US11863580B2 - Modeling application dependencies to identify operational risk - Google Patents
Modeling application dependencies to identify operational risk Download PDFInfo
- Publication number
- US11863580B2 US11863580B2 US17/133,466 US202017133466A US11863580B2 US 11863580 B2 US11863580 B2 US 11863580B2 US 202017133466 A US202017133466 A US 202017133466A US 11863580 B2 US11863580 B2 US 11863580B2
- Authority
- US
- United States
- Prior art keywords
- computer
- computing environment
- cloud
- cloud computing
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims abstract description 39
- 238000011084 recovery Methods 0.000 claims description 20
- 230000015654 memory Effects 0.000 claims description 15
- 230000001419 dependent effect Effects 0.000 claims 3
- 230000006870 function Effects 0.000 description 19
- 238000003860 storage Methods 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 238000007726 management method Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 10
- 230000008520 organization Effects 0.000 description 9
- 238000004590 computer program Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- 235000006719 Cassia obtusifolia Nutrition 0.000 description 1
- 235000014552 Cassia tora Nutrition 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000272185 Falco Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 238000013474 audit trail Methods 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- VQLYBLABXAHUDN-UHFFFAOYSA-N bis(4-fluorophenyl)-methyl-(1,2,4-triazol-1-ylmethyl)silane;methyl n-(1h-benzimidazol-2-yl)carbamate Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1.C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 VQLYBLABXAHUDN-UHFFFAOYSA-N 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1433—Vulnerability analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2379—Updates performed during online database operations; commit processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9024—Graphs; Linked lists
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/57—Certifying or maintaining trusted computer platforms, e.g. secure boots or power-downs, version controls, system software checks, secure updates or assessing vulnerabilities
- G06F21/577—Assessing vulnerabilities and evaluating computer system security
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5072—Grid computing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/542—Event management; Broadcasting; Multicasting; Notifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0866—Checking the configuration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5041—Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
- H04L41/5051—Service on demand, e.g. definition and deployment of services in real time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5058—Service discovery by the service manager
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/20—Network architectures or network communication protocols for network security for managing network security; network security policies in general
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/5041—Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
- H04L41/5048—Automatic or semi-automatic definitions, e.g. definition templates
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/50—Network service management, e.g. ensuring proper service fulfilment according to agreements
- H04L41/508—Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
- H04L41/5096—Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to distributed or central networked applications
Definitions
- the present technology pertains to communications networks, and more specifically to security in enterprise datacenter and cloud computing environments.
- a method for cloud security management may comprise: gathering data about workloads and applications in the cloud computing environment; updating a database using the data, the database representing the workloads of the cloud computing environment as nodes and relationships between the workloads as edges; and identifying dependencies and relationships that might represent an operational or cyber risk.
- FIG. 1 is a simplified block diagram of a cloud computing environment, according to some embodiments.
- FIG. 2 is a simplified block diagram of a system for cloud security management, according to various embodiments.
- FIG. 3 depicts a simplified graph of a cloud computing environment, in accordance with some embodiments.
- FIG. 4 A shows another graph of a cloud computing environment and FIG. 4 B depicts a graph of an application, in accordance with various embodiments.
- FIG. 5 is a simplified flow diagram of a method for cloud security management, according to some embodiments.
- FIG. 6 is a simplified block diagram of a computing system, according to various embodiments.
- FIG. 7 depicts a simplified graph of a cloud computing environment, in accordance with some embodiments.
- FIG. 8 shows an exemplary dependency risk report for a cloud computing environment, in accordance with some embodiments.
- FIG. 1 shows cloud computing environment 100 including workloads 110 1,1 - 110 X,Y , according to some embodiments.
- Cloud computing environment 100 provides on-demand availability of computer system resources, such as data storage and computing power.
- Cloud computing environment 100 can physically reside in one or more data centers and/or be physically distributed over multiple locations.
- Cloud computing environment 100 can be hosted by more than one cloud service, such as those provided by Amazon, Microsoft, and Google.
- Cloud computing environment 100 can be limited to a single organization (referred to as an enterprise cloud), available to many organizations (referred to as a public cloud,) or a combination of both (referred to as a hybrid cloud). Examples of public clouds include Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP).
- AWS Amazon Web Services
- Azure Microsoft Azure
- GCP Google Cloud Platform
- Each of workloads 110 1,1 - 110 X,Y can be a unit of computing resource, such as a physical computing system (also referred to as a bare metal server), virtual machine, container, pod, and combinations thereof.
- a physical computing system is computer hardware and not a virtual computing system, such as a virtual machine and container.
- physical computing systems can be the hardware that virtual computing systems run on.
- a virtual machine provides a substitute for a physical computing system, including functionality to execute entire operating systems.
- Virtual machines are created and run by a hypervisor or virtual machine monitor (VMM).
- a hypervisor is computer software or firmware which can run on workloads 110 1,1 - 110 X,Y .
- a hypervisor uses native execution to share and manage hardware, allowing for multiple environments which are isolated from one another, yet exist on the same physical computing system.
- Containers are an operating system-level virtualization method for deploying and running distributed applications without launching an entire virtual machine for each application.
- Containers can look like physical computing systems from the point of view of programs running in them.
- a computer program running on an operating system can see all resources (e.g., connected devices, files and folders, network shares, CPU power, etc.) of that physical computing system.
- resources e.g., connected devices, files and folders, network shares, CPU power, etc.
- programs running inside a container can only see the container's contents and devices assigned to the container.
- a pod is a group of containers with shared storage and/or network resources, and a shared specification for how to run the containers.
- a container is an instance of an image.
- An image can be a file, comprised of multiple layers, with information to create a complete and executable version of an application.
- Containers can be arranged, coordinated, and managed—including means of discovery and communications between containers—by container orchestration (e.g., Docker Swarm®, Kubernetes®, Amazon EC2 Container Service (ECS), Diego, Red Hat OpenShift, and Apache® MesosTM).
- container orchestration e.g., Docker Swarm®, Kubernetes®, Amazon EC2 Container Service (ECS), Diego, Red Hat OpenShift, and Apache® MesosTM.
- containers may be an abstraction performed at the operating system (OS) level, whereas virtual machines are an abstraction of physical hardware.
- OS operating system
- virtual machines are an abstraction of physical hardware.
- workloads 110 1,1 - 110 X,Y of cloud computing environment 100 individually and/or collectively run applications and/or services.
- Applications and/or services are programs designed to carry out operations for a specific purpose.
- applications can be a database (e.g., Microsoft® SQL Server®, MongoDB, Hadoop Distributed File System (HDFS), etc.), email server (e.g., Sendmail®, Postfix, qmail, Microsoft® Exchange Server, etc.), message queue (e.g., Apache® QpidTM, RabbitMQ®, etc.), web server (e.g., Apache® HTTP ServerTM, Microsoft® Internet Information Services (IIS), Nginx, etc.), Session Initiation Protocol (SIP) server (e.g., Kamailio® SIP Server, Avaya® Aura® Application Server 5300, etc.), other media server (e.g., video and/or audio streaming, live broadcast, etc.), file server (e.g., Linux server, Microsoft® Windows
- FIG. 2 shows system 200 for cloud security management, according to some embodiments.
- System 200 includes controller 210 .
- Controller 210 can receive streaming telemetry 275 from network logs 270 (also referred to herein as logs or network and middleware system logs), events 285 from cloud control plane 280 , and inventory 295 from configuration management database (CMDB) 290 .
- network logs 270 also referred to herein as logs or network and middleware system logs
- events 285 from cloud control plane 280
- CMDB configuration management database
- Network and middleware system logs 270 can be data sources such as flow logs from cloud services 260 1 - 260 Z (e.g., Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)), vArmour DSS Distributed Security System, Software Defined Networking (SDN) (e.g., VMware NSX and Cisco Application Centric Infrastructure (ACI)), monitoring agents (e.g., Tanium Asset and Falco), and the like.
- SDN Software Defined Networking
- ACI Cisco Application Centric Infrastructure
- monitoring agents e.g., Tanium Asset and Falco
- streaming telemetry 275 can be low-level data about relationships between applications. Streaming telemetry 275 can include 5-tuple, layer 7 (application layer) process information, management plane logs, and the like.
- 5-tuple refers to a set of five different values that comprise a Transmission Control Protocol/Internet Protocol (TCP/IP) connection: a source IP address/port number, destination IP address/port number and the protocol in use.
- Streaming telemetry can alternatively or additionally include a volume of data (i.e., how much data is or how many data packets are) exchanged between workloads (e.g., workloads 110 1,1 - 110 X,Y in FIG. 1 ) in a network, (dates and) times at which communications (e.g., data packets) are exchanged between workloads, and the like.
- Cloud control plane 280 establishes and controls the network and computing resources within a cloud computing environment (e.g., cloud computing environment 100 in FIG. 1 ).
- Cloud control plane 280 can include interfaces for managing assets (e.g., launching virtual machines and/or containers, configuring the network, etc.) in a cloud computing environment.
- cloud control plane 280 can include one or more instances of container orchestration, such as Docker Swarm®, Kubernetes®, Amazon EC2 Container Service (ECS), Diego, and Apache® MesosTM
- cloud control plane 280 can include VMware vSphere, application programming interfaces (APIs) provided by cloud services 260 1 - 260 Z , and the like.
- APIs application programming interfaces
- Events 285 can include information about a container (and/or a pod) being created, having a state change, having an error, and the like. For example, when a container is created, information about the workload such as a service name, image deployed, and the like can be received in events 285 . By way of further example, additional information from an image registry corresponding to the deployed image can be gathered by controller 210 .
- Configuration management database (CMDB) 290 can be a database of information about the hardware and software components (also known as assets) used in a cloud computing environment (e.g., cloud computing environment 100 in FIG. 1 ) and relationships between those components and business functions.
- CMDB 290 can include information about upstream sources or dependencies of components, and the downstream targets of components.
- inventory 295 can be used to associate an application name and other information (e.g., regulatory requirements, business unit ownership, business criticality, and the like) with the workload (e.g., workloads 110 1,1 - 110 X,Y in FIG. 1 ) it is running on.
- Streaming telemetry 275 , events 285 , and inventory 295 can be ingested by graph 220 .
- Graph 220 normalizes information received in streaming telemetry 275 , events 285 , and inventory 295 into a standard data format and/or model, graph database 225 .
- Graph database 225 uses a graph data model comprised of nodes (also referred to as vertices), which is an entity such as a workload (e.g., of workloads 110 1,1 - 110 X,Y in FIG. 1 ), and edges, which represent the relationship between two nodes. Edges can be referred to as relationships.
- An edge can have a start node, end node, type, and direction, and an edge can describe parent-child relationships, actions, ownership, and the like.
- relationships are (most) important in graph database 225 .
- connected data is equally (or more) important than individual data points.
- graph database 225 is advantageously scalable.
- graph database 225 for large cloud computing environments of 30,000-50,000 workloads can be stored in memory of a workload (e.g., of workloads 110 1,1 - 110 X,Y in FIG. 1 ).
- FIG. 3 depicts (simplified) graph (database) 300 of a cloud computing environment, according to various embodiments.
- Graph 300 is a simplified example, purely for illustrative purposes, of a graph in graph database 225 ( FIG. 2 ).
- Graph 300 can include three workloads (e.g., of workloads 110 1,1 - 110 X,Y in FIG. 1 ): node 310 , node 330 , and node 350 .
- edge (relationship) 320 is between nodes 310 and 330
- edge (relationship) 340 is between nodes 330 and 350
- edge (relationship) 360 is between nodes 350 and 310 .
- graph 220 ( FIG. 2 ) can determine information 335 about node 330 .
- information 335 can include an application name, application function, business organization (e.g., division within a company), realm (e.g., production system, development system, and the like), (geographic) location/zone, Recovery Time Objective (“RTO”), Recovery Point Objective (“RPO”) and other metadata.
- RTO Recovery Time Objective
- RPO Recovery Point Objective
- the name of the database can be determined.
- graph 220 can employ various techniques to manage entropy.
- entropy is change to the workloads (e.g., created and removed), communications among workloads (e.g., which workloads communicate with other workloads), applications and services provided in the network, and the like.
- entropy is low. For example, after monitoring an enterprise cloud for one month, another month of monitoring will reveal little that is new.
- graph 220 can recognize when there is high entropy and summarize the nodes. For example, the vast (and growing) number of clients on the Internet is represented by a single “Internet” object with one edge to the web server node.
- a new relationship can be created around a particular node in graph database 225 , as streaming telemetry 275 , events 285 , and inventory 295 are processed by graph 220 .
- Graph 220 ( FIG. 2 ) can further re-analyze the edges (relationships) connected to the particular node, to classify what the particular node is. For example, if the node accepts database client connections from systems that are known to be application servers, then graph 220 may classify the node as a database management system (i.e., a certain group). Classification criteria can include heuristic rules. Graph 220 can use machine learning algorithms and measure how close a particular node is to satisfying conditions for membership in a group. Classification is described further in U.S. Pat. No. 10,264,025 issued Apr. 16, 2019, titled “Security Policy Generation for Virtualization, Bare-Metal Server, and Cloud Computing Environments,” which is hereby incorporated by reference for disclosure of classification.
- Visualize 230 can visually present information from graph database 225 to users according to various criteria, such as by application, application type, organization, and the like.
- FIGS. 4 A and 4 B show example visual presentations 400 A and 400 B, respectively, in accordance with some embodiments.
- Visualize 230 can visually organize information from graph database 225 .
- nodes that behave similarly can be clustered together (i.e., be put in a cluster). For example, when two nodes have similar edges (relationships) and behave in a similar fashion (e.g., run the same application, are associated with the same organization, and the like), the two nodes can be clustered together.
- Nodes that are clustered together can be visually presented as a shape (e.g., circle, rectangle, and the like) which denotes that there are a certain number of workloads fulfilling the same function, instead of presenting a shape for each workload in the cluster.
- visualize 230 can detect and present communities.
- communities are workloads (e.g., of workloads 110 1,1 - 110 X,Y in FIG. 1 ) that have a close set of edges (relationships).
- the constituent workloads of a community do not have to be the same—they can each perform different functions, such as web server, database server, application server, and the like—but the workloads are densely connected. In other words, the nodes communicate with each other often and in high volume. Workloads in a community act collectively to perform an application, service, and/or business function.
- the community can be represented by a single shape denoting the application performed, the number of constituent workloads, and the like.
- Protect 240 can use information in the graph database 225 to design security policies.
- Security policies can implement security controls, for example, to protect an application wherever it is in a cloud computing environment (e.g., cloud computing environment 100 in FIG. 1 ).
- a security policy can specify what is to be protected (“nouns”), for example, applications run for a particular organization.
- a security policy can further specify a security intent (“verbs”), that is, how to protect.
- a security intent can be to implement Payment Card Industry Data Security Standard (PCI DSS) network segmentation requirements (a regulatory requirement), implement security best practices for databases, implement a whitelist architecture, and the like.
- PCI DSS Payment Card Industry Data Security Standard
- a security intent can be specified in a template by a user (responsible for system administration, security, and the like).
- a security template can include logic about how to process information in graph database 225 relating to workloads having a particular label/selection (nouns). Labels can be provided by logs 270 (e.g., layer 7 information), cloud control planes 280 (e.g., container orchestration), and CMDB 290 .
- Protect 240 uses a security template to extract workloads to be protected (nouns) from graph database 225 . Protect 240 further applies logic in the security template about how to protect the workloads (verbs) to produce a security policy.
- security templates are JavaScript Object Notation (JSON) documents, documents in Jinja (or Jinja2), YAML Ain't Markup Language (YAML) documents, Open Policy Agent (OPA) rules, and the like.
- JSON JavaScript Object Notation
- YAML YAML Ain't Markup Language
- OPA Open Policy Agent
- Jinja and Jinja2 are a web template engine for the Python programming language.
- YAML is a human-readable data-serialization language.
- OPA is an open source, general-purpose policy engine that enables unified, context-aware policy enforcement.
- Security templates are described further in U.S.
- Protect 240 can produce multiple security policies, each reflecting independent pieces of security logic that can be implemented by protect 240 .
- security policies are JavaScript Object Notation (JSON) documents which are described to a user (responsible for system administration, security, and the like) in natural language.
- JSON JavaScript Object Notation
- a natural language is any language that has evolved naturally in humans through use and repetition without conscious planning or premeditation. Natural language can broadly be defined in contrast to artificial or constructed languages such as computer programming languages.
- the multiple security policies can be placed in an order of precedence to resolve potential conflicts.
- Visualize 230 can be used to visualize the security policy (or security policies), showing the workloads protected, permitted relationships, and prohibited relationships.
- Protect 240 can then be used to edit the security policy.
- the backup server may have never been used and may not have the same edges (relationships) as the primary server in graph database 225 .
- the security policy can be edited to give the backup server the same permissions as the primary server.
- Protect 240 can validate a security policy.
- the security policy can be simulated using graph database 225 .
- a simulation can report which applications are broken (e.g., communications among nodes needed by the application to operate are prohibited) by the security policy, are unnecessarily exposed by weak policy, and the like.
- Security policy validation is described further in U.S. patent application Ser. No. 16/428,849, titled “Validation of Cloud Security Policies,” which is incorporated by reference herein for disclosure of security policy validation.
- Protect 240 can test a security policy.
- Protect can use historical data in graph database 225 to determine entropy in the cloud computing environment (e.g., cloud computing environment 100 in FIG. 1 ). For example, when a cloud computing environment first starts up, there are initially numerous changes as workloads are brought online and communicate with each other, such that entropy is high. Over time, the cloud computing environment becomes relatively stable with few changes, so entropy becomes low. In general, security policies are less reliable when entropy is high. Protect 240 can determine a level of entropy in the cloud computing environment and produce a reliability score and recommendation for the security policy. Security policy testing is described further in U.S.
- Protect 240 can deploy a security policy (or security policies).
- the security policy is deployed as needed in one or more cloud computing environments of cloud services 260 1 - 260 Z (e.g., Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)), vArmour DSS Distributed Security System, VMware NSX, and the like).
- Protect 240 can provide the security policy to one or more of cloud drivers 250 1 - 250 Z .
- Cloud drivers 250 1 - 250 Z maintain an inventory and topology (i.e., current state) of the workloads in the cloud computing environments hosted by cloud services 260 1 - 260 Z , respectively.
- Cloud drivers 250 1 - 250 Z can use their respective inventory and topology to apply the security policy to the appropriate workloads, and respond immediately to changes in workload topology and workload placement.
- Cloud drivers 250 1 - 250 Z can serve as an interface between protect 240 (having a centralized security policy) and cloud services 260 1 - 260 Z .
- cloud drivers 250 1 - 250 Z implement the security policy using the different facilities (e.g., application programming interfaces (APIs)) and capabilities available from cloud services 260 1 - 260 Z .
- APIs application programming interfaces
- each of cloud services 260 1 - 260 Z can have different syntax and semantics for implementing security controls.
- each of cloud services 260 1 - 260 Z can have different security capabilities (e.g., communications/connections between workloads can only be expressly permitted and not expressly prohibited), rule capacity (limit on the number of rules), optimization methods, and the like.
- Cloud drivers 250 1 - 250 Z can maintain the integrity of the security policy in the cloud computing environments hosted by cloud services 260 1 - 260 Z (referred to as the “cloud”). Cloud drivers 250 1 - 250 Z can check that the security policy actually deployed in the cloud is as it should be, using the security policy's JSON source. When the security policy deployed in the cloud does not comport with the centralized security policy—such as when a bad actor logs into one of the cloud services and removes all the security rules—the responsible cloud driver (of cloud drivers 250 1 - 250 Z ) can re-deploy the security policy and/or raise an operational alert.
- cloud services 260 1 - 260 Z can notify the respective cloud driver (of cloud drivers 250 1 - 250 Z ) of changes to the topology and/or configuration. Otherwise, the respective cloud driver (of cloud drivers 250 1 - 250 Z ) can poll the cloud service (cloud services 260 1 - 260 Z ) to ensure the security rules are in place.
- a security policy can be pushed down to the cloud computing environments hosted by cloud services 260 1 - 260 Z using cloud drivers 250 1 - 250 Z , respectively.
- protect 240 can check the new data against the security policy to detect violations and or drift (e.g., change in the environment and/or configuration).
- Protect 240 can dynamically update a security policy as changes occur in the cloud computing environments hosted by cloud services 260 1 - 260 Z . For example, when a container (or pod) is deployed by container orchestration, it can be given a label, and cloud control plane 280 reports a container is deployed (as event 285 ). Labels can be predefined to specify identifying attributes of containers (and pods), such as the container's application function. When the label corresponds to an attribute covered by an active (deployed) security policy, protect 240 can dynamically add the new container to the active security policy (as a target). For example, when a pod is deployed for a particular organization and there is an active policy for that organization, the new workload is added to the security policy.
- Dynamically updating security policy is described further in U.S. Pat. No. 9,521,115 issued Dec. 13, 2016, titled “Security Policy Generation Using Container Metadata,” which is hereby incorporated by reference for disclosure of dynamically updating security policy.
- FIG. 5 shows method 500 for managing cloud security, according to some embodiments.
- Method 500 can be performed by system 200 ( FIG. 2 ), including controller 210 .
- Method 500 can commence at step 510 where data from a cloud computing environment (e.g., cloud computing environment 100 in FIG. 1 ) can be received.
- a cloud computing environment e.g., cloud computing environment 100 in FIG. 1
- graph 220 FIG. 2
- CMDB configuration management database
- a graph database can be created or updated using the cloud data.
- streaming telemetry 275 , events 285 , and inventory 295 ( FIG. 2 ) can be normalized into a standard data format and stored in graph database 225 .
- a visual representation of the cloud computing environment as modeled by the graph database can be provided.
- visualize 230 FIG. 2
- nodes depict workloads in the cloud computing environment
- communities for visual clarity.
- a security template can include logic about how to extract information from graph database 225 to identify workloads to be targets of a security policy.
- a security template can specify how the workloads are to be protected (e.g., security intent).
- a security policy can be created.
- protect 240 can use the security template to extract information from graph database 225 ( FIG. 2 ) to produce a security policy for the security intent of the security template.
- the security policy can be validated. For example, protect 240 ( FIG. 2 ) tests the security policy against a historical data set stored in graph database 225 . Protect 240 can generate a report around the risks and implications of the security policy being implemented.
- the security policy can be tested.
- protect 240 FIG. 2
- protect 240 can measure entropy and a rate of change in the data set stored in graph database 225 to predict, when the security policy is deployed, the cloud computing environment (e.g., cloud computing environment 100 in FIG. 1 ) will change such that applications and/or services will break (e.g., be prevented from proper operation by the security policy).
- the security policy can be deployed to the cloud computing environment (e.g., cloud computing environment 100 in FIG. 1 ).
- cloud drivers 250 1 - 250 Z can produce requests, instructions, commands, and the like which are suitable for and accepted by cloud services 260 1 - 260 Z (respectively) to implement the security policy in the cloud computing environments hosted by cloud services 260 1 - 260 Z (respectively).
- the security policy can be maintained.
- cloud drivers 250 1 - 250 Z can make sure the security policy remains in force at the cloud computing environment hosted by a respective one of cloud services 260 1 - 260 Z .
- the security policy can be dynamically updated as workloads subject to the deployed security policy are deployed and/or killed.
- steps 510 - 580 are shown in a particular sequential order, various embodiments can perform steps 510 - 580 in different orders, perform some of steps 510 - 580 concurrently, and/or omit some of steps 510 - 580 .
- FIG. 6 illustrates an exemplary computer system 600 that may be used to implement some embodiments of the present invention.
- the computer system 600 in FIG. 6 may be implemented in the contexts of the likes of computing systems, networks, servers, or combinations thereof.
- the computer system 600 in FIG. 6 includes one or more processor unit(s) 610 and main memory 620 .
- Main memory 620 stores, in part, instructions and data for execution by processor unit(s) 610 .
- Main memory 620 stores the executable code when in operation, in this example.
- the computer system 600 in FIG. 6 further includes a mass data storage 630 , portable storage device 640 , output devices 650 , user input devices 660 , a graphics display system 670 , and peripheral device(s) 680 .
- FIG. 6 The components shown in FIG. 6 are depicted as being connected via a single bus 690 .
- the components may be connected through one or more data transport means.
- Processor unit(s) 610 and main memory 620 are connected via a local microprocessor bus, and the mass data storage 630 , peripheral device(s) 680 , portable storage device 640 , and graphics display system 670 are connected via one or more input/output (I/O) buses.
- I/O input/output
- Mass data storage 630 which can be implemented with a magnetic disk drive, solid state drive, or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit(s) 610 . Mass data storage 630 stores the system software for implementing embodiments of the present disclosure for purposes of loading that software into main memory 620 .
- Portable storage device 640 operates in conjunction with a portable non-volatile storage medium, such as a flash drive, floppy disk, compact disk, digital video disc, or Universal Serial Bus (USB) storage device, to input and output data and code to and from the computer system 600 in FIG. 6 .
- a portable non-volatile storage medium such as a flash drive, floppy disk, compact disk, digital video disc, or Universal Serial Bus (USB) storage device
- USB Universal Serial Bus
- User input devices 660 can provide a portion of a user interface.
- User input devices 660 may include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys.
- User input devices 660 can also include a touchscreen.
- the computer system 600 as shown in FIG. 6 includes output devices 650 . Suitable output devices 650 include speakers, printers, network interfaces, and monitors.
- Graphics display system 670 includes a liquid crystal display (LCD) or other suitable display devices. Graphics display system 670 is configurable to receive textual and graphical information and processes the information for output to the display device.
- LCD liquid crystal display
- Peripheral device(s) 680 may include any type of computer support device to add additional functionality to the computer system.
- the computer system 600 in FIG. 6 can be a personal computer (PC), hand held computer system, telephone, mobile computer system, workstation, tablet, phablet, mobile phone, server, minicomputer, mainframe computer, wearable, or any other computer system.
- the computer may also include different bus configurations, networked platforms, multi-processor platforms, and the like.
- Various operating systems may be used including UNIX, LINUX, WINDOWS, MAC OS, PALM OS, QNX ANDROID, IOS, CHROME, and other suitable operating systems.
- Some of the above-described functions may be composed of instructions that are stored on storage media (e.g., computer-readable medium).
- the instructions may be retrieved and executed by the processor.
- Some examples of storage media are memory devices, tapes, disks, and the like.
- the instructions are operational when executed by the processor to direct the processor to operate in accordance with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.
- the computer system 600 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud.
- the computer system 600 may itself include a cloud-based computing environment, where the functionalities of the computer system 600 are executed in a distributed fashion.
- the computer system 600 when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.
- a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices.
- Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
- the cloud is formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computer system 600 , with each server (or at least a plurality thereof) providing processor and/or storage resources.
- These servers manage workloads provided by multiple users (e.g., cloud resource customers or other users).
- users e.g., cloud resource customers or other users.
- each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depend on the type of business associated with the user.
- Non-volatile media include, for example, optical, magnetic, and solid-state disks, such as a fixed disk.
- Volatile media include dynamic memory, such as system random-access memory (RAM).
- Transmission media include coaxial cables, copper wire and fiber optics, among others, including the wires that comprise one embodiment of a bus.
- Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications.
- RF radio frequency
- IR infrared
- Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic medium, a CD-ROM disk, digital video disk (DVD), any other optical medium, any other physical medium with patterns of marks or holes, a RAM, a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a Flash memory, any other memory chip or data exchange adapter, a carrier wave, or any other medium from which a computer can read.
- PROM programmable read-only memory
- EPROM erasable programmable read-only memory
- EEPROM electrically erasable programmable read-only memory
- Flash memory any other
- a bus carries the data to system RAM, from which a CPU retrieves and executes the instructions.
- the instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.
- Computer program code for carrying out operations for aspects of the present technology may be written in any combination of one or more programming languages, including an object oriented programming language such as JAVA, SMALLTALK, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages.
- the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
- the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
- LAN local area network
- WAN wide area network
- Internet Service Provider for example, AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
- FIG. 7 depicts (simplified) graph (database) 700 of a cloud computing environment, according to various embodiments.
- Graph 700 is a simplified example, purely for illustrative purposes, of a graph in graph database 225 ( FIG. 2 ).
- Graph 700 can include three workloads (e.g., of workloads 110 1,1 - 110 X,Y in FIG. 1 ): node 710 , node 730 , and node 750 .
- edge (relationship) 720 is between nodes 710 and 730 ; edge (relationship) 740 is between nodes 730 and 750 ; edge (relationship) 760 is between nodes 750 and 710 .
- graph 220 ( FIG. 2 ) can determine information 735 about node 730 .
- information 735 can include an application name, application function, business organization (e.g., division within a company), realm (e.g., production system, development system, and the like), (geographic) location/zone, Recovery Time Objective (“RTO”), Recovery Point Objective (“RPO”) and other metadata.
- RTO Recovery Time Objective
- RPO Recovery Point Objective
- the name of the database can be determined.
- Message-oriented middleware is software or hardware infrastructure supporting sending and receiving messages between distributed systems.
- MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols.
- the middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces. APIs that extend across diverse platforms and networks are typically provided by MOM.
- This middleware layer allows software components (applications, Enterprise JavaBeans, servlets, and other components) that have been developed independently and that run on different networked platforms to interact with one another.
- CMDB configuration management database
- GOC enterprise governance, risk and compliance
- RSA Archer® for example, Node 730
- a “home built” tool such as the CMDB tools that many banks have developed (for example, Node 750 )
- common metadata may comprise compliance information.
- a system may be considered to be a Payment Card Industry Data Security Standard (“PCI DSS”) Category 1 system, or the system may have certain operational service level objectives.
- PCI DSS Payment Card Industry Data Security Standard
- the system for example, a Node
- RTO recovery time objective
- RPO recovery point objective
- the RPO is zero, it means the system is not allowed to lose any data. For example, by mapping into the graph relationships between systems that are publishing data and systems that are consuming data, one may query whether or not there are risks or issues relating to the ability of a system to recover.
- Node 710 may send out information consumed by Node 730 .
- Node 710 may have a recovery time objective of four hours.
- Node 730 may have a recovery time objective of one hour.
- organizations know what the recovery time objective is for individual components of their systems. But they have difficulty mapping it across the dynamic dependencies that have been created. This is a problem.
- Node 730 it needs to recover its data within an hour.
- Node 710 might not recover the data for four hours. This is known as a “toxic combination.”
- PCI DSS Level 1 As another example, if a system is labeled as being PCI DSS Level 1, there is a rule within the PCI DSS specification that it cannot be accessed directly from a system on the Internet. The graph will show if a system on the Internet is connecting to a system that is labeled as PCI DSS Level 1 and that it is a toxic combination. This can be prevented by writing a policy, a set of permissions, or triggering an alarm as soon as it occurs.
- FIG. 8 shows an exemplary dependency risk report 800 for a cloud computing environment, in accordance with some embodiments.
- multiple dependencies may be analyzed within a dependency tree. It is not constrained to just an analysis of just two assets. As shown in dependency risk report 800 , 90 internal workloads, 26 dependency workloads, and 2 unknown workloads comprising 2,374 relationships, 26 relationships per workload and 226 active rules were analyzed. Additionally, the exemplary systems and methods herein may be used with audits. Auditors require organizations to prove that they have the capability to ensure that their critical functions meet their business risk requirements. The output of this system can show when a mismatch occurs or when a violation occurs. For example, dependency risk report 800 shows four violations between two nodes (source and destination, respectively) where each violation is recovery time objective (“RTO”) mismatch of 1 to 4.
- RTO recovery time objective
- the source needs to recover its data in 1 hour, however, the destination might take up to four hours to recover its data.
- a violation can occur for a number of reasons. It could be because the needs of an application have changed, and/or it could be because there is a new dependency between applications.
- organizations can produce an audit trail to prove that they have continuous and immediate capability to understand when risk profiles change. They can also demonstrate that they have a means of preventing risk profiles from changing.
- the exemplary systems and methods herein can prevent a relationship between an out of scope PCI DSS system and a properly functioning PCI DSS Level 1 system that stores and processes credit card information.
- These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
- the computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
- each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
- the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Software Systems (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Mathematical Physics (AREA)
- Debugging And Monitoring (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/133,466 US11863580B2 (en) | 2019-05-31 | 2020-12-23 | Modeling application dependencies to identify operational risk |
US17/170,320 US11711374B2 (en) | 2019-05-31 | 2021-02-08 | Systems and methods for understanding identity and organizational access to applications within an enterprise environment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/428,828 US11575563B2 (en) | 2019-05-31 | 2019-05-31 | Cloud security management |
US17/133,466 US11863580B2 (en) | 2019-05-31 | 2020-12-23 | Modeling application dependencies to identify operational risk |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/428,828 Continuation-In-Part US11575563B2 (en) | 2019-05-31 | 2019-05-31 | Cloud security management |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/170,320 Continuation-In-Part US11711374B2 (en) | 2019-05-31 | 2021-02-08 | Systems and methods for understanding identity and organizational access to applications within an enterprise environment |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210120029A1 US20210120029A1 (en) | 2021-04-22 |
US11863580B2 true US11863580B2 (en) | 2024-01-02 |
Family
ID=75491704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/133,466 Active US11863580B2 (en) | 2019-05-31 | 2020-12-23 | Modeling application dependencies to identify operational risk |
Country Status (1)
Country | Link |
---|---|
US (1) | US11863580B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11575563B2 (en) | 2019-05-31 | 2023-02-07 | Varmour Networks, Inc. | Cloud security management |
US11310284B2 (en) | 2019-05-31 | 2022-04-19 | Varmour Networks, Inc. | Validation of cloud security policies |
US11290493B2 (en) | 2019-05-31 | 2022-03-29 | Varmour Networks, Inc. | Template-driven intent-based security |
US11290494B2 (en) | 2019-05-31 | 2022-03-29 | Varmour Networks, Inc. | Reliability prediction for cloud security policies |
US11711374B2 (en) | 2019-05-31 | 2023-07-25 | Varmour Networks, Inc. | Systems and methods for understanding identity and organizational access to applications within an enterprise environment |
JP7444260B2 (en) * | 2020-07-30 | 2024-03-06 | 日本電気株式会社 | Communication processing device, communication processing system, communication processing method, and program |
US11818152B2 (en) | 2020-12-23 | 2023-11-14 | Varmour Networks, Inc. | Modeling topic-based message-oriented middleware within a security system |
US11876817B2 (en) | 2020-12-23 | 2024-01-16 | Varmour Networks, Inc. | Modeling queue-based message-oriented middleware relationships in a security system |
US12050693B2 (en) | 2021-01-29 | 2024-07-30 | Varmour Networks, Inc. | System and method for attributing user behavior from multiple technical telemetry sources |
US11777978B2 (en) | 2021-01-29 | 2023-10-03 | Varmour Networks, Inc. | Methods and systems for accurately assessing application access risk |
US11734316B2 (en) | 2021-07-08 | 2023-08-22 | Varmour Networks, Inc. | Relationship-based search in a computing environment |
CN113672936B (en) * | 2021-08-20 | 2024-05-14 | 北京安天网络安全技术有限公司 | Safety precaution method and device applied to Linux system |
US20230136724A1 (en) * | 2021-11-03 | 2023-05-04 | Saudi Arabian Oil Company | System & method for managing segregation of duty in information technology access management |
US20220124005A1 (en) * | 2021-11-16 | 2022-04-21 | Kshitij Arun Doshi | Systems and methods for reactive intent-driven end-to-end orchestration |
US11848983B2 (en) * | 2022-03-18 | 2023-12-19 | Hewlett Packard Enterprise Development Lp | Remotely discover and map a network resource model in a cloud environment |
CN116991427B (en) * | 2023-09-26 | 2023-12-29 | 统信软件技术有限公司 | Application compiling method and device, computing equipment and storage medium |
Citations (320)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6158007A (en) | 1997-09-17 | 2000-12-05 | Jahanshah Moreh | Security system for event based middleware |
US6253321B1 (en) | 1998-06-19 | 2001-06-26 | Ssh Communications Security Ltd. | Method and arrangement for implementing IPSEC policy management using filter code |
US20020031103A1 (en) | 2000-05-02 | 2002-03-14 | Globalstar L.P. | User terminal employing quality of service path determination and bandwidth saving mode for a satellite ISP system using non-geosynchronous orbit satellites |
US20020066034A1 (en) | 2000-10-24 | 2002-05-30 | Schlossberg Barry J. | Distributed network security deception system |
US6484261B1 (en) | 1998-02-17 | 2002-11-19 | Cisco Technology, Inc. | Graphical network security policy management |
US20020178273A1 (en) | 2001-04-05 | 2002-11-28 | Real-Time Innovations, Inc. | Real-time publish-subscribe system |
WO2002098100A1 (en) | 2001-05-31 | 2002-12-05 | Preventon Technologies Limited | Access control systems |
US20030055950A1 (en) | 2001-07-24 | 2003-03-20 | At&T Corp. | Method and apparatus for packet analysis in a network |
US6578076B1 (en) | 1999-10-18 | 2003-06-10 | Intel Corporation | Policy-based network management system using dynamic policy generation |
US20030172368A1 (en) | 2001-12-26 | 2003-09-11 | Elizabeth Alumbaugh | System and method for autonomously generating heterogeneous data source interoperability bridges based on semantic modeling derived from self adapting ontology |
US20030177389A1 (en) | 2002-03-06 | 2003-09-18 | Zone Labs, Inc. | System and methodology for security policy arbitration |
US20030227392A1 (en) | 2002-01-11 | 2003-12-11 | Ebert Peter S. | Context-aware and real-time item tracking system architecture and scenarios |
US20040062204A1 (en) | 2002-09-30 | 2004-04-01 | Bearden Mark J. | Communication system endpoint device with integrated call synthesis capability |
US20040095897A1 (en) | 2002-11-14 | 2004-05-20 | Digi International Inc. | System and method to discover and configure remotely located network devices |
US6765864B1 (en) | 1999-06-29 | 2004-07-20 | Cisco Technology, Inc. | Technique for providing dynamic modification of application specific policies in a feedback-based, adaptive data network |
US20040143631A1 (en) | 2003-01-17 | 2004-07-22 | International Business Machines Corporation | Method and apparatus for internationalization of a message service infrastructure |
US20040172557A1 (en) | 2002-08-20 | 2004-09-02 | Masayuki Nakae | Attack defending system and attack defending method |
US20040240458A1 (en) | 2003-05-27 | 2004-12-02 | Sun Microsystems, Inc. | Method and system for messaging to a cluster |
US6832243B1 (en) | 2000-08-15 | 2004-12-14 | International Business Machines Corporation | Methods and apparatus for defining, observing and evaluating message delivery outcome on a per-message basis |
US20050021943A1 (en) | 1998-05-04 | 2005-01-27 | Auric Web Systems | User specific automatic data redirection system |
US20050033989A1 (en) | 2002-11-04 | 2005-02-10 | Poletto Massimiliano Antonio | Detection of scanning attacks |
US20050114829A1 (en) | 2003-10-30 | 2005-05-26 | Microsoft Corporation | Facilitating the process of designing and developing a project |
US20050119905A1 (en) | 2003-07-11 | 2005-06-02 | Wai Wong | Modeling of applications and business process services through auto discovery analysis |
US20050125768A1 (en) | 2003-07-11 | 2005-06-09 | Wai Wong | Infrastructure auto discovery from business process models via middleware flows |
US20050154576A1 (en) * | 2004-01-09 | 2005-07-14 | Hitachi, Ltd. | Policy simulator for analyzing autonomic system management policy of a computer system |
US20050174235A1 (en) | 2002-05-07 | 2005-08-11 | Davis Brian J. | Tracking system and assosciated method |
US20050190758A1 (en) | 2004-03-01 | 2005-09-01 | Cisco Technology, Inc. | Security groups for VLANs |
US20050201343A1 (en) | 2004-03-12 | 2005-09-15 | Telefonaktiebolaget Lm Ericsson | Providing higher layer frame/packet boundary information in GRE frames |
US20050246241A1 (en) | 2004-04-30 | 2005-11-03 | Rightnow Technologies, Inc. | Method and system for monitoring successful use of application software |
US6970459B1 (en) | 1999-05-13 | 2005-11-29 | Intermec Ip Corp. | Mobile virtual network system and method |
US20050283823A1 (en) | 2004-06-21 | 2005-12-22 | Nec Corporation | Method and apparatus for security policy management |
US6981155B1 (en) | 1999-07-14 | 2005-12-27 | Symantec Corporation | System and method for computer security |
US20060005228A1 (en) | 2004-06-18 | 2006-01-05 | Nec Corporation | Behavior model generator system for facilitating confirmation of intention of security policy creator |
US20060037077A1 (en) | 2004-08-16 | 2006-02-16 | Cisco Technology, Inc. | Network intrusion detection system having application inspection and anomaly detection characteristics |
US20060050696A1 (en) | 2004-09-08 | 2006-03-09 | Ericsson Inc. | Generic routing encapsulation over point-to-point protocol |
US20060085412A1 (en) | 2003-04-15 | 2006-04-20 | Johnson Sean A | System for managing multiple disparate content repositories and workflow systems |
US7058712B1 (en) | 2002-06-04 | 2006-06-06 | Rockwell Automation Technologies, Inc. | System and methodology providing flexible and distributed processing in an industrial controller environment |
US7062566B2 (en) | 2002-10-24 | 2006-06-13 | 3Com Corporation | System and method for using virtual local area network tags with a virtual private network |
US20060168331A1 (en) | 2005-01-06 | 2006-07-27 | Terevela, Inc. | Intelligent messaging application programming interface |
US7096260B1 (en) | 2000-09-29 | 2006-08-22 | Cisco Technology, Inc. | Marking network data packets with differentiated services codepoints based on network load |
US20070016945A1 (en) | 2005-07-15 | 2007-01-18 | Microsoft Corporation | Automatically generating rules for connection security |
US20070022090A1 (en) | 1998-12-09 | 2007-01-25 | Network Ice Corporation, Inc. | Method and Apparatus for Providing Network and Computer System Security |
US20070019621A1 (en) | 2005-07-21 | 2007-01-25 | Santera Systems, Inc. | Systems and methods for voice over multiprotocol label switching |
US20070027801A1 (en) | 2005-07-26 | 2007-02-01 | International Business Machines Corporation | Multi-level transaction flow monitoring |
US20070064617A1 (en) | 2005-09-15 | 2007-03-22 | Reves Joseph P | Traffic anomaly analysis for the detection of aberrant network code |
US20070079308A1 (en) | 2005-09-30 | 2007-04-05 | Computer Associates Think, Inc. | Managing virtual machines |
US20070130566A1 (en) | 2003-07-09 | 2007-06-07 | Van Rietschote Hans F | Migrating Virtual Machines among Computer Systems to Balance Load Caused by Virtual Machines |
US20070157286A1 (en) | 2005-08-20 | 2007-07-05 | Opnet Technologies, Inc. | Analyzing security compliance within a network |
US20070162400A1 (en) | 2006-01-12 | 2007-07-12 | International Business Machines Corporation | Method and apparatus for managing digital content in a content management system |
US20070168971A1 (en) | 2005-11-22 | 2007-07-19 | Epiphany, Inc. | Multi-tiered model-based application testing |
US20070192861A1 (en) | 2006-02-03 | 2007-08-16 | George Varghese | Methods and systems to detect an evasion attack |
US20070192863A1 (en) | 2005-07-01 | 2007-08-16 | Harsh Kapoor | Systems and methods for processing data flows |
US20070198656A1 (en) | 2006-01-24 | 2007-08-23 | Citrix Systems, Inc. | Methods and servers for establishing a connection between a client system and a virtual machine executing in a terminal services session and hosting a requested computing environment |
US20070234369A1 (en) | 2006-04-03 | 2007-10-04 | Microsoft Corporation | Policy based message aggregation framework |
US20070239987A1 (en) | 2006-03-31 | 2007-10-11 | Amazon Technologies, Inc. | Managing communications between computing nodes |
US20070271612A1 (en) | 2006-05-19 | 2007-11-22 | Licai Fang | Anti-virus and firewall system |
US20070277222A1 (en) | 2006-05-26 | 2007-11-29 | Novell, Inc | System and method for executing a permissions recorder analyzer |
US20080016339A1 (en) | 2006-06-29 | 2008-01-17 | Jayant Shukla | Application Sandbox to Detect, Remove, and Prevent Malware |
US20080016550A1 (en) | 2006-06-14 | 2008-01-17 | Mcalister Donald K | Securing network traffic by distributing policies in a hierarchy over secure tunnels |
US20080083011A1 (en) | 2006-09-29 | 2008-04-03 | Mcalister Donald | Protocol/API between a key server (KAP) and an enforcement point (PEP) |
US7373524B2 (en) | 2004-02-24 | 2008-05-13 | Covelight Systems, Inc. | Methods, systems and computer program products for monitoring user behavior for a server application |
US20080155239A1 (en) | 2006-10-10 | 2008-06-26 | Honeywell International Inc. | Automata based storage and execution of application logic in smart card like devices |
US20080163207A1 (en) | 2007-01-03 | 2008-07-03 | International Business Machines Corporation | Moveable access control list (acl) mechanisms for hypervisors and virtual machines and virtual port firewalls |
US7397794B1 (en) | 2002-11-21 | 2008-07-08 | Juniper Networks, Inc. | Systems and methods for implementing virtual switch planes in a physical switch fabric |
US20080195670A1 (en) | 2007-02-12 | 2008-08-14 | Boydstun Louis L | System and method for log management |
US20080229382A1 (en) | 2007-03-14 | 2008-09-18 | Motorola, Inc. | Mobile access terminal security function |
US20080239961A1 (en) | 2007-03-30 | 2008-10-02 | Microsoft Corporation | Packet routing based on application source |
US20080263179A1 (en) | 2005-10-28 | 2008-10-23 | Gerard John Buttner | System and method for dynamically updating web pages using messaging-oriented middleware |
US20080301770A1 (en) | 2007-05-31 | 2008-12-04 | Kinder Nathan G | Identity based virtual machine selector |
US20080307110A1 (en) | 2007-06-08 | 2008-12-11 | Cisco Technology, Inc. | Conditional BGP advertising for dynamic group VPN (DGVPN) clients |
US7467408B1 (en) | 2002-09-09 | 2008-12-16 | Cisco Technology, Inc. | Method and apparatus for capturing and filtering datagrams for network security monitoring |
US20090006268A1 (en) | 2007-06-26 | 2009-01-01 | Wall Street On Demand | Computer-based method for teaming research analysts to generate improved securities investment recommendations |
US7475424B2 (en) | 2004-09-02 | 2009-01-06 | International Business Machines Corporation | System and method for on-demand dynamic control of security policies/rules by a client computing device |
US20090077666A1 (en) | 2007-03-12 | 2009-03-19 | University Of Southern California | Value-Adaptive Security Threat Modeling and Vulnerability Ranking |
US20090077621A1 (en) | 2007-09-17 | 2009-03-19 | Ulrich Lang | Method and system for managing security policies |
US20090083445A1 (en) | 2007-09-24 | 2009-03-26 | Ganga Ilango S | Method and system for virtual port communications |
US7516476B1 (en) | 2003-03-24 | 2009-04-07 | Cisco Technology, Inc. | Methods and apparatus for automated creation of security policy |
US7519062B1 (en) | 1997-10-14 | 2009-04-14 | Cisco Technology, Inc. | Method and apparatus for implementing forwarding decision shortcuts at a network switch |
US7533128B1 (en) | 2005-10-18 | 2009-05-12 | Real-Time Innovations, Inc. | Data distribution service and database management systems bridge |
US20090138316A1 (en) | 2005-02-04 | 2009-05-28 | Bp Australia Pty Ltd | System and method for evaluating initiatives adapted to deliver value to a customer |
US20090138590A1 (en) * | 2007-11-26 | 2009-05-28 | Eun Young Lee | Apparatus and method for detecting anomalous traffic |
US20090165078A1 (en) | 2007-12-20 | 2009-06-25 | Motorola, Inc. | Managing policy rules and associated policy components |
US20090190585A1 (en) | 2008-01-28 | 2009-07-30 | Microsoft Corporation | Message Processing Engine with a Virtual Network Interface |
US20090249470A1 (en) | 2008-03-27 | 2009-10-01 | Moshe Litvin | Combined firewalls |
US20090260051A1 (en) | 2005-09-27 | 2009-10-15 | Nec Corporation | Policy processing system, method, and program |
US20090268667A1 (en) | 2008-04-28 | 2009-10-29 | Xg Technology, Inc. | Header compression mechanism for transmitting RTP packets over wireless links |
US7627671B1 (en) | 2004-05-22 | 2009-12-01 | ClearApp, Inc. | Monitoring and performance management of component-based applications |
US20090328187A1 (en) | 2006-03-03 | 2009-12-31 | Art of Defense GmBHBruderwohrdstrasse | Distributed web application firewall |
US20100043068A1 (en) | 2008-08-14 | 2010-02-18 | Juniper Networks, Inc. | Routing device having integrated mpls-aware firewall |
US20100064341A1 (en) | 2006-03-27 | 2010-03-11 | Carlo Aldera | System for Enforcing Security Policies on Mobile Communications Devices |
US20100071025A1 (en) | 2008-09-15 | 2010-03-18 | International Business Machines Corporation | Securing live migration of a virtual machine within a service landscape |
US7694181B2 (en) | 2005-12-12 | 2010-04-06 | Archivas, Inc. | Automated software testing framework |
US20100088738A1 (en) | 2008-10-02 | 2010-04-08 | Microsoft Corporation | Global Object Access Auditing |
US20100095367A1 (en) | 2008-10-09 | 2010-04-15 | Juniper Networks, Inc. | Dynamic access control policy with port restrictions for a network security appliance |
US20100125476A1 (en) | 2008-11-20 | 2010-05-20 | Keun-Hyuk Yeom | System having business aware framework for supporting situation awareness |
US7725937B1 (en) | 2004-02-09 | 2010-05-25 | Symantec Corporation | Capturing a security breach |
US7742414B1 (en) | 2006-06-30 | 2010-06-22 | Sprint Communications Company L.P. | Lightweight indexing for fast retrieval of data from a flow-level compressed packet trace |
US20100192223A1 (en) | 2004-04-01 | 2010-07-29 | Osman Abdoul Ismael | Detecting Malicious Network Content Using Virtual Environment Components |
US20100191863A1 (en) | 2009-01-23 | 2010-07-29 | Cisco Technology, Inc., A Corporation Of California | Protected Device Initiated Pinhole Creation to Allow Access to the Protected Device in Response to a Domain Name System (DNS) Query |
US20100192225A1 (en) | 2009-01-28 | 2010-07-29 | Juniper Networks, Inc. | Efficient application identification with network devices |
US20100199349A1 (en) | 2004-10-26 | 2010-08-05 | The Mitre Corporation | Method, apparatus, and computer program product for detecting computer worms in a network |
US20100208699A1 (en) | 2009-02-16 | 2010-08-19 | Lg Electronics Inc. | Mobile terminal and handover method thereof |
US20100228962A1 (en) | 2009-03-09 | 2010-09-09 | Microsoft Corporation | Offloading cryptographic protection processing |
US7797306B1 (en) | 2002-06-26 | 2010-09-14 | Microsoft Corporation | System and method for providing notification(s) in accordance with middleware technologies |
US20100235880A1 (en) | 2006-10-17 | 2010-09-16 | A10 Networks, Inc. | System and Method to Apply Network Traffic Policy to an Application Session |
US20100274970A1 (en) | 2009-04-23 | 2010-10-28 | Opendns, Inc. | Robust Domain Name Resolution |
US20100281539A1 (en) | 2009-04-29 | 2010-11-04 | Juniper Networks, Inc. | Detecting malicious network software agents |
US20100287544A1 (en) | 2008-07-22 | 2010-11-11 | International Business Machines Corporation | Secure patch updates of a virtual machine image in a virtualization data processing system |
US7849495B1 (en) | 2002-08-22 | 2010-12-07 | Cisco Technology, Inc. | Method and apparatus for passing security configuration information between a client and a security policy server |
US20100333165A1 (en) | 2009-06-24 | 2010-12-30 | Vmware, Inc. | Firewall configured with dynamic membership sets representing machine attributes |
US20110003580A1 (en) | 2007-08-31 | 2011-01-06 | Vodafone Group Plc | Telecommunications device security |
US20110022812A1 (en) | 2009-05-01 | 2011-01-27 | Van Der Linden Rob | Systems and methods for establishing a cloud bridge between virtual storage resources |
US7900240B2 (en) | 2003-05-28 | 2011-03-01 | Citrix Systems, Inc. | Multilayer access control security system |
US7904454B2 (en) | 2001-07-16 | 2011-03-08 | International Business Machines Corporation | Database access security |
US20110072486A1 (en) | 2009-09-23 | 2011-03-24 | Computer Associates Think, Inc. | System, Method, and Software for Enforcing Access Control Policy Rules on Utility Computing Virtualization in Cloud Computing Systems |
US20110069710A1 (en) | 2009-09-22 | 2011-03-24 | Virtensys Limited | Switching Method |
US20110090915A1 (en) | 2009-10-16 | 2011-04-21 | Sun Microsystems, Inc. | Method and system for intra-host communication |
US20110113472A1 (en) | 2009-11-10 | 2011-05-12 | Hei Tao Fung | Integrated Virtual Desktop and Security Management System |
US20110138384A1 (en) | 2009-12-03 | 2011-06-09 | International Business Machines Corporation | Dynamically provisioning virtual machines |
US20110138441A1 (en) | 2009-12-09 | 2011-06-09 | Microsoft Corporation | Model based systems management in virtualized and non-virtualized environments |
US20110184993A1 (en) | 2010-01-27 | 2011-07-28 | Vmware, Inc. | Independent Access to Virtual Machine Desktop Content |
US7996255B1 (en) | 2005-09-29 | 2011-08-09 | The Mathworks, Inc. | System and method for providing sales leads based on-demand software trial usage |
US20110225624A1 (en) | 2010-03-15 | 2011-09-15 | Symantec Corporation | Systems and Methods for Providing Network Access Control in Virtual Environments |
US20110249679A1 (en) | 2008-12-16 | 2011-10-13 | Zte Corporation | Method for implementing fast reroute |
US20110263238A1 (en) | 2010-04-23 | 2011-10-27 | Yusun Kim Riley | Methods, systems, and computer readable media for automatic, recurrent enforcement of a policy rule |
US8051460B2 (en) | 2003-09-24 | 2011-11-01 | Infoexpress, Inc. | Systems and methods of controlling network access |
US20120017258A1 (en) | 2009-11-19 | 2012-01-19 | Hitachi, Ltd. | Computer system, management system and recording medium |
US8112304B2 (en) | 2008-08-15 | 2012-02-07 | Raytheon Company | Method of risk management across a mission support network |
US20120113989A1 (en) | 2010-06-09 | 2012-05-10 | Nec Corporation | Communication system, logical channel control device, control device, communication method and program |
US20120131685A1 (en) | 2010-11-19 | 2012-05-24 | MobileIron, Inc. | Mobile Posture-based Policy, Remediation and Access Control for Enterprise Resources |
US20120130936A1 (en) | 2010-11-23 | 2012-05-24 | Novell, Inc. | System and method for determining fuzzy cause and effect relationships in an intelligent workload management system |
US20120185913A1 (en) | 2008-06-19 | 2012-07-19 | Servicemesh, Inc. | System and method for a cloud computing abstraction layer with security zone facilities |
US20120210428A1 (en) | 2011-02-14 | 2012-08-16 | Computer Associates Think, Inc. | Flow data for security intrusion detection |
US20120207174A1 (en) | 2011-02-10 | 2012-08-16 | Choung-Yaw Michael Shieh | Distributed service processing of network gateways using virtual machines |
US20120216273A1 (en) | 2011-02-18 | 2012-08-23 | James Rolette | Securing a virtual environment |
US8259571B1 (en) | 2010-03-26 | 2012-09-04 | Zscaler, Inc. | Handling overlapping IP addresses in multi-tenant architecture |
US20120224057A1 (en) | 2009-11-20 | 2012-09-06 | Jasvir Singh Gill | Situational intelligence |
US8291495B1 (en) | 2007-08-08 | 2012-10-16 | Juniper Networks, Inc. | Identifying applications for intrusion detection systems |
US8296459B1 (en) | 2010-06-30 | 2012-10-23 | Amazon Technologies, Inc. | Custom routing decisions |
US20120278903A1 (en) | 2011-04-30 | 2012-11-01 | Vmware, Inc. | Dynamic management of groups for entitlement and provisioning of computer resources |
US20120284792A1 (en) | 2009-10-08 | 2012-11-08 | Irdeto Canada Corporation | System and Method for Aggressive Self-Modification in Dynamic Function Call Systems |
US20120297383A1 (en) | 2011-05-20 | 2012-11-22 | Steven Meisner | Methods and systems for virtualizing audio hardware for one or more virtual machines |
US8321862B2 (en) | 2009-03-20 | 2012-11-27 | Oracle America, Inc. | System for migrating a virtual machine and resource usage data to a chosen target host based on a migration policy |
US20120311575A1 (en) | 2011-06-02 | 2012-12-06 | Fujitsu Limited | System and method for enforcing policies for virtual machines |
US20120311144A1 (en) | 2009-12-15 | 2012-12-06 | International Business Machines Corporation | Method for operating cloud computing services and cloud computing information system |
US20120324069A1 (en) | 2011-06-17 | 2012-12-20 | Microsoft Corporation | Middleware Services Framework for On-Premises and Cloud Deployment |
US20120324567A1 (en) | 2011-06-17 | 2012-12-20 | General Instrument Corporation | Method and Apparatus for Home Network Discovery |
US8353021B1 (en) | 2008-09-30 | 2013-01-08 | Symantec Corporation | Determining firewall rules for an application on a client based on firewall rules and reputations of other clients |
US20130019277A1 (en) | 2011-07-12 | 2013-01-17 | Cisco Technology, Inc. | Zone-Based Firewall Policy Model for a Virtualized Data Center |
US8369333B2 (en) | 2009-10-21 | 2013-02-05 | Alcatel Lucent | Method and apparatus for transparent cloud computing with a virtualized network infrastructure |
US20130054536A1 (en) * | 2011-08-27 | 2013-02-28 | Accenture Global Services Limited | Backup of data across network of devices |
US8396986B2 (en) | 2010-03-30 | 2013-03-12 | Hitachi, Ltd. | Method and system of virtual machine migration |
US20130081142A1 (en) | 2011-09-22 | 2013-03-28 | Raytheon Company | System, Method, and Logic for Classifying Communications |
US20130086399A1 (en) | 2011-09-30 | 2013-04-04 | Cisco Technology, Inc. | Method, system and apparatus for network power management |
US20130097692A1 (en) | 2011-10-17 | 2013-04-18 | Mcafee, Inc. | System and method for host-initiated firewall discovery in a network environment |
US20130097138A1 (en) | 2011-10-17 | 2013-04-18 | Omer BARKOL | Discovering representative composite ci patterns in an it system |
US8429647B2 (en) | 2009-05-06 | 2013-04-23 | Vmware, Inc. | Virtual machine migration across network by publishing routes to the associated virtual networks via virtual router after the start of migration of the virtual machine |
US20130145465A1 (en) | 2011-12-06 | 2013-06-06 | At&T Intellectual Property I, L.P. | Multilayered deception for intrusion detection and prevention |
US20130151680A1 (en) | 2011-12-12 | 2013-06-13 | Daniel Salinas | Providing A Database As A Service In A Multi-Tenant Environment |
US8468113B2 (en) | 2009-05-18 | 2013-06-18 | Tufin Software Technologies Ltd. | Method and system for management of security rule set |
US20130166681A1 (en) | 2005-01-06 | 2013-06-27 | Travela, Inc. | Systems and methods for network virtualization |
US20130166490A1 (en) | 2010-08-27 | 2013-06-27 | Pneuron Corp. | Pneuron distributed analytics |
US20130166720A1 (en) | 2010-09-09 | 2013-06-27 | Masanori Takashima | Network system and network managing method |
US8494000B1 (en) | 2009-07-10 | 2013-07-23 | Netscout Systems, Inc. | Intelligent slicing of monitored network packets for storing |
US8499330B1 (en) | 2005-11-15 | 2013-07-30 | At&T Intellectual Property Ii, L.P. | Enterprise desktop security management and compliance verification system and method |
US20130198799A1 (en) | 2012-01-27 | 2013-08-01 | Honeywell International Inc. | Role-based access control permissions |
US20130198840A1 (en) | 2012-01-31 | 2013-08-01 | International Business Machines Corporation | Systems, methods and computer programs providing impact mitigation of cyber-security failures |
US20130219384A1 (en) | 2012-02-18 | 2013-08-22 | Cisco Technology, Inc. | System and method for verifying layer 2 connectivity in a virtual environment |
US20130223226A1 (en) | 2012-02-29 | 2013-08-29 | Dell Products, Lp | System and Method for Providing a Split Data Plane in a Flow-Based Switching Device |
US8528091B2 (en) | 2009-12-31 | 2013-09-03 | The Trustees Of Columbia University In The City Of New York | Methods, systems, and media for detecting covert malware |
US8539548B1 (en) | 2012-04-27 | 2013-09-17 | International Business Machines Corporation | Tiered network policy configuration with policy customization control |
US20130250956A1 (en) | 2012-03-22 | 2013-09-26 | Yi Sun | Non-fragmented ip packet tunneling in a network |
US20130263125A1 (en) | 2012-04-02 | 2013-10-03 | Cisco Technology, Inc. | Virtualized movement of enhanced network services associated with a virtual machine |
US20130275592A1 (en) | 2012-04-11 | 2013-10-17 | Meng Xu | Adaptive session forwarding following virtual machine migration detection |
US20130276092A1 (en) | 2012-04-11 | 2013-10-17 | Yi Sun | System and method for dynamic security insertion in network virtualization |
US20130276035A1 (en) | 2012-04-12 | 2013-10-17 | Qualcomm Incorporated | Broadcast content via over the top delivery |
US8565118B2 (en) | 2008-12-30 | 2013-10-22 | Juniper Networks, Inc. | Methods and apparatus for distributed dynamic network provisioning |
US20130283336A1 (en) | 2012-04-23 | 2013-10-24 | Abb Technology Ag | Cyber security analyzer |
US20130291088A1 (en) | 2012-04-11 | 2013-10-31 | Choung-Yaw Michael Shieh | Cooperative network security inspection |
US20130298184A1 (en) | 2012-05-02 | 2013-11-07 | Cisco Technology, Inc. | System and method for monitoring application security in a network environment |
US20130298181A1 (en) | 2012-05-01 | 2013-11-07 | Harris Corporation | Noise, encryption, and decoys for communications in a dynamic computer network |
US20130298243A1 (en) | 2012-05-01 | 2013-11-07 | Taasera, Inc. | Systems and methods for orchestrating runtime operational integrity |
US20130318617A1 (en) | 2007-05-24 | 2013-11-28 | Animesh Chaturvedi | Managing network security |
US8612744B2 (en) | 2011-02-10 | 2013-12-17 | Varmour Networks, Inc. | Distributed firewall architecture using virtual machines |
US20130343396A1 (en) | 2012-06-22 | 2013-12-26 | Fujitsu Limited | Information processing system, relay device, information processing device, and information processing method |
US20140007181A1 (en) | 2012-07-02 | 2014-01-02 | Sumit Sarin | System and method for data loss prevention in a virtualized environment |
US20140022894A1 (en) | 2011-04-04 | 2014-01-23 | Nec Corporation | Network system, switch and connected terminal detection method |
US20140033267A1 (en) | 2012-07-26 | 2014-01-30 | Samsung Electronics Co., Ltd. | Type mining framework for automated security policy generation |
US8661434B1 (en) | 2009-08-05 | 2014-02-25 | Trend Micro Incorporated | Migration of computer security modules in a virtual machine environment |
US8677496B2 (en) | 2004-07-15 | 2014-03-18 | AlgoSec Systems Ltd. | Method and apparatus for automatic risk assessment of a firewall configuration |
US20140096229A1 (en) | 2012-09-28 | 2014-04-03 | Juniper Networks, Inc. | Virtual honeypot |
US20140099623A1 (en) | 2012-10-04 | 2014-04-10 | Karmarkar V. Amit | Social graphs based on user bioresponse data |
US8726343B1 (en) | 2012-10-12 | 2014-05-13 | Citrix Systems, Inc. | Managing dynamic policies and settings in an orchestration framework for connected devices |
US20140137240A1 (en) | 2012-11-14 | 2014-05-15 | Click Security, Inc. | Automated security analytics platform |
US8730963B1 (en) | 2010-11-19 | 2014-05-20 | Extreme Networks, Inc. | Methods, systems, and computer readable media for improved multi-switch link aggregation group (MLAG) convergence |
US20140157352A1 (en) | 2012-11-30 | 2014-06-05 | Somansa Co., Ltd | Apparatus and method for analyzing and monitoring service advertising protocol application traffic, and information protection system using the same |
US20140153577A1 (en) | 2012-12-03 | 2014-06-05 | Aruba Networks, Inc. | Session-based forwarding |
US8798055B1 (en) | 2011-08-11 | 2014-08-05 | Juniper Networks, Inc. | Forming a multi-device layer 2 switched fabric using internet protocol (IP)-routed / switched networks |
US8813169B2 (en) | 2011-11-03 | 2014-08-19 | Varmour Networks, Inc. | Virtual security boundary for physical or virtual network devices |
US8813236B1 (en) | 2013-01-07 | 2014-08-19 | Narus, Inc. | Detecting malicious endpoints using network connectivity and flow information |
US8819762B2 (en) | 2007-01-31 | 2014-08-26 | Tufin Software Technologies Ltd. | System and method for auditing a security policy |
US20140250524A1 (en) | 2013-03-04 | 2014-09-04 | Crowdstrike, Inc. | Deception-Based Responses to Security Attacks |
US20140282518A1 (en) | 2013-03-15 | 2014-09-18 | Symantec Corporation | Enforcing policy-based compliance of virtual machine image configurations |
US20140283030A1 (en) | 2013-03-15 | 2014-09-18 | Centripetal Networks, Inc. | Protecting networks from cyber attacks and overloading |
US20140282027A1 (en) | 2013-03-15 | 2014-09-18 | Lingping Gao | Graphic user interface based network management system to define and execute troubleshooting procedure |
US20140310765A1 (en) | 2013-04-12 | 2014-10-16 | Sky Socket, Llc | On-Demand Security Policy Activation |
US20140337743A1 (en) | 2013-05-13 | 2014-11-13 | Appsense Limited | Context transfer from web page to application |
US20140344435A1 (en) | 2013-05-15 | 2014-11-20 | Salesforce.Com, Inc. | Computer implemented methods and apparatus for trials onboarding |
US8898788B1 (en) | 2004-04-01 | 2014-11-25 | Fireeye, Inc. | Systems and methods for malware attack prevention |
US8935457B2 (en) | 2011-07-29 | 2015-01-13 | International Business Machines Corporation | Network filtering in a virtualized environment |
US20150047046A1 (en) | 2013-08-07 | 2015-02-12 | Kaspersky Lab Zao | System and Method for Protecting Computers from Software Vulnerabilities |
US20150058983A1 (en) | 2013-08-26 | 2015-02-26 | Guardicore Ltd. | Revival and redirection of blocked connections for intention inspection in computer networks |
US20150082417A1 (en) | 2013-09-13 | 2015-03-19 | Vmware, Inc. | Firewall configured with dynamic collaboration from network services in a virtual network environment |
US8990371B2 (en) | 2012-01-31 | 2015-03-24 | International Business Machines Corporation | Interconnecting data centers for migration of virtual machines |
US9009829B2 (en) | 2007-06-12 | 2015-04-14 | The Trustees Of Columbia University In The City Of New York | Methods, systems, and media for baiting inside attackers |
US9015299B1 (en) | 2006-01-20 | 2015-04-21 | Cisco Technology, Inc. | Link grouping for route optimization |
US9021546B1 (en) | 2011-11-08 | 2015-04-28 | Symantec Corporation | Systems and methods for workload security in virtual data centers |
US9027077B1 (en) | 2012-04-30 | 2015-05-05 | Palo Alto Networks, Inc. | Deploying policy configuration across multiple security devices through hierarchical configuration templates |
US20150124606A1 (en) | 2013-11-01 | 2015-05-07 | Cisco Technology, Inc. | Routing Packet Traffic Using Hierarchical Forwarding Groups |
US9036639B2 (en) | 2012-11-29 | 2015-05-19 | Futurewei Technologies, Inc. | System and method for VXLAN inter-domain communications |
US20150163088A1 (en) | 2013-12-11 | 2015-06-11 | At&T Intellectual Property I, Lp | System and Method to Monitor and Manage Imperfect or Compromised Software |
US9060025B2 (en) | 2013-02-05 | 2015-06-16 | Fortinet, Inc. | Cloud-based security policy configuration |
US20150180949A1 (en) * | 2012-10-08 | 2015-06-25 | Hewlett-Packard Development Company, L.P. | Hybrid cloud environment |
US20150180894A1 (en) | 2013-12-19 | 2015-06-25 | Microsoft Corporation | Detecting anomalous activity from accounts of an online service |
US20150229641A1 (en) | 2012-04-23 | 2015-08-13 | Hangzhou H3C Technologies Co., Ltd. | Migration of a security policy of a virtual machine |
US20150235229A1 (en) | 2012-10-01 | 2015-08-20 | Observant Pty Ltd. | Customer relationship development |
US20150249676A1 (en) | 2014-02-28 | 2015-09-03 | Fujitsu Limited | Monitoring method and monitoring apparatus |
US9141625B1 (en) | 2010-06-22 | 2015-09-22 | F5 Networks, Inc. | Methods for preserving flow state during virtual machine migration and devices thereof |
US20150269383A1 (en) | 2014-01-22 | 2015-09-24 | Object Security LTD | Automated and adaptive model-driven security system and method for operating the same |
US20150295943A1 (en) | 2014-04-14 | 2015-10-15 | Cyber Sense Ltd. | System and method for cyber threats detection |
US20160072899A1 (en) | 2014-09-04 | 2016-03-10 | Accenture Global Services Limited | System architecture for cloud-platform infrastructure layouts |
US9294442B1 (en) | 2015-03-30 | 2016-03-22 | Varmour Networks, Inc. | System and method for threat-driven security policy controls |
US20160105370A1 (en) | 2014-10-10 | 2016-04-14 | Pegasystems Inc. | Event processing with enhanced throughput |
US20160162179A1 (en) | 2012-05-31 | 2016-06-09 | Opportunity Partners Inc. | Computing Interface for Users with Disabilities |
US20160171682A1 (en) | 2014-12-14 | 2016-06-16 | International Business Machines Corporation | Cloud-based infrastructure for feedback-driven training and image recognition |
US20160173521A1 (en) | 2014-12-13 | 2016-06-16 | Security Scorecard | Calculating and benchmarking an entity's cybersecurity risk score |
US9380027B1 (en) | 2015-03-30 | 2016-06-28 | Varmour Networks, Inc. | Conditional declarative policies |
US20160191545A1 (en) | 2014-12-31 | 2016-06-30 | Symantec Corporation | Systems and methods for monitoring virtual networks |
US20160191466A1 (en) | 2014-12-30 | 2016-06-30 | Fortinet, Inc. | Dynamically optimized security policy management |
US20160203331A1 (en) | 2015-01-08 | 2016-07-14 | Microsoft Technology Licensing, Llc | Protecting private information in input understanding system |
US9407602B2 (en) | 2013-11-07 | 2016-08-02 | Attivo Networks, Inc. | Methods and apparatus for redirecting attacks on a network |
US9405665B1 (en) | 2015-05-22 | 2016-08-02 | Amazon Technologies, Inc. | Application testing based on user input captured during a trial period and priority scheme analysis |
US20160234250A1 (en) * | 2015-02-10 | 2016-08-11 | International Business Machines Corporation | System and method for software defined deployment of security appliances using policy templates |
US20160269442A1 (en) | 2015-03-13 | 2016-09-15 | Varmour Networks, Inc. | Methods and systems for improving analytics in distributed networks |
US20160294774A1 (en) | 2015-04-02 | 2016-10-06 | Varmour Networks, Inc. | Methods and systems for orchestrating physical and virtual switches to enforce security boundaries |
US20160294875A1 (en) | 2015-03-30 | 2016-10-06 | Varmour Networks, Inc. | System and method for threat-driven security policy controls |
US20160301704A1 (en) | 2015-04-09 | 2016-10-13 | Accenture Global Services Limited | Event correlation across heterogeneous operations |
US20160323245A1 (en) | 2012-04-11 | 2016-11-03 | Varmour Networks, Inc. | Security session forwarding following virtual machine migration |
US20160337390A1 (en) | 2015-05-11 | 2016-11-17 | Qualcomm Incorporated | Methods and Systems for Behavior-Specific Actuation for Real-Time Whitelisting |
US20160350105A1 (en) | 2015-05-27 | 2016-12-01 | Runnable Inc. | Automatic communications graphing for a source application |
US20160357774A1 (en) * | 2015-06-05 | 2016-12-08 | Apple Inc. | Segmentation techniques for learning user patterns to suggest applications responsive to an event on a device |
US20160357424A1 (en) | 2015-06-05 | 2016-12-08 | Cisco Technology, Inc. | Collapsing and placement of applications |
US9521115B1 (en) | 2016-03-24 | 2016-12-13 | Varmour Networks, Inc. | Security policy generation using container metadata |
US20170005986A1 (en) | 2015-06-30 | 2017-01-05 | Nicira, Inc. | Firewall Rule Management |
US20170006135A1 (en) | 2015-01-23 | 2017-01-05 | C3, Inc. | Systems, methods, and devices for an enterprise internet-of-things application development platform |
US20170075744A1 (en) | 2015-09-11 | 2017-03-16 | International Business Machines Corporation | Identifying root causes of failures in a deployed distributed application using historical fine grained machine state data |
US20170085654A1 (en) | 2015-09-17 | 2017-03-23 | Ericsson Ab | Entropy sharing in a large distributed system |
US20170118218A1 (en) | 2015-10-23 | 2017-04-27 | Oracle International Corporation | Access manager session management strategy |
US20170134422A1 (en) | 2014-02-11 | 2017-05-11 | Varmour Networks, Inc. | Deception Techniques Using Policy |
US9680852B1 (en) | 2016-01-29 | 2017-06-13 | Varmour Networks, Inc. | Recursive multi-layer examination for computer network security remediation |
WO2017100365A1 (en) | 2015-12-09 | 2017-06-15 | Varmour Networks, Inc. | Directing data traffic between intra-server virtual machines |
US20170180421A1 (en) | 2014-02-11 | 2017-06-22 | Varmour Networks, Inc. | Deception using Distributed Threat Detection |
US20170223033A1 (en) | 2016-01-29 | 2017-08-03 | Varmour Networks, Inc. | Multi-Node Affinity-Based Examination for Computer Network Security Remediation |
US20170251013A1 (en) * | 2016-02-26 | 2017-08-31 | Oracle International Corporation | Techniques for discovering and managing security of applications |
US20170264619A1 (en) | 2016-03-11 | 2017-09-14 | Netskope, Inc. | Middle ware security layer for cloud computing services |
US20170295188A1 (en) | 2016-04-06 | 2017-10-12 | Karamba Security | Automated security policy generation for controllers |
US9794289B1 (en) | 2014-04-11 | 2017-10-17 | Symantec Corporation | Applying security policies based on context of a workload |
US20170302685A1 (en) * | 2016-04-15 | 2017-10-19 | Sophos Limited | Forensic analysis of computing activity |
US20170339188A1 (en) | 2016-05-19 | 2017-11-23 | Cisco Technology, Inc. | Microsegmentation in heterogeneous software defined networking environments |
US20170374101A1 (en) | 2016-06-24 | 2017-12-28 | Varmour Networks, Inc. | Security Policy Generation for Virtualization, Bare-Metal Server, and Cloud Computing Environments |
US20170374032A1 (en) | 2016-06-24 | 2017-12-28 | Varmour Networks, Inc. | Autonomic Protection of Critical Network Applications Using Deception Techniques |
US20180005296A1 (en) | 2016-06-30 | 2018-01-04 | Varmour Networks, Inc. | Systems and Methods for Continually Scoring and Segmenting Open Opportunities Using Client Data and Product Predictors |
US20180083977A1 (en) | 2016-09-16 | 2018-03-22 | Oracle International Corporation | Distributed High Availability Agent Architecture |
US20180095976A1 (en) * | 2016-09-30 | 2018-04-05 | Ebay Inc. | Electronic file format modification and optimization |
US20180113773A1 (en) | 2016-10-21 | 2018-04-26 | Accenture Global Solutions Limited | Application monitoring and failure prediction |
US20180137506A1 (en) | 2016-11-14 | 2018-05-17 | American Express Travel Related Services Company, Inc. | System and Method For Automated Linkage of Enriched Transaction Data to a Record of Charge |
US20180191779A1 (en) | 2016-12-29 | 2018-07-05 | Varmour Networks, Inc. | Flexible Deception Architecture |
US20180191813A1 (en) | 2017-01-02 | 2018-07-05 | International Business Machines Corporation | MQTT cluster shared subscription hub for fat-pipe cloud applications |
US20180225795A1 (en) | 2017-02-03 | 2018-08-09 | Jasci LLC | Systems and methods for warehouse management |
US20180234385A1 (en) | 2017-02-15 | 2018-08-16 | Edgewise Networks, Inc. | Network Application Security Policy Generation |
US20180232262A1 (en) | 2017-02-15 | 2018-08-16 | Ca, Inc. | Mapping heterogeneous application-program interfaces to a database |
US20180254892A1 (en) | 2016-05-06 | 2018-09-06 | ZeroDB, Inc. | High-performance access management and data protection for distributed messaging applications |
US20180270127A1 (en) * | 2015-06-05 | 2018-09-20 | Cisco Technology, Inc. | Interactive hierarchical network chord diagram for application dependency mapping |
US20180293701A1 (en) | 2017-04-07 | 2018-10-11 | Abhishek R. Appu | Apparatus and method for dynamic provisioning, quality of service, and prioritization in a graphics processor |
US10116441B1 (en) | 2015-06-11 | 2018-10-30 | Amazon Technologies, Inc. | Enhanced-security random data |
US20180329940A1 (en) | 2017-05-12 | 2018-11-15 | American Express Travel Related Services Company, Inc. | Triggering of distributed data deletion |
US20180375877A1 (en) | 2017-05-19 | 2018-12-27 | Agari Data, Inc. | Using message context to evaluate security of requested data |
US20190043534A1 (en) | 2015-01-05 | 2019-02-07 | Gopro, Inc. | Media identifier generation for camera-captured media |
US20190052549A1 (en) | 2016-05-06 | 2019-02-14 | Enterpriseweb Llc | Systems and methods for domain-driven design and execution of metamodels |
US20190081963A1 (en) | 2017-09-08 | 2019-03-14 | Sophos Limited | Realtime event detection |
US20190109820A1 (en) | 2017-10-06 | 2019-04-11 | Stealthpath, Inc. | Methods for Internet Communication Security |
US20190141075A1 (en) | 2017-11-09 | 2019-05-09 | Monarx, Inc. | Method and system for a protection mechanism to improve server security |
US20190273746A1 (en) * | 2018-03-02 | 2019-09-05 | Syntegrity Networks Inc. | Microservice architecture for identity and access management |
US20190278760A1 (en) | 2008-11-14 | 2019-09-12 | Georgetown University | Process and Framework For Facilitating Information Sharing Using a Distributed Hypergraph |
US20190317728A1 (en) | 2018-04-17 | 2019-10-17 | International Business Machines Corporation | Graph similarity analytics |
US20190342307A1 (en) | 2018-05-01 | 2019-11-07 | Royal Bank Of Canada | System and method for monitoring security attack chains |
US20190394225A1 (en) | 2018-06-22 | 2019-12-26 | International Business Machines Corporation | Optimizing Ingestion of Structured Security Information into Graph Databases for Security Analytics |
US10528897B2 (en) | 2011-04-28 | 2020-01-07 | Intuit Inc. | Graph databases for storing multidimensional models of software offerings |
US10554604B1 (en) | 2017-01-04 | 2020-02-04 | Sprint Communications Company L.P. | Low-load message queue scaling using ephemeral logical message topics |
US20200043008A1 (en) | 2018-08-06 | 2020-02-06 | SecureSky, Inc. | Automated cloud security computer system for proactive risk detection and adaptive response to risks and method of using same |
US20200065343A1 (en) | 2018-08-27 | 2020-02-27 | Box, Inc. | Activity-based application recommendations |
US20200074078A1 (en) | 2018-08-31 | 2020-03-05 | Sophos Limited | Computer augmented threat evaluation |
US20200076826A1 (en) | 2018-08-31 | 2020-03-05 | Forcepoint, LLC | System Identifying Ingress of Protected Data to Mitigate Security Breaches |
US10630703B1 (en) | 2019-07-25 | 2020-04-21 | Confluera, Inc. | Methods and system for identifying relationships among infrastructure security-related events |
US20200145441A1 (en) | 2016-09-06 | 2020-05-07 | Accenture Global Solutions Limited | Graph database analysis for network anomaly detection systems |
US20200169565A1 (en) | 2018-11-27 | 2020-05-28 | Sailpoint Technologies, Inc. | System and method for outlier and anomaly detection in identity management artificial intelligence systems using cluster based analysis of network identity graphs |
US20200259852A1 (en) | 2019-02-13 | 2020-08-13 | Obsidian Security, Inc. | Systems and methods for detecting security incidents across cloud-based application services |
US20200329118A1 (en) | 2019-04-09 | 2020-10-15 | Wangsu Science & Technology Co., Ltd. | Data transmission scheduling method and system |
US20200382560A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Validation of Cloud Security Policies |
US20200382556A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Template-Driven Intent-Based Security |
US20200382363A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Cloud Security Management |
US20200382586A1 (en) | 2018-11-27 | 2020-12-03 | Sailpoint Technologies Inc. | System and method for peer group detection, visualization and analysis in identity management artificial intelligence systems using cluster based analysis of network identity graphs |
US20200382557A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Reliability Prediction for Cloud Security Policies |
US10862748B1 (en) * | 2016-03-12 | 2020-12-08 | Optumi, Inc. | Intent driven controller for provisioning software applications on networked equipment |
US20210126837A1 (en) | 2019-10-29 | 2021-04-29 | Dell Products L.P. | Message oriented middleware topology explorer |
US20210168150A1 (en) | 2019-05-31 | 2021-06-03 | Varmour Networks, Inc. | Systems and Methods for Understanding Identity and Organizational Access to Applications within an Enterprise Environment |
US20220036302A1 (en) | 2019-11-05 | 2022-02-03 | Strong Force Vcn Portfolio 2019, Llc | Network and data facilities of control tower and enterprise management platform with adaptive intelligence |
US20220201024A1 (en) | 2020-12-23 | 2022-06-23 | Varmour Networks, Inc. | Modeling Topic-Based Message-Oriented Middleware within a Security System |
US20220201025A1 (en) | 2020-12-23 | 2022-06-23 | Varmour Networks, Inc. | Modeling Queue-Based Message-Oriented Middleware Relationships in a Security System |
US11470684B2 (en) | 2020-09-28 | 2022-10-11 | National Central University | Method for building self-organized network, and self-organized network and node device thereof |
-
2020
- 2020-12-23 US US17/133,466 patent/US11863580B2/en active Active
Patent Citations (369)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6158007A (en) | 1997-09-17 | 2000-12-05 | Jahanshah Moreh | Security system for event based middleware |
US7519062B1 (en) | 1997-10-14 | 2009-04-14 | Cisco Technology, Inc. | Method and apparatus for implementing forwarding decision shortcuts at a network switch |
US6484261B1 (en) | 1998-02-17 | 2002-11-19 | Cisco Technology, Inc. | Graphical network security policy management |
US20050021943A1 (en) | 1998-05-04 | 2005-01-27 | Auric Web Systems | User specific automatic data redirection system |
US6253321B1 (en) | 1998-06-19 | 2001-06-26 | Ssh Communications Security Ltd. | Method and arrangement for implementing IPSEC policy management using filter code |
US20070022090A1 (en) | 1998-12-09 | 2007-01-25 | Network Ice Corporation, Inc. | Method and Apparatus for Providing Network and Computer System Security |
US6970459B1 (en) | 1999-05-13 | 2005-11-29 | Intermec Ip Corp. | Mobile virtual network system and method |
US6765864B1 (en) | 1999-06-29 | 2004-07-20 | Cisco Technology, Inc. | Technique for providing dynamic modification of application specific policies in a feedback-based, adaptive data network |
US6981155B1 (en) | 1999-07-14 | 2005-12-27 | Symantec Corporation | System and method for computer security |
US6578076B1 (en) | 1999-10-18 | 2003-06-10 | Intel Corporation | Policy-based network management system using dynamic policy generation |
US20020031103A1 (en) | 2000-05-02 | 2002-03-14 | Globalstar L.P. | User terminal employing quality of service path determination and bandwidth saving mode for a satellite ISP system using non-geosynchronous orbit satellites |
US6832243B1 (en) | 2000-08-15 | 2004-12-14 | International Business Machines Corporation | Methods and apparatus for defining, observing and evaluating message delivery outcome on a per-message basis |
US7096260B1 (en) | 2000-09-29 | 2006-08-22 | Cisco Technology, Inc. | Marking network data packets with differentiated services codepoints based on network load |
US20020066034A1 (en) | 2000-10-24 | 2002-05-30 | Schlossberg Barry J. | Distributed network security deception system |
US20020178273A1 (en) | 2001-04-05 | 2002-11-28 | Real-Time Innovations, Inc. | Real-time publish-subscribe system |
WO2002098100A1 (en) | 2001-05-31 | 2002-12-05 | Preventon Technologies Limited | Access control systems |
US7904454B2 (en) | 2001-07-16 | 2011-03-08 | International Business Machines Corporation | Database access security |
US20030055950A1 (en) | 2001-07-24 | 2003-03-20 | At&T Corp. | Method and apparatus for packet analysis in a network |
US20030172368A1 (en) | 2001-12-26 | 2003-09-11 | Elizabeth Alumbaugh | System and method for autonomously generating heterogeneous data source interoperability bridges based on semantic modeling derived from self adapting ontology |
US20030227392A1 (en) | 2002-01-11 | 2003-12-11 | Ebert Peter S. | Context-aware and real-time item tracking system architecture and scenarios |
US20030177389A1 (en) | 2002-03-06 | 2003-09-18 | Zone Labs, Inc. | System and methodology for security policy arbitration |
US20050174235A1 (en) | 2002-05-07 | 2005-08-11 | Davis Brian J. | Tracking system and assosciated method |
US7058712B1 (en) | 2002-06-04 | 2006-06-06 | Rockwell Automation Technologies, Inc. | System and methodology providing flexible and distributed processing in an industrial controller environment |
US7797306B1 (en) | 2002-06-26 | 2010-09-14 | Microsoft Corporation | System and method for providing notification(s) in accordance with middleware technologies |
US20040172557A1 (en) | 2002-08-20 | 2004-09-02 | Masayuki Nakae | Attack defending system and attack defending method |
US7849495B1 (en) | 2002-08-22 | 2010-12-07 | Cisco Technology, Inc. | Method and apparatus for passing security configuration information between a client and a security policy server |
US7467408B1 (en) | 2002-09-09 | 2008-12-16 | Cisco Technology, Inc. | Method and apparatus for capturing and filtering datagrams for network security monitoring |
US20040062204A1 (en) | 2002-09-30 | 2004-04-01 | Bearden Mark J. | Communication system endpoint device with integrated call synthesis capability |
US7062566B2 (en) | 2002-10-24 | 2006-06-13 | 3Com Corporation | System and method for using virtual local area network tags with a virtual private network |
US20050033989A1 (en) | 2002-11-04 | 2005-02-10 | Poletto Massimiliano Antonio | Detection of scanning attacks |
US20040095897A1 (en) | 2002-11-14 | 2004-05-20 | Digi International Inc. | System and method to discover and configure remotely located network devices |
US7397794B1 (en) | 2002-11-21 | 2008-07-08 | Juniper Networks, Inc. | Systems and methods for implementing virtual switch planes in a physical switch fabric |
US20040143631A1 (en) | 2003-01-17 | 2004-07-22 | International Business Machines Corporation | Method and apparatus for internationalization of a message service infrastructure |
US7516476B1 (en) | 2003-03-24 | 2009-04-07 | Cisco Technology, Inc. | Methods and apparatus for automated creation of security policy |
US20060085412A1 (en) | 2003-04-15 | 2006-04-20 | Johnson Sean A | System for managing multiple disparate content repositories and workflow systems |
US20040240458A1 (en) | 2003-05-27 | 2004-12-02 | Sun Microsystems, Inc. | Method and system for messaging to a cluster |
US7900240B2 (en) | 2003-05-28 | 2011-03-01 | Citrix Systems, Inc. | Multilayer access control security system |
US20070130566A1 (en) | 2003-07-09 | 2007-06-07 | Van Rietschote Hans F | Migrating Virtual Machines among Computer Systems to Balance Load Caused by Virtual Machines |
US20050119905A1 (en) | 2003-07-11 | 2005-06-02 | Wai Wong | Modeling of applications and business process services through auto discovery analysis |
US20050125768A1 (en) | 2003-07-11 | 2005-06-09 | Wai Wong | Infrastructure auto discovery from business process models via middleware flows |
US8051460B2 (en) | 2003-09-24 | 2011-11-01 | Infoexpress, Inc. | Systems and methods of controlling network access |
US20050114829A1 (en) | 2003-10-30 | 2005-05-26 | Microsoft Corporation | Facilitating the process of designing and developing a project |
US20050154576A1 (en) * | 2004-01-09 | 2005-07-14 | Hitachi, Ltd. | Policy simulator for analyzing autonomic system management policy of a computer system |
US7725937B1 (en) | 2004-02-09 | 2010-05-25 | Symantec Corporation | Capturing a security breach |
US7373524B2 (en) | 2004-02-24 | 2008-05-13 | Covelight Systems, Inc. | Methods, systems and computer program products for monitoring user behavior for a server application |
US20050190758A1 (en) | 2004-03-01 | 2005-09-01 | Cisco Technology, Inc. | Security groups for VLANs |
US20050201343A1 (en) | 2004-03-12 | 2005-09-15 | Telefonaktiebolaget Lm Ericsson | Providing higher layer frame/packet boundary information in GRE frames |
US8898788B1 (en) | 2004-04-01 | 2014-11-25 | Fireeye, Inc. | Systems and methods for malware attack prevention |
US20100192223A1 (en) | 2004-04-01 | 2010-07-29 | Osman Abdoul Ismael | Detecting Malicious Network Content Using Virtual Environment Components |
US20050246241A1 (en) | 2004-04-30 | 2005-11-03 | Rightnow Technologies, Inc. | Method and system for monitoring successful use of application software |
US7627671B1 (en) | 2004-05-22 | 2009-12-01 | ClearApp, Inc. | Monitoring and performance management of component-based applications |
US20060005228A1 (en) | 2004-06-18 | 2006-01-05 | Nec Corporation | Behavior model generator system for facilitating confirmation of intention of security policy creator |
US20050283823A1 (en) | 2004-06-21 | 2005-12-22 | Nec Corporation | Method and apparatus for security policy management |
US8677496B2 (en) | 2004-07-15 | 2014-03-18 | AlgoSec Systems Ltd. | Method and apparatus for automatic risk assessment of a firewall configuration |
US20060037077A1 (en) | 2004-08-16 | 2006-02-16 | Cisco Technology, Inc. | Network intrusion detection system having application inspection and anomaly detection characteristics |
US7475424B2 (en) | 2004-09-02 | 2009-01-06 | International Business Machines Corporation | System and method for on-demand dynamic control of security policies/rules by a client computing device |
US20060050696A1 (en) | 2004-09-08 | 2006-03-09 | Ericsson Inc. | Generic routing encapsulation over point-to-point protocol |
US20100199349A1 (en) | 2004-10-26 | 2010-08-05 | The Mitre Corporation | Method, apparatus, and computer program product for detecting computer worms in a network |
US20060168331A1 (en) | 2005-01-06 | 2006-07-27 | Terevela, Inc. | Intelligent messaging application programming interface |
US20060168070A1 (en) | 2005-01-06 | 2006-07-27 | Tervela, Inc. | Hardware-based messaging appliance |
US20130166681A1 (en) | 2005-01-06 | 2013-06-27 | Travela, Inc. | Systems and methods for network virtualization |
US20090138316A1 (en) | 2005-02-04 | 2009-05-28 | Bp Australia Pty Ltd | System and method for evaluating initiatives adapted to deliver value to a customer |
US20070192863A1 (en) | 2005-07-01 | 2007-08-16 | Harsh Kapoor | Systems and methods for processing data flows |
US20070016945A1 (en) | 2005-07-15 | 2007-01-18 | Microsoft Corporation | Automatically generating rules for connection security |
US8490153B2 (en) | 2005-07-15 | 2013-07-16 | Microsoft Corporation | Automatically generating rules for connection security |
US20070019621A1 (en) | 2005-07-21 | 2007-01-25 | Santera Systems, Inc. | Systems and methods for voice over multiprotocol label switching |
US20070027801A1 (en) | 2005-07-26 | 2007-02-01 | International Business Machines Corporation | Multi-level transaction flow monitoring |
US20070157286A1 (en) | 2005-08-20 | 2007-07-05 | Opnet Technologies, Inc. | Analyzing security compliance within a network |
US20070064617A1 (en) | 2005-09-15 | 2007-03-22 | Reves Joseph P | Traffic anomaly analysis for the detection of aberrant network code |
US20090260051A1 (en) | 2005-09-27 | 2009-10-15 | Nec Corporation | Policy processing system, method, and program |
US8688491B1 (en) | 2005-09-29 | 2014-04-01 | The Mathworks, Inc. | Testing and error reporting for on-demand software based marketing and sales |
US7996255B1 (en) | 2005-09-29 | 2011-08-09 | The Mathworks, Inc. | System and method for providing sales leads based on-demand software trial usage |
US20070079308A1 (en) | 2005-09-30 | 2007-04-05 | Computer Associates Think, Inc. | Managing virtual machines |
US7533128B1 (en) | 2005-10-18 | 2009-05-12 | Real-Time Innovations, Inc. | Data distribution service and database management systems bridge |
US20080263179A1 (en) | 2005-10-28 | 2008-10-23 | Gerard John Buttner | System and method for dynamically updating web pages using messaging-oriented middleware |
US8499330B1 (en) | 2005-11-15 | 2013-07-30 | At&T Intellectual Property Ii, L.P. | Enterprise desktop security management and compliance verification system and method |
US20070168971A1 (en) | 2005-11-22 | 2007-07-19 | Epiphany, Inc. | Multi-tiered model-based application testing |
US7694181B2 (en) | 2005-12-12 | 2010-04-06 | Archivas, Inc. | Automated software testing framework |
US20070162400A1 (en) | 2006-01-12 | 2007-07-12 | International Business Machines Corporation | Method and apparatus for managing digital content in a content management system |
US9015299B1 (en) | 2006-01-20 | 2015-04-21 | Cisco Technology, Inc. | Link grouping for route optimization |
US20070198656A1 (en) | 2006-01-24 | 2007-08-23 | Citrix Systems, Inc. | Methods and servers for establishing a connection between a client system and a virtual machine executing in a terminal services session and hosting a requested computing environment |
US20070192861A1 (en) | 2006-02-03 | 2007-08-16 | George Varghese | Methods and systems to detect an evasion attack |
US20090328187A1 (en) | 2006-03-03 | 2009-12-31 | Art of Defense GmBHBruderwohrdstrasse | Distributed web application firewall |
US20100064341A1 (en) | 2006-03-27 | 2010-03-11 | Carlo Aldera | System for Enforcing Security Policies on Mobile Communications Devices |
US20070239987A1 (en) | 2006-03-31 | 2007-10-11 | Amazon Technologies, Inc. | Managing communications between computing nodes |
US20070234369A1 (en) | 2006-04-03 | 2007-10-04 | Microsoft Corporation | Policy based message aggregation framework |
US20070271612A1 (en) | 2006-05-19 | 2007-11-22 | Licai Fang | Anti-virus and firewall system |
US20070277222A1 (en) | 2006-05-26 | 2007-11-29 | Novell, Inc | System and method for executing a permissions recorder analyzer |
US7774837B2 (en) | 2006-06-14 | 2010-08-10 | Cipheroptics, Inc. | Securing network traffic by distributing policies in a hierarchy over secure tunnels |
US20080016550A1 (en) | 2006-06-14 | 2008-01-17 | Mcalister Donald K | Securing network traffic by distributing policies in a hierarchy over secure tunnels |
US20080016339A1 (en) | 2006-06-29 | 2008-01-17 | Jayant Shukla | Application Sandbox to Detect, Remove, and Prevent Malware |
US7742414B1 (en) | 2006-06-30 | 2010-06-22 | Sprint Communications Company L.P. | Lightweight indexing for fast retrieval of data from a flow-level compressed packet trace |
US20080083011A1 (en) | 2006-09-29 | 2008-04-03 | Mcalister Donald | Protocol/API between a key server (KAP) and an enforcement point (PEP) |
US20080155239A1 (en) | 2006-10-10 | 2008-06-26 | Honeywell International Inc. | Automata based storage and execution of application logic in smart card like devices |
US20100235880A1 (en) | 2006-10-17 | 2010-09-16 | A10 Networks, Inc. | System and Method to Apply Network Traffic Policy to an Application Session |
US20080163207A1 (en) | 2007-01-03 | 2008-07-03 | International Business Machines Corporation | Moveable access control list (acl) mechanisms for hypervisors and virtual machines and virtual port firewalls |
US8819762B2 (en) | 2007-01-31 | 2014-08-26 | Tufin Software Technologies Ltd. | System and method for auditing a security policy |
US20080195670A1 (en) | 2007-02-12 | 2008-08-14 | Boydstun Louis L | System and method for log management |
US20090077666A1 (en) | 2007-03-12 | 2009-03-19 | University Of Southern California | Value-Adaptive Security Threat Modeling and Vulnerability Ranking |
US20080229382A1 (en) | 2007-03-14 | 2008-09-18 | Motorola, Inc. | Mobile access terminal security function |
US20080239961A1 (en) | 2007-03-30 | 2008-10-02 | Microsoft Corporation | Packet routing based on application source |
US20130318617A1 (en) | 2007-05-24 | 2013-11-28 | Animesh Chaturvedi | Managing network security |
US20080301770A1 (en) | 2007-05-31 | 2008-12-04 | Kinder Nathan G | Identity based virtual machine selector |
US20080307110A1 (en) | 2007-06-08 | 2008-12-11 | Cisco Technology, Inc. | Conditional BGP advertising for dynamic group VPN (DGVPN) clients |
US9009829B2 (en) | 2007-06-12 | 2015-04-14 | The Trustees Of Columbia University In The City Of New York | Methods, systems, and media for baiting inside attackers |
US20090006268A1 (en) | 2007-06-26 | 2009-01-01 | Wall Street On Demand | Computer-based method for teaming research analysts to generate improved securities investment recommendations |
US8291495B1 (en) | 2007-08-08 | 2012-10-16 | Juniper Networks, Inc. | Identifying applications for intrusion detection systems |
US20110003580A1 (en) | 2007-08-31 | 2011-01-06 | Vodafone Group Plc | Telecommunications device security |
US20090077621A1 (en) | 2007-09-17 | 2009-03-19 | Ulrich Lang | Method and system for managing security policies |
US20090083445A1 (en) | 2007-09-24 | 2009-03-26 | Ganga Ilango S | Method and system for virtual port communications |
US20090138590A1 (en) * | 2007-11-26 | 2009-05-28 | Eun Young Lee | Apparatus and method for detecting anomalous traffic |
US20090165078A1 (en) | 2007-12-20 | 2009-06-25 | Motorola, Inc. | Managing policy rules and associated policy components |
US20090190585A1 (en) | 2008-01-28 | 2009-07-30 | Microsoft Corporation | Message Processing Engine with a Virtual Network Interface |
US8254381B2 (en) | 2008-01-28 | 2012-08-28 | Microsoft Corporation | Message processing engine with a virtual network interface |
US20090249470A1 (en) | 2008-03-27 | 2009-10-01 | Moshe Litvin | Combined firewalls |
US20090268667A1 (en) | 2008-04-28 | 2009-10-29 | Xg Technology, Inc. | Header compression mechanism for transmitting RTP packets over wireless links |
US20120185913A1 (en) | 2008-06-19 | 2012-07-19 | Servicemesh, Inc. | System and method for a cloud computing abstraction layer with security zone facilities |
US20100287544A1 (en) | 2008-07-22 | 2010-11-11 | International Business Machines Corporation | Secure patch updates of a virtual machine image in a virtualization data processing system |
US9361089B2 (en) | 2008-07-22 | 2016-06-07 | International Business Machines Corporation | Secure patch updates of a virtual machine image in a virtualization data processing system |
US8307422B2 (en) | 2008-08-14 | 2012-11-06 | Juniper Networks, Inc. | Routing device having integrated MPLS-aware firewall |
US20100043068A1 (en) | 2008-08-14 | 2010-02-18 | Juniper Networks, Inc. | Routing device having integrated mpls-aware firewall |
US8112304B2 (en) | 2008-08-15 | 2012-02-07 | Raytheon Company | Method of risk management across a mission support network |
US20100071025A1 (en) | 2008-09-15 | 2010-03-18 | International Business Machines Corporation | Securing live migration of a virtual machine within a service landscape |
US8353021B1 (en) | 2008-09-30 | 2013-01-08 | Symantec Corporation | Determining firewall rules for an application on a client based on firewall rules and reputations of other clients |
US20100088738A1 (en) | 2008-10-02 | 2010-04-08 | Microsoft Corporation | Global Object Access Auditing |
US20100095367A1 (en) | 2008-10-09 | 2010-04-15 | Juniper Networks, Inc. | Dynamic access control policy with port restrictions for a network security appliance |
US20190278760A1 (en) | 2008-11-14 | 2019-09-12 | Georgetown University | Process and Framework For Facilitating Information Sharing Using a Distributed Hypergraph |
US20100125476A1 (en) | 2008-11-20 | 2010-05-20 | Keun-Hyuk Yeom | System having business aware framework for supporting situation awareness |
US20110249679A1 (en) | 2008-12-16 | 2011-10-13 | Zte Corporation | Method for implementing fast reroute |
US8565118B2 (en) | 2008-12-30 | 2013-10-22 | Juniper Networks, Inc. | Methods and apparatus for distributed dynamic network provisioning |
US20100191863A1 (en) | 2009-01-23 | 2010-07-29 | Cisco Technology, Inc., A Corporation Of California | Protected Device Initiated Pinhole Creation to Allow Access to the Protected Device in Response to a Domain Name System (DNS) Query |
US20100192225A1 (en) | 2009-01-28 | 2010-07-29 | Juniper Networks, Inc. | Efficient application identification with network devices |
US20100208699A1 (en) | 2009-02-16 | 2010-08-19 | Lg Electronics Inc. | Mobile terminal and handover method thereof |
US20100228962A1 (en) | 2009-03-09 | 2010-09-09 | Microsoft Corporation | Offloading cryptographic protection processing |
US8321862B2 (en) | 2009-03-20 | 2012-11-27 | Oracle America, Inc. | System for migrating a virtual machine and resource usage data to a chosen target host based on a migration policy |
US20100274970A1 (en) | 2009-04-23 | 2010-10-28 | Opendns, Inc. | Robust Domain Name Resolution |
US20100281539A1 (en) | 2009-04-29 | 2010-11-04 | Juniper Networks, Inc. | Detecting malicious network software agents |
US20110022812A1 (en) | 2009-05-01 | 2011-01-27 | Van Der Linden Rob | Systems and methods for establishing a cloud bridge between virtual storage resources |
US8429647B2 (en) | 2009-05-06 | 2013-04-23 | Vmware, Inc. | Virtual machine migration across network by publishing routes to the associated virtual networks via virtual router after the start of migration of the virtual machine |
US8468113B2 (en) | 2009-05-18 | 2013-06-18 | Tufin Software Technologies Ltd. | Method and system for management of security rule set |
US20100333165A1 (en) | 2009-06-24 | 2010-12-30 | Vmware, Inc. | Firewall configured with dynamic membership sets representing machine attributes |
US8494000B1 (en) | 2009-07-10 | 2013-07-23 | Netscout Systems, Inc. | Intelligent slicing of monitored network packets for storing |
US8661434B1 (en) | 2009-08-05 | 2014-02-25 | Trend Micro Incorporated | Migration of computer security modules in a virtual machine environment |
US20110069710A1 (en) | 2009-09-22 | 2011-03-24 | Virtensys Limited | Switching Method |
US20110072486A1 (en) | 2009-09-23 | 2011-03-24 | Computer Associates Think, Inc. | System, Method, and Software for Enforcing Access Control Policy Rules on Utility Computing Virtualization in Cloud Computing Systems |
US20120284792A1 (en) | 2009-10-08 | 2012-11-08 | Irdeto Canada Corporation | System and Method for Aggressive Self-Modification in Dynamic Function Call Systems |
US20110090915A1 (en) | 2009-10-16 | 2011-04-21 | Sun Microsystems, Inc. | Method and system for intra-host communication |
US8369333B2 (en) | 2009-10-21 | 2013-02-05 | Alcatel Lucent | Method and apparatus for transparent cloud computing with a virtualized network infrastructure |
US20110113472A1 (en) | 2009-11-10 | 2011-05-12 | Hei Tao Fung | Integrated Virtual Desktop and Security Management System |
US20120017258A1 (en) | 2009-11-19 | 2012-01-19 | Hitachi, Ltd. | Computer system, management system and recording medium |
US20120224057A1 (en) | 2009-11-20 | 2012-09-06 | Jasvir Singh Gill | Situational intelligence |
US20110138384A1 (en) | 2009-12-03 | 2011-06-09 | International Business Machines Corporation | Dynamically provisioning virtual machines |
US20110138441A1 (en) | 2009-12-09 | 2011-06-09 | Microsoft Corporation | Model based systems management in virtualized and non-virtualized environments |
US20120311144A1 (en) | 2009-12-15 | 2012-12-06 | International Business Machines Corporation | Method for operating cloud computing services and cloud computing information system |
US8528091B2 (en) | 2009-12-31 | 2013-09-03 | The Trustees Of Columbia University In The City Of New York | Methods, systems, and media for detecting covert malware |
US20110184993A1 (en) | 2010-01-27 | 2011-07-28 | Vmware, Inc. | Independent Access to Virtual Machine Desktop Content |
US20110225624A1 (en) | 2010-03-15 | 2011-09-15 | Symantec Corporation | Systems and Methods for Providing Network Access Control in Virtual Environments |
US8938782B2 (en) | 2010-03-15 | 2015-01-20 | Symantec Corporation | Systems and methods for providing network access control in virtual environments |
US8259571B1 (en) | 2010-03-26 | 2012-09-04 | Zscaler, Inc. | Handling overlapping IP addresses in multi-tenant architecture |
US8396986B2 (en) | 2010-03-30 | 2013-03-12 | Hitachi, Ltd. | Method and system of virtual machine migration |
US20110263238A1 (en) | 2010-04-23 | 2011-10-27 | Yusun Kim Riley | Methods, systems, and computer readable media for automatic, recurrent enforcement of a policy rule |
US20120113989A1 (en) | 2010-06-09 | 2012-05-10 | Nec Corporation | Communication system, logical channel control device, control device, communication method and program |
US9141625B1 (en) | 2010-06-22 | 2015-09-22 | F5 Networks, Inc. | Methods for preserving flow state during virtual machine migration and devices thereof |
US8296459B1 (en) | 2010-06-30 | 2012-10-23 | Amazon Technologies, Inc. | Custom routing decisions |
US20130166490A1 (en) | 2010-08-27 | 2013-06-27 | Pneuron Corp. | Pneuron distributed analytics |
US20130166720A1 (en) | 2010-09-09 | 2013-06-27 | Masanori Takashima | Network system and network managing method |
US8730963B1 (en) | 2010-11-19 | 2014-05-20 | Extreme Networks, Inc. | Methods, systems, and computer readable media for improved multi-switch link aggregation group (MLAG) convergence |
US20120131685A1 (en) | 2010-11-19 | 2012-05-24 | MobileIron, Inc. | Mobile Posture-based Policy, Remediation and Access Control for Enterprise Resources |
US20120130936A1 (en) | 2010-11-23 | 2012-05-24 | Novell, Inc. | System and method for determining fuzzy cause and effect relationships in an intelligent workload management system |
US20170195454A1 (en) | 2011-02-10 | 2017-07-06 | Varmour Networks, Inc. | Distributed Service Processing of Network Gateways Using Virtual Machines |
US20120207174A1 (en) | 2011-02-10 | 2012-08-16 | Choung-Yaw Michael Shieh | Distributed service processing of network gateways using virtual machines |
US20160028851A1 (en) | 2011-02-10 | 2016-01-28 | Varmour Networks, Inc. | Distributed Service Processing of Network Gateways Using Virtual Machines |
US8612744B2 (en) | 2011-02-10 | 2013-12-17 | Varmour Networks, Inc. | Distributed firewall architecture using virtual machines |
US9191327B2 (en) | 2011-02-10 | 2015-11-17 | Varmour Networks, Inc. | Distributed service processing of network gateways using virtual machines |
US9609083B2 (en) | 2011-02-10 | 2017-03-28 | Varmour Networks, Inc. | Distributed service processing of network gateways using virtual machines |
US20120210428A1 (en) | 2011-02-14 | 2012-08-16 | Computer Associates Think, Inc. | Flow data for security intrusion detection |
US20120216273A1 (en) | 2011-02-18 | 2012-08-23 | James Rolette | Securing a virtual environment |
US20140022894A1 (en) | 2011-04-04 | 2014-01-23 | Nec Corporation | Network system, switch and connected terminal detection method |
US10528897B2 (en) | 2011-04-28 | 2020-01-07 | Intuit Inc. | Graph databases for storing multidimensional models of software offerings |
US20120278903A1 (en) | 2011-04-30 | 2012-11-01 | Vmware, Inc. | Dynamic management of groups for entitlement and provisioning of computer resources |
US20120297383A1 (en) | 2011-05-20 | 2012-11-22 | Steven Meisner | Methods and systems for virtualizing audio hardware for one or more virtual machines |
US20120311575A1 (en) | 2011-06-02 | 2012-12-06 | Fujitsu Limited | System and method for enforcing policies for virtual machines |
US20120324069A1 (en) | 2011-06-17 | 2012-12-20 | Microsoft Corporation | Middleware Services Framework for On-Premises and Cloud Deployment |
US20120324567A1 (en) | 2011-06-17 | 2012-12-20 | General Instrument Corporation | Method and Apparatus for Home Network Discovery |
US20130019277A1 (en) | 2011-07-12 | 2013-01-17 | Cisco Technology, Inc. | Zone-Based Firewall Policy Model for a Virtualized Data Center |
US8935457B2 (en) | 2011-07-29 | 2015-01-13 | International Business Machines Corporation | Network filtering in a virtualized environment |
US8798055B1 (en) | 2011-08-11 | 2014-08-05 | Juniper Networks, Inc. | Forming a multi-device layer 2 switched fabric using internet protocol (IP)-routed / switched networks |
US20130054536A1 (en) * | 2011-08-27 | 2013-02-28 | Accenture Global Services Limited | Backup of data across network of devices |
US20130081142A1 (en) | 2011-09-22 | 2013-03-28 | Raytheon Company | System, Method, and Logic for Classifying Communications |
US20130086399A1 (en) | 2011-09-30 | 2013-04-04 | Cisco Technology, Inc. | Method, system and apparatus for network power management |
US20130097138A1 (en) | 2011-10-17 | 2013-04-18 | Omer BARKOL | Discovering representative composite ci patterns in an it system |
US20130097692A1 (en) | 2011-10-17 | 2013-04-18 | Mcafee, Inc. | System and method for host-initiated firewall discovery in a network environment |
US8813169B2 (en) | 2011-11-03 | 2014-08-19 | Varmour Networks, Inc. | Virtual security boundary for physical or virtual network devices |
US9021546B1 (en) | 2011-11-08 | 2015-04-28 | Symantec Corporation | Systems and methods for workload security in virtual data centers |
US20130145465A1 (en) | 2011-12-06 | 2013-06-06 | At&T Intellectual Property I, L.P. | Multilayered deception for intrusion detection and prevention |
US20130151680A1 (en) | 2011-12-12 | 2013-06-13 | Daniel Salinas | Providing A Database As A Service In A Multi-Tenant Environment |
US20130198799A1 (en) | 2012-01-27 | 2013-08-01 | Honeywell International Inc. | Role-based access control permissions |
US20130198840A1 (en) | 2012-01-31 | 2013-08-01 | International Business Machines Corporation | Systems, methods and computer programs providing impact mitigation of cyber-security failures |
US8990371B2 (en) | 2012-01-31 | 2015-03-24 | International Business Machines Corporation | Interconnecting data centers for migration of virtual machines |
US20130219384A1 (en) | 2012-02-18 | 2013-08-22 | Cisco Technology, Inc. | System and method for verifying layer 2 connectivity in a virtual environment |
US20130223226A1 (en) | 2012-02-29 | 2013-08-29 | Dell Products, Lp | System and Method for Providing a Split Data Plane in a Flow-Based Switching Device |
US9294302B2 (en) | 2012-03-22 | 2016-03-22 | Varmour Networks, Inc. | Non-fragmented IP packet tunneling in a network |
US20130250956A1 (en) | 2012-03-22 | 2013-09-26 | Yi Sun | Non-fragmented ip packet tunneling in a network |
US20130263125A1 (en) | 2012-04-02 | 2013-10-03 | Cisco Technology, Inc. | Virtualized movement of enhanced network services associated with a virtual machine |
US20130291088A1 (en) | 2012-04-11 | 2013-10-31 | Choung-Yaw Michael Shieh | Cooperative network security inspection |
US20130276092A1 (en) | 2012-04-11 | 2013-10-17 | Yi Sun | System and method for dynamic security insertion in network virtualization |
US20130275592A1 (en) | 2012-04-11 | 2013-10-17 | Meng Xu | Adaptive session forwarding following virtual machine migration detection |
US10333827B2 (en) | 2012-04-11 | 2019-06-25 | Varmour Networks, Inc. | Adaptive session forwarding following virtual machine migration detection |
US20160323245A1 (en) | 2012-04-11 | 2016-11-03 | Varmour Networks, Inc. | Security session forwarding following virtual machine migration |
US9258275B2 (en) | 2012-04-11 | 2016-02-09 | Varmour Networks, Inc. | System and method for dynamic security insertion in network virtualization |
US20130276035A1 (en) | 2012-04-12 | 2013-10-17 | Qualcomm Incorporated | Broadcast content via over the top delivery |
US20150229641A1 (en) | 2012-04-23 | 2015-08-13 | Hangzhou H3C Technologies Co., Ltd. | Migration of a security policy of a virtual machine |
US20130283336A1 (en) | 2012-04-23 | 2013-10-24 | Abb Technology Ag | Cyber security analyzer |
US8539548B1 (en) | 2012-04-27 | 2013-09-17 | International Business Machines Corporation | Tiered network policy configuration with policy customization control |
US9027077B1 (en) | 2012-04-30 | 2015-05-05 | Palo Alto Networks, Inc. | Deploying policy configuration across multiple security devices through hierarchical configuration templates |
US20130298181A1 (en) | 2012-05-01 | 2013-11-07 | Harris Corporation | Noise, encryption, and decoys for communications in a dynamic computer network |
US20130298243A1 (en) | 2012-05-01 | 2013-11-07 | Taasera, Inc. | Systems and methods for orchestrating runtime operational integrity |
US20130298184A1 (en) | 2012-05-02 | 2013-11-07 | Cisco Technology, Inc. | System and method for monitoring application security in a network environment |
US20160162179A1 (en) | 2012-05-31 | 2016-06-09 | Opportunity Partners Inc. | Computing Interface for Users with Disabilities |
US20130343396A1 (en) | 2012-06-22 | 2013-12-26 | Fujitsu Limited | Information processing system, relay device, information processing device, and information processing method |
US20140007181A1 (en) | 2012-07-02 | 2014-01-02 | Sumit Sarin | System and method for data loss prevention in a virtualized environment |
US20140033267A1 (en) | 2012-07-26 | 2014-01-30 | Samsung Electronics Co., Ltd. | Type mining framework for automated security policy generation |
US20140096229A1 (en) | 2012-09-28 | 2014-04-03 | Juniper Networks, Inc. | Virtual honeypot |
US20150235229A1 (en) | 2012-10-01 | 2015-08-20 | Observant Pty Ltd. | Customer relationship development |
US20140099623A1 (en) | 2012-10-04 | 2014-04-10 | Karmarkar V. Amit | Social graphs based on user bioresponse data |
US20150180949A1 (en) * | 2012-10-08 | 2015-06-25 | Hewlett-Packard Development Company, L.P. | Hybrid cloud environment |
US8726343B1 (en) | 2012-10-12 | 2014-05-13 | Citrix Systems, Inc. | Managing dynamic policies and settings in an orchestration framework for connected devices |
US20140137240A1 (en) | 2012-11-14 | 2014-05-15 | Click Security, Inc. | Automated security analytics platform |
US9036639B2 (en) | 2012-11-29 | 2015-05-19 | Futurewei Technologies, Inc. | System and method for VXLAN inter-domain communications |
US20140157352A1 (en) | 2012-11-30 | 2014-06-05 | Somansa Co., Ltd | Apparatus and method for analyzing and monitoring service advertising protocol application traffic, and information protection system using the same |
US20140153577A1 (en) | 2012-12-03 | 2014-06-05 | Aruba Networks, Inc. | Session-based forwarding |
US8813236B1 (en) | 2013-01-07 | 2014-08-19 | Narus, Inc. | Detecting malicious endpoints using network connectivity and flow information |
US9060025B2 (en) | 2013-02-05 | 2015-06-16 | Fortinet, Inc. | Cloud-based security policy configuration |
US20140250524A1 (en) | 2013-03-04 | 2014-09-04 | Crowdstrike, Inc. | Deception-Based Responses to Security Attacks |
US20140282027A1 (en) | 2013-03-15 | 2014-09-18 | Lingping Gao | Graphic user interface based network management system to define and execute troubleshooting procedure |
US20140282518A1 (en) | 2013-03-15 | 2014-09-18 | Symantec Corporation | Enforcing policy-based compliance of virtual machine image configurations |
US20140283030A1 (en) | 2013-03-15 | 2014-09-18 | Centripetal Networks, Inc. | Protecting networks from cyber attacks and overloading |
US20140310765A1 (en) | 2013-04-12 | 2014-10-16 | Sky Socket, Llc | On-Demand Security Policy Activation |
US20140337743A1 (en) | 2013-05-13 | 2014-11-13 | Appsense Limited | Context transfer from web page to application |
US20140344435A1 (en) | 2013-05-15 | 2014-11-20 | Salesforce.Com, Inc. | Computer implemented methods and apparatus for trials onboarding |
US20150047046A1 (en) | 2013-08-07 | 2015-02-12 | Kaspersky Lab Zao | System and Method for Protecting Computers from Software Vulnerabilities |
US20150058983A1 (en) | 2013-08-26 | 2015-02-26 | Guardicore Ltd. | Revival and redirection of blocked connections for intention inspection in computer networks |
US20150082417A1 (en) | 2013-09-13 | 2015-03-19 | Vmware, Inc. | Firewall configured with dynamic collaboration from network services in a virtual network environment |
US20150124606A1 (en) | 2013-11-01 | 2015-05-07 | Cisco Technology, Inc. | Routing Packet Traffic Using Hierarchical Forwarding Groups |
US9407602B2 (en) | 2013-11-07 | 2016-08-02 | Attivo Networks, Inc. | Methods and apparatus for redirecting attacks on a network |
US20150163088A1 (en) | 2013-12-11 | 2015-06-11 | At&T Intellectual Property I, Lp | System and Method to Monitor and Manage Imperfect or Compromised Software |
US20150180894A1 (en) | 2013-12-19 | 2015-06-25 | Microsoft Corporation | Detecting anomalous activity from accounts of an online service |
US20150269383A1 (en) | 2014-01-22 | 2015-09-24 | Object Security LTD | Automated and adaptive model-driven security system and method for operating the same |
US20190014153A1 (en) | 2014-01-22 | 2019-01-10 | Ulrich Lang | Automated and adaptive model-driven security system and method for operating the same |
US10091238B2 (en) | 2014-02-11 | 2018-10-02 | Varmour Networks, Inc. | Deception using distributed threat detection |
US20170134422A1 (en) | 2014-02-11 | 2017-05-11 | Varmour Networks, Inc. | Deception Techniques Using Policy |
US20170180421A1 (en) | 2014-02-11 | 2017-06-22 | Varmour Networks, Inc. | Deception using Distributed Threat Detection |
US20150249676A1 (en) | 2014-02-28 | 2015-09-03 | Fujitsu Limited | Monitoring method and monitoring apparatus |
US9794289B1 (en) | 2014-04-11 | 2017-10-17 | Symantec Corporation | Applying security policies based on context of a workload |
US20150295943A1 (en) | 2014-04-14 | 2015-10-15 | Cyber Sense Ltd. | System and method for cyber threats detection |
US20160072899A1 (en) | 2014-09-04 | 2016-03-10 | Accenture Global Services Limited | System architecture for cloud-platform infrastructure layouts |
US20160105370A1 (en) | 2014-10-10 | 2016-04-14 | Pegasystems Inc. | Event processing with enhanced throughput |
US20160173521A1 (en) | 2014-12-13 | 2016-06-16 | Security Scorecard | Calculating and benchmarking an entity's cybersecurity risk score |
US20160171682A1 (en) | 2014-12-14 | 2016-06-16 | International Business Machines Corporation | Cloud-based infrastructure for feedback-driven training and image recognition |
US20160191466A1 (en) | 2014-12-30 | 2016-06-30 | Fortinet, Inc. | Dynamically optimized security policy management |
US20160191545A1 (en) | 2014-12-31 | 2016-06-30 | Symantec Corporation | Systems and methods for monitoring virtual networks |
US20190043534A1 (en) | 2015-01-05 | 2019-02-07 | Gopro, Inc. | Media identifier generation for camera-captured media |
US20160203331A1 (en) | 2015-01-08 | 2016-07-14 | Microsoft Technology Licensing, Llc | Protecting private information in input understanding system |
US20170006135A1 (en) | 2015-01-23 | 2017-01-05 | C3, Inc. | Systems, methods, and devices for an enterprise internet-of-things application development platform |
US20160234250A1 (en) * | 2015-02-10 | 2016-08-11 | International Business Machines Corporation | System and method for software defined deployment of security appliances using policy templates |
US10193929B2 (en) | 2015-03-13 | 2019-01-29 | Varmour Networks, Inc. | Methods and systems for improving analytics in distributed networks |
WO2016148865A1 (en) | 2015-03-13 | 2016-09-22 | Varmour Networks, Inc. | Methods and systems for improving analytics in distributed networks |
US20160269442A1 (en) | 2015-03-13 | 2016-09-15 | Varmour Networks, Inc. | Methods and systems for improving analytics in distributed networks |
TW201703483A (en) | 2015-03-13 | 2017-01-16 | 法墨網路公司 | Methods and systems for improving analytics in distributed networks |
WO2016160595A1 (en) | 2015-03-30 | 2016-10-06 | Varmour Networks, Inc. | System and method for threat-driven security policy controls |
US9294442B1 (en) | 2015-03-30 | 2016-03-22 | Varmour Networks, Inc. | System and method for threat-driven security policy controls |
WO2016160523A1 (en) | 2015-03-30 | 2016-10-06 | Varmour Networks, Inc. | Conditional declarative policies |
TW201642617A (en) | 2015-03-30 | 2016-12-01 | 法墨網路公司 | System and method for threat-driven security policy controls |
US20170208100A1 (en) | 2015-03-30 | 2017-07-20 | Varmour Networks, Inc. | Conditional Declarative Policies |
TW201642618A (en) | 2015-03-30 | 2016-12-01 | 法墨網路公司 | System and method for threat-driven security policy controls |
WO2016160599A1 (en) | 2015-03-30 | 2016-10-06 | Varmour Networks, Inc. | System and method for threat-driven security policy controls |
US9380027B1 (en) | 2015-03-30 | 2016-06-28 | Varmour Networks, Inc. | Conditional declarative policies |
US20170063795A1 (en) | 2015-03-30 | 2017-03-02 | Varmour Networks, Inc. | Conditional declarative policies |
US10333986B2 (en) | 2015-03-30 | 2019-06-25 | Varmour Networks, Inc. | Conditional declarative policies |
US10009381B2 (en) | 2015-03-30 | 2018-06-26 | Varmour Networks, Inc. | System and method for threat-driven security policy controls |
TW201642616A (en) | 2015-03-30 | 2016-12-01 | 法墨網路公司 | Conditional declarative policies |
US9621595B2 (en) | 2015-03-30 | 2017-04-11 | Varmour Networks, Inc. | Conditional declarative policies |
US20160294875A1 (en) | 2015-03-30 | 2016-10-06 | Varmour Networks, Inc. | System and method for threat-driven security policy controls |
US9973472B2 (en) | 2015-04-02 | 2018-05-15 | Varmour Networks, Inc. | Methods and systems for orchestrating physical and virtual switches to enforce security boundaries |
TW201703485A (en) | 2015-04-02 | 2017-01-16 | 法墨網路公司 | Methods and systems for orchestrating physical and virtual switches to enforce security boundaries |
WO2016160533A1 (en) | 2015-04-02 | 2016-10-06 | Varmour Networks, Inc. | Methods and systems for orchestrating physical and virtual switches to enforce security boundaries |
US20160294774A1 (en) | 2015-04-02 | 2016-10-06 | Varmour Networks, Inc. | Methods and systems for orchestrating physical and virtual switches to enforce security boundaries |
US20160301704A1 (en) | 2015-04-09 | 2016-10-13 | Accenture Global Services Limited | Event correlation across heterogeneous operations |
US20160337390A1 (en) | 2015-05-11 | 2016-11-17 | Qualcomm Incorporated | Methods and Systems for Behavior-Specific Actuation for Real-Time Whitelisting |
US9405665B1 (en) | 2015-05-22 | 2016-08-02 | Amazon Technologies, Inc. | Application testing based on user input captured during a trial period and priority scheme analysis |
US20160350105A1 (en) | 2015-05-27 | 2016-12-01 | Runnable Inc. | Automatic communications graphing for a source application |
US20180270127A1 (en) * | 2015-06-05 | 2018-09-20 | Cisco Technology, Inc. | Interactive hierarchical network chord diagram for application dependency mapping |
US20160357774A1 (en) * | 2015-06-05 | 2016-12-08 | Apple Inc. | Segmentation techniques for learning user patterns to suggest applications responsive to an event on a device |
US20160357424A1 (en) | 2015-06-05 | 2016-12-08 | Cisco Technology, Inc. | Collapsing and placement of applications |
US10116441B1 (en) | 2015-06-11 | 2018-10-30 | Amazon Technologies, Inc. | Enhanced-security random data |
US20170005986A1 (en) | 2015-06-30 | 2017-01-05 | Nicira, Inc. | Firewall Rule Management |
US20170075744A1 (en) | 2015-09-11 | 2017-03-16 | International Business Machines Corporation | Identifying root causes of failures in a deployed distributed application using historical fine grained machine state data |
US20170085654A1 (en) | 2015-09-17 | 2017-03-23 | Ericsson Ab | Entropy sharing in a large distributed system |
US20170118218A1 (en) | 2015-10-23 | 2017-04-27 | Oracle International Corporation | Access manager session management strategy |
US10191758B2 (en) | 2015-12-09 | 2019-01-29 | Varmour Networks, Inc. | Directing data traffic between intra-server virtual machines |
US20170168864A1 (en) | 2015-12-09 | 2017-06-15 | Varmour Networks, Inc. | Directing Data Traffic Between Intra-Server Virtual Machines |
WO2017100365A1 (en) | 2015-12-09 | 2017-06-15 | Varmour Networks, Inc. | Directing data traffic between intra-server virtual machines |
US9762599B2 (en) | 2016-01-29 | 2017-09-12 | Varmour Networks, Inc. | Multi-node affinity-based examination for computer network security remediation |
US9680852B1 (en) | 2016-01-29 | 2017-06-13 | Varmour Networks, Inc. | Recursive multi-layer examination for computer network security remediation |
US10382467B2 (en) | 2016-01-29 | 2019-08-13 | Varmour Networks, Inc. | Recursive multi-layer examination for computer network security remediation |
US20170223038A1 (en) | 2016-01-29 | 2017-08-03 | Varmour Networks, Inc. | Recursive Multi-Layer Examination for Computer Network Security Remediation |
US20170223033A1 (en) | 2016-01-29 | 2017-08-03 | Varmour Networks, Inc. | Multi-Node Affinity-Based Examination for Computer Network Security Remediation |
US20170251013A1 (en) * | 2016-02-26 | 2017-08-31 | Oracle International Corporation | Techniques for discovering and managing security of applications |
US20170264619A1 (en) | 2016-03-11 | 2017-09-14 | Netskope, Inc. | Middle ware security layer for cloud computing services |
US20170264640A1 (en) | 2016-03-11 | 2017-09-14 | Netskope, Inc. | Systems and methods of enforcing multi-part policies on data-deficient transactions of cloud computing services |
US10862748B1 (en) * | 2016-03-12 | 2020-12-08 | Optumi, Inc. | Intent driven controller for provisioning software applications on networked equipment |
US9521115B1 (en) | 2016-03-24 | 2016-12-13 | Varmour Networks, Inc. | Security policy generation using container metadata |
US10009317B2 (en) | 2016-03-24 | 2018-06-26 | Varmour Networks, Inc. | Security policy generation using container metadata |
US20170279770A1 (en) * | 2016-03-24 | 2017-09-28 | Varmour Networks, Inc. | Security Policy Generation Using Container Metadata |
US20170295188A1 (en) | 2016-04-06 | 2017-10-12 | Karamba Security | Automated security policy generation for controllers |
US20170302685A1 (en) * | 2016-04-15 | 2017-10-19 | Sophos Limited | Forensic analysis of computing activity |
US20190052549A1 (en) | 2016-05-06 | 2019-02-14 | Enterpriseweb Llc | Systems and methods for domain-driven design and execution of metamodels |
US20180254892A1 (en) | 2016-05-06 | 2018-09-06 | ZeroDB, Inc. | High-performance access management and data protection for distributed messaging applications |
US20170339188A1 (en) | 2016-05-19 | 2017-11-23 | Cisco Technology, Inc. | Microsegmentation in heterogeneous software defined networking environments |
US20170374101A1 (en) | 2016-06-24 | 2017-12-28 | Varmour Networks, Inc. | Security Policy Generation for Virtualization, Bare-Metal Server, and Cloud Computing Environments |
US20170374032A1 (en) | 2016-06-24 | 2017-12-28 | Varmour Networks, Inc. | Autonomic Protection of Critical Network Applications Using Deception Techniques |
US10264025B2 (en) | 2016-06-24 | 2019-04-16 | Varmour Networks, Inc. | Security policy generation for virtualization, bare-metal server, and cloud computing environments |
US20180005296A1 (en) | 2016-06-30 | 2018-01-04 | Varmour Networks, Inc. | Systems and Methods for Continually Scoring and Segmenting Open Opportunities Using Client Data and Product Predictors |
US10755334B2 (en) | 2016-06-30 | 2020-08-25 | Varmour Networks, Inc. | Systems and methods for continually scoring and segmenting open opportunities using client data and product predictors |
US20200145441A1 (en) | 2016-09-06 | 2020-05-07 | Accenture Global Solutions Limited | Graph database analysis for network anomaly detection systems |
US20180083977A1 (en) | 2016-09-16 | 2018-03-22 | Oracle International Corporation | Distributed High Availability Agent Architecture |
US20180095976A1 (en) * | 2016-09-30 | 2018-04-05 | Ebay Inc. | Electronic file format modification and optimization |
US20180113773A1 (en) | 2016-10-21 | 2018-04-26 | Accenture Global Solutions Limited | Application monitoring and failure prediction |
US20180137506A1 (en) | 2016-11-14 | 2018-05-17 | American Express Travel Related Services Company, Inc. | System and Method For Automated Linkage of Enriched Transaction Data to a Record of Charge |
US20180191779A1 (en) | 2016-12-29 | 2018-07-05 | Varmour Networks, Inc. | Flexible Deception Architecture |
US20180191813A1 (en) | 2017-01-02 | 2018-07-05 | International Business Machines Corporation | MQTT cluster shared subscription hub for fat-pipe cloud applications |
US10554604B1 (en) | 2017-01-04 | 2020-02-04 | Sprint Communications Company L.P. | Low-load message queue scaling using ephemeral logical message topics |
US20180225795A1 (en) | 2017-02-03 | 2018-08-09 | Jasci LLC | Systems and methods for warehouse management |
US20180234385A1 (en) | 2017-02-15 | 2018-08-16 | Edgewise Networks, Inc. | Network Application Security Policy Generation |
US20180232262A1 (en) | 2017-02-15 | 2018-08-16 | Ca, Inc. | Mapping heterogeneous application-program interfaces to a database |
US20180293701A1 (en) | 2017-04-07 | 2018-10-11 | Abhishek R. Appu | Apparatus and method for dynamic provisioning, quality of service, and prioritization in a graphics processor |
US20180329940A1 (en) | 2017-05-12 | 2018-11-15 | American Express Travel Related Services Company, Inc. | Triggering of distributed data deletion |
US20180375877A1 (en) | 2017-05-19 | 2018-12-27 | Agari Data, Inc. | Using message context to evaluate security of requested data |
US20190081963A1 (en) | 2017-09-08 | 2019-03-14 | Sophos Limited | Realtime event detection |
US20190109820A1 (en) | 2017-10-06 | 2019-04-11 | Stealthpath, Inc. | Methods for Internet Communication Security |
US20190141075A1 (en) | 2017-11-09 | 2019-05-09 | Monarx, Inc. | Method and system for a protection mechanism to improve server security |
US20190273746A1 (en) * | 2018-03-02 | 2019-09-05 | Syntegrity Networks Inc. | Microservice architecture for identity and access management |
US20190317728A1 (en) | 2018-04-17 | 2019-10-17 | International Business Machines Corporation | Graph similarity analytics |
US20190342307A1 (en) | 2018-05-01 | 2019-11-07 | Royal Bank Of Canada | System and method for monitoring security attack chains |
US20190394225A1 (en) | 2018-06-22 | 2019-12-26 | International Business Machines Corporation | Optimizing Ingestion of Structured Security Information into Graph Databases for Security Analytics |
US20200043008A1 (en) | 2018-08-06 | 2020-02-06 | SecureSky, Inc. | Automated cloud security computer system for proactive risk detection and adaptive response to risks and method of using same |
US20200065343A1 (en) | 2018-08-27 | 2020-02-27 | Box, Inc. | Activity-based application recommendations |
US20200076826A1 (en) | 2018-08-31 | 2020-03-05 | Forcepoint, LLC | System Identifying Ingress of Protected Data to Mitigate Security Breaches |
US20200074078A1 (en) | 2018-08-31 | 2020-03-05 | Sophos Limited | Computer augmented threat evaluation |
US20200382586A1 (en) | 2018-11-27 | 2020-12-03 | Sailpoint Technologies Inc. | System and method for peer group detection, visualization and analysis in identity management artificial intelligence systems using cluster based analysis of network identity graphs |
US20200169565A1 (en) | 2018-11-27 | 2020-05-28 | Sailpoint Technologies, Inc. | System and method for outlier and anomaly detection in identity management artificial intelligence systems using cluster based analysis of network identity graphs |
US20200259852A1 (en) | 2019-02-13 | 2020-08-13 | Obsidian Security, Inc. | Systems and methods for detecting security incidents across cloud-based application services |
US20200329118A1 (en) | 2019-04-09 | 2020-10-15 | Wangsu Science & Technology Co., Ltd. | Data transmission scheduling method and system |
US20200382557A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Reliability Prediction for Cloud Security Policies |
US11310284B2 (en) | 2019-05-31 | 2022-04-19 | Varmour Networks, Inc. | Validation of cloud security policies |
US20200382556A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Template-Driven Intent-Based Security |
US11711374B2 (en) | 2019-05-31 | 2023-07-25 | Varmour Networks, Inc. | Systems and methods for understanding identity and organizational access to applications within an enterprise environment |
US20200382560A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Validation of Cloud Security Policies |
US11575563B2 (en) | 2019-05-31 | 2023-02-07 | Varmour Networks, Inc. | Cloud security management |
US20210168150A1 (en) | 2019-05-31 | 2021-06-03 | Varmour Networks, Inc. | Systems and Methods for Understanding Identity and Organizational Access to Applications within an Enterprise Environment |
US20200382363A1 (en) | 2019-05-31 | 2020-12-03 | Varmour Networks, Inc. | Cloud Security Management |
US11290493B2 (en) | 2019-05-31 | 2022-03-29 | Varmour Networks, Inc. | Template-driven intent-based security |
US11290494B2 (en) | 2019-05-31 | 2022-03-29 | Varmour Networks, Inc. | Reliability prediction for cloud security policies |
US10630703B1 (en) | 2019-07-25 | 2020-04-21 | Confluera, Inc. | Methods and system for identifying relationships among infrastructure security-related events |
US20210126837A1 (en) | 2019-10-29 | 2021-04-29 | Dell Products L.P. | Message oriented middleware topology explorer |
US20220036302A1 (en) | 2019-11-05 | 2022-02-03 | Strong Force Vcn Portfolio 2019, Llc | Network and data facilities of control tower and enterprise management platform with adaptive intelligence |
US11470684B2 (en) | 2020-09-28 | 2022-10-11 | National Central University | Method for building self-organized network, and self-organized network and node device thereof |
US20220201024A1 (en) | 2020-12-23 | 2022-06-23 | Varmour Networks, Inc. | Modeling Topic-Based Message-Oriented Middleware within a Security System |
US20220201025A1 (en) | 2020-12-23 | 2022-06-23 | Varmour Networks, Inc. | Modeling Queue-Based Message-Oriented Middleware Relationships in a Security System |
Non-Patent Citations (29)
Title |
---|
"Feature Handbook: NetBrain® Enterprise Edition 6.1" NetBrain Technologies, Inc., Feb. 25, 2016, 48 pages. |
"International Search Report" and "Written Opinion of the International Searching Authority," Patent Cooperation Treaty Application No. PCT/US2016/019643, dated May 6, 2016, 27 pages. |
"International Search Report" and "Written Opinion of the International Searching Authority," Patent Cooperation Treaty Application No. PCT/US2016/024053, dated May 3, 2016, 12 pages. |
"International Search Report" and "Written Opinion of the International Searching Authority," Patent Cooperation Treaty Application No. PCT/US2016/024116, dated May 3, 2016, 12 pages. |
"International Search Report" and "Written Opinion of the International Searching Authority," Patent Cooperation Treaty Application No. PCT/US2016/024300, dated May 3, 2016, 9 pages. |
"International Search Report" and "Written Opinion of the International Searching Authority," Patent Cooperation Treaty Application No. PCT/US2016/024310, dated Jun. 20, 2016, 9 pages. |
"International Search Report" and "Written Opinion of the International Searching Authority," Patent Cooperation Treaty Application No. PCT/US2016/065451, dated Jan. 12, 2017, 20 pages. |
"Middleware for Communications," Qusay Mahmoud (Ed.), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, England, Jun. 29, 2004, Online ISBN:9780470862087 |DOI:10.1002/0470862084, abstract, 1 page. |
Albano et al., "Message-oriented Middleware for Smart Grids," Computer Standards & Interfaces, vol. 38, Feb. 2015, pp. 133-143. |
Arendt, Dustin L. et al., "Ocelot: User-Centered Design of a Decision Support Visualization for Network Quarantine", IEEE Symposium on Visualization for Cyber Security (VIZSEC), Oct. 25, 2015, 8 pages. |
Badidi et al., "A Cloud-based Approach for Context Information Provisioning," World of Computer Science and Information Technology Journal (WCSIT), vol. 1, No. 3, 2011, pp. 63-70. |
Bates, Adam Macneil, "Designing and Leveraging Trustworthy Provenance-Aware Architectures", ProQuest Dissertations and Theses ProQuest Dissertations Publishing, 2017, 147 pages. |
Carranza et al., "Brokering Policies and Execution Monitors for IoT Middleware," SACMAT '19, Jun. 3-6, 2019, Toronto, ON, Canada, pp. 49-60. |
Casola et al., "A Security Monitoring System for Internet of Things," Internet of Things, vol. 7, Sep. 2019, 20 pages. |
Chew, Zhen Bob, "Modelling Message-Oriented-Middleware Brokers Using Autoregressive Models for Bottleneck Prediction," PhD diss., Queen Mary, University of London, 2013, 179 pages. |
Dubrawsky, Ido, "Firewall Evolution—Deep Packet Inspection," Symantec, Created Jul. 28, 2003; Updated Nov. 2, 2010, symantec.com/connect/articles/firewall-evolution-deep-packet-inspection, 3 pages. |
Fazio et al., "Message Oriented Middleware for Cloud Computing to Improve Efficiency in Risk Management Systems," Scalable Computing: Practice and Expirence, vol. 14, No. 4, 2013, pp. 201-213. |
Hu, Hongxin et al., "Detecting and Resolving Firewall Policy Anomalies," IEEE Transactions on Dependable and Secure Computing, vol. 9, No. 3, May/Jun. 2012, pp. 318-331. |
Maniar, Neeta, "Centralized Tracking and Risk Analysis of 3rd Party Firewall Connections," SANS Institute InfoSec Reading Room, Mar. 11, 2005, 20 pages. |
Pierleoni et al., "Amazon, Google and Microsoft Solutions for IoT: Architectures and a Performance Comparison," in IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2019.2961511, pp. 5455-5470. |
Rusello et al., "A Policy-Based Pulish/Subscribe Middleware for Sense-and-React Applications," Journal of Systems and Software vol. 84, No. 4, 2011 pp. 638-654. |
Souto et al., "A Message-Oriented Middleware for Sensor Networks," 2nd International Workshop on Middleware for Pervasive and Ad-Hoc Computing, Oct. 18-22, 2004, Toronto, Ontario, Canada, pp. 127-134. |
Vinoski, S. "An Overview of Middleware," In: Llamosí, A., Strohmeier, A. (eds), Reliable Software Technologies—Ada-Europe 2004. Ada-Europe 2004. Lecture Notes in Computer Science, vol. 3063, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24841-5_3, pp. 35-51. |
Wang et al., "Anomaly Detection in the Case of Message Oriented Middleware," MidSec '08: Proceedings of the 2008 workshop on Middleware security, Dec. 2008, https://doi.org/10.1145/1463342.1463350, pp. 40-42. |
Wang et al., "System and Method for Attributing User Behavior from Multiple Technical Telemetry Sources," U.S. Appl. No. 17/162,761, filed Jan. 29, 2021; Specification, Claims, Abstract, and Drawings, 31 pages. |
Woolward et al., "Reliability Prediction for Cloud Security Policies," U.S. Appl. No. 16/428,858, filed May 31, 2019, Specification, Claims, Abstract, and Drawings, 59 pages. |
Woolward et al., "Template-Driven Intent-Based Security," U.S. Appl. No. 16/428,838, filed May 31, 2019, Specification, Claims, Abstract, and Drawings, 60pages. |
Woolward et al., "Validation of Cloud Security Policies," U.S. Appl. No. 16/428,849, filed May 31, 2019, Specification, Claims, Abstract, and Drawings, 54 pages. |
Wun et al., "A Policy Management Framework for Content-Based Publish/Subscribe Middleware," ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing Middleware 2007, pp. 368-388. |
Also Published As
Publication number | Publication date |
---|---|
US20210120029A1 (en) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11863580B2 (en) | Modeling application dependencies to identify operational risk | |
US11290493B2 (en) | Template-driven intent-based security | |
US11711374B2 (en) | Systems and methods for understanding identity and organizational access to applications within an enterprise environment | |
US11310284B2 (en) | Validation of cloud security policies | |
US11575563B2 (en) | Cloud security management | |
US11290494B2 (en) | Reliability prediction for cloud security policies | |
KR102738475B1 (en) | Extracting data from blockchain networks | |
CN110730156B (en) | Distributed machine learning for anomaly detection | |
US11750642B1 (en) | Automated threat modeling using machine-readable threat models | |
US10599874B2 (en) | Container update system | |
US10264025B2 (en) | Security policy generation for virtualization, bare-metal server, and cloud computing environments | |
US10713664B1 (en) | Automated evaluation and reporting of microservice regulatory compliance | |
US10009317B2 (en) | Security policy generation using container metadata | |
US9380027B1 (en) | Conditional declarative policies | |
US20230208882A1 (en) | Policy - aware vulnerability mapping and attack planning | |
US20220303295A1 (en) | Annotating changes in software across computing environments | |
CN112119374A (en) | Selectively providing mutual transport layer security using alternate server names | |
US12126643B1 (en) | Leveraging generative artificial intelligence (‘AI’) for securing a monitored deployment | |
US12050690B2 (en) | Run-time communications protocol parameter adjustment in containerized applications | |
US11494488B2 (en) | Security incident and event management use case selection | |
AU2022200807B2 (en) | Systems and Methods for Understanding Identity and Organizational Access to Applications within an Enterprise Environment | |
US11018938B1 (en) | Auditing metadata representation of a cloud-computing platform based datacenter | |
Habbal | Enhancing availability of microservice architecture: a case study on Kubernetes security configurations | |
WO2016101005A1 (en) | Remote programmatic forensic data collection method and system | |
WO2023034444A1 (en) | Generating user-specific polygraphs for network activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: VARMOUR NETWORKS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSS, COLIN;WOOLWARD, MARC;STEWART, KEITH;SIGNING DATES FROM 20230223 TO 20230224;REEL/FRAME:062922/0819 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: FIRST-CITIZENS BANK & TRUST COMPANY, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:VARMOUR NETWORKS, INC.;REEL/FRAME:066530/0399 Effective date: 20230412 |
|
AS | Assignment |
Owner name: GRYPHO5, LLC, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARMOUR NETWORKS, INC.;REEL/FRAME:070287/0007 Effective date: 20250106 |