US11743042B2 - Secure remote token release with online authentication - Google Patents
Secure remote token release with online authentication Download PDFInfo
- Publication number
- US11743042B2 US11743042B2 US17/734,443 US202217734443A US11743042B2 US 11743042 B2 US11743042 B2 US 11743042B2 US 202217734443 A US202217734443 A US 202217734443A US 11743042 B2 US11743042 B2 US 11743042B2
- Authority
- US
- United States
- Prior art keywords
- account
- user
- authentication
- secure remote
- token
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims abstract description 98
- 238000000034 method Methods 0.000 claims abstract description 80
- 238000012795 verification Methods 0.000 claims abstract description 34
- 238000013475 authorization Methods 0.000 claims description 92
- 230000004044 response Effects 0.000 claims description 14
- 230000008569 process Effects 0.000 description 49
- 238000012545 processing Methods 0.000 description 21
- 239000003999 initiator Substances 0.000 description 20
- 230000006870 function Effects 0.000 description 10
- 238000013507 mapping Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000013478 data encryption standard Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000002207 retinal effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 201000006292 polyarteritis nodosa Diseases 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013506 data mapping Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/40—Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
- G06Q20/401—Transaction verification
- G06Q20/4014—Identity check for transactions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
- G06F21/33—User authentication using certificates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/382—Payment protocols; Details thereof insuring higher security of transaction
- G06Q20/3829—Payment protocols; Details thereof insuring higher security of transaction involving key management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/40—Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
- G06Q20/401—Transaction verification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
- H04L63/0807—Network architectures or network communication protocols for network security for authentication of entities using tickets, e.g. Kerberos
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/088—Usage controlling of secret information, e.g. techniques for restricting cryptographic keys to pre-authorized uses, different access levels, validity of crypto-period, different key- or password length, or different strong and weak cryptographic algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/321—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority
- H04L9/3213—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority using tickets or tokens, e.g. Kerberos
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3226—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
- H04L9/3228—One-time or temporary data, i.e. information which is sent for every authentication or authorization, e.g. one-time-password, one-time-token or one-time-key
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3226—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
- H04L9/3231—Biological data, e.g. fingerprint, voice or retina
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/56—Financial cryptography, e.g. electronic payment or e-cash
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2463/00—Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00
- H04L2463/081—Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00 applying self-generating credentials, e.g. instead of receiving credentials from an authority or from another peer, the credentials are generated at the entity itself
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2463/00—Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00
- H04L2463/082—Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00 applying multi-factor authentication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
- H04L63/0823—Network architectures or network communication protocols for network security for authentication of entities using certificates
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
- H04L63/083—Network architectures or network communication protocols for network security for authentication of entities using passwords
- H04L63/0838—Network architectures or network communication protocols for network security for authentication of entities using passwords using one-time-passwords
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
- H04L63/0861—Network architectures or network communication protocols for network security for authentication of entities using biometrical features, e.g. fingerprint, retina-scan
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/18—Network architectures or network communication protocols for network security using different networks or channels, e.g. using out of band channels
Definitions
- usernames and passwords as a form of authentication has become inadequate for securing a user's accounts.
- remembering usernames and passwords for numerous sites can be challenging, and setting the same password for multiple accounts may increase the likelihood of jeopardizing all accounts when one account is compromised.
- Password managers can be inconvenient, and storing all of the user's passwords in one place can be risky.
- Passwords can also be easily phished or captured by malware, and data breaches at service providers can result in the proliferation of passwords across the dark web.
- authorization entities are able to determine whether or not to authorize a transaction based on information for an account
- those same authorization entities are not able to authenticate a user of a user device.
- they must often rely on another entity, such as the resource provider, to perform authentication of a user.
- Not all resource providers can provide the same quality of authentication, and this leads to data security problems.
- the authentication technique may include registering a user's authentication data such as biometrics data with a communication device.
- the authentication data can be linked to an account or service provider, and is used to verify the identity of the user when accessing the account.
- the communication device may be associated with a public/private key pair, where the pubic key is stored on a secure remote server.
- the user may provide the authentication data to authenticate the user to the communication device.
- the communication device may sign an authentication indicator using the private key and send the authentication indicator to the secure remote server.
- the secure remote server may grant access to the user, for example, by releasing a token.
- One embodiment of the disclosure is directed to a method performed by a secure remote transaction server comprising receiving, from a client device, a request to enroll an account, verifying that the client device has authority to access the account, storing at least a public key of a cryptographic key pair in association with the account, wherein at least a private key of the cryptographic key pair is stored on the client device in association with the account, and generating a token to be associated with the account, the token being stored in association with the account.
- the method may further comprise receiving, from an access device, a request to complete a transaction in association with the account, the request including a signed authentication indicator, verifying the authentication indicator using the public key stored in association with the account, and upon verifying the authentication indicator, providing the token to the access device.
- a secure remote transaction server comprising a processor, and a memory including instructions that, when executed with the processor, cause the secure remote transaction server to, at least receive, from a client device, a request to enroll an account, verify that the client device has authority to access the account, store at least a public key of a cryptographic key pair in association with the account, wherein at least a private key of the cryptographic key pair is stored on the client device in association with the account, and generate a token to be associated with the account, the token being stored in association with the account.
- the instructions may further cause the secure remote transaction server to receive, from an access device, a request to complete a transaction in association with the account, the request including a signed authentication indicator, verify the authentication indicator using the public key stored in association with the account, and upon verifying the authentication indicator, provide the token to the access device.
- Yet another embodiment of the disclosure is directed to a method performed by a communication device comprising receiving a request to register authentication data for an account associated with a service provider, prompting the user to provide the authentication data, receiving the authentication data from the user, registering the authentication data onto the communication device, obtaining a private key of a cryptographic key pair, associating the private key with the account and the authentication data, wherein a secure remote server links a public key of the cryptographic key pair to a token associated with the account.
- the method described above may further comprise receiving a request to access the account, prompting the user to provide the authentication data, receiving the authentication data from the user, comparing the received authentication data with the registered authentication data, determining that the received authentication data matches the registered authentication data, generating an authentication indicator indicating the match, signing the authentication indicator using the private key, and sending the signed authentication indicator to the secure remote server in an access request, wherein the secure remote server releases the token to the service provider to grant the user access to the account in response to verifying the signed authentication indicator using the public key.
- FIG. 1 depicts a number of components that may be involved in a system used to implement at least some embodiments of the disclosure
- FIG. 2 depicts an example system architecture that may be implemented to provide secure remote transaction in accordance with embodiments of the disclosure
- FIG. 3 illustrates a registration process for an authentication system, according to some embodiments
- FIG. 4 depicts an example provisioning process by which a user is able to manually add his or her accounts to be processed by the SRT platform and a private key and/or token may be provisioned onto a client device in accordance with some embodiments;
- FIG. 5 illustrates a process for authenticating the user with a service provider using the authentication system, according to some embodiments
- FIG. 6 illustrates a process for authenticating the user with a service provider using multiple devices, according to some embodiments
- FIG. 7 illustrates a flow diagram of a process for performing authentication of users in accordance with at least some embodiments
- FIG. 8 illustrates a flow diagram of a process for registering authentication data in accordance with at least some embodiments.
- FIG. 9 illustrates a flow diagram of a process for accessing an account, according to some embodiments.
- a two-factor authentication scheme can be employed in which biometrics is used to authenticate a user on a communication device, and public/private key cryptography is used to authenticate the communication device to a remote server to grant the user access to an account, service, and/or function associated with a service provider.
- the service provider can be a token service provider, and the two-factor authentication scheme is used by the system to release a token from the remote server. The token can then be used, for example, to conduct a transaction using the user's account.
- SRT secure remote transaction
- An “access device” may be any suitable device for communicating with a merchant computer or transaction processing network, and for interacting with a transaction device (e.g., a payment device), a user computer apparatus, and/or a user client device.
- An access device may generally be located in any suitable location, such as at the location of a merchant.
- An access device may be in any suitable form.
- Some examples of access devices include POS devices, cellular phones, PDAs, personal computers (PCs), tablet PCs, hand-held specialized readers, set-top boxes, electronic cash registers (ECRs), automated teller machines (ATMs), virtual cash registers (VCRs), kiosks, security systems, access systems, Websites, and the like.
- An access device may use any suitable contact or contactless mode of operation to send or receive data from, or associated with, a portable communication device.
- an access device may comprise a POS terminal
- any suitable POS terminal may be used and may include a reader, a processor, and a computer-readable medium.
- a reader may include any suitable contact or contactless mode of operation.
- exemplary card readers can include radio frequency (RF) antennas, optical scanners, bar code readers, or magnetic stripe readers to interact with a portable communication device.
- RF radio frequency
- Account credentials may include any suitable information associated with an account (e.g. an account and/or portable device associated with the account). Such information may be directly related to the account or may be derived from information related to the account. Examples of account credentials may include a PAN (primary account number or “account number”), user name, expiration date, CVV (card verification value), dCVV (dynamic card verification value), CVV2 (card verification value 2), CVC3 card verification values, etc.
- PAN primary account number or “account number”
- CVV card verification value
- dCVV dynamic card verification value
- CVV2 card verification value 2
- CVC3 card verification values etc.
- An “acquirer” may typically be a business entity (e.g., a commercial bank) that has a business relationship with a particular merchant or other entity. Some entities can perform both issuer and acquirer functions. Some embodiments may encompass such single entity issuer-acquirers.
- Authentication or “authenticating” may be the process of proving or verifying certain information, and/or verifying the identity of the source of that information.
- a user may provide authentication data that is unique or only known to the user to prove the identity of the user.
- Examples of different types of authentication data may include biometrics (e.g., fingerprint, palm print, face recognition, iris and/or retina recognition, voice recognition, gait, or other human characteristics), passcode, PIN, answers to security question(s), cryptographic response to challenge, human and/or device signature, etc.
- An “authorization entity” may be an entity that authorizes a request. Examples of an authorization entity may be an issuer, a governmental agency, a document repository, an access administrator, etc.
- An “issuer” may typically refer to a business entity (e.g., a bank) that maintains an account for a user that is associated with a client device such as an account enrolled in a mobile application installed on a client device.
- An authorization entity may also issue account parameters associated with the account to a client device.
- An authorization entity may be associated with a host system that performs some or all of the functions of the issuer on behalf of the authorization entity.
- An “authorization request message” may be an electronic message that is sent to request authorization for a transaction.
- the authorization request message can be sent to a transaction processing network and/or an issuer of a transaction card (e.g., a payment card).
- An authorization request message may comply with ISO 8583, which is a standard for systems that exchange electronic transaction information associated with a transaction made by a user using a transaction device or transaction account.
- the authorization request message may include information that can be used to identify an account.
- An authorization request message may also comprise additional data elements such as one or more of a service code, an expiration date, etc.
- An authorization request message may also comprise transaction information, such as any information associated with a current transaction, such as the transaction amount, merchant identifier, merchant location, etc., as well as any other information that may be utilized in determining whether to identify and/or authorize a transaction.
- the authorization request message may also include other information such as information that identifies the access device that generated the authorization request message, information about the location of the access device, etc.
- An “authorization response message” may be an electronic message reply to an authorization request message.
- the authorization response message can be generated by an issuing financial institution or a transaction processing network.
- the authorization response message may include, by way of example only, one or more of the following status indicators: Approval—transaction was approved; Decline—transaction was not approved; or Call Center—response pending more information, merchant must call the toll-free authorization phone number.
- the authorization response message may also include an authorization code, which may be a code that a credit card issuing bank returns in response to an authorization request message in an electronic message (either directly or through the transaction processing network) to the merchant computer that indicates approval of the transaction. The code may serve as proof of authorization.
- a transaction processing network may generate or forward the authorization response message to the merchant.
- a “communication device” may be a device that includes one or more electronic components (e.g., an integrated chip) that can communicate with another device or entity.
- a communication device can be a computing device that includes at least one processor coupled to a memory that stores instructions or code for execution by the processor, and may include a communication interface that allows the communication device to interact with other entities.
- a communication device can be a portable communication device that can be transported and operated by a user, and may include one or more electronic components (e.g., an integrated chip).
- a portable communication device may provide remote communication capabilities to a network. The portable communication device can be configured to transmit and receive data or communications to and from other devices.
- a portable communication device may be in the form of a client device such as a mobile phone (e.g., smart phone, cellular phone, etc.), tablets, portable media player, personal digital assistant devices (PDAs), wearable device (e.g., watch, health monitoring device such as a fitness tracker, etc.), electronic reader device, etc., or in the form of a card (e.g., smart card) or a fob, etc.
- client device such as a mobile phone (e.g., smart phone, cellular phone, etc.), tablets, portable media player, personal digital assistant devices (PDAs), wearable device (e.g., watch, health monitoring device such as a fitness tracker, etc.), electronic reader device, etc., or in the form of a card (e.g., smart card) or a fob, etc.
- portable communication devices may also include portable computing devices (e.g., laptops, netbooks, ultrabooks, etc.).
- a portable communication device may also be in the form of a vehicle (e.
- a “facilitator” may be any entity capable of authenticating a user of a client device.
- a facilitator may include a client-side application (e.g., a facilitator application) as well as a backend server (e.g., a facilitator server) capable of supporting the client-side application.
- a facilitator application may be executed upon receiving instructions from a facilitator server to authenticate a user of the client device.
- the facilitator application may cause the client device upon which it is installed to obtain user-specific data. This user-specific data may then be compared to expected user-specific data, either by the facilitator application on the client device or by the facilitator server, to determine whether the obtained user-specific data matches the expected user-specific data.
- a facilitator may be an electronic wallet provider (e.g., Apple Pay). It should be noted that the facilitator may be unaffiliated with the SRT Platform and/or the initiator.
- An “initiator” may be any entity capable of facilitating communication between a resource provider and one or more SRT platforms.
- An initiator may operate a number of servers which provide at least a portion of the functionality described herein. In some cases, an initiator may obtain approval and/or accreditation from one or more SRT platforms in order to operate in conjunction with those SRT platforms.
- a resource provider may enroll with the initiator in order to obtain access to at least a portion of the processes described herein.
- An initiator may provide each resource provider that enrolls with it a link to embed within a checkout element. The link, when activated by a user wishing to transact with the resource provider, may initiate the processes described herein in order to facilitate a transaction between the user and the resource provider. It should be noted that the initiator may be unaffiliated with the SRT Platform and/or the facilitator.
- An “issuer” may typically refer to a business entity (e.g., a bank) that maintains an account for a user that is associated with a portable communication device such as an account enrolled in a mobile application installed on a portable communication device.
- An issuer may also issue account parameters associated with the account to a portable communication device.
- An issuer may be associated with a host system that performs some or all of the functions of the issuer on behalf of the issuer.
- a “key” may refer to a piece of information that is used in a cryptographic algorithm to transform input data into another representation.
- a cryptographic algorithm can be an encryption algorithm that transforms original data into an alternate representation, or a decryption algorithm that transforms encrypted information back to the original data. Examples of cryptographic algorithms may include triple data encryption standard (TDES), data encryption standard (DES), advanced encryption standard (AES), etc.
- a “merchant” may typically be an entity that engages in transactions and can sell goods or services, or provide access to goods or services.
- a “real account identifier” may refer to an original account identifier associated with an account.
- a real account identifier may be a primary account number (PAN) issued by an issuer for a card account (e.g., credit card, debit card, etc.).
- PAN primary account number
- a real account identifier may include a sixteen digit numerical value such as “4147 0900 0000 1234.” The first six digits of the real account identifier (e.g., “414709”), may represent a real issuer identifier (BIN) that may identify an issuer associated with the real account identifier.
- BIN real issuer identifier
- the term “resource” generally refers to any asset that may be used or consumed.
- the resource may be computer resource (e.g., stored data or a networked computer account), a physical resource (e.g., a tangible object or a physical location), or other electronic resource or communication between computers (e.g., a communication signal corresponding to an account for performing a transaction).
- a resource may be a good or service, a physical building, a computer account or file, or a payment account.
- a resource may refer to a financial product, such as a loan or line of credit.
- a “resource provider” may be an entity that can provide a resource such as goods, services, information, and/or access to such a resource. Examples of a resource provider include merchants, online or other electronic retailers, access devices, secure data access points, etc.
- a “merchant” may typically be an entity that engages in transactions and can sell goods or services, or provide access to goods or services.
- a “resource provider computer” may be any computing device operated by a resource provider.
- a “secure remote transaction (SRT) platform” may be any entity capable of facilitating a transaction in the manners described.
- a SRT platform may be capable of communicating with an initiator, a facilitator, and a transaction processing network.
- a SRT platform may include a SRT server, a token provider, and a transaction processing network.
- An SRT platform may be configured to perform one or more processes that include: receive a request for a transaction from an initiator, identify an account associated with the transaction, determine an appropriate facilitator for the account, cause the determined facilitator to authenticate a user associated with the account, generate a token to be used in the transaction, and provide the token to the initiator to complete the transaction.
- a “server computer” may include a powerful computer or cluster of computers.
- the server computer can be a large mainframe, a minicomputer cluster, or a group of servers functioning as a unit.
- the server computer may be a database server coupled to a Web server.
- the server computer may be coupled to a database and may include any hardware, software, other logic, or combination of the preceding for servicing the requests from one or more client computers.
- the server computer may comprise one or more computational apparatuses and may use any of a variety of computing structures, arrangements, and compilations for servicing the requests from one or more client computers.
- a “token” may refer to a substitute identifier for some information.
- a transaction token may include an identifier for a transaction account that is a substitute for an account identifier, such as a primary account number (PAN).
- PAN primary account number
- a token may include a series of alphanumeric characters that may be used as a substitute for an original account identifier.
- a token “4900 0000 0000 0001” may be used in place of a PAN “4147 0900 0000 1234.”
- a token may be “format preserving” and may have a numeric format that conforms to the account identifiers used in existing transaction processing networks (e.g., ISO 8583 financial transaction message format).
- a token may be a random string of characters.
- a token may be used in place of a PAN to initiate, authorize, settle or resolve a transaction.
- the token may also be used to represent the original credential in other systems where the original credential would typically be provided.
- a token value may be generated such that the recovery of the original PAN or other account identifier from the token value may not be computationally derived.
- the token format may be configured to allow the entity receiving the token to identify it as a token and recognize the entity that issued the token.
- Tokenization may refer to a process by which data is replaced with substitute data.
- an account identifier e.g., a primary account number (PAN)
- PAN primary account number
- tokenization may be applied to other information which may be replaced with a substitute value. Tokenization may be used to enhance transaction efficiency, improve transaction security, increase service transparency, or to provide a method for third-party enablement.
- a “token service provider” may refer to an entity including one or more server computers that generates, processes, and/or maintains tokens.
- a token service provider may include or be in communication with a token vault where the generated tokens are stored. Specifically, the token vault may maintain one-to-one mapping between a token and the data (e.g., a real account identifier) represented by the token.
- a token service provider may provide reports or data output to reporting tools regarding approved, pending, and/or declined token requests.
- the token service provider may provide data output related to token-based transactions to reporting tools and applications and present the token and/or the data substituted by the token (e.g., real account identifiers) as appropriate in the reporting output.
- a “token vault” may refer to a repository that maintains established token-to-PAN mappings. According to various embodiments, the token vault may also maintain other attributes of the token requestor that may be determined at the time of registration and that may be used by the token SRT server to apply domain restrictions or other controls during transaction processing.
- the token vault may be a part of the token service system. In some embodiments, the token vault may be provided as a part of the token SRT server. Alternatively, the token vault may be a remote repository accessible by the token SRT server. Token vaults, due to the sensitive nature of the data mappings that are stored and managed in them, may be protected by strong underlying physical and logical security.
- a “transaction” may be any interaction or exchange between two or more parties.
- a transaction may include a first entity requesting resources from a second entity.
- the transaction is completed when the resources are either provided to the first entity or the transaction is declined.
- a “transaction processing network,” or “processing network,” may refer to an electronic payment system used to accept, transmit, or process transactions made by payment devices for money, goods, or services.
- the processing network may transfer information and funds among authorization entities (e.g., issuers), acquirers, merchants, and payment device users.
- FIG. 1 depicts a number of components that may be involved in a system used to implement at least some embodiments of the disclosure.
- a client device 102 may be in communication with a number of remote entities via a network connection (either wireless or physical).
- the client device 102 may be used to access a website maintained by a resource provider server 104 or an authorization entity server 106 (e.g., via a browser application).
- the website may have embedded a checkout element configured to cause the client device 102 to initiate communication with a initiator server 108 .
- the initiator server 108 may, in turn, be in communication with a secure remote transaction (SRT) platform 110 .
- SRT secure remote transaction
- the client device 102 may have installed on it a number of facilitator applications 112 .
- the facilitator applications may be configured to cause the client device 102 to communicate with a number of facilitator application servers 114 in order to authenticate a user of the client device 102 .
- the client device 102 may store, in its memory, one or more cryptographic keys to be associated with facilitators installed on the client device 102 and/or the client device 102 itself.
- the client device 102 may be a mobile device (e.g. a mobile phone).
- the mobile device may be capable of communicating with cell towers (e.g., via cellular communications such as GSM, LTE, 4G) and wireless routers (e.g., via WiFi).
- the mobile device may store the user's account credentials, such as a PAN (primary account number), a token, a name, an address, a CVV, an expiration date, and any other suitable information.
- the mobile device may also store one or more private cryptographic keys associated with the mobile device itself or applications installed upon the mobile device. Such data may be securely stored via hardware (e.g., a secure element) or software.
- the resource provider server 104 may be affiliated with an online retailer or another suitable resource provider having an electronic catalog.
- the resource provider server 104 may serve one or more pages of a resource provider website to a browser installed on the client device 102 .
- the website served to the browser application may contain a portal or link that, when accessed using the browser application, initiates communication with the initiator server 108 .
- the authorization entity server 106 may be any computing device configured to determine whether or not to approve a transaction to be conducted by a particular user.
- the authorization entity server 106 may maintain a number of accounts, one or more of which are associated with particular users. Each account may be associated with some amount of a resource (e.g., a balance) upon which authorization for a transaction may be based.
- a resource e.g., a balance
- an authorization entity server 106 may be capable of determining whether or not to authorize a transaction for a user, the authorization entity server 106 may not be capable of authenticating a user as it is located remote to that user.
- the authorization entity server 106 may be configured to use embodiments of the system described herein to authenticate a user.
- the authorization entity server 106 may generate a token to be associated with the user and may provide the token to the SRT platform 110 to be bound to a client device 102 along with a pair of cryptographic keys.
- the initiator server 108 may be any suitable computing device configured to identify a user, identify accounts for that user, receive a selection of one of those accounts, communicate the selected account to an SRT platform 110 associated with that account, and complete a transaction using the selected account.
- the initiator server 108 may be further configured to verify signed data received from the client device 102 .
- the initiator server may, upon receiving data from the client device 102 , verify that data using a public cryptographic key associated with the client device 102 or an application installed upon the client device 102 .
- the system may be implemented across one or more SRT platforms 110 .
- the SRT platforms may each be associated with a transaction processing network.
- Each SRT platform may include some combination of an SRT server (or servers) 110 (A), token data 110 (B), and a processing network 110 (C).
- Multiple accounts may be associated with a single SRT platform.
- a user may be associated with two different accounts which are each associated with different authentication entities, while both accounts are able to be processed using a single SRT platform.
- the SRT server 110 (A) may be configured to identify one or more facilitator applications 112 associated with an account and cause the user to be authenticated using one of those facilitator applications 112 . This may involve communicating a request for authentication to a facilitator application server 114 associated with a particular facilitator application 112 .
- either the client device 102 or the SRT server 110 (A) may be configured to generate cryptographic keys and/or a token to be bound (or otherwise associated) with a particular client device 102 which is stored in the respective token data 110 (B) so that data received from that client device 102 may be verified using a stored public key.
- the token and cryptographic keys may be bound to the client device 102 upon receiving an indication that the client device 102 has been verified by an authorization entity server 106 .
- the SRT server 110 (A) may pass a public key associated with the client device 102 to the initiator server 208 , which may verify data received from the client device 102 and generate transaction information that includes the token to be used for a transaction.
- a mapping between the token and the transaction may be maintained by the SRT server 110 (A) in its respective token data.
- the SRT server 110 (A) may receive a number of files from various authorization entities, each of which may include mappings between email addresses and various PANs. In this way, the SRT server 110 (A) may maintain a mapping between user identifier information and accounts.
- the facilitator applications 112 may be any suitable set of computer-executable instructions installed on the client device 102 that, when executed, causes the client device 102 to perform an authentication process.
- the authentication process may involve the collection of biometric information associated with a user of the client device 102 .
- the facilitator application 112 may obtain voiceprint or fingerprint data to be used to authenticate the user.
- the facilitator application may be tied to hardware installed on the client device 102 . Examples of facilitator applications 112 may include fingerprint, retinal, or voice scanning applications. The hardware associated with those applications may include fingerprint, retinal, or voice scanning hardware such as fingerprint, retinal, or voice sensors. Other types of facilitator applications 112 may also include PIN and password facilitator applications.
- a facilitator application 112 may be a wallet SRT server.
- the facilitator application server 114 may be any suitable computing device that provides support for a facilitator application 112 .
- the facilitator application server 114 may perform authentication processing on behalf of the facilitator application 112 .
- the facilitator application 112 may cause the client device 102 to obtain authentication data from a user of the client device 102 . Once obtained, the authentication data may be transmitted to the facilitator application server 114 that corresponds to the facilitator application used to collect the authentication data. The authentication data may then be compared to authentication data on record for that user by the facilitator application server 114 . Once a user has been authenticated, the facilitator application server 114 and/or facilitator application 112 may generate an authentication result indicating that the user has been authenticated.
- the client device 102 may sign the received the authentication result using a private key specific to the client device 102 and stored by the client device 102 .
- a user wishes to enroll into the system described herein and conduct a transaction.
- the user may request enrollment with a particular authorization entity server 106 .
- the request may be made in relation to a particular account maintained by that authorization entity server 106 (e.g., a credit card account maintained by a banking institution).
- the authorization entity server 106 may reference account data stored in association with the particular account in order to identify contact information.
- the authorization entity server 106 may transmit a verification message to the user via the stored contact information.
- the verification message may include a one-time password (OTP) or other dynamic verification data, which the user may be required to enter via the client device 102 to be verified.
- OTP one-time password
- the authorization entity server 106 may provide an indication of the client device 102 to the SRT platform 110 .
- a token and cryptographic keys may be generated for the client device 102 either by the authorization entity server 106 , the client device 102 , or the SRT platform 110 . Once generated, the token and at least a private cryptographic key of a cryptographic key pair may be transmitted to the client device 102 .
- the user may access a merchant (resource provider 104 ) website to complete a transaction (e.g., make a purchase).
- a transaction e.g., make a purchase
- the user may, upon selecting a number of items for the transaction, be served a checkout page for the merchant website.
- the checkout page may include a list of the items, prices, quantities, or any other suitable transaction-related information.
- the checkout page may include a checkout element that may be selected to initiate a transaction. Once the checkout element has been selected, the user may be given the ability to select an account associated with the authorization entity server 106 to be used to complete the transaction.
- the SRT platform 110 may cause a facilitator application 112 to be executed in order to authenticate the user.
- the facilitator application 112 may then execute an authentication process and, upon completion of the authentication process, may return an authentication indicator that indicates whether or not the user is authenticated to the client device 102 .
- the client device 102 may then sign the authentication indicator by performing a cryptographic algorithm on the authentication indicator using the private cryptographic key of the cryptographic key pair.
- the signed authentication indicator may be provided to the SRT platform 110 via the initiator application server 108 .
- the SRT platform 110 may provide the token associated with the clinet device 102 back to the initiator application server 108 .
- the initiator server 108 may subsequently use the received token to complete the requested transaction.
- FIG. 1 For clarity, a certain number of components are shown in FIG. 1 . It is understood, however, that embodiments of the invention may include more than one of each component. In addition, some embodiments of the invention may include fewer than or greater than all of the components shown in FIG. 1 . In addition, the components in FIG. 1 may communicate via any suitable communication medium (including the internet), using any suitable communication protocol.
- FIG. 2 depicts an example system architecture that may be implemented to provide secure remote transaction in accordance with embodiments of the disclosure.
- a SRT server 202 may be in communication with a number of client devices 204 and authorization entity servers 206 via a network connection 208 .
- the network connection 208 may include at least a transaction processing network.
- the SRT server 202 may be an example SRT server 110 of FIG. 1 .
- the SRT server 202 may include at least one memory 214 and one or more processing units (or processor(s)) 216 .
- the processor(s) 216 may be implemented as appropriate in hardware, computer-executable instructions, firmware or combinations thereof.
- Computer-executable instruction or firmware embodiments of the processor(s) 216 may include computer-executable or machine executable instructions written in any suitable programming language to perform the various functions described.
- the memory 214 may store program instructions that are loadable and executable on the processor(s) 216 , as well as data generated during the execution of these programs.
- the memory 214 may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-only memory (ROM), flash memory, etc.).
- the SRT server 202 may also include additional storage 218 , such as either removable storage or non-removable storage including, but not limited to, magnetic storage, optical disks, and/or tape storage.
- the disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for the SRT server 202 .
- the memory 214 may include multiple different types of memory, such as static random access memory (SRAM), dynamic random access memory (DRAM) or ROM.
- the memory 214 may include an operating system and one or more application programs or services for implementing the features disclosed herein including at least a module for binding accounts to tokens and/or cryptographic keys (account binding module 220 ).
- the memory 214 may also include account data 222 , which provides data stored in association with a user account, cryptographic ley data 224 , which provides at least a list of public cryptographic keys stored in association with client devices 204 , and/or token data 220 , which provides a mapping between a generated token and a transaction or account.
- the account binding module 220 may, in conjunction with the processor 216 , be configured to receive an indication from an authorization entity server 206 that a client device 204 is to be enrolled with respect to a particular account.
- the indication may include a device identifier for the client device 204 (e.g., a phone number) as well as an account number (e.g., a primary account number (PAN)).
- PAN primary account number
- the account binding module 220 may generate a token to be associated with the client device 204 .
- the token may be stored by the SRT server 202 within a token vault (e.g., token data 226 ) in relation to the client device 204 .
- the account binding module 220 may generate a cryptographic key pair to be associated with the client device 204 and the account number.
- One of the keys of the cryptographic key pair may be assigned as a private key 234 and the other may be assigned as a public key 238 .
- the cryptographic key assigned as the private key 234 may be conveyed to the client device 204 using known secure key delivery protocols.
- the private key 234 may be provisioned onto the client device 204 via a message transmitted to the client device 204 by the SRT server 202 (e.g., via the received device identifier).
- the private key 234 may be provisioned onto the client device 204 via a message transmitted to the client device 204 by the authorization entity server 206 .
- the public key 238 may be transmitted to the authorization entity server 206 .
- the account binding module 220 may be configured to verify the authenticity of an authentication indicator which has been signed by a client device 204 using the private key 234 .
- the account binding module 220 may be further configured to generate a token upon receiving an indication that an authentication indicator received from a client device 204 has been verified.
- the token may be a one-time use token which is only authorized for use with the specific transaction at issue.
- the token may be specific to both the client device 204 and the resource provider, in that the token may be used multiple times by the resource provider for that client device 204 (e.g., a “card on file” token). For example, upon conducting with a particular client device 204 for the first time, the resource provider may receive a token generated in the manner described herein.
- the resource provider may then store the token in memory for use with the client device 204 until an expiration date (or some other suitable expiration condition) associated with that token.
- the account mapping module 220 may store the generated token in a token vault (e.g., token data 226 ) with a mapping to the account for which the token was generated.
- the SRT server 202 may query the token vault to identify the account associated with the token. The SRT server 202 may then proceed with the transaction of the authorization request message using the identified account information.
- the SRT server 202 may also contain communications interface(s) 228 that enable the SRT server 202 to communicate with a stored database, another computing device or server, one or more remote devices, other application servers, and/or any other suitable electronic devices.
- the communication interface 228 may enable the SRT server 202 to communicate with other electronic devices on a network (e.g., on a private network).
- the SRT server 202 may also include input/output (I/O) device(s) and/or ports 230 , such as for enabling connection with a keyboard, a mouse, a pen, a voice input device, a touch input device, a display, speakers, a printer, etc.
- I/O input/output
- the client device 204 may be any electronic device capable of communicating with other electronic devices.
- the client device 204 may be a mobile phone capable of wirelessly communicating with a number of other electronic devices.
- the client device 204 may be an example of client device 102 depicted in FIG. 1 .
- the client device 204 may have installed upon it a number of software modules, including an authentication application 231 and at least one facilitator application 232 .
- the client device may also include, in its memory, at least one private key 234 .
- the authentication application 231 may include computer executable instructions that cause the client device 204 to perform at least a portion of the functionality described herein.
- the authentication application 231 of the client device 204 may be configured to generate the private key 234 (and the related public key 238 ) in response to verifying that received authentication data.
- the facilitator application 232 may be a mobile application installed upon, and executed from, the client device 204 .
- the facilitator application 232 may be configured to authenticate the user and generate an authentication indicator that indicates whether or not the user is authenticated.
- the authentication application 231 of the client device 204 may then be configured to sign the authentication indicator by performing a cryptographic algorithm on the authentication indicator using the private cryptographic key 234 which has been provided to the client device by the account binding module 220 as described above. It should be noted that there are a number of techniques for signing data in this manner that would be known to one skilled in the art.
- the client device 204 may store a token generated by the account binding module 220 described above. However, it should be noted that the client device need not be provided the token in at least some embodiments.
- the authorization entity 206 may be an example of authorization entity server 106 depicted in FIG. 1 , which may be configured to determine whether a particular transaction should be authorized.
- the authorization entity 206 may maintain a number of accounts, at least one of which may be associated with a client device 204 .
- the authorization entity 206 may maintain a number of tokens 236 which are mapped to accounts that are maintained by the authorization entity.
- the authorization entity 206 may maintain one or more public keys 238 associated with particular client devices 204 . It should be noted that in some embodiments, the authorization entity 206 may not store token data 236 or public keys 238 (e.g., the data may be stored on the SRT server 202 ).
- FIG. 3 illustrates a registration process for an authentication system 300 , according to some embodiments.
- Authentication system 300 may include a communication device operated by a user such as client device 310 , and a secure remote server 320 .
- system 300 may also include an issuer 330 (an example of an authorization entity) associated with an account of the user.
- Client device 310 may have an authentication application installed therein.
- the authentication application can be, for example, downloaded from an application store or be pre-installed on client device 310 .
- the authentication application can be compatible with multiple service providers, and can be used to authenticate the user with different service providers.
- Secure remote server 320 may securely store credentials associated with a user's account, and can be configured to release the user's credentials upon successful authentication of client device 310 to secure remote server 320 .
- secure remote sever 320 can be associated with or be operated by a token service provider.
- the registration process may begin by the user launching the authentication application on client device 310 .
- the user may select a biometric facilitator to register with the authentication application.
- a biometric facilitator may include a facilitator application configured to cause the client device 310 to obtain fingerprint, retina scan, facial recognition, voice recognition, or other unique human characteristics that can be detected by client device 310 .
- the presence of a secondary device coupled or in proximity to client device 310 can be used as an alternative facilitator.
- the user may register multiple types of facilitators with the authentication application, and may only need to register each particular facilitator once. The registered facilitator(s) can then be selected for use to authenticate the user to one or more compatible service providers.
- the user may select a compatible service provider and configure which facilitator will be used to authenticate the user to the service provider.
- One or more facilitators can be selected for a particular service provider.
- different facilitators or different combination of facilitators can be used for different service providers.
- the user can be authenticated when all of the multiple facilitators are verified, or when one of the multiple facilitators is verified.
- the facilitators can be prioritized such that a higher priority facilitator is requested first, and after a predetermined number of unsuccessful attempts, a lesser priority facilitator can be requested.
- the user may also optionally register the phone number or other device identifier of client device 310 with the service provider.
- the authentication application may generate a public/private key pair and associate the public/private key pair with the service provider.
- the public key may then be sent to the secure remote server 320 associated with the service provider for storage.
- the public key can also be optionally sent to an issuer 330 , and issuer 330 may generate a one-time passcode (OTP) and send the OTP to client device 310 for verification.
- Client device 310 may send the OTP back to secure remote server 320 to verify that client device 320 is a valid device of the user, and issuer 330 and/or secure remote server 320 may then provision a token for the user's account, and associate the token with the selected facilitator(s) and public key.
- OTP one-time passcode
- the token is not required to be stored on client device 310 . Instead, the token can be stored at secure remote server 320 and is released by secure remote server 320 upon authentication of the user and client device 310 to secure remote server 320 . This may enhance the security of the system because the token is not resident on client device 310 , and thus cannot be compromised by malware on client device 310 .
- FIG. 4 depicts an example provisioning process by which a user is able to manually add his or her accounts to be processed by the SRT platform and a private key and/or token may be provisioned onto a client device in accordance with some embodiments.
- the user may provide an indication of one or more accounts with which he or she is associated to the SRT platform.
- the SRT platform may identify and contact an authorization entity (e.g., an issuer) associated with the indicated account.
- an authorization entity e.g., an issuer
- the SRT platform may identify an authorization entity associated with a particular account indicated by the user based on an indicator within the provided account information.
- the SRT server may, in turn, communicate with that authorization entity to verify the account.
- An authorization entity associated with the account may then verify that the user is associated with the account.
- An authentication process may then be performed as described herein.
- this process may involve requiring a user to provide at least one account number via an input field 402 at 404 .
- the SRT platform may then determine, based on the account number provided, a transaction processing network and/or an authorization entity associated with the account. It should be noted that at least some account identifiers may include a banking identification number (BIN) that can be used to identify both the transaction processing network and the authorization entity as a portion of the account number.
- BIN banking identification number
- the SRT platform may then communicate with the identified authorization entity associated with the identified transaction processing network.
- the identified authorization entity associated with the identified transaction processing network may identify one or more communication channels associated with the user of the account. For example, the user may be associated with a particular communication channel upon opening an account with the authorization entity.
- the one or more communication channels, or at least an obfuscated version of those communication channels may be presented to the user at 406 to enable the user to verify his or her ownership of the account via those communication channels.
- multiple communication channels may be presented to the user for his or her selection.
- a default communication channel may be selected over which to communicate with the user.
- the authorization entity or the SRT platform may transmit verification details to the user via the identified communication channel.
- the verification details may include a code or pin. The user may then be required to provide those verification details back at 408 in order to verify that the user at least has access to the communication channel.
- a private cryptographic key may be provisioned onto the client device from which the process was initiated.
- the private cryptographic key may be generated by the SRT server and may be used by the client device to sign an authentication indicator in the future.
- a user may be prompted to enter an account to be linked to himself or herself at 404 .
- the authorization entity once contacted, may initiate a verification process.
- the authorization entity may provide verification details (e.g., a one-time code) to a communication channel known to be associated with the user.
- the authorization entity may provide the user with a choice of communication channel to which the verification details will be transmitted at 406 .
- the user may then be asked to retrieve the verification details in order to verify that the user is authentic at 408 .
- the account may be verified as being associated with the user at 410 and a private key may be provisioned onto the client device.
- the verification process described herein may be separate from the authentication process described elsewhere. In some embodiments, even though the user has verified his or her ownership of an account in the manner depicted in FIG. 4 , the user may still be authenticated using the other techniques described herein. Upon being authenticated using the techniques described herein, an authentication indicator generated as a result of that authentication may be signed using the provisioned private key.
- FIG. 5 illustrates a process for authenticating the user with a service provider using the authentication system, according to some embodiments.
- the user may launch an application associated with the service provider on client device 510 .
- the application can be the same authentication application that was used to register the user's facilitators, a dedicated application provided by or associated with the service provider (e.g., mobile wallet, mobile payment application, merchant application, etc.), or can be a web browser via which the user can access a web page or login page of the service provider.
- the application may determine one or more facilitators previously linked to the service provider that the user is attempting to access, and request the user to provide the one or more facilitators associated with the service provider.
- the application may request the user to provide all of the facilitators if a combination of facilitators are used, or may request the facilitators according to a prioritized order.
- the user may then provide the facilitator to client device 510 .
- client device 510 may sign an authentication indicator using the private key linked to the user's account with the service provider.
- An access request including the signed authentication indicator is then sent to secure remote server 520 to indicate to secure remote server 520 that the user has successfully been authenticated to client device 510 .
- the access request may include data representing the facilitator, or an indicator indicating which facilitator(s) were provided by the user.
- Secure remote server 520 may then verify the signature by using the stored public key linked to the user's account associated with the service provider. Upon verifying the signature, the secure remote server 520 may grant the user access to the service provider.
- secure remote server 520 may release a token associated with the user's account to a merchant 540 to enable the user to conduct a transaction with merchant 540 .
- the access request may also include transaction details of the transaction, and secure remote server 520 may generate a transaction authentication verification value and provide the transaction authentication verification value with the token.
- the transaction authentication verification value can be a cryptogram generated based on the transaction details and/or the token.
- Merchant 540 can then provide the token or the token together with the transaction authentication verification value in an authorization request message to request authorization for the transaction.
- the user may access the service provider using a different device than the communication device that was used for registering the user's facilitators.
- the device that the user is using to access the service provider may not have the previously stored facilitators or sensor hardware necessary to authenticate the user.
- the user may access a merchant's website using a desktop computer instead of the user's client device, and the desktop computer may not have a fingerprint reader or access to the user's previously stored fingerprint data to properly authenticate the user.
- a cross-device authentication scheme can be employed.
- FIG. 6 illustrates a process for authenticating the user with a service provider using multiple devices, according to some embodiments.
- the user may enter a device identifier such as a phone number or an IP address associated with the communication device 610 that does have the device identifiers.
- Device 650 may then push an authentication request to communication device 610 .
- communication device 610 may request the user to provide the facilitator(s) associated with the service provider.
- the user may then provide the facilitator to client device 610 .
- communication device 310 may sign an authentication indicator using the private key linked to the user's account with the service provider.
- An access request including the signed authentication indicator is then sent to secure remote server 620 to indicate to secure remote server 620 that the user has successfully been authenticated to communication device 610 .
- the access request may include data representing the facilitator, or an indicator indicating which facilitator(s) were provided by the user.
- Secure remote server 320 may then verify the signature by using the stored public key linked to the user's account associated with the service provider. Upon verifying the signature, the secure remote server 620 may grant the user access to the service provider.
- secure remote server 620 may release a token associated with the user's account to a merchant 640 whose website the user is accessing on device 350 to enable the user to conduct a transaction with merchant 640 .
- the access request may also include transaction details of the transaction, and secure remote server 620 may generate a transaction authentication verification value and provide the transaction authentication verification value with the token.
- the transaction authentication verification value can be a cryptogram generated based on the transaction details and/or the token.
- the transaction authentication verification value can accompany a token in an authorization request message and can serve as proof that the token is being used in an appropriate corresponding transaction channel or mode (e.g., physical point of sale vs. e-commerce).
- Merchant 640 can then provide the token or the token together with the transaction authentication verification value in an authorization request message to request authorization for the transaction.
- FIG. 7 illustrates a flow diagram of a process 700 for performing authentication of users in accordance with at least some embodiments.
- Process 700 can be performed on a secure remote transaction server 202 depicted in FIG. 2 .
- Process 700 may begin at 702 , when a request is received to enroll an account with the system described herein.
- the request may be submitted by a user of a client device via a mobile application installed upon the mobile device.
- the request may be conveyed to a secure remote transaction server from an authorization entity.
- the request upon submission of a request to enroll an account into the system described by a user, the request may be transmitted to an authorization entity.
- the authorization entity may then forward the request to the secure remote transaction server.
- the authorization entity may determine whether the user of the client device is authorized to access the account before or after the request has been forwarded to the secure remote transaction server.
- the process may involve determining that the user is authorized to access the account. In some embodiments, this may involve either the secure remote transaction server or the authorization entity associated with the account contacting the user via a communication channel stored in relation to the account. For example, upon creation of the account, the user may be required to provide a communication channel (e.g., an email address or phone number) that will be associated with the account via a know-your-customer (e.g., KYC) process. In this example, the user may be contacted via the communication channel provided during the creation of the account.
- a communication channel e.g., an email address or phone number
- KYC know-your-customer
- determining that the user is authorized to access the account may involve transmitting a one-time passcode to the user via the communication channel and causing the client device to prompt the user to enter the one-time passcode.
- the user may be determined to be authorized to access the account upon determining that the one-time passcode entered by the user matches the transmitted one-time passcode.
- a cryptographic key pair may be generated in relation to the account. At least the public key of the cryptographic key pair may be stored upon the secure remote transaction server. At least the private key of the cryptographic key pair may be stored upon the client device. In some embodiments, the cryptographic key pair may be generated by the client device. For example, the client device may generate a cryptographic key pair and may subsequently transmit the public key to the secure remote transaction server. In some embodiments, the secure remote transaction server may generate the cryptographic key pair. For example, the secure remote transaction server may generate a cryptographic key pair and may subsequently transmit the private key to the client device. In some embodiments, in addition to storing the public key, the secure remote transaction server may forward the public key to an authorization entity associated with the account being enrolled.
- the process may involve generating a token to be associated with the account.
- the token may be generated by the secure remote transaction server.
- the token may be generated by an authorization entity server and transmitted to the secure remote transaction server. The generated token may then be stored in association with the account.
- the process may involve receiving a request to complete a transaction.
- the request may be received at a secure remote transaction server from an access device that manages access to one or more resources.
- the request may include various details related to the requested transaction along with a signed authentication indicator.
- the user may be prompted to provide one or more biometric samples.
- the biometric samples provided by the user may be processed by a facilitator application on the client device to determine the authenticity of the user.
- the facilitator application may generate an authentication indicator that indicates a likelihood that the user requesting the transaction is the user enrolled into the account.
- the client device may then sign this authentication indicator by performing a cryptographic operation on the authentication indicator using the private key generated and stored on the client device at 706 .
- the signed authentication indicator may be provided to the secure remote transaction server within the request received at 710 .
- the secure remote transaction server may verify the signed authentication indicator by performing a second cryptographic operation on the signed authentication indicator using the public key generated at 706 and stored at the secure remote transaction server.
- the second cryptographic operation may result in the creation of an unsigned version of the authentication indicator, which may then be processed to determine whether the user is authenticated.
- the unsigned version of the authentication indicator may be compared to an expected authentication indicator result.
- a likelihood value in the unsigned version of the authentication indicator may be compared to an acceptable risk threshold value to determine whether the transaction should be conducted.
- a generated unsigned version of the authentication indicator may include a likelihood that the user requesting the transaction is the user enrolled into the account.
- the likelihood may be compared to a predetermined threshold value. If the likelihood is greater than the predetermined threshold value, then the signed authentication indicator may be verified. Upon verification of the signed authentication indicator, the process may involve initiating the requested transaction at 714 . This may involve providing the token stored in association with the account at 708 to the access device from which the request was received at 710 .
- FIG. 8 illustrates a flow diagram of a process 800 for registering authentication data in accordance with at least some embodiments.
- Process 800 can be performed on a communication device operated by a user, which may be an example of a client device 102 depicted in FIG. 1 .
- Process 800 may begin at block 802 by receiving a request to register authentication data for an account associated with a service provider.
- a user may indicate an account or accounts to register. For example, the user may select one or more credit card numbers or banking account numbers to enroll into the system.
- the user may be prompted to provide the authentication data.
- the user may select what type of authentication data to provide as well as an application to authenticate the user (e.g., a biometric facilitator).
- an application may be automatically selected by the system to authenticate the user. It should be noted that the application that performs the authentication (e.g., the facilitator application) may be different from the application used to request to register with the system.
- the authentication data is received from the user, for example, via a sensor on the communication device.
- the user may provide a biometric sample to the client device that includes fingerprint, voiceprint, facial images, or other suitable biometric information.
- the received authentication data may be registered and stored onto the communication device or onto a remote sever that supports a facilitator application installed upon the communication device (e.g., a facilitator application server).
- the authentication data may then be processed to authenticate a user of the communication device.
- a facilitator application may generate an authentication indicator indicating whether or not the user has been authenticated.
- a public and private key pair may obtained by the communication device.
- at least a private key may be received by the communication device from a secure remote server (e.g., an SRT server).
- the communication device may send an authentication indicator to the secure remote server, along with enrollment data, and may receive a private key generated by the secure remote server.
- the public and private key pair of the cryptographic key pair may be generated by the communication device.
- the cryptographic key pair may be generated using information obtained from the secure remote server and/or information related to the communication device.
- the communication device may receive a base key pair from the secure remote server and may generate the cryptographic key pair using some algorithm for modifying the base key pair using information from the communication device.
- the private key is associated with the account and the authentication data and stored on the communication device.
- the generated public key is sent to a secure remote server, and the secure remote server links the public key to a token associated with the account.
- the token can be used by the user to access services associated with the account, and may act as a substitute for a real account identifier of the account.
- FIG. 9 illustrates a flow diagram of a process 900 for accessing an account, according to some embodiments.
- process 900 may be performed on a communication device, which may be an example of a client device 102 depicted in FIG. 1 .
- Process 900 may begin at block 902 by receiving a request to access an account from the user's communication device.
- the user may be prompted to provide the authentication data previously registered for the account.
- the user may be prompted to provide authentication data via a mobile application (e.g., a facilitator application) installed upon the communication device which is separate from a mobile application via which the user has requested access to the account.
- a mobile application e.g., a facilitator application
- the authentication data is received from the user, for example, via a sensor on communication device.
- the received authentication data is compared with the registered authentication data.
- the received authentication data is determined to match the registered authentication data.
- the registered authentication data may be stored on a remote server that supports a biometric facilitator application and this step may involve providing the received authentication data to that remote server for verification.
- the registered authentication data may be stored on, and verified upon, the communication device.
- an authentication indicator is generated to indicate that the user has been verified.
- the generated authentication indicator may be signed using the private key stored on the communication device in relation to the account.
- the signed authentication indicator may be sent to the secure remote server within an access request.
- the secure remote server may verify the signed authentication indicator using the public key associated the account, and in response to determining that the authentication indicator is verified, releases the token associated with the account to the service provider to grant the user access to the account.
- verification of the authentication indicator may involve performing a cryptographic operation on the signed authentication indicator using the public key that results in generation of an unsigned version of the authentication indicator. The unsigned version of the authentication indicator may then be compared to an expected unsigned version of the authentication indicator.
- Embodiments of the disclosure provide for a number of technical advantages over conventional systems. For example, embodiments of the disclosure enable authentication of a user by leveraging existing facilitator applications on a mobile device, while enabling an SRT platform and authorization entity to be assured that the authentication was performed by a legitimate client device. As authorization entities are not currently able to receive this assurance in conventional systems, this represents a technical improvement over such systems (as those systems do not include the technical means to provide this functionality). Further, as indicated by the above-described process flows, embodiments of the invention can be used to securely authenticate a device and a user of that device when conducting a remote transaction, without requiring a user to enter a PIN or password. Further, since tokens and transaction authentication verification values are used in embodiments of the invention, sensitive data such as account numbers, PII (personal identifiable information), etc., can be protected in transit.
- PII personal identifiable information
- embodiments of the invention can be used in other contexts in which authentication and data security issues are present.
- embodiments of the invention can be used to obtain access to secure data (e.g., medical records, personal data such as tax records, etc.) or can be used in situations where a user may wish to obtain access to a secure location such as a building or a transit station.
- secure data e.g., medical records, personal data such as tax records, etc.
- a secure location e.g., a building or a transit station.
- Subsystems in the computer system are interconnected via a system bus. Additional subsystems include a printer, a keyboard, a fixed disk, and a monitor which can be coupled to a display adapter. Peripherals and input/output (I/O) devices, which can couple to an I/O controller, can be connected to the computer system by any number of means known in the art, such as a serial port. For example, a serial port or external interface can be used to connect the computer apparatus to a wide area network such as the Internet, a mouse input device, or a scanner.
- the interconnection via system bus allows the central processor to communicate with each subsystem and to control the execution of instructions from system memory or the fixed disk, as well as the exchange of information between subsystems.
- the system memory and/or the fixed disk may embody a computer-readable medium.
- the techniques described herein may involve implementing one or more functions, processes, operations or method steps.
- the functions, processes, operations or method steps may be implemented as a result of the execution of a set of instructions or software code by a suitably-programmed computing device, microprocessor, data processor, or the like.
- the set of instructions or software code may be stored in a memory or other form of data storage element which is accessed by the computing device, microprocessor, etc.
- the functions, processes, operations or method steps may be implemented by firmware or a dedicated processor, integrated circuit, etc.
- any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques.
- the software code may be stored as a series of instructions, or commands on a computer-readable medium, such as a random access memory (RAM), a read-only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM.
- RAM random access memory
- ROM read-only memory
- magnetic medium such as a hard-drive or a floppy disk
- an optical medium such as a CD-ROM.
- Any such computer-readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Accounting & Taxation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- General Business, Economics & Management (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
A system and techniques are described herein for providing authentication. The technique includes registering user authentication data such as biometrics data with a communication device. The authentication data is linked to an account or service provider, and is used to verify the identity of the user when accessing the account. The communication device may obtain a public/private key pair, for which the pubic key may be stored on a secure remote server. When the user attempts to access the account or service provider, the user may provide the authentication data to authenticate the user to the communication device. Thereafter, the communication device may sign an authentication indicator using the private key and send the authentication indicator to the secure remote server. Upon verification of the signature using the public key, the secure remote server may grant access to the user, for example, by releasing a token.
Description
This application is a continuation application of U.S. patent application Ser. No. 16/977,645, which is a National Stage of International Application No. PCT/I132018/056173, International Filing Date Aug. 16, 2018, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/639,652, entitled, “SECURE REMOTE TOKEN RELEASE WITH ONLINE AUTHENTICATION,” filed Mar. 7, 2018, which are all fully incorporated by reference herein.
With the ever growing number of online or computer accessible accounts that a user may have, usernames and passwords as a form of authentication has become inadequate for securing a user's accounts. For example, remembering usernames and passwords for numerous sites can be challenging, and setting the same password for multiple accounts may increase the likelihood of jeopardizing all accounts when one account is compromised. Password managers can be inconvenient, and storing all of the user's passwords in one place can be risky. Passwords can also be easily phished or captured by malware, and data breaches at service providers can result in the proliferation of passwords across the dark web.
Furthermore, while authorization entities are able to determine whether or not to authorize a transaction based on information for an account, those same authorization entities are not able to authenticate a user of a user device. Hence, they must often rely on another entity, such as the resource provider, to perform authentication of a user. Not all resource providers can provide the same quality of authentication, and this leads to data security problems.
Another issue to be addressed in the area of data security that needs to be addressed, if the problem of transmitting sensitive credentials (e.g., social security numbers, account numbers, etc.) over data networks. The transmission of such data may be subject to man-in-the middle attacks.
Various embodiments of the invention address these and other problems, individually and collectively.
A system and techniques for authenticating a user while ensuring that the authentication was performed by a legitimate device is described herein. The authentication technique may include registering a user's authentication data such as biometrics data with a communication device. The authentication data can be linked to an account or service provider, and is used to verify the identity of the user when accessing the account. The communication device may be associated with a public/private key pair, where the pubic key is stored on a secure remote server. When the user attempts to access the account or service provider, the user may provide the authentication data to authenticate the user to the communication device. Thereafter, the communication device may sign an authentication indicator using the private key and send the authentication indicator to the secure remote server. Upon verification of the signature using the public key, the secure remote server may grant access to the user, for example, by releasing a token.
One embodiment of the disclosure is directed to a method performed by a secure remote transaction server comprising receiving, from a client device, a request to enroll an account, verifying that the client device has authority to access the account, storing at least a public key of a cryptographic key pair in association with the account, wherein at least a private key of the cryptographic key pair is stored on the client device in association with the account, and generating a token to be associated with the account, the token being stored in association with the account. In some embodiments, the method may further comprise receiving, from an access device, a request to complete a transaction in association with the account, the request including a signed authentication indicator, verifying the authentication indicator using the public key stored in association with the account, and upon verifying the authentication indicator, providing the token to the access device.
Another embodiment of the disclosure is directed to a secure remote transaction server comprising a processor, and a memory including instructions that, when executed with the processor, cause the secure remote transaction server to, at least receive, from a client device, a request to enroll an account, verify that the client device has authority to access the account, store at least a public key of a cryptographic key pair in association with the account, wherein at least a private key of the cryptographic key pair is stored on the client device in association with the account, and generate a token to be associated with the account, the token being stored in association with the account. In some embodiments, the instructions may further cause the secure remote transaction server to receive, from an access device, a request to complete a transaction in association with the account, the request including a signed authentication indicator, verify the authentication indicator using the public key stored in association with the account, and upon verifying the authentication indicator, provide the token to the access device.
Yet another embodiment of the disclosure is directed to a method performed by a communication device comprising receiving a request to register authentication data for an account associated with a service provider, prompting the user to provide the authentication data, receiving the authentication data from the user, registering the authentication data onto the communication device, obtaining a private key of a cryptographic key pair, associating the private key with the account and the authentication data, wherein a secure remote server links a public key of the cryptographic key pair to a token associated with the account.
In some embodiments, the method described above may further comprise receiving a request to access the account, prompting the user to provide the authentication data, receiving the authentication data from the user, comparing the received authentication data with the registered authentication data, determining that the received authentication data matches the registered authentication data, generating an authentication indicator indicating the match, signing the authentication indicator using the private key, and sending the signed authentication indicator to the secure remote server in an access request, wherein the secure remote server releases the token to the service provider to grant the user access to the account in response to verifying the signed authentication indicator using the public key.
Further details regarding embodiments of the invention can be found in the Detailed Description and the Figures.
Techniques for enhanced authentication without relying on the use of passwords are described. In some embodiments, a two-factor authentication scheme can be employed in which biometrics is used to authenticate a user on a communication device, and public/private key cryptography is used to authenticate the communication device to a remote server to grant the user access to an account, service, and/or function associated with a service provider. In some embodiments, the service provider can be a token service provider, and the two-factor authentication scheme is used by the system to release a token from the remote server. The token can then be used, for example, to conduct a transaction using the user's account. Various embodiments described herein may be implemented on a secure remote transaction (SRT) platform. An example of an SRT platform upon which embodiments may be implemented is described in greater detail in U.S. patent application Ser. No. 15/927,754, filed on Mar. 21, 2018, which is fully incorporated by reference herein.
Prior to discussing specific embodiments of the invention, some terms may be described in detail.
An “access device” may be any suitable device for communicating with a merchant computer or transaction processing network, and for interacting with a transaction device (e.g., a payment device), a user computer apparatus, and/or a user client device. An access device may generally be located in any suitable location, such as at the location of a merchant. An access device may be in any suitable form. Some examples of access devices include POS devices, cellular phones, PDAs, personal computers (PCs), tablet PCs, hand-held specialized readers, set-top boxes, electronic cash registers (ECRs), automated teller machines (ATMs), virtual cash registers (VCRs), kiosks, security systems, access systems, Websites, and the like. An access device may use any suitable contact or contactless mode of operation to send or receive data from, or associated with, a portable communication device. In some embodiments, where an access device may comprise a POS terminal, any suitable POS terminal may be used and may include a reader, a processor, and a computer-readable medium. A reader may include any suitable contact or contactless mode of operation. For example, exemplary card readers can include radio frequency (RF) antennas, optical scanners, bar code readers, or magnetic stripe readers to interact with a portable communication device.
“Account credentials” may include any suitable information associated with an account (e.g. an account and/or portable device associated with the account). Such information may be directly related to the account or may be derived from information related to the account. Examples of account credentials may include a PAN (primary account number or “account number”), user name, expiration date, CVV (card verification value), dCVV (dynamic card verification value), CVV2 (card verification value 2), CVC3 card verification values, etc.
An “acquirer” may typically be a business entity (e.g., a commercial bank) that has a business relationship with a particular merchant or other entity. Some entities can perform both issuer and acquirer functions. Some embodiments may encompass such single entity issuer-acquirers.
“Authentication” or “authenticating” may be the process of proving or verifying certain information, and/or verifying the identity of the source of that information. For example, a user may provide authentication data that is unique or only known to the user to prove the identity of the user. Examples of different types of authentication data may include biometrics (e.g., fingerprint, palm print, face recognition, iris and/or retina recognition, voice recognition, gait, or other human characteristics), passcode, PIN, answers to security question(s), cryptographic response to challenge, human and/or device signature, etc.
An “authorization entity” may be an entity that authorizes a request. Examples of an authorization entity may be an issuer, a governmental agency, a document repository, an access administrator, etc. An “issuer” may typically refer to a business entity (e.g., a bank) that maintains an account for a user that is associated with a client device such as an account enrolled in a mobile application installed on a client device. An authorization entity may also issue account parameters associated with the account to a client device. An authorization entity may be associated with a host system that performs some or all of the functions of the issuer on behalf of the authorization entity.
An “authorization request message” may be an electronic message that is sent to request authorization for a transaction. The authorization request message can be sent to a transaction processing network and/or an issuer of a transaction card (e.g., a payment card). An authorization request message according to some embodiments may comply with ISO 8583, which is a standard for systems that exchange electronic transaction information associated with a transaction made by a user using a transaction device or transaction account. The authorization request message may include information that can be used to identify an account. An authorization request message may also comprise additional data elements such as one or more of a service code, an expiration date, etc. An authorization request message may also comprise transaction information, such as any information associated with a current transaction, such as the transaction amount, merchant identifier, merchant location, etc., as well as any other information that may be utilized in determining whether to identify and/or authorize a transaction. The authorization request message may also include other information such as information that identifies the access device that generated the authorization request message, information about the location of the access device, etc.
An “authorization response message” may be an electronic message reply to an authorization request message. The authorization response message can be generated by an issuing financial institution or a transaction processing network. The authorization response message may include, by way of example only, one or more of the following status indicators: Approval—transaction was approved; Decline—transaction was not approved; or Call Center—response pending more information, merchant must call the toll-free authorization phone number. The authorization response message may also include an authorization code, which may be a code that a credit card issuing bank returns in response to an authorization request message in an electronic message (either directly or through the transaction processing network) to the merchant computer that indicates approval of the transaction. The code may serve as proof of authorization. As noted above, in some embodiments, a transaction processing network may generate or forward the authorization response message to the merchant.
A “communication device” may be a device that includes one or more electronic components (e.g., an integrated chip) that can communicate with another device or entity. For example, a communication device can be a computing device that includes at least one processor coupled to a memory that stores instructions or code for execution by the processor, and may include a communication interface that allows the communication device to interact with other entities. A communication device can be a portable communication device that can be transported and operated by a user, and may include one or more electronic components (e.g., an integrated chip). A portable communication device may provide remote communication capabilities to a network. The portable communication device can be configured to transmit and receive data or communications to and from other devices. A portable communication device may be in the form of a client device such as a mobile phone (e.g., smart phone, cellular phone, etc.), tablets, portable media player, personal digital assistant devices (PDAs), wearable device (e.g., watch, health monitoring device such as a fitness tracker, etc.), electronic reader device, etc., or in the form of a card (e.g., smart card) or a fob, etc. Examples of portable communication devices may also include portable computing devices (e.g., laptops, netbooks, ultrabooks, etc.). A portable communication device may also be in the form of a vehicle (e.g., an automobile), or be integrated as part of a vehicle (e.g., an infosystem of a vehicle). Other examples of communication device may include IOT devices, smart appliances and electronics, etc.
A “facilitator” may be any entity capable of authenticating a user of a client device. A facilitator may include a client-side application (e.g., a facilitator application) as well as a backend server (e.g., a facilitator server) capable of supporting the client-side application. In some cases, a facilitator application may be executed upon receiving instructions from a facilitator server to authenticate a user of the client device. The facilitator application may cause the client device upon which it is installed to obtain user-specific data. This user-specific data may then be compared to expected user-specific data, either by the facilitator application on the client device or by the facilitator server, to determine whether the obtained user-specific data matches the expected user-specific data. In some embodiments, a facilitator may be an electronic wallet provider (e.g., Apple Pay). It should be noted that the facilitator may be unaffiliated with the SRT Platform and/or the initiator.
An “initiator” may be any entity capable of facilitating communication between a resource provider and one or more SRT platforms. An initiator may operate a number of servers which provide at least a portion of the functionality described herein. In some cases, an initiator may obtain approval and/or accreditation from one or more SRT platforms in order to operate in conjunction with those SRT platforms. A resource provider may enroll with the initiator in order to obtain access to at least a portion of the processes described herein. An initiator may provide each resource provider that enrolls with it a link to embed within a checkout element. The link, when activated by a user wishing to transact with the resource provider, may initiate the processes described herein in order to facilitate a transaction between the user and the resource provider. It should be noted that the initiator may be unaffiliated with the SRT Platform and/or the facilitator.
An “issuer” may typically refer to a business entity (e.g., a bank) that maintains an account for a user that is associated with a portable communication device such as an account enrolled in a mobile application installed on a portable communication device. An issuer may also issue account parameters associated with the account to a portable communication device. An issuer may be associated with a host system that performs some or all of the functions of the issuer on behalf of the issuer.
A “key” may refer to a piece of information that is used in a cryptographic algorithm to transform input data into another representation. A cryptographic algorithm can be an encryption algorithm that transforms original data into an alternate representation, or a decryption algorithm that transforms encrypted information back to the original data. Examples of cryptographic algorithms may include triple data encryption standard (TDES), data encryption standard (DES), advanced encryption standard (AES), etc.
A “merchant” may typically be an entity that engages in transactions and can sell goods or services, or provide access to goods or services.
A “real account identifier” may refer to an original account identifier associated with an account. For example, a real account identifier may be a primary account number (PAN) issued by an issuer for a card account (e.g., credit card, debit card, etc.). For instance, in some embodiments, a real account identifier may include a sixteen digit numerical value such as “4147 0900 0000 1234.” The first six digits of the real account identifier (e.g., “414709”), may represent a real issuer identifier (BIN) that may identify an issuer associated with the real account identifier.
The term “resource” generally refers to any asset that may be used or consumed. For example, the resource may be computer resource (e.g., stored data or a networked computer account), a physical resource (e.g., a tangible object or a physical location), or other electronic resource or communication between computers (e.g., a communication signal corresponding to an account for performing a transaction). Some non-limiting examples of a resource may be a good or service, a physical building, a computer account or file, or a payment account. In some embodiments, a resource may refer to a financial product, such as a loan or line of credit.
A “resource provider” may be an entity that can provide a resource such as goods, services, information, and/or access to such a resource. Examples of a resource provider include merchants, online or other electronic retailers, access devices, secure data access points, etc. A “merchant” may typically be an entity that engages in transactions and can sell goods or services, or provide access to goods or services. A “resource provider computer” may be any computing device operated by a resource provider.
A “secure remote transaction (SRT) platform” may be any entity capable of facilitating a transaction in the manners described. A SRT platform may be capable of communicating with an initiator, a facilitator, and a transaction processing network. In some embodiments, a SRT platform may include a SRT server, a token provider, and a transaction processing network. An SRT platform may be configured to perform one or more processes that include: receive a request for a transaction from an initiator, identify an account associated with the transaction, determine an appropriate facilitator for the account, cause the determined facilitator to authenticate a user associated with the account, generate a token to be used in the transaction, and provide the token to the initiator to complete the transaction.
A “server computer” may include a powerful computer or cluster of computers. For example, the server computer can be a large mainframe, a minicomputer cluster, or a group of servers functioning as a unit. In one example, the server computer may be a database server coupled to a Web server. The server computer may be coupled to a database and may include any hardware, software, other logic, or combination of the preceding for servicing the requests from one or more client computers. The server computer may comprise one or more computational apparatuses and may use any of a variety of computing structures, arrangements, and compilations for servicing the requests from one or more client computers.
A “token” may refer to a substitute identifier for some information. For example, a transaction token may include an identifier for a transaction account that is a substitute for an account identifier, such as a primary account number (PAN). For instance, a token may include a series of alphanumeric characters that may be used as a substitute for an original account identifier. For example, a token “4900 0000 0000 0001” may be used in place of a PAN “4147 0900 0000 1234.” In some embodiments, a token may be “format preserving” and may have a numeric format that conforms to the account identifiers used in existing transaction processing networks (e.g., ISO 8583 financial transaction message format). In some embodiments, a token may be a random string of characters. In some embodiments, a token may be used in place of a PAN to initiate, authorize, settle or resolve a transaction. The token may also be used to represent the original credential in other systems where the original credential would typically be provided. In some embodiments, a token value may be generated such that the recovery of the original PAN or other account identifier from the token value may not be computationally derived. Further, in some embodiments, the token format may be configured to allow the entity receiving the token to identify it as a token and recognize the entity that issued the token.
“Tokenization” may refer to a process by which data is replaced with substitute data. For example, an account identifier (e.g., a primary account number (PAN)) may be tokenized by replacing the account identifier with a substitute number (e.g., a token) that is associated with the account identifier. Further, tokenization may be applied to other information which may be replaced with a substitute value. Tokenization may be used to enhance transaction efficiency, improve transaction security, increase service transparency, or to provide a method for third-party enablement.
A “token service provider” may refer to an entity including one or more server computers that generates, processes, and/or maintains tokens. A token service provider may include or be in communication with a token vault where the generated tokens are stored. Specifically, the token vault may maintain one-to-one mapping between a token and the data (e.g., a real account identifier) represented by the token. A token service provider may provide reports or data output to reporting tools regarding approved, pending, and/or declined token requests. The token service provider may provide data output related to token-based transactions to reporting tools and applications and present the token and/or the data substituted by the token (e.g., real account identifiers) as appropriate in the reporting output.
A “token vault” may refer to a repository that maintains established token-to-PAN mappings. According to various embodiments, the token vault may also maintain other attributes of the token requestor that may be determined at the time of registration and that may be used by the token SRT server to apply domain restrictions or other controls during transaction processing. The token vault may be a part of the token service system. In some embodiments, the token vault may be provided as a part of the token SRT server. Alternatively, the token vault may be a remote repository accessible by the token SRT server. Token vaults, due to the sensitive nature of the data mappings that are stored and managed in them, may be protected by strong underlying physical and logical security.
A “transaction” may be any interaction or exchange between two or more parties. For example, a transaction may include a first entity requesting resources from a second entity. In this example, the transaction is completed when the resources are either provided to the first entity or the transaction is declined.
A “transaction processing network,” or “processing network,” may refer to an electronic payment system used to accept, transmit, or process transactions made by payment devices for money, goods, or services. The processing network may transfer information and funds among authorization entities (e.g., issuers), acquirers, merchants, and payment device users.
In some embodiments, the client device 102 may have installed on it a number of facilitator applications 112. The facilitator applications may be configured to cause the client device 102 to communicate with a number of facilitator application servers 114 in order to authenticate a user of the client device 102. In some embodiments, the client device 102 may store, in its memory, one or more cryptographic keys to be associated with facilitators installed on the client device 102 and/or the client device 102 itself.
In some embodiments of the invention, the client device 102 may be a mobile device (e.g. a mobile phone). The mobile device may be capable of communicating with cell towers (e.g., via cellular communications such as GSM, LTE, 4G) and wireless routers (e.g., via WiFi). The mobile device may store the user's account credentials, such as a PAN (primary account number), a token, a name, an address, a CVV, an expiration date, and any other suitable information. The mobile device may also store one or more private cryptographic keys associated with the mobile device itself or applications installed upon the mobile device. Such data may be securely stored via hardware (e.g., a secure element) or software.
In some embodiments, the resource provider server 104 may be affiliated with an online retailer or another suitable resource provider having an electronic catalog. The resource provider server 104 may serve one or more pages of a resource provider website to a browser installed on the client device 102. In some embodiments, the website served to the browser application may contain a portal or link that, when accessed using the browser application, initiates communication with the initiator server 108.
In some embodiments of the invention, the authorization entity server 106 may be any computing device configured to determine whether or not to approve a transaction to be conducted by a particular user. The authorization entity server 106 may maintain a number of accounts, one or more of which are associated with particular users. Each account may be associated with some amount of a resource (e.g., a balance) upon which authorization for a transaction may be based. However, while an authorization entity server 106 may be capable of determining whether or not to authorize a transaction for a user, the authorization entity server 106 may not be capable of authenticating a user as it is located remote to that user. Hence, the authorization entity server 106 may be configured to use embodiments of the system described herein to authenticate a user. In some embodiments, upon successful enrollment of a user into the system described herein, the authorization entity server 106 may generate a token to be associated with the user and may provide the token to the SRT platform 110 to be bound to a client device 102 along with a pair of cryptographic keys.
The initiator server 108 may be any suitable computing device configured to identify a user, identify accounts for that user, receive a selection of one of those accounts, communicate the selected account to an SRT platform 110 associated with that account, and complete a transaction using the selected account. In some embodiments, the initiator server 108 may be further configured to verify signed data received from the client device 102. For example, the initiator server may, upon receiving data from the client device 102, verify that data using a public cryptographic key associated with the client device 102 or an application installed upon the client device 102.
In some embodiments, the system may be implemented across one or more SRT platforms 110. The SRT platforms may each be associated with a transaction processing network. Each SRT platform may include some combination of an SRT server (or servers) 110(A), token data 110(B), and a processing network 110(C). Multiple accounts may be associated with a single SRT platform. For example, a user may be associated with two different accounts which are each associated with different authentication entities, while both accounts are able to be processed using a single SRT platform. The SRT server 110(A), may be configured to identify one or more facilitator applications 112 associated with an account and cause the user to be authenticated using one of those facilitator applications 112. This may involve communicating a request for authentication to a facilitator application server 114 associated with a particular facilitator application 112.
Additionally, once the user has been authenticated, either the client device 102 or the SRT server 110(A) may be configured to generate cryptographic keys and/or a token to be bound (or otherwise associated) with a particular client device 102 which is stored in the respective token data 110(B) so that data received from that client device 102 may be verified using a stored public key. The token and cryptographic keys may be bound to the client device 102 upon receiving an indication that the client device 102 has been verified by an authorization entity server 106. In some embodiments, the SRT server 110(A) may pass a public key associated with the client device 102 to the initiator server 208, which may verify data received from the client device 102 and generate transaction information that includes the token to be used for a transaction. A mapping between the token and the transaction may be maintained by the SRT server 110(A) in its respective token data. In some embodiments, the SRT server 110(A) may receive a number of files from various authorization entities, each of which may include mappings between email addresses and various PANs. In this way, the SRT server 110(A) may maintain a mapping between user identifier information and accounts.
The facilitator applications 112 may be any suitable set of computer-executable instructions installed on the client device 102 that, when executed, causes the client device 102 to perform an authentication process. In some embodiments, the authentication process may involve the collection of biometric information associated with a user of the client device 102. For example, the facilitator application 112 may obtain voiceprint or fingerprint data to be used to authenticate the user. The facilitator application may be tied to hardware installed on the client device 102. Examples of facilitator applications 112 may include fingerprint, retinal, or voice scanning applications. The hardware associated with those applications may include fingerprint, retinal, or voice scanning hardware such as fingerprint, retinal, or voice sensors. Other types of facilitator applications 112 may also include PIN and password facilitator applications. In some embodiments, a facilitator application 112 may be a wallet SRT server.
The facilitator application server 114 may be any suitable computing device that provides support for a facilitator application 112. In some embodiments, the facilitator application server 114 may perform authentication processing on behalf of the facilitator application 112. For example, the facilitator application 112 may cause the client device 102 to obtain authentication data from a user of the client device 102. Once obtained, the authentication data may be transmitted to the facilitator application server 114 that corresponds to the facilitator application used to collect the authentication data. The authentication data may then be compared to authentication data on record for that user by the facilitator application server 114. Once a user has been authenticated, the facilitator application server 114 and/or facilitator application 112 may generate an authentication result indicating that the user has been authenticated. The client device 102 may sign the received the authentication result using a private key specific to the client device 102 and stored by the client device 102.
For an illustrative example of at least some embodiments of the disclosure, consider a scenario in which a user wishes to enroll into the system described herein and conduct a transaction. In this scenario, the user may request enrollment with a particular authorization entity server 106. The request may be made in relation to a particular account maintained by that authorization entity server 106 (e.g., a credit card account maintained by a banking institution). The authorization entity server 106 may reference account data stored in association with the particular account in order to identify contact information. Once identified, the authorization entity server 106 may transmit a verification message to the user via the stored contact information. In some embodiments, the verification message may include a one-time password (OTP) or other dynamic verification data, which the user may be required to enter via the client device 102 to be verified. Once verified, the authorization entity server 106 may provide an indication of the client device 102 to the SRT platform 110. A token and cryptographic keys may be generated for the client device 102 either by the authorization entity server 106, the client device 102, or the SRT platform 110. Once generated, the token and at least a private cryptographic key of a cryptographic key pair may be transmitted to the client device 102.
Once the client device 102 has been enrolled using the illustrative scenario above, the user may access a merchant (resource provider 104) website to complete a transaction (e.g., make a purchase). In this scenario, the user may, upon selecting a number of items for the transaction, be served a checkout page for the merchant website. The checkout page may include a list of the items, prices, quantities, or any other suitable transaction-related information. In addition, the checkout page may include a checkout element that may be selected to initiate a transaction. Once the checkout element has been selected, the user may be given the ability to select an account associated with the authorization entity server 106 to be used to complete the transaction.
Upon receiving a selection of account associated with the authorization entity server 106 to be used to complete the transaction, the SRT platform 110 may cause a facilitator application 112 to be executed in order to authenticate the user. The facilitator application 112 may then execute an authentication process and, upon completion of the authentication process, may return an authentication indicator that indicates whether or not the user is authenticated to the client device 102. In this scenario, the client device 102 may then sign the authentication indicator by performing a cryptographic algorithm on the authentication indicator using the private cryptographic key of the cryptographic key pair. The signed authentication indicator may be provided to the SRT platform 110 via the initiator application server 108.
Upon verifying the authentication indicator and confirming that the user is authenticated, the SRT platform 110 may provide the token associated with the clinet device 102 back to the initiator application server 108. The initiator server 108 may subsequently use the received token to complete the requested transaction.
For clarity, a certain number of components are shown in FIG. 1 . It is understood, however, that embodiments of the invention may include more than one of each component. In addition, some embodiments of the invention may include fewer than or greater than all of the components shown in FIG. 1 . In addition, the components in FIG. 1 may communicate via any suitable communication medium (including the internet), using any suitable communication protocol.
In at least some embodiments, the SRT server 202 may include at least one memory 214 and one or more processing units (or processor(s)) 216. The processor(s) 216 may be implemented as appropriate in hardware, computer-executable instructions, firmware or combinations thereof. Computer-executable instruction or firmware embodiments of the processor(s) 216 may include computer-executable or machine executable instructions written in any suitable programming language to perform the various functions described.
The memory 214 may store program instructions that are loadable and executable on the processor(s) 216, as well as data generated during the execution of these programs. Depending on the configuration and type of SRT server 202, the memory 214 may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-only memory (ROM), flash memory, etc.). The SRT server 202 may also include additional storage 218, such as either removable storage or non-removable storage including, but not limited to, magnetic storage, optical disks, and/or tape storage. The disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for the SRT server 202. In some embodiments, the memory 214 may include multiple different types of memory, such as static random access memory (SRAM), dynamic random access memory (DRAM) or ROM.
Turning to the contents of the memory 214 in more detail, the memory 214 may include an operating system and one or more application programs or services for implementing the features disclosed herein including at least a module for binding accounts to tokens and/or cryptographic keys (account binding module 220). The memory 214 may also include account data 222, which provides data stored in association with a user account, cryptographic ley data 224, which provides at least a list of public cryptographic keys stored in association with client devices 204, and/or token data 220, which provides a mapping between a generated token and a transaction or account.
In some embodiments, the account binding module 220 may, in conjunction with the processor 216, be configured to receive an indication from an authorization entity server 206 that a client device 204 is to be enrolled with respect to a particular account. In some embodiments, the indication may include a device identifier for the client device 204 (e.g., a phone number) as well as an account number (e.g., a primary account number (PAN)). In some embodiments, upon receiving the indication, the account binding module 220 may generate a token to be associated with the client device 204. The token may be stored by the SRT server 202 within a token vault (e.g., token data 226) in relation to the client device 204. Additionally, the account binding module 220 may generate a cryptographic key pair to be associated with the client device 204 and the account number. One of the keys of the cryptographic key pair may be assigned as a private key 234 and the other may be assigned as a public key 238. The cryptographic key assigned as the private key 234 may be conveyed to the client device 204 using known secure key delivery protocols. In some embodiments, the private key 234 may be provisioned onto the client device 204 via a message transmitted to the client device 204 by the SRT server 202 (e.g., via the received device identifier). In some embodiments, the private key 234 may be provisioned onto the client device 204 via a message transmitted to the client device 204 by the authorization entity server 206. In some embodiments, the public key 238 may be transmitted to the authorization entity server 206. In some embodiments, the account binding module 220 may be configured to verify the authenticity of an authentication indicator which has been signed by a client device 204 using the private key 234.
In some embodiments, the account binding module 220 may be further configured to generate a token upon receiving an indication that an authentication indicator received from a client device 204 has been verified. In some embodiments, the token may be a one-time use token which is only authorized for use with the specific transaction at issue. In some embodiments, the token may be specific to both the client device 204 and the resource provider, in that the token may be used multiple times by the resource provider for that client device 204 (e.g., a “card on file” token). For example, upon conducting with a particular client device 204 for the first time, the resource provider may receive a token generated in the manner described herein. The resource provider may then store the token in memory for use with the client device 204 until an expiration date (or some other suitable expiration condition) associated with that token. The account mapping module 220 may store the generated token in a token vault (e.g., token data 226) with a mapping to the account for which the token was generated. Upon receiving an authorization request message that includes the token, the SRT server 202 may query the token vault to identify the account associated with the token. The SRT server 202 may then proceed with the transaction of the authorization request message using the identified account information.
The SRT server 202 may also contain communications interface(s) 228 that enable the SRT server 202 to communicate with a stored database, another computing device or server, one or more remote devices, other application servers, and/or any other suitable electronic devices. In some embodiments, the communication interface 228 may enable the SRT server 202 to communicate with other electronic devices on a network (e.g., on a private network). The SRT server 202 may also include input/output (I/O) device(s) and/or ports 230, such as for enabling connection with a keyboard, a mouse, a pen, a voice input device, a touch input device, a display, speakers, a printer, etc.
The client device 204 may be any electronic device capable of communicating with other electronic devices. For example, the client device 204 may be a mobile phone capable of wirelessly communicating with a number of other electronic devices. In some embodiments, the client device 204 may be an example of client device 102 depicted in FIG. 1 . The client device 204 may have installed upon it a number of software modules, including an authentication application 231 and at least one facilitator application 232. In some embodiments, the client device may also include, in its memory, at least one private key 234. In some embodiments, the authentication application 231 may include computer executable instructions that cause the client device 204 to perform at least a portion of the functionality described herein. For example, in some embodiments, the authentication application 231 of the client device 204 may be configured to generate the private key 234 (and the related public key 238) in response to verifying that received authentication data.
In some embodiments, the facilitator application 232 may be a mobile application installed upon, and executed from, the client device 204. In accordance with at least some embodiments, the facilitator application 232 may be configured to authenticate the user and generate an authentication indicator that indicates whether or not the user is authenticated. The authentication application 231 of the client device 204 may then be configured to sign the authentication indicator by performing a cryptographic algorithm on the authentication indicator using the private cryptographic key 234 which has been provided to the client device by the account binding module 220 as described above. It should be noted that there are a number of techniques for signing data in this manner that would be known to one skilled in the art. In some embodiments, the client device 204 may store a token generated by the account binding module 220 described above. However, it should be noted that the client device need not be provided the token in at least some embodiments.
In some embodiments, the authorization entity 206 may be an example of authorization entity server 106 depicted in FIG. 1 , which may be configured to determine whether a particular transaction should be authorized. The authorization entity 206 may maintain a number of accounts, at least one of which may be associated with a client device 204. In some embodiments, the authorization entity 206 may maintain a number of tokens 236 which are mapped to accounts that are maintained by the authorization entity. In some embodiments, the authorization entity 206 may maintain one or more public keys 238 associated with particular client devices 204. It should be noted that in some embodiments, the authorization entity 206 may not store token data 236 or public keys 238 (e.g., the data may be stored on the SRT server 202).
The registration process may begin by the user launching the authentication application on client device 310. The user may select a biometric facilitator to register with the authentication application. Examples of a biometric facilitator may include a facilitator application configured to cause the client device 310 to obtain fingerprint, retina scan, facial recognition, voice recognition, or other unique human characteristics that can be detected by client device 310. In some embodiments, the presence of a secondary device coupled or in proximity to client device 310 can be used as an alternative facilitator. The user may register multiple types of facilitators with the authentication application, and may only need to register each particular facilitator once. The registered facilitator(s) can then be selected for use to authenticate the user to one or more compatible service providers.
Next, the user may select a compatible service provider and configure which facilitator will be used to authenticate the user to the service provider. One or more facilitators can be selected for a particular service provider. In some embodiments, different facilitators or different combination of facilitators can be used for different service providers. When multiple facilitators are selected for a particular service provider, the user can be authenticated when all of the multiple facilitators are verified, or when one of the multiple facilitators is verified. In some embodiments, the facilitators can be prioritized such that a higher priority facilitator is requested first, and after a predetermined number of unsuccessful attempts, a lesser priority facilitator can be requested. In some embodiments, the user may also optionally register the phone number or other device identifier of client device 310 with the service provider.
Upon linking the selected facilitator(s) to a particular service provider, the authentication application may generate a public/private key pair and associate the public/private key pair with the service provider. The public key may then be sent to the secure remote server 320 associated with the service provider for storage. In some embodiments, the public key can also be optionally sent to an issuer 330, and issuer 330 may generate a one-time passcode (OTP) and send the OTP to client device 310 for verification. Client device 310 may send the OTP back to secure remote server 320 to verify that client device 320 is a valid device of the user, and issuer 330 and/or secure remote server 320 may then provision a token for the user's account, and associate the token with the selected facilitator(s) and public key. In some embodiments, the token is not required to be stored on client device 310. Instead, the token can be stored at secure remote server 320 and is released by secure remote server 320 upon authentication of the user and client device 310 to secure remote server 320. This may enhance the security of the system because the token is not resident on client device 310, and thus cannot be compromised by malware on client device 310.
In this example provisioning process, the user may provide an indication of one or more accounts with which he or she is associated to the SRT platform. In some embodiments, the SRT platform may identify and contact an authorization entity (e.g., an issuer) associated with the indicated account. For example, the SRT platform may identify an authorization entity associated with a particular account indicated by the user based on an indicator within the provided account information. The SRT server may, in turn, communicate with that authorization entity to verify the account. An authorization entity associated with the account may then verify that the user is associated with the account. An authentication process may then be performed as described herein.
In some embodiments, this process may involve requiring a user to provide at least one account number via an input field 402 at 404. The SRT platform may then determine, based on the account number provided, a transaction processing network and/or an authorization entity associated with the account. It should be noted that at least some account identifiers may include a banking identification number (BIN) that can be used to identify both the transaction processing network and the authorization entity as a portion of the account number. The SRT platform may then communicate with the identified authorization entity associated with the identified transaction processing network.
In some embodiments, the identified authorization entity associated with the identified transaction processing network may identify one or more communication channels associated with the user of the account. For example, the user may be associated with a particular communication channel upon opening an account with the authorization entity. The one or more communication channels, or at least an obfuscated version of those communication channels, may be presented to the user at 406 to enable the user to verify his or her ownership of the account via those communication channels. In some embodiments, multiple communication channels may be presented to the user for his or her selection. In some embodiments, a default communication channel may be selected over which to communicate with the user.
Once an appropriate communication channel has been identified, the authorization entity or the SRT platform may transmit verification details to the user via the identified communication channel. In some embodiments, the verification details may include a code or pin. The user may then be required to provide those verification details back at 408 in order to verify that the user at least has access to the communication channel.
In some embodiments, once a user has been verified as being an owner of the account using the techniques depicted in FIG. 4 , a private cryptographic key may be provisioned onto the client device from which the process was initiated. The private cryptographic key may be generated by the SRT server and may be used by the client device to sign an authentication indicator in the future.
By way of illustrated example, as depicted in FIG. 4 , a user may be prompted to enter an account to be linked to himself or herself at 404. In this example, the authorization entity, once contacted, may initiate a verification process. For example, the authorization entity may provide verification details (e.g., a one-time code) to a communication channel known to be associated with the user. To do this, the authorization entity may provide the user with a choice of communication channel to which the verification details will be transmitted at 406. The user may then be asked to retrieve the verification details in order to verify that the user is authentic at 408. If the verification details provided by the user match those sent via the selected communication channel, then the account may be verified as being associated with the user at 410 and a private key may be provisioned onto the client device. It should be noted that the verification process described herein may be separate from the authentication process described elsewhere. In some embodiments, even though the user has verified his or her ownership of an account in the manner depicted in FIG. 4 , the user may still be authenticated using the other techniques described herein. Upon being authenticated using the techniques described herein, an authentication indicator generated as a result of that authentication may be signed using the provisioned private key.
An access request including the signed authentication indicator is then sent to secure remote server 520 to indicate to secure remote server 520 that the user has successfully been authenticated to client device 510. In some embodiments, the access request may include data representing the facilitator, or an indicator indicating which facilitator(s) were provided by the user. Secure remote server 520 may then verify the signature by using the stored public key linked to the user's account associated with the service provider. Upon verifying the signature, the secure remote server 520 may grant the user access to the service provider.
In embodiments in which the secure remote server 520 is associated with a token service provider, secure remote server 520 may release a token associated with the user's account to a merchant 540 to enable the user to conduct a transaction with merchant 540. In some embodiments, the access request may also include transaction details of the transaction, and secure remote server 520 may generate a transaction authentication verification value and provide the transaction authentication verification value with the token. For example, the transaction authentication verification value can be a cryptogram generated based on the transaction details and/or the token. Merchant 540 can then provide the token or the token together with the transaction authentication verification value in an authorization request message to request authorization for the transaction.
In some scenarios, the user may access the service provider using a different device than the communication device that was used for registering the user's facilitators. As such, the device that the user is using to access the service provider may not have the previously stored facilitators or sensor hardware necessary to authenticate the user. For example, the user may access a merchant's website using a desktop computer instead of the user's client device, and the desktop computer may not have a fingerprint reader or access to the user's previously stored fingerprint data to properly authenticate the user. In such scenarios, a cross-device authentication scheme can be employed.
An access request including the signed authentication indicator is then sent to secure remote server 620 to indicate to secure remote server 620 that the user has successfully been authenticated to communication device 610. In some embodiments, the access request may include data representing the facilitator, or an indicator indicating which facilitator(s) were provided by the user. Secure remote server 320 may then verify the signature by using the stored public key linked to the user's account associated with the service provider. Upon verifying the signature, the secure remote server 620 may grant the user access to the service provider.
In embodiments in which the secure remote server 620 is associated with a token service provider, secure remote server 620 may release a token associated with the user's account to a merchant 640 whose website the user is accessing on device 350 to enable the user to conduct a transaction with merchant 640. In some embodiments, the access request may also include transaction details of the transaction, and secure remote server 620 may generate a transaction authentication verification value and provide the transaction authentication verification value with the token. For example, the transaction authentication verification value can be a cryptogram generated based on the transaction details and/or the token. The transaction authentication verification value can accompany a token in an authorization request message and can serve as proof that the token is being used in an appropriate corresponding transaction channel or mode (e.g., physical point of sale vs. e-commerce). Merchant 640 can then provide the token or the token together with the transaction authentication verification value in an authorization request message to request authorization for the transaction.
At 704, the process may involve determining that the user is authorized to access the account. In some embodiments, this may involve either the secure remote transaction server or the authorization entity associated with the account contacting the user via a communication channel stored in relation to the account. For example, upon creation of the account, the user may be required to provide a communication channel (e.g., an email address or phone number) that will be associated with the account via a know-your-customer (e.g., KYC) process. In this example, the user may be contacted via the communication channel provided during the creation of the account. In some embodiments, determining that the user is authorized to access the account may involve transmitting a one-time passcode to the user via the communication channel and causing the client device to prompt the user to enter the one-time passcode. In these embodiments, the user may be determined to be authorized to access the account upon determining that the one-time passcode entered by the user matches the transmitted one-time passcode.
At 706, a cryptographic key pair may be generated in relation to the account. At least the public key of the cryptographic key pair may be stored upon the secure remote transaction server. At least the private key of the cryptographic key pair may be stored upon the client device. In some embodiments, the cryptographic key pair may be generated by the client device. For example, the client device may generate a cryptographic key pair and may subsequently transmit the public key to the secure remote transaction server. In some embodiments, the secure remote transaction server may generate the cryptographic key pair. For example, the secure remote transaction server may generate a cryptographic key pair and may subsequently transmit the private key to the client device. In some embodiments, in addition to storing the public key, the secure remote transaction server may forward the public key to an authorization entity associated with the account being enrolled.
At 708, the process may involve generating a token to be associated with the account. In some embodiments, the token may be generated by the secure remote transaction server. In some embodiments, the token may be generated by an authorization entity server and transmitted to the secure remote transaction server. The generated token may then be stored in association with the account.
At 710, the process may involve receiving a request to complete a transaction. In some embodiments, the request may be received at a secure remote transaction server from an access device that manages access to one or more resources. The request may include various details related to the requested transaction along with a signed authentication indicator. For example, upon initiation of the requested transaction, the user may be prompted to provide one or more biometric samples. The biometric samples provided by the user may be processed by a facilitator application on the client device to determine the authenticity of the user. Once determined, the facilitator application may generate an authentication indicator that indicates a likelihood that the user requesting the transaction is the user enrolled into the account. The client device may then sign this authentication indicator by performing a cryptographic operation on the authentication indicator using the private key generated and stored on the client device at 706. The signed authentication indicator may be provided to the secure remote transaction server within the request received at 710.
At 712, upon receiving the signed authentication indicator, the secure remote transaction server may verify the signed authentication indicator by performing a second cryptographic operation on the signed authentication indicator using the public key generated at 706 and stored at the secure remote transaction server. In this process, the second cryptographic operation may result in the creation of an unsigned version of the authentication indicator, which may then be processed to determine whether the user is authenticated. In some embodiments, the unsigned version of the authentication indicator may be compared to an expected authentication indicator result. In some embodiments, a likelihood value in the unsigned version of the authentication indicator may be compared to an acceptable risk threshold value to determine whether the transaction should be conducted. For example, a generated unsigned version of the authentication indicator may include a likelihood that the user requesting the transaction is the user enrolled into the account. In this example, the likelihood may be compared to a predetermined threshold value. If the likelihood is greater than the predetermined threshold value, then the signed authentication indicator may be verified. Upon verification of the signed authentication indicator, the process may involve initiating the requested transaction at 714. This may involve providing the token stored in association with the account at 708 to the access device from which the request was received at 710.
At block 804, the user may be prompted to provide the authentication data. In some embodiments, the user may select what type of authentication data to provide as well as an application to authenticate the user (e.g., a biometric facilitator). In some embodiments, an application may be automatically selected by the system to authenticate the user. It should be noted that the application that performs the authentication (e.g., the facilitator application) may be different from the application used to request to register with the system.
At bock 806, the authentication data is received from the user, for example, via a sensor on the communication device. For example, the user may provide a biometric sample to the client device that includes fingerprint, voiceprint, facial images, or other suitable biometric information. At block 808, the received authentication data may be registered and stored onto the communication device or onto a remote sever that supports a facilitator application installed upon the communication device (e.g., a facilitator application server). The authentication data may then be processed to authenticate a user of the communication device. For example, a facilitator application may generate an authentication indicator indicating whether or not the user has been authenticated.
At block 810, a public and private key pair may obtained by the communication device. In some embodiments, at least a private key may be received by the communication device from a secure remote server (e.g., an SRT server). For example, the communication device may send an authentication indicator to the secure remote server, along with enrollment data, and may receive a private key generated by the secure remote server. In some embodiments, the public and private key pair of the cryptographic key pair may be generated by the communication device. In some embodiments, the cryptographic key pair may be generated using information obtained from the secure remote server and/or information related to the communication device. For example, the communication device may receive a base key pair from the secure remote server and may generate the cryptographic key pair using some algorithm for modifying the base key pair using information from the communication device. At block 812, the private key is associated with the account and the authentication data and stored on the communication device.
At block 814, the generated public key is sent to a secure remote server, and the secure remote server links the public key to a token associated with the account. In some embodiments, the token can be used by the user to access services associated with the account, and may act as a substitute for a real account identifier of the account.
At block 906, the authentication data is received from the user, for example, via a sensor on communication device. At block 908, the received authentication data is compared with the registered authentication data. At block 910, the received authentication data is determined to match the registered authentication data. In some embodiments, the registered authentication data may be stored on a remote server that supports a biometric facilitator application and this step may involve providing the received authentication data to that remote server for verification. In some embodiments, the registered authentication data may be stored on, and verified upon, the communication device.
At block 912, in response to determining a match, an authentication indicator is generated to indicate that the user has been verified. At block 914, the generated authentication indicator may be signed using the private key stored on the communication device in relation to the account.
At block 916, the signed authentication indicator may be sent to the secure remote server within an access request. The secure remote server may verify the signed authentication indicator using the public key associated the account, and in response to determining that the authentication indicator is verified, releases the token associated with the account to the service provider to grant the user access to the account. In some embodiments, verification of the authentication indicator may involve performing a cryptographic operation on the signed authentication indicator using the public key that results in generation of an unsigned version of the authentication indicator. The unsigned version of the authentication indicator may then be compared to an expected unsigned version of the authentication indicator.
Embodiments of the disclosure provide for a number of technical advantages over conventional systems. For example, embodiments of the disclosure enable authentication of a user by leveraging existing facilitator applications on a mobile device, while enabling an SRT platform and authorization entity to be assured that the authentication was performed by a legitimate client device. As authorization entities are not currently able to receive this assurance in conventional systems, this represents a technical improvement over such systems (as those systems do not include the technical means to provide this functionality). Further, as indicated by the above-described process flows, embodiments of the invention can be used to securely authenticate a device and a user of that device when conducting a remote transaction, without requiring a user to enter a PIN or password. Further, since tokens and transaction authentication verification values are used in embodiments of the invention, sensitive data such as account numbers, PII (personal identifiable information), etc., can be protected in transit.
Although some of the examples described above are described in the context of secure remote commerce transactions, it is understood that embodiments of the invention can be used in other contexts in which authentication and data security issues are present. For example, embodiments of the invention can be used to obtain access to secure data (e.g., medical records, personal data such as tax records, etc.) or can be used in situations where a user may wish to obtain access to a secure location such as a building or a transit station.
A computer system will now be described that may be used to implement any of the entities or components described herein. Subsystems in the computer system are interconnected via a system bus. Additional subsystems include a printer, a keyboard, a fixed disk, and a monitor which can be coupled to a display adapter. Peripherals and input/output (I/O) devices, which can couple to an I/O controller, can be connected to the computer system by any number of means known in the art, such as a serial port. For example, a serial port or external interface can be used to connect the computer apparatus to a wide area network such as the Internet, a mouse input device, or a scanner. The interconnection via system bus allows the central processor to communicate with each subsystem and to control the execution of instructions from system memory or the fixed disk, as well as the exchange of information between subsystems. The system memory and/or the fixed disk may embody a computer-readable medium.
The techniques described herein may involve implementing one or more functions, processes, operations or method steps. In some embodiments, the functions, processes, operations or method steps may be implemented as a result of the execution of a set of instructions or software code by a suitably-programmed computing device, microprocessor, data processor, or the like. The set of instructions or software code may be stored in a memory or other form of data storage element which is accessed by the computing device, microprocessor, etc. In other embodiments, the functions, processes, operations or method steps may be implemented by firmware or a dedicated processor, integrated circuit, etc.
Any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer-readable medium, such as a random access memory (RAM), a read-only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer-readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
While certain exemplary embodiments have been described in detail and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not intended to be restrictive of the broad invention, and that this invention is not to be limited to the specific arrangements and constructions shown and described, since various other modifications may occur to those with ordinary skill in the art.
As used herein, the use of “a,” “an,” or “the” is intended to mean “at least one,” unless specifically indicated to the contrary.
Claims (20)
1. A computer-implemented method comprising:
receiving, by a secure remote transaction server from an access device, a request to complete a transaction in association with an account, the request including a signed authentication indicator, wherein an authentication indicator is signed by an authentication application using a private key of a cryptographic key pair to form the signed authentication indicator, after one or more of multiple facilitators authenticate a user of a client device according to a prioritized order of the multiple facilitators, wherein the multiple facilitators are prioritized such that a higher priority facilitator is requested first, and after a predetermined number of unsuccessful attempts, a lesser priority facilitator is requested;
verifying, by the secure remote transaction server, the signed authentication indicator using a public key of the cryptographic key pair stored in the secure remote transaction server and associated with the account; and
upon verifying the signed authentication indicator, providing a token to the access device.
2. The computer-implemented method of claim 1 , wherein the signed authentication indicator has been generated by the client device by performing a first cryptographic operation using the private key.
3. The computer-implemented method of claim 1 , wherein verifying the signed authentication indicator using the public key comprises performing a second cryptographic operation on the signed authentication indicator using the public key.
4. The computer-implemented method of claim 1 , wherein the method further comprises:
identifying, by the secure remote transaction server, an authorization entity associated with the account based on information in the request; and
verifying, by the secure remote transaction server, an authenticity of the account with the authorization entity associated with the account.
5. The computer-implemented method of claim 4 , wherein the authenticity of the account is determined by the authorization entity using a one-time passcode.
6. The computer-implemented method of claim 5 , wherein the authorization entity transmits the one-time passcode to the client device via a communication channel stored in relation to the account.
7. The computer-implemented method of claim 1 , wherein the cryptographic key pair is generated on the client device and the public key is received by the secure remote transaction server from the client device.
8. The computer-implemented method of claim 1 , wherein the cryptographic key pair is generated on the secure remote transaction server and the method further comprises transmitting the private key to the client device.
9. The computer-implemented method of claim 1 , wherein the public key is forwarded to an authorization entity associated with the account.
10. A secure remote transaction server comprising:
a processor; and
a memory including instructions that, when executed with the processor, cause the secure remote transaction server to, at least:
receiving, by the secure remote transaction server from an access device, a request to complete a transaction in association with an account, the request including a signed authentication indicator, wherein an authentication indicator is signed by an authentication application using a private key of a cryptographic key pair to form the signed authentication indicator after one or more of multiple facilitators authenticate a user of a client device according to a prioritized order of multiple facilitators, wherein the multiple facilitators are prioritized such that a higher priority facilitator is requested first, and after a predetermined number of unsuccessful attempts, a lesser priority facilitator is requested;
verifying, by the secure remote transaction server, the authentication indicator using a public key of the cryptographic key pair stored in the secure remote transaction server and associated with the account; and
upon verifying the authentication indicator, providing a token to the access device.
11. The secure remote transaction server of claim 10 , wherein the authentication indicator indicates that the user is authenticated by the one or more of the multiple facilitators.
12. The secure remote transaction server of claim 10 , wherein verifying the authentication indicator using the public key comprises generating an unsigned version of the signed authentication indicator and assessing the unsigned version of the signed authentication indicator.
13. The secure remote transaction server of claim 12 , wherein assessing the unsigned version of the signed authentication indicator comprises comparing the unsigned version of the signed authentication indicator to an expected result.
14. The secure remote transaction server of claim 12 , wherein assessing the unsigned version of the signed authentication indicator comprises determining whether a likelihood value in the unsigned version of the signed authentication indicator exceeds a threshold value.
15. The secure remote transaction server of claim 10 , wherein the token is subsequently used by the access device to complete the transaction.
16. The secure remote transaction server of claim 10 , wherein the one or more of the multiple facilitators uses biometric verification to authenticate the user.
17. The secure remote transaction server of claim 10 , wherein generating the token to be associated with the account comprises receiving the token from an authorization entity associated with the account.
18. A computer-implemented method comprising:
receiving, by a communication device, a request to access an account;
prompting, by a facilitator of multiple facilitators of the communication device, a user to provide authentication data, wherein the multiple facilitators are prioritized such that a higher priority facilitator is requested first, and after a predetermined number of unsuccessful attempts, a lesser priority facilitator is requested;
receiving, by the facilitator of the multiple facilitators of the communication device, the authentication data from the user;
comparing, by the facilitator of the multiple facilitators of the communication device, the received authentication data with registered authentication data;
determining, by the facilitator of the multiple facilitators of the communication device, that the received authentication data matches the registered authentication data;
generating, by the facilitator of the multiple facilitators of the communication device, an authentication indicator indicating a match of the received authentication data to the registered authentication data;
signing, by the communication device, the authentication indicator using a private key of a cryptographic key pair to form a signed authentication indicator; and
sending, by the communication device, the signed authentication indicator to a secure remote server in an access request, wherein the secure remote server releases a token to grant the user access to the account in response to verifying the signed authentication indicator using a public key of the cryptographic key pair.
19. The communication device of claim 18 , wherein the token is released to a service provider computer.
20. The communication device of claim 18 , wherein the one or more of the multiple facilitators uses biometric verification to authenticate the user.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/734,443 US11743042B2 (en) | 2018-03-07 | 2022-05-02 | Secure remote token release with online authentication |
US18/351,121 US20230353360A1 (en) | 2018-03-07 | 2023-07-12 | Secure remote token release with online authentication |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862639652P | 2018-03-07 | 2018-03-07 | |
PCT/IB2018/056173 WO2019171163A1 (en) | 2018-03-07 | 2018-08-16 | Secure remote token release with online authentication |
US202016977645A | 2020-09-02 | 2020-09-02 | |
US17/734,443 US11743042B2 (en) | 2018-03-07 | 2022-05-02 | Secure remote token release with online authentication |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/977,645 Continuation US11356257B2 (en) | 2018-03-07 | 2018-08-16 | Secure remote token release with online authentication |
PCT/IB2018/056173 Continuation WO2019171163A1 (en) | 2018-03-07 | 2018-08-16 | Secure remote token release with online authentication |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/351,121 Continuation US20230353360A1 (en) | 2018-03-07 | 2023-07-12 | Secure remote token release with online authentication |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220255741A1 US20220255741A1 (en) | 2022-08-11 |
US11743042B2 true US11743042B2 (en) | 2023-08-29 |
Family
ID=67846929
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/977,645 Active US11356257B2 (en) | 2018-03-07 | 2018-08-16 | Secure remote token release with online authentication |
US17/734,443 Active US11743042B2 (en) | 2018-03-07 | 2022-05-02 | Secure remote token release with online authentication |
US18/351,121 Pending US20230353360A1 (en) | 2018-03-07 | 2023-07-12 | Secure remote token release with online authentication |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/977,645 Active US11356257B2 (en) | 2018-03-07 | 2018-08-16 | Secure remote token release with online authentication |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/351,121 Pending US20230353360A1 (en) | 2018-03-07 | 2023-07-12 | Secure remote token release with online authentication |
Country Status (5)
Country | Link |
---|---|
US (3) | US11356257B2 (en) |
EP (1) | EP3762844A4 (en) |
CN (1) | CN111819555A (en) |
SG (1) | SG11202008451RA (en) |
WO (1) | WO2019171163A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230062507A1 (en) * | 2020-03-05 | 2023-03-02 | Visa International Service Association | User authentication at access control server using mobile device |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017097270A1 (en) | 2015-12-09 | 2017-06-15 | 周兴昌 | Data transmission method and data transmission apparatus |
US10880288B2 (en) * | 2018-06-05 | 2020-12-29 | The Toronto-Dominion Bank | Methods and systems for controlling access to a protected resource |
WO2020041722A1 (en) * | 2018-08-24 | 2020-02-27 | Mastercard International Incorporated | Systems and methods for secure remote commerce |
EP3660771A1 (en) * | 2018-11-29 | 2020-06-03 | Mastercard International Incorporated | Online authentication |
US11609916B1 (en) * | 2019-06-21 | 2023-03-21 | Amazon Technologies, Inc. | Robotics application development and monitoring over distributed networks |
US11449821B2 (en) | 2019-07-16 | 2022-09-20 | Mastercard International Incorporated | Systems and methods for use in facilitating verified deliveries |
US11140156B2 (en) * | 2019-07-16 | 2021-10-05 | Mastercard International Incorporated | Systems and methods for use in binding internet of things devices with identities associated with users |
US10805083B1 (en) * | 2019-09-04 | 2020-10-13 | Capital One Services, Llc | Systems and methods for authenticated communication sessions |
US11349660B2 (en) * | 2019-09-19 | 2022-05-31 | Bose Corporation | Secure self-identification of a device |
US11546321B2 (en) * | 2019-09-24 | 2023-01-03 | Magic Labs, Inc. | Non-custodial tool for building decentralized computer applications |
US11366645B2 (en) | 2019-11-11 | 2022-06-21 | Klarna Bank Ab | Dynamic identification of user interface elements through unsupervised exploration |
US11379092B2 (en) | 2019-11-11 | 2022-07-05 | Klarna Bank Ab | Dynamic location and extraction of a user interface element state in a user interface that is dependent on an event occurrence in a different user interface |
US11726752B2 (en) | 2019-11-11 | 2023-08-15 | Klarna Bank Ab | Unsupervised location and extraction of option elements in a user interface |
US11409546B2 (en) | 2020-01-15 | 2022-08-09 | Klarna Bank Ab | Interface classification system |
US11386356B2 (en) | 2020-01-15 | 2022-07-12 | Klama Bank AB | Method of training a learning system to classify interfaces |
US11405379B1 (en) * | 2020-02-26 | 2022-08-02 | Amazon Technologies, Inc. | Multi-factor message-based authentication for network resources |
US11875320B1 (en) | 2020-02-28 | 2024-01-16 | The Pnc Financial Services Group, Inc. | Systems and methods for managing a financial account in a low-cash mode |
US10846106B1 (en) | 2020-03-09 | 2020-11-24 | Klarna Bank Ab | Real-time interface classification in an application |
US11496293B2 (en) * | 2020-04-01 | 2022-11-08 | Klarna Bank Ab | Service-to-service strong authentication |
AU2021282595A1 (en) * | 2020-06-05 | 2022-12-15 | Liveperson Inc. | Request processing via rich messaging systems |
US20210406902A1 (en) * | 2020-06-24 | 2021-12-30 | Synchrony Bank | Standardized identifiers for multiple transaction authorizations |
WO2022056097A1 (en) * | 2020-09-09 | 2022-03-17 | Springcoin, Inc. | Method and apparatus for third-party managed data transference and corroboration via tokenization |
US11765590B2 (en) * | 2020-09-15 | 2023-09-19 | Sophos Limited | System and method for rogue device detection |
US12075520B2 (en) | 2020-10-26 | 2024-08-27 | Micron Technology, Inc. | Cloud-service on-boarding without prior customization of endpoints |
US11563580B2 (en) * | 2020-11-12 | 2023-01-24 | Sap Se | Security token validation |
US11645654B2 (en) * | 2021-01-14 | 2023-05-09 | American Express Travel Related Services Company, Inc. | Biometric-based identity verification using zero-knowledge proofs |
CN112989316B (en) * | 2021-02-24 | 2022-08-16 | 福州汇思博信息技术有限公司 | ADB authorization authentication method and system |
CN115021950B (en) * | 2021-03-03 | 2024-10-01 | 美光科技公司 | Online service store for endpoints |
DE102022104902A1 (en) * | 2021-03-03 | 2022-09-08 | Micron Technology, Inc. | ONLINE SECURITY SERVICES BASED ON SECURITY FEATURES IMPLEMENTED IN STORAGE DEVICES |
DE102022104834A1 (en) * | 2021-03-03 | 2022-09-08 | Micron Technology, Inc. | ONBOARDING CLOUD SERVICES WITHOUT PRIOR CUSTOMIZATION OF DEVICES |
KR20240021741A (en) * | 2021-03-04 | 2024-02-19 | 블루스택 시스템즈 인코포레이티드 | Secure remote hardware access method, system and computer program product through device-to-device authentication |
US11863539B2 (en) * | 2021-07-30 | 2024-01-02 | Zoom Video Communications, Inc. | Encryption-based device enrollment |
CN114358930B (en) * | 2021-12-22 | 2023-05-02 | 成都智元汇信息技术股份有限公司 | Method, subway client and system for acquiring two-dimension code of remote riding to execute transaction based on SDK |
US11973871B2 (en) | 2022-01-20 | 2024-04-30 | Visa International Service Association | Domain validations using verification values |
CN114679276B (en) * | 2022-02-18 | 2024-04-23 | 支付宝(杭州)信息技术有限公司 | Identity authentication method and device of time-based one-time password algorithm |
US12113897B2 (en) | 2022-08-11 | 2024-10-08 | Nametag Inc. | Systems and methods for storing biometric images as profile images in an authentication profile |
US20240062203A1 (en) * | 2022-08-18 | 2024-02-22 | DefiQ, Inc. | Reducing gas fees for smart contracts and other blockchain transactions |
US20240070659A1 (en) * | 2022-08-30 | 2024-02-29 | Coinbase, Inc. | Systems and methods for facilitating blockchain operations across multiple blockchain networks using a decentralized exchange |
CN115442037B (en) * | 2022-09-05 | 2025-04-25 | 数字广东网络建设有限公司 | Account management method, device, equipment and storage medium |
US20240163276A1 (en) * | 2022-11-16 | 2024-05-16 | Barclays Execution Services Limited | Secure systems and methods for digital tokens |
US20240232313A1 (en) * | 2023-01-05 | 2024-07-11 | Lowe's Companies, Inc. | Secure access to an online service based on a token exchange |
Citations (485)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280527A (en) | 1992-04-14 | 1994-01-18 | Kamahira Safe Co., Inc. | Biometric token for authorizing access to a host system |
US5613012A (en) | 1994-11-28 | 1997-03-18 | Smarttouch, Llc. | Tokenless identification system for authorization of electronic transactions and electronic transmissions |
US5781438A (en) | 1995-12-19 | 1998-07-14 | Pitney Bowes Inc. | Token generation process in an open metering system |
US5850442A (en) * | 1996-03-26 | 1998-12-15 | Entegrity Solutions Corporation | Secure world wide electronic commerce over an open network |
US5883810A (en) | 1997-09-24 | 1999-03-16 | Microsoft Corporation | Electronic online commerce card with transactionproxy number for online transactions |
US5930767A (en) | 1997-05-28 | 1999-07-27 | Motorola, Inc. | Transaction methods systems and devices |
US5953710A (en) | 1996-10-09 | 1999-09-14 | Fleming; Stephen S. | Children's credit or debit card system |
US5956699A (en) | 1996-10-03 | 1999-09-21 | Jaesent Inc. | System for secured credit card transactions on the internet |
US6000832A (en) | 1997-09-24 | 1999-12-14 | Microsoft Corporation | Electronic online commerce card with customer generated transaction proxy number for online transactions |
US6014635A (en) | 1997-12-08 | 2000-01-11 | Shc Direct, Inc. | System and method for providing a discount credit transaction network |
WO2000014648A1 (en) | 1998-09-04 | 2000-03-16 | Impower, Inc. | Electronic commerce with anonymous shopping and anonymous vendor shipping |
US6044360A (en) | 1996-04-16 | 2000-03-28 | Picciallo; Michael J. | Third party credit card |
EP1028401A2 (en) | 1999-02-12 | 2000-08-16 | Citibank, N.A. | Method and system for performing a bankcard transaction |
US6163771A (en) | 1997-08-28 | 2000-12-19 | Walker Digital, Llc | Method and device for generating a single-use financial account number |
US6227447B1 (en) | 1999-05-10 | 2001-05-08 | First Usa Bank, Na | Cardless payment system |
WO2001035304A1 (en) | 1999-11-10 | 2001-05-17 | Krasnyansky Serge M | On-line payment system |
US6236981B1 (en) | 1996-11-20 | 2001-05-22 | British Telecommunications Public Limited Company | Transaction system |
US6267292B1 (en) | 1997-06-13 | 2001-07-31 | Walker Digital, Llc | Method and apparatus for funds and credit line transfers |
US20010029485A1 (en) | 2000-02-29 | 2001-10-11 | E-Scoring, Inc. | Systems and methods enabling anonymous credit transactions |
US20010034720A1 (en) | 2000-03-07 | 2001-10-25 | David Armes | System for facilitating a transaction |
US6327578B1 (en) | 1998-12-29 | 2001-12-04 | International Business Machines Corporation | Four-party credit/debit payment protocol |
US20010054003A1 (en) | 2000-04-14 | 2001-12-20 | Emily Chien | System and method for using loyalty points |
US20020007320A1 (en) | 2000-03-15 | 2002-01-17 | Mastercard International Incorporated | Method and system for secure payments over a computer network |
US20020016749A1 (en) | 2000-05-26 | 2002-02-07 | Borecki Dennis C. | Methods and systems for network based electronic purchasing system |
US20020029193A1 (en) | 2000-09-01 | 2002-03-07 | Infospace, Inc. | Method and system for facilitating the transfer of funds utilizing a telephonic identifier |
US20020035548A1 (en) | 2000-04-11 | 2002-03-21 | Hogan Edward J. | Method and system for conducting secure payments over a computer network |
US6385596B1 (en) | 1998-02-06 | 2002-05-07 | Liquid Audio, Inc. | Secure online music distribution system |
US20020056043A1 (en) | 1999-01-18 | 2002-05-09 | Sensar, Inc. | Method and apparatus for securely transmitting and authenticating biometric data over a network |
US20020073045A1 (en) | 2000-10-23 | 2002-06-13 | Rubin Aviel D. | Off-line generation of limited-use credit card numbers |
US6422462B1 (en) | 1998-03-30 | 2002-07-23 | Morris E. Cohen | Apparatus and methods for improved credit cards and credit card transactions |
US6425523B1 (en) | 1998-08-17 | 2002-07-30 | Jonathan Shem-Ur | Method for preventing unauthorized use of credit cards in remote payments and an optional supplemental-code card for use therein |
US20020116341A1 (en) | 2000-04-11 | 2002-08-22 | Hogan Edward J. | Method and system for conducting secure payments over a computer network |
US6453301B1 (en) | 2000-02-23 | 2002-09-17 | Sony Corporation | Method of using personal device with internal biometric in conducting transactions over a network |
US20020133467A1 (en) | 2001-03-15 | 2002-09-19 | Hobson Carol Lee | Online card present transaction |
US20020147913A1 (en) | 2001-04-09 | 2002-10-10 | Lun Yip William Wai | Tamper-proof mobile commerce system |
US20030028481A1 (en) | 1998-03-25 | 2003-02-06 | Orbis Patents, Ltd. | Credit card system and method |
US20030130955A1 (en) | 1999-12-17 | 2003-07-10 | Hawthorne William Mcmullan | Secure transaction systems |
US6592044B1 (en) | 2000-05-15 | 2003-07-15 | Jacob Y. Wong | Anonymous electronic card for generating personal coupons useful in commercial and security transactions |
US20030191945A1 (en) | 2002-04-03 | 2003-10-09 | Swivel Technologies Limited | System and method for secure credit and debit card transactions |
US20030191709A1 (en) | 2002-04-03 | 2003-10-09 | Stephen Elston | Distributed payment and loyalty processing for retail and vending |
US20040010462A1 (en) | 2002-07-15 | 2004-01-15 | Susan Moon | Method and system for a multi-purpose transactional platform |
US20040044739A1 (en) | 2002-09-04 | 2004-03-04 | Robert Ziegler | System and methods for processing PIN-authenticated transactions |
US20040050928A1 (en) | 2002-09-12 | 2004-03-18 | Fred Bishop | System and method for converting a stored value card to a credit card |
US20040059682A1 (en) | 2001-06-11 | 2004-03-25 | Yoshitsugu Hasumi | Electronic commercial transaction support method |
US20040093281A1 (en) | 2002-11-05 | 2004-05-13 | Todd Silverstein | Remote purchasing system and method |
US6748367B1 (en) | 1999-09-24 | 2004-06-08 | Joonho John Lee | Method and system for effecting financial transactions over a public network without submission of sensitive information |
WO2004051585A2 (en) | 2002-11-27 | 2004-06-17 | Rsa Security Inc | Identity authentication system and method |
US20040139008A1 (en) | 2003-01-10 | 2004-07-15 | First Data Corporation | Payment system clearing for transactions |
US20040143532A1 (en) | 2003-01-15 | 2004-07-22 | Fung Chi, Lee | Small amount paying/receiving system |
US20040210498A1 (en) | 2002-03-29 | 2004-10-21 | Bank One, National Association | Method and system for performing purchase and other transactions using tokens with multiple chips |
US20040236632A1 (en) | 2000-12-07 | 2004-11-25 | Maritzen Michael L. | System and method for conducing financial transactions using a personal transaction device with vehicle-accessed, payment-gateway terminals |
US20040260646A1 (en) | 2001-07-10 | 2004-12-23 | American Express Travel Related Systems Company, Inc. | System and method for encoding information in magnetic stripe format for use in radio frequency identification transactions |
WO2005001751A1 (en) | 2003-06-02 | 2005-01-06 | Regents Of The University Of California | System for biometric signal processing with hardware and software accelaration |
US20050037735A1 (en) | 2003-07-31 | 2005-02-17 | Ncr Corporation | Mobile applications |
US6879965B2 (en) | 2000-03-01 | 2005-04-12 | Passgate Corporation | Method, system and computer readable medium for web site account and e-commerce management from a central location |
US20050080730A1 (en) | 2003-10-14 | 2005-04-14 | First Data Corporation | System and method for secure account transactions |
US6891953B1 (en) | 2000-06-27 | 2005-05-10 | Microsoft Corporation | Method and system for binding enhanced software features to a persona |
US20050108178A1 (en) | 2003-11-17 | 2005-05-19 | Richard York | Order risk determination |
US6901387B2 (en) | 2001-12-07 | 2005-05-31 | General Electric Capital Financial | Electronic purchasing method and apparatus for performing the same |
US6931382B2 (en) | 2001-01-24 | 2005-08-16 | Cdck Corporation | Payment instrument authorization technique |
US6938019B1 (en) | 2000-08-29 | 2005-08-30 | Uzo Chijioke Chukwuemeka | Method and apparatus for making secure electronic payments |
US6941285B2 (en) | 2000-04-14 | 2005-09-06 | Branko Sarcanin | Method and system for a virtual safe |
US20050199709A1 (en) | 2003-10-10 | 2005-09-15 | James Linlor | Secure money transfer between hand-held devices |
US20050246293A1 (en) | 2002-03-04 | 2005-11-03 | Ong Yong K | Electronic transfer system |
US20050269401A1 (en) | 2004-06-03 | 2005-12-08 | Tyfone, Inc. | System and method for securing financial transactions |
US20050269402A1 (en) | 2004-06-03 | 2005-12-08 | Tyfone, Inc. | System and method for securing financial transactions |
US6980670B1 (en) | 1998-02-09 | 2005-12-27 | Indivos Corporation | Biometric tokenless electronic rewards system and method |
US7051929B2 (en) | 2004-10-18 | 2006-05-30 | Gongling Li | Secure credit card having daily changed security number |
US7069249B2 (en) | 1999-07-26 | 2006-06-27 | Iprivacy, Llc | Electronic purchase of goods over a communications network including physical delivery while securing private and personal information of the purchasing party |
US7103576B2 (en) | 2001-09-21 | 2006-09-05 | First Usa Bank, Na | System for providing cardless payment |
US7113930B2 (en) | 2001-02-23 | 2006-09-26 | Hewlett-Packard Development Company, L.P. | Conducting transactions |
US20060235795A1 (en) | 2005-04-19 | 2006-10-19 | Microsoft Corporation | Secure network commercial transactions |
WO2006113834A2 (en) | 2005-04-19 | 2006-10-26 | Microsoft Corporation | Network commercial transactions |
US20060237528A1 (en) | 2001-07-10 | 2006-10-26 | Fred Bishop | Systems and methods for non-traditional payment |
US20060278704A1 (en) | 2005-06-10 | 2006-12-14 | American Express Travel Related Services Co., Inc. | System and method for mass transit merchant payment |
US7177848B2 (en) | 2000-04-11 | 2007-02-13 | Mastercard International Incorporated | Method and system for conducting secure payments over a computer network without a pseudo or proxy account number |
US7177835B1 (en) | 1997-08-28 | 2007-02-13 | Walker Digital, Llc | Method and device for generating a single-use financial account number |
US7194437B1 (en) | 1999-05-14 | 2007-03-20 | Amazon.Com, Inc. | Computer-based funds transfer system |
US7209561B1 (en) | 2002-07-19 | 2007-04-24 | Cybersource Corporation | System and method for generating encryption seed values |
US20070107044A1 (en) | 2005-10-11 | 2007-05-10 | Philip Yuen | System and method for authorization of transactions |
US20070129955A1 (en) | 2000-04-14 | 2007-06-07 | American Express Travel Related Services Company, Inc. | System and method for issuing and using a loyalty point advance |
US20070136211A1 (en) | 2004-03-15 | 2007-06-14 | Brown Kerry D | Financial transactions with dynamic card verification values |
US20070136193A1 (en) | 2005-12-13 | 2007-06-14 | Bellsouth Intellectual Property Corporation | Methods, transactional cards, and systems using account identifers customized by the account holder |
US20070170247A1 (en) | 2006-01-20 | 2007-07-26 | Maury Samuel Friedman | Payment card authentication system and method |
US20070179885A1 (en) | 2006-01-30 | 2007-08-02 | Cpni Inc. | Method and system for authorizing a funds transfer or payment using a phone number |
US20070198432A1 (en) | 2001-01-19 | 2007-08-23 | Pitroda Satyan G | Transactional services |
US7264154B2 (en) | 2004-07-12 | 2007-09-04 | Harris David N | System and method for securing a credit account |
US20070208671A1 (en) | 2004-03-15 | 2007-09-06 | Brown Kerry D | Financial transactions with dynamic personal account numbers |
US20070245414A1 (en) | 2006-04-14 | 2007-10-18 | Microsoft Corporation | Proxy Authentication and Indirect Certificate Chaining |
US7287692B1 (en) | 2004-07-28 | 2007-10-30 | Cisco Technology, Inc. | System and method for securing transactions in a contact center environment |
US20070288377A1 (en) | 2006-04-26 | 2007-12-13 | Yosef Shaked | System and method for authenticating a customer's identity and completing a secure credit card transaction without the use of a credit card number |
US20070291995A1 (en) | 2006-06-09 | 2007-12-20 | Rivera Paul G | System, Method, and Apparatus for Preventing Identity Fraud Associated With Payment and Identity Cards |
US20080015988A1 (en) | 2006-06-28 | 2008-01-17 | Gary Brown | Proxy card authorization system |
US20080029607A1 (en) | 2005-05-09 | 2008-02-07 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080035738A1 (en) | 2005-05-09 | 2008-02-14 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080052226A1 (en) | 2006-08-25 | 2008-02-28 | Agarwal Amit D | Utilizing phrase tokens in transactions |
US7350230B2 (en) | 2002-12-18 | 2008-03-25 | Ncr Corporation | Wireless security module |
US7353382B2 (en) | 2002-08-08 | 2008-04-01 | Fujitsu Limited | Security framework and protocol for universal pervasive transactions |
US20080201264A1 (en) | 2007-02-17 | 2008-08-21 | Brown Kerry D | Payment card financial transaction authenticator |
US20080201265A1 (en) | 2007-02-15 | 2008-08-21 | Alfred Hewton | Smart card with random temporary account number generation |
US20080228646A1 (en) | 2006-10-04 | 2008-09-18 | Myers James R | Method and system for managing a non-changing payment card account number |
US20080243702A1 (en) | 2007-03-30 | 2008-10-02 | Ricoh Company, Ltd. | Tokens Usable in Value-Based Transactions |
US20080245855A1 (en) | 2007-04-03 | 2008-10-09 | Fein Gene S | System and method for controlling secured transaction using directionally coded account identifiers |
US20080245861A1 (en) | 2007-04-03 | 2008-10-09 | Fein Gene S | System and method for controlling secured transaction using color coded account identifiers |
US7444676B1 (en) | 2001-08-29 | 2008-10-28 | Nader Asghari-Kamrani | Direct authentication and authorization system and method for trusted network of financial institutions |
US20080283591A1 (en) | 2007-05-17 | 2008-11-20 | Oder Ii John David | Secure payment card transactions |
US20080313264A1 (en) | 2007-06-12 | 2008-12-18 | Microsoft Corporation | Domain management for digital media |
US7469151B2 (en) | 2006-09-01 | 2008-12-23 | Vivotech, Inc. | Methods, systems and computer program products for over the air (OTA) provisioning of soft cards on devices with wireless communications capabilities |
US20090006262A1 (en) | 2006-12-30 | 2009-01-01 | Brown Kerry D | Financial transaction payment processor |
US20090010488A1 (en) | 2007-07-04 | 2009-01-08 | Omron Corporation | Driving support apparatus, method and program |
US20090037388A1 (en) | 2000-02-18 | 2009-02-05 | Verimatrix, Inc. | Network-based content distribution system |
US20090043702A1 (en) | 2007-08-06 | 2009-02-12 | Bennett James D | Proxy card representing many monetary sources from a plurality of vendors |
US20090048971A1 (en) | 2007-08-17 | 2009-02-19 | Matthew Hathaway | Payment Card with Dynamic Account Number |
WO2009032523A1 (en) | 2007-08-29 | 2009-03-12 | American Express Travel Related Services Company, Inc. | System and method for facilitating a financial transaction with a dynamically generated identifier |
US20090106160A1 (en) | 2007-10-19 | 2009-04-23 | First Data Corporation | Authorizations for mobile contactless payment transactions |
US7548889B2 (en) | 2005-01-24 | 2009-06-16 | Microsoft Corporation | Payment information security for multi-merchant purchasing environment for downloadable products |
US20090157555A1 (en) | 2007-12-12 | 2009-06-18 | American Express Travel Related Services Company, | Bill payment system and method |
US20090159700A1 (en) | 2007-12-24 | 2009-06-25 | Dynamics Inc. | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US20090173782A1 (en) | 2008-01-04 | 2009-07-09 | Muscato Michael A | Dynamic Card Validation Value |
US7567936B1 (en) | 2003-10-14 | 2009-07-28 | Paradox Technical Solutions Llc | Method and apparatus for handling pseudo identities |
US7571139B1 (en) | 1999-02-19 | 2009-08-04 | Giordano Joseph A | System and method for processing financial transactions |
US20090200371A1 (en) | 2007-10-17 | 2009-08-13 | First Data Corporation | Onetime passwords for smart chip cards |
US20090248583A1 (en) | 2008-03-31 | 2009-10-01 | Jasmeet Chhabra | Device, system, and method for secure online transactions |
US7606560B2 (en) * | 2002-08-08 | 2009-10-20 | Fujitsu Limited | Authentication services using mobile device |
US20090276347A1 (en) | 2008-05-01 | 2009-11-05 | Kargman James B | Method and apparatus for use of a temporary financial transaction number or code |
US20090281948A1 (en) | 2008-05-09 | 2009-11-12 | Mark Carlson | Communication device including multi-part alias identifier |
US7627895B2 (en) | 2004-03-31 | 2009-12-01 | British Telecommunications Plc | Trust tokens |
US20090294527A1 (en) | 2008-06-02 | 2009-12-03 | Sears Brands, L.L.C. | System and method for payment card industry enterprise account number elimination |
US20090307139A1 (en) | 2008-06-06 | 2009-12-10 | Ebay, Inc. | Biometric authentication of mobile financial transactions by trusted service managers |
US20090327131A1 (en) | 2008-04-29 | 2009-12-31 | American Express Travel Related Services Company, Inc. | Dynamic account authentication using a mobile device |
US20100008535A1 (en) | 2008-07-14 | 2010-01-14 | Abulafia David | Mobile Phone Payment System using Integrated Camera Credit Card Reader |
US7650314B1 (en) | 2001-05-25 | 2010-01-19 | American Express Travel Related Services Company, Inc. | System and method for securing a recurrent billing transaction |
US20100042848A1 (en) | 2008-08-13 | 2010-02-18 | Plantronics, Inc. | Personalized I/O Device as Trusted Data Source |
EP2156397A1 (en) | 2007-05-17 | 2010-02-24 | Shift4 Corporation | Secure payment card transactions |
US7685037B2 (en) | 2001-03-26 | 2010-03-23 | 3MFuture Ltd. | Transaction authorisation system |
US20100088237A1 (en) | 2008-10-04 | 2010-04-08 | Wankmueller John R | Methods and systems for using physical payment cards in secure e-commerce transactions |
US20100094755A1 (en) | 2008-10-09 | 2010-04-15 | Nelnet Business Solutions, Inc. | Providing payment data tokens for online transactions utilizing hosted inline frames |
US7707120B2 (en) | 2002-04-17 | 2010-04-27 | Visa International Service Association | Mobile account authentication service |
US20100106644A1 (en) | 2008-10-23 | 2010-04-29 | Diversinet Corp. | System and Method for Authorizing Transactions Via Mobile Devices |
US7712655B2 (en) | 2004-01-20 | 2010-05-11 | Kamfu Wong | Banking computer account system with lock for secure payment via telephone |
US20100120408A1 (en) | 2008-11-13 | 2010-05-13 | American Express Travel Related Services Company, Inc. | Servicing attributes on a mobile device |
US20100138347A1 (en) | 2007-10-30 | 2010-06-03 | Alibaba Group Holding Capital Place | Account Transaction Management Using Dynamic Account Numbers |
US20100133334A1 (en) | 2008-12-03 | 2010-06-03 | Srinivas Vadhri | System and method to allow access to a value holding account |
US20100145860A1 (en) | 2008-12-08 | 2010-06-10 | Ebay Inc. | Unified identity verification |
US20100161433A1 (en) | 2008-08-04 | 2010-06-24 | Spencer White | Systems and Methods for Handling Point-of-Sale Transactions Using a Mobile Device |
US20100185545A1 (en) | 2009-01-22 | 2010-07-22 | First Data Corporation | Dynamic primary account number (pan) and unique key per card |
US7770789B2 (en) | 2007-05-17 | 2010-08-10 | Shift4 Corporation | Secure payment card transactions |
US7784685B1 (en) | 2007-04-26 | 2010-08-31 | United Services Automobile Association (Usaa) | Secure card |
US20100223186A1 (en) | 2000-04-11 | 2010-09-02 | Hogan Edward J | Method and System for Conducting Secure Payments |
US20100228668A1 (en) | 2000-04-11 | 2010-09-09 | Hogan Edward J | Method and System for Conducting a Transaction Using a Proximity Device and an Identifier |
US20100235284A1 (en) | 2009-03-13 | 2010-09-16 | Gidah, Inc. | Method and systems for generating and using tokens in a transaction handling system |
US7801826B2 (en) | 2002-08-08 | 2010-09-21 | Fujitsu Limited | Framework and system for purchasing of goods and services |
US7805376B2 (en) | 2002-06-14 | 2010-09-28 | American Express Travel Related Services Company, Inc. | Methods and apparatus for facilitating a transaction |
US20100258620A1 (en) | 2009-04-10 | 2010-10-14 | Denise Torreyson | Methods and systems for linking multiple accounts |
US7818264B2 (en) | 2006-06-19 | 2010-10-19 | Visa U.S.A. Inc. | Track data encryption |
US20100291904A1 (en) | 2009-05-13 | 2010-11-18 | First Data Corporation | Systems and methods for providing trusted service management services |
US20100299267A1 (en) | 2009-05-20 | 2010-11-25 | Patrick Faith | Device including encrypted data for expiration date and verification value creation |
US20100306076A1 (en) | 2009-05-29 | 2010-12-02 | Ebay Inc. | Trusted Integrity Manager (TIM) |
US7849020B2 (en) | 2005-04-19 | 2010-12-07 | Microsoft Corporation | Method and apparatus for network transactions |
US7848980B2 (en) | 2006-12-26 | 2010-12-07 | Visa U.S.A. Inc. | Mobile payment system and method using alias |
US7853995B2 (en) | 2005-11-18 | 2010-12-14 | Microsoft Corporation | Short-lived certificate authority service |
US7865414B2 (en) | 2000-03-01 | 2011-01-04 | Passgate Corporation | Method, system and computer readable medium for web site account and e-commerce management from a central location |
US20110010292A1 (en) | 2007-11-29 | 2011-01-13 | Bank Of America Corporation | Payment transactions using payee account aliases |
US20110016320A1 (en) | 2008-01-28 | 2011-01-20 | Paycool International Ltd. | Method for authentication and signature of a user in an application service, using a mobile telephone as a second factor in addition to and independently of a first factor |
US20110016047A1 (en) | 2009-07-16 | 2011-01-20 | Mxtran Inc. | Financial transaction system, automated teller machine (atm), and method for operating an atm |
US7890393B2 (en) | 2002-02-07 | 2011-02-15 | Ebay, Inc. | Method and system for completing a transaction between a customer and a merchant |
US7891563B2 (en) | 2007-05-17 | 2011-02-22 | Shift4 Corporation | Secure payment card transactions |
US20110047076A1 (en) | 2009-08-24 | 2011-02-24 | Mark Carlson | Alias reputation interaction system |
US7908216B1 (en) | 1999-07-22 | 2011-03-15 | Visa International Service Association | Internet payment, authentication and loading system using virtual smart card |
US20110083018A1 (en) | 2009-10-06 | 2011-04-07 | Validity Sensors, Inc. | Secure User Authentication |
US20110087596A1 (en) | 2009-10-13 | 2011-04-14 | Jack Dorsey | Systems and methods for dynamic receipt generation with environmental information |
US20110093397A1 (en) | 2009-10-16 | 2011-04-21 | Mark Carlson | Anti-phishing system and method including list with user data |
US7937324B2 (en) | 2007-09-13 | 2011-05-03 | Visa U.S.A. Inc. | Account permanence |
US20110119155A1 (en) | 2009-05-15 | 2011-05-19 | Ayman Hammad | Verification of portable consumer devices for 3-d secure services |
US7959076B1 (en) | 2007-04-26 | 2011-06-14 | United Services Automobile Association (Usaa) | Secure card |
US20110154466A1 (en) | 2009-12-18 | 2011-06-23 | Sabre Inc., | Tokenized data security |
US20110153437A1 (en) | 2009-12-21 | 2011-06-23 | Verizon Patent And Licensing Inc. | Method and system for providing virtual credit card services |
US20110153498A1 (en) | 2009-12-18 | 2011-06-23 | Oleg Makhotin | Payment Channel Returning Limited Use Proxy Dynamic Value |
US20110161233A1 (en) | 2009-12-30 | 2011-06-30 | First Data Corporation | Secure transaction management |
US20110178926A1 (en) | 2010-01-19 | 2011-07-21 | Mike Lindelsee | Remote Variable Authentication Processing |
US20110191244A1 (en) | 2010-02-02 | 2011-08-04 | Xia Dai | Secured Transaction System |
US7996288B1 (en) | 2000-11-15 | 2011-08-09 | Iprivacy, Llc | Method and system for processing recurrent consumer transactions |
US20110238511A1 (en) | 2010-03-07 | 2011-09-29 | Park Steve H | Fuel dispenser payment system and method |
US20110238573A1 (en) | 2010-03-25 | 2011-09-29 | Computer Associates Think, Inc. | Cardless atm transaction method and system |
US20110246317A1 (en) | 2009-10-23 | 2011-10-06 | Apriva, Llc | System and device for facilitating a transaction through use of a proxy account code |
US20110258111A1 (en) | 2010-04-19 | 2011-10-20 | Thanigaivel Ashwin Raj | Alias management and off-us dda processing |
US8060449B1 (en) | 2009-01-05 | 2011-11-15 | Sprint Communications Company L.P. | Partially delegated over-the-air provisioning of a secure element |
US8060448B2 (en) | 2001-05-30 | 2011-11-15 | Jones Thomas C | Late binding tokens |
US20110295745A1 (en) | 1998-08-31 | 2011-12-01 | Mastercard International Incorporated | Systems and methods for appending supplemental payment data to a transaction message |
US8082210B2 (en) | 2003-04-29 | 2011-12-20 | The Western Union Company | Authentication for online money transfers |
US20120023567A1 (en) | 2010-07-16 | 2012-01-26 | Ayman Hammad | Token validation for advanced authorization |
US8104679B2 (en) | 2003-12-17 | 2012-01-31 | Qsecure, Inc. | Display payment card with fraud and location detection |
US20120030047A1 (en) | 2010-06-04 | 2012-02-02 | Jacob Fuentes | Payment tokenization apparatuses, methods and systems |
US20120028609A1 (en) | 2010-07-27 | 2012-02-02 | John Hruska | Secure financial transaction system using a registered mobile device |
US8109436B1 (en) | 2007-04-26 | 2012-02-07 | United Services Automobile Association (Usaa) | Secure card |
US20120041881A1 (en) | 2010-08-12 | 2012-02-16 | Gourab Basu | Securing external systems with account token substitution |
US8121942B2 (en) | 2007-06-25 | 2012-02-21 | Visa U.S.A. Inc. | Systems and methods for secure and transparent cardless transactions |
US20120047237A1 (en) | 2009-04-16 | 2012-02-23 | Petter Arvidsson | Method, Server, Computer Program and Computer Program Product for Communicating with Secure Element |
US8132723B2 (en) | 2005-07-15 | 2012-03-13 | Serve Virtual Enterprises, Inc. | System and method for immediate issuance of transaction cards |
US20120066078A1 (en) | 2010-09-10 | 2012-03-15 | Bank Of America Corporation | Overage service using overage passcode |
US20120072350A1 (en) | 2002-07-30 | 2012-03-22 | Verifone, Inc. | System and method for mobile payment transactions |
US20120078798A1 (en) | 2010-09-27 | 2012-03-29 | Fidelity National Information Services. | Systems and methods for transmitting financial account information |
US20120078735A1 (en) | 2010-09-28 | 2012-03-29 | John Bauer | Secure account provisioning |
US20120078799A1 (en) | 2008-07-24 | 2012-03-29 | At&T Intellectual Property I, L.P. | Secure payment service and system for interactive voice response (ivr) systems |
US20120095852A1 (en) | 2010-10-15 | 2012-04-19 | John Bauer | Method and system for electronic wallet access |
US20120095865A1 (en) | 2010-10-15 | 2012-04-19 | Ezpayy, Inc. | System And Method For Mobile Electronic Purchasing |
US8171525B1 (en) | 2011-09-15 | 2012-05-01 | Google Inc. | Enabling users to select between secure service providers using a central trusted service manager |
US20120116902A1 (en) | 2009-04-30 | 2012-05-10 | Donald Michael Cardina | Systems and methods for randomized mobile payment |
US20120123940A1 (en) | 2010-11-16 | 2012-05-17 | Killian Patrick L | Methods and systems for universal payment account translation |
WO2012068078A2 (en) | 2010-11-18 | 2012-05-24 | Mobilesphere Holdings LLC | System and method for transaction authentication using a mobile communication device |
US20120143772A1 (en) | 2010-12-02 | 2012-06-07 | Essam Ernest Abadir | Secure Distributed Single Action Payment Authorization System |
US20120143754A1 (en) | 2010-12-03 | 2012-06-07 | Narendra Patel | Enhanced credit card security apparatus and method |
US20120158593A1 (en) | 2010-12-16 | 2012-06-21 | Democracyontheweb, Llc | Systems and methods for facilitating secure transactions |
US20120158580A1 (en) | 2010-12-20 | 2012-06-21 | Antonio Claudiu Eram | System, Method and Apparatus for Mobile Payments Enablement and Order Fulfillment |
US8205791B2 (en) | 2005-10-11 | 2012-06-26 | National Payment Card Association | Payment system and methods |
US20120173431A1 (en) | 2010-12-30 | 2012-07-05 | First Data Corporation | Systems and methods for using a token as a payment in a transaction |
US8219489B2 (en) | 2008-07-29 | 2012-07-10 | Visa U.S.A. Inc. | Transaction processing using a global unique identifier |
US8225385B2 (en) | 2006-03-23 | 2012-07-17 | Microsoft Corporation | Multiple security token transactions |
US8224702B2 (en) | 2007-12-28 | 2012-07-17 | Ebay, Inc. | Systems and methods for facilitating financial transactions over a network |
US20120185386A1 (en) | 2011-01-18 | 2012-07-19 | Bank Of America | Authentication tool |
US8229852B2 (en) | 2007-06-25 | 2012-07-24 | Visa International Service Association | Secure mobile payment system |
WO2012098556A1 (en) | 2011-01-20 | 2012-07-26 | Google Inc | Direct carrier billing |
US20120197807A1 (en) | 2011-01-28 | 2012-08-02 | Joshua Schlesser | Secure online transaction processing |
US20120203666A1 (en) | 2011-02-09 | 2012-08-09 | Tycoon Unlimited, Inc. | Contactless wireless transaction processing system |
US20120203664A1 (en) | 2011-02-09 | 2012-08-09 | Tycoon Unlimited, Inc. | Contactless wireless transaction processing system |
US20120215696A1 (en) | 2001-08-21 | 2012-08-23 | Bookit Oy Ajanvarauspalvelu | Managing recurring payments from mobile terminals |
US20120215688A1 (en) | 2011-02-23 | 2012-08-23 | Mastercard International, Inc. | Demand deposit account payment system |
US20120221421A1 (en) | 2011-02-28 | 2012-08-30 | Ayman Hammad | Secure anonymous transaction apparatuses, methods and systems |
US20120226582A1 (en) | 2010-02-24 | 2012-09-06 | Ayman Hammad | Integration of Payment Capability into Secure Elements of Computers |
US20120231844A1 (en) | 2011-03-11 | 2012-09-13 | Apriva, Llc | System and device for facilitating a transaction by consolidating sim, personal token, and associated applications for electronic wallet transactions |
US20120233004A1 (en) | 2011-03-11 | 2012-09-13 | James Bercaw | System for mobile electronic commerce |
US20120246079A1 (en) | 2011-03-24 | 2012-09-27 | Dave William Wilson | Authentication using application authentication element |
US20120246071A1 (en) | 2011-03-21 | 2012-09-27 | Nikhil Jain | System and method for presentment of nonconfidential transaction token identifier |
US8281991B2 (en) | 2008-08-07 | 2012-10-09 | Visa U.S.A. Inc. | Transaction secured in an untrusted environment |
WO2012142370A2 (en) | 2011-04-15 | 2012-10-18 | Shift4 Corporation | Method and system for enabling merchants to share tokens |
US20120265631A1 (en) | 2011-04-15 | 2012-10-18 | Shift4 Corporation | Method and system for enabling merchants to share tokens |
US20120271770A1 (en) | 2011-04-20 | 2012-10-25 | Visa International Service Association | Managing electronic tokens in a transaction processing system |
US20120297446A1 (en) | 2008-03-03 | 2012-11-22 | Webb Timothy A | Authentication System and Method |
US20120300932A1 (en) | 2011-05-26 | 2012-11-29 | First Data Corporation | Systems and Methods for Encrypting Mobile Device Communications |
US20120304273A1 (en) | 2011-05-27 | 2012-11-29 | Fifth Third Processing Solutions, Llc | Tokenizing Sensitive Data |
US20120310831A1 (en) | 2011-06-02 | 2012-12-06 | Visa International Service Association | Reputation management in a transaction processing system |
WO2012167941A1 (en) | 2011-06-09 | 2012-12-13 | Gemalto Sa | Method to validate a transaction between a user and a service provider |
US20120317036A1 (en) | 2011-06-07 | 2012-12-13 | Bower Mark F | Payment card processing system with structure preserving encryption |
US20120316992A1 (en) | 2011-06-07 | 2012-12-13 | Oborne Timothy W | Payment privacy tokenization apparatuses, methods and systems |
US20120317035A1 (en) | 2009-01-22 | 2012-12-13 | First Data Corporation | Processing transactions with an extended application id and dynamic cryptograms |
US8346666B2 (en) | 2010-01-19 | 2013-01-01 | Visa Intellectual Service Association | Token based transaction authentication |
US20130018757A1 (en) | 2011-07-15 | 2013-01-17 | Lisa Anderson | Hosted order page/silent order post plus fraud detection |
US20130017784A1 (en) | 2005-12-31 | 2013-01-17 | Blaze Mobile, Inc. | Ota provisioning to a secure element used for nfc transacations |
US20130019098A1 (en) | 2009-10-27 | 2013-01-17 | Google Inc. | Systems and methods for authenticating an electronic transaction |
US20130031006A1 (en) | 2011-07-29 | 2013-01-31 | Mccullagh Niall | Passing payment tokens through an hop / sop |
US8380177B2 (en) | 2010-04-09 | 2013-02-19 | Paydiant, Inc. | Mobile phone payment processing methods and systems |
US20130054474A1 (en) | 2011-08-30 | 2013-02-28 | C. Douglas Yeager | Systems and methods for authorizing a transaction with an unexpected cryptogram |
US20130054337A1 (en) | 2011-08-22 | 2013-02-28 | American Express Travel Related Services Company, Inc. | Methods and systems for contactless payments for online ecommerce checkout |
US8402555B2 (en) | 2010-03-21 | 2013-03-19 | William Grecia | Personalized digital media access system (PDMAS) |
US8403211B2 (en) | 2008-09-04 | 2013-03-26 | Metabank | System, program product and methods for retail activation and reload associated with partial authorization transactions |
US20130081122A1 (en) | 2011-09-23 | 2013-03-28 | Jerome Svigals | A Method, Device and System for Secure Transactions |
US8412837B1 (en) | 2004-07-08 | 2013-04-02 | James A. Roskind | Data privacy |
WO2013048538A1 (en) | 2011-10-01 | 2013-04-04 | Intel Corporation | Cloud based credit card emulation |
US8417642B2 (en) | 2004-09-14 | 2013-04-09 | Cork Group Trading Ltd. | Online commercial transaction system and method of operation thereof |
WO2013056104A1 (en) | 2011-10-12 | 2013-04-18 | C-Sam, Inc. | A multi-tiered secure mobile transactions enabling platform |
US20130111599A1 (en) | 2011-11-01 | 2013-05-02 | Michael J. Gargiulo | Systems, methods, and computer program products for interfacing multiple service provider trusted service managers and secure elements |
US20130110658A1 (en) | 2011-05-05 | 2013-05-02 | Transaction Network Services, Inc. | Systems and methods for enabling mobile payments |
US20130117185A1 (en) | 2011-11-01 | 2013-05-09 | Stripe, Inc. | Method for conducting a transaction between a merchant site and a customer's electronic device without exposing payment information to a server-side application of the merchant site |
US20130124291A1 (en) | 2007-11-30 | 2013-05-16 | Blaze Mobile, Inc. | Remote transaction processing with multiple payment mechanisms |
US20130124364A1 (en) | 2011-11-13 | 2013-05-16 | Millind Mittal | System and method of electronic payment using payee provided transaction identification codes |
US8447699B2 (en) | 2009-10-13 | 2013-05-21 | Qualcomm Incorporated | Global secure service provider directory |
US8458487B1 (en) | 2010-03-03 | 2013-06-04 | Liaison Technologies, Inc. | System and methods for format preserving tokenization of sensitive information |
US8453925B2 (en) | 2006-03-02 | 2013-06-04 | Visa International Service Association | Method and system for performing two factor authentication in mail order and telephone order transactions |
US20130145172A1 (en) | 2011-12-06 | 2013-06-06 | Wwpass Corporation | Token activation |
US20130145148A1 (en) | 2011-12-06 | 2013-06-06 | Wwpass Corporation | Passcode restoration |
US20130144888A1 (en) | 2011-12-05 | 2013-06-06 | Patrick Faith | Dynamic network analytics system |
US20130159184A1 (en) | 2011-12-15 | 2013-06-20 | Visa International Service Association | System and method of using load network to associate product or service with a consumer token |
US20130159178A1 (en) | 2011-12-14 | 2013-06-20 | Firethorn Mobile, Inc. | System and Method For Loading A Virtual Token Managed By A Mobile Wallet System |
US20130166402A1 (en) | 2011-12-21 | 2013-06-27 | Stephen A. Parento | Methods and systems for providing a payment account with adaptive interchange |
US20130166456A1 (en) | 2010-09-07 | 2013-06-27 | Zte Corporation | System and Method for Remote Payment Based on Mobile Terminal |
US20130173736A1 (en) | 2011-12-29 | 2013-07-04 | the Province of Ontario, Canada) | Communications system providing enhanced trusted service manager (tsm)verification features and related methods |
US20130191227A1 (en) | 2012-01-19 | 2013-07-25 | Mastercard International Incorporated | System and method to enable a network of digital wallets |
US20130191289A1 (en) | 2011-04-15 | 2013-07-25 | Shift4 Corporation | Method and system for utilizing authorization factor pools |
US20130191286A1 (en) | 2011-04-15 | 2013-07-25 | Shift4 Corporation | Merchant-based token sharing |
US20130198080A1 (en) | 2012-01-26 | 2013-08-01 | Lisa Anderson | System and method of providing tokenization as a service |
US20130198071A1 (en) | 2012-01-27 | 2013-08-01 | Penny Diane Jurss | Mobile services remote deposit capture |
US8504478B2 (en) | 2007-12-21 | 2013-08-06 | American Express Travel Related Services Company, Inc. | Systems, methods and computer program products for performing mass transit merchant transactions |
US8504475B2 (en) | 2009-08-10 | 2013-08-06 | Visa International Service Association | Systems and methods for enrolling users in a payment service |
US20130204787A1 (en) | 2012-02-03 | 2013-08-08 | Pieter Dubois | Authentication & authorization of transactions using an external alias |
US20130204793A1 (en) | 2011-05-17 | 2013-08-08 | Kevin S. Kerridge | Smart communication device secured electronic payment system |
US20130200146A1 (en) | 2012-02-03 | 2013-08-08 | Ali Minaei Moghadam | Adding card to mobile/cloud wallet using nfc |
US8510816B2 (en) | 2010-02-25 | 2013-08-13 | Secureauth Corporation | Security device provisioning |
US20130212024A1 (en) | 2012-02-10 | 2013-08-15 | Protegrity Corporation | Tokenization in distributed payment environments |
US20130212017A1 (en) | 2012-02-14 | 2013-08-15 | N.B. Development Services Inc. | Transaction system and method of conducting a transaction |
US20130212026A1 (en) | 2012-01-05 | 2013-08-15 | Glenn Powell | Data protection with translation |
US20130218769A1 (en) | 2011-08-23 | 2013-08-22 | Stacy Pourfallah | Mobile Funding Method and System |
US20130226813A1 (en) | 2012-02-23 | 2013-08-29 | Robert Matthew Voltz | Cyberspace Identification Trust Authority (CITA) System and Method |
US20130226802A1 (en) | 2003-08-18 | 2013-08-29 | Ayman Hammad | Verification value system and method |
US20130226799A1 (en) | 2011-08-23 | 2013-08-29 | Thanigaivel Ashwin Raj | Authentication process for value transfer machine |
US8528067B2 (en) | 2010-01-12 | 2013-09-03 | Visa International Service Association | Anytime validation for verification tokens |
US8533860B1 (en) | 2010-03-21 | 2013-09-10 | William Grecia | Personalized digital media access system—PDMAS part II |
US8538845B2 (en) | 2011-06-03 | 2013-09-17 | Mozido, Llc | Monetary transaction system |
US20130246258A1 (en) | 2012-03-15 | 2013-09-19 | Firethorn Mobile, Inc. | System and method for managing payment in transactions with a pcd |
US20130246259A1 (en) | 2012-03-15 | 2013-09-19 | Firethorn Mobile, Inc. | System and method for managing payment in transactions with a pcd |
US20130246261A1 (en) | 2011-08-18 | 2013-09-19 | Thomas Purves | Multi-Directional Wallet Connector Apparatuses, Methods and Systems |
US20130246199A1 (en) | 2012-03-14 | 2013-09-19 | Mark Carlson | Point-of-transaction account feature redirection apparatuses, methods and systems |
US20130246202A1 (en) | 2012-03-15 | 2013-09-19 | Ebay Inc. | Systems, Methods, and Computer Program Products for Using Proxy Accounts |
US20130246267A1 (en) | 2012-03-15 | 2013-09-19 | Ebay Inc. | Systems, Methods, and Computer Program Products for Using Proxy Accounts |
US20130254117A1 (en) | 2011-12-30 | 2013-09-26 | Clay W. von Mueller | Secured transaction system and method |
US20130254052A1 (en) | 2012-03-20 | 2013-09-26 | First Data Corporation | Systems and Methods for Facilitating Payments Via a Peer-to-Peer Protocol |
US20130254028A1 (en) | 2012-03-22 | 2013-09-26 | Corbuss Kurumsal Telekom Hizmetleri A.S. | System and method for conducting mobile commerce |
US20130254102A1 (en) | 2012-03-20 | 2013-09-26 | First Data Corporation | Systems and Methods for Distributing Tokenization and De-Tokenization Services |
US20130262317A1 (en) | 2012-04-02 | 2013-10-03 | Mastercard International Incorporated | Systems and methods for processing mobile payments by provisoning credentials to mobile devices without secure elements |
US20130262316A1 (en) | 2012-03-30 | 2013-10-03 | John Hruska | Securely Selling and Purchasing of Goods through Social Network Sites Using a Secure Mobile Wallet System as a Mobile Commerce |
US20130262296A1 (en) | 2002-04-23 | 2013-10-03 | George F. Thomas | Payment identification code and payment system using the same |
US20130262302A1 (en) | 2012-04-02 | 2013-10-03 | Jvl Ventures, Llc | Systems, methods, and computer program products for provisioning payment accounts into mobile wallets and managing events |
US8555079B2 (en) | 2011-12-06 | 2013-10-08 | Wwpass Corporation | Token management |
US20130275308A1 (en) | 2010-11-29 | 2013-10-17 | Mobay Technologies Limited | System for verifying electronic transactions |
US20130275300A1 (en) | 2010-07-06 | 2013-10-17 | Patrick Killian | Virtual wallet account with automatic-loading |
US20130275307A1 (en) | 2012-04-13 | 2013-10-17 | Mastercard International Incorporated | Systems, methods, and computer readable media for conducting a transaction using cloud based credentials |
US8566168B1 (en) | 2012-01-05 | 2013-10-22 | Sprint Communications Company L.P. | Electronic payment using a proxy account number stored in a secure element |
US20130282502A1 (en) | 2012-04-18 | 2013-10-24 | Google Inc. | Processing payment transactions without a secure element |
US20130282588A1 (en) | 2012-04-22 | 2013-10-24 | John Hruska | Consumer, Merchant and Mobile Device Specific, Real-Time Dynamic Tokenization Activation within a Secure Mobile-Wallet Financial Transaction System |
US8567670B2 (en) | 2009-03-27 | 2013-10-29 | Intersections Inc. | Dynamic card verification values and credit transactions |
US8571939B2 (en) | 2010-07-07 | 2013-10-29 | Toshiba Global Commerce Solutions Holdings Corporation | Two phase payment link and authorization for mobile devices |
US8578176B2 (en) | 2008-03-26 | 2013-11-05 | Protegrity Corporation | Method and apparatus for tokenization of sensitive sets of characters |
US8577813B2 (en) | 2006-02-21 | 2013-11-05 | Universal Secure Registry, Llc | Universal secure registry |
US8577803B2 (en) | 2011-06-03 | 2013-11-05 | Visa International Service Association | Virtual wallet card selection apparatuses, methods and systems |
US20130297501A1 (en) | 2012-05-04 | 2013-11-07 | Justin Monk | System and method for local data conversion |
US20130297508A1 (en) | 2006-11-16 | 2013-11-07 | Net 1 Ueps Technologies Inc. | Secure financial transactions |
US20130297504A1 (en) | 2012-05-04 | 2013-11-07 | Mastercard International Incorporated | Transaction data tokenization |
US8584251B2 (en) | 2009-04-07 | 2013-11-12 | Princeton Payment Solutions | Token-based payment processing system |
US8589271B2 (en) | 2002-02-04 | 2013-11-19 | Alexander William EVANS | System and method for verification, authentication, and notification of transactions |
US20130308778A1 (en) | 2012-05-21 | 2013-11-21 | Klaus S. Fosmark | Secure registration of a mobile device for use with a session |
US20130311382A1 (en) | 2012-05-21 | 2013-11-21 | Klaus S. Fosmark | Obtaining information for a payment transaction |
US8595098B2 (en) | 2009-03-18 | 2013-11-26 | Network Merchants, Inc. | Transmission of sensitive customer information during electronic-based transactions |
US8595850B2 (en) | 2012-01-30 | 2013-11-26 | Voltage Security, Inc. | System for protecting sensitive data with distributed tokenization |
WO2013179271A2 (en) | 2012-06-01 | 2013-12-05 | Mani Venkatachalam Sthanu Subra | Method and system for human assisted secure payment by phone to an insecure third-party service provider |
US8606720B1 (en) | 2011-11-13 | 2013-12-10 | Google Inc. | Secure storage of payment information on client devices |
US8606638B2 (en) | 2009-03-02 | 2013-12-10 | First Data Corporation | Systems, methods and apparatus for facilitating transactions using a mobile device |
US20130332344A1 (en) | 2012-06-06 | 2013-12-12 | Visa International Service Association | Method and system for correlating diverse transaction data |
US20130339253A1 (en) | 2011-08-31 | 2013-12-19 | Dan Moshe Sincai | Mobile Device Based Financial Transaction System |
US8615468B2 (en) | 2010-01-27 | 2013-12-24 | Ca, Inc. | System and method for generating a dynamic card value |
US20130346314A1 (en) | 2007-10-02 | 2013-12-26 | American Express Travel Related Services Company Inc. | Dynamic security code push |
US20130346305A1 (en) | 2012-06-26 | 2013-12-26 | Carta Worldwide Inc. | Mobile wallet payment processing |
US20140007213A1 (en) | 2012-06-29 | 2014-01-02 | Wepay, Inc. | Systems and methods for push notification based application authentication and authorization |
US20140013106A1 (en) | 2012-07-03 | 2014-01-09 | International Business Machines Corporation | Issuing, presenting and challenging mobile device identification documents |
US20140013452A1 (en) | 2012-07-03 | 2014-01-09 | Selim Aissi | Data protection hub |
US20140019352A1 (en) | 2011-02-22 | 2014-01-16 | Visa International Service Association | Multi-purpose virtual card transaction apparatuses, methods and systems |
US8635157B2 (en) | 2010-07-19 | 2014-01-21 | Payme, Inc. | Mobile system and method for payments and non-financial transactions |
US20140025958A1 (en) | 2012-07-19 | 2014-01-23 | Bank Of America Corporation | Implementing security measures for authorized tokens used in mobile transactions |
US20140025585A1 (en) | 2012-07-19 | 2014-01-23 | Bank Of America Corporation | Distributing authorized tokens to conduct mobile transactions |
US20140025581A1 (en) | 2012-07-19 | 2014-01-23 | Bank Of America Corporation | Mobile transactions using authorized tokens |
US20140032418A1 (en) | 2012-07-25 | 2014-01-30 | Lance Weber | Upstream and downstream data conversion |
US8646059B1 (en) | 2010-12-17 | 2014-02-04 | Google Inc. | Wallet application for interacting with a secure element application without a trusted server for authentication |
US20140040144A1 (en) | 2012-07-31 | 2014-02-06 | Michelle K. Plomske | Systems and Methods for Multi-Merchant Tokenization |
US20140040139A1 (en) | 2011-12-19 | 2014-02-06 | Sequent Software, Inc. | System and method for dynamic temporary payment authorization in a portable communication device |
US20140040628A1 (en) | 2012-08-03 | 2014-02-06 | Vasco Data Security, Inc. | User-convenient authentication method and apparatus using a mobile authentication application |
US20140040145A1 (en) | 2012-07-31 | 2014-02-06 | Matthew D. Ozvat | Systems and methods for distributed enhanced payment processing |
US20140040148A1 (en) | 2012-07-31 | 2014-02-06 | Mercury Payment Systems, Llc | Systems and methods for arbitraged enhanced payment processing |
US20140047551A1 (en) | 2012-08-10 | 2014-02-13 | Sekhar Nagasundaram | Privacy firewall |
US20140052637A1 (en) | 2012-08-17 | 2014-02-20 | Google Inc. | Portable device wireless reader and payment transaction terminal secure memory functionality |
US20140068706A1 (en) | 2012-08-28 | 2014-03-06 | Selim Aissi | Protecting Assets on a Device |
US20140074637A1 (en) | 2012-09-11 | 2014-03-13 | Visa International Service Association | Cloud-based virtual wallet nfc apparatuses, methods and systems |
US20140108172A1 (en) | 2012-10-16 | 2014-04-17 | Lance Weber | Dynamic point of sale system integrated with reader device |
US20140114857A1 (en) | 2012-10-23 | 2014-04-24 | Alfred William Griggs | Transaction initiation determination system utilizing transaction data elements |
US20140143137A1 (en) | 2012-11-21 | 2014-05-22 | Mark Carlson | Device pairing via trusted intermediary |
US8751642B2 (en) | 2010-01-31 | 2014-06-10 | Hewlett-Packard Development Company, L.P. | Method and system for management of sampled traffic data |
US8751391B2 (en) | 2002-03-29 | 2014-06-10 | Jpmorgan Chase Bank, N.A. | System and process for performing purchase transactions using tokens |
US20140164243A1 (en) | 2012-12-07 | 2014-06-12 | Christian Aabye | Dynamic Account Identifier With Return Real Account Identifier |
US8762263B2 (en) | 2005-09-06 | 2014-06-24 | Visa U.S.A. Inc. | System and method for secured account numbers in proximity devices |
US20140189350A1 (en) * | 2012-12-28 | 2014-07-03 | Davit Baghdasaryan | System and method for efficiently enrolling, registering, and authenticating with multiple authentication devices |
US20140188586A1 (en) | 2013-01-02 | 2014-07-03 | Andrew Carpenter | Tokenization and third-party interaction |
US8838982B2 (en) | 2011-09-21 | 2014-09-16 | Visa International Service Association | Systems and methods to secure user identification |
US20140289528A1 (en) * | 2013-03-22 | 2014-09-25 | Davit Baghdasaryan | System and method for privacy-enhanced data synchronization |
US20140289833A1 (en) * | 2013-03-22 | 2014-09-25 | Marc Briceno | Advanced authentication techniques and applications |
US20140294701A1 (en) | 2013-03-27 | 2014-10-02 | Ut-Battelle, Llc | Surface-functionalized mesoporous carbon materials |
US8856539B2 (en) | 2001-03-16 | 2014-10-07 | Universal Secure Registry, Llc | Universal secure registry |
US20140310183A1 (en) | 2013-04-15 | 2014-10-16 | Lance Weber | Embedded acceptance system |
US20140324690A1 (en) | 2013-01-11 | 2014-10-30 | American Express Travel Related Services Company, Inc. | System and method for a single digital wallet dynamic checkout tool |
US20140330722A1 (en) | 2013-05-02 | 2014-11-06 | Prasanna Laxminarayanan | System and method for using an account sequence identifier |
US20140331265A1 (en) | 2013-05-01 | 2014-11-06 | Microsoft Corporation | Integrated interactive television entertainment system |
US20140330721A1 (en) | 2013-05-02 | 2014-11-06 | Quan Wang | Systems and methods for verifying and processing transactions using virtual currency |
US8887308B2 (en) | 2010-03-21 | 2014-11-11 | William Grecia | Digital cloud access (PDMAS part III) |
US20140337236A1 (en) | 2013-05-10 | 2014-11-13 | Erick Wong | Device provisioning using partial personalization scripts |
US20140344153A1 (en) | 2013-05-15 | 2014-11-20 | Thanigaivel Ashwin Raj | Mobile tokenization hub |
US20140372308A1 (en) | 2013-06-17 | 2014-12-18 | John Sheets | System and method using merchant token |
US20150019443A1 (en) | 2013-07-15 | 2015-01-15 | John Sheets | Secure remote payment transaction processing |
US20150032625A1 (en) | 2013-07-24 | 2015-01-29 | Matthew Dill | Systems and methods for communicating risk using token assurance data |
US20150046338A1 (en) | 2013-08-08 | 2015-02-12 | Prasanna Laxminarayanan | Multi-network tokenization processing |
US20150046339A1 (en) | 2013-08-08 | 2015-02-12 | Erick Wong | Methods and systems for provisioning mobile devices with payment credentials |
US20150052064A1 (en) | 2013-08-15 | 2015-02-19 | Igor Karpenko | Secure Remote Payment Transaction Processing Using a Secure Element |
US20150081544A1 (en) | 2013-09-17 | 2015-03-19 | Egan Schulz | Physical interaction dependent transactions |
US20150088756A1 (en) | 2013-09-20 | 2015-03-26 | Oleg Makhotin | Secure Remote Payment Transaction Processing Including Consumer Authentication |
US20150106239A1 (en) | 2013-10-11 | 2015-04-16 | Ajit Gaddam | Tokenization revocation list |
US20150112870A1 (en) | 2013-10-18 | 2015-04-23 | Sekhar Nagasundaram | Contextual transaction token methods and systems |
US20150112871A1 (en) | 2013-10-21 | 2015-04-23 | Phillip Kumnick | Multi-network token bin routing with defined verification parameters |
US20150120472A1 (en) | 2013-10-29 | 2015-04-30 | Christian Aabye | Digital wallet system and method |
US20150127547A1 (en) | 2013-10-11 | 2015-05-07 | Glenn Leon Powell | Network token system |
US20150127529A1 (en) | 2013-11-05 | 2015-05-07 | Oleg Makhotin | Methods and systems for mobile payment application selection and management using an application linker |
US20150140960A1 (en) | 2013-11-19 | 2015-05-21 | Glenn Leon Powell | Automated Account Provisioning |
US20150142673A1 (en) | 2013-11-18 | 2015-05-21 | Mark Nelsen | Methods and systems for token request management |
US20150161597A1 (en) | 2013-12-09 | 2015-06-11 | Kaushik Subramanian | Transactions using temporary credential data |
US9065643B2 (en) | 2006-04-05 | 2015-06-23 | Visa U.S.A. Inc. | System and method for account identifier obfuscation |
US20150180836A1 (en) | 2013-12-19 | 2015-06-25 | Erick Wong | Cloud-based transactions methods and systems |
US9070129B2 (en) | 2007-09-04 | 2015-06-30 | Visa U.S.A. Inc. | Method and system for securing data fields |
US20150186864A1 (en) * | 2013-12-27 | 2015-07-02 | Christopher Jones | Processing a transaction using multiple application identifiers |
US20150193222A1 (en) | 2014-01-03 | 2015-07-09 | Kiushan Pirzadeh | Systems and methods for updatable applets |
US20150195133A1 (en) | 2014-01-07 | 2015-07-09 | John Sheets | Methods and systems for provisioning multiple devices |
US20150199689A1 (en) | 2014-01-14 | 2015-07-16 | Phillip Kumnick | Payment account identifier system |
US20150199679A1 (en) | 2014-01-13 | 2015-07-16 | Karthikeyan Palanisamy | Multiple token provisioning |
US9100826B2 (en) | 2006-02-21 | 2015-08-04 | Universal Secure Registry, Llc | Method and apparatus for secure access payment and identification |
US20150220917A1 (en) | 2014-02-04 | 2015-08-06 | Christian Aabye | Token verification using limited use certificates |
US20150269566A1 (en) | 2014-03-18 | 2015-09-24 | Ajit Gaddam | Systems and methods for locally derived tokens |
US20150269578A1 (en) * | 2014-03-21 | 2015-09-24 | Ca, Inc. | Controlling ecommerce authentication with non-linear analytical models |
US20150278799A1 (en) | 2014-03-27 | 2015-10-01 | Karthikeyan Palanisamy | System incorporating wireless share process |
US20150287037A1 (en) | 2014-04-08 | 2015-10-08 | Diane Salmon | Data passed in an interaction |
US9160741B2 (en) | 2007-04-17 | 2015-10-13 | Visa U.S.A. Inc. | Remote authentication system |
US20150312038A1 (en) | 2014-04-23 | 2015-10-29 | Karthikeyan Palanisamy | Token security on a communication device |
US20150319158A1 (en) | 2014-05-05 | 2015-11-05 | Phillip Kumnick | System and method for token domain control |
US20150326559A1 (en) * | 2009-02-03 | 2015-11-12 | Inbay Technologies Inc. | Method and system for authorizing secure electronic transactions using a security device |
US20150324736A1 (en) | 2014-05-08 | 2015-11-12 | John Sheets | Split shipment processing |
US20150332262A1 (en) | 2014-05-13 | 2015-11-19 | Phaneendra Ramaseshu Lingappa | Master applet for secure remote payment processing |
US20150356560A1 (en) | 2014-06-05 | 2015-12-10 | Vishwanath Shastry | Identification and Verification for Provisioning Mobile Application |
US20150363775A1 (en) | 2013-01-10 | 2015-12-17 | Tendyron Corporation | Key protection method and system |
US20150363781A1 (en) | 2013-02-26 | 2015-12-17 | Visa International Service Association | Methods and systems for providing payment credentials |
US9229964B2 (en) | 2011-10-27 | 2016-01-05 | Visa International Business Machines Corporation | Database cloning and migration for quality assurance |
US9245267B2 (en) | 2010-03-03 | 2016-01-26 | Visa International Service Association | Portable account number for consumer payment account |
US20160028550A1 (en) | 2014-07-23 | 2016-01-28 | Ajit Gaddam | Systems and methods for secure detokenization |
US20160036790A1 (en) | 2014-07-31 | 2016-02-04 | Vishwanath Shastry | System and method for identity verification across mobile applications |
US9256871B2 (en) | 2012-07-26 | 2016-02-09 | Visa U.S.A. Inc. | Configurable payment tokens |
US20160042263A1 (en) | 2014-08-11 | 2016-02-11 | Ajit Gaddam | Mobile device with scannable image including dynamic data |
US20160065370A1 (en) | 2014-08-29 | 2016-03-03 | Eric Le Saint | Methods for secure cryptogram generation |
US9280765B2 (en) | 2011-04-11 | 2016-03-08 | Visa International Service Association | Multiple tokenization for authentication |
US20160092872A1 (en) | 2014-09-29 | 2016-03-31 | Gyan Prakash | Transaction Risk Based Token |
US20160092696A1 (en) | 2014-09-26 | 2016-03-31 | Abhishek Guglani | Remote Server Encrypted Data Provisioning System and Methods |
US20160092874A1 (en) | 2013-04-04 | 2016-03-31 | Visa International Service Association | Method and system for conducting pre-authorized financial transactions |
US20160103675A1 (en) | 2014-10-10 | 2016-04-14 | Christian Aabye | Methods and systems for partial personalization during mobile application update |
US20160119296A1 (en) | 2014-10-22 | 2016-04-28 | Prasanna Laxminarayanan | Token Enrollment System and Method |
US20160132878A1 (en) | 2013-07-02 | 2016-05-12 | Visa International Service Association | Payment Card Including User Interface for Use with Payment Card Acceptance Terminal |
US20160140545A1 (en) | 2013-12-19 | 2016-05-19 | Christian Flurscheim | Cloud-based transactions with magnetic secure transmission |
US20160148212A1 (en) | 2014-11-25 | 2016-05-26 | James Dimmick | Systems communications with non-sensitive identifiers |
US20160148197A1 (en) | 2014-11-26 | 2016-05-26 | James Dimmick | Tokenization request via access device |
US20160173483A1 (en) | 2014-12-12 | 2016-06-16 | Erick Wong | Automated access data provisioning |
US20160171479A1 (en) | 2014-12-12 | 2016-06-16 | Gyan Prakash | Provisioning platform for machine-to-machine devices |
US20160197725A1 (en) | 2009-05-15 | 2016-07-07 | Visa International Service Association | Integration of verification tokens with mobile communication devices |
US20160210628A1 (en) | 2015-01-20 | 2016-07-21 | Keith McGuire | Secure payment processing using authorization request |
US20160217461A1 (en) | 2015-01-23 | 2016-07-28 | Ajit Gaddam | Transaction utilizing anonymized user data |
US20160218875A1 (en) | 2015-01-27 | 2016-07-28 | Eric Le Saint | Methods for secure credential provisioning |
US20160224977A1 (en) | 2015-01-30 | 2016-08-04 | Yaasha Sabba | Token check offline |
US20160232527A1 (en) | 2015-02-09 | 2016-08-11 | Barbara Patterson | Token processing utilizing multiple authorizations |
US20160239842A1 (en) | 2015-02-13 | 2016-08-18 | Duane Cash | Peer forward authorization of digital requests |
US20160269391A1 (en) | 2015-03-12 | 2016-09-15 | Ajit Gaddam | Methods and systems for providing a low value token buffer |
US20160308995A1 (en) | 2015-04-16 | 2016-10-20 | Robert Youdale | Systems and methods for processing dormant virtual access devices |
US20160350748A1 (en) | 2015-05-27 | 2016-12-01 | Bank Of America Corporation | Providing Access to Account Information Using Authentication Tokens |
US9519901B1 (en) | 2015-09-16 | 2016-12-13 | Square, Inc. | Biometric payment technology |
US20170076288A1 (en) | 2015-09-15 | 2017-03-16 | Amitabh Awasthi | Authorization of credential on file transactions |
US20170109745A1 (en) | 2015-10-15 | 2017-04-20 | Mohammad Al-Bedaiwi | Instant token issuance system |
US20170109751A1 (en) * | 2014-05-02 | 2017-04-20 | Nok Nok Labs, Inc. | System and method for carrying strong authentication events over different channels |
US20170148013A1 (en) | 2015-11-23 | 2017-05-25 | Pankaj Rajurkar | Providing shipping details on a pay transaction via the internet |
US20170163617A1 (en) | 2015-12-04 | 2017-06-08 | Prasanna Laxminarayanan | Unique code for token verification |
US20170163629A1 (en) | 2015-12-04 | 2017-06-08 | Simon Law | Secure token distribution |
US9680942B2 (en) | 2014-05-01 | 2017-06-13 | Visa International Service Association | Data verification using access device |
US20170186001A1 (en) | 2009-11-05 | 2017-06-29 | Judson Reed | Encryption switch processing |
US20170201520A1 (en) | 2016-01-07 | 2017-07-13 | Madhuri CHANDOOR | Systems and methods for device push provisioning |
US20170221054A1 (en) | 2016-02-01 | 2017-08-03 | Christian Flurscheim | Systems and methods for code display and use |
US20170228723A1 (en) | 2016-02-09 | 2017-08-10 | Mary Taylor | Resource provider account token provisioning and processing |
US20170228728A1 (en) | 2014-10-24 | 2017-08-10 | Visa Europe Limited | Transaction messaging |
US20170236113A1 (en) | 2016-02-12 | 2017-08-17 | Jalpesh CHITALIA | Authentication systems and methods using location matching |
US9780950B1 (en) | 2013-03-15 | 2017-10-03 | Symantec Corporation | Authentication of PKI credential by use of a one time password and pin |
US20170293914A1 (en) | 2016-04-11 | 2017-10-12 | Aparna Krishnan Girish | Expedited e-commerce tokenization |
US20170295155A1 (en) | 2016-04-07 | 2017-10-12 | Erick Wong | Tokenization of co-network accounts |
US20170337549A1 (en) | 2016-05-19 | 2017-11-23 | Erick Wong | Systems and methods for creating subtokens using primary tokens |
US20170344732A1 (en) | 2016-05-24 | 2017-11-30 | Mastercard International Incorporated | System and method for processing a transaction with secured authentication |
US20170364903A1 (en) | 2014-08-22 | 2017-12-21 | Eduardo Lopez | Embedding cloud-based functionalities in a communication device |
US20170364914A1 (en) | 2016-06-17 | 2017-12-21 | Kelvan Howard | Token aggregation system for multi-party transactions |
US20170373852A1 (en) | 2016-06-24 | 2017-12-28 | Michael CASSIN | Unique token authentication cryptogram |
US20180006821A1 (en) | 2015-02-17 | 2018-01-04 | Visa International Service Association | Token and cryptogram using transaction specific information |
US20180047023A1 (en) | 2015-03-05 | 2018-02-15 | Bell Identification Bv | Method and apparatus for authenticating and processing secure transactions using a mobile device |
US20180075081A1 (en) | 2016-09-14 | 2018-03-15 | Tommy Chipman | Self-cleaning token vault |
US20180268405A1 (en) | 2017-03-17 | 2018-09-20 | Eduardo Lopez | Replacing token on a multi-token user device |
US20180268399A1 (en) | 2017-03-16 | 2018-09-20 | Jpmorgan Chase Bank, N.A. | Systems and methods for supporting legacy and tokenized e-commerce |
US20180285875A1 (en) | 2017-03-31 | 2018-10-04 | Simon Law | Static token systems and methods for representing dynamic real credentials |
US20180324184A1 (en) | 2017-05-02 | 2018-11-08 | Venkata Naga Pradeep Kumar Kaja | System and method using interaction token |
US20190020478A1 (en) | 2017-07-14 | 2019-01-17 | Aparna Girish | Token provisioning utilizing a secure authentication system |
US20190147439A1 (en) | 2016-07-19 | 2019-05-16 | Visa International Service Association | Method of distributing tokens and managing token relationships |
US20190356489A1 (en) | 2018-05-18 | 2019-11-21 | Visa International Service Association | Method and system for access token processing |
US20190384896A1 (en) | 2018-06-18 | 2019-12-19 | Visa International Service Association | Recurring token transactions |
US20190392431A1 (en) | 2018-06-22 | 2019-12-26 | Visa International Service Association | Secure remote transaction framework using dynamic secure checkout element |
US20200267153A1 (en) | 2016-11-28 | 2020-08-20 | Visa International Service Association | Access identifier provisioning to application |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002529861A (en) * | 1998-11-09 | 2002-09-10 | ワンコア ファイナンシャル ネットワーク インク | System and method for performing integrated financial transactions |
US20040002878A1 (en) * | 2002-06-28 | 2004-01-01 | International Business Machines Corporation | Method and system for user-determined authentication in a federated environment |
US20090198618A1 (en) * | 2008-01-15 | 2009-08-06 | Yuen Wah Eva Chan | Device and method for loading managing and using smartcard authentication token and digital certificates in e-commerce |
WO2010051860A1 (en) * | 2008-11-10 | 2010-05-14 | Nokia Siemens Networks Oy | Methods, apparatuses, system and related computer program product for privacy-enhanced identity management |
DE102010030590A1 (en) * | 2010-06-28 | 2011-12-29 | Bundesdruckerei Gmbh | Procedure for generating a certificate |
US20120136796A1 (en) * | 2010-09-21 | 2012-05-31 | Ayman Hammad | Device Enrollment System and Method |
US10521794B2 (en) * | 2012-12-10 | 2019-12-31 | Visa International Service Association | Authenticating remote transactions using a mobile device |
US9210254B2 (en) * | 2013-10-09 | 2015-12-08 | Shango Corp, LLC | Unified services platform using a telephone number as a common subscriber identifier |
US9424572B2 (en) * | 2014-03-04 | 2016-08-23 | Bank Of America Corporation | Online banking digital wallet management |
US10325259B1 (en) * | 2014-03-29 | 2019-06-18 | Acceptto Corporation | Dynamic authorization with adaptive levels of assurance |
CN106416189B (en) * | 2014-04-14 | 2020-09-25 | 万事达卡国际股份有限公司 | System and method for improved authentication |
US9577999B1 (en) * | 2014-05-02 | 2017-02-21 | Nok Nok Labs, Inc. | Enhanced security for registration of authentication devices |
US20160164880A1 (en) * | 2014-12-03 | 2016-06-09 | Bitdefender IPR Management Ltd. | Systems And Methods Of Transaction Authorization Using Server-Triggered Switching To An Integrity-Attested Virtual Machine |
US20160328757A1 (en) * | 2015-05-08 | 2016-11-10 | Mastercard International Incorporated | Systems and Methods for Evaluating Service Providers |
US9674158B2 (en) * | 2015-07-28 | 2017-06-06 | International Business Machines Corporation | User authentication over networks |
US10034172B2 (en) * | 2016-12-27 | 2018-07-24 | Sap Se | Facilitation of user authentication using mobile devices |
US10467071B2 (en) * | 2017-03-17 | 2019-11-05 | Accenture Global Solutions Limited | Extensible key management system for application program interfaces |
CN107392601B (en) * | 2017-06-26 | 2020-11-03 | 中国人民银行数字货币研究所 | Application method and system for digital currency wallet |
-
2018
- 2018-08-16 SG SG11202008451RA patent/SG11202008451RA/en unknown
- 2018-08-16 CN CN201880090906.3A patent/CN111819555A/en active Pending
- 2018-08-16 US US16/977,645 patent/US11356257B2/en active Active
- 2018-08-16 WO PCT/IB2018/056173 patent/WO2019171163A1/en unknown
- 2018-08-16 EP EP18909101.0A patent/EP3762844A4/en active Pending
-
2022
- 2022-05-02 US US17/734,443 patent/US11743042B2/en active Active
-
2023
- 2023-07-12 US US18/351,121 patent/US20230353360A1/en active Pending
Patent Citations (633)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280527A (en) | 1992-04-14 | 1994-01-18 | Kamahira Safe Co., Inc. | Biometric token for authorizing access to a host system |
US5613012A (en) | 1994-11-28 | 1997-03-18 | Smarttouch, Llc. | Tokenless identification system for authorization of electronic transactions and electronic transmissions |
US5781438A (en) | 1995-12-19 | 1998-07-14 | Pitney Bowes Inc. | Token generation process in an open metering system |
US5850442A (en) * | 1996-03-26 | 1998-12-15 | Entegrity Solutions Corporation | Secure world wide electronic commerce over an open network |
US6044360A (en) | 1996-04-16 | 2000-03-28 | Picciallo; Michael J. | Third party credit card |
US5956699A (en) | 1996-10-03 | 1999-09-21 | Jaesent Inc. | System for secured credit card transactions on the internet |
US5953710A (en) | 1996-10-09 | 1999-09-14 | Fleming; Stephen S. | Children's credit or debit card system |
US6236981B1 (en) | 1996-11-20 | 2001-05-22 | British Telecommunications Public Limited Company | Transaction system |
US5930767A (en) | 1997-05-28 | 1999-07-27 | Motorola, Inc. | Transaction methods systems and devices |
US6267292B1 (en) | 1997-06-13 | 2001-07-31 | Walker Digital, Llc | Method and apparatus for funds and credit line transfers |
US7177835B1 (en) | 1997-08-28 | 2007-02-13 | Walker Digital, Llc | Method and device for generating a single-use financial account number |
US7853529B1 (en) | 1997-08-28 | 2010-12-14 | Walker Digital, Llc | Method and device for generating a single-use financial account number |
US7844550B2 (en) | 1997-08-28 | 2010-11-30 | Walker Digital, Llc | Method and device for generating a single-use financial account number |
US6163771A (en) | 1997-08-28 | 2000-12-19 | Walker Digital, Llc | Method and device for generating a single-use financial account number |
US6000832A (en) | 1997-09-24 | 1999-12-14 | Microsoft Corporation | Electronic online commerce card with customer generated transaction proxy number for online transactions |
US5883810A (en) | 1997-09-24 | 1999-03-16 | Microsoft Corporation | Electronic online commerce card with transactionproxy number for online transactions |
US6014635A (en) | 1997-12-08 | 2000-01-11 | Shc Direct, Inc. | System and method for providing a discount credit transaction network |
US6385596B1 (en) | 1998-02-06 | 2002-05-07 | Liquid Audio, Inc. | Secure online music distribution system |
US6980670B1 (en) | 1998-02-09 | 2005-12-27 | Indivos Corporation | Biometric tokenless electronic rewards system and method |
US6636833B1 (en) | 1998-03-25 | 2003-10-21 | Obis Patents Ltd. | Credit card system and method |
US20030028481A1 (en) | 1998-03-25 | 2003-02-06 | Orbis Patents, Ltd. | Credit card system and method |
US20090037333A1 (en) | 1998-03-25 | 2009-02-05 | Orbis Patents Limited | Credit cards system and method having additional features |
US7136835B1 (en) | 1998-03-25 | 2006-11-14 | Orbis Patents Ltd. | Credit card system and method |
US20090134217A1 (en) | 1998-03-25 | 2009-05-28 | Orbis Patents Ltd. | Credit card system and method |
US7567934B2 (en) | 1998-03-25 | 2009-07-28 | Orbis Patents Ltd. | Credit card system and method |
US7571142B1 (en) | 1998-03-25 | 2009-08-04 | Orbis Patents Limited | Credit card system and method |
US7593896B1 (en) | 1998-03-25 | 2009-09-22 | Orbis Patents Ltd. | Credit card system and method |
US6422462B1 (en) | 1998-03-30 | 2002-07-23 | Morris E. Cohen | Apparatus and methods for improved credit cards and credit card transactions |
US6425523B1 (en) | 1998-08-17 | 2002-07-30 | Jonathan Shem-Ur | Method for preventing unauthorized use of credit cards in remote payments and an optional supplemental-code card for use therein |
US20110295745A1 (en) | 1998-08-31 | 2011-12-01 | Mastercard International Incorporated | Systems and methods for appending supplemental payment data to a transaction message |
WO2000014648A1 (en) | 1998-09-04 | 2000-03-16 | Impower, Inc. | Electronic commerce with anonymous shopping and anonymous vendor shipping |
US6327578B1 (en) | 1998-12-29 | 2001-12-04 | International Business Machines Corporation | Four-party credit/debit payment protocol |
USRE40444E1 (en) | 1998-12-29 | 2008-07-29 | International Business Machines Corporation | Four-party credit/debit payment protocol |
US20020056043A1 (en) | 1999-01-18 | 2002-05-09 | Sensar, Inc. | Method and apparatus for securely transmitting and authenticating biometric data over a network |
EP1028401A2 (en) | 1999-02-12 | 2000-08-16 | Citibank, N.A. | Method and system for performing a bankcard transaction |
US7571139B1 (en) | 1999-02-19 | 2009-08-04 | Giordano Joseph A | System and method for processing financial transactions |
US6227447B1 (en) | 1999-05-10 | 2001-05-08 | First Usa Bank, Na | Cardless payment system |
US6341724B2 (en) | 1999-05-10 | 2002-01-29 | First Usa Bank, Na | Cardless payment system |
US7194437B1 (en) | 1999-05-14 | 2007-03-20 | Amazon.Com, Inc. | Computer-based funds transfer system |
US8533116B2 (en) | 1999-07-22 | 2013-09-10 | Visa International Service Association | Internet payment, authentication and loading system using virtual smart card |
US8175973B2 (en) | 1999-07-22 | 2012-05-08 | Visa International Service Association | Internet payment, authentication and loading system using virtual smart card |
US7908216B1 (en) | 1999-07-22 | 2011-03-15 | Visa International Service Association | Internet payment, authentication and loading system using virtual smart card |
US7069249B2 (en) | 1999-07-26 | 2006-06-27 | Iprivacy, Llc | Electronic purchase of goods over a communications network including physical delivery while securing private and personal information of the purchasing party |
US6748367B1 (en) | 1999-09-24 | 2004-06-08 | Joonho John Lee | Method and system for effecting financial transactions over a public network without submission of sensitive information |
WO2001035304A1 (en) | 1999-11-10 | 2001-05-17 | Krasnyansky Serge M | On-line payment system |
US20030130955A1 (en) | 1999-12-17 | 2003-07-10 | Hawthorne William Mcmullan | Secure transaction systems |
US20090037388A1 (en) | 2000-02-18 | 2009-02-05 | Verimatrix, Inc. | Network-based content distribution system |
US6453301B1 (en) | 2000-02-23 | 2002-09-17 | Sony Corporation | Method of using personal device with internal biometric in conducting transactions over a network |
US20010029485A1 (en) | 2000-02-29 | 2001-10-11 | E-Scoring, Inc. | Systems and methods enabling anonymous credit transactions |
US7702578B2 (en) | 2000-03-01 | 2010-04-20 | Passgate Corporation | Method, system and computer readable medium for web site account and e-commerce management from a central location |
US7865414B2 (en) | 2000-03-01 | 2011-01-04 | Passgate Corporation | Method, system and computer readable medium for web site account and e-commerce management from a central location |
US6879965B2 (en) | 2000-03-01 | 2005-04-12 | Passgate Corporation | Method, system and computer readable medium for web site account and e-commerce management from a central location |
US20010034720A1 (en) | 2000-03-07 | 2001-10-25 | David Armes | System for facilitating a transaction |
US20040158532A1 (en) | 2000-03-07 | 2004-08-12 | Lydia Breck | System for facilitating a transaction |
US20040210449A1 (en) | 2000-03-07 | 2004-10-21 | American Express Travel Related Services Company, Inc. | System for facilitating a transaction |
US7627531B2 (en) | 2000-03-07 | 2009-12-01 | American Express Travel Related Services Company, Inc. | System for facilitating a transaction |
US7835960B2 (en) | 2000-03-07 | 2010-11-16 | American Express Travel Related Services Company, Inc. | System for facilitating a transaction |
US20020007320A1 (en) | 2000-03-15 | 2002-01-17 | Mastercard International Incorporated | Method and system for secure payments over a computer network |
US20080065554A1 (en) | 2000-04-11 | 2008-03-13 | Hogan Edward J | Method and system for conducting secure payments over a computer network |
US7379919B2 (en) | 2000-04-11 | 2008-05-27 | Mastercard International Incorporated | Method and system for conducting secure payments over a computer network |
US20020116341A1 (en) | 2000-04-11 | 2002-08-22 | Hogan Edward J. | Method and system for conducting secure payments over a computer network |
US20020035548A1 (en) | 2000-04-11 | 2002-03-21 | Hogan Edward J. | Method and system for conducting secure payments over a computer network |
US7177848B2 (en) | 2000-04-11 | 2007-02-13 | Mastercard International Incorporated | Method and system for conducting secure payments over a computer network without a pseudo or proxy account number |
US20100223186A1 (en) | 2000-04-11 | 2010-09-02 | Hogan Edward J | Method and System for Conducting Secure Payments |
US20100228668A1 (en) | 2000-04-11 | 2010-09-09 | Hogan Edward J | Method and System for Conducting a Transaction Using a Proximity Device and an Identifier |
US6990470B2 (en) | 2000-04-11 | 2006-01-24 | Mastercard International Incorporated | Method and system for conducting secure payments over a computer network |
US20120310725A1 (en) | 2000-04-14 | 2012-12-06 | American Express Travel Related Services Company, Inc. | System and method for using loyalty rewards as currency |
US8265993B2 (en) | 2000-04-14 | 2012-09-11 | American Express Travel Related Services Company, Inc. | System and method for using loyalty rewards as currency |
US6941285B2 (en) | 2000-04-14 | 2005-09-06 | Branko Sarcanin | Method and system for a virtual safe |
US20070129955A1 (en) | 2000-04-14 | 2007-06-07 | American Express Travel Related Services Company, Inc. | System and method for issuing and using a loyalty point advance |
US20090106112A1 (en) | 2000-04-14 | 2009-04-23 | American Express Travel Related Services Company, Inc. | System and Method for Issuing and Using a Loyalty Point Advance |
US8046256B2 (en) | 2000-04-14 | 2011-10-25 | American Express Travel Related Services Company, Inc. | System and method for using loyalty rewards as currency |
US20010054003A1 (en) | 2000-04-14 | 2001-12-20 | Emily Chien | System and method for using loyalty points |
US20120035998A1 (en) | 2000-04-14 | 2012-02-09 | American Express Travel Related Services Company, Inc. | System and method for using loyalty rewards as currency |
US8401898B2 (en) | 2000-04-14 | 2013-03-19 | American Express Travel Related Services Company, Inc. | System and method for using loyalty rewards as currency |
US6592044B1 (en) | 2000-05-15 | 2003-07-15 | Jacob Y. Wong | Anonymous electronic card for generating personal coupons useful in commercial and security transactions |
US20020016749A1 (en) | 2000-05-26 | 2002-02-07 | Borecki Dennis C. | Methods and systems for network based electronic purchasing system |
US6891953B1 (en) | 2000-06-27 | 2005-05-10 | Microsoft Corporation | Method and system for binding enhanced software features to a persona |
US6938019B1 (en) | 2000-08-29 | 2005-08-30 | Uzo Chijioke Chukwuemeka | Method and apparatus for making secure electronic payments |
US7734527B2 (en) | 2000-08-29 | 2010-06-08 | Uzo Chijioke Chukwuemeka | Method and apparatus for making secure electronic payments |
US20020029193A1 (en) | 2000-09-01 | 2002-03-07 | Infospace, Inc. | Method and system for facilitating the transfer of funds utilizing a telephonic identifier |
US20020073045A1 (en) | 2000-10-23 | 2002-06-13 | Rubin Aviel D. | Off-line generation of limited-use credit card numbers |
US7996288B1 (en) | 2000-11-15 | 2011-08-09 | Iprivacy, Llc | Method and system for processing recurrent consumer transactions |
US20040236632A1 (en) | 2000-12-07 | 2004-11-25 | Maritzen Michael L. | System and method for conducing financial transactions using a personal transaction device with vehicle-accessed, payment-gateway terminals |
US20070198432A1 (en) | 2001-01-19 | 2007-08-23 | Pitroda Satyan G | Transactional services |
US6931382B2 (en) | 2001-01-24 | 2005-08-16 | Cdck Corporation | Payment instrument authorization technique |
US7113930B2 (en) | 2001-02-23 | 2006-09-26 | Hewlett-Packard Development Company, L.P. | Conducting transactions |
US7292999B2 (en) | 2001-03-15 | 2007-11-06 | American Express Travel Related Services Company, Inc. | Online card present transaction |
US20020133467A1 (en) | 2001-03-15 | 2002-09-19 | Hobson Carol Lee | Online card present transaction |
US8484134B2 (en) | 2001-03-15 | 2013-07-09 | American Express Travel Related Services Company, Inc. | Online card present transaction |
US7873579B2 (en) | 2001-03-15 | 2011-01-18 | American Express Travel Related Services Company, Inc. | Merchant facilitation of online card present transaction |
US7415443B2 (en) | 2001-03-15 | 2008-08-19 | American Express Travel Related Services Company, Inc. | Online card present transaction |
US7873580B2 (en) | 2001-03-15 | 2011-01-18 | American Express Travel Related Services Company, Inc. | Merchant system facilitating an online card present transaction |
US8856539B2 (en) | 2001-03-16 | 2014-10-07 | Universal Secure Registry, Llc | Universal secure registry |
US7685037B2 (en) | 2001-03-26 | 2010-03-23 | 3MFuture Ltd. | Transaction authorisation system |
US20020147913A1 (en) | 2001-04-09 | 2002-10-10 | Lun Yip William Wai | Tamper-proof mobile commerce system |
US7650314B1 (en) | 2001-05-25 | 2010-01-19 | American Express Travel Related Services Company, Inc. | System and method for securing a recurrent billing transaction |
US8060448B2 (en) | 2001-05-30 | 2011-11-15 | Jones Thomas C | Late binding tokens |
US20040059682A1 (en) | 2001-06-11 | 2004-03-25 | Yoshitsugu Hasumi | Electronic commercial transaction support method |
US20040260646A1 (en) | 2001-07-10 | 2004-12-23 | American Express Travel Related Systems Company, Inc. | System and method for encoding information in magnetic stripe format for use in radio frequency identification transactions |
US20100325041A1 (en) | 2001-07-10 | 2010-12-23 | American Express Travel Related Services Company, Inc. | System and method for encoding information in magnetic stripe format for use in radio frequency identification transactions |
US20060237528A1 (en) | 2001-07-10 | 2006-10-26 | Fred Bishop | Systems and methods for non-traditional payment |
US7805378B2 (en) | 2001-07-10 | 2010-09-28 | American Express Travel Related Servicex Company, Inc. | System and method for encoding information in magnetic stripe format for use in radio frequency identification transactions |
US20120215696A1 (en) | 2001-08-21 | 2012-08-23 | Bookit Oy Ajanvarauspalvelu | Managing recurring payments from mobile terminals |
US7444676B1 (en) | 2001-08-29 | 2008-10-28 | Nader Asghari-Kamrani | Direct authentication and authorization system and method for trusted network of financial institutions |
US7103576B2 (en) | 2001-09-21 | 2006-09-05 | First Usa Bank, Na | System for providing cardless payment |
US6901387B2 (en) | 2001-12-07 | 2005-05-31 | General Electric Capital Financial | Electronic purchasing method and apparatus for performing the same |
US8589271B2 (en) | 2002-02-04 | 2013-11-19 | Alexander William EVANS | System and method for verification, authentication, and notification of transactions |
US7890393B2 (en) | 2002-02-07 | 2011-02-15 | Ebay, Inc. | Method and system for completing a transaction between a customer and a merchant |
US20050246293A1 (en) | 2002-03-04 | 2005-11-03 | Ong Yong K | Electronic transfer system |
US20040210498A1 (en) | 2002-03-29 | 2004-10-21 | Bank One, National Association | Method and system for performing purchase and other transactions using tokens with multiple chips |
US8751391B2 (en) | 2002-03-29 | 2014-06-10 | Jpmorgan Chase Bank, N.A. | System and process for performing purchase transactions using tokens |
US20030191945A1 (en) | 2002-04-03 | 2003-10-09 | Swivel Technologies Limited | System and method for secure credit and debit card transactions |
US20030191709A1 (en) | 2002-04-03 | 2003-10-09 | Stephen Elston | Distributed payment and loyalty processing for retail and vending |
US7707120B2 (en) | 2002-04-17 | 2010-04-27 | Visa International Service Association | Mobile account authentication service |
US20130262296A1 (en) | 2002-04-23 | 2013-10-03 | George F. Thomas | Payment identification code and payment system using the same |
US7805376B2 (en) | 2002-06-14 | 2010-09-28 | American Express Travel Related Services Company, Inc. | Methods and apparatus for facilitating a transaction |
US8412623B2 (en) | 2002-07-15 | 2013-04-02 | Citicorp Credit Services, Inc. | Method and system for a multi-purpose transactional platform |
US20040010462A1 (en) | 2002-07-15 | 2004-01-15 | Susan Moon | Method and system for a multi-purpose transactional platform |
US20130218698A1 (en) | 2002-07-15 | 2013-08-22 | Citicorp Credit Services Incorporated | Method and System for a Multi-Purpose Transactional Platform |
US7209561B1 (en) | 2002-07-19 | 2007-04-24 | Cybersource Corporation | System and method for generating encryption seed values |
US20120072350A1 (en) | 2002-07-30 | 2012-03-22 | Verifone, Inc. | System and method for mobile payment transactions |
US20130185202A1 (en) | 2002-07-30 | 2013-07-18 | Verifone, Inc. | System and method for mobile payment transactions |
US7606560B2 (en) * | 2002-08-08 | 2009-10-20 | Fujitsu Limited | Authentication services using mobile device |
US7353382B2 (en) | 2002-08-08 | 2008-04-01 | Fujitsu Limited | Security framework and protocol for universal pervasive transactions |
US7801826B2 (en) | 2002-08-08 | 2010-09-21 | Fujitsu Limited | Framework and system for purchasing of goods and services |
US20040044739A1 (en) | 2002-09-04 | 2004-03-04 | Robert Ziegler | System and methods for processing PIN-authenticated transactions |
US20040232225A1 (en) | 2002-09-12 | 2004-11-25 | American Express Travel Related Services Company, | System and method for re-associating an account number to another transaction account |
USRE43157E1 (en) | 2002-09-12 | 2012-02-07 | Xatra Fund Mx, Llc | System and method for reassociating an account number to another transaction account |
US6991157B2 (en) | 2002-09-12 | 2006-01-31 | American Express Travel Related Services Company | System and method for re-associating an account number to another transaction account |
US20040050928A1 (en) | 2002-09-12 | 2004-03-18 | Fred Bishop | System and method for converting a stored value card to a credit card |
US6805287B2 (en) | 2002-09-12 | 2004-10-19 | American Express Travel Related Services Company, Inc. | System and method for converting a stored value card to a credit card |
US20040093281A1 (en) | 2002-11-05 | 2004-05-13 | Todd Silverstein | Remote purchasing system and method |
WO2004042536A2 (en) | 2002-11-05 | 2004-05-21 | Requent | Remote purchasing system and method |
WO2004051585A2 (en) | 2002-11-27 | 2004-06-17 | Rsa Security Inc | Identity authentication system and method |
US7350230B2 (en) | 2002-12-18 | 2008-03-25 | Ncr Corporation | Wireless security module |
US20040139008A1 (en) | 2003-01-10 | 2004-07-15 | First Data Corporation | Payment system clearing for transactions |
US20040143532A1 (en) | 2003-01-15 | 2004-07-22 | Fung Chi, Lee | Small amount paying/receiving system |
US8082210B2 (en) | 2003-04-29 | 2011-12-20 | The Western Union Company | Authentication for online money transfers |
WO2005001751A1 (en) | 2003-06-02 | 2005-01-06 | Regents Of The University Of California | System for biometric signal processing with hardware and software accelaration |
US20050037735A1 (en) | 2003-07-31 | 2005-02-17 | Ncr Corporation | Mobile applications |
US20130226802A1 (en) | 2003-08-18 | 2013-08-29 | Ayman Hammad | Verification value system and method |
US20050199709A1 (en) | 2003-10-10 | 2005-09-15 | James Linlor | Secure money transfer between hand-held devices |
US20050080730A1 (en) | 2003-10-14 | 2005-04-14 | First Data Corporation | System and method for secure account transactions |
US7567936B1 (en) | 2003-10-14 | 2009-07-28 | Paradox Technical Solutions Llc | Method and apparatus for handling pseudo identities |
US20050108178A1 (en) | 2003-11-17 | 2005-05-19 | Richard York | Order risk determination |
US8104679B2 (en) | 2003-12-17 | 2012-01-31 | Qsecure, Inc. | Display payment card with fraud and location detection |
US7712655B2 (en) | 2004-01-20 | 2010-05-11 | Kamfu Wong | Banking computer account system with lock for secure payment via telephone |
US20070136211A1 (en) | 2004-03-15 | 2007-06-14 | Brown Kerry D | Financial transactions with dynamic card verification values |
US20070208671A1 (en) | 2004-03-15 | 2007-09-06 | Brown Kerry D | Financial transactions with dynamic personal account numbers |
US7580898B2 (en) | 2004-03-15 | 2009-08-25 | Qsecure, Inc. | Financial transactions with dynamic personal account numbers |
US7584153B2 (en) | 2004-03-15 | 2009-09-01 | Qsecure, Inc. | Financial transactions with dynamic card verification values |
US7627895B2 (en) | 2004-03-31 | 2009-12-01 | British Telecommunications Plc | Trust tokens |
US20050269402A1 (en) | 2004-06-03 | 2005-12-08 | Tyfone, Inc. | System and method for securing financial transactions |
US20050269401A1 (en) | 2004-06-03 | 2005-12-08 | Tyfone, Inc. | System and method for securing financial transactions |
US8412837B1 (en) | 2004-07-08 | 2013-04-02 | James A. Roskind | Data privacy |
US7264154B2 (en) | 2004-07-12 | 2007-09-04 | Harris David N | System and method for securing a credit account |
US8074879B2 (en) | 2004-07-12 | 2011-12-13 | Harris Intellectual Property, Lp | System and method for securing a credit account |
US7753265B2 (en) | 2004-07-12 | 2010-07-13 | Harris Intellectual Property, Lp | System and method for securing a credit account |
US7287692B1 (en) | 2004-07-28 | 2007-10-30 | Cisco Technology, Inc. | System and method for securing transactions in a contact center environment |
US8417642B2 (en) | 2004-09-14 | 2013-04-09 | Cork Group Trading Ltd. | Online commercial transaction system and method of operation thereof |
US7051929B2 (en) | 2004-10-18 | 2006-05-30 | Gongling Li | Secure credit card having daily changed security number |
US7548889B2 (en) | 2005-01-24 | 2009-06-16 | Microsoft Corporation | Payment information security for multi-merchant purchasing environment for downloadable products |
US7849020B2 (en) | 2005-04-19 | 2010-12-07 | Microsoft Corporation | Method and apparatus for network transactions |
WO2006113834A2 (en) | 2005-04-19 | 2006-10-26 | Microsoft Corporation | Network commercial transactions |
US20060235795A1 (en) | 2005-04-19 | 2006-10-19 | Microsoft Corporation | Secure network commercial transactions |
US20080035738A1 (en) | 2005-05-09 | 2008-02-14 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US7793851B2 (en) | 2005-05-09 | 2010-09-14 | Dynamics Inc. | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20110276425A1 (en) | 2005-05-09 | 2011-11-10 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US7828220B2 (en) | 2005-05-09 | 2010-11-09 | Dynamics Inc. | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080054081A1 (en) | 2005-05-09 | 2008-03-06 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080054068A1 (en) | 2005-05-09 | 2008-03-06 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US7954705B2 (en) | 2005-05-09 | 2011-06-07 | Dynamics Inc. | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20110276424A1 (en) | 2005-05-09 | 2011-11-10 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080065555A1 (en) | 2005-05-09 | 2008-03-13 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080302869A1 (en) | 2005-05-09 | 2008-12-11 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US7931195B2 (en) | 2005-05-09 | 2011-04-26 | Dynamics Inc. | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080029607A1 (en) | 2005-05-09 | 2008-02-07 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20110272471A1 (en) | 2005-05-09 | 2011-11-10 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080054079A1 (en) | 2005-05-09 | 2008-03-06 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20110272478A1 (en) | 2005-05-09 | 2011-11-10 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20080302876A1 (en) | 2005-05-09 | 2008-12-11 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20090308921A1 (en) | 2005-05-09 | 2009-12-17 | Mullen Jeffrey D | Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card |
US20110302081A1 (en) | 2005-06-10 | 2011-12-08 | Saunders Peter D | System and method for mass transit merchant payment |
US20100211505A1 (en) | 2005-06-10 | 2010-08-19 | American Express Travel Related Services Company, Inc. | System and method for mass transit merchant payment |
US8387873B2 (en) | 2005-06-10 | 2013-03-05 | American Express Travel Related Services Company, Inc. | System and method for mass transit merchant payment |
US20060278704A1 (en) | 2005-06-10 | 2006-12-14 | American Express Travel Related Services Co., Inc. | System and method for mass transit merchant payment |
US8025223B2 (en) | 2005-06-10 | 2011-09-27 | American Express Travel Related Services Company, Inc. | System and method for mass transit merchant payment |
US8132723B2 (en) | 2005-07-15 | 2012-03-13 | Serve Virtual Enterprises, Inc. | System and method for immediate issuance of transaction cards |
US20140249945A1 (en) | 2005-09-06 | 2014-09-04 | Patrick Gauthier | System and method for secured account numbers in proximity devices |
US8762263B2 (en) | 2005-09-06 | 2014-06-24 | Visa U.S.A. Inc. | System and method for secured account numbers in proximity devices |
US8205791B2 (en) | 2005-10-11 | 2012-06-26 | National Payment Card Association | Payment system and methods |
US20070107044A1 (en) | 2005-10-11 | 2007-05-10 | Philip Yuen | System and method for authorization of transactions |
US7853995B2 (en) | 2005-11-18 | 2010-12-14 | Microsoft Corporation | Short-lived certificate authority service |
US20070136193A1 (en) | 2005-12-13 | 2007-06-14 | Bellsouth Intellectual Property Corporation | Methods, transactional cards, and systems using account identifers customized by the account holder |
US20130017784A1 (en) | 2005-12-31 | 2013-01-17 | Blaze Mobile, Inc. | Ota provisioning to a secure element used for nfc transacations |
US20070170247A1 (en) | 2006-01-20 | 2007-07-26 | Maury Samuel Friedman | Payment card authentication system and method |
US20070179885A1 (en) | 2006-01-30 | 2007-08-02 | Cpni Inc. | Method and system for authorizing a funds transfer or payment using a phone number |
US8577813B2 (en) | 2006-02-21 | 2013-11-05 | Universal Secure Registry, Llc | Universal secure registry |
US9530137B2 (en) | 2006-02-21 | 2016-12-27 | Universal Secure Registry, Llc | Method and apparatus for secure access payment and identification |
US9100826B2 (en) | 2006-02-21 | 2015-08-04 | Universal Secure Registry, Llc | Method and apparatus for secure access payment and identification |
US8453925B2 (en) | 2006-03-02 | 2013-06-04 | Visa International Service Association | Method and system for performing two factor authentication in mail order and telephone order transactions |
US8225385B2 (en) | 2006-03-23 | 2012-07-17 | Microsoft Corporation | Multiple security token transactions |
US9065643B2 (en) | 2006-04-05 | 2015-06-23 | Visa U.S.A. Inc. | System and method for account identifier obfuscation |
US20070245414A1 (en) | 2006-04-14 | 2007-10-18 | Microsoft Corporation | Proxy Authentication and Indirect Certificate Chaining |
US20070288377A1 (en) | 2006-04-26 | 2007-12-13 | Yosef Shaked | System and method for authenticating a customer's identity and completing a secure credit card transaction without the use of a credit card number |
US20070291995A1 (en) | 2006-06-09 | 2007-12-20 | Rivera Paul G | System, Method, and Apparatus for Preventing Identity Fraud Associated With Payment and Identity Cards |
US7818264B2 (en) | 2006-06-19 | 2010-10-19 | Visa U.S.A. Inc. | Track data encryption |
US20080015988A1 (en) | 2006-06-28 | 2008-01-17 | Gary Brown | Proxy card authorization system |
US20080052226A1 (en) | 2006-08-25 | 2008-02-28 | Agarwal Amit D | Utilizing phrase tokens in transactions |
US7469151B2 (en) | 2006-09-01 | 2008-12-23 | Vivotech, Inc. | Methods, systems and computer program products for over the air (OTA) provisioning of soft cards on devices with wireless communications capabilities |
US20080228646A1 (en) | 2006-10-04 | 2008-09-18 | Myers James R | Method and system for managing a non-changing payment card account number |
US20130297508A1 (en) | 2006-11-16 | 2013-11-07 | Net 1 Ueps Technologies Inc. | Secure financial transactions |
US7848980B2 (en) | 2006-12-26 | 2010-12-07 | Visa U.S.A. Inc. | Mobile payment system and method using alias |
US20090006262A1 (en) | 2006-12-30 | 2009-01-01 | Brown Kerry D | Financial transaction payment processor |
US20080201265A1 (en) | 2007-02-15 | 2008-08-21 | Alfred Hewton | Smart card with random temporary account number generation |
US7841539B2 (en) | 2007-02-15 | 2010-11-30 | Alfred Hewton | Smart card with random temporary account number generation |
US20080201264A1 (en) | 2007-02-17 | 2008-08-21 | Brown Kerry D | Payment card financial transaction authenticator |
US20080243702A1 (en) | 2007-03-30 | 2008-10-02 | Ricoh Company, Ltd. | Tokens Usable in Value-Based Transactions |
US20080245861A1 (en) | 2007-04-03 | 2008-10-09 | Fein Gene S | System and method for controlling secured transaction using color coded account identifiers |
US7896238B2 (en) | 2007-04-03 | 2011-03-01 | Intellectual Ventures Holding 32 Llc | Secured transaction using color coded account identifiers |
US20080245855A1 (en) | 2007-04-03 | 2008-10-09 | Fein Gene S | System and method for controlling secured transaction using directionally coded account identifiers |
US7938318B2 (en) | 2007-04-03 | 2011-05-10 | Intellectual Ventures Holding 32 Llc | System and method for controlling secured transaction using directionally coded account identifiers |
US9160741B2 (en) | 2007-04-17 | 2015-10-13 | Visa U.S.A. Inc. | Remote authentication system |
US8376225B1 (en) | 2007-04-26 | 2013-02-19 | United Services Automobile Association (Usaa) | Secure card |
US7784685B1 (en) | 2007-04-26 | 2010-08-31 | United Services Automobile Association (Usaa) | Secure card |
US8109436B1 (en) | 2007-04-26 | 2012-02-07 | United Services Automobile Association (Usaa) | Secure card |
US7959076B1 (en) | 2007-04-26 | 2011-06-14 | United Services Automobile Association (Usaa) | Secure card |
US7841523B2 (en) | 2007-05-17 | 2010-11-30 | Shift4 Corporation | Secure payment card transactions |
US7891563B2 (en) | 2007-05-17 | 2011-02-22 | Shift4 Corporation | Secure payment card transactions |
US7770789B2 (en) | 2007-05-17 | 2010-08-10 | Shift4 Corporation | Secure payment card transactions |
US20130091028A1 (en) | 2007-05-17 | 2013-04-11 | Shift4 Corporation | Secure payment card transactions |
US20110125597A1 (en) | 2007-05-17 | 2011-05-26 | Shift4 Corporation | Secure payment card transactions |
US20080283591A1 (en) | 2007-05-17 | 2008-11-20 | Oder Ii John David | Secure payment card transactions |
US8328095B2 (en) | 2007-05-17 | 2012-12-11 | Shift4 Corporation | Secure payment card transactions |
EP2156397A1 (en) | 2007-05-17 | 2010-02-24 | Shift4 Corporation | Secure payment card transactions |
US20080313264A1 (en) | 2007-06-12 | 2008-12-18 | Microsoft Corporation | Domain management for digital media |
US20120123882A1 (en) | 2007-06-25 | 2012-05-17 | Mark Carlson | Cardless Challenge Systems and Methods |
US8121942B2 (en) | 2007-06-25 | 2012-02-21 | Visa U.S.A. Inc. | Systems and methods for secure and transparent cardless transactions |
US8589291B2 (en) | 2007-06-25 | 2013-11-19 | Visa U.S.A. Inc. | System and method utilizing device information |
US8229852B2 (en) | 2007-06-25 | 2012-07-24 | Visa International Service Association | Secure mobile payment system |
US8606700B2 (en) | 2007-06-25 | 2013-12-10 | Visa U.S.A., Inc. | Systems and methods for secure and transparent cardless transactions |
US8121956B2 (en) | 2007-06-25 | 2012-02-21 | Visa U.S.A. Inc. | Cardless challenge systems and methods |
US20140040137A1 (en) | 2007-06-25 | 2014-02-06 | Mark Carlson | Secure checkout and challenge systems and methods |
US20090010488A1 (en) | 2007-07-04 | 2009-01-08 | Omron Corporation | Driving support apparatus, method and program |
US20090043702A1 (en) | 2007-08-06 | 2009-02-12 | Bennett James D | Proxy card representing many monetary sources from a plurality of vendors |
US8494959B2 (en) | 2007-08-17 | 2013-07-23 | Emc Corporation | Payment card with dynamic account number |
US20090048971A1 (en) | 2007-08-17 | 2009-02-19 | Matthew Hathaway | Payment Card with Dynamic Account Number |
WO2009032523A1 (en) | 2007-08-29 | 2009-03-12 | American Express Travel Related Services Company, Inc. | System and method for facilitating a financial transaction with a dynamically generated identifier |
US20110040640A1 (en) | 2007-08-29 | 2011-02-17 | American Express Travel Related Services Company, Inc. | System and method for facilitating a financial transaction with a dynamically generated identifier |
US9070129B2 (en) | 2007-09-04 | 2015-06-30 | Visa U.S.A. Inc. | Method and system for securing data fields |
US8793186B2 (en) | 2007-09-13 | 2014-07-29 | Visa U.S.A. Inc. | Account permanence |
US7937324B2 (en) | 2007-09-13 | 2011-05-03 | Visa U.S.A. Inc. | Account permanence |
US8190523B2 (en) | 2007-09-13 | 2012-05-29 | Visa U.S.A. Inc. | Account permanence |
US20140297534A1 (en) | 2007-09-13 | 2014-10-02 | Barbara Patterson | Account permanence |
US20130346314A1 (en) | 2007-10-02 | 2013-12-26 | American Express Travel Related Services Company Inc. | Dynamic security code push |
US20090200371A1 (en) | 2007-10-17 | 2009-08-13 | First Data Corporation | Onetime passwords for smart chip cards |
US8095113B2 (en) | 2007-10-17 | 2012-01-10 | First Data Corporation | Onetime passwords for smart chip cards |
US20090106160A1 (en) | 2007-10-19 | 2009-04-23 | First Data Corporation | Authorizations for mobile contactless payment transactions |
US20100138347A1 (en) | 2007-10-30 | 2010-06-03 | Alibaba Group Holding Capital Place | Account Transaction Management Using Dynamic Account Numbers |
US20110010292A1 (en) | 2007-11-29 | 2011-01-13 | Bank Of America Corporation | Payment transactions using payee account aliases |
US8620754B2 (en) | 2007-11-30 | 2013-12-31 | Blaze Mobile, Inc. | Remote transaction processing using authentication information |
US8589237B2 (en) | 2007-11-30 | 2013-11-19 | Blaze Mobile, Inc. | Online purchase from a mobile device using a default payment method |
US8583494B2 (en) | 2007-11-30 | 2013-11-12 | Blaze Mobile, Inc. | Processing payments at a management server with user selected payment method |
US20130124290A1 (en) | 2007-11-30 | 2013-05-16 | Blaze Mobile, Inc. | Remote transaction processing using a default payment method |
US20130124291A1 (en) | 2007-11-30 | 2013-05-16 | Blaze Mobile, Inc. | Remote transaction processing with multiple payment mechanisms |
US20090157555A1 (en) | 2007-12-12 | 2009-06-18 | American Express Travel Related Services Company, | Bill payment system and method |
US8504478B2 (en) | 2007-12-21 | 2013-08-06 | American Express Travel Related Services Company, Inc. | Systems, methods and computer program products for performing mass transit merchant transactions |
US20090159707A1 (en) | 2007-12-24 | 2009-06-25 | Dynamics Inc. | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US20130282575A1 (en) | 2007-12-24 | 2013-10-24 | Jeffrey D. Mullen | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US20090159673A1 (en) | 2007-12-24 | 2009-06-25 | Dynamics Inc. | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US8074877B2 (en) | 2007-12-24 | 2011-12-13 | Dynamics Inc. | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US20110276380A1 (en) | 2007-12-24 | 2011-11-10 | Mullen Jeffrey D | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US20110276381A1 (en) | 2007-12-24 | 2011-11-10 | Mullen Jeffrey D | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US20090159700A1 (en) | 2007-12-24 | 2009-06-25 | Dynamics Inc. | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US8485437B2 (en) | 2007-12-24 | 2013-07-16 | Dynamics Inc. | Systems and methods for programmable payment cards and devices with loyalty-based payment applications |
US8224702B2 (en) | 2007-12-28 | 2012-07-17 | Ebay, Inc. | Systems and methods for facilitating financial transactions over a network |
US8280777B2 (en) | 2007-12-28 | 2012-10-02 | Ebay Inc. | Systems and methods for facilitating financial transactions over a network |
US8498908B2 (en) | 2007-12-28 | 2013-07-30 | Ebay Inc. | Systems and methods for facilitating financial transactions over a network |
US20130317982A1 (en) | 2007-12-28 | 2013-11-28 | Matthew Mengerink | Systems and methods for facilitating financial transactions over a network |
US7922082B2 (en) | 2008-01-04 | 2011-04-12 | M2 International Ltd. | Dynamic card validation value |
US20130054466A1 (en) | 2008-01-04 | 2013-02-28 | Michael A. Muscato | Dynamic Card Verification Value |
US20090173782A1 (en) | 2008-01-04 | 2009-07-09 | Muscato Michael A | Dynamic Card Validation Value |
US20110016320A1 (en) | 2008-01-28 | 2011-01-20 | Paycool International Ltd. | Method for authentication and signature of a user in an application service, using a mobile telephone as a second factor in addition to and independently of a first factor |
US20120297446A1 (en) | 2008-03-03 | 2012-11-22 | Webb Timothy A | Authentication System and Method |
US20140032417A1 (en) | 2008-03-26 | 2014-01-30 | Protegrity Corporation | Method and apparatus for tokenization of sensitive sets of characters |
US8578176B2 (en) | 2008-03-26 | 2013-11-05 | Protegrity Corporation | Method and apparatus for tokenization of sensitive sets of characters |
US20090248583A1 (en) | 2008-03-31 | 2009-10-01 | Jasmeet Chhabra | Device, system, and method for secure online transactions |
US20090327131A1 (en) | 2008-04-29 | 2009-12-31 | American Express Travel Related Services Company, Inc. | Dynamic account authentication using a mobile device |
US20090276347A1 (en) | 2008-05-01 | 2009-11-05 | Kargman James B | Method and apparatus for use of a temporary financial transaction number or code |
US20090281948A1 (en) | 2008-05-09 | 2009-11-12 | Mark Carlson | Communication device including multi-part alias identifier |
US20090294527A1 (en) | 2008-06-02 | 2009-12-03 | Sears Brands, L.L.C. | System and method for payment card industry enterprise account number elimination |
US8651374B2 (en) | 2008-06-02 | 2014-02-18 | Sears Brands, L.L.C. | System and method for payment card industry enterprise account number elimination |
US20090307139A1 (en) | 2008-06-06 | 2009-12-10 | Ebay, Inc. | Biometric authentication of mobile financial transactions by trusted service managers |
US20100008535A1 (en) | 2008-07-14 | 2010-01-14 | Abulafia David | Mobile Phone Payment System using Integrated Camera Credit Card Reader |
US20120078799A1 (en) | 2008-07-24 | 2012-03-29 | At&T Intellectual Property I, L.P. | Secure payment service and system for interactive voice response (ivr) systems |
US8219489B2 (en) | 2008-07-29 | 2012-07-10 | Visa U.S.A. Inc. | Transaction processing using a global unique identifier |
US20100161433A1 (en) | 2008-08-04 | 2010-06-24 | Spencer White | Systems and Methods for Handling Point-of-Sale Transactions Using a Mobile Device |
US8281991B2 (en) | 2008-08-07 | 2012-10-09 | Visa U.S.A. Inc. | Transaction secured in an untrusted environment |
US20100042848A1 (en) | 2008-08-13 | 2010-02-18 | Plantronics, Inc. | Personalized I/O Device as Trusted Data Source |
US8403211B2 (en) | 2008-09-04 | 2013-03-26 | Metabank | System, program product and methods for retail activation and reload associated with partial authorization transactions |
US20100088237A1 (en) | 2008-10-04 | 2010-04-08 | Wankmueller John R | Methods and systems for using physical payment cards in secure e-commerce transactions |
US20100094755A1 (en) | 2008-10-09 | 2010-04-15 | Nelnet Business Solutions, Inc. | Providing payment data tokens for online transactions utilizing hosted inline frames |
US20100106644A1 (en) | 2008-10-23 | 2010-04-29 | Diversinet Corp. | System and Method for Authorizing Transactions Via Mobile Devices |
US20120129514A1 (en) | 2008-11-13 | 2012-05-24 | American Express Travel Related Services Company, Inc. | Servicing attributes on a mobile device |
US8401539B2 (en) | 2008-11-13 | 2013-03-19 | American Express Travel Related Services Company, Inc. | Servicing attributes on a mobile device |
US20100120408A1 (en) | 2008-11-13 | 2010-05-13 | American Express Travel Related Services Company, Inc. | Servicing attributes on a mobile device |
US8126449B2 (en) | 2008-11-13 | 2012-02-28 | American Express Travel Related Services Company, Inc. | Servicing attributes on a mobile device |
US20120246070A1 (en) | 2008-12-03 | 2012-09-27 | Ebay Inc. | System and method to allow access to a value holding account |
US20100133334A1 (en) | 2008-12-03 | 2010-06-03 | Srinivas Vadhri | System and method to allow access to a value holding account |
US8196813B2 (en) | 2008-12-03 | 2012-06-12 | Ebay Inc. | System and method to allow access to a value holding account |
US20100145860A1 (en) | 2008-12-08 | 2010-06-10 | Ebay Inc. | Unified identity verification |
WO2010078522A1 (en) | 2008-12-31 | 2010-07-08 | Ebay Inc. | Unified identity verification |
US8060449B1 (en) | 2009-01-05 | 2011-11-15 | Sprint Communications Company L.P. | Partially delegated over-the-air provisioning of a secure element |
US20100185545A1 (en) | 2009-01-22 | 2010-07-22 | First Data Corporation | Dynamic primary account number (pan) and unique key per card |
US20120317035A1 (en) | 2009-01-22 | 2012-12-13 | First Data Corporation | Processing transactions with an extended application id and dynamic cryptograms |
US20150326559A1 (en) * | 2009-02-03 | 2015-11-12 | Inbay Technologies Inc. | Method and system for authorizing secure electronic transactions using a security device |
US8606638B2 (en) | 2009-03-02 | 2013-12-10 | First Data Corporation | Systems, methods and apparatus for facilitating transactions using a mobile device |
US20100235284A1 (en) | 2009-03-13 | 2010-09-16 | Gidah, Inc. | Method and systems for generating and using tokens in a transaction handling system |
US8595098B2 (en) | 2009-03-18 | 2013-11-26 | Network Merchants, Inc. | Transmission of sensitive customer information during electronic-based transactions |
US8567670B2 (en) | 2009-03-27 | 2013-10-29 | Intersections Inc. | Dynamic card verification values and credit transactions |
US8584251B2 (en) | 2009-04-07 | 2013-11-12 | Princeton Payment Solutions | Token-based payment processing system |
US20100258620A1 (en) | 2009-04-10 | 2010-10-14 | Denise Torreyson | Methods and systems for linking multiple accounts |
US20120047237A1 (en) | 2009-04-16 | 2012-02-23 | Petter Arvidsson | Method, Server, Computer Program and Computer Program Product for Communicating with Secure Element |
US20120116902A1 (en) | 2009-04-30 | 2012-05-10 | Donald Michael Cardina | Systems and methods for randomized mobile payment |
US20100291904A1 (en) | 2009-05-13 | 2010-11-18 | First Data Corporation | Systems and methods for providing trusted service management services |
US20160197725A1 (en) | 2009-05-15 | 2016-07-07 | Visa International Service Association | Integration of verification tokens with mobile communication devices |
US20110119155A1 (en) | 2009-05-15 | 2011-05-19 | Ayman Hammad | Verification of portable consumer devices for 3-d secure services |
US20180262334A1 (en) | 2009-05-15 | 2018-09-13 | Visa International Service Association | Integration of verification tokens with mobile communication devices |
US20100299267A1 (en) | 2009-05-20 | 2010-11-25 | Patrick Faith | Device including encrypted data for expiration date and verification value creation |
US20190066069A1 (en) | 2009-05-20 | 2019-02-28 | Patrick Faith | Device including encrypted data for expiration date and verification value creation |
US20100306076A1 (en) | 2009-05-29 | 2010-12-02 | Ebay Inc. | Trusted Integrity Manager (TIM) |
US20110016047A1 (en) | 2009-07-16 | 2011-01-20 | Mxtran Inc. | Financial transaction system, automated teller machine (atm), and method for operating an atm |
US8504475B2 (en) | 2009-08-10 | 2013-08-06 | Visa International Service Association | Systems and methods for enrolling users in a payment service |
US20110047076A1 (en) | 2009-08-24 | 2011-02-24 | Mark Carlson | Alias reputation interaction system |
US20110083018A1 (en) | 2009-10-06 | 2011-04-07 | Validity Sensors, Inc. | Secure User Authentication |
US20110087596A1 (en) | 2009-10-13 | 2011-04-14 | Jack Dorsey | Systems and methods for dynamic receipt generation with environmental information |
US8447699B2 (en) | 2009-10-13 | 2013-05-21 | Qualcomm Incorporated | Global secure service provider directory |
US20110093397A1 (en) | 2009-10-16 | 2011-04-21 | Mark Carlson | Anti-phishing system and method including list with user data |
US20110246317A1 (en) | 2009-10-23 | 2011-10-06 | Apriva, Llc | System and device for facilitating a transaction through use of a proxy account code |
US20130019098A1 (en) | 2009-10-27 | 2013-01-17 | Google Inc. | Systems and methods for authenticating an electronic transaction |
US20170186001A1 (en) | 2009-11-05 | 2017-06-29 | Judson Reed | Encryption switch processing |
US20110154466A1 (en) | 2009-12-18 | 2011-06-23 | Sabre Inc., | Tokenized data security |
US20140041018A1 (en) | 2009-12-18 | 2014-02-06 | Sabre Inc. | Tokenized data security |
US8595812B2 (en) | 2009-12-18 | 2013-11-26 | Sabre Inc. | Tokenized data security |
US20110153498A1 (en) | 2009-12-18 | 2011-06-23 | Oleg Makhotin | Payment Channel Returning Limited Use Proxy Dynamic Value |
US20110153437A1 (en) | 2009-12-21 | 2011-06-23 | Verizon Patent And Licensing Inc. | Method and system for providing virtual credit card services |
US20110161233A1 (en) | 2009-12-30 | 2011-06-30 | First Data Corporation | Secure transaction management |
US8528067B2 (en) | 2010-01-12 | 2013-09-03 | Visa International Service Association | Anytime validation for verification tokens |
US8346666B2 (en) | 2010-01-19 | 2013-01-01 | Visa Intellectual Service Association | Token based transaction authentication |
US20110178926A1 (en) | 2010-01-19 | 2011-07-21 | Mike Lindelsee | Remote Variable Authentication Processing |
US8615468B2 (en) | 2010-01-27 | 2013-12-24 | Ca, Inc. | System and method for generating a dynamic card value |
US8751642B2 (en) | 2010-01-31 | 2014-06-10 | Hewlett-Packard Development Company, L.P. | Method and system for management of sampled traffic data |
US20110191244A1 (en) | 2010-02-02 | 2011-08-04 | Xia Dai | Secured Transaction System |
US20120226582A1 (en) | 2010-02-24 | 2012-09-06 | Ayman Hammad | Integration of Payment Capability into Secure Elements of Computers |
US8510816B2 (en) | 2010-02-25 | 2013-08-13 | Secureauth Corporation | Security device provisioning |
US8458487B1 (en) | 2010-03-03 | 2013-06-04 | Liaison Technologies, Inc. | System and methods for format preserving tokenization of sensitive information |
US9245267B2 (en) | 2010-03-03 | 2016-01-26 | Visa International Service Association | Portable account number for consumer payment account |
US20110238511A1 (en) | 2010-03-07 | 2011-09-29 | Park Steve H | Fuel dispenser payment system and method |
US8887308B2 (en) | 2010-03-21 | 2014-11-11 | William Grecia | Digital cloud access (PDMAS part III) |
US8402555B2 (en) | 2010-03-21 | 2013-03-19 | William Grecia | Personalized digital media access system (PDMAS) |
US8533860B1 (en) | 2010-03-21 | 2013-09-10 | William Grecia | Personalized digital media access system—PDMAS part II |
US20110238573A1 (en) | 2010-03-25 | 2011-09-29 | Computer Associates Think, Inc. | Cardless atm transaction method and system |
US20130246203A1 (en) | 2010-04-09 | 2013-09-19 | Paydiant, Inc. | Payment processing methods and systems |
US8380177B2 (en) | 2010-04-09 | 2013-02-19 | Paydiant, Inc. | Mobile phone payment processing methods and systems |
US8336088B2 (en) | 2010-04-19 | 2012-12-18 | Visa International Service Association | Alias management and value transfer claim processing |
US20110258111A1 (en) | 2010-04-19 | 2011-10-20 | Thanigaivel Ashwin Raj | Alias management and off-us dda processing |
US20120030047A1 (en) | 2010-06-04 | 2012-02-02 | Jacob Fuentes | Payment tokenization apparatuses, methods and systems |
US20130275300A1 (en) | 2010-07-06 | 2013-10-17 | Patrick Killian | Virtual wallet account with automatic-loading |
US8571939B2 (en) | 2010-07-07 | 2013-10-29 | Toshiba Global Commerce Solutions Holdings Corporation | Two phase payment link and authorization for mobile devices |
US20120023567A1 (en) | 2010-07-16 | 2012-01-26 | Ayman Hammad | Token validation for advanced authorization |
US8635157B2 (en) | 2010-07-19 | 2014-01-21 | Payme, Inc. | Mobile system and method for payments and non-financial transactions |
US20120028609A1 (en) | 2010-07-27 | 2012-02-02 | John Hruska | Secure financial transaction system using a registered mobile device |
US20120041881A1 (en) | 2010-08-12 | 2012-02-16 | Gourab Basu | Securing external systems with account token substitution |
US20160224976A1 (en) | 2010-08-12 | 2016-08-04 | Gourab Basu | Securing external systems with account token substitution |
US20130166456A1 (en) | 2010-09-07 | 2013-06-27 | Zte Corporation | System and Method for Remote Payment Based on Mobile Terminal |
US20120066078A1 (en) | 2010-09-10 | 2012-03-15 | Bank Of America Corporation | Overage service using overage passcode |
US20120078798A1 (en) | 2010-09-27 | 2012-03-29 | Fidelity National Information Services. | Systems and methods for transmitting financial account information |
US20120078735A1 (en) | 2010-09-28 | 2012-03-29 | John Bauer | Secure account provisioning |
US20120095852A1 (en) | 2010-10-15 | 2012-04-19 | John Bauer | Method and system for electronic wallet access |
US20120095865A1 (en) | 2010-10-15 | 2012-04-19 | Ezpayy, Inc. | System And Method For Mobile Electronic Purchasing |
US20120123940A1 (en) | 2010-11-16 | 2012-05-17 | Killian Patrick L | Methods and systems for universal payment account translation |
US8577336B2 (en) | 2010-11-18 | 2013-11-05 | Mobilesphere Holdings LLC | System and method for transaction authentication using a mobile communication device |
WO2012068078A2 (en) | 2010-11-18 | 2012-05-24 | Mobilesphere Holdings LLC | System and method for transaction authentication using a mobile communication device |
US20130275308A1 (en) | 2010-11-29 | 2013-10-17 | Mobay Technologies Limited | System for verifying electronic transactions |
US20120143772A1 (en) | 2010-12-02 | 2012-06-07 | Essam Ernest Abadir | Secure Distributed Single Action Payment Authorization System |
US20120143767A1 (en) | 2010-12-02 | 2012-06-07 | Essam Ernest Abadir | Secure Distributed Single Action Payment System |
US20120143754A1 (en) | 2010-12-03 | 2012-06-07 | Narendra Patel | Enhanced credit card security apparatus and method |
US20120158593A1 (en) | 2010-12-16 | 2012-06-21 | Democracyontheweb, Llc | Systems and methods for facilitating secure transactions |
US8646059B1 (en) | 2010-12-17 | 2014-02-04 | Google Inc. | Wallet application for interacting with a secure element application without a trusted server for authentication |
US20120158580A1 (en) | 2010-12-20 | 2012-06-21 | Antonio Claudiu Eram | System, Method and Apparatus for Mobile Payments Enablement and Order Fulfillment |
US20120173431A1 (en) | 2010-12-30 | 2012-07-05 | First Data Corporation | Systems and methods for using a token as a payment in a transaction |
US20120185386A1 (en) | 2011-01-18 | 2012-07-19 | Bank Of America | Authentication tool |
WO2012098556A1 (en) | 2011-01-20 | 2012-07-26 | Google Inc | Direct carrier billing |
US20120197807A1 (en) | 2011-01-28 | 2012-08-02 | Joshua Schlesser | Secure online transaction processing |
US20120203666A1 (en) | 2011-02-09 | 2012-08-09 | Tycoon Unlimited, Inc. | Contactless wireless transaction processing system |
US20120203664A1 (en) | 2011-02-09 | 2012-08-09 | Tycoon Unlimited, Inc. | Contactless wireless transaction processing system |
US20140019352A1 (en) | 2011-02-22 | 2014-01-16 | Visa International Service Association | Multi-purpose virtual card transaction apparatuses, methods and systems |
US20120215688A1 (en) | 2011-02-23 | 2012-08-23 | Mastercard International, Inc. | Demand deposit account payment system |
US20120221421A1 (en) | 2011-02-28 | 2012-08-30 | Ayman Hammad | Secure anonymous transaction apparatuses, methods and systems |
US20120231844A1 (en) | 2011-03-11 | 2012-09-13 | Apriva, Llc | System and device for facilitating a transaction by consolidating sim, personal token, and associated applications for electronic wallet transactions |
US20120233004A1 (en) | 2011-03-11 | 2012-09-13 | James Bercaw | System for mobile electronic commerce |
US20130138525A1 (en) | 2011-03-11 | 2013-05-30 | James Bercaw | System for Mobile Electronic Commerce |
US20120246071A1 (en) | 2011-03-21 | 2012-09-27 | Nikhil Jain | System and method for presentment of nonconfidential transaction token identifier |
US20120246079A1 (en) | 2011-03-24 | 2012-09-27 | Dave William Wilson | Authentication using application authentication element |
US9280765B2 (en) | 2011-04-11 | 2016-03-08 | Visa International Service Association | Multiple tokenization for authentication |
US20120265631A1 (en) | 2011-04-15 | 2012-10-18 | Shift4 Corporation | Method and system for enabling merchants to share tokens |
US20130191286A1 (en) | 2011-04-15 | 2013-07-25 | Shift4 Corporation | Merchant-based token sharing |
US20130191289A1 (en) | 2011-04-15 | 2013-07-25 | Shift4 Corporation | Method and system for utilizing authorization factor pools |
US20130304649A1 (en) | 2011-04-15 | 2013-11-14 | Shift4 Corporation | Method and system for utilizing authorization factor pools |
WO2012142370A2 (en) | 2011-04-15 | 2012-10-18 | Shift4 Corporation | Method and system for enabling merchants to share tokens |
US20120271770A1 (en) | 2011-04-20 | 2012-10-25 | Visa International Service Association | Managing electronic tokens in a transaction processing system |
US20130110658A1 (en) | 2011-05-05 | 2013-05-02 | Transaction Network Services, Inc. | Systems and methods for enabling mobile payments |
US20130204793A1 (en) | 2011-05-17 | 2013-08-08 | Kevin S. Kerridge | Smart communication device secured electronic payment system |
US20120303503A1 (en) | 2011-05-26 | 2012-11-29 | First Data Corporation | Systems and Methods for Tokenizing Financial Information |
US20120300932A1 (en) | 2011-05-26 | 2012-11-29 | First Data Corporation | Systems and Methods for Encrypting Mobile Device Communications |
US20120303961A1 (en) | 2011-05-26 | 2012-11-29 | First Data Corporation | Systems and Methods for Authenticating Mobile Devices |
US20120304273A1 (en) | 2011-05-27 | 2012-11-29 | Fifth Third Processing Solutions, Llc | Tokenizing Sensitive Data |
US20120310831A1 (en) | 2011-06-02 | 2012-12-06 | Visa International Service Association | Reputation management in a transaction processing system |
US8577803B2 (en) | 2011-06-03 | 2013-11-05 | Visa International Service Association | Virtual wallet card selection apparatuses, methods and systems |
US8538845B2 (en) | 2011-06-03 | 2013-09-17 | Mozido, Llc | Monetary transaction system |
US20120317036A1 (en) | 2011-06-07 | 2012-12-13 | Bower Mark F | Payment card processing system with structure preserving encryption |
US20120316992A1 (en) | 2011-06-07 | 2012-12-13 | Oborne Timothy W | Payment privacy tokenization apparatuses, methods and systems |
WO2012167941A1 (en) | 2011-06-09 | 2012-12-13 | Gemalto Sa | Method to validate a transaction between a user and a service provider |
US20130018757A1 (en) | 2011-07-15 | 2013-01-17 | Lisa Anderson | Hosted order page/silent order post plus fraud detection |
US20130031006A1 (en) | 2011-07-29 | 2013-01-31 | Mccullagh Niall | Passing payment tokens through an hop / sop |
US20130246261A1 (en) | 2011-08-18 | 2013-09-19 | Thomas Purves | Multi-Directional Wallet Connector Apparatuses, Methods and Systems |
US20130054337A1 (en) | 2011-08-22 | 2013-02-28 | American Express Travel Related Services Company, Inc. | Methods and systems for contactless payments for online ecommerce checkout |
US20130226799A1 (en) | 2011-08-23 | 2013-08-29 | Thanigaivel Ashwin Raj | Authentication process for value transfer machine |
US20130218769A1 (en) | 2011-08-23 | 2013-08-22 | Stacy Pourfallah | Mobile Funding Method and System |
US20130054474A1 (en) | 2011-08-30 | 2013-02-28 | C. Douglas Yeager | Systems and methods for authorizing a transaction with an unexpected cryptogram |
US20130339253A1 (en) | 2011-08-31 | 2013-12-19 | Dan Moshe Sincai | Mobile Device Based Financial Transaction System |
US8171525B1 (en) | 2011-09-15 | 2012-05-01 | Google Inc. | Enabling users to select between secure service providers using a central trusted service manager |
US8838982B2 (en) | 2011-09-21 | 2014-09-16 | Visa International Service Association | Systems and methods to secure user identification |
US8453223B2 (en) | 2011-09-23 | 2013-05-28 | Jerome Svigals | Method, device and system for secure transactions |
US20130081122A1 (en) | 2011-09-23 | 2013-03-28 | Jerome Svigals | A Method, Device and System for Secure Transactions |
WO2013048538A1 (en) | 2011-10-01 | 2013-04-04 | Intel Corporation | Cloud based credit card emulation |
WO2013056104A1 (en) | 2011-10-12 | 2013-04-18 | C-Sam, Inc. | A multi-tiered secure mobile transactions enabling platform |
US9229964B2 (en) | 2011-10-27 | 2016-01-05 | Visa International Business Machines Corporation | Database cloning and migration for quality assurance |
US20130111599A1 (en) | 2011-11-01 | 2013-05-02 | Michael J. Gargiulo | Systems, methods, and computer program products for interfacing multiple service provider trusted service managers and secure elements |
US20130117185A1 (en) | 2011-11-01 | 2013-05-09 | Stripe, Inc. | Method for conducting a transaction between a merchant site and a customer's electronic device without exposing payment information to a server-side application of the merchant site |
US20130124364A1 (en) | 2011-11-13 | 2013-05-16 | Millind Mittal | System and method of electronic payment using payee provided transaction identification codes |
US8606720B1 (en) | 2011-11-13 | 2013-12-10 | Google Inc. | Secure storage of payment information on client devices |
US20130144888A1 (en) | 2011-12-05 | 2013-06-06 | Patrick Faith | Dynamic network analytics system |
US20130145148A1 (en) | 2011-12-06 | 2013-06-06 | Wwpass Corporation | Passcode restoration |
US20130145172A1 (en) | 2011-12-06 | 2013-06-06 | Wwpass Corporation | Token activation |
US8555079B2 (en) | 2011-12-06 | 2013-10-08 | Wwpass Corporation | Token management |
US8656180B2 (en) | 2011-12-06 | 2014-02-18 | Wwpass Corporation | Token activation |
US20130159178A1 (en) | 2011-12-14 | 2013-06-20 | Firethorn Mobile, Inc. | System and Method For Loading A Virtual Token Managed By A Mobile Wallet System |
US20130159184A1 (en) | 2011-12-15 | 2013-06-20 | Visa International Service Association | System and method of using load network to associate product or service with a consumer token |
US20140040139A1 (en) | 2011-12-19 | 2014-02-06 | Sequent Software, Inc. | System and method for dynamic temporary payment authorization in a portable communication device |
US20130166402A1 (en) | 2011-12-21 | 2013-06-27 | Stephen A. Parento | Methods and systems for providing a payment account with adaptive interchange |
US20130173736A1 (en) | 2011-12-29 | 2013-07-04 | the Province of Ontario, Canada) | Communications system providing enhanced trusted service manager (tsm)verification features and related methods |
US20130254117A1 (en) | 2011-12-30 | 2013-09-26 | Clay W. von Mueller | Secured transaction system and method |
US20130212026A1 (en) | 2012-01-05 | 2013-08-15 | Glenn Powell | Data protection with translation |
US8566168B1 (en) | 2012-01-05 | 2013-10-22 | Sprint Communications Company L.P. | Electronic payment using a proxy account number stored in a secure element |
US20130191227A1 (en) | 2012-01-19 | 2013-07-25 | Mastercard International Incorporated | System and method to enable a network of digital wallets |
US20130198080A1 (en) | 2012-01-26 | 2013-08-01 | Lisa Anderson | System and method of providing tokenization as a service |
US20130198071A1 (en) | 2012-01-27 | 2013-08-01 | Penny Diane Jurss | Mobile services remote deposit capture |
US20140046853A1 (en) | 2012-01-30 | 2014-02-13 | Voltage Security, Inc. | System for protecting sensitive data with distributed tokenization |
US8595850B2 (en) | 2012-01-30 | 2013-11-26 | Voltage Security, Inc. | System for protecting sensitive data with distributed tokenization |
US20130200146A1 (en) | 2012-02-03 | 2013-08-08 | Ali Minaei Moghadam | Adding card to mobile/cloud wallet using nfc |
US20130204787A1 (en) | 2012-02-03 | 2013-08-08 | Pieter Dubois | Authentication & authorization of transactions using an external alias |
US20130212019A1 (en) | 2012-02-10 | 2013-08-15 | Ulf Mattsson | Tokenization of payment information in mobile environments |
US20130212666A1 (en) | 2012-02-10 | 2013-08-15 | Ulf Mattsson | Tokenization in mobile environments |
WO2013119914A1 (en) | 2012-02-10 | 2013-08-15 | Protegrity Corporation | Tokenization in mobile and payment environments |
US20130212007A1 (en) | 2012-02-10 | 2013-08-15 | Protegrity Corporation | Tokenization in payment environments |
US20130212024A1 (en) | 2012-02-10 | 2013-08-15 | Protegrity Corporation | Tokenization in distributed payment environments |
US20130212017A1 (en) | 2012-02-14 | 2013-08-15 | N.B. Development Services Inc. | Transaction system and method of conducting a transaction |
US20130226813A1 (en) | 2012-02-23 | 2013-08-29 | Robert Matthew Voltz | Cyberspace Identification Trust Authority (CITA) System and Method |
US20130246199A1 (en) | 2012-03-14 | 2013-09-19 | Mark Carlson | Point-of-transaction account feature redirection apparatuses, methods and systems |
US20130246259A1 (en) | 2012-03-15 | 2013-09-19 | Firethorn Mobile, Inc. | System and method for managing payment in transactions with a pcd |
US20130246202A1 (en) | 2012-03-15 | 2013-09-19 | Ebay Inc. | Systems, Methods, and Computer Program Products for Using Proxy Accounts |
US20130246267A1 (en) | 2012-03-15 | 2013-09-19 | Ebay Inc. | Systems, Methods, and Computer Program Products for Using Proxy Accounts |
US20130246258A1 (en) | 2012-03-15 | 2013-09-19 | Firethorn Mobile, Inc. | System and method for managing payment in transactions with a pcd |
US20130254102A1 (en) | 2012-03-20 | 2013-09-26 | First Data Corporation | Systems and Methods for Distributing Tokenization and De-Tokenization Services |
US20130254052A1 (en) | 2012-03-20 | 2013-09-26 | First Data Corporation | Systems and Methods for Facilitating Payments Via a Peer-to-Peer Protocol |
US20130254028A1 (en) | 2012-03-22 | 2013-09-26 | Corbuss Kurumsal Telekom Hizmetleri A.S. | System and method for conducting mobile commerce |
US20130262315A1 (en) | 2012-03-30 | 2013-10-03 | John Hruska | System for Secure Purchases Made by Scanning Barcode Using a Registered Mobile Phone Application Linked to a Consumer-Merchant Closed Loop Financial Proxy Account System |
US20130262316A1 (en) | 2012-03-30 | 2013-10-03 | John Hruska | Securely Selling and Purchasing of Goods through Social Network Sites Using a Secure Mobile Wallet System as a Mobile Commerce |
US20130262302A1 (en) | 2012-04-02 | 2013-10-03 | Jvl Ventures, Llc | Systems, methods, and computer program products for provisioning payment accounts into mobile wallets and managing events |
US20130262317A1 (en) | 2012-04-02 | 2013-10-03 | Mastercard International Incorporated | Systems and methods for processing mobile payments by provisoning credentials to mobile devices without secure elements |
US20130275307A1 (en) | 2012-04-13 | 2013-10-17 | Mastercard International Incorporated | Systems, methods, and computer readable media for conducting a transaction using cloud based credentials |
US20130282502A1 (en) | 2012-04-18 | 2013-10-24 | Google Inc. | Processing payment transactions without a secure element |
US20130282588A1 (en) | 2012-04-22 | 2013-10-24 | John Hruska | Consumer, Merchant and Mobile Device Specific, Real-Time Dynamic Tokenization Activation within a Secure Mobile-Wallet Financial Transaction System |
US20130297504A1 (en) | 2012-05-04 | 2013-11-07 | Mastercard International Incorporated | Transaction data tokenization |
US20130297501A1 (en) | 2012-05-04 | 2013-11-07 | Justin Monk | System and method for local data conversion |
US20130311382A1 (en) | 2012-05-21 | 2013-11-21 | Klaus S. Fosmark | Obtaining information for a payment transaction |
US20130308778A1 (en) | 2012-05-21 | 2013-11-21 | Klaus S. Fosmark | Secure registration of a mobile device for use with a session |
WO2013179271A2 (en) | 2012-06-01 | 2013-12-05 | Mani Venkatachalam Sthanu Subra | Method and system for human assisted secure payment by phone to an insecure third-party service provider |
US20170103387A1 (en) | 2012-06-06 | 2017-04-13 | Lance Weber | Method and system for correlating diverse transaction data |
US20130332344A1 (en) | 2012-06-06 | 2013-12-12 | Visa International Service Association | Method and system for correlating diverse transaction data |
US20130346305A1 (en) | 2012-06-26 | 2013-12-26 | Carta Worldwide Inc. | Mobile wallet payment processing |
US20140007213A1 (en) | 2012-06-29 | 2014-01-02 | Wepay, Inc. | Systems and methods for push notification based application authentication and authorization |
US20140013114A1 (en) | 2012-07-03 | 2014-01-09 | International Business Machines Corporation | Issuing, presenting and challenging mobile device identification documents |
US20140013106A1 (en) | 2012-07-03 | 2014-01-09 | International Business Machines Corporation | Issuing, presenting and challenging mobile device identification documents |
US20140013452A1 (en) | 2012-07-03 | 2014-01-09 | Selim Aissi | Data protection hub |
US20140025958A1 (en) | 2012-07-19 | 2014-01-23 | Bank Of America Corporation | Implementing security measures for authorized tokens used in mobile transactions |
US20140025585A1 (en) | 2012-07-19 | 2014-01-23 | Bank Of America Corporation | Distributing authorized tokens to conduct mobile transactions |
US20140025581A1 (en) | 2012-07-19 | 2014-01-23 | Bank Of America Corporation | Mobile transactions using authorized tokens |
US20140032418A1 (en) | 2012-07-25 | 2014-01-30 | Lance Weber | Upstream and downstream data conversion |
US9256871B2 (en) | 2012-07-26 | 2016-02-09 | Visa U.S.A. Inc. | Configurable payment tokens |
US20140040145A1 (en) | 2012-07-31 | 2014-02-06 | Matthew D. Ozvat | Systems and methods for distributed enhanced payment processing |
US20140040148A1 (en) | 2012-07-31 | 2014-02-06 | Mercury Payment Systems, Llc | Systems and methods for arbitraged enhanced payment processing |
US20140040144A1 (en) | 2012-07-31 | 2014-02-06 | Michelle K. Plomske | Systems and Methods for Multi-Merchant Tokenization |
US20140040628A1 (en) | 2012-08-03 | 2014-02-06 | Vasco Data Security, Inc. | User-convenient authentication method and apparatus using a mobile authentication application |
US20170220818A1 (en) | 2012-08-10 | 2017-08-03 | Sekhar Nagasundaram | Privacy firewall |
US20140047551A1 (en) | 2012-08-10 | 2014-02-13 | Sekhar Nagasundaram | Privacy firewall |
US20140052637A1 (en) | 2012-08-17 | 2014-02-20 | Google Inc. | Portable device wireless reader and payment transaction terminal secure memory functionality |
US20140052620A1 (en) | 2012-08-17 | 2014-02-20 | Google Inc. | Wireless reader and payment transaction terminal functionality within a portable device |
US20140052532A1 (en) | 2012-08-17 | 2014-02-20 | Google Inc. | Portable device wireless reader and payment transaction terminal functionality with other portable devices |
US20140068706A1 (en) | 2012-08-28 | 2014-03-06 | Selim Aissi | Protecting Assets on a Device |
US20140074637A1 (en) | 2012-09-11 | 2014-03-13 | Visa International Service Association | Cloud-based virtual wallet nfc apparatuses, methods and systems |
US20140108172A1 (en) | 2012-10-16 | 2014-04-17 | Lance Weber | Dynamic point of sale system integrated with reader device |
US20140114857A1 (en) | 2012-10-23 | 2014-04-24 | Alfred William Griggs | Transaction initiation determination system utilizing transaction data elements |
US20140143137A1 (en) | 2012-11-21 | 2014-05-22 | Mark Carlson | Device pairing via trusted intermediary |
US20140164243A1 (en) | 2012-12-07 | 2014-06-12 | Christian Aabye | Dynamic Account Identifier With Return Real Account Identifier |
US20140189350A1 (en) * | 2012-12-28 | 2014-07-03 | Davit Baghdasaryan | System and method for efficiently enrolling, registering, and authenticating with multiple authentication devices |
US20140188586A1 (en) | 2013-01-02 | 2014-07-03 | Andrew Carpenter | Tokenization and third-party interaction |
US20150363775A1 (en) | 2013-01-10 | 2015-12-17 | Tendyron Corporation | Key protection method and system |
US20140324690A1 (en) | 2013-01-11 | 2014-10-30 | American Express Travel Related Services Company, Inc. | System and method for a single digital wallet dynamic checkout tool |
US20150363781A1 (en) | 2013-02-26 | 2015-12-17 | Visa International Service Association | Methods and systems for providing payment credentials |
US9780950B1 (en) | 2013-03-15 | 2017-10-03 | Symantec Corporation | Authentication of PKI credential by use of a one time password and pin |
US20140289833A1 (en) * | 2013-03-22 | 2014-09-25 | Marc Briceno | Advanced authentication techniques and applications |
US20140289528A1 (en) * | 2013-03-22 | 2014-09-25 | Davit Baghdasaryan | System and method for privacy-enhanced data synchronization |
US9249241B2 (en) | 2013-03-27 | 2016-02-02 | Ut-Battelle, Llc | Surface-functionalized mesoporous carbon materials |
US20140294701A1 (en) | 2013-03-27 | 2014-10-02 | Ut-Battelle, Llc | Surface-functionalized mesoporous carbon materials |
US20160092874A1 (en) | 2013-04-04 | 2016-03-31 | Visa International Service Association | Method and system for conducting pre-authorized financial transactions |
US20140310183A1 (en) | 2013-04-15 | 2014-10-16 | Lance Weber | Embedded acceptance system |
US20140331265A1 (en) | 2013-05-01 | 2014-11-06 | Microsoft Corporation | Integrated interactive television entertainment system |
US20140330721A1 (en) | 2013-05-02 | 2014-11-06 | Quan Wang | Systems and methods for verifying and processing transactions using virtual currency |
US20140330722A1 (en) | 2013-05-02 | 2014-11-06 | Prasanna Laxminarayanan | System and method for using an account sequence identifier |
US20140337236A1 (en) | 2013-05-10 | 2014-11-13 | Erick Wong | Device provisioning using partial personalization scripts |
US20140344153A1 (en) | 2013-05-15 | 2014-11-20 | Thanigaivel Ashwin Raj | Mobile tokenization hub |
US20180247303A1 (en) | 2013-05-15 | 2018-08-30 | Thanigaivel Ashwin Raj | Mobile tokenization hub |
US20140372308A1 (en) | 2013-06-17 | 2014-12-18 | John Sheets | System and method using merchant token |
US20160132878A1 (en) | 2013-07-02 | 2016-05-12 | Visa International Service Association | Payment Card Including User Interface for Use with Payment Card Acceptance Terminal |
US20150019443A1 (en) | 2013-07-15 | 2015-01-15 | John Sheets | Secure remote payment transaction processing |
US20150032625A1 (en) | 2013-07-24 | 2015-01-29 | Matthew Dill | Systems and methods for communicating risk using token assurance data |
US20150032626A1 (en) | 2013-07-24 | 2015-01-29 | Matthew Dill | Systems and methods for interoperable network token processing |
US20150032627A1 (en) | 2013-07-24 | 2015-01-29 | Matthew Dill | Systems and methods for communicating token attributes associated with a token vault |
US20150046338A1 (en) | 2013-08-08 | 2015-02-12 | Prasanna Laxminarayanan | Multi-network tokenization processing |
US20150046339A1 (en) | 2013-08-08 | 2015-02-12 | Erick Wong | Methods and systems for provisioning mobile devices with payment credentials |
US20150052064A1 (en) | 2013-08-15 | 2015-02-19 | Igor Karpenko | Secure Remote Payment Transaction Processing Using a Secure Element |
US9646303B2 (en) | 2013-08-15 | 2017-05-09 | Visa International Service Association | Secure remote payment transaction processing using a secure element |
US20170200156A1 (en) | 2013-08-15 | 2017-07-13 | Igor Karpenko | Secure remote payment transaction processing using a secure element |
US20170221056A1 (en) | 2013-08-15 | 2017-08-03 | Igor Karpenko | Secure remote payment transaction processing using a secure element |
US20150081544A1 (en) | 2013-09-17 | 2015-03-19 | Egan Schulz | Physical interaction dependent transactions |
US20150088756A1 (en) | 2013-09-20 | 2015-03-26 | Oleg Makhotin | Secure Remote Payment Transaction Processing Including Consumer Authentication |
US20150127547A1 (en) | 2013-10-11 | 2015-05-07 | Glenn Leon Powell | Network token system |
US20150106239A1 (en) | 2013-10-11 | 2015-04-16 | Ajit Gaddam | Tokenization revocation list |
US20150112870A1 (en) | 2013-10-18 | 2015-04-23 | Sekhar Nagasundaram | Contextual transaction token methods and systems |
US20150112871A1 (en) | 2013-10-21 | 2015-04-23 | Phillip Kumnick | Multi-network token bin routing with defined verification parameters |
US20150120472A1 (en) | 2013-10-29 | 2015-04-30 | Christian Aabye | Digital wallet system and method |
US20150127529A1 (en) | 2013-11-05 | 2015-05-07 | Oleg Makhotin | Methods and systems for mobile payment application selection and management using an application linker |
US20150142673A1 (en) | 2013-11-18 | 2015-05-21 | Mark Nelsen | Methods and systems for token request management |
US20170046696A1 (en) | 2013-11-19 | 2017-02-16 | Glen Leon Powell | Automated account provisioning |
US20150140960A1 (en) | 2013-11-19 | 2015-05-21 | Glenn Leon Powell | Automated Account Provisioning |
US20150161597A1 (en) | 2013-12-09 | 2015-06-11 | Kaushik Subramanian | Transactions using temporary credential data |
US20160140545A1 (en) | 2013-12-19 | 2016-05-19 | Christian Flurscheim | Cloud-based transactions with magnetic secure transmission |
US20150178724A1 (en) | 2013-12-19 | 2015-06-25 | Hao Ngo | Limited-use keys and cryptograms |
US20150180836A1 (en) | 2013-12-19 | 2015-06-25 | Erick Wong | Cloud-based transactions methods and systems |
US20150186864A1 (en) * | 2013-12-27 | 2015-07-02 | Christopher Jones | Processing a transaction using multiple application identifiers |
US20150193222A1 (en) | 2014-01-03 | 2015-07-09 | Kiushan Pirzadeh | Systems and methods for updatable applets |
US20150195133A1 (en) | 2014-01-07 | 2015-07-09 | John Sheets | Methods and systems for provisioning multiple devices |
US20150199679A1 (en) | 2014-01-13 | 2015-07-16 | Karthikeyan Palanisamy | Multiple token provisioning |
US20150199689A1 (en) | 2014-01-14 | 2015-07-16 | Phillip Kumnick | Payment account identifier system |
US20150220917A1 (en) | 2014-02-04 | 2015-08-06 | Christian Aabye | Token verification using limited use certificates |
US20150269566A1 (en) | 2014-03-18 | 2015-09-24 | Ajit Gaddam | Systems and methods for locally derived tokens |
US20150269578A1 (en) * | 2014-03-21 | 2015-09-24 | Ca, Inc. | Controlling ecommerce authentication with non-linear analytical models |
US20150278799A1 (en) | 2014-03-27 | 2015-10-01 | Karthikeyan Palanisamy | System incorporating wireless share process |
US20150287037A1 (en) | 2014-04-08 | 2015-10-08 | Diane Salmon | Data passed in an interaction |
US20150312038A1 (en) | 2014-04-23 | 2015-10-29 | Karthikeyan Palanisamy | Token security on a communication device |
US9680942B2 (en) | 2014-05-01 | 2017-06-13 | Visa International Service Association | Data verification using access device |
US20170109751A1 (en) * | 2014-05-02 | 2017-04-20 | Nok Nok Labs, Inc. | System and method for carrying strong authentication events over different channels |
US20150319158A1 (en) | 2014-05-05 | 2015-11-05 | Phillip Kumnick | System and method for token domain control |
US20150324736A1 (en) | 2014-05-08 | 2015-11-12 | John Sheets | Split shipment processing |
US20150332262A1 (en) | 2014-05-13 | 2015-11-19 | Phaneendra Ramaseshu Lingappa | Master applet for secure remote payment processing |
US20150356560A1 (en) | 2014-06-05 | 2015-12-10 | Vishwanath Shastry | Identification and Verification for Provisioning Mobile Application |
US20160028550A1 (en) | 2014-07-23 | 2016-01-28 | Ajit Gaddam | Systems and methods for secure detokenization |
US20160036790A1 (en) | 2014-07-31 | 2016-02-04 | Vishwanath Shastry | System and method for identity verification across mobile applications |
US20160042263A1 (en) | 2014-08-11 | 2016-02-11 | Ajit Gaddam | Mobile device with scannable image including dynamic data |
US20170364903A1 (en) | 2014-08-22 | 2017-12-21 | Eduardo Lopez | Embedding cloud-based functionalities in a communication device |
US20180324584A1 (en) | 2014-08-22 | 2018-11-08 | Visa International Service Association | Embedding cloud-based functionalities in a communication device |
US20160065370A1 (en) | 2014-08-29 | 2016-03-03 | Eric Le Saint | Methods for secure cryptogram generation |
US20160092696A1 (en) | 2014-09-26 | 2016-03-31 | Abhishek Guglani | Remote Server Encrypted Data Provisioning System and Methods |
US20160092872A1 (en) | 2014-09-29 | 2016-03-31 | Gyan Prakash | Transaction Risk Based Token |
US20160103675A1 (en) | 2014-10-10 | 2016-04-14 | Christian Aabye | Methods and systems for partial personalization during mobile application update |
US20160119296A1 (en) | 2014-10-22 | 2016-04-28 | Prasanna Laxminarayanan | Token Enrollment System and Method |
US20170228728A1 (en) | 2014-10-24 | 2017-08-10 | Visa Europe Limited | Transaction messaging |
US20160148212A1 (en) | 2014-11-25 | 2016-05-26 | James Dimmick | Systems communications with non-sensitive identifiers |
US20160148197A1 (en) | 2014-11-26 | 2016-05-26 | James Dimmick | Tokenization request via access device |
US20160173483A1 (en) | 2014-12-12 | 2016-06-16 | Erick Wong | Automated access data provisioning |
US20160171479A1 (en) | 2014-12-12 | 2016-06-16 | Gyan Prakash | Provisioning platform for machine-to-machine devices |
US20160210628A1 (en) | 2015-01-20 | 2016-07-21 | Keith McGuire | Secure payment processing using authorization request |
US20160217461A1 (en) | 2015-01-23 | 2016-07-28 | Ajit Gaddam | Transaction utilizing anonymized user data |
US20160218875A1 (en) | 2015-01-27 | 2016-07-28 | Eric Le Saint | Methods for secure credential provisioning |
US20160224977A1 (en) | 2015-01-30 | 2016-08-04 | Yaasha Sabba | Token check offline |
US20160232527A1 (en) | 2015-02-09 | 2016-08-11 | Barbara Patterson | Token processing utilizing multiple authorizations |
US20160239842A1 (en) | 2015-02-13 | 2016-08-18 | Duane Cash | Peer forward authorization of digital requests |
US20180006821A1 (en) | 2015-02-17 | 2018-01-04 | Visa International Service Association | Token and cryptogram using transaction specific information |
US20180047023A1 (en) | 2015-03-05 | 2018-02-15 | Bell Identification Bv | Method and apparatus for authenticating and processing secure transactions using a mobile device |
US20160269391A1 (en) | 2015-03-12 | 2016-09-15 | Ajit Gaddam | Methods and systems for providing a low value token buffer |
US20160308995A1 (en) | 2015-04-16 | 2016-10-20 | Robert Youdale | Systems and methods for processing dormant virtual access devices |
US20160350748A1 (en) | 2015-05-27 | 2016-12-01 | Bank Of America Corporation | Providing Access to Account Information Using Authentication Tokens |
US20170076288A1 (en) | 2015-09-15 | 2017-03-16 | Amitabh Awasthi | Authorization of credential on file transactions |
US9519901B1 (en) | 2015-09-16 | 2016-12-13 | Square, Inc. | Biometric payment technology |
US20170109745A1 (en) | 2015-10-15 | 2017-04-20 | Mohammad Al-Bedaiwi | Instant token issuance system |
US20170148013A1 (en) | 2015-11-23 | 2017-05-25 | Pankaj Rajurkar | Providing shipping details on a pay transaction via the internet |
US20170163629A1 (en) | 2015-12-04 | 2017-06-08 | Simon Law | Secure token distribution |
US20170163617A1 (en) | 2015-12-04 | 2017-06-08 | Prasanna Laxminarayanan | Unique code for token verification |
US20170200165A1 (en) | 2015-12-04 | 2017-07-13 | Prasanna Laxminarayanan | Unique code for token verification |
US20170201520A1 (en) | 2016-01-07 | 2017-07-13 | Madhuri CHANDOOR | Systems and methods for device push provisioning |
US20170221054A1 (en) | 2016-02-01 | 2017-08-03 | Christian Flurscheim | Systems and methods for code display and use |
US20170228723A1 (en) | 2016-02-09 | 2017-08-10 | Mary Taylor | Resource provider account token provisioning and processing |
US20170236113A1 (en) | 2016-02-12 | 2017-08-17 | Jalpesh CHITALIA | Authentication systems and methods using location matching |
US20170295155A1 (en) | 2016-04-07 | 2017-10-12 | Erick Wong | Tokenization of co-network accounts |
US20170293914A1 (en) | 2016-04-11 | 2017-10-12 | Aparna Krishnan Girish | Expedited e-commerce tokenization |
US20170337549A1 (en) | 2016-05-19 | 2017-11-23 | Erick Wong | Systems and methods for creating subtokens using primary tokens |
US20170344732A1 (en) | 2016-05-24 | 2017-11-30 | Mastercard International Incorporated | System and method for processing a transaction with secured authentication |
US20170364914A1 (en) | 2016-06-17 | 2017-12-21 | Kelvan Howard | Token aggregation system for multi-party transactions |
US20170373852A1 (en) | 2016-06-24 | 2017-12-28 | Michael CASSIN | Unique token authentication cryptogram |
US20190147439A1 (en) | 2016-07-19 | 2019-05-16 | Visa International Service Association | Method of distributing tokens and managing token relationships |
US20180075081A1 (en) | 2016-09-14 | 2018-03-15 | Tommy Chipman | Self-cleaning token vault |
US20200267153A1 (en) | 2016-11-28 | 2020-08-20 | Visa International Service Association | Access identifier provisioning to application |
US20180268399A1 (en) | 2017-03-16 | 2018-09-20 | Jpmorgan Chase Bank, N.A. | Systems and methods for supporting legacy and tokenized e-commerce |
US20180268405A1 (en) | 2017-03-17 | 2018-09-20 | Eduardo Lopez | Replacing token on a multi-token user device |
US20180285875A1 (en) | 2017-03-31 | 2018-10-04 | Simon Law | Static token systems and methods for representing dynamic real credentials |
US20180324184A1 (en) | 2017-05-02 | 2018-11-08 | Venkata Naga Pradeep Kumar Kaja | System and method using interaction token |
US20190020478A1 (en) | 2017-07-14 | 2019-01-17 | Aparna Girish | Token provisioning utilizing a secure authentication system |
US20190356489A1 (en) | 2018-05-18 | 2019-11-21 | Visa International Service Association | Method and system for access token processing |
US20190384896A1 (en) | 2018-06-18 | 2019-12-19 | Visa International Service Association | Recurring token transactions |
US20190392431A1 (en) | 2018-06-22 | 2019-12-26 | Visa International Service Association | Secure remote transaction framework using dynamic secure checkout element |
Non-Patent Citations (7)
Title |
---|
"Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104", USPTO Patent Trial and Appeal Board, IPR 2016-00600, Feb. 17, 2016, 65 pages. |
EP18909101.0 , "Extended European Search Report", dated Mar. 18, 2021, 9 pages. |
PCT/IB2018/056173 , "International Preliminary Report on Patentability", dated Sep. 17, 2020, 9 pages. |
PCT/IB2018/056173 , "International Search Report and Written Opinion", dated Dec. 10, 2018, 14 pages. |
U.S. Appl. No. 16/311,144, filed Dec. 18, 2018, 83 pages. |
U.S. Appl. No. 16/977,645 , "Non-Final Office Action", dated Oct. 4, 2021, 24 pages. |
U.S. Appl. No. 16/977,645 , "Notice of Allowance", dated Feb. 2, 2022, 17 pages. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230062507A1 (en) * | 2020-03-05 | 2023-03-02 | Visa International Service Association | User authentication at access control server using mobile device |
US12245035B2 (en) * | 2020-03-05 | 2025-03-04 | Visa International Service Association | User authentication at access control server using mobile device |
Also Published As
Publication number | Publication date |
---|---|
EP3762844A4 (en) | 2021-04-21 |
WO2019171163A1 (en) | 2019-09-12 |
US11356257B2 (en) | 2022-06-07 |
US20230353360A1 (en) | 2023-11-02 |
CN111819555A (en) | 2020-10-23 |
EP3762844A1 (en) | 2021-01-13 |
US20220255741A1 (en) | 2022-08-11 |
US20210051012A1 (en) | 2021-02-18 |
SG11202008451RA (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11743042B2 (en) | Secure remote token release with online authentication | |
US11574311B2 (en) | Secure mobile device credential provisioning using risk decision non-overrides | |
US10826702B2 (en) | Secure authentication of user and mobile device | |
AU2021200521B2 (en) | Systems and methods for device push provisioning | |
US20240305628A1 (en) | Techniques for token proximity transactions | |
US20170048218A1 (en) | Enhanced security for registration of authentication devices | |
US11870903B2 (en) | Cloud token provisioning of multiple tokens | |
US20200372495A1 (en) | Authenticating a user for a transaction based on device-based authentication data by a payment network | |
US20240380597A1 (en) | Remote identity interaction | |
US11049101B2 (en) | Secure remote transaction framework | |
US11574310B2 (en) | Secure authentication system and method | |
US20230237172A1 (en) | Data broker | |
WO2015022651A1 (en) | System and method for generating payment credentials | |
WO2024171047A1 (en) | Performing cryptographic operations for digital activity security |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |