the method further comprises:
dynamically allocating the plurality of channels as:
a first group of a first set of channels which comprise the first channel and channels allocated for only host write operations; and
a second group of a second set of channels which comprise the second channel and channels allocated for only garbage collection operations; and
responsive to detecting a first predetermined threshold, shifting the allocation of the channels between the first group and the second group.
13. The computer system of claim 12 , wherein shifting the allocation of the channels between the first group and the second group comprises:
allocating a different set of channels in the second group for only garbage collection operations, wherein the different set of channels is distinct from the second set of channels; and
allocating a remainder of the plurality of channels in the first group for only host write operations.
14. The computer system of claim 9 , wherein the write request and the data associated with the write request are processed in parallel or at a similar time by the storage device.
15. A non-transitory computer-readable storage medium storing instructions that when executed by a computer cause the computer to perform a method, the method comprising:
processing, by a storage device, a write request and data associated with the write request, wherein the storage device comprises a plurality of channels over which to access a non-volatile memory of the storage device;
writing the data to a first data buffer of the storage device while bypassing a first interface and a memory controller;
sending the write request to the memory controller via the first interface;
writing, via a first channel allocated for host write operations, the data from the first data buffer to the non-volatile memory; and
performing a garbage collection operation on the data, which comprises:
detecting a condition which triggers performing the garbage collection operation on the data;
accessing the data via a second channel allocated for garbage collection operations;
retrieving the data from the non-volatile memory; and
performing the garbage collection operation on the retrieved data while bypassing an error correction code (ECC)-encoding module.
16. The storage medium of claim 15 , wherein performing the garbage collection operation on the retrieved data while bypassing an ECC-encoding module comprises:
performing an error correction code (ECC) decoding on the retrieved data;
storing the decoded data in a second data buffer which stores only data related to garbage collection operations; and
performing, by a first module which protects only data related to the garbage collection operations, a data-protecting operation on the decoded data.
17. The storage medium of claim 15 , wherein the method further comprises:
dynamically allocating the plurality of channels as:
a first group of a first set of channels which comprise the first channel and channels allocated for only host write operations; and
a second group of a second set of channels which comprise the second channel and channels allocated for only garbage collection operations; and
responsive to detecting a first predetermined threshold, shifting the allocation of the channels between the first group and the second group, which comprises:
allocating a different set of channels in the second group for only garbage collection operations, wherein the different set of channels is distinct from the second set of channels; and
allocating a remainder of the plurality of channels in the first group for only host write operations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/135,404 US11734115B2 (en) | 2020-12-28 | 2020-12-28 | Method and system for facilitating write latency reduction in a queue depth of one scenario |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/135,404 US11734115B2 (en) | 2020-12-28 | 2020-12-28 | Method and system for facilitating write latency reduction in a queue depth of one scenario |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220206894A1 US20220206894A1 (en) | 2022-06-30 |
US11734115B2 true US11734115B2 (en) | 2023-08-22 |
Family
ID=82118668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/135,404 Active 2041-11-05 US11734115B2 (en) | 2020-12-28 | 2020-12-28 | Method and system for facilitating write latency reduction in a queue depth of one scenario |
Country Status (1)
Country | Link |
---|---|
US (1) | US11734115B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118331511B (en) * | 2024-06-14 | 2024-09-13 | 合肥开梦科技有限责任公司 | Memory management method and memory controller |
Citations (498)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893071A (en) | 1974-08-19 | 1975-07-01 | Ibm | Multi level error correction system for high density memory |
US4562494A (en) | 1983-04-07 | 1985-12-31 | Verbatim Corporation | Disk drive alignment analyzer |
US4718067A (en) | 1984-08-02 | 1988-01-05 | U.S. Philips Corporation | Device for correcting and concealing errors in a data stream, and video and/or audio reproduction apparatus comprising such a device |
US4775932A (en) | 1984-07-31 | 1988-10-04 | Texas Instruments Incorporated | Computer memory system with parallel garbage collection independent from an associated user processor |
US4858040A (en) | 1987-08-25 | 1989-08-15 | Ampex Corporation | Bimorph actuator for a disk drive |
WO1994018634A1 (en) | 1993-02-01 | 1994-08-18 | Lsc, Inc. | Archiving file system for data servers in a distributed network environment |
US5394382A (en) | 1993-02-11 | 1995-02-28 | International Business Machines Corporation | Method for the organization of data on a CD-ROM |
US5602693A (en) | 1994-12-14 | 1997-02-11 | Micropolis (S) Pte Ltd. | Method and apparatus for sensing position in a disk drive |
US5715471A (en) | 1994-03-14 | 1998-02-03 | Fujitsu Limited | Parallel computer |
US5732093A (en) | 1996-02-08 | 1998-03-24 | United Microelectronics Corporation | Error correction method and apparatus on optical disc system |
US5802551A (en) | 1993-10-01 | 1998-09-01 | Fujitsu Limited | Method and apparatus for controlling the writing and erasing of information in a memory device |
US5930167A (en) | 1997-07-30 | 1999-07-27 | Sandisk Corporation | Multi-state non-volatile flash memory capable of being its own two state write cache |
US6098185A (en) | 1997-10-31 | 2000-08-01 | Stmicroelectronics, N.V. | Header-formatted defective sector management system |
US6148377A (en) | 1996-11-22 | 2000-11-14 | Mangosoft Corporation | Shared memory computer networks |
US6226650B1 (en) | 1998-09-17 | 2001-05-01 | Synchrologic, Inc. | Database synchronization and organization system and method |
US6243795B1 (en) | 1998-08-04 | 2001-06-05 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Redundant, asymmetrically parallel disk cache for a data storage system |
US20010003205A1 (en) | 1998-07-15 | 2001-06-07 | Timothy G. Gilbert | Bus-powered computer peripheral with supplemental battery power to overcome bus-power limit |
US20010032324A1 (en) | 1998-05-12 | 2001-10-18 | Slaughter Gregory L. | Highly available cluster message passing facility |
US20010046295A1 (en) | 1995-06-30 | 2001-11-29 | Sony Corporation | Method and apparatus for reproducing ciphered data |
US20020010783A1 (en) | 1999-12-06 | 2002-01-24 | Leonard Primak | System and method for enhancing operation of a web server cluster |
US20020039260A1 (en) | 1995-11-28 | 2002-04-04 | Kilmer Dan L. | Twin coil positioner |
US20020073358A1 (en) | 2000-12-07 | 2002-06-13 | Atkinson Lee. W. | Method for redundant suspend to RAM |
US20020095403A1 (en) | 1998-11-24 | 2002-07-18 | Sashikanth Chandrasekaran | Methods to perform disk writes in a distributed shared disk system needing consistency across failures |
US20020112085A1 (en) | 2000-12-21 | 2002-08-15 | Berg Mitchell T. | Method and system for communicating an information packet through multiple networks |
US6457104B1 (en) | 2000-03-20 | 2002-09-24 | International Business Machines Corporation | System and method for recycling stale memory content in compressed memory systems |
US20020161890A1 (en) | 2000-12-22 | 2002-10-31 | Kailai Chen | System and method for intelligently distributing content over a communicatons network |
JP2003022209A (en) | 2001-07-05 | 2003-01-24 | Nri & Ncc Co Ltd | Distributed server system |
US20030074319A1 (en) | 2001-10-11 | 2003-04-17 | International Business Machines Corporation | Method, system, and program for securely providing keys to encode and decode data in a storage cartridge |
US20030108061A1 (en) * | 1997-01-23 | 2003-06-12 | Black Alistair D. | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
US20030145274A1 (en) | 2002-01-23 | 2003-07-31 | Samsung Electronics Co., Ltd. | Decoding method and apparatus therefor |
US20030163594A1 (en) | 2002-02-27 | 2003-08-28 | Aasheim Jered Donald | Open-architecture file system |
US20030163633A1 (en) | 2002-02-27 | 2003-08-28 | Aasheim Jered Donald | System and method for achieving uniform wear levels in a flash memory device |
US20030217080A1 (en) | 2002-05-20 | 2003-11-20 | Ken White | System and method for intelligent write management of disk pages in cache checkpoint operations |
US6658478B1 (en) | 2000-08-04 | 2003-12-02 | 3Pardata, Inc. | Data storage system |
US20040010545A1 (en) | 2002-06-11 | 2004-01-15 | Pandya Ashish A. | Data processing system using internet protocols and RDMA |
US20040066741A1 (en) | 2002-09-23 | 2004-04-08 | Darpan Dinker | System and method for performing a cluster topology self-healing process in a distributed data system cluster |
US20040103238A1 (en) | 2002-11-26 | 2004-05-27 | M-Systems Flash Disk Pioneers Ltd. | Appliance, including a flash memory, that is robust under power failure |
US20040143718A1 (en) | 2003-01-22 | 2004-07-22 | Tianlong Chen | Distributed memory computing environment and implementation thereof |
US6795894B1 (en) | 2000-08-08 | 2004-09-21 | Hewlett-Packard Development Company, L.P. | Fast disk cache writing system |
US20040255171A1 (en) | 2003-06-13 | 2004-12-16 | Zimmer Vincent J. | Power management for clustered computing platforms |
US20040267752A1 (en) | 2003-04-24 | 2004-12-30 | Wong Thomas K. | Transparent file replication using namespace replication |
US20040268278A1 (en) | 2003-05-07 | 2004-12-30 | Hoberman Barry Alan | Managing power on integrated circuits using power islands |
US20050038954A1 (en) | 2003-06-04 | 2005-02-17 | Quantum Corporation | Storage drive having universal format across media types |
US20050097126A1 (en) | 2000-08-24 | 2005-05-05 | Microsoft Corporation | Partial migration of an object to another storage location in a computer system |
US20050138325A1 (en) | 2001-03-22 | 2005-06-23 | Hofstee Harm P. | Multi-chip module with third dimension interconnect |
US20050144358A1 (en) | 2003-12-30 | 2005-06-30 | Conley Kevin M. | Management of non-volatile memory systems having large erase blocks |
US20050149827A1 (en) | 2002-01-24 | 2005-07-07 | Nicolaas Lambert | Data storage apparatus and method for handling a data storage apparatus |
US20050177672A1 (en) | 2004-02-10 | 2005-08-11 | Sun Microsystems, Inc. | Storage system structure for storing relational cache metadata |
US20050177755A1 (en) | 2000-09-27 | 2005-08-11 | Amphus, Inc. | Multi-server and multi-CPU power management system and method |
US20050174670A1 (en) | 2004-02-10 | 2005-08-11 | Hitachi Global Storage Technologies Netherlands Bv | Adaptive data format method integrating spare sectors |
US20050195635A1 (en) | 2004-03-08 | 2005-09-08 | Conley Kevin M. | Flash controller cache architecture |
US20050235171A1 (en) | 2003-09-02 | 2005-10-20 | Kabushiki Kaisha Toshiba | Electronic device with serial ATA interface and power saving method for serial ATA buses |
US20050235067A1 (en) | 2004-04-20 | 2005-10-20 | Intel Corporation | Write combining protocol between processors and chipsets |
US20060031709A1 (en) | 2004-08-09 | 2006-02-09 | Yuri Hiraiwa | Failure monitoring for storage systems constituting multiple stages |
US20060101197A1 (en) | 2004-11-08 | 2006-05-11 | Prostor, Inc. | Archival management system |
US20060156009A1 (en) | 2005-01-12 | 2006-07-13 | Interdigital Technology Corporation | Method and apparatus for enhancing security of wireless communications |
US20060156012A1 (en) | 2005-01-07 | 2006-07-13 | Beeson Curtis L | Facilitating digital signature based on ephemeral private key |
US20060184813A1 (en) | 2002-01-03 | 2006-08-17 | Broadcom Corporation, A California Corporation | Wake on LAN power management |
US20070033323A1 (en) | 2005-08-03 | 2007-02-08 | Gorobets Sergey A | Interfacing systems operating through a logical address space and on a direct data file basis |
US20070061542A1 (en) | 2005-09-13 | 2007-03-15 | Mahat Technologies | System for a distributed column chunk data store |
US20070061502A1 (en) | 2005-09-09 | 2007-03-15 | M-Systems Flash Disk Pioneers Ltd. | Flash memory storage system and method |
US20070101096A1 (en) | 2005-10-27 | 2007-05-03 | Sandisk Corporation | Non-volatile memory with adaptive handling of data writes |
US20070168581A1 (en) | 2005-11-18 | 2007-07-19 | Klein Steven E | Selecting a path comprising ports on primary and secondary clusters to use to transmit data at a primary volume to a secondary volume |
US20070204128A1 (en) | 2003-09-10 | 2007-08-30 | Super Talent Electronics Inc. | Two-Level RAM Lookup Table for Block and Page Allocation and Wear-Leveling in Limited-Write Flash-Memories |
US20070250756A1 (en) | 2003-04-14 | 2007-10-25 | Gower Kevin C | High reliability memory module with a fault tolerant address and command bus |
US20070266011A1 (en) | 2006-05-10 | 2007-11-15 | Google Inc. | Managing and Accessing Data in Web Notebooks |
US20070283104A1 (en) | 2006-05-31 | 2007-12-06 | International Business Machines Corporation | Concurrent Hardware Selftest for Central Storage |
US20070283081A1 (en) | 2006-06-06 | 2007-12-06 | Msystem Ltd. | Cache control in a non-volatile memory device |
US20070285980A1 (en) | 2006-05-10 | 2007-12-13 | Takahiro Shimizu | Semiconductor memory device |
US20080028223A1 (en) | 1999-05-19 | 2008-01-31 | Rhoads Geoffrey B | Visual Content-Based Internet Search Methods and Sub-Combinations |
US20080034154A1 (en) | 1999-08-04 | 2008-02-07 | Super Talent Electronics Inc. | Multi-Channel Flash Module with Plane-Interleaved Sequential ECC Writes and Background Recycling to Restricted-Write Flash Chips |
US20080065805A1 (en) | 2006-09-11 | 2008-03-13 | Cameo Communications, Inc. | PCI-Express multimode expansion card and communication device having the same |
US7351072B2 (en) | 2005-07-08 | 2008-04-01 | Qimonda Ag | Memory module, memory extension memory module, memory module system, and method for manufacturing a memory module |
US20080082731A1 (en) | 2006-09-28 | 2008-04-03 | Vijay Karamcheti | Main memory in a system with a memory controller configured to control access to non-volatile memory, and related technologies |
US20080104369A1 (en) | 2006-10-26 | 2008-05-01 | Interactic Holdings, Llc | Network interface card for use in parallel computing systems |
US20080112238A1 (en) | 2006-10-25 | 2008-05-15 | Seon-Taek Kim | Hybrid flash memory device and method for assigning reserved blocks thereof |
US20080163033A1 (en) | 2006-12-29 | 2008-07-03 | Samsung Electronics Co., Ltd. | Error correction circuit and method for reducing miscorrection probability and semiconductor memory device including the circuit |
US20080195829A1 (en) | 2007-02-13 | 2008-08-14 | Clifton Labs, Inc. | Self-protecting memory device |
US20080301532A1 (en) | 2006-09-25 | 2008-12-04 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device |
US20090006667A1 (en) | 2007-06-29 | 2009-01-01 | Sandisk Corporation, A Delaware Corporation | Secure digital host sector application flag compression |
US20090089544A1 (en) | 2007-10-01 | 2009-04-02 | Accenture Global Services Gmbh | Infrastructure for parallel programming of clusters of machines |
US20090113219A1 (en) | 2007-10-30 | 2009-04-30 | Sandisk Il Ltd. | Optimized hierarchical integrity protection for stored data |
US20090110078A1 (en) | 2007-10-25 | 2009-04-30 | Microsoft Corporation | Temporal video filtering for real time communication sytems |
US20090125788A1 (en) | 2005-03-16 | 2009-05-14 | Andrew Ray Wheeler | Hardware based memory scrubbing |
US20090177944A1 (en) | 2007-09-26 | 2009-07-09 | Shinichi Kanno | Semiconductor memory device and its control method |
US20090183052A1 (en) | 2007-08-31 | 2009-07-16 | Shinichi Kanno | Semiconductor memory device and method of controlling the same |
US7565454B2 (en) | 2003-07-18 | 2009-07-21 | Microsoft Corporation | State migration in multiple NIC RDMA enabled devices |
US7599139B1 (en) | 2007-06-22 | 2009-10-06 | Western Digital Technologies, Inc. | Disk drive having a high performance access mode and a lower performance archive mode |
US20090254705A1 (en) | 2008-04-07 | 2009-10-08 | International Business Machines Corporation | Bus attached compressed random access memory |
US20090282275A1 (en) | 2006-06-27 | 2009-11-12 | Koninklijke Philips Electronics N.V. | Device and a method for managing power consumption of a plurality of data processing units |
US20090287956A1 (en) | 2008-05-16 | 2009-11-19 | David Flynn | Apparatus, system, and method for detecting and replacing failed data storage |
US20090307426A1 (en) | 2008-06-06 | 2009-12-10 | Pivot3 | Method and System for Rebuilding Data in a Distributed RAID System |
US20090307249A1 (en) | 2006-05-31 | 2009-12-10 | Storwize Ltd. | Method and system for transformation of logical data objects for storage |
US20090310412A1 (en) | 2008-06-17 | 2009-12-17 | Jun-Ho Jang | Methods of data management in non-volatile memory devices and related non-volatile memory systems |
US20100031000A1 (en) | 2007-12-06 | 2010-02-04 | David Flynn | Apparatus, system, and method for validating that a correct data segment is read from a data storage device |
US20100169470A1 (en) | 2008-12-25 | 2010-07-01 | Hitachi, Ltd. | System and method for operational management of computer system |
US20100217952A1 (en) | 2009-02-26 | 2010-08-26 | Iyer Rahul N | Remapping of Data Addresses for a Large Capacity Victim Cache |
US20100229224A1 (en) | 2009-02-10 | 2010-09-09 | Uniloc Usa, Inc. | Web Content Access Using a Client Device Identifier |
US20100241848A1 (en) | 2009-02-27 | 2010-09-23 | Certicom Corp. | System and method for securely communicating with electronic meters |
US20100281254A1 (en) | 2005-07-27 | 2010-11-04 | Fernando Incertis Carro | Systems and method for secure delivery of files to authorized recipients |
US20100325367A1 (en) | 2009-06-19 | 2010-12-23 | International Business Machines Corporation | Write-Back Coherency Data Cache for Resolving Read/Write Conflicts |
US20100321999A1 (en) | 2009-06-23 | 2010-12-23 | Samsung Electronics Co., Ltd. | Nonvolatile memory device and related programming method |
US20100332922A1 (en) | 2009-06-30 | 2010-12-30 | Mediatek Inc. | Method for managing device and solid state disk drive utilizing the same |
US20110031546A1 (en) | 2009-08-06 | 2011-02-10 | Kabushiki Kaisha Toshiba | Method for manufacturing semiconductor device and apparatus for manufacturing same |
US20110055458A1 (en) | 2009-09-03 | 2011-03-03 | 248 Solid State, Inc. | Page based management of flash storage |
US20110055471A1 (en) | 2009-08-28 | 2011-03-03 | Jonathan Thatcher | Apparatus, system, and method for improved data deduplication |
US20110060722A1 (en) | 2009-09-07 | 2011-03-10 | Icon Business Systems Limited | Centralized management mode backup disaster recovery system |
US20110072204A1 (en) | 2008-07-03 | 2011-03-24 | Jichuan Chang | Memory server |
US20110099418A1 (en) | 2009-10-28 | 2011-04-28 | Jian Chen | Non-Volatile Memory And Method With Post-Write Read And Adaptive Re-Write To Manage Errors |
US7953899B1 (en) | 2002-08-21 | 2011-05-31 | 3Par Inc. | Universal diagnostic hardware space access system for firmware |
US7958433B1 (en) | 2006-11-30 | 2011-06-07 | Marvell International Ltd. | Methods and systems for storing data in memory using zoning |
US20110153903A1 (en) | 2009-12-21 | 2011-06-23 | Sanmina-Sci Corporation | Method and apparatus for supporting storage modules in standard memory and/or hybrid memory bus architectures |
US20110161621A1 (en) | 2009-12-30 | 2011-06-30 | Sinclair Alan W | Micro-update architecture for address tables |
US20110161784A1 (en) | 2009-12-30 | 2011-06-30 | Selinger Robert D | Method and Controller for Performing a Copy-Back Operation |
US20110191525A1 (en) | 2010-02-04 | 2011-08-04 | Phison Electronics Corp. | Flash memory storage device, controller thereof, and data programming method thereof |
JP2011175422A (en) | 2010-02-24 | 2011-09-08 | Fujitsu Ltd | Determination program, method and device |
US20110218969A1 (en) | 2010-03-08 | 2011-09-08 | International Business Machines Corporation | Approach for optimizing restores of deduplicated data |
US8024719B2 (en) | 2008-11-03 | 2011-09-20 | Advanced Micro Devices, Inc. | Bounded hash table sorting in a dynamic program profiling system |
US20110231598A1 (en) | 2010-03-19 | 2011-09-22 | Kabushiki Kaisha Toshiba | Memory system and controller |
US20110239083A1 (en) | 2010-03-24 | 2011-09-29 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US20110252188A1 (en) | 2010-04-07 | 2011-10-13 | Hanan Weingarten | System and method for storing information in a multi-level cell memory |
US20110258514A1 (en) | 2010-01-28 | 2011-10-20 | Sandisk Il Ltd. | Overlapping error correction operations |
US20110289280A1 (en) | 2009-05-27 | 2011-11-24 | Hitachi, Ltd. | Storage system, control method therefor, and program |
US20110289263A1 (en) | 2007-05-30 | 2011-11-24 | Mcwilliams Thomas M | System including a fine-grained memory and a less-fine-grained memory |
US20110296411A1 (en) | 2010-05-25 | 2011-12-01 | Transoft | Kernel Bus System to Build Virtual Machine Monitor and the Performance Service Framework and Method Therefor |
US20110292538A1 (en) | 2010-05-31 | 2011-12-01 | Kabushiki Kaisha Toshiba | Recording medium controller and method thereof |
US20110299317A1 (en) | 2006-11-29 | 2011-12-08 | Shaeffer Ian P | Integrated circuit heating to effect in-situ annealing |
US20110302408A1 (en) | 2010-06-03 | 2011-12-08 | Morrigan Partners Limited | Secure Communication Systems, Methods, and Devices |
US20110302353A1 (en) | 2008-12-30 | 2011-12-08 | Emanuele Confalonieri | Non-volatile memory with extended operating temperature range |
US8085569B2 (en) | 2006-12-28 | 2011-12-27 | Hynix Semiconductor Inc. | Semiconductor memory device, and multi-chip package and method of operating the same |
US20120017037A1 (en) | 2010-04-12 | 2012-01-19 | Riddle Thomas A | Cluster of processing nodes with distributed global flash memory using commodity server technology |
US20120039117A1 (en) | 2010-08-16 | 2012-02-16 | Gary Edward Webb | Destruction of data stored in phase change memory |
US8144512B2 (en) | 2009-12-18 | 2012-03-27 | Sandisk Technologies Inc. | Data transfer flows for on-chip folding |
US20120084523A1 (en) | 2010-09-30 | 2012-04-05 | Littlefield Duncan A | Data recovery operations, such as recovery from modified network data management protocol data |
US20120089774A1 (en) | 2010-10-12 | 2012-04-12 | International Business Machines Corporation | Method and system for mitigating adjacent track erasure in hard disk drives |
US20120096330A1 (en) | 2010-10-19 | 2012-04-19 | Mosaid Technologies Incorporated | Error detection and correction codes for channels and memories with incomplete error characteristics |
US8166233B2 (en) | 2009-07-24 | 2012-04-24 | Lsi Corporation | Garbage collection for solid state disks |
US20120117399A1 (en) | 2010-11-04 | 2012-05-10 | International Business Machines Corporation | Saving power by managing the state of inactive computing devices |
US20120151253A1 (en) | 2010-12-14 | 2012-06-14 | Western Digital Technologies, Inc. | System and method for maintaining a data redundancy scheme in a solid state memory in the event of a power loss |
US20120147021A1 (en) | 2010-12-13 | 2012-06-14 | Advanced Micro Devices, Inc. | Graphics compute process scheduling |
US20120159289A1 (en) | 2010-12-20 | 2012-06-21 | Piccirillo Gary J | Data signatures to determine sucessful completion of memory backup |
US20120159099A1 (en) | 2010-12-17 | 2012-06-21 | Jack William Lindamood | Distributed Storage System |
US20120173792A1 (en) | 2010-12-30 | 2012-07-05 | Lassa Paul A | Controller and Method for Performing Background Operations |
US20120203958A1 (en) | 2011-02-08 | 2012-08-09 | SMART Storage Systems, Inc. | Storage control system with change logging mechanism and method of operation thereof |
US20120210095A1 (en) | 2011-02-11 | 2012-08-16 | Fusion-Io, Inc. | Apparatus, system, and method for application direct virtual memory management |
US8260924B2 (en) | 2006-05-03 | 2012-09-04 | Bluetie, Inc. | User load balancing systems and methods thereof |
US20120233523A1 (en) | 2011-03-10 | 2012-09-13 | Icform, Inc | Programmable Data Storage Management |
US20120246392A1 (en) | 2011-03-23 | 2012-09-27 | Samsung Electronics Co., Ltd. | Storage device with buffer memory including non-volatile ram and volatile ram |
US8281061B2 (en) | 2008-03-31 | 2012-10-02 | Micron Technology, Inc. | Data conditioning to improve flash memory reliability |
US20120278579A1 (en) | 2011-04-29 | 2012-11-01 | Seagate Technology Llc | Self-Initiated Secure Erasure Responsive to an Unauthorized Power Down Event |
US20120284587A1 (en) | 2008-06-18 | 2012-11-08 | Super Talent Electronics, Inc. | Super-Endurance Solid-State Drive with Endurance Translation Layer (ETL) and Diversion of Temp Files for Reduced Flash Wear |
US20120324312A1 (en) | 2011-06-14 | 2012-12-20 | Freescale Semiconductor, Inc. | Selective masking for error correction |
US20120331207A1 (en) | 2011-06-24 | 2012-12-27 | Lassa Paul A | Controller, Storage Device, and Method for Power Throttling Memory Operations |
US20130013887A1 (en) | 2007-01-25 | 2013-01-10 | Megachips Corporation | Memory controller |
US20130013880A1 (en) | 2011-07-08 | 2013-01-10 | Hitachi Computer Peripherals Co., Ltd. | Storage system and its data processing method |
US20130018852A1 (en) | 2011-07-15 | 2013-01-17 | International Business Machines Corporation | Deleted data recovery in data storage systems |
US20130016970A1 (en) | 2011-07-11 | 2013-01-17 | Oracle International Corporation | Optical network with switchable drop filters |
US20130024605A1 (en) | 2011-07-22 | 2013-01-24 | Sandisk Technologies Inc. | Systems and methods of storing data |
US20130054822A1 (en) | 2011-08-30 | 2013-02-28 | Rajiv P. Mordani | Failover Data Replication with Colocation of Session State Data |
US20130061029A1 (en) | 2011-09-02 | 2013-03-07 | Lsi Corporation | Method and apparatus for consolidating boot drives and improving reliability/availability/serviceability in high density server environments |
US20130073798A1 (en) | 2011-09-20 | 2013-03-21 | Samsung Electronics Co., Ltd. | Flash memory device and data management method |
US20130080391A1 (en) | 2011-09-23 | 2013-03-28 | International Business Machines Corporation | Block level backup and restore |
US8452819B1 (en) | 2011-03-22 | 2013-05-28 | Amazon Technologies, Inc. | Methods and apparatus for optimizing resource utilization in distributed storage systems |
US20130138871A1 (en) | 2011-11-30 | 2013-05-30 | Silicon Motion, Inc. | Flash Memory Device and Data Access Method for Same |
US20130144836A1 (en) | 2011-06-02 | 2013-06-06 | Google Inc. | Canonicalization of uniform resource identifiers |
US20130145089A1 (en) | 2010-05-28 | 2013-06-06 | International Business Machines Corporation | Cache memory management in a flash cache architecture |
US20130145085A1 (en) | 2008-06-18 | 2013-06-06 | Super Talent Technology Corp. | Virtual Memory Device (VMD) Application/Driver with Dual-Level Interception for Data-Type Splitting, Meta-Page Grouping, and Diversion of Temp Files to Ramdisks for Enhanced Flash Endurance |
US20130151759A1 (en) | 2011-12-08 | 2013-06-13 | Samsung Electronics Co., Ltd. | Storage device and operating method eliminating duplicate data storage |
US20130159251A1 (en) | 2009-06-19 | 2013-06-20 | Rich Skrenta | Dedicating Disks to Reading or Writing |
US20130159723A1 (en) | 2010-09-23 | 2013-06-20 | Marc Brandt | Methods, apparatus and systems for monitoring locations of data within a network service |
US20130166820A1 (en) | 2011-12-22 | 2013-06-27 | Fusion-Io, Inc. | Methods and appratuses for atomic storage operations |
US20130173845A1 (en) | 2011-12-29 | 2013-07-04 | Ameen Aslam | Command Aware Partial Page Programming |
US20130179898A1 (en) | 2009-08-03 | 2013-07-11 | Zettar, Inc. | Systems and methods for remote storage management |
US20130191601A1 (en) | 2012-01-24 | 2013-07-25 | Fusion-Io, Inc. | Apparatus, system, and method for managing a cache |
US20130205183A1 (en) | 2006-12-06 | 2013-08-08 | Fusion-Io, Inc. | Systems and methods for adaptive error-correction coding |
US20130219131A1 (en) | 2012-02-20 | 2013-08-22 | Nimrod Alexandron | Low access time indirect memory accesses |
US20130227347A1 (en) | 2012-02-28 | 2013-08-29 | Samsung Electronics Co., Ltd. | Storage device |
US8527544B1 (en) | 2011-08-11 | 2013-09-03 | Pure Storage Inc. | Garbage collection in a storage system |
US20130238955A1 (en) | 2012-03-09 | 2013-09-12 | Sandisk Technologies Inc. | System and method to decode data subject to a disturb condition |
US20130318395A1 (en) | 2012-03-28 | 2013-11-28 | Pranav Kalavade | Reconstructing codewords using a side channel |
US20130318283A1 (en) | 2012-05-22 | 2013-11-28 | Netapp, Inc. | Specializing i/0 access patterns for flash storage |
US20130325419A1 (en) | 2012-05-31 | 2013-12-05 | Saudi Arabian Oil Company | Reservoir simulation with scalable grid computing |
US20130329492A1 (en) | 2012-06-06 | 2013-12-12 | Silicon Motion Inc. | Flash memory control method, controller and electronic apparatus |
US20130346532A1 (en) | 2012-06-21 | 2013-12-26 | Microsoft Corporation | Virtual shared storage in a cluster |
US20140006688A1 (en) | 2012-07-02 | 2014-01-02 | Super Talent Technology, Corp. | Endurance and Retention Flash Controller with Programmable Binary-Levels-Per-Cell Bits Identifying Pages or Blocks as having Triple, Multi, or Single-Level Flash-Memory Cells |
US20140019650A1 (en) | 2012-07-10 | 2014-01-16 | Zhi Bin Li | Multi-Write Bit-Fill FIFO |
US20140019661A1 (en) * | 2012-05-18 | 2014-01-16 | Dell Products, Lp | System and Method for Providing Network Access for a Processing Node |
US20140025638A1 (en) | 2011-03-22 | 2014-01-23 | Zte Corporation | Method, system and serving node for data backup and restoration |
US20140082412A1 (en) | 2012-09-18 | 2014-03-20 | Fujitsu Limited | Storage control system, recording medium storing recovery program, and method |
US20140082273A1 (en) | 2012-09-20 | 2014-03-20 | XtremlO Ltd. | Content addressable storage in legacy systems |
US20140095758A1 (en) | 2012-09-28 | 2014-04-03 | Netapp, Inc. | Storage architecture for server flash and storage array operation |
US20140095827A1 (en) | 2011-05-24 | 2014-04-03 | Agency For Science, Technology And Research | Memory storage device, and a related zone-based block management and mapping method |
US20140095769A1 (en) | 2012-10-02 | 2014-04-03 | International Business Machines Corporation | Flash memory dual in-line memory module management |
US20140108414A1 (en) | 2012-10-12 | 2014-04-17 | Architecture Technology Corporation | Scalable distributed processing of rdf data |
US20140108891A1 (en) | 2010-01-27 | 2014-04-17 | Fusion-Io, Inc. | Managing non-volatile media |
US8751763B1 (en) | 2013-03-13 | 2014-06-10 | Nimbus Data Systems, Inc. | Low-overhead deduplication within a block-based data storage |
US20140164447A1 (en) | 2012-12-12 | 2014-06-12 | Akamai Technologies Inc. | Cookie synchronization and acceleration of third-party content in a web page |
US20140164879A1 (en) | 2012-12-11 | 2014-06-12 | Sandisk Technologies Inc. | Data Recovery on Cluster Failures and ECC Enhancements with Code Word Interleaving |
US20140181532A1 (en) | 2010-12-31 | 2014-06-26 | International Business Machines Corporation | Encrypted flash-based data storage system with confidentiality mode |
US20140195564A1 (en) | 2010-12-13 | 2014-07-10 | Fusion-Io, Inc. | Persistent data structures |
US20140215129A1 (en) | 2013-01-28 | 2014-07-31 | Radian Memory Systems, LLC | Cooperative flash memory control |
US20140223079A1 (en) | 2013-02-05 | 2014-08-07 | Via Technologies, Inc. | Non-volatile memory apparatus and operating method thereof |
US20140233950A1 (en) | 2013-02-15 | 2014-08-21 | Futurewei Technologies, Inc. | Downstream Burst Transmission In Passive Optical Networks |
US8819367B1 (en) | 2011-12-19 | 2014-08-26 | Western Digital Technologies, Inc. | Accelerated translation power recovery |
US8825937B2 (en) | 2011-02-25 | 2014-09-02 | Fusion-Io, Inc. | Writing cached data forward on read |
US20140250259A1 (en) | 2013-03-01 | 2014-09-04 | Silicon Motion, Inc. | Data storage device and flash memory control method |
US20140279927A1 (en) | 2013-03-15 | 2014-09-18 | International Business Machines Corporation | Scalable graph modeling of metadata for deduplicated storage systems |
US20140304452A1 (en) | 2013-04-03 | 2014-10-09 | Violin Memory Inc. | Method for increasing storage media performance |
US20140310574A1 (en) | 2012-12-28 | 2014-10-16 | Super Talent Technology, Corp. | Green eMMC Device (GeD) Controller with DRAM Data Persistence, Data-Type Splitting, Meta-Page Grouping, and Diversion of Temp Files for Enhanced Flash Endurance |
US8868825B1 (en) | 2014-07-02 | 2014-10-21 | Pure Storage, Inc. | Nonrepeating identifiers in an address space of a non-volatile solid-state storage |
US20140337457A1 (en) | 2013-05-13 | 2014-11-13 | Datadirect Networks, Inc. | Using network addressable non-volatile memory for high-performance node-local input/output |
US8904061B1 (en) | 2011-12-30 | 2014-12-02 | Emc Corporation | Managing storage operations in a server cache |
US20140359229A1 (en) | 2013-05-31 | 2014-12-04 | Vmware, Inc. | Lightweight Remote Replication of a Local Write-Back Cache |
US20140365707A1 (en) | 2010-12-13 | 2014-12-11 | Fusion-Io, Inc. | Memory device with volatile and non-volatile media |
US20140379965A1 (en) | 2013-06-25 | 2014-12-25 | Marvell World Trade Ltd. | Adaptive cache memory controller |
US20150006792A1 (en) | 2013-06-28 | 2015-01-01 | Samsung Electronics Co., Ltd. | Memory controller, method of operating, and apparatus including same |
US20150019798A1 (en) | 2013-07-15 | 2015-01-15 | CNEXLABS, Inc. | Method and Apparatus for Providing Dual Memory Access to Non-Volatile Memory |
US8949208B1 (en) | 2011-09-30 | 2015-02-03 | Emc Corporation | System and method for bulk data movement between storage tiers |
US20150039849A1 (en) | 2013-08-02 | 2015-02-05 | Formation Data Systems, Inc. | Multi-Layer Data Storage Virtualization Using a Consistent Data Reference Model |
US20150067436A1 (en) | 2013-09-03 | 2015-03-05 | Sandisk Technologies Inc. | Nonvolatile Memory System Compression |
US20150082317A1 (en) | 2013-09-19 | 2015-03-19 | Liang You | Techniques for distributed processing task portion assignment |
US20150106556A1 (en) | 2008-06-18 | 2015-04-16 | Super Talent Electronics, Inc. | Endurance Translation Layer (ETL) and Diversion of Temp Files for Reduced Flash Wear of a Super-Endurance Solid-State Drive |
US20150106559A1 (en) | 2013-03-15 | 2015-04-16 | Samsung Electronics Co., Ltd. | Nonvolatile storage device and operating system (os) image program method thereof |
US9015561B1 (en) | 2014-06-11 | 2015-04-21 | Sandisk Technologies Inc. | Adaptive redundancy in three dimensional memory |
US20150121031A1 (en) | 2013-10-25 | 2015-04-30 | Seagate Technology Llc | Adaptive guard band for improved data storage capacity |
US9031296B2 (en) | 2009-09-21 | 2015-05-12 | Xring Technologies Gmbh | Method and system for error resilient compression and decompression of computed tomography data |
US20150142752A1 (en) | 2013-11-15 | 2015-05-21 | International Business Machines Corporation | Priority based reliability mechanism for archived data |
US20150143030A1 (en) | 2013-11-21 | 2015-05-21 | Sandisk Technologies Inc. | Update Block Programming Order |
US9043545B2 (en) | 2012-01-06 | 2015-05-26 | Netapp, Inc. | Distributing capacity slices across storage system nodes |
US20150186657A1 (en) | 2013-08-05 | 2015-07-02 | Samsung Sds Co., Ltd. | System and method for encryption and key management in cloud storage |
US20150199234A1 (en) | 2014-01-13 | 2015-07-16 | Samsung Electronics Co., Ltd. | Memory device, memory system, and method of operating memory device |
US9088300B1 (en) | 2011-12-15 | 2015-07-21 | Marvell International Ltd. | Cyclic redundancy check for out-of-order codewords |
US9092223B1 (en) | 2012-05-31 | 2015-07-28 | Google Inc. | Systems and methods to save power in data-center networks |
US20150227316A1 (en) | 2014-02-07 | 2015-08-13 | Coho Data, Inc. | Methods, systems and devices relating to data storage interfaces for managing data address spaces in data storage devices |
US20150234845A1 (en) | 2014-02-17 | 2015-08-20 | Netapp, Inc. | Subpartitioning of a namespace region |
US9129628B1 (en) | 2014-10-23 | 2015-09-08 | Western Digital Technologies, Inc. | Data management for data storage device with different track density regions |
US9141176B1 (en) | 2013-07-29 | 2015-09-22 | Western Digital Technologies, Inc. | Power management for data storage device |
US20150269964A1 (en) | 2014-03-21 | 2015-09-24 | Western Digital Technologies, Inc. | Data management for a data storage device using a last resort zone |
US20150277937A1 (en) | 2014-03-26 | 2015-10-01 | Robert C. Swanson | Boot image discovery and delivery |
US20150286477A1 (en) | 2014-04-04 | 2015-10-08 | Avid Technology, Inc. | Method of consolidating, synchronizing, and streaming production content for distributed editing of media compositions |
US20150294684A1 (en) | 2014-04-10 | 2015-10-15 | Seagate Technology Llc | Band rewrite optimization |
US20150304108A1 (en) | 2010-09-15 | 2015-10-22 | Seagate Technology Llc | Encryption Key Destruction For Secure Data Erasure |
US20150301964A1 (en) | 2014-02-18 | 2015-10-22 | Alistair Mark Brinicombe | Methods and systems of multi-memory, control and data plane architecture |
US20150310916A1 (en) | 2014-04-29 | 2015-10-29 | Samsung Electronics Co., Ltd. | Nonvolatile memory system |
US20150317095A1 (en) | 2012-12-19 | 2015-11-05 | Hewlett-Packard Development Company, L.P. | Nvram path selection |
US20150341123A1 (en) | 2013-07-17 | 2015-11-26 | Inphi Corporation | Integrated control for silicon photonics |
US20150347025A1 (en) | 2014-05-27 | 2015-12-03 | Kabushiki Kaisha Toshiba | Host-controlled garbage collection |
US9208817B1 (en) | 2015-03-10 | 2015-12-08 | Alibaba Group Holding Limited | System and method for determination and reallocation of pending sectors caused by media fatigue |
US9213627B2 (en) | 2005-12-21 | 2015-12-15 | Nxp B.V. | Non-volatile memory with block erasable locations |
US9213632B1 (en) | 2012-02-29 | 2015-12-15 | Marvell International Ltd. | Systems and methods for data storage devices to use external resources |
US20150363328A1 (en) | 2013-01-18 | 2015-12-17 | Cisco Technology, Inc. | Methods and apparatus for data processing |
US20150363271A1 (en) | 2014-06-16 | 2015-12-17 | International Business Machines Corporation | Restoring data in a hierarchical storage management system |
US20150372597A1 (en) | 2014-06-19 | 2015-12-24 | Shiguo Luo | Methods and systems for improving light load efficiency for power stages of multi-phase voltage regulator circuits |
US20150370700A1 (en) * | 2014-06-23 | 2015-12-24 | Google Inc. | Managing storage devices |
US20160014039A1 (en) | 2014-07-11 | 2016-01-14 | Vmware, Inc. | Methods and apparatus to provision a workload in a virtual server rack deployment |
US20160026575A1 (en) | 2014-07-22 | 2016-01-28 | Lsi Corporation | Selective mirroring in caches for logical volumes |
US9251058B2 (en) | 2010-09-28 | 2016-02-02 | SanDisk Technologies, Inc. | Servicing non-block storage requests |
US9258014B2 (en) | 2011-12-30 | 2016-02-09 | Streamscale, Inc. | Using parity data for concurrent data authentication, correction, compression, and encryption |
US20160041760A1 (en) | 2014-08-08 | 2016-02-11 | International Business Machines Corporation | Multi-Level Cell Flash Memory Control Mechanisms |
US20160048341A1 (en) | 2012-06-29 | 2016-02-18 | International Business Machines Corporation | Optimized data placement for individual file accesses on deduplication-enabled sequential storage systems |
US20160048327A1 (en) | 2014-08-14 | 2016-02-18 | Advanced Micro Devices, Inc. | Data distribution among multiple managed memories |
US20160054922A1 (en) | 2014-08-19 | 2016-02-25 | Manu Awasthi | Data management scheme in virtualized hyperscale environments |
US20160062885A1 (en) | 2014-09-02 | 2016-03-03 | Samsung Electronics Co., Ltd. | Garbage collection method for nonvolatile memory device |
US9280472B1 (en) | 2013-03-13 | 2016-03-08 | Western Digital Technologies, Inc. | Caching data in a high performance zone of a data storage system |
US20160077968A1 (en) | 2014-09-16 | 2016-03-17 | Sandisk Technologies Inc. | System and method for configuring and controlling non-volatile cache |
US20160077749A1 (en) | 2014-09-16 | 2016-03-17 | Sandisk Technologies Inc. | Adaptive Block Allocation in Nonvolatile Memory |
US20160078245A1 (en) | 2014-09-17 | 2016-03-17 | Commvault Systems, Inc. | Data storage systems and methods |
US20160077764A1 (en) | 2014-09-15 | 2016-03-17 | E8 Storage Systems Ltd. | Distributed raid over shared multi-queued storage devices |
US20160098350A1 (en) | 2014-10-06 | 2016-04-07 | Sk Hynix Memory Solutions Inc. | Sizing a cache while taking into account a total bytes written requirement |
US20160098344A1 (en) | 2014-10-03 | 2016-04-07 | Sandisk Technologies Inc. | Hardware automation for memory management |
US9311939B1 (en) | 2014-12-23 | 2016-04-12 | Western Digital Technologies, Inc. | Write-through media caching |
US20160103631A1 (en) | 2014-10-13 | 2016-04-14 | Silicon Motion, Inc. | Non-volatile memory devices and control methods therefor |
US20160110254A1 (en) | 2014-10-15 | 2016-04-21 | Empire Technology Development Llc | Partial Cloud Data Storage |
US20160124742A1 (en) | 2014-10-30 | 2016-05-05 | Equinix, Inc. | Microservice-based application development framework |
US9336340B1 (en) | 2012-03-30 | 2016-05-10 | Emc Corporation | Evaluating management operations |
US20160132237A1 (en) | 2014-11-12 | 2016-05-12 | Ha Neul Jeong | Data storage device, data processing system and method of operation |
US20160141047A1 (en) | 2014-11-18 | 2016-05-19 | Sandisk Technologies Inc. | Boundary Word Line Operation in Nonvolatile Memory |
US20160154601A1 (en) | 2014-11-28 | 2016-06-02 | International Business Machines Corporation | Disk management in distributed storage system |
US20160155750A1 (en) | 2014-11-28 | 2016-06-02 | Kabushiki Kaisha Toshiba | Semiconductor memory device and method for manufacturing the same |
US20160162187A1 (en) | 2013-04-17 | 2016-06-09 | The-Aio Co., Ltd. | Storage System And Method For Processing Writing Data Of Storage System |
US20160179399A1 (en) | 2014-12-23 | 2016-06-23 | Sandisk Technologies Inc. | System and Method for Selecting Blocks for Garbage Collection Based on Block Health |
US20160188890A1 (en) | 2014-12-26 | 2016-06-30 | Intel Corporation | Security mode data protection |
US20160188223A1 (en) | 2014-12-30 | 2016-06-30 | International Business Machines Corporation | Promoting consistent response times in a data storage system having multiple data retrieval mechanisms |
US20160203000A1 (en) | 2015-01-09 | 2016-07-14 | Avago Technologies General Ip (Singapore) Pte. Ltd | Operating system software install and boot up from a storage area network device |
US20160224267A1 (en) | 2015-02-04 | 2016-08-04 | Sandisk Technologies Inc. | Memory Block Allocation By Block Health |
US20160234297A1 (en) | 2015-02-11 | 2016-08-11 | International Business Machines Corporation | Load-balancing input/output requests in clustered storage systems |
US20160232103A1 (en) | 2013-09-26 | 2016-08-11 | Mark A. Schmisseur | Block storage apertures to persistent memory |
US20160239380A1 (en) | 2015-02-16 | 2016-08-18 | Quantum Corporation | Garbage Collection And Defragmentation For Solid State Drives (SSD) and Shingled Magnetic Recording (SMR) Drives |
US20160239074A1 (en) | 2015-02-13 | 2016-08-18 | Victor W. Lee | Performing power management in a multicore processor |
US9436595B1 (en) | 2013-03-15 | 2016-09-06 | Google Inc. | Use of application data and garbage-collected data to improve write efficiency of a data storage device |
US20160274636A1 (en) | 2015-03-16 | 2016-09-22 | Electronics And Telecommunications Research Institute | Gpu power measuring method of heterogeneous multi-core system |
US20160283140A1 (en) | 2015-03-26 | 2016-09-29 | International Business Machines Corporation | File system block-level tiering and co-allocation |
US20160306853A1 (en) | 2010-06-09 | 2016-10-20 | Brocade Communications Systems, Inc. | Inline Wire Speed Deduplication System |
US20160306699A1 (en) | 2012-04-25 | 2016-10-20 | International Business Machines Corporation | Encrypting data for storage in a dispersed storage network |
US20160321002A1 (en) | 2015-04-30 | 2016-11-03 | Bong-Kil Jung | Storage device and initializing method thereof |
US9495263B2 (en) | 2004-12-21 | 2016-11-15 | Infortrend Technology, Inc. | Redundant SAS storage virtualization subsystem and system using the same, and method therefor |
US20160335085A1 (en) | 2015-05-13 | 2016-11-17 | Arm Limited | Processing queue management |
US20160343429A1 (en) | 2015-05-19 | 2016-11-24 | Emc Corporation | Method and system for storing and recovering data from flash memory |
US20160342345A1 (en) | 2015-05-20 | 2016-11-24 | Sandisk Enterprise Ip Llc | Variable Bit Encoding Per NAND Flash Cell to Improve Device Endurance and Extend Life of Flash-Based Storage Devices |
US20160350385A1 (en) | 2015-05-26 | 2016-12-01 | Gluent Inc. | System and method for transparent context aware filtering of data requests |
US20160350002A1 (en) | 2015-05-29 | 2016-12-01 | Intel Corporation | Memory device specific self refresh entry and exit |
US20160364146A1 (en) | 2015-06-12 | 2016-12-15 | International Business Machines Corporation | Region-based storage for volume data and metadata |
US9529601B1 (en) | 2015-07-15 | 2016-12-27 | Dell Products L.P. | Multi-processor startup system |
US9529670B2 (en) | 2014-05-16 | 2016-12-27 | International Business Machines Corporation | Storage element polymorphism to reduce performance degradation during error recovery |
US20160381442A1 (en) | 2015-06-25 | 2016-12-29 | Kaiam Corp. | Optical interconnect for switch applications |
US20170004037A1 (en) | 2015-07-03 | 2017-01-05 | SK Hynix Inc. | Memory device with different parity regions |
US20170010652A1 (en) | 2015-07-08 | 2017-01-12 | Quanta Computer Inc. | Dynamic power supply management |
US9569454B2 (en) | 2014-09-15 | 2017-02-14 | Seagate Technology Llc | Selective compression of objects in a storage compute device |
US9575982B1 (en) | 2013-04-29 | 2017-02-21 | Amazon Technologies, Inc. | Size targeted database I/O compression |
US9588977B1 (en) | 2014-09-30 | 2017-03-07 | EMC IP Holding Company LLC | Data and metadata structures for use in tiering data to cloud storage |
US9588698B1 (en) | 2013-03-15 | 2017-03-07 | Virident Systems Inc. | Managing the write performance of an asymmetric memory system |
US20170068639A1 (en) | 2009-10-30 | 2017-03-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US20170075583A1 (en) | 2015-09-14 | 2017-03-16 | Microsoft Technology Licensing, Llc. | Exposing and managing disparate read, write, and erase sizes in data storage devices |
US9607631B2 (en) | 2014-11-24 | 2017-03-28 | Seagate Technology Llc | Enhanced capacity recording |
US20170091110A1 (en) | 2015-09-29 | 2017-03-30 | International Business Machines Corporation | Considering a frequency of access to groups of tracks and density of the groups to select groups of tracks to destage |
US20170109199A1 (en) | 2015-10-15 | 2017-04-20 | Red Hat, Inc. | Scheduling multi-phase computing jobs |
US20170109232A1 (en) | 2015-10-20 | 2017-04-20 | Samsung Electronics Co., Ltd. | Methods operating semiconductor memory devices with selective write-back of data for error scrubbing and related devices |
US20170123655A1 (en) | 2015-10-30 | 2017-05-04 | Sandisk Technologies Inc. | System and method for managing extended maintenance scheduling in a non-volatile memory |
US20170147499A1 (en) | 2015-11-25 | 2017-05-25 | Sandisk Technologies Llc | Multi-Level Logical to Physical Address Mapping Using Distributed Processors in Non-Volatile Storage Device |
US9671971B2 (en) | 2015-03-27 | 2017-06-06 | Intel Corporation | Managing prior versions of data for logical addresses in a storage device |
US20170162235A1 (en) | 2015-12-02 | 2017-06-08 | Qualcomm Incorporated | System and method for memory management using dynamic partial channel interleaving |
US20170161202A1 (en) | 2015-12-02 | 2017-06-08 | Samsung Electronics Co., Ltd. | Flash memory device including address mapping for deduplication, and related methods |
US20170168986A1 (en) | 2015-12-10 | 2017-06-15 | Cisco Technology, Inc. | Adaptive coalescing of remote direct memory access acknowledgements based on i/o characteristics |
US20170177217A1 (en) | 2015-12-22 | 2017-06-22 | Kabushiki Kaisha Toshiba | Memory system and method for controlling nonvolatile memory |
US20170177259A1 (en) | 2015-12-18 | 2017-06-22 | Intel Corporation | Techniques to Use Open Bit Line Information for a Memory System |
US20170185498A1 (en) | 2015-12-29 | 2017-06-29 | EMC IP Holding Company LLC | Method and apparatus for facilitating storage system recovery and relevant storage system |
US20170185316A1 (en) | 2015-12-29 | 2017-06-29 | Emc Corporation | Method and system for synchronizing an index of data blocks stored in a storage system using a shared storage module |
US20170192848A1 (en) | 2016-01-04 | 2017-07-06 | HGST Netherlands B.V. | Distributed data storage with reduced storage overhead using reduced-dependency erasure codes |
US20170199823A1 (en) | 2014-07-02 | 2017-07-13 | Pure Storage, Inc. | Nonrepeating identifiers in an address space of a non-volatile solid-state storage |
US20170206131A1 (en) * | 2016-01-15 | 2017-07-20 | Micron Technology, Inc. | Non-volatile memory including selective error correction |
US20170212708A1 (en) | 2016-01-25 | 2017-07-27 | Samsung Electronics Co., Ltd. | Dynamic garbage collection p/e policies for redundant storage blocks and distributed software stacks |
US20170212680A1 (en) | 2016-01-22 | 2017-07-27 | Suraj Prabhakar WAGHULDE | Adaptive prefix tree based order partitioned data storage system |
US9722632B2 (en) | 2014-09-22 | 2017-08-01 | Streamscale, Inc. | Sliding window list decoder for error correcting codes |
US20170221519A1 (en) | 2016-02-03 | 2017-08-03 | Kabushiki Kaisha Toshiba | Rewriting of data stored in defective storage regions into other storage regions |
US20170228157A1 (en) | 2015-07-13 | 2017-08-10 | Samsung Electronics Co., Ltd. | Automatic stream detection & assignment algorithm |
US20170242722A1 (en) | 2016-02-24 | 2017-08-24 | Samsung Electronics Co., Ltd. | Vm-aware ftl design for sr-iov nvme ssd |
US20170242768A1 (en) * | 2016-02-19 | 2017-08-24 | SK Hynix Inc. | Controller of semiconductor memory device and method of operating the same |
US9747202B1 (en) | 2013-03-14 | 2017-08-29 | Sandisk Technologies Llc | Storage module and method for identifying hot and cold data |
US20170249162A1 (en) | 2016-02-25 | 2017-08-31 | Red Hat Israel, Ltd. | Safe transmit packet processing for network function virtualization applications |
US20170262217A1 (en) | 2016-03-09 | 2017-09-14 | Commvault Systems, Inc. | Data transfer to a distributed storage environment |
US20170262178A1 (en) | 2016-03-09 | 2017-09-14 | Kabushiki Kaisha Toshiba | Storage system having a host that manages physical data locations of a storage device |
US20170262176A1 (en) | 2016-03-08 | 2017-09-14 | Kabushiki Kaisha Toshiba | Storage system, information processing system and method for controlling nonvolatile memory |
US20170269998A1 (en) | 2016-03-17 | 2017-09-21 | Samsung Electronics Co., Ltd. | Non-volatile memory device and method of operating the same |
US20170279460A1 (en) | 2016-03-24 | 2017-09-28 | International Business Machines Corporation | Updating prefix codes for pseudo-dynamic data compression |
US20170277655A1 (en) | 2016-03-25 | 2017-09-28 | Microsoft Technology Licensing, Llc | Memory sharing for working data using rdma |
US20170285976A1 (en) | 2016-04-01 | 2017-10-05 | David M. Durham | Convolutional memory integrity |
US20170286311A1 (en) | 2016-04-01 | 2017-10-05 | Dale J. Juenemann | Repetitive address indirection in a memory |
US20170322888A1 (en) | 2016-05-05 | 2017-11-09 | HGST Netherlands B.V. | Zoning of logical to physical data address translation tables with parallelized log list replay |
US9830084B2 (en) | 2015-12-03 | 2017-11-28 | Sandisk Technologies Llc | Writing logical groups of data to physical locations in memory using headers |
US20170344491A1 (en) | 2016-05-25 | 2017-11-30 | Samsung Electronics Co., Ltd. | Access parameter based multi-stream storage device access |
US20170344470A1 (en) | 2016-05-25 | 2017-11-30 | Samsung Electronics Co., Ltd. | Range based stream detection for flash memory device |
US9836232B1 (en) | 2015-09-30 | 2017-12-05 | Western Digital Technologies, Inc. | Data storage device and method for using secondary non-volatile memory for temporary metadata storage |
US20170353576A1 (en) | 2016-06-01 | 2017-12-07 | Intel Corporation | Method and apparatus for remote prefetches of variable size |
US9852076B1 (en) | 2014-12-18 | 2017-12-26 | Violin Systems Llc | Caching of metadata for deduplicated LUNs |
US9875053B2 (en) | 2015-06-05 | 2018-01-23 | Western Digital Technologies, Inc. | Scheduling scheme(s) for a multi-die storage device |
US20180024779A1 (en) | 2016-07-25 | 2018-01-25 | Toshiba Memory Corporation | Storage device and storage control method |
US20180024772A1 (en) | 2016-07-21 | 2018-01-25 | Micron Technology, Inc. | Memory device including concurrent suspend states for different operations |
US20180033491A1 (en) | 2016-07-28 | 2018-02-01 | Ip Gem Group, Llc | Method and apparatus with background reference positioning and local reference positioning |
US20180052797A1 (en) | 2015-03-09 | 2018-02-22 | International Business Machines Corporation | Preventing input/output (i/o) traffic overloading of an interconnect channel in a distributed data storage system |
US9912530B2 (en) | 2009-11-18 | 2018-03-06 | Juniper Networks, Inc. | Method and apparatus for hitless failover in networking systems using single database |
US9910705B1 (en) | 2015-02-18 | 2018-03-06 | Altera Corporation | Modular offloading for computationally intensive tasks |
US20180067847A1 (en) | 2016-09-06 | 2018-03-08 | Samsung Electronics Co., Ltd. | Memory device including column redundancy |
US20180069658A1 (en) | 2016-09-07 | 2018-03-08 | Western Digital Technologies, Inc. | Aggregated metadata transfer at a data storage device |
US20180074730A1 (en) | 2016-09-12 | 2018-03-15 | Toshiba Memory Corporation | Memory controller |
US20180076828A1 (en) | 2016-09-09 | 2018-03-15 | Toshiba Memory Corporation | Storgae device that inverts bits of data written into a nonvolatile memory thereof |
US9923562B1 (en) | 2016-06-16 | 2018-03-20 | Western Digital Technologies, Inc. | Data storage device state detection on power loss |
US20180088867A1 (en) | 2016-09-28 | 2018-03-29 | Winbond Electronics Corp. | Semiconductor memory device and continuous reading method for the same |
US9933973B2 (en) | 2015-08-28 | 2018-04-03 | Qualcomm Incorporated | Systems and methods for data organization in storage systems using large erasure codes |
US9946596B2 (en) | 2016-01-29 | 2018-04-17 | Toshiba Memory Corporation | Global error recovery system |
US20180107591A1 (en) | 2011-04-06 | 2018-04-19 | P4tents1, LLC | System, method and computer program product for fetching data between an execution of a plurality of threads |
US20180113631A1 (en) | 2016-10-26 | 2018-04-26 | ScaleFlux, Inc. | Enhancing flash translation layer to improve performance of databases and filesystems |
US20180143780A1 (en) | 2016-11-23 | 2018-05-24 | Samsung Electronics Co., Ltd. | Storage system performing data deduplication, method of operating storage system, and method of operating data processing system |
US20180150640A1 (en) | 2015-07-27 | 2018-05-31 | Huawei International Pte. Ltd. | Policy aware unified file system |
US20180165038A1 (en) | 2016-12-13 | 2018-06-14 | International Business Machines Corporation | Techniques for storage command processing |
US20180165169A1 (en) | 2016-12-12 | 2018-06-14 | International Business Machines Corporation | Data storage system employing a hot spare to proactively store array data in absence of a failure or pre-failure event |
US20180165340A1 (en) | 2012-11-26 | 2018-06-14 | Amazon Technologies, Inc. | Automatic repair of corrupted blocks in a database |
US20180167268A1 (en) | 2016-12-13 | 2018-06-14 | Amazon Technologies, Inc. | Reconfigurable server |
US20180173620A1 (en) | 2015-09-23 | 2018-06-21 | Huawei Technologies Co., Ltd. | Data erasure method for solid state drive, and apparatus |
US10013169B2 (en) | 2014-12-19 | 2018-07-03 | International Business Machines Corporation | Cooperative data deduplication in a solid state storage array |
US20180188970A1 (en) | 2016-12-30 | 2018-07-05 | Western Digital Technologies, Inc. | Scheduling access commands for data storage devices |
US20180189175A1 (en) | 2016-12-30 | 2018-07-05 | Western Digital Technologies, Inc. | Garbage collection read throttling |
US20180189182A1 (en) | 2016-12-29 | 2018-07-05 | Intel Corporation | Aggregated write back in a direct mapped two level memory |
US20180212951A1 (en) | 2015-09-04 | 2018-07-26 | Hewlett Packard Enterprise Development Lp | Secure login information |
US20180219561A1 (en) | 2017-02-01 | 2018-08-02 | Tsofun Algorithm Ltd. | Device, system and method of implementing product error correction codes for fast encoding and decoding |
US20180226124A1 (en) | 2015-10-01 | 2018-08-09 | Infineon Technologies Ag | Method of operating a memory unit sector |
US20180260148A1 (en) | 2017-03-10 | 2018-09-13 | Toshiba Memory Corporation | Large scale implementation of a plurality of open channel solid state drives |
US20180270110A1 (en) | 2017-03-17 | 2018-09-20 | Verizon Patent And Licensing Inc. | Automatic bootstrapping and dynamic configuration of data center nodes |
US20180293014A1 (en) | 2017-04-10 | 2018-10-11 | Sandisk Technologies Llc | Folding operations in memory systems with single address updates |
US20180300203A1 (en) | 2017-04-18 | 2018-10-18 | Netapp, Inc. | Systems and methods for backup and restore of distributed master-slave database clusters |
US20180307620A1 (en) | 2017-04-20 | 2018-10-25 | Alibaba Group Holding Limited | Persistent memory for key-value storage |
US20180322024A1 (en) | 2015-07-31 | 2018-11-08 | Hitachi, Ltd. | Storage apparatus, storage system, and control method of storage system |
US20180321864A1 (en) | 2017-05-03 | 2018-11-08 | Western Digital Technologies, Inc. | System and method for processing non-contiguous submission and completion queues |
US20180329776A1 (en) | 2017-05-12 | 2018-11-15 | Via Technologies, Inc. | Non-volatile memory apparatus and reading method thereof |
US20180336921A1 (en) | 2017-05-19 | 2018-11-22 | Seagate Technology Llc | Narrow band dwell monitoring |
US20180349396A1 (en) | 2017-05-30 | 2018-12-06 | Western Digital Technologies, Inc. | Managing I/O Operations in a Storage Network |
US20180356992A1 (en) | 2017-06-13 | 2018-12-13 | Western Digital Technologies, Inc. | Multi-Device Platform |
US20180357126A1 (en) | 2012-04-25 | 2018-12-13 | International Business Machines Corporation | Mapping slice groupings in a dispersed storage network |
US20180373655A1 (en) | 2017-06-22 | 2018-12-27 | Macronix International Co., Ltd. | Controller for a memory system |
US20180373664A1 (en) | 2017-06-23 | 2018-12-27 | Facebook, Inc. | Apparatus, system, and method for performing hardware acceleration via expansion cards |
US20180373428A1 (en) | 2017-06-23 | 2018-12-27 | Dell Products L.P. | Methods and systems for managing data migration in solid state non-volatile memory |
US20190004944A1 (en) | 2017-06-29 | 2019-01-03 | Western Digital Technologies, Inc. | System and method for host system memory translation |
US20190012111A1 (en) | 2017-07-06 | 2019-01-10 | Alibaba Group Holding Limited | Method and system for mitigating write amplification in a phase change memory-based storage device |
US20190034454A1 (en) | 2017-12-19 | 2019-01-31 | Intel Corporation | Expandable tree-based indexing framework that enables expansion of the hadoop distributed file system |
US10199066B1 (en) | 2018-03-01 | 2019-02-05 | Seagate Technology Llc | Write management of physically coupled storage areas |
US20190042571A1 (en) | 2018-05-07 | 2019-02-07 | Intel Corporation | Update-Insert for Key-Value Storage Interface |
US20190050312A1 (en) | 2017-08-11 | 2019-02-14 | Alibaba Group Holding Limited | Method and system for a high-priority read based on an in-place suspend/resume write |
US20190050327A1 (en) | 2017-08-11 | 2019-02-14 | Alibaba Group Holding Limited | Method and system for rearranging a write operation in a shingled magnetic recording device |
US20190065085A1 (en) | 2017-08-31 | 2019-02-28 | Micron Technology, Inc. | Prioritized security |
US20190073261A1 (en) | 2015-08-28 | 2019-03-07 | Intel Corporation | Memory device error check and scrub mode and error transparency |
US20190073262A1 (en) | 2017-09-04 | 2019-03-07 | Via Technologies, Inc. | Error checking and correcting decoding method and apparatus |
US10229735B1 (en) | 2017-12-22 | 2019-03-12 | Intel Corporation | Block management for dynamic single-level cell buffers in storage devices |
US20190087115A1 (en) | 2017-09-15 | 2019-03-21 | Alibaba Group Holding Limited | Method and system for in-line deduplication in a storage drive based on a non-collision hash |
US20190087089A1 (en) | 2017-09-21 | 2019-03-21 | Toshiba Memory Corporation | Memory system and method for controlling nonvolatile memory |
US20190087328A1 (en) | 2017-09-21 | 2019-03-21 | Toshiba Memory Corporation | Memory system and method for controlling nonvolatile memory |
US20190108145A1 (en) | 2018-08-20 | 2019-04-11 | Intel Corporation | Dual in-line memory module (dimm) programmable accelerator card |
US20190116127A1 (en) | 2017-10-16 | 2019-04-18 | Mellanox Technologies, Ltd. | Computational accelerator for packet payload operations |
US20190166725A1 (en) | 2017-11-24 | 2019-05-30 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Liquid-cooled server chassis |
US20190172820A1 (en) | 2016-09-30 | 2019-06-06 | Intel Corporation | Data storage system using wafer-level packaging |
US20190171532A1 (en) | 2017-12-04 | 2019-06-06 | International Business Machines Corporation | MANAGING BIG DATA ON DOCUMENT BASED NoSQL DATABASES |
US20190196748A1 (en) | 2017-12-21 | 2019-06-27 | Microsoft Technology Licensing, Llc | Virtualized ocssds spanning physical ocssd channels |
US20190196907A1 (en) | 2019-03-05 | 2019-06-27 | Intel Corporation | Compression techniques for distributed data |
US20190205206A1 (en) | 2017-12-28 | 2019-07-04 | Micron Technology, Inc. | Memory controller implemented error correction code memory |
US20190212949A1 (en) | 2018-01-10 | 2019-07-11 | International Business Machines Corporation | Increasing storage efficiency of a data protection technique |
US20190220392A1 (en) | 2018-01-15 | 2019-07-18 | Silicon Motion Inc. | Method for reusing destination block related to garbage collection in memory device, associated memory device and controller thereof, and associated electronic device |
US10361722B2 (en) | 2016-11-10 | 2019-07-23 | SK Hynix Inc. | Semiconductor memory device performing randomization operation |
US20190227927A1 (en) | 2018-01-19 | 2019-07-25 | Shannon Systems Ltd. | Data storage device and data storage method for dynamically executing a garbage-collection process |
US20190272242A1 (en) | 2018-03-05 | 2019-09-05 | Samsung Electronics Co., Ltd. | Novel ssd architecture for fpga based acceleration |
US20190278849A1 (en) | 2018-03-09 | 2019-09-12 | Microsoft Technology Licensing, Llc | Key-value store system |
US20190278654A1 (en) | 2017-03-17 | 2019-09-12 | Micron Technology, Inc. | Tiered error correction code (ecc) operations in memory |
US10417086B2 (en) | 2017-08-11 | 2019-09-17 | Winbond Electronics Corp. | Data write method and memory storage device using the same |
US10437670B1 (en) | 2018-05-24 | 2019-10-08 | International Business Machines Corporation | Metadata hardening and parity accumulation for log-structured arrays |
US20190317901A1 (en) | 2018-04-16 | 2019-10-17 | Samsung Electronics Co., Ltd. | System and method for optimizing performance of a solid-state drive using a deep neural network |
US20190320020A1 (en) | 2018-04-17 | 2019-10-17 | Samsung Electronics Co., Ltd. | Network storage device storing large amount of data |
US10459663B2 (en) | 2017-01-23 | 2019-10-29 | International Business Machines Corporation | Thin provisioning of raid storage |
US10459794B2 (en) | 2017-02-06 | 2019-10-29 | SK Hynix Inc. | Memory systems having extended product lifetime and methods of operating the same |
US10466907B2 (en) | 2016-03-22 | 2019-11-05 | Toshiba Memory Corporation | Method to efficiently store object data of an object storage service on a magnetic disk drive and magnetic SMR disk drive |
US20190339998A1 (en) | 2018-05-04 | 2019-11-07 | Citrix Systems, Inc. | Systems and methods for remote computing sessions with variable forward error correction (fec) |
US10484019B2 (en) | 2017-10-30 | 2019-11-19 | Western Digital Technologies, Inc. | Adaptive encoder/decoder |
US20190361611A1 (en) | 2017-04-13 | 2019-11-28 | Hitachi, Ltd. | Storage system |
US20190377632A1 (en) | 2018-06-07 | 2019-12-12 | Samsung Electronics Co., Ltd. | Method of equalizing bit error rates of memory device |
US20190377821A1 (en) | 2018-06-12 | 2019-12-12 | Open Text Corporation | System and method for persistence and replication of changes to a data store |
US20190391748A1 (en) | 2018-06-25 | 2019-12-26 | Alibaba Group Holding Limited | Method and system for data placement in a hard disk drive based on access frequency for improved iops and utilization efficiency |
US20200004456A1 (en) | 2018-06-28 | 2020-01-02 | Seagate Technology Llc | Deterministic Optimization via Performance Tracking in a Data Storage System |
US20200004674A1 (en) | 2018-06-27 | 2020-01-02 | Seagate Technology Llc | Non-deterministic window scheduling for data storage systems |
US10530391B2 (en) | 2016-07-29 | 2020-01-07 | Western Digital Technologies, Inc. | Non-binary encoding for non-volatile memory |
US20200013458A1 (en) | 2018-07-03 | 2020-01-09 | Micron Technology, Inc. | Data storage based on data polarity |
US20200042387A1 (en) | 2018-07-31 | 2020-02-06 | EMC IP Holding Company LLC | Maintaining logical to physical address mapping during in place sector rebuild |
US20200042223A1 (en) | 2018-08-02 | 2020-02-06 | Alibaba Group Holding Limited | System and method for facilitating a high-density storage device with improved performance and endurance |
US20200084918A1 (en) | 2017-04-28 | 2020-03-12 | Dawning Information Industry (Beijing) Co., Ltd | Air-vapor separation method for immersed liquid-cooling system and device thereof |
US20200082006A1 (en) | 2018-09-06 | 2020-03-12 | Sap Se | Searching for data using superset tree data structures |
US20200089430A1 (en) | 2018-09-19 | 2020-03-19 | Toshiba Memory Corporation | Memory system and control method |
US20200092209A1 (en) | 2018-09-13 | 2020-03-19 | International Business Machines Corporation | Optimizing application throughput |
US20200097189A1 (en) | 2018-09-26 | 2020-03-26 | Western Digital Technologies, Inc. | Data storage systems and methods for improved data relocation based on read-level voltages associated with error recovery |
US10635529B2 (en) | 2017-05-25 | 2020-04-28 | Western Digital Technologies, Inc. | Parity offload for multiple data storage devices |
US20200133841A1 (en) | 2018-10-25 | 2020-04-30 | Pure Storage, Inc. | Scalable garbage collection |
US20200143885A1 (en) | 2018-11-07 | 2020-05-07 | Samsung Electronics Co., Ltd. | Nonvolatile memory device, storage device including nonvolatile memory device, and method of accessing nonvolatile memory device |
US10649657B2 (en) | 2018-03-22 | 2020-05-12 | Western Digital Technologies, Inc. | Log-based storage for different data types in non-volatile memory |
US10649969B2 (en) | 2017-06-13 | 2020-05-12 | Western Digital Technologies, Inc. | Memory efficient persistent key-value store for non-volatile memories |
US20200159425A1 (en) | 2006-12-06 | 2020-05-21 | Fio Semiconductor Technologies, Llc | Apparatus, System, and Method for Data Block Usage Information Synchronization for a Non-Volatile Storage Volume |
US20200167091A1 (en) | 2018-11-27 | 2020-05-28 | Commvault Systems, Inc. | Using interoperability between components of a data storage management system and appliances for data storage and deduplication to generate secondary and tertiary copies |
US10678432B1 (en) | 2016-10-04 | 2020-06-09 | Pure Storage, Inc. | User space and kernel space access to memory devices through private queues |
US20200210309A1 (en) | 2019-01-02 | 2020-07-02 | SK Hynix Inc. | Controller and operation method thereof |
US20200218449A1 (en) | 2019-01-03 | 2020-07-09 | International Business Machines Corporation | Journaling on an appendable non-volatile memory module |
US20200225875A1 (en) | 2019-01-15 | 2020-07-16 | SK Hynix Inc. | Memory system and operation method thereof |
US20200242021A1 (en) | 2019-01-24 | 2020-07-30 | Western Digital Technologies, Inc. | Logical to physical mapping management using low-latency non-volatile memory |
US20200250032A1 (en) | 2019-02-01 | 2020-08-06 | Fungible, Inc. | Flexible reliability coding for storage on a network |
US20200257598A1 (en) | 2019-02-11 | 2020-08-13 | Apple Inc. | Recovery of data failing due to impairment whose severity depends on bit-significance value |
US10756816B1 (en) | 2016-10-04 | 2020-08-25 | Pure Storage, Inc. | Optimized fibre channel and non-volatile memory express access |
US20200322287A1 (en) | 2020-06-18 | 2020-10-08 | Intel Corporation | Switch-managed resource allocation and software execution |
US20200326855A1 (en) | 2017-12-28 | 2020-10-15 | Huawei Technologies Co., Ltd. | Data write method and solid-state drive array |
US20200328192A1 (en) | 2020-06-26 | 2020-10-15 | Intel Corporation | Stacked die network interface controller circuitry |
US20200348888A1 (en) | 2017-08-22 | 2020-11-05 | SK Hynix Inc. | Storage device and method of operating the same |
US20200364094A1 (en) | 2018-12-12 | 2020-11-19 | International Business Machines Corporation | Disaggregated system domain |
US20200371955A1 (en) | 2017-08-04 | 2020-11-26 | Bamboo Systems Group Limited | Memory control for electronic data processing system |
US20200387327A1 (en) | 2019-06-05 | 2020-12-10 | Lite-On Electronics (Guangzhou) Limited | Data processing method for computer system with solid state drive |
US20200401334A1 (en) | 2019-06-19 | 2020-12-24 | Western Digital Technologies, Inc. | Multi-stream non-volatile storage system |
US10877835B2 (en) * | 2018-07-19 | 2020-12-29 | Micron Technology, Inc. | Write buffer management |
US20200409791A1 (en) | 2019-06-25 | 2020-12-31 | Western Digital Technologies, Inc. | Serial Storage Node Processing of Data Functions |
US20200409559A1 (en) | 2019-06-27 | 2020-12-31 | Western Digital Technologies, Inc. | Non-volatile memory data write management |
US20210010338A1 (en) | 2019-07-10 | 2021-01-14 | Safekick Americas Llc | Hierarchical pressure management for managed pressure drilling operations |
US10928847B2 (en) | 2018-09-29 | 2021-02-23 | Intel Corporation | Apparatuses and methods for frequency scaling a message scheduler data path of a hashing accelerator |
US20210075633A1 (en) | 2020-11-18 | 2021-03-11 | Intel Corporation | Packet multi-cast for memory pool replication |
US20210089392A1 (en) | 2019-09-19 | 2021-03-25 | Kioxia Corporation | Memory system |
US20210103388A1 (en) | 2019-10-02 | 2021-04-08 | Samsung Electronics Co., Ltd. | Storage system managing metadata, host system controlling storage system, and storage system operating method |
US10990526B1 (en) | 2020-04-30 | 2021-04-27 | Micron Technology, Inc. | Handling asynchronous power loss in a memory sub-system that programs sequentially |
US20210124488A1 (en) | 2019-10-29 | 2021-04-29 | International Business Machines Corporation | Workload based relief valve activation for hybrid controller architectures |
US20210132999A1 (en) | 2019-11-04 | 2021-05-06 | Rambus Inc. | Inter-server memory pooling |
US11016932B2 (en) | 2017-09-21 | 2021-05-25 | Alibaba Group Holding Limited | Systems, methods, and apparatuses for simplifying filesystem operations utilizing a key-value storage system |
US11023150B2 (en) | 2019-07-01 | 2021-06-01 | International Business Machines Corporation | Block mode toggling using hybrid controllers |
US20210191635A1 (en) | 2019-12-18 | 2021-06-24 | Hefei Core Storage Electronic Limited | Memory management method, memory storage device and memory control circuit unit |
US11068409B2 (en) | 2018-02-07 | 2021-07-20 | Alibaba Group Holding Limited | Method and system for user-space storage I/O stack with user-space flash translation layer |
US20210263795A1 (en) | 2020-02-26 | 2021-08-26 | Alibaba Group Holding Limited | Efficient compaction on log-structured distributed file system using erasure coding for resource consumption reduction |
US20210286555A1 (en) | 2020-03-13 | 2021-09-16 | Alibaba Group Holding Limited | Method and system for facilitating a persistent memory-centric system |
US11126561B2 (en) | 2019-10-01 | 2021-09-21 | Alibaba Group Holding Limited | Method and system for organizing NAND blocks and placing data to facilitate high-throughput for random writes in a solid state drive |
US11138124B2 (en) | 2019-10-30 | 2021-10-05 | International Business Machines Corporation | Migrating data between block pools in a storage system |
US11243694B2 (en) | 2020-01-29 | 2022-02-08 | Samsung Electronics Co., Ltd. | Grouping key value object IOs to improve IO performance for key-value storage devices |
US20220121517A1 (en) * | 2020-10-15 | 2022-04-21 | SK Hynix Inc. | Memory system and controller for storing map data of volatile memory into nonvolatile memory device during power off operation |
US11360863B2 (en) | 2018-10-26 | 2022-06-14 | Hewlett Packard Enterprise Development Lp | Key-value store on persistent memory |
-
2020
- 2020-12-28 US US17/135,404 patent/US11734115B2/en active Active
Patent Citations (511)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893071A (en) | 1974-08-19 | 1975-07-01 | Ibm | Multi level error correction system for high density memory |
US4562494A (en) | 1983-04-07 | 1985-12-31 | Verbatim Corporation | Disk drive alignment analyzer |
US4775932A (en) | 1984-07-31 | 1988-10-04 | Texas Instruments Incorporated | Computer memory system with parallel garbage collection independent from an associated user processor |
US4718067A (en) | 1984-08-02 | 1988-01-05 | U.S. Philips Corporation | Device for correcting and concealing errors in a data stream, and video and/or audio reproduction apparatus comprising such a device |
US4858040A (en) | 1987-08-25 | 1989-08-15 | Ampex Corporation | Bimorph actuator for a disk drive |
WO1994018634A1 (en) | 1993-02-01 | 1994-08-18 | Lsc, Inc. | Archiving file system for data servers in a distributed network environment |
US5394382A (en) | 1993-02-11 | 1995-02-28 | International Business Machines Corporation | Method for the organization of data on a CD-ROM |
US5802551A (en) | 1993-10-01 | 1998-09-01 | Fujitsu Limited | Method and apparatus for controlling the writing and erasing of information in a memory device |
US5715471A (en) | 1994-03-14 | 1998-02-03 | Fujitsu Limited | Parallel computer |
US5602693A (en) | 1994-12-14 | 1997-02-11 | Micropolis (S) Pte Ltd. | Method and apparatus for sensing position in a disk drive |
US20010046295A1 (en) | 1995-06-30 | 2001-11-29 | Sony Corporation | Method and apparatus for reproducing ciphered data |
US20020039260A1 (en) | 1995-11-28 | 2002-04-04 | Kilmer Dan L. | Twin coil positioner |
US5732093A (en) | 1996-02-08 | 1998-03-24 | United Microelectronics Corporation | Error correction method and apparatus on optical disc system |
US6148377A (en) | 1996-11-22 | 2000-11-14 | Mangosoft Corporation | Shared memory computer networks |
US20030108061A1 (en) * | 1997-01-23 | 2003-06-12 | Black Alistair D. | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
US5930167A (en) | 1997-07-30 | 1999-07-27 | Sandisk Corporation | Multi-state non-volatile flash memory capable of being its own two state write cache |
US6098185A (en) | 1997-10-31 | 2000-08-01 | Stmicroelectronics, N.V. | Header-formatted defective sector management system |
US20010032324A1 (en) | 1998-05-12 | 2001-10-18 | Slaughter Gregory L. | Highly available cluster message passing facility |
US20010003205A1 (en) | 1998-07-15 | 2001-06-07 | Timothy G. Gilbert | Bus-powered computer peripheral with supplemental battery power to overcome bus-power limit |
US6243795B1 (en) | 1998-08-04 | 2001-06-05 | The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations | Redundant, asymmetrically parallel disk cache for a data storage system |
US6226650B1 (en) | 1998-09-17 | 2001-05-01 | Synchrologic, Inc. | Database synchronization and organization system and method |
US20020095403A1 (en) | 1998-11-24 | 2002-07-18 | Sashikanth Chandrasekaran | Methods to perform disk writes in a distributed shared disk system needing consistency across failures |
US20080028223A1 (en) | 1999-05-19 | 2008-01-31 | Rhoads Geoffrey B | Visual Content-Based Internet Search Methods and Sub-Combinations |
US20080034154A1 (en) | 1999-08-04 | 2008-02-07 | Super Talent Electronics Inc. | Multi-Channel Flash Module with Plane-Interleaved Sequential ECC Writes and Background Recycling to Restricted-Write Flash Chips |
US20020010783A1 (en) | 1999-12-06 | 2002-01-24 | Leonard Primak | System and method for enhancing operation of a web server cluster |
US6457104B1 (en) | 2000-03-20 | 2002-09-24 | International Business Machines Corporation | System and method for recycling stale memory content in compressed memory systems |
US6658478B1 (en) | 2000-08-04 | 2003-12-02 | 3Pardata, Inc. | Data storage system |
US6795894B1 (en) | 2000-08-08 | 2004-09-21 | Hewlett-Packard Development Company, L.P. | Fast disk cache writing system |
US20050097126A1 (en) | 2000-08-24 | 2005-05-05 | Microsoft Corporation | Partial migration of an object to another storage location in a computer system |
US20050177755A1 (en) | 2000-09-27 | 2005-08-11 | Amphus, Inc. | Multi-server and multi-CPU power management system and method |
US20020073358A1 (en) | 2000-12-07 | 2002-06-13 | Atkinson Lee. W. | Method for redundant suspend to RAM |
US20020112085A1 (en) | 2000-12-21 | 2002-08-15 | Berg Mitchell T. | Method and system for communicating an information packet through multiple networks |
US20020161890A1 (en) | 2000-12-22 | 2002-10-31 | Kailai Chen | System and method for intelligently distributing content over a communicatons network |
US20050138325A1 (en) | 2001-03-22 | 2005-06-23 | Hofstee Harm P. | Multi-chip module with third dimension interconnect |
JP2003022209A (en) | 2001-07-05 | 2003-01-24 | Nri & Ncc Co Ltd | Distributed server system |
US20030074319A1 (en) | 2001-10-11 | 2003-04-17 | International Business Machines Corporation | Method, system, and program for securely providing keys to encode and decode data in a storage cartridge |
US20060184813A1 (en) | 2002-01-03 | 2006-08-17 | Broadcom Corporation, A California Corporation | Wake on LAN power management |
US20030145274A1 (en) | 2002-01-23 | 2003-07-31 | Samsung Electronics Co., Ltd. | Decoding method and apparatus therefor |
US20050149827A1 (en) | 2002-01-24 | 2005-07-07 | Nicolaas Lambert | Data storage apparatus and method for handling a data storage apparatus |
US20030163594A1 (en) | 2002-02-27 | 2003-08-28 | Aasheim Jered Donald | Open-architecture file system |
US20030163633A1 (en) | 2002-02-27 | 2003-08-28 | Aasheim Jered Donald | System and method for achieving uniform wear levels in a flash memory device |
US20030217080A1 (en) | 2002-05-20 | 2003-11-20 | Ken White | System and method for intelligent write management of disk pages in cache checkpoint operations |
US20040010545A1 (en) | 2002-06-11 | 2004-01-15 | Pandya Ashish A. | Data processing system using internet protocols and RDMA |
US7953899B1 (en) | 2002-08-21 | 2011-05-31 | 3Par Inc. | Universal diagnostic hardware space access system for firmware |
US20040066741A1 (en) | 2002-09-23 | 2004-04-08 | Darpan Dinker | System and method for performing a cluster topology self-healing process in a distributed data system cluster |
US20040103238A1 (en) | 2002-11-26 | 2004-05-27 | M-Systems Flash Disk Pioneers Ltd. | Appliance, including a flash memory, that is robust under power failure |
US20040143718A1 (en) | 2003-01-22 | 2004-07-22 | Tianlong Chen | Distributed memory computing environment and implementation thereof |
US20070250756A1 (en) | 2003-04-14 | 2007-10-25 | Gower Kevin C | High reliability memory module with a fault tolerant address and command bus |
US20040267752A1 (en) | 2003-04-24 | 2004-12-30 | Wong Thomas K. | Transparent file replication using namespace replication |
US20040268278A1 (en) | 2003-05-07 | 2004-12-30 | Hoberman Barry Alan | Managing power on integrated circuits using power islands |
US20050038954A1 (en) | 2003-06-04 | 2005-02-17 | Quantum Corporation | Storage drive having universal format across media types |
US20040255171A1 (en) | 2003-06-13 | 2004-12-16 | Zimmer Vincent J. | Power management for clustered computing platforms |
US7565454B2 (en) | 2003-07-18 | 2009-07-21 | Microsoft Corporation | State migration in multiple NIC RDMA enabled devices |
US20050235171A1 (en) | 2003-09-02 | 2005-10-20 | Kabushiki Kaisha Toshiba | Electronic device with serial ATA interface and power saving method for serial ATA buses |
US20070204128A1 (en) | 2003-09-10 | 2007-08-30 | Super Talent Electronics Inc. | Two-Level RAM Lookup Table for Block and Page Allocation and Wear-Leveling in Limited-Write Flash-Memories |
US20050144358A1 (en) | 2003-12-30 | 2005-06-30 | Conley Kevin M. | Management of non-volatile memory systems having large erase blocks |
US20050177672A1 (en) | 2004-02-10 | 2005-08-11 | Sun Microsystems, Inc. | Storage system structure for storing relational cache metadata |
US20050174670A1 (en) | 2004-02-10 | 2005-08-11 | Hitachi Global Storage Technologies Netherlands Bv | Adaptive data format method integrating spare sectors |
US20050195635A1 (en) | 2004-03-08 | 2005-09-08 | Conley Kevin M. | Flash controller cache architecture |
US20050235067A1 (en) | 2004-04-20 | 2005-10-20 | Intel Corporation | Write combining protocol between processors and chipsets |
US20060031709A1 (en) | 2004-08-09 | 2006-02-09 | Yuri Hiraiwa | Failure monitoring for storage systems constituting multiple stages |
US20060101197A1 (en) | 2004-11-08 | 2006-05-11 | Prostor, Inc. | Archival management system |
US9495263B2 (en) | 2004-12-21 | 2016-11-15 | Infortrend Technology, Inc. | Redundant SAS storage virtualization subsystem and system using the same, and method therefor |
US20060156012A1 (en) | 2005-01-07 | 2006-07-13 | Beeson Curtis L | Facilitating digital signature based on ephemeral private key |
US20060156009A1 (en) | 2005-01-12 | 2006-07-13 | Interdigital Technology Corporation | Method and apparatus for enhancing security of wireless communications |
US20090125788A1 (en) | 2005-03-16 | 2009-05-14 | Andrew Ray Wheeler | Hardware based memory scrubbing |
US7351072B2 (en) | 2005-07-08 | 2008-04-01 | Qimonda Ag | Memory module, memory extension memory module, memory module system, and method for manufacturing a memory module |
US20100281254A1 (en) | 2005-07-27 | 2010-11-04 | Fernando Incertis Carro | Systems and method for secure delivery of files to authorized recipients |
US20070033323A1 (en) | 2005-08-03 | 2007-02-08 | Gorobets Sergey A | Interfacing systems operating through a logical address space and on a direct data file basis |
US20070061502A1 (en) | 2005-09-09 | 2007-03-15 | M-Systems Flash Disk Pioneers Ltd. | Flash memory storage system and method |
US20070061542A1 (en) | 2005-09-13 | 2007-03-15 | Mahat Technologies | System for a distributed column chunk data store |
US20070101096A1 (en) | 2005-10-27 | 2007-05-03 | Sandisk Corporation | Non-volatile memory with adaptive handling of data writes |
US20070168581A1 (en) | 2005-11-18 | 2007-07-19 | Klein Steven E | Selecting a path comprising ports on primary and secondary clusters to use to transmit data at a primary volume to a secondary volume |
US9213627B2 (en) | 2005-12-21 | 2015-12-15 | Nxp B.V. | Non-volatile memory with block erasable locations |
US8260924B2 (en) | 2006-05-03 | 2012-09-04 | Bluetie, Inc. | User load balancing systems and methods thereof |
US20070266011A1 (en) | 2006-05-10 | 2007-11-15 | Google Inc. | Managing and Accessing Data in Web Notebooks |
US20070285980A1 (en) | 2006-05-10 | 2007-12-13 | Takahiro Shimizu | Semiconductor memory device |
US20070283104A1 (en) | 2006-05-31 | 2007-12-06 | International Business Machines Corporation | Concurrent Hardware Selftest for Central Storage |
US20090307249A1 (en) | 2006-05-31 | 2009-12-10 | Storwize Ltd. | Method and system for transformation of logical data objects for storage |
US20070283081A1 (en) | 2006-06-06 | 2007-12-06 | Msystem Ltd. | Cache control in a non-volatile memory device |
US20090282275A1 (en) | 2006-06-27 | 2009-11-12 | Koninklijke Philips Electronics N.V. | Device and a method for managing power consumption of a plurality of data processing units |
US20080065805A1 (en) | 2006-09-11 | 2008-03-13 | Cameo Communications, Inc. | PCI-Express multimode expansion card and communication device having the same |
US20080301532A1 (en) | 2006-09-25 | 2008-12-04 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device |
US20080082731A1 (en) | 2006-09-28 | 2008-04-03 | Vijay Karamcheti | Main memory in a system with a memory controller configured to control access to non-volatile memory, and related technologies |
US20080112238A1 (en) | 2006-10-25 | 2008-05-15 | Seon-Taek Kim | Hybrid flash memory device and method for assigning reserved blocks thereof |
US20080104369A1 (en) | 2006-10-26 | 2008-05-01 | Interactic Holdings, Llc | Network interface card for use in parallel computing systems |
US20110299317A1 (en) | 2006-11-29 | 2011-12-08 | Shaeffer Ian P | Integrated circuit heating to effect in-situ annealing |
US7958433B1 (en) | 2006-11-30 | 2011-06-07 | Marvell International Ltd. | Methods and systems for storing data in memory using zoning |
US20200159425A1 (en) | 2006-12-06 | 2020-05-21 | Fio Semiconductor Technologies, Llc | Apparatus, System, and Method for Data Block Usage Information Synchronization for a Non-Volatile Storage Volume |
US20130205183A1 (en) | 2006-12-06 | 2013-08-08 | Fusion-Io, Inc. | Systems and methods for adaptive error-correction coding |
US8085569B2 (en) | 2006-12-28 | 2011-12-27 | Hynix Semiconductor Inc. | Semiconductor memory device, and multi-chip package and method of operating the same |
US20080163033A1 (en) | 2006-12-29 | 2008-07-03 | Samsung Electronics Co., Ltd. | Error correction circuit and method for reducing miscorrection probability and semiconductor memory device including the circuit |
US20130013887A1 (en) | 2007-01-25 | 2013-01-10 | Megachips Corporation | Memory controller |
US20080195829A1 (en) | 2007-02-13 | 2008-08-14 | Clifton Labs, Inc. | Self-protecting memory device |
US20110289263A1 (en) | 2007-05-30 | 2011-11-24 | Mcwilliams Thomas M | System including a fine-grained memory and a less-fine-grained memory |
US7599139B1 (en) | 2007-06-22 | 2009-10-06 | Western Digital Technologies, Inc. | Disk drive having a high performance access mode and a lower performance archive mode |
US20090006667A1 (en) | 2007-06-29 | 2009-01-01 | Sandisk Corporation, A Delaware Corporation | Secure digital host sector application flag compression |
US20090183052A1 (en) | 2007-08-31 | 2009-07-16 | Shinichi Kanno | Semiconductor memory device and method of controlling the same |
US20090177944A1 (en) | 2007-09-26 | 2009-07-09 | Shinichi Kanno | Semiconductor memory device and its control method |
US20090089544A1 (en) | 2007-10-01 | 2009-04-02 | Accenture Global Services Gmbh | Infrastructure for parallel programming of clusters of machines |
US20090110078A1 (en) | 2007-10-25 | 2009-04-30 | Microsoft Corporation | Temporal video filtering for real time communication sytems |
US20090113219A1 (en) | 2007-10-30 | 2009-04-30 | Sandisk Il Ltd. | Optimized hierarchical integrity protection for stored data |
US20100031000A1 (en) | 2007-12-06 | 2010-02-04 | David Flynn | Apparatus, system, and method for validating that a correct data segment is read from a data storage device |
US8281061B2 (en) | 2008-03-31 | 2012-10-02 | Micron Technology, Inc. | Data conditioning to improve flash memory reliability |
US20090254705A1 (en) | 2008-04-07 | 2009-10-08 | International Business Machines Corporation | Bus attached compressed random access memory |
US20090287956A1 (en) | 2008-05-16 | 2009-11-19 | David Flynn | Apparatus, system, and method for detecting and replacing failed data storage |
US20090307426A1 (en) | 2008-06-06 | 2009-12-10 | Pivot3 | Method and System for Rebuilding Data in a Distributed RAID System |
US20090310412A1 (en) | 2008-06-17 | 2009-12-17 | Jun-Ho Jang | Methods of data management in non-volatile memory devices and related non-volatile memory systems |
US20120284587A1 (en) | 2008-06-18 | 2012-11-08 | Super Talent Electronics, Inc. | Super-Endurance Solid-State Drive with Endurance Translation Layer (ETL) and Diversion of Temp Files for Reduced Flash Wear |
US20130145085A1 (en) | 2008-06-18 | 2013-06-06 | Super Talent Technology Corp. | Virtual Memory Device (VMD) Application/Driver with Dual-Level Interception for Data-Type Splitting, Meta-Page Grouping, and Diversion of Temp Files to Ramdisks for Enhanced Flash Endurance |
US20150106556A1 (en) | 2008-06-18 | 2015-04-16 | Super Talent Electronics, Inc. | Endurance Translation Layer (ETL) and Diversion of Temp Files for Reduced Flash Wear of a Super-Endurance Solid-State Drive |
US20110072204A1 (en) | 2008-07-03 | 2011-03-24 | Jichuan Chang | Memory server |
US8024719B2 (en) | 2008-11-03 | 2011-09-20 | Advanced Micro Devices, Inc. | Bounded hash table sorting in a dynamic program profiling system |
US20100169470A1 (en) | 2008-12-25 | 2010-07-01 | Hitachi, Ltd. | System and method for operational management of computer system |
US20110302353A1 (en) | 2008-12-30 | 2011-12-08 | Emanuele Confalonieri | Non-volatile memory with extended operating temperature range |
US20100229224A1 (en) | 2009-02-10 | 2010-09-09 | Uniloc Usa, Inc. | Web Content Access Using a Client Device Identifier |
US20100217952A1 (en) | 2009-02-26 | 2010-08-26 | Iyer Rahul N | Remapping of Data Addresses for a Large Capacity Victim Cache |
US20100241848A1 (en) | 2009-02-27 | 2010-09-23 | Certicom Corp. | System and method for securely communicating with electronic meters |
US20110289280A1 (en) | 2009-05-27 | 2011-11-24 | Hitachi, Ltd. | Storage system, control method therefor, and program |
US20130159251A1 (en) | 2009-06-19 | 2013-06-20 | Rich Skrenta | Dedicating Disks to Reading or Writing |
US20100325367A1 (en) | 2009-06-19 | 2010-12-23 | International Business Machines Corporation | Write-Back Coherency Data Cache for Resolving Read/Write Conflicts |
US20100321999A1 (en) | 2009-06-23 | 2010-12-23 | Samsung Electronics Co., Ltd. | Nonvolatile memory device and related programming method |
US20100332922A1 (en) | 2009-06-30 | 2010-12-30 | Mediatek Inc. | Method for managing device and solid state disk drive utilizing the same |
US8166233B2 (en) | 2009-07-24 | 2012-04-24 | Lsi Corporation | Garbage collection for solid state disks |
US20130179898A1 (en) | 2009-08-03 | 2013-07-11 | Zettar, Inc. | Systems and methods for remote storage management |
US20110031546A1 (en) | 2009-08-06 | 2011-02-10 | Kabushiki Kaisha Toshiba | Method for manufacturing semiconductor device and apparatus for manufacturing same |
US20110055471A1 (en) | 2009-08-28 | 2011-03-03 | Jonathan Thatcher | Apparatus, system, and method for improved data deduplication |
US20110055458A1 (en) | 2009-09-03 | 2011-03-03 | 248 Solid State, Inc. | Page based management of flash storage |
US20110060722A1 (en) | 2009-09-07 | 2011-03-10 | Icon Business Systems Limited | Centralized management mode backup disaster recovery system |
US9031296B2 (en) | 2009-09-21 | 2015-05-12 | Xring Technologies Gmbh | Method and system for error resilient compression and decompression of computed tomography data |
US20110099418A1 (en) | 2009-10-28 | 2011-04-28 | Jian Chen | Non-Volatile Memory And Method With Post-Write Read And Adaptive Re-Write To Manage Errors |
US20170068639A1 (en) | 2009-10-30 | 2017-03-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9912530B2 (en) | 2009-11-18 | 2018-03-06 | Juniper Networks, Inc. | Method and apparatus for hitless failover in networking systems using single database |
US8144512B2 (en) | 2009-12-18 | 2012-03-27 | Sandisk Technologies Inc. | Data transfer flows for on-chip folding |
US20110153903A1 (en) | 2009-12-21 | 2011-06-23 | Sanmina-Sci Corporation | Method and apparatus for supporting storage modules in standard memory and/or hybrid memory bus architectures |
US20110161784A1 (en) | 2009-12-30 | 2011-06-30 | Selinger Robert D | Method and Controller for Performing a Copy-Back Operation |
US20110161621A1 (en) | 2009-12-30 | 2011-06-30 | Sinclair Alan W | Micro-update architecture for address tables |
US20140108891A1 (en) | 2010-01-27 | 2014-04-17 | Fusion-Io, Inc. | Managing non-volatile media |
US20110258514A1 (en) | 2010-01-28 | 2011-10-20 | Sandisk Il Ltd. | Overlapping error correction operations |
US20110191525A1 (en) | 2010-02-04 | 2011-08-04 | Phison Electronics Corp. | Flash memory storage device, controller thereof, and data programming method thereof |
JP2011175422A (en) | 2010-02-24 | 2011-09-08 | Fujitsu Ltd | Determination program, method and device |
US20110218969A1 (en) | 2010-03-08 | 2011-09-08 | International Business Machines Corporation | Approach for optimizing restores of deduplicated data |
US20110231598A1 (en) | 2010-03-19 | 2011-09-22 | Kabushiki Kaisha Toshiba | Memory system and controller |
US20110239083A1 (en) | 2010-03-24 | 2011-09-29 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US20130254622A1 (en) | 2010-03-24 | 2013-09-26 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US20110252188A1 (en) | 2010-04-07 | 2011-10-13 | Hanan Weingarten | System and method for storing information in a multi-level cell memory |
US20120017037A1 (en) | 2010-04-12 | 2012-01-19 | Riddle Thomas A | Cluster of processing nodes with distributed global flash memory using commodity server technology |
US20110296411A1 (en) | 2010-05-25 | 2011-12-01 | Transoft | Kernel Bus System to Build Virtual Machine Monitor and the Performance Service Framework and Method Therefor |
US8832688B2 (en) | 2010-05-25 | 2014-09-09 | Transoft | Kernel bus system with a hyberbus and method therefor |
US20130145089A1 (en) | 2010-05-28 | 2013-06-06 | International Business Machines Corporation | Cache memory management in a flash cache architecture |
US20110292538A1 (en) | 2010-05-31 | 2011-12-01 | Kabushiki Kaisha Toshiba | Recording medium controller and method thereof |
US20110302408A1 (en) | 2010-06-03 | 2011-12-08 | Morrigan Partners Limited | Secure Communication Systems, Methods, and Devices |
US20160306853A1 (en) | 2010-06-09 | 2016-10-20 | Brocade Communications Systems, Inc. | Inline Wire Speed Deduplication System |
US20120039117A1 (en) | 2010-08-16 | 2012-02-16 | Gary Edward Webb | Destruction of data stored in phase change memory |
US20150304108A1 (en) | 2010-09-15 | 2015-10-22 | Seagate Technology Llc | Encryption Key Destruction For Secure Data Erasure |
US20130159723A1 (en) | 2010-09-23 | 2013-06-20 | Marc Brandt | Methods, apparatus and systems for monitoring locations of data within a network service |
US9251058B2 (en) | 2010-09-28 | 2016-02-02 | SanDisk Technologies, Inc. | Servicing non-block storage requests |
US20120084523A1 (en) | 2010-09-30 | 2012-04-05 | Littlefield Duncan A | Data recovery operations, such as recovery from modified network data management protocol data |
US20120089774A1 (en) | 2010-10-12 | 2012-04-12 | International Business Machines Corporation | Method and system for mitigating adjacent track erasure in hard disk drives |
US20120096330A1 (en) | 2010-10-19 | 2012-04-19 | Mosaid Technologies Incorporated | Error detection and correction codes for channels and memories with incomplete error characteristics |
US8516284B2 (en) | 2010-11-04 | 2013-08-20 | International Business Machines Corporation | Saving power by placing inactive computing devices in optimized configuration corresponding to a specific constraint |
US20120117399A1 (en) | 2010-11-04 | 2012-05-10 | International Business Machines Corporation | Saving power by managing the state of inactive computing devices |
US20140365707A1 (en) | 2010-12-13 | 2014-12-11 | Fusion-Io, Inc. | Memory device with volatile and non-volatile media |
US20120147021A1 (en) | 2010-12-13 | 2012-06-14 | Advanced Micro Devices, Inc. | Graphics compute process scheduling |
US20140195564A1 (en) | 2010-12-13 | 2014-07-10 | Fusion-Io, Inc. | Persistent data structures |
US20120151253A1 (en) | 2010-12-14 | 2012-06-14 | Western Digital Technologies, Inc. | System and method for maintaining a data redundancy scheme in a solid state memory in the event of a power loss |
US20120159099A1 (en) | 2010-12-17 | 2012-06-21 | Jack William Lindamood | Distributed Storage System |
US20120159289A1 (en) | 2010-12-20 | 2012-06-21 | Piccirillo Gary J | Data signatures to determine sucessful completion of memory backup |
US20120173792A1 (en) | 2010-12-30 | 2012-07-05 | Lassa Paul A | Controller and Method for Performing Background Operations |
US20140181532A1 (en) | 2010-12-31 | 2014-06-26 | International Business Machines Corporation | Encrypted flash-based data storage system with confidentiality mode |
US20120203958A1 (en) | 2011-02-08 | 2012-08-09 | SMART Storage Systems, Inc. | Storage control system with change logging mechanism and method of operation thereof |
US20120210095A1 (en) | 2011-02-11 | 2012-08-16 | Fusion-Io, Inc. | Apparatus, system, and method for application direct virtual memory management |
US8825937B2 (en) | 2011-02-25 | 2014-09-02 | Fusion-Io, Inc. | Writing cached data forward on read |
US20120233523A1 (en) | 2011-03-10 | 2012-09-13 | Icform, Inc | Programmable Data Storage Management |
US20140025638A1 (en) | 2011-03-22 | 2014-01-23 | Zte Corporation | Method, system and serving node for data backup and restoration |
US8452819B1 (en) | 2011-03-22 | 2013-05-28 | Amazon Technologies, Inc. | Methods and apparatus for optimizing resource utilization in distributed storage systems |
US20120246392A1 (en) | 2011-03-23 | 2012-09-27 | Samsung Electronics Co., Ltd. | Storage device with buffer memory including non-volatile ram and volatile ram |
US20180107591A1 (en) | 2011-04-06 | 2018-04-19 | P4tents1, LLC | System, method and computer program product for fetching data between an execution of a plurality of threads |
US20120278579A1 (en) | 2011-04-29 | 2012-11-01 | Seagate Technology Llc | Self-Initiated Secure Erasure Responsive to an Unauthorized Power Down Event |
US20140095827A1 (en) | 2011-05-24 | 2014-04-03 | Agency For Science, Technology And Research | Memory storage device, and a related zone-based block management and mapping method |
US20130144836A1 (en) | 2011-06-02 | 2013-06-06 | Google Inc. | Canonicalization of uniform resource identifiers |
US20120324312A1 (en) | 2011-06-14 | 2012-12-20 | Freescale Semiconductor, Inc. | Selective masking for error correction |
US20120331207A1 (en) | 2011-06-24 | 2012-12-27 | Lassa Paul A | Controller, Storage Device, and Method for Power Throttling Memory Operations |
US20130013880A1 (en) | 2011-07-08 | 2013-01-10 | Hitachi Computer Peripherals Co., Ltd. | Storage system and its data processing method |
US20130016970A1 (en) | 2011-07-11 | 2013-01-17 | Oracle International Corporation | Optical network with switchable drop filters |
US20130018852A1 (en) | 2011-07-15 | 2013-01-17 | International Business Machines Corporation | Deleted data recovery in data storage systems |
US20130024605A1 (en) | 2011-07-22 | 2013-01-24 | Sandisk Technologies Inc. | Systems and methods of storing data |
US8527544B1 (en) | 2011-08-11 | 2013-09-03 | Pure Storage Inc. | Garbage collection in a storage system |
US20130054822A1 (en) | 2011-08-30 | 2013-02-28 | Rajiv P. Mordani | Failover Data Replication with Colocation of Session State Data |
US20130061029A1 (en) | 2011-09-02 | 2013-03-07 | Lsi Corporation | Method and apparatus for consolidating boot drives and improving reliability/availability/serviceability in high density server environments |
US20130073798A1 (en) | 2011-09-20 | 2013-03-21 | Samsung Electronics Co., Ltd. | Flash memory device and data management method |
US20130080391A1 (en) | 2011-09-23 | 2013-03-28 | International Business Machines Corporation | Block level backup and restore |
US8949208B1 (en) | 2011-09-30 | 2015-02-03 | Emc Corporation | System and method for bulk data movement between storage tiers |
US20130138871A1 (en) | 2011-11-30 | 2013-05-30 | Silicon Motion, Inc. | Flash Memory Device and Data Access Method for Same |
US20130151759A1 (en) | 2011-12-08 | 2013-06-13 | Samsung Electronics Co., Ltd. | Storage device and operating method eliminating duplicate data storage |
US9088300B1 (en) | 2011-12-15 | 2015-07-21 | Marvell International Ltd. | Cyclic redundancy check for out-of-order codewords |
US8819367B1 (en) | 2011-12-19 | 2014-08-26 | Western Digital Technologies, Inc. | Accelerated translation power recovery |
US20130166820A1 (en) | 2011-12-22 | 2013-06-27 | Fusion-Io, Inc. | Methods and appratuses for atomic storage operations |
US20130173845A1 (en) | 2011-12-29 | 2013-07-04 | Ameen Aslam | Command Aware Partial Page Programming |
US8904061B1 (en) | 2011-12-30 | 2014-12-02 | Emc Corporation | Managing storage operations in a server cache |
US9258014B2 (en) | 2011-12-30 | 2016-02-09 | Streamscale, Inc. | Using parity data for concurrent data authentication, correction, compression, and encryption |
US9043545B2 (en) | 2012-01-06 | 2015-05-26 | Netapp, Inc. | Distributing capacity slices across storage system nodes |
US20130191601A1 (en) | 2012-01-24 | 2013-07-25 | Fusion-Io, Inc. | Apparatus, system, and method for managing a cache |
US20130219131A1 (en) | 2012-02-20 | 2013-08-22 | Nimrod Alexandron | Low access time indirect memory accesses |
US20130227347A1 (en) | 2012-02-28 | 2013-08-29 | Samsung Electronics Co., Ltd. | Storage device |
US9213632B1 (en) | 2012-02-29 | 2015-12-15 | Marvell International Ltd. | Systems and methods for data storage devices to use external resources |
US20130238955A1 (en) | 2012-03-09 | 2013-09-12 | Sandisk Technologies Inc. | System and method to decode data subject to a disturb condition |
US20130318395A1 (en) | 2012-03-28 | 2013-11-28 | Pranav Kalavade | Reconstructing codewords using a side channel |
US9336340B1 (en) | 2012-03-30 | 2016-05-10 | Emc Corporation | Evaluating management operations |
US20180357126A1 (en) | 2012-04-25 | 2018-12-13 | International Business Machines Corporation | Mapping slice groupings in a dispersed storage network |
US20160306699A1 (en) | 2012-04-25 | 2016-10-20 | International Business Machines Corporation | Encrypting data for storage in a dispersed storage network |
US20140019661A1 (en) * | 2012-05-18 | 2014-01-16 | Dell Products, Lp | System and Method for Providing Network Access for a Processing Node |
US20130318283A1 (en) | 2012-05-22 | 2013-11-28 | Netapp, Inc. | Specializing i/0 access patterns for flash storage |
US9092223B1 (en) | 2012-05-31 | 2015-07-28 | Google Inc. | Systems and methods to save power in data-center networks |
US20130325419A1 (en) | 2012-05-31 | 2013-12-05 | Saudi Arabian Oil Company | Reservoir simulation with scalable grid computing |
US20130329492A1 (en) | 2012-06-06 | 2013-12-12 | Silicon Motion Inc. | Flash memory control method, controller and electronic apparatus |
US20130346532A1 (en) | 2012-06-21 | 2013-12-26 | Microsoft Corporation | Virtual shared storage in a cluster |
US20160048341A1 (en) | 2012-06-29 | 2016-02-18 | International Business Machines Corporation | Optimized data placement for individual file accesses on deduplication-enabled sequential storage systems |
US20140006688A1 (en) | 2012-07-02 | 2014-01-02 | Super Talent Technology, Corp. | Endurance and Retention Flash Controller with Programmable Binary-Levels-Per-Cell Bits Identifying Pages or Blocks as having Triple, Multi, or Single-Level Flash-Memory Cells |
US20140019650A1 (en) | 2012-07-10 | 2014-01-16 | Zhi Bin Li | Multi-Write Bit-Fill FIFO |
US20140082412A1 (en) | 2012-09-18 | 2014-03-20 | Fujitsu Limited | Storage control system, recording medium storing recovery program, and method |
US20140082273A1 (en) | 2012-09-20 | 2014-03-20 | XtremlO Ltd. | Content addressable storage in legacy systems |
US20140095758A1 (en) | 2012-09-28 | 2014-04-03 | Netapp, Inc. | Storage architecture for server flash and storage array operation |
US20140095769A1 (en) | 2012-10-02 | 2014-04-03 | International Business Machines Corporation | Flash memory dual in-line memory module management |
US20140108414A1 (en) | 2012-10-12 | 2014-04-17 | Architecture Technology Corporation | Scalable distributed processing of rdf data |
US20180165340A1 (en) | 2012-11-26 | 2018-06-14 | Amazon Technologies, Inc. | Automatic repair of corrupted blocks in a database |
US20140164879A1 (en) | 2012-12-11 | 2014-06-12 | Sandisk Technologies Inc. | Data Recovery on Cluster Failures and ECC Enhancements with Code Word Interleaving |
US20140164447A1 (en) | 2012-12-12 | 2014-06-12 | Akamai Technologies Inc. | Cookie synchronization and acceleration of third-party content in a web page |
US20150317095A1 (en) | 2012-12-19 | 2015-11-05 | Hewlett-Packard Development Company, L.P. | Nvram path selection |
US20140310574A1 (en) | 2012-12-28 | 2014-10-16 | Super Talent Technology, Corp. | Green eMMC Device (GeD) Controller with DRAM Data Persistence, Data-Type Splitting, Meta-Page Grouping, and Diversion of Temp Files for Enhanced Flash Endurance |
US9280487B2 (en) | 2013-01-18 | 2016-03-08 | Cisco Technology, Inc. | Methods and apparatus for data processing using data compression, linked lists and de-duplication techniques |
US20150363328A1 (en) | 2013-01-18 | 2015-12-17 | Cisco Technology, Inc. | Methods and apparatus for data processing |
US20140215129A1 (en) | 2013-01-28 | 2014-07-31 | Radian Memory Systems, LLC | Cooperative flash memory control |
US20140223079A1 (en) | 2013-02-05 | 2014-08-07 | Via Technologies, Inc. | Non-volatile memory apparatus and operating method thereof |
US20140233950A1 (en) | 2013-02-15 | 2014-08-21 | Futurewei Technologies, Inc. | Downstream Burst Transmission In Passive Optical Networks |
US20140250259A1 (en) | 2013-03-01 | 2014-09-04 | Silicon Motion, Inc. | Data storage device and flash memory control method |
US9280472B1 (en) | 2013-03-13 | 2016-03-08 | Western Digital Technologies, Inc. | Caching data in a high performance zone of a data storage system |
US8751763B1 (en) | 2013-03-13 | 2014-06-10 | Nimbus Data Systems, Inc. | Low-overhead deduplication within a block-based data storage |
US9747202B1 (en) | 2013-03-14 | 2017-08-29 | Sandisk Technologies Llc | Storage module and method for identifying hot and cold data |
US9588698B1 (en) | 2013-03-15 | 2017-03-07 | Virident Systems Inc. | Managing the write performance of an asymmetric memory system |
US20150106559A1 (en) | 2013-03-15 | 2015-04-16 | Samsung Electronics Co., Ltd. | Nonvolatile storage device and operating system (os) image program method thereof |
US9436595B1 (en) | 2013-03-15 | 2016-09-06 | Google Inc. | Use of application data and garbage-collected data to improve write efficiency of a data storage device |
US20140279927A1 (en) | 2013-03-15 | 2014-09-18 | International Business Machines Corporation | Scalable graph modeling of metadata for deduplicated storage systems |
US20140304452A1 (en) | 2013-04-03 | 2014-10-09 | Violin Memory Inc. | Method for increasing storage media performance |
US20160162187A1 (en) | 2013-04-17 | 2016-06-09 | The-Aio Co., Ltd. | Storage System And Method For Processing Writing Data Of Storage System |
US9575982B1 (en) | 2013-04-29 | 2017-02-21 | Amazon Technologies, Inc. | Size targeted database I/O compression |
US20140337457A1 (en) | 2013-05-13 | 2014-11-13 | Datadirect Networks, Inc. | Using network addressable non-volatile memory for high-performance node-local input/output |
US20140359229A1 (en) | 2013-05-31 | 2014-12-04 | Vmware, Inc. | Lightweight Remote Replication of a Local Write-Back Cache |
US20140379965A1 (en) | 2013-06-25 | 2014-12-25 | Marvell World Trade Ltd. | Adaptive cache memory controller |
US20150006792A1 (en) | 2013-06-28 | 2015-01-01 | Samsung Electronics Co., Ltd. | Memory controller, method of operating, and apparatus including same |
US20150019798A1 (en) | 2013-07-15 | 2015-01-15 | CNEXLABS, Inc. | Method and Apparatus for Providing Dual Memory Access to Non-Volatile Memory |
US20150341123A1 (en) | 2013-07-17 | 2015-11-26 | Inphi Corporation | Integrated control for silicon photonics |
US9141176B1 (en) | 2013-07-29 | 2015-09-22 | Western Digital Technologies, Inc. | Power management for data storage device |
US20150039849A1 (en) | 2013-08-02 | 2015-02-05 | Formation Data Systems, Inc. | Multi-Layer Data Storage Virtualization Using a Consistent Data Reference Model |
US20150186657A1 (en) | 2013-08-05 | 2015-07-02 | Samsung Sds Co., Ltd. | System and method for encryption and key management in cloud storage |
US20150067436A1 (en) | 2013-09-03 | 2015-03-05 | Sandisk Technologies Inc. | Nonvolatile Memory System Compression |
US20150082317A1 (en) | 2013-09-19 | 2015-03-19 | Liang You | Techniques for distributed processing task portion assignment |
US20160232103A1 (en) | 2013-09-26 | 2016-08-11 | Mark A. Schmisseur | Block storage apertures to persistent memory |
US20150121031A1 (en) | 2013-10-25 | 2015-04-30 | Seagate Technology Llc | Adaptive guard band for improved data storage capacity |
US20150142752A1 (en) | 2013-11-15 | 2015-05-21 | International Business Machines Corporation | Priority based reliability mechanism for archived data |
US20150143030A1 (en) | 2013-11-21 | 2015-05-21 | Sandisk Technologies Inc. | Update Block Programming Order |
US20150199234A1 (en) | 2014-01-13 | 2015-07-16 | Samsung Electronics Co., Ltd. | Memory device, memory system, and method of operating memory device |
US20170220254A1 (en) | 2014-02-07 | 2017-08-03 | Coho Data, Inc. | Methods, systems and devices relating to data storage interfaces for managing data address spaces in data storage devices |
US20150227316A1 (en) | 2014-02-07 | 2015-08-13 | Coho Data, Inc. | Methods, systems and devices relating to data storage interfaces for managing data address spaces in data storage devices |
US10268390B2 (en) | 2014-02-07 | 2019-04-23 | Open Invention Network Llc | Methods, systems and devices relating to data storage interfaces for managing data address spaces in data storage devices |
US20150234845A1 (en) | 2014-02-17 | 2015-08-20 | Netapp, Inc. | Subpartitioning of a namespace region |
US20150301964A1 (en) | 2014-02-18 | 2015-10-22 | Alistair Mark Brinicombe | Methods and systems of multi-memory, control and data plane architecture |
US20150269964A1 (en) | 2014-03-21 | 2015-09-24 | Western Digital Technologies, Inc. | Data management for a data storage device using a last resort zone |
US20150277937A1 (en) | 2014-03-26 | 2015-10-01 | Robert C. Swanson | Boot image discovery and delivery |
US20150286477A1 (en) | 2014-04-04 | 2015-10-08 | Avid Technology, Inc. | Method of consolidating, synchronizing, and streaming production content for distributed editing of media compositions |
US20150294684A1 (en) | 2014-04-10 | 2015-10-15 | Seagate Technology Llc | Band rewrite optimization |
US20150310916A1 (en) | 2014-04-29 | 2015-10-29 | Samsung Electronics Co., Ltd. | Nonvolatile memory system |
US9529670B2 (en) | 2014-05-16 | 2016-12-27 | International Business Machines Corporation | Storage element polymorphism to reduce performance degradation during error recovery |
US20150347025A1 (en) | 2014-05-27 | 2015-12-03 | Kabushiki Kaisha Toshiba | Host-controlled garbage collection |
US9015561B1 (en) | 2014-06-11 | 2015-04-21 | Sandisk Technologies Inc. | Adaptive redundancy in three dimensional memory |
US20150363271A1 (en) | 2014-06-16 | 2015-12-17 | International Business Machines Corporation | Restoring data in a hierarchical storage management system |
US20150372597A1 (en) | 2014-06-19 | 2015-12-24 | Shiguo Luo | Methods and systems for improving light load efficiency for power stages of multi-phase voltage regulator circuits |
US20150370700A1 (en) * | 2014-06-23 | 2015-12-24 | Google Inc. | Managing storage devices |
US20170199823A1 (en) | 2014-07-02 | 2017-07-13 | Pure Storage, Inc. | Nonrepeating identifiers in an address space of a non-volatile solid-state storage |
US8868825B1 (en) | 2014-07-02 | 2014-10-21 | Pure Storage, Inc. | Nonrepeating identifiers in an address space of a non-volatile solid-state storage |
US20160014039A1 (en) | 2014-07-11 | 2016-01-14 | Vmware, Inc. | Methods and apparatus to provision a workload in a virtual server rack deployment |
US20160026575A1 (en) | 2014-07-22 | 2016-01-28 | Lsi Corporation | Selective mirroring in caches for logical volumes |
US20160041760A1 (en) | 2014-08-08 | 2016-02-11 | International Business Machines Corporation | Multi-Level Cell Flash Memory Control Mechanisms |
US20160048327A1 (en) | 2014-08-14 | 2016-02-18 | Advanced Micro Devices, Inc. | Data distribution among multiple managed memories |
US20160054922A1 (en) | 2014-08-19 | 2016-02-25 | Manu Awasthi | Data management scheme in virtualized hyperscale environments |
US20160062885A1 (en) | 2014-09-02 | 2016-03-03 | Samsung Electronics Co., Ltd. | Garbage collection method for nonvolatile memory device |
US20160077764A1 (en) | 2014-09-15 | 2016-03-17 | E8 Storage Systems Ltd. | Distributed raid over shared multi-queued storage devices |
US9569454B2 (en) | 2014-09-15 | 2017-02-14 | Seagate Technology Llc | Selective compression of objects in a storage compute device |
US20160077749A1 (en) | 2014-09-16 | 2016-03-17 | Sandisk Technologies Inc. | Adaptive Block Allocation in Nonvolatile Memory |
US20160077968A1 (en) | 2014-09-16 | 2016-03-17 | Sandisk Technologies Inc. | System and method for configuring and controlling non-volatile cache |
US20160078245A1 (en) | 2014-09-17 | 2016-03-17 | Commvault Systems, Inc. | Data storage systems and methods |
US9722632B2 (en) | 2014-09-22 | 2017-08-01 | Streamscale, Inc. | Sliding window list decoder for error correcting codes |
US9588977B1 (en) | 2014-09-30 | 2017-03-07 | EMC IP Holding Company LLC | Data and metadata structures for use in tiering data to cloud storage |
US20160098344A1 (en) | 2014-10-03 | 2016-04-07 | Sandisk Technologies Inc. | Hardware automation for memory management |
US20160098350A1 (en) | 2014-10-06 | 2016-04-07 | Sk Hynix Memory Solutions Inc. | Sizing a cache while taking into account a total bytes written requirement |
US20160103631A1 (en) | 2014-10-13 | 2016-04-14 | Silicon Motion, Inc. | Non-volatile memory devices and control methods therefor |
US20160110254A1 (en) | 2014-10-15 | 2016-04-21 | Empire Technology Development Llc | Partial Cloud Data Storage |
US9129628B1 (en) | 2014-10-23 | 2015-09-08 | Western Digital Technologies, Inc. | Data management for data storage device with different track density regions |
US20160124742A1 (en) | 2014-10-30 | 2016-05-05 | Equinix, Inc. | Microservice-based application development framework |
US20160132237A1 (en) | 2014-11-12 | 2016-05-12 | Ha Neul Jeong | Data storage device, data processing system and method of operation |
US20160141047A1 (en) | 2014-11-18 | 2016-05-19 | Sandisk Technologies Inc. | Boundary Word Line Operation in Nonvolatile Memory |
US9607631B2 (en) | 2014-11-24 | 2017-03-28 | Seagate Technology Llc | Enhanced capacity recording |
US20160155750A1 (en) | 2014-11-28 | 2016-06-02 | Kabushiki Kaisha Toshiba | Semiconductor memory device and method for manufacturing the same |
US20160154601A1 (en) | 2014-11-28 | 2016-06-02 | International Business Machines Corporation | Disk management in distributed storage system |
US9852076B1 (en) | 2014-12-18 | 2017-12-26 | Violin Systems Llc | Caching of metadata for deduplicated LUNs |
US10013169B2 (en) | 2014-12-19 | 2018-07-03 | International Business Machines Corporation | Cooperative data deduplication in a solid state storage array |
US20160179399A1 (en) | 2014-12-23 | 2016-06-23 | Sandisk Technologies Inc. | System and Method for Selecting Blocks for Garbage Collection Based on Block Health |
US9311939B1 (en) | 2014-12-23 | 2016-04-12 | Western Digital Technologies, Inc. | Write-through media caching |
US20160188890A1 (en) | 2014-12-26 | 2016-06-30 | Intel Corporation | Security mode data protection |
US20160188223A1 (en) | 2014-12-30 | 2016-06-30 | International Business Machines Corporation | Promoting consistent response times in a data storage system having multiple data retrieval mechanisms |
US20160203000A1 (en) | 2015-01-09 | 2016-07-14 | Avago Technologies General Ip (Singapore) Pte. Ltd | Operating system software install and boot up from a storage area network device |
US20160224267A1 (en) | 2015-02-04 | 2016-08-04 | Sandisk Technologies Inc. | Memory Block Allocation By Block Health |
US20160234297A1 (en) | 2015-02-11 | 2016-08-11 | International Business Machines Corporation | Load-balancing input/output requests in clustered storage systems |
US20160239074A1 (en) | 2015-02-13 | 2016-08-18 | Victor W. Lee | Performing power management in a multicore processor |
US20160239380A1 (en) | 2015-02-16 | 2016-08-18 | Quantum Corporation | Garbage Collection And Defragmentation For Solid State Drives (SSD) and Shingled Magnetic Recording (SMR) Drives |
US9910705B1 (en) | 2015-02-18 | 2018-03-06 | Altera Corporation | Modular offloading for computationally intensive tasks |
US10318467B2 (en) | 2015-03-09 | 2019-06-11 | International Business Machines Corporation | Preventing input/output (I/O) traffic overloading of an interconnect channel in a distributed data storage system |
US20180052797A1 (en) | 2015-03-09 | 2018-02-22 | International Business Machines Corporation | Preventing input/output (i/o) traffic overloading of an interconnect channel in a distributed data storage system |
US9208817B1 (en) | 2015-03-10 | 2015-12-08 | Alibaba Group Holding Limited | System and method for determination and reallocation of pending sectors caused by media fatigue |
US20160274636A1 (en) | 2015-03-16 | 2016-09-22 | Electronics And Telecommunications Research Institute | Gpu power measuring method of heterogeneous multi-core system |
US20160283140A1 (en) | 2015-03-26 | 2016-09-29 | International Business Machines Corporation | File system block-level tiering and co-allocation |
US9671971B2 (en) | 2015-03-27 | 2017-06-06 | Intel Corporation | Managing prior versions of data for logical addresses in a storage device |
US20160321002A1 (en) | 2015-04-30 | 2016-11-03 | Bong-Kil Jung | Storage device and initializing method thereof |
US20160335085A1 (en) | 2015-05-13 | 2016-11-17 | Arm Limited | Processing queue management |
US20160343429A1 (en) | 2015-05-19 | 2016-11-24 | Emc Corporation | Method and system for storing and recovering data from flash memory |
US20160342345A1 (en) | 2015-05-20 | 2016-11-24 | Sandisk Enterprise Ip Llc | Variable Bit Encoding Per NAND Flash Cell to Improve Device Endurance and Extend Life of Flash-Based Storage Devices |
US20160350385A1 (en) | 2015-05-26 | 2016-12-01 | Gluent Inc. | System and method for transparent context aware filtering of data requests |
US20160350002A1 (en) | 2015-05-29 | 2016-12-01 | Intel Corporation | Memory device specific self refresh entry and exit |
US9875053B2 (en) | 2015-06-05 | 2018-01-23 | Western Digital Technologies, Inc. | Scheduling scheme(s) for a multi-die storage device |
US20160364146A1 (en) | 2015-06-12 | 2016-12-15 | International Business Machines Corporation | Region-based storage for volume data and metadata |
US20160381442A1 (en) | 2015-06-25 | 2016-12-29 | Kaiam Corp. | Optical interconnect for switch applications |
US20170004037A1 (en) | 2015-07-03 | 2017-01-05 | SK Hynix Inc. | Memory device with different parity regions |
US20170010652A1 (en) | 2015-07-08 | 2017-01-12 | Quanta Computer Inc. | Dynamic power supply management |
US20170228157A1 (en) | 2015-07-13 | 2017-08-10 | Samsung Electronics Co., Ltd. | Automatic stream detection & assignment algorithm |
US9529601B1 (en) | 2015-07-15 | 2016-12-27 | Dell Products L.P. | Multi-processor startup system |
US20180150640A1 (en) | 2015-07-27 | 2018-05-31 | Huawei International Pte. Ltd. | Policy aware unified file system |
US20180322024A1 (en) | 2015-07-31 | 2018-11-08 | Hitachi, Ltd. | Storage apparatus, storage system, and control method of storage system |
US9933973B2 (en) | 2015-08-28 | 2018-04-03 | Qualcomm Incorporated | Systems and methods for data organization in storage systems using large erasure codes |
US20190073261A1 (en) | 2015-08-28 | 2019-03-07 | Intel Corporation | Memory device error check and scrub mode and error transparency |
US20180212951A1 (en) | 2015-09-04 | 2018-07-26 | Hewlett Packard Enterprise Development Lp | Secure login information |
US20170075583A1 (en) | 2015-09-14 | 2017-03-16 | Microsoft Technology Licensing, Llc. | Exposing and managing disparate read, write, and erase sizes in data storage devices |
US20170075594A1 (en) | 2015-09-14 | 2017-03-16 | Microsoft Technology Licensing, Llc. | Storage stack architecture for many-log structured media |
US20180232151A1 (en) | 2015-09-14 | 2018-08-16 | Microsoft Technology Licensing, Llc. | Data storage system with data storage devices operative to manage storage device functions specific to a particular data storage device |
US20180173620A1 (en) | 2015-09-23 | 2018-06-21 | Huawei Technologies Co., Ltd. | Data erasure method for solid state drive, and apparatus |
US20170091110A1 (en) | 2015-09-29 | 2017-03-30 | International Business Machines Corporation | Considering a frequency of access to groups of tracks and density of the groups to select groups of tracks to destage |
US9836232B1 (en) | 2015-09-30 | 2017-12-05 | Western Digital Technologies, Inc. | Data storage device and method for using secondary non-volatile memory for temporary metadata storage |
US20180226124A1 (en) | 2015-10-01 | 2018-08-09 | Infineon Technologies Ag | Method of operating a memory unit sector |
US20170109199A1 (en) | 2015-10-15 | 2017-04-20 | Red Hat, Inc. | Scheduling multi-phase computing jobs |
US20170109232A1 (en) | 2015-10-20 | 2017-04-20 | Samsung Electronics Co., Ltd. | Methods operating semiconductor memory devices with selective write-back of data for error scrubbing and related devices |
US20170123655A1 (en) | 2015-10-30 | 2017-05-04 | Sandisk Technologies Inc. | System and method for managing extended maintenance scheduling in a non-volatile memory |
US20170147499A1 (en) | 2015-11-25 | 2017-05-25 | Sandisk Technologies Llc | Multi-Level Logical to Physical Address Mapping Using Distributed Processors in Non-Volatile Storage Device |
US20170161202A1 (en) | 2015-12-02 | 2017-06-08 | Samsung Electronics Co., Ltd. | Flash memory device including address mapping for deduplication, and related methods |
US20170162235A1 (en) | 2015-12-02 | 2017-06-08 | Qualcomm Incorporated | System and method for memory management using dynamic partial channel interleaving |
US9830084B2 (en) | 2015-12-03 | 2017-11-28 | Sandisk Technologies Llc | Writing logical groups of data to physical locations in memory using headers |
US20170168986A1 (en) | 2015-12-10 | 2017-06-15 | Cisco Technology, Inc. | Adaptive coalescing of remote direct memory access acknowledgements based on i/o characteristics |
US20170177259A1 (en) | 2015-12-18 | 2017-06-22 | Intel Corporation | Techniques to Use Open Bit Line Information for a Memory System |
US20170177217A1 (en) | 2015-12-22 | 2017-06-22 | Kabushiki Kaisha Toshiba | Memory system and method for controlling nonvolatile memory |
US20170185316A1 (en) | 2015-12-29 | 2017-06-29 | Emc Corporation | Method and system for synchronizing an index of data blocks stored in a storage system using a shared storage module |
US20170185498A1 (en) | 2015-12-29 | 2017-06-29 | EMC IP Holding Company LLC | Method and apparatus for facilitating storage system recovery and relevant storage system |
US20170192848A1 (en) | 2016-01-04 | 2017-07-06 | HGST Netherlands B.V. | Distributed data storage with reduced storage overhead using reduced-dependency erasure codes |
US20170206131A1 (en) * | 2016-01-15 | 2017-07-20 | Micron Technology, Inc. | Non-volatile memory including selective error correction |
US20170212680A1 (en) | 2016-01-22 | 2017-07-27 | Suraj Prabhakar WAGHULDE | Adaptive prefix tree based order partitioned data storage system |
US20170212708A1 (en) | 2016-01-25 | 2017-07-27 | Samsung Electronics Co., Ltd. | Dynamic garbage collection p/e policies for redundant storage blocks and distributed software stacks |
US9946596B2 (en) | 2016-01-29 | 2018-04-17 | Toshiba Memory Corporation | Global error recovery system |
US20170221519A1 (en) | 2016-02-03 | 2017-08-03 | Kabushiki Kaisha Toshiba | Rewriting of data stored in defective storage regions into other storage regions |
US20170242768A1 (en) * | 2016-02-19 | 2017-08-24 | SK Hynix Inc. | Controller of semiconductor memory device and method of operating the same |
US10235198B2 (en) | 2016-02-24 | 2019-03-19 | Samsung Electronics Co., Ltd. | VM-aware FTL design for SR-IOV NVME SSD |
US20170242722A1 (en) | 2016-02-24 | 2017-08-24 | Samsung Electronics Co., Ltd. | Vm-aware ftl design for sr-iov nvme ssd |
US20170249162A1 (en) | 2016-02-25 | 2017-08-31 | Red Hat Israel, Ltd. | Safe transmit packet processing for network function virtualization applications |
US20170262176A1 (en) | 2016-03-08 | 2017-09-14 | Kabushiki Kaisha Toshiba | Storage system, information processing system and method for controlling nonvolatile memory |
US20170262217A1 (en) | 2016-03-09 | 2017-09-14 | Commvault Systems, Inc. | Data transfer to a distributed storage environment |
US20170262178A1 (en) | 2016-03-09 | 2017-09-14 | Kabushiki Kaisha Toshiba | Storage system having a host that manages physical data locations of a storage device |
US20170269998A1 (en) | 2016-03-17 | 2017-09-21 | Samsung Electronics Co., Ltd. | Non-volatile memory device and method of operating the same |
US10466907B2 (en) | 2016-03-22 | 2019-11-05 | Toshiba Memory Corporation | Method to efficiently store object data of an object storage service on a magnetic disk drive and magnetic SMR disk drive |
US20170279460A1 (en) | 2016-03-24 | 2017-09-28 | International Business Machines Corporation | Updating prefix codes for pseudo-dynamic data compression |
US20170277655A1 (en) | 2016-03-25 | 2017-09-28 | Microsoft Technology Licensing, Llc | Memory sharing for working data using rdma |
US20170285976A1 (en) | 2016-04-01 | 2017-10-05 | David M. Durham | Convolutional memory integrity |
US20170286311A1 (en) | 2016-04-01 | 2017-10-05 | Dale J. Juenemann | Repetitive address indirection in a memory |
US20170322888A1 (en) | 2016-05-05 | 2017-11-09 | HGST Netherlands B.V. | Zoning of logical to physical data address translation tables with parallelized log list replay |
US20170344470A1 (en) | 2016-05-25 | 2017-11-30 | Samsung Electronics Co., Ltd. | Range based stream detection for flash memory device |
US20170344491A1 (en) | 2016-05-25 | 2017-11-30 | Samsung Electronics Co., Ltd. | Access parameter based multi-stream storage device access |
US20170353576A1 (en) | 2016-06-01 | 2017-12-07 | Intel Corporation | Method and apparatus for remote prefetches of variable size |
US9923562B1 (en) | 2016-06-16 | 2018-03-20 | Western Digital Technologies, Inc. | Data storage device state detection on power loss |
US20180024772A1 (en) | 2016-07-21 | 2018-01-25 | Micron Technology, Inc. | Memory device including concurrent suspend states for different operations |
US20180024779A1 (en) | 2016-07-25 | 2018-01-25 | Toshiba Memory Corporation | Storage device and storage control method |
US20180033491A1 (en) | 2016-07-28 | 2018-02-01 | Ip Gem Group, Llc | Method and apparatus with background reference positioning and local reference positioning |
US10530391B2 (en) | 2016-07-29 | 2020-01-07 | Western Digital Technologies, Inc. | Non-binary encoding for non-volatile memory |
US20180067847A1 (en) | 2016-09-06 | 2018-03-08 | Samsung Electronics Co., Ltd. | Memory device including column redundancy |
US20180069658A1 (en) | 2016-09-07 | 2018-03-08 | Western Digital Technologies, Inc. | Aggregated metadata transfer at a data storage device |
US20180076828A1 (en) | 2016-09-09 | 2018-03-15 | Toshiba Memory Corporation | Storgae device that inverts bits of data written into a nonvolatile memory thereof |
US20180074730A1 (en) | 2016-09-12 | 2018-03-15 | Toshiba Memory Corporation | Memory controller |
US20180088867A1 (en) | 2016-09-28 | 2018-03-29 | Winbond Electronics Corp. | Semiconductor memory device and continuous reading method for the same |
US20190172820A1 (en) | 2016-09-30 | 2019-06-06 | Intel Corporation | Data storage system using wafer-level packaging |
US10678432B1 (en) | 2016-10-04 | 2020-06-09 | Pure Storage, Inc. | User space and kernel space access to memory devices through private queues |
US10756816B1 (en) | 2016-10-04 | 2020-08-25 | Pure Storage, Inc. | Optimized fibre channel and non-volatile memory express access |
US20180113631A1 (en) | 2016-10-26 | 2018-04-26 | ScaleFlux, Inc. | Enhancing flash translation layer to improve performance of databases and filesystems |
US10361722B2 (en) | 2016-11-10 | 2019-07-23 | SK Hynix Inc. | Semiconductor memory device performing randomization operation |
US20180143780A1 (en) | 2016-11-23 | 2018-05-24 | Samsung Electronics Co., Ltd. | Storage system performing data deduplication, method of operating storage system, and method of operating data processing system |
US20180165169A1 (en) | 2016-12-12 | 2018-06-14 | International Business Machines Corporation | Data storage system employing a hot spare to proactively store array data in absence of a failure or pre-failure event |
US20180165038A1 (en) | 2016-12-13 | 2018-06-14 | International Business Machines Corporation | Techniques for storage command processing |
US20180167268A1 (en) | 2016-12-13 | 2018-06-14 | Amazon Technologies, Inc. | Reconfigurable server |
US20180189182A1 (en) | 2016-12-29 | 2018-07-05 | Intel Corporation | Aggregated write back in a direct mapped two level memory |
US20180188970A1 (en) | 2016-12-30 | 2018-07-05 | Western Digital Technologies, Inc. | Scheduling access commands for data storage devices |
US20180189175A1 (en) | 2016-12-30 | 2018-07-05 | Western Digital Technologies, Inc. | Garbage collection read throttling |
US10459663B2 (en) | 2017-01-23 | 2019-10-29 | International Business Machines Corporation | Thin provisioning of raid storage |
US20180219561A1 (en) | 2017-02-01 | 2018-08-02 | Tsofun Algorithm Ltd. | Device, system and method of implementing product error correction codes for fast encoding and decoding |
US10459794B2 (en) | 2017-02-06 | 2019-10-29 | SK Hynix Inc. | Memory systems having extended product lifetime and methods of operating the same |
US20180260148A1 (en) | 2017-03-10 | 2018-09-13 | Toshiba Memory Corporation | Large scale implementation of a plurality of open channel solid state drives |
US20190278654A1 (en) | 2017-03-17 | 2019-09-12 | Micron Technology, Inc. | Tiered error correction code (ecc) operations in memory |
US20180270110A1 (en) | 2017-03-17 | 2018-09-20 | Verizon Patent And Licensing Inc. | Automatic bootstrapping and dynamic configuration of data center nodes |
US20180293014A1 (en) | 2017-04-10 | 2018-10-11 | Sandisk Technologies Llc | Folding operations in memory systems with single address updates |
US20190361611A1 (en) | 2017-04-13 | 2019-11-28 | Hitachi, Ltd. | Storage system |
US20180300203A1 (en) | 2017-04-18 | 2018-10-18 | Netapp, Inc. | Systems and methods for backup and restore of distributed master-slave database clusters |
US20180307620A1 (en) | 2017-04-20 | 2018-10-25 | Alibaba Group Holding Limited | Persistent memory for key-value storage |
US20200084918A1 (en) | 2017-04-28 | 2020-03-12 | Dawning Information Industry (Beijing) Co., Ltd | Air-vapor separation method for immersed liquid-cooling system and device thereof |
US20180321864A1 (en) | 2017-05-03 | 2018-11-08 | Western Digital Technologies, Inc. | System and method for processing non-contiguous submission and completion queues |
US20180329776A1 (en) | 2017-05-12 | 2018-11-15 | Via Technologies, Inc. | Non-volatile memory apparatus and reading method thereof |
US20180336921A1 (en) | 2017-05-19 | 2018-11-22 | Seagate Technology Llc | Narrow band dwell monitoring |
US10635529B2 (en) | 2017-05-25 | 2020-04-28 | Western Digital Technologies, Inc. | Parity offload for multiple data storage devices |
US20180349396A1 (en) | 2017-05-30 | 2018-12-06 | Western Digital Technologies, Inc. | Managing I/O Operations in a Storage Network |
US10649969B2 (en) | 2017-06-13 | 2020-05-12 | Western Digital Technologies, Inc. | Memory efficient persistent key-value store for non-volatile memories |
US20180356992A1 (en) | 2017-06-13 | 2018-12-13 | Western Digital Technologies, Inc. | Multi-Device Platform |
US20180373655A1 (en) | 2017-06-22 | 2018-12-27 | Macronix International Co., Ltd. | Controller for a memory system |
US20180373664A1 (en) | 2017-06-23 | 2018-12-27 | Facebook, Inc. | Apparatus, system, and method for performing hardware acceleration via expansion cards |
US20180373428A1 (en) | 2017-06-23 | 2018-12-27 | Dell Products L.P. | Methods and systems for managing data migration in solid state non-volatile memory |
US20190004944A1 (en) | 2017-06-29 | 2019-01-03 | Western Digital Technologies, Inc. | System and method for host system memory translation |
US20190012111A1 (en) | 2017-07-06 | 2019-01-10 | Alibaba Group Holding Limited | Method and system for mitigating write amplification in a phase change memory-based storage device |
US20200371955A1 (en) | 2017-08-04 | 2020-11-26 | Bamboo Systems Group Limited | Memory control for electronic data processing system |
US20190050312A1 (en) | 2017-08-11 | 2019-02-14 | Alibaba Group Holding Limited | Method and system for a high-priority read based on an in-place suspend/resume write |
US20190050327A1 (en) | 2017-08-11 | 2019-02-14 | Alibaba Group Holding Limited | Method and system for rearranging a write operation in a shingled magnetic recording device |
US10417086B2 (en) | 2017-08-11 | 2019-09-17 | Winbond Electronics Corp. | Data write method and memory storage device using the same |
US20200348888A1 (en) | 2017-08-22 | 2020-11-05 | SK Hynix Inc. | Storage device and method of operating the same |
US20190065085A1 (en) | 2017-08-31 | 2019-02-28 | Micron Technology, Inc. | Prioritized security |
US20190073262A1 (en) | 2017-09-04 | 2019-03-07 | Via Technologies, Inc. | Error checking and correcting decoding method and apparatus |
US20190087115A1 (en) | 2017-09-15 | 2019-03-21 | Alibaba Group Holding Limited | Method and system for in-line deduplication in a storage drive based on a non-collision hash |
US10642522B2 (en) | 2017-09-15 | 2020-05-05 | Alibaba Group Holding Limited | Method and system for in-line deduplication in a storage drive based on a non-collision hash |
US20190087089A1 (en) | 2017-09-21 | 2019-03-21 | Toshiba Memory Corporation | Memory system and method for controlling nonvolatile memory |
US20190087328A1 (en) | 2017-09-21 | 2019-03-21 | Toshiba Memory Corporation | Memory system and method for controlling nonvolatile memory |
US11016932B2 (en) | 2017-09-21 | 2021-05-25 | Alibaba Group Holding Limited | Systems, methods, and apparatuses for simplifying filesystem operations utilizing a key-value storage system |
US20190116127A1 (en) | 2017-10-16 | 2019-04-18 | Mellanox Technologies, Ltd. | Computational accelerator for packet payload operations |
US10484019B2 (en) | 2017-10-30 | 2019-11-19 | Western Digital Technologies, Inc. | Adaptive encoder/decoder |
US20190166725A1 (en) | 2017-11-24 | 2019-05-30 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Liquid-cooled server chassis |
US20190171532A1 (en) | 2017-12-04 | 2019-06-06 | International Business Machines Corporation | MANAGING BIG DATA ON DOCUMENT BASED NoSQL DATABASES |
US20190034454A1 (en) | 2017-12-19 | 2019-01-31 | Intel Corporation | Expandable tree-based indexing framework that enables expansion of the hadoop distributed file system |
US20190196748A1 (en) | 2017-12-21 | 2019-06-27 | Microsoft Technology Licensing, Llc | Virtualized ocssds spanning physical ocssd channels |
US10229735B1 (en) | 2017-12-22 | 2019-03-12 | Intel Corporation | Block management for dynamic single-level cell buffers in storage devices |
US20190205206A1 (en) | 2017-12-28 | 2019-07-04 | Micron Technology, Inc. | Memory controller implemented error correction code memory |
US20200326855A1 (en) | 2017-12-28 | 2020-10-15 | Huawei Technologies Co., Ltd. | Data write method and solid-state drive array |
US20190212949A1 (en) | 2018-01-10 | 2019-07-11 | International Business Machines Corporation | Increasing storage efficiency of a data protection technique |
US20190220392A1 (en) | 2018-01-15 | 2019-07-18 | Silicon Motion Inc. | Method for reusing destination block related to garbage collection in memory device, associated memory device and controller thereof, and associated electronic device |
US20190227927A1 (en) | 2018-01-19 | 2019-07-25 | Shannon Systems Ltd. | Data storage device and data storage method for dynamically executing a garbage-collection process |
US11068409B2 (en) | 2018-02-07 | 2021-07-20 | Alibaba Group Holding Limited | Method and system for user-space storage I/O stack with user-space flash translation layer |
US10199066B1 (en) | 2018-03-01 | 2019-02-05 | Seagate Technology Llc | Write management of physically coupled storage areas |
US20190272242A1 (en) | 2018-03-05 | 2019-09-05 | Samsung Electronics Co., Ltd. | Novel ssd architecture for fpga based acceleration |
US20190278849A1 (en) | 2018-03-09 | 2019-09-12 | Microsoft Technology Licensing, Llc | Key-value store system |
US10649657B2 (en) | 2018-03-22 | 2020-05-12 | Western Digital Technologies, Inc. | Log-based storage for different data types in non-volatile memory |
US20190317901A1 (en) | 2018-04-16 | 2019-10-17 | Samsung Electronics Co., Ltd. | System and method for optimizing performance of a solid-state drive using a deep neural network |
US20190320020A1 (en) | 2018-04-17 | 2019-10-17 | Samsung Electronics Co., Ltd. | Network storage device storing large amount of data |
US20190339998A1 (en) | 2018-05-04 | 2019-11-07 | Citrix Systems, Inc. | Systems and methods for remote computing sessions with variable forward error correction (fec) |
US10831734B2 (en) | 2018-05-07 | 2020-11-10 | Intel Corporation | Update-insert for key-value storage interface |
US20190042571A1 (en) | 2018-05-07 | 2019-02-07 | Intel Corporation | Update-Insert for Key-Value Storage Interface |
US10437670B1 (en) | 2018-05-24 | 2019-10-08 | International Business Machines Corporation | Metadata hardening and parity accumulation for log-structured arrays |
US20190377632A1 (en) | 2018-06-07 | 2019-12-12 | Samsung Electronics Co., Ltd. | Method of equalizing bit error rates of memory device |
US20190377821A1 (en) | 2018-06-12 | 2019-12-12 | Open Text Corporation | System and method for persistence and replication of changes to a data store |
US20190391748A1 (en) | 2018-06-25 | 2019-12-26 | Alibaba Group Holding Limited | Method and system for data placement in a hard disk drive based on access frequency for improved iops and utilization efficiency |
US20200004674A1 (en) | 2018-06-27 | 2020-01-02 | Seagate Technology Llc | Non-deterministic window scheduling for data storage systems |
US20200004456A1 (en) | 2018-06-28 | 2020-01-02 | Seagate Technology Llc | Deterministic Optimization via Performance Tracking in a Data Storage System |
US20200013458A1 (en) | 2018-07-03 | 2020-01-09 | Micron Technology, Inc. | Data storage based on data polarity |
US10877835B2 (en) * | 2018-07-19 | 2020-12-29 | Micron Technology, Inc. | Write buffer management |
US20200042387A1 (en) | 2018-07-31 | 2020-02-06 | EMC IP Holding Company LLC | Maintaining logical to physical address mapping during in place sector rebuild |
US20200042223A1 (en) | 2018-08-02 | 2020-02-06 | Alibaba Group Holding Limited | System and method for facilitating a high-density storage device with improved performance and endurance |
US20190108145A1 (en) | 2018-08-20 | 2019-04-11 | Intel Corporation | Dual in-line memory module (dimm) programmable accelerator card |
US20200082006A1 (en) | 2018-09-06 | 2020-03-12 | Sap Se | Searching for data using superset tree data structures |
US20200092209A1 (en) | 2018-09-13 | 2020-03-19 | International Business Machines Corporation | Optimizing application throughput |
US20200089430A1 (en) | 2018-09-19 | 2020-03-19 | Toshiba Memory Corporation | Memory system and control method |
US20200097189A1 (en) | 2018-09-26 | 2020-03-26 | Western Digital Technologies, Inc. | Data storage systems and methods for improved data relocation based on read-level voltages associated with error recovery |
US10928847B2 (en) | 2018-09-29 | 2021-02-23 | Intel Corporation | Apparatuses and methods for frequency scaling a message scheduler data path of a hashing accelerator |
US20200133841A1 (en) | 2018-10-25 | 2020-04-30 | Pure Storage, Inc. | Scalable garbage collection |
US11360863B2 (en) | 2018-10-26 | 2022-06-14 | Hewlett Packard Enterprise Development Lp | Key-value store on persistent memory |
US20200143885A1 (en) | 2018-11-07 | 2020-05-07 | Samsung Electronics Co., Ltd. | Nonvolatile memory device, storage device including nonvolatile memory device, and method of accessing nonvolatile memory device |
US20200167091A1 (en) | 2018-11-27 | 2020-05-28 | Commvault Systems, Inc. | Using interoperability between components of a data storage management system and appliances for data storage and deduplication to generate secondary and tertiary copies |
US20200364094A1 (en) | 2018-12-12 | 2020-11-19 | International Business Machines Corporation | Disaggregated system domain |
US20200210309A1 (en) | 2019-01-02 | 2020-07-02 | SK Hynix Inc. | Controller and operation method thereof |
US20200218449A1 (en) | 2019-01-03 | 2020-07-09 | International Business Machines Corporation | Journaling on an appendable non-volatile memory module |
US20200225875A1 (en) | 2019-01-15 | 2020-07-16 | SK Hynix Inc. | Memory system and operation method thereof |
US20200242021A1 (en) | 2019-01-24 | 2020-07-30 | Western Digital Technologies, Inc. | Logical to physical mapping management using low-latency non-volatile memory |
US20200250032A1 (en) | 2019-02-01 | 2020-08-06 | Fungible, Inc. | Flexible reliability coding for storage on a network |
US20200257598A1 (en) | 2019-02-11 | 2020-08-13 | Apple Inc. | Recovery of data failing due to impairment whose severity depends on bit-significance value |
US20190196907A1 (en) | 2019-03-05 | 2019-06-27 | Intel Corporation | Compression techniques for distributed data |
US20200387327A1 (en) | 2019-06-05 | 2020-12-10 | Lite-On Electronics (Guangzhou) Limited | Data processing method for computer system with solid state drive |
US20200401334A1 (en) | 2019-06-19 | 2020-12-24 | Western Digital Technologies, Inc. | Multi-stream non-volatile storage system |
US20200409791A1 (en) | 2019-06-25 | 2020-12-31 | Western Digital Technologies, Inc. | Serial Storage Node Processing of Data Functions |
US20200409559A1 (en) | 2019-06-27 | 2020-12-31 | Western Digital Technologies, Inc. | Non-volatile memory data write management |
US11068165B2 (en) | 2019-06-27 | 2021-07-20 | Western Digital Technologies, Inc. | Non-volatile memory data write management |
US11023150B2 (en) | 2019-07-01 | 2021-06-01 | International Business Machines Corporation | Block mode toggling using hybrid controllers |
US20210010338A1 (en) | 2019-07-10 | 2021-01-14 | Safekick Americas Llc | Hierarchical pressure management for managed pressure drilling operations |
US20210089392A1 (en) | 2019-09-19 | 2021-03-25 | Kioxia Corporation | Memory system |
US11126561B2 (en) | 2019-10-01 | 2021-09-21 | Alibaba Group Holding Limited | Method and system for organizing NAND blocks and placing data to facilitate high-throughput for random writes in a solid state drive |
US20210103388A1 (en) | 2019-10-02 | 2021-04-08 | Samsung Electronics Co., Ltd. | Storage system managing metadata, host system controlling storage system, and storage system operating method |
US20210124488A1 (en) | 2019-10-29 | 2021-04-29 | International Business Machines Corporation | Workload based relief valve activation for hybrid controller architectures |
US11138124B2 (en) | 2019-10-30 | 2021-10-05 | International Business Machines Corporation | Migrating data between block pools in a storage system |
US20210132999A1 (en) | 2019-11-04 | 2021-05-06 | Rambus Inc. | Inter-server memory pooling |
US20210191635A1 (en) | 2019-12-18 | 2021-06-24 | Hefei Core Storage Electronic Limited | Memory management method, memory storage device and memory control circuit unit |
US11243694B2 (en) | 2020-01-29 | 2022-02-08 | Samsung Electronics Co., Ltd. | Grouping key value object IOs to improve IO performance for key-value storage devices |
US20210263795A1 (en) | 2020-02-26 | 2021-08-26 | Alibaba Group Holding Limited | Efficient compaction on log-structured distributed file system using erasure coding for resource consumption reduction |
US20210286555A1 (en) | 2020-03-13 | 2021-09-16 | Alibaba Group Holding Limited | Method and system for facilitating a persistent memory-centric system |
US10990526B1 (en) | 2020-04-30 | 2021-04-27 | Micron Technology, Inc. | Handling asynchronous power loss in a memory sub-system that programs sequentially |
US20200322287A1 (en) | 2020-06-18 | 2020-10-08 | Intel Corporation | Switch-managed resource allocation and software execution |
US20200328192A1 (en) | 2020-06-26 | 2020-10-15 | Intel Corporation | Stacked die network interface controller circuitry |
US20220121517A1 (en) * | 2020-10-15 | 2022-04-21 | SK Hynix Inc. | Memory system and controller for storing map data of volatile memory into nonvolatile memory device during power off operation |
US20210075633A1 (en) | 2020-11-18 | 2021-03-11 | Intel Corporation | Packet multi-cast for memory pool replication |
Non-Patent Citations (20)
Title |
---|
A. Zuck, O. Kishon and S. Toledo. "LSDM: Improving the Preformance of Mobile Storage with a Log-Structured Address Remapping Device Driver", 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, 2014, pp. 221-228. |
ARM ("Cortex-R5 and Cortex-R5F", Technical reference Manual, Revision r1p1) (Year:2011). |
Arpaci-Dusseau et al. "Operating Systems: Three Easy Pieces", Originally published 2015; Pertinent: Chapter 44; flash-based SSDs, available at http://pages.cs.wisc.edu/˜remzi/OSTEP/. |
C. Wu, D. Wu, H. Chou and C. Cheng, "Rethink the Design of Flash Translation Layers in a Component-Based View", in IEEE Acess, vol. 5, pp. 12895-12912, 2017. |
Chen Feng, et al. "CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid State Devices" < FAST '11, San Jose, CA Feb. 15-17, 2011, pp. 1-14. |
EMC Powerpath Load Balancing and Failover Comparison with native MPIO operating system solutions. Feb. 2011. |
Helen H. W. Chan et al. "HashKV: Enabling Efficient Updated in KV Storage via Hashing", https://www.usenix.org/conference/atc18/presentation/chan, (Year: 2018). |
https://web.archive.org/web/20071130235034/http://en.wikipedia.org:80/wiki/logical_block_addressing wikipedia screen shot retriefed on wayback Nov. 20, 2007 showing both physical and logical addressing used historically to access data on storage devices (Year: 2007). |
Ivan Picoli, Carla Pasco, Bjorn Jonsson, Luc Bouganim, Philippe Bonnet. "uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel Solid-State Drives." APSys'17, Sep. 2017, Mumbai, India, pp. 1-7, 2017, <10.1145/3124680.3124741>. <hal-01654985>. |
J. Jung and Y. Won, "nvramdisk: A Transactional Block Device Driver for Non-Volatile RAM", in IEEE Transactions on Computers, vol. 65, No. 2, pp. 589-600, Feb. 1, 2016. |
Jimenex, X., Novo, D. and P. Ienne, "Pheonix:Reviving MLC Blocks as SLC to Extend NAND Flash Devices Lifetime," Design, Automation & Text in Europe Conference & Exhibition (Date), 2013. |
M.-C. Yang, Y.-M. Chang, C.-W. Tsao, P.-C. Huang, Y.-H. Chang and T.-W. Kuo, "Garbage collection and wear leveling for flash memory: Past and future," 2014 International Conference on Smart Computing, Hong Kong, China, 2014, pp. 66-73. * |
Po-Liang Wu, Yuan-Hao Chang and T. Kuo, "A file-system-aware FTL design for flash-memory storage systems," 2009, pp. 393-398. |
S. Choudhuri and T. Givargis, "Preformance improvement of block based NAND flash translation layer", 2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Systems Synthesis (CODES+ISSS). Saizburg, 2007, pp. 257-262. |
S. Hong and D. Shin, "NAND Flash-Based Disk Cache Using SLC/MLC Combined Flash Memory," 2010 International Workshop on Storage Network Architecture and Parallel I/Os, Incline Village, NV, 2010, pp. 21-30. |
Te I et al. (Pensieve: a Machine Assisted SSD Layer for Extending the Lifetime: (Year: 2018). |
Tsuchiya, Yoshihiro et al. "DBLK: Deduplication for Primary Block Storage", MSST 2011, Denver, CO, May 23-27, 2011 pp. 1-5. |
WOW: Wise Ordering for Writes—Combining Spatial and Temporal Locality in Non-Volatile Caches by Gill (Year: 2005). |
Wu, Huijun et al. "HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud", Cornell Univ. arXiv: 1702.08153v2[cs.DC], Apr. 16, 2017, pp. 1-14https://www.syncids.com/#. |
Yang, T. Wu, H. and W. Sun, "GD-FTL: Improving the Performance and Lifetime of TLC SSD by Downgrading Worn-out Blocks," IEEE 37th International Performance Computing and Communications Conference (IPCCC), 2018. |
Also Published As
Publication number | Publication date |
---|---|
US20220206894A1 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102729696B1 (en) | Storage media programming with adaptive write buffer release | |
US10466903B2 (en) | System and method for dynamic and adaptive interrupt coalescing | |
US9460763B2 (en) | Holding by a memory controller multiple central processing unit memory access requests, and performing the multiple central processing unit memory request in one transfer cycle | |
US10198215B2 (en) | System and method for multi-stream data write | |
US11868652B2 (en) | Utilization based dynamic shared buffer in data storage system | |
US9858015B2 (en) | Solid-state storage management | |
US10114578B2 (en) | Solid state disk and data moving method | |
CN108153482B (en) | IO command processing method and medium interface controller | |
US20150052329A1 (en) | Memory control device, host computer, information processing system and method of controlling memory control device | |
US11385833B2 (en) | Method and system for facilitating a light-weight garbage collection with a reduced utilization of resources | |
US11301370B2 (en) | Parallel overlap management for commands with overlapping ranges | |
US11726699B2 (en) | Method and system for facilitating multi-stream sequential read performance improvement with reduced read amplification | |
CN108153582B (en) | IO command processing method and medium interface controller | |
JP6342013B2 (en) | Method, system and computer program for operating a data storage system including a non-volatile memory array | |
US11734115B2 (en) | Method and system for facilitating write latency reduction in a queue depth of one scenario | |
CN110119245B (en) | Method and system for operating NAND flash memory physical space to expand memory capacity | |
US11651803B2 (en) | Method and apparatus and computer program product for reading data from multiple flash dies | |
US11487465B2 (en) | Method and system for a local storage engine collaborating with a solid state drive controller | |
US10268399B2 (en) | Memory system using message monitoring and first and second namespaces | |
CN114174977B (en) | Improved handling of host initiated requests in a memory subsystem | |
US11476874B1 (en) | Method and system for facilitating a storage server with hybrid memory for journaling and data storage | |
US11797183B1 (en) | Host assisted application grouping for efficient utilization of device resources | |
US20250004779A1 (en) | Appratus and operation method for distributed processing of plural operations in data storage system | |
US20250028473A1 (en) | System and methods for dram-less garbage collection with improved performance | |
US20230161713A1 (en) | Method and non-transitory computer-readable storage medium and apparatus for updating host-to-flash address mapping table |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: ALIBABA GROUP HOLDING LIMITED, CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, SHU;REEL/FRAME:054760/0835 Effective date: 20201222 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |