US11957900B2 - Transvenous intracardiac pacing catheter - Google Patents
Transvenous intracardiac pacing catheter Download PDFInfo
- Publication number
- US11957900B2 US11957900B2 US17/463,327 US202117463327A US11957900B2 US 11957900 B2 US11957900 B2 US 11957900B2 US 202117463327 A US202117463327 A US 202117463327A US 11957900 B2 US11957900 B2 US 11957900B2
- Authority
- US
- United States
- Prior art keywords
- leads
- ventricle
- atrium
- sheath
- electrode system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
- A61N1/0565—Electrode heads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
- A61M25/0662—Guide tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/686—Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7217—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise originating from a therapeutic or surgical apparatus, e.g. from a pacemaker
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/02—Inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/18—Materials at least partially X-ray or laser opaque
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M25/0026—Multi-lumen catheters with stationary elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0043—Catheters; Hollow probes characterised by structural features
- A61M25/005—Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0108—Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0138—Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0147—Tip steering devices with movable mechanical means, e.g. pull wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36507—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by gradient or slope of the heart potential
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/37—Monitoring; Protecting
- A61N1/371—Capture, i.e. successful stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37217—Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M2025/0004—Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0021—Catheters; Hollow probes characterised by the form of the tubing
- A61M25/0023—Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
- A61M25/0026—Multi-lumen catheters with stationary elements
- A61M2025/004—Multi-lumen catheters with stationary elements characterized by lumina being arranged circumferentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
- A61M25/0662—Guide tubes
- A61M2025/0681—Systems with catheter and outer tubing, e.g. sheath, sleeve or guide tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09166—Guide wires having radio-opaque features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0266—Shape memory materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/12—Blood circulatory system
- A61M2210/125—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
- A61N1/0563—Transvascular endocardial electrode systems specially adapted for defibrillation or cardioversion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/3621—Heart stimulators for treating or preventing abnormally high heart rate
- A61N1/3622—Heart stimulators for treating or preventing abnormally high heart rate comprising two or more electrodes co-operating with different heart regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/368—Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
- A61N1/3684—Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions for stimulating the heart at multiple sites of the ventricle or the atrium
- A61N1/36842—Multi-site stimulation in the same chamber
Definitions
- the embodiments described herein relate generally to medical devices that provide heart pacemaking function, and more particularly to a temporary easily insertable transvenous dual-chamber sequential pacing catheter, and systems and methods for atrio-ventricular pacing to achieve AV synchrony.
- the heart requires to be paced temporarily during or after certain medical procedures or conditions like open heart surgery, heart attack, some infections, electrolyte disturbances, cardiac trauma or other issues.
- the only available temporary pacing catheters will not pace the heart in atrio-ventricular (AV) synchrony (only the right ventricle is paced).
- AV atrio-ventricular
- AV synchrony is estimated to increase stroke volume by as much as 50% in a normal heart and increase cardiac index by as much as 25% to 30%.
- pacing is performed using epicardial wires that are lightly sutured to the epicardium before the thorax is closed. Once these epicardial wires are no longer needed, these pacing wires are pulled through the skin. Pulling the pacing wires represents a risk of a cardiac tamponade that can lead to death, and can also pose a risk of infection, myocardial damage, ventricular arrhythmias and perforation.
- pacing catheter leads can also move (dislodge) either while pacing or at a critical point during a specific procedure like rapid pacing. For this reason, the mobility of the patient (ambulation) is limited when being temporary paced. Limited ambulation is known to increase the length of stay in certain scenarios and lead to higher healthcare costs.
- the embodiments described herein are directed to an insertable atrio-ventricular sequential pacing catheter that is easy to insert and position on the right chambers of the heart.
- the present disclosure relates to an improved transvenous intracardiac pacing catheter, and particularly to devices, methods, and systems for establishing and maintaining atrio-ventricular (AV) synchrony in a patient by providing an insertable atrio-ventricular sequential pacing catheter system having an inner catheter, outer catheter and connector assembly.
- the inner catheter incorporates seven nitinol PTFE heat shrink set of wires with radiopaque tips. Four of the wires are leads for the atrium, two are for the ventricle and one forms the distal tip with cap. The wires are incorporated into a seven lumen extrusion and fitted into correct position using fixtures.
- the outer catheter is a multi-durometer, coil reinforced catheter with luer hub and radiopaque tip.
- the connector assembly attached the wires to plugs for connection to the pulse transmission unit.
- FIG. 1 is a schematic view of one embodiment of the device, illustrating the atrial leads, the ventricular leads, the retractable sheath, the combined hub and terminal connection, and steerable deployment mechanism, and the external lead terminals, according to the invention.
- FIG. 2 is a schematic view another embodiment of the device, illustrating the atrial leads, the ventricular leads, the retractable sheath, the hub, the independent terminal connection, and steerable deployment mechanism, and the external lead terminals, according to the invention.
- FIG. 3 is a schematic of the two-inner sheath (dual lumen) embodiment illustrating the outer steerable catheter sheath housing the two inner sheaths, with one inner sheath having the ventricle leads and the other inner sheath having the atrium leads, according to the invention.
- FIG. 4 is a schematic of the seven-inner sheath (multi-lumen) embodiment illustrating the outer steerable catheter sheath housing the seven inner sheaths, with each inner sheath its own lead, and providing three (3) ventricle leads and four (4) atrium leads, according to the invention.
- FIG. 5 is a schematic of a cross-section of the seven-inner sheath (multi-lumen) embodiment illustrating the outer steerable catheter sheath housing the seven inner sheaths, with each inner sheath its own lead, and providing three (3) ventricle leads and four (4) atrium leads, according to the invention.
- FIG. 6 is a schematic view of a cross-section of a human heart, a plurality of electrodes inserted in the ventricle and atrium contacting the walls of the heart chambers and a pacer, according to the invention.
- FIG. 7 is a chart of an acute first in human study and is useful to support an embodiment of the present invention.
- FIG. 5 shows an example study of a sample of 10 patients, although not necessarily for any specific indication.
- FIG. 5 shows that procedure time can average 24 minutes to position and deploy the device, pace the RV, pace the A synchronize AV pacing, perform a left side diagnostic, and the pace the RV, pace the A, synchronize the AV pacing, and remove the device, according to the invention.
- FIG. 8 is an example of a chart of data in an embodiment of the invention from a procedure recording a non-limiting preferred embodiment.
- FIG. 8 shows by subject and lead, the impedance, the threshold, and the current, recorded. This shows safe delivery with and without fluoroscopic guidance, successful pacing, excellent contact and hold of the leads against the cardiac tissue, with no adverse events or significant adverse events at discharge, according to the invention.
- FIGS. 9 A, 9 B, 9 C are illustrations of one embodiment of a device being introduced into the jugular vein of a patient, with removal of the guidewire, and introduction of the transvenous dual-chamber sequential pacing device into the steerable catheter sheath, according to the invention.
- FIG. 10 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart, as shown on fluoroscopic imaging, according to the invention.
- FIG. 11 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart, as shown on fluoroscopic imaging, according to the invention.
- FIG. 12 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart, as shown in a cut-away view into the heart, according to the invention.
- FIG. 13 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart, with ventricle leads deployed from a movable inner sheath into the ventricle, according to the invention.
- FIG. 14 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart, with atrium leads being deployed from a movable inner sheath into the atrium, while ventricle leads have already been deployed into the ventricle, according to the invention.
- FIG. 15 is an illustration showing how the device can sense abnormal heart rhythm using the transvenous dual-chamber sequential pacing device deployed into a heart, according to the invention.
- FIG. 16 is an illustration showing how the device can provide electrical stimulation to the atrium using the transvenous dual-chamber sequential pacing device deployed into a heart, according to the invention.
- FIG. 17 is an illustration showing how the device can provide electrical stimulation to the ventricle using the transvenous dual-chamber sequential pacing device deployed into a heart, according to the invention.
- FIG. 18 is an illustration showing how the device can sense the corrected normal heart rhythm using the transvenous dual-chamber sequential pacing device deployed into a heart, according to the invention.
- FIG. 19 is an illustration showing how the device is removed after being deployed into a heart, according to the invention.
- FIG. 20 is an illustration of a ventricle only embodiment of the invention.
- Disclosed embodiments are directed to a self-positioning, quick-deployment low profile transvenous electrode system for sequentially pacing both the atrium and ventricle of the heart in the “dual chamber” mode, comprising a plurality of insulated electrical wires bundled together to form at least two in-line sets of leads is disclosed.
- the invention provides an emergency pacemaker that will pace and sense both atrial and ventricular chambers and provide “dual chamber” control of the heart using a lead that can be safely and easily inserted into the heart in an emergency situation.
- “Dual chamber” pacing refers to continuous monitoring of the spontaneous activity of the heart both in the atria and in the ventricles, interpreting the detected events according certain accepted algorithms and providing stimuli to the chambers as needed to maintain a physiologically appropriate rhythm.
- the device can be deployed with and without fluoroscopic guidance.
- a self-positioning feature allows the device to be used without the extensive training and specialist experience that has been historically required for pacing devices.
- the device comprises three (3) ventricular leads and four (4) atrial leads, made from shape memory material. Two of the three ventricular leads are bent at 90 degrees from the central axial lead and are 180 degrees from each other. The four atrial leads are bent at 90 degrees from the central axis (x-axis), and are each separated 90 degrees from the adjacent leads, in the y-axis plane.
- both sets of leads are mounted and contained inside a slender e.g. 8Fr (1 mm), tubular, flexible elongated e.g. 35 cm retaining sheath that serves as a guide and delivery system during insertion and removal of the electrode system.
- a slender e.g. 8Fr (1 mm)
- tubular, flexible elongated e.g. 35 cm retaining sheath that serves as a guide and delivery system during insertion and removal of the electrode system.
- Each of the wires is surrounded individually by electrical insulation.
- the bundle of insulated wires can be arranged in either a parallel or helical configuration.
- the leads will be produced in different lengths and appropriate distances between the electrodes.
- the electrode system is constructed by assembling a plurality of insulated superelastic electrically conductive wires.
- the insulation material separates each of the wires from each other, but the wires are mounted in a bundle as a single cable-like structure.
- the electrodes are connected to an external pacemaker.
- the individual wires once inserted into the heart will make contact with either atrial or ventricular tissue.
- the distal ends of the individual wires may include spherical electrode contacts that will make contact with atrial tissue or ventricular tissue.
- each of the wires has memory and is pre-formed in a specific curvature but also is resilient enough to be contained in the sheath prior to being positioned within the heart chambers. Since both sets of leads for the ventricle and the atrium are contained inside a single slender flexible retaining sheath that is the guide and delivery system during insertion and removal of the electrode system, the ventricular electrode or electrodes which can be pacemaker sensors or stimulators are released first after the retaining sheath has been successfully inserted into the right ventricle. At this point, the sheath is retracted allowing the ventricle wire leads to escape from the sheath and because of each wire's pre-formed shape which has memory, spread out to individually contact the endocardial surfaces.
- the leads expand outwardly, engaging the tissue and chamber wall of the ventricle. If a mechanical parallel wire configuration is chosen in the sheath, the wires can be released and make contact in the same plane. Otherwise, the wires can be staggered within the ventricular chamber. If a helical configuration of the wires is chosen in the sheath, the wires are staggered upon release to cover different points of a chamber wall. Ideal wires for this configuration are disclosed in U.S. Pat. Nos. 6,137,060 and 3,699,886.
- the distal ends of the individual wires may have spherical conductive ball tips to provide high current density and sensitivity.
- the sheath will have to be extended all the way forward initially such that it covers all the wires with the possible exception of the distal electrodes, which may protrude beyond the sheath during the introduction of the sheath with the conducting leads into the heart.
- the path of the sheath with the leads during insertion is into the subclavian or jugular vein past the atrium and into the ventricle. Once the electrode system reaches the apex of the right ventricle, the operator begins to pull back slowly on the sheath, thus releasing each wire individually until all necessary contact points are made.
- each wire is made of a superelastic or memory shape retention material such as NitinolTM, as the sheath is slowly pulled back the wires are released.
- a superelastic or memory shape retention material such as NitinolTM
- Each wire will be pre-shaped with the proper orientation so that as the medical personnel, e.g. cardiac interventionalists, emergency medical technicians, surgical staff, outpatient staff, etc., pulls the sheath back, the wire fans outwardly until the wire tips rest against the interior wall of each chamber, thus making electrical contact.
- the memory in the wire will hold it in place within the chamber.
- the ball tip ending of each wire as well as the highly flexible chosen material will minimize trauma to the endocardium while allowing a sufficiently large surface area for electrical conduction.
- any of the devices and/or components thereof may be fabricated from any suitable biocompatible material or combination of materials.
- an outer chassis, and/or components thereof may be fabricated from biocompatible materials, metals, metal alloys, polymer coated metals, and/or the like.
- Suitable biocompatible materials, metals and/or metal alloys can include polymers, co-polymers, ceramics, glasses, aluminum, aluminum alloys, stainless steel (e.g., 316 L stainless steel), cobalt chromium (Co—Cr) alloys, nickel-titanium alloys (e.g., Nitinol®), and/or the like.
- any of the chassis or components may be covered with a suitable polymer coating, and can include natural or synthetic rubber, polyethylene vinyl acetate (PEVA), poly-butyl methacrylate (PBMA), translute Styrene Isoprene Butadiene (SIBS) copolymer, polylactic acid, polyester, polylactide, D-lactic polylactic acid (DLPLA), polylactic-co-glycolic acid (PLGA), and/or the like.
- PEVA polyethylene vinyl acetate
- PBMA poly-butyl methacrylate
- SIBS translute Styrene Isoprene Butadiene copolymer
- polylactic acid polyester, polylactide, D-lactic polylactic acid (DLPLA), polylactic-co-glycolic acid (PLGA), and/or the like.
- DLPLA D-lactic polylactic acid
- PLGA polylactic-co-glycolic acid
- the electrode system within the sheath In order for the electrode system within the sheath to freely navigate through the blood vessels, it must have a very smooth surface. Adequate flexibility must be achieved with materials that do not fracture or fail prematurely.
- the insulation material used to insulate each individual wire will be of the type used in the production of existing pacing leads.
- the sheath material used will be a thermoplastic elastomer similar to those used in the manufacture of catheters and for added strength it can be braided.
- the electrode system in accordance with this invention may be designed primarily for emergency temporary use such that the leads described have passive fixation.
- the present invention can be utilized as part of a permanently implanted pacemaker system such that the electrode would become embedded in the heart tissue or actively attached to the endocardium by one of many means available for active fixation.
- biocompatible synthetic material(s) can include, for example, polyesters, polyurethanes, polytetrafluoroethylene (PTFE) (e.g., Teflon), and/or the like. Where a thin, durable synthetic material is contemplated (e.g., for a covering), synthetic polymer materials such expanded PTFE or polyester may optionally be used.
- PTFE polytetrafluoroethylene
- suitable materials may optionally include elastomers, thermoplastics, polyurethanes, thermoplastic polycarbonate urethane, polyether urethane, segmented polyether urethane, silicone polyether urethane, polyetheretherketone (PEEK), silicone-polycarbonate urethane, polypropylene, polyethylene, low-density polyethylene (LDPE), high-density polyethylene (HDPE), ultra-high density polyethylene (UHDPE), polyolefins, polyethylene-glycols, polyethersulphones, polysulphones, polyvinylpyrrolidones, polyvinylchlorides, other fluoropolymers, polyesters, polyethylene-terephthalate (PET) (e.g., Dacron), Poly-L-lactic acids (PLLA), polyglycolic acid (PGA), poly(D, L-lactide/glycolide) copolymer (PDLA), silicone polyesters, polyamides (Nylon), PT1-
- Barium Sulfate Barium sulfate. Barium sulfate (BaSO4) is a radiopaque material widely compounded in medical formulations and a common filler used with medical-grade polymers. It is an inexpensive material, costing approximately $2/lb; and its white color can be changed with the addition of colorants.
- barium sulfate With a specific gravity of 4.5, barium sulfate is generally used at loadings of 20 to 40% by weight. While a 20% barium sulfate compound is typical for general-purpose medical device applications, some practitioners prefer a higher degree of radiopacity than can be provided by that loading. With striped tubing, for example, a 40% compound is standard.
- a loading of 20% barium sulfate by weight is equivalent to about 5.8% by volume; 40% by weight equals 14% by volume.
- compounds begin to show losses of the base polymer's tensile strength and other mechanical properties. It is therefore best to formulate radiopacifiers at the minimum level for each application; excessive use of these fillers is not recommended.
- Bismuth Considerably more expensive than barium at $20 to $30/lb (depending on the chemical salt selected), bismuth compounds are also twice as dense.
- Bismuth trioxide (Bi2O3) which is yellow in color, has a specific gravity of 8.9; bismuth subcarbonate (Bi2O2CO3) has a specific gravity of 8.0; and bismuth oxychloride (BiOCl) has a specific gravity of 7.7. Because of the density, a 40% bismuth compound contains only about half the volume ratio as a 40% barium sulfate compound. Since bismuth produces a brighter, sharper, higher-contrast image on an x-ray film or fluoroscope than does barium, it is commonly used whenever a high level of radiopacity is required.
- Tungsten Tungsten.
- a fine metal powder with a specific gravity of 19.35, tungsten (W) is more than twice as dense as bismuth and can provide a high attenuation coefficient at a cost of approximately $20/lb.
- a loading of 60% tungsten has approximately the same volume ratio as a 40% bismuth compound.
- Devices can be made highly radiopaque with relatively low loadings of tungsten, enabling good mechanical properties to be maintained. Because of its density, tungsten is typically selected as a filler for very-thin-walled devices.
- a 50% tungsten loading by weight equals only 5.4% by volume; an 80% loading by weight represents 18.5% by volume.
- Tungsten is black in color, which cannot be changed with colorants. It is abrasive and can cause accelerated wear in extruders and other processing equipment. Devices filled with high loadings of tungsten will exhibit surface roughness. Because the material invites oxidation in the presence of oxygen and heat and is highly flammable, care should be taken while drying it. With elastomers, barium sulfate mixes better than do tungsten or bismuth compounds.
- Newer x-ray machines generally operate at higher energy levels than older ones—typically at 80 to 125 kVp as compared with 60 to 80 kVp for older machines.
- Higher energy radiation increases the transmission of photons and can require higher levels of radiopacity to provide the desired attenuation. Therefore, devices produced with barium sulfate compounds might not appear as bright on newer machines, for which bismuth compounds would be a better choice of radiopaque filler.
- Blending these materials can often be the best solution, especially for multipurpose formulations used over a broad range of energy levels. A blend of barium, easily attenuated at low energy levels, and bismuth, attenuated at higher levels, often works well.
- Compounding radiopaque materials includes factoring in the degree of attenuation of the device, the tensile strength, elongation, and other mechanical properties of the polymers. Fillers, antioxidants, stabilizers, and colorants may also be included with metallic fillers.
- the present invention can be used in emergency rooms, after open heart surgery, during or after minimally invasive heart surgery or implant procedures such as valve repair or replacement, in intensive care units, at the bedsides, cardiac catheterization labs, ambulances, battle fields and other emergency settings where patients with heart block or other life threatening arrhythmias may be found.
- the invention provides a self-positioning, quick-deployment low profile transvenous electrode system for pacing of a heart, comprising:
- the invention may provide a self-positioning, quick-deployment low profile transvenous electrode system for pacing of a heart, comprising:
- any of the embodiments herein, including the ventricle embodiment, may include wherein the (first) ventricle lead is disposed within a (first) movable inner sheath, and the (second) ventricle lead is disposed within a (second) movable inner sheath, the inner sheath each made from a polymer, wherein the polymer is doped with a radiopaque material to form a radiopaque polymer sheath or is labelled with at least one radiopaque marker element.
- any of the embodiments herein may include wherein said first inner sheath is a set of three independently movable inner sheaths, each of the three (3) ventricle leads having its own movable sheath, and wherein said second inner sheath is a set of four (4) independently movable inner sheaths, each of the four (4) atrium leads having its own movable sheath.
- any of the dual chamber embodiments herein may include wherein the pacemaker includes two sequential pulse generators that can provide sensing and stimuli for a ventricle and an atrium for sequentially pacing both the atrium and ventricle of a heart in the “dual chamber” mode.
- any of the embodiments of the present invention may include 4 atrial, and 3 ventricular wires in a configuration where the atrial are 90 degrees from each about a Y-axis, and where the ventricular are in a planar configuration that is perpendicular to the central X-axis.
- any of the embodiments of the present invention may include wherein the atrial leads and ventricle leads have uninsulated wire in certain locations.
- any of the embodiments of the present invention may include wherein the copper body portion is braided or bonded to the distal end portion, where the distal end portion is steel or NiTi alloy.
- any of the embodiments of the present invention may include wherein the shape-setting of the eyelet is performed at the same time as the shape-setting of the played portion of the leads.
- any of the embodiments of the present invention may include wherein the shape-setting is performed faster by changing the wire cross section.
- any of the embodiments of the present invention may include wherein the tip of electrode is an eyelet not ball, and wherein the tip portion is a composite of a shape memory material and a radiopaque material.
- any of the embodiments of the present invention may include wherein the radiopaque materials are Tungsten, Barium, and/or Bismuth compounds.
- Bismuth provides a brighter luminescence under Xray.
- Bismuth compounds include Bi2O3, Bi2O2CO3, and BiOCl.
- Barium sulfate provides excellent compounding with polymer coatings, such as polyimides.
- Barium radiopaque polymers may be used for the catheter sheath/jacket, eyelet, as an RO band, and on other electrode portions, and sheath portions.
- any of the embodiments of the present invention may include wherein the polymer is polyimide, or where the polymer is silicone plus a lubricity agent, is made from PebaSlix 35D, is made from Pebax 72D, and the like.
- any of the embodiments of the present invention may include wherein the sheath is configured to provide a 90 degree curve over a 2.5′′ diameter bend, and is also configured to provide a hockey-stick bend at a 45 degree angle+/ ⁇ 5 degrees.
- the invention provides wherein the invention includes computer program instructions executable on a processor for performing one or more functions selected from: decreasing sensitivity of certain leads and increasing sensitivity of other leads during a depolarization cycle (PQRST) allows the invention to increase SNR in the sensing function, decreasing or increasing stimulatory signals to one or more leads allows the invention to more accurately provide stimulation to the AV node, the SA node, the ventricular apex, or other cardiac tissue to provide a level of granularity to the stimulation function, programming leads so that sensing leads are not required to share the function of a shocking/stimulation leads, and bypassing damaged or degraded leads to allow continued functioning without requiring the entire device to be removed from a patient, this increasing the longevity of implanted devices using the inventive technology.
- PQRST depolarization cycle
- the invention provides a computer-implemented method for quickly deploying a cardiac pacing device to a heart in a patient, comprising:
- the invention provides, wherein performing steps (i)-(vii) are performed in a time period no longer than 30 minutes.
- the invention provides a transvenous electrode system for heart block use in an emergency situation that is low cost, safe and reliable for pacing both the atrium and ventricle chambers of the heart of a patient with a heart block.
- the invention provides an emergency heart pacemaker that requires only a small incision to insert the lead that will provide dual chamber (sequential) pacing and sensing for the atrial and ventricles of the heart.
- the invention provides emergency pacemaker that will avoid problems of single chamber ventricular pacing so that the present invention provides for atrial-ventricular synchrony.
- the electrical conduction system of the heart uses Nodal cells and Purkinje cells to maintain synchronization of the atria and the ventricle.
- the electrical current is first initiated in the SA node, the hearts natural pacemaker, located at the top of the right atrium.
- the SA node is composed of nodal cells. In a normal resting adult heart, the SA node initiates firing at 60 to 100 impulses/minute, the impulses causing electrical stimulation and subsequent contraction of the atria. Located at the upper end of the septum, the sinus node creates the synchronized neurally-mediated signal for cardiac pacing.
- the AV node is also made up of nodal cells and coordinates these incoming electrical impulses.
- the AV node relays the impulse to Purkinje cells in the ventricle, initially conducted through the Bundle of His which extends along the septum, and which is then divided into the right bundle branch to conduct impulses to the right ventricle and the left bundle branch to conduct impulses to the left ventricle, causing ventricular contraction.
- the signal flow from the A-V node to the free wall of the left ventricle is rapid to insure the free wall and septum contract in synchrony.
- a stimulating signal may flow to the free wall in about 70-90 milli-seconds. In patients with conduction abnormalities, this timing may be significantly delayed (to 150 milli-seconds or more) resulting in asynchronous contraction.
- the conduction path through the Purkinje fibers may be blocked.
- the location of the block may be highly localized (as in the case of so-called “left bundle branch block” or LBBB) or may include an enlarged area of dysfunctional tissue (which can result from infarction).
- LBBB left bundle branch block
- all or a portion of the free wall of the left ventricle is flaccid while the septum is contracting.
- the contraction force of the free wall is weakened.
- CHF patients can be treated with cardiac pacing of the left ventricle.
- cardiac pacing includes applying a stimulus to the septal muscles in synchrony with stimulation applied to the muscles of the free wall of the left ventricle. While infracted tissue will not respond to such stimulus, non-infarcted tissue will contract thereby heightening the output of the left ventricle.
- FIG. 1 is a schematic view of one embodiment of the device, illustrating the atrial leads, the ventricular leads, the retractable sheath, the combined hub and terminal connection, and steerable deployment mechanism, and the external lead terminals, according to the invention.
- a distal central radio-opaque lead 101 is shown as one of a three-part set of ventricle leads.
- Ventricle leads 102 and 103 are shown bent at 90 degrees away from the central axis of lead 101 , and are shown in a 180 degrees opposition position from each other
- ventricle leads are formed from 0.010′′ Nitinol.
- Lead 101 extends axially 6 cm from a distal radio-opaque band.
- Leads 102 and 103 bend away from the central lead and extend 4 cm away, each, from the central axis, respectively.
- Atrium leads 104 , 105 , 106 , 107 are bent 90 degrees extending away from the central axis, and are also bent 90 degrees from each other in the y-axis plane. Atrium leads extend 4 cm away, each, from the central axis, respectively.
- Steerable catheter sheath is comprised of a distal portion 109 that is 5 cm in length and has a 0.010′′ pitch coil.
- the distal portion is made from PebaSlix 35D.
- Steerable catheter sheath is also comprised of a proximal portion 113 that is 30 cm in length and has a 0.020′′ pitch coil.
- the proximal portion is made from Pebax 72D.
- the sheath is configured to provide a 90 degree curve over a 2.5′′ diameter bend, and is also configured to provide a hockey-stick bend at a 45 degree angle+/ ⁇ 5 degrees.
- Sheath has OS markers 110 , 111 , 112 located every 10 cm along its length from the distal tip 108 .
- sheath At a proximal end, sheath has a glued hub 114 , a Touhy-Borst access connector with a side port 115 .
- Actuator dial 116 is located at the proximal end of the sheath and allows the sheath to be shaped and controlled.
- Red deployment stop 117 connects the last 20 cm 118 of the sheath to the cable junction housing 119 .
- Atrium lead terminals 120 , 121 and ventricle lead terminals 122 , 123 allow the device to be connected to and operated from an external unit such as a ICD, pacer, diagnostic, or other unit that can provide sensor operation, stimulation signal, programming for individual leads to improve sensing, avoid over-sensing of the ventricular lead by T-waves or other noise or attenuating or interfering signals, avoid over-sensing of the atrium leads by the R-wave, avoid cross-talk, or customize sensing and stimulation on a lead-by-lead basis.
- an external unit such as a ICD, pacer, diagnostic, or other unit that can provide sensor operation, stimulation signal, programming for individual leads to improve sensing, avoid over-sensing of the ventricular lead by T-waves or other noise or attenuating or interfering signals, avoid over-sensing of the atrium leads by the R-wave, avoid cross-talk, or customize sensing and stimulation on a lead-by-lead basis.
- MIMO multiple input, multiple output
- SIMO single input multiple output
- SISO single input single output
- MISO multiple input single output
- PQRST depolarization cycle
- decreasing sensitivity of certain leads and increasing sensitivity of other leads during a depolarization cycle (PQRST) allows the invention to increase SNR in the sensing function.
- decreasing or increasing stimulatory signals to one or more leads allows the invention to more accurately provide stimulation to the AV node, the SA node, the ventricular apex, or other cardiac tissue to provide a level of granularity to the stimulation function not previously available to practitioners.
- the availability of multiple, programmable leads means that sensing leads are not required to share the function of a shocking/stimulation leads. Further, damaged or degraded leads can be bypassed allowing continued functioning without requiring the entire device to be removed from a patient, this increasing the longevity of implanted devices using the inventive technology.
- the device may be programmable to achieve either conventional bipolar or unipolar stimulation or to achieve the stimulation of the present invention through an external programmer or controlled automatically by the device.
- the selection can be based on user preference or be driven by physiological factors such as widths of the patient's QRS complex or the conduction interval between the stimulus to a far away region in the heart.
- switching between the pacing of the present invention and conventional pacing can also be determined by the percentage of pacing with a preference for a higher percentage with the pacing of the present invention.
- the switching from the conventional pacing to the present invention pacing can be used when there exists an exit block or the pacing electrode is located in infracted myocardium when conventional pacing can not effect the depolarization of the myocardium at the high output level.
- the automatic determination can be effected through the deployment of any automatic capture detection technology that exists in the prior art.
- wireless network enabled switching function for therapy optimization can also be implemented with the present invention. In such case, certain patient physiologic data are gathered by the implantable device and sent to a remote server/monitor through a wireless communication network.
- the present invention can also be extended to the defibrillation therapy where high-energy pulses with various waveforms are delivered through electrode systems to treat tachycardia and fibrillation (both atrium and ventricle).
- the present invention is believed to be able to achieve lower defibrillation threshold due to better distribution of the electrical field, causing higher voltage gradient at least in certain parts of the heart compared to that by the conventional defibrillation configuration.
- the present invention can be used to perform anti-tachy pacing where faster than conventional pacing pulse sequences are used to stop certain tachyarrhythmia.
- the present invention is believed to be advantageous due to the wider coverage of the electrical field and the capability of capturing special conductions system in the heart (both atrium and ventricle).
- FIG. 2 is a schematic view another embodiment of the device, illustrating the atrial leads 104 , 105 , 106 , 107 , the ventricular leads 101 , 102 , 103 , the retractable sheath 109 , 113 , the hub 114 , the independent terminal connection 119 , and steerable deployment mechanism 116 , and the external lead terminals 120 , 121 , 122 , 123 , according to the invention.
- FIG. 2 also shows a 20 cm segment 118 from the deployment stop 117 and the terminal connection 119 .
- FIG. 3 is a schematic of the two-inner sheath embodiment illustrating the outer steerable catheter sheath 301 housing the two inner sheaths 302 , 303 , with one inner sheath 303 having the ventricle leads and the other inner sheath 302 having the atrium leads, according to the invention.
- Eyelet tip 305 is constructed with radiopaque material and configured/shaped, e.g. as a loop, to have a surface area larger than the point cross-section of a wire lead. In a preferred embodiment, the eyelet tip is 0.2-1.0 mm in area.
- Copper wire body portion 306 of the wire lead runs the length of the catheter from the pacemaker up to the distal shape memory portion 307 . Shape memory portion 307 is attached to the copper wire 306 by bond, braid, weld, etc.
- FIG. 4 is a schematic of the seven-inner sheath (multi-lumen) embodiment illustrating the outer steerable catheter sheath 401 housing the seven inner sheaths, with each inner sheath 404 having its own lead, and providing three (3) ventricle leads 403 and four (4) atrium leads 402 , according to the invention.
- Eyelet tip 405 is constructed with radiopaque material and configured/shaped, e.g. as a loop, to have a surface area larger than the point cross-section of a wire lead. In a preferred embodiment, the eyelet tip is 0.2-1.0 mm in area.
- Copper wire body portion 406 of the wire lead runs the length of the catheter from the pacemaker up to the distal shape memory portion 407 . Shape memory portion 407 is attached to the copper wire 406 by bond, braid, weld, etc.
- FIG. 5 is a schematic of a cross-section of the seven-inner sheath (multi-lumen) embodiment 501 illustrating the outer steerable catheter sheath 501 housing the seven inner sheaths 502 , 503 , with each inner sheath its own lead, and providing three (3) ventricle leads and four (4) atrium leads, according to the invention.
- an external pacemaker 14 is shown connected to a bundle of insulated wire electrical conductors wrapped in a sheath 12 .
- the pacemaker 14 as shown is connected to a bundle of seven insulated conductive wires, three wires 20 , 22 , 26 of which are disposed within the ventricle and four wires 30 , 32 , 34 , 36 of which are disposed in the atrium 28 .
- the wires are bundled in a sheath 12 that was inserted into the ventricle and then pulled backward, exposing the three ventricle leads which are now contacting the walls of the ventricle due to the retained curved memory of each wire.
- four additional electrodes 30 , 32 , 34 , 36 are shown contacting atrial chamber 28 walls in accordance with the present invention.
- the invention as disclosed is a low profile transvenous electrode system for sequentially pacing both the atrium and ventricle of the heart in a dual chamber mode.
- a plurality of insulated electrical wires represented that are electrical conductors and that are wrapped in electrical insulators.
- the wires are bundled together into two separate in-line sets of leads.
- Each wire has memory and is resilient.
- each wire is pre-formed in a particular curvature and length so that when disposed within a heart chamber, atrium or ventricle, the electrode end of the wire will engage the chamber wall for electrical pulse transfer.
- the device comprises three (3) ventricular leads and four (4) atrial leads, made from shape memory material.
- Two of the three ventricular leads are bent at 90 degrees from the central axial lead and are 180 degrees from each other.
- the four atrial leads are bent at 90 degrees from the central axis (x-axis), and are each separated 90 degrees from the adjacent leads, in the y-axis plane.
- tubular, flexible elongated e.g. 35 cm retaining sheath that serves as a guide and delivery system during insertion and removal of the electrode system.
- Each of the wires in the ventricle could be of different lengths with different shapes so that when the sheath is removed, each wire expands out by memory to have sufficient resiliency in distance to contact the inner wall of the ventricle as shown with the electrode points flush against the ventricle wall. There is a certain amount of resiliency in each wire holding the wire against the wall during pacing in the position as shown.
- the four wires used in the atrium are also pre-formed in curvature and length so that when the sheath is removed, wires expand resiliently against the walls of the atrium as shown in the drawing with electrode points disposed at the end of each wire against the wall tissue. The resiliency in each wire will hold the electrodes against the wall of the atrium while pacing.
- the external pacemaker 14 provides the electrical pulses for the sequential pacing.
- the pacemaker 14 has two sequential pulse generators 16 and 18 which are connected to the proximal ends of the wires for providing the sequential pulses to both the ventricle through wires and to the atrium through wires.
- the external pacemaker itself is conventional in operation.
- pulse generator is intended to include pacemakers, converter defibrillators and cardia resynchronization therapies (CRT), all known in the art.
- the pulse generator contains internal circuitry for creating electrical impulses which are applied to the electrodes after the lead is connected to the pulse generator. Also, such circuitry may include sensing and amplification circuitry so that electrodes may be used as sensing electrodes to sense and report on the patient's electrophysiology.
- the lead may be introduced to the vasculature through a small incision and advanced through the vasculature and into the right atrium RA and right ventricle to the position. Such advancement typically occurs in an electrophysiology lab where the advancement of the lead can be visualized through fluoroscopy.
- the pulse generator may contain a battery as a power supply.
- the pulse generator circuitry controls the parameters of the signals coupled to the electrodes. These parameters can include pulse amplitude, timing, pulse duration by way of example.
- the internal circuitry further includes circuit logic permitting reprogramming of the pulse generator to permit a physician to alter pacing parameters to suit the need of a particular patient. Such programming can be affected by inputting programming instructions to the pulse generator via wireless transmission from an external programmer. Most commonly, the electrode is connected by the circuitry to an electrical ground.
- the pulse generator may be external and coupled to the electrodes by percutaneous leads or wireless transmission.
- the leads which are the wire conductors and electrodes are manufactured in different lengths and curved resiliently as discussed above with approximate distances between the electrodes to create a configuration or pattern as shown.
- the leads are established inside the ventricle and established in the atrium.
- the wires may have memory and with their pre-formed curvatures are resilient enough to be bundled in a small sheath prior to being mounted within the heart chambers. Both sets of wires may be contained inside a single, cylindrical, flexible retaining sheath that is the guide and delivery system during insertion and removal of the electrode system.
- the ventricular electrodes may be pacemaker sensors or stimulators are released first after the retaining sheath has been successfully inserted into the right ventricle.
- the sheath may be retracted allowing the electrodes and wires to spread out and contact the endocardial surfaces.
- the wires expand outwardly as the sheath is removed engaging the tissue and chamber wall of the ventricle.
- the wires can be released and make contact on the same plane within the ventricular chamber or they can be staggered.
- the continued retraction of sheath may allow the escape of the atrial wires from the sheath which proceed toward the atrial tissue for engagement of the electrodes against the atrial wall.
- sequential pacing can be initiated in the atrium and ventricle in a dual chamber mode providing an emergency pacemaker that will pace and sense both atrial and ventricular chambers and provide dual chamber control of the heart.
- the dual chamber pacing refers to continuous monitoring of the spontaneous activity of the heart both in the atrial and in the ventricles interpreting the detective events according to certain accepted algorithms and providing stimuli to the chambers as needed to maintain a physiologically appropriate rhythm.
- FIG. 7 is a chart of an acute first in human study and is useful to support an embodiment of the present invention.
- FIG. 7 shows an example study of a sample of 10 patients, although not necessarily for any specific indication.
- FIG. 7 shows that procedure time can average 24 minutes to position and deploy the device, pace the RV, pace the A synchronize AV pacing, perform a left side diagnostic, and the pace the RV, pace the A, synchronize the AV pacing, and remove the device.
- FIG. 8 is an example of a chart of data in an embodiment of the invention from a procedure recording a non-limiting preferred embodiment.
- FIG. 8 shows by subject and lead, the impedance, the threshold, and the current, recorded. This shows safe delivery with and without fluoroscopic guidance, successful pacing, excellent contact and hold of the leads against the cardiac tissue, with no adverse events or significant adverse events at discharge.
- FIGS. 9 A, 9 B, 9 C is a sequence illustration of one embodiment.
- FIG. 9 A shows a device being introduced into the jugular vein of a patient using a guidewire 901 and introducer 902 .
- Luer 903 is shown connecting near hub 904 , with outer delivery catheter 905 accessing down the jugular vein.
- FIG. 9 B shows removal of the guidewire 901 .
- FIG. 9 C shows introduction of the transvenous dual-chamber sequential pacing device having steerable catheter sheath 906 into the deliver catheter 905 .
- FIG. 10 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart using steerable catheter 906 , as shown on fluoroscopic imaging.
- FIG. 11 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart using steerable catheter 906 , as shown on fluoroscopic imaging.
- FIG. 12 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart using a steerable catheter 906 , as shown in a cut-away view into the heart.
- FIG. 13 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart, with ventricle leads 907 , 908 , 909 deployed from a movable inner sheath into the ventricle.
- FIG. 14 is an illustration of one embodiment of the transvenous dual-chamber sequential pacing device deployed into a heart, with atrium leads 910 , 911 , 912 , 913 being deployed from a movable inner sheath into the atrium, while ventricle leads have already been deployed into the ventricle.
- FIG. 15 is an illustration showing how the device can sense abnormal heart rhythm using the transvenous dual-chamber sequential pacing device deployed into a heart.
- FIG. 16 is an illustration showing how the device can provide electrical stimulation to the atrium using the transvenous dual-chamber sequential pacing device deployed into a heart.
- FIG. 17 is an illustration showing how the device can provide electrical stimulation to the ventricle using the transvenous dual-chamber sequential pacing device deployed into a heart.
- FIG. 18 is an illustration showing how the device can sense the corrected normal heart rhythm using the transvenous dual-chamber sequential pacing device deployed into a heart.
- FIG. 19 is an illustration showing how the device is removed after being deployed into a heart.
- the leads may be removed by simply pulling, in one embodiment.
- the sheath(s) may be re-introduced to gather the leads prior to removal.
- FIG. 20 is an illustration of a ventricle only embodiment of the invention.
- FIG. 20 shows catheter 2001 having the unipolar leads 2002 , 2003 disposed therein.
- the leads 2002 , 2003 are shown having optional radiopaque insulating covering 2004 in a non-limiting embodiment.
- Conventional temporary pacemaker 2005 is attached to the leads by way of the brachial vein to provide dual ventricular leads in the right ventricle for pacing.
- the catheter if 4 French in size, or 4/3 mm (1.33 mm) in diameter.
- Leads 2002 , 2003 may include radiopaque eyelet tips, and may also include a proximal portion made of copper with a distal portion made from steel or nickel-titanium (NiTi) alloy, in a non-limiting embodiment as previously described.
- NiTi nickel-titanium
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Physiology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Acoustics & Sound (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
-
- a pacemaker including a pulse generator that can provide sensing and stimuli for a ventricle or an atrium;
- a plurality of insulated electrical wires bundled together to form a distal set of three (3) ventricle leads disposed within a first inner sheath, and a proximal set of four (4) atrium leads disposed within a second inner sheath, the first inner sheath and the second inner sheath disposed within an outer steerable catheter sheath,
- said outer steerable catheter sheath being movable from said first inner sheath and said second inner sheath once inserted into the heart for deploying the first inner sheath to the ventricle and the second inner sheath to the atrium, said outer steerable catheter sheath being entirely removed from the atrium and ventricle when the transvenous electrode system is engaged,
- said first inner sheath being movable to expose the distal set of three (3) ventricle leads to the ventricle, and said second inner sheath being movable to expose the four (4) atrium leads to the atrium,
- the first inner sheath and the second inner sheath each made from a polymer, wherein the polymer is doped with a radiopaque material to form a radiopaque polymer sheath or is labelled with at least one radiopaque marker element,
- each of the ventricular and atrial leads have a proximal body portion, a distal end portion, and a tip portion,
- the proximal body portion made from a radiopaque polymer-covered copper wire,
- the distal end portion made from shape memory material, the shape memory material selected from stainless steel, spring steel, cobalt-chromium alloy, nickel-titanium alloy, and mixtures thereof,
- the tip portion made from shape memory material and a radiopaque material, the radiopaque material selected from a barium-containing compound, a bismuth-containing compound, a steel compound, a tungsten-containing compound, and mixtures thereof,
- two of the three ventricle leads are shape-set at a 90 degree angle in an expanded configuration, and the two ventricle leads are offset 180 degrees from each other, one of the three ventricle leads is a central axial lead,
- each of the four atrium leads are shape-set at a 90 degree angle in an expanded configuration, and each of the four atrium leads are separated 90 degrees from each other,
- the steerable catheter sheath is comprised of a distal portion and a proximal portion, and has a distance marker every 10 cm along its entire length,
- the distal portion of the steerable catheter sheath is 5 cm in length and has a 0.010″ pitch coil and a biocompatible polymer cover,
- the proximal portion of the steerable catheter sheath is 30 cm in length, has a 0.020″ pitch coil, a biocompatible polymer cover, at a proximal end of the proximal portion has a hub element, a Touhy-Borst access connector with a side port, an actuator dial that allows the steerable catheter sheath to be shaped and controlled, a deployment stop, and a cable junction housing,
- atrium lead terminals and ventricle lead terminals extend from the cable junction housing to the pacemaker, wherein the pacemaker comprises computer program instructions readable by a processor to provides functions selected from the group consisting of: a diagnostic function, a sensor operation, a stimulation signal, a program for an individual lead for sensing, a program to reduce over-sensing of the ventricular leads by T-waves or other noise or attenuating or interfering signals, a program to reduce over-sensing of the atrium leads by the R-wave, a program to minimize cross-talk, and a program to adjust sensing and stimulation on a lead-by-lead basis;
- the atrium leads shape-set to sense and stimulate an SA node area and an AV node area of the heart, the ventricle leads shape set to sense and stimulate a Bundle of His area, an Apex-Purkinje fiber area, and a Free-wall Purkinje area,
- each of said ventricular leads connected to a ventricular sensor or stimulator in said pacemaker and each of said atrium leads connected to an atrium sensor or stimulator in said pacemaker.
-
- a pacemaker including a pulse generator that can provide sensing and stimuli for a ventricle;
- a pair of insulated electrical wires to form a first ventricle lead and a second ventricle lead, the first and the second ventricle leads disposed within an outer steerable catheter sheath,
- said outer steerable catheter sheath being movable from said first and said second ventricle leads once inserted into the heart for deploying the first ventricle lead and the second ventricle lead to the ventricle, said outer steerable catheter sheath being entirely removed from the ventricle when the transvenous electrode system is engaged,
- each of the first and the second ventricle leads have a proximal body portion, a distal end portion, and a tip portion,
- the proximal body portion made from a radiopaque polymer-covered copper wire,
- the distal end portion made from shape memory material, the shape memory material selected from stainless steel, spring steel, cobalt-chromium alloy, nickel-titanium alloy, and mixtures thereof,
- the tip portion made from shape memory material and a radiopaque material, the radiopaque material selected from a barium-containing compound, a bismuth-containing compound, a steel compound, a tungsten-containing compound, and mixtures thereof,
- the two ventricle leads are offset 180 degrees from each other,
- the steerable catheter sheath is about 1.3 mm diameter or 4 French and is comprised of a distal portion and a proximal portion, and has a distance marker every 10 cm along its entire length,
- the distal portion of the steerable catheter sheath is 5 cm in length and has a 0.010″ pitch coil and a biocompatible polymer cover,
- the proximal portion of the steerable catheter sheath is 30 cm in length, has a 0.020″ pitch coil, a biocompatible polymer cover, at a proximal end of the proximal portion has a hub element, a Touhy-Borst access connector with a side port, an actuator dial that allows the steerable catheter sheath to be shaped and controlled, a deployment stop, and a cable junction housing,
- atrium lead terminals and ventricle lead terminals extend from the cable junction housing to the pacemaker, wherein the pacemaker comprises computer program instructions readable by a processor to provides functions selected from the group consisting of: a diagnostic function, a sensor operation, a stimulation signal, a program for an individual lead for sensing, a program to reduce over-sensing of the ventricular leads by T-waves or other noise or attenuating or interfering signals, a program to minimize cross-talk, and a program to adjust sensing and stimulation on a lead-by-lead basis;
- the ventricle leads shape set to sense and stimulate a Bundle of His area and a Free-wall Purkinje area,
- each of said ventricular leads connected to a ventricular sensor or stimulator in said pacemaker.
-
- (i) Providing the transvenous, dual-chamber dual-lumen system claimed and described herein;
- (ii) Accessing a jugular vein in the patient and advancing the catheter sheath under ultrasound or other non-fluoroscopic imaging modality to a right ventricle of the heart of the patient;
- (iii) Withdrawing the outer steerable catheter sheath to a first position to expose the first inner sheath and the second inner sheath;
- (iv) Withdrawing the first inner sheath to a second position to expose and actuate the ventricle leads to connect with the ventricle tissue;
- (iv) Withdrawing the second inner sheath to a third position to expose and actuate the atrium leads to connect with atrium tissue;
- (v) Using computer program instructions executable on a processor, Performing a diagnostic test to identify the patient cardiac patterns and to validate the operation of the system;
- (vi) Using computer program instructions executable on a processor, Performing a cardiac pacing routine appropriate as a treatment for the patent cardiac pattern;
- (vii) Removing the catheter sheath and allowing the system to remain within the patient;
- wherein performing steps (i)-(vii) are performed in a time period no longer than 60 minutes.
-
- lead 102 is 180 degrees opposite lead 103 in the y-axial plane.
Claims (21)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/463,327 US11957900B2 (en) | 2019-09-25 | 2021-08-31 | Transvenous intracardiac pacing catheter |
US17/478,979 US11638818B2 (en) | 2019-09-25 | 2021-09-20 | Transvenous intracardiac pacing catheter with sequentially deployable leads |
US17/453,490 US11980756B2 (en) | 2021-01-20 | 2021-11-04 | Transvenous intracardiac pacing catheter |
US18/358,961 US12151099B2 (en) | 2021-01-20 | 2023-07-26 | Transvenous intracardiac pacing catheter having improved leads |
US18/521,093 US20240181248A1 (en) | 2019-09-25 | 2023-11-28 | Transvenous intracardiac pacing catheter |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962905434P | 2019-09-25 | 2019-09-25 | |
USPCT/US20/52943 | 2020-09-25 | ||
US17/153,875 US20210138239A1 (en) | 2019-09-25 | 2021-01-20 | Transvenous Intracardiac Pacing Catheter |
US17/463,327 US11957900B2 (en) | 2019-09-25 | 2021-08-31 | Transvenous intracardiac pacing catheter |
Related Parent Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17206359 Continuation | |||
USPCT/US20/52943 Continuation | 2019-09-25 | 2020-09-25 | |
US17206359 Continuation | 2020-09-25 | ||
US17/153,875 Continuation US20210138239A1 (en) | 2019-09-25 | 2021-01-20 | Transvenous Intracardiac Pacing Catheter |
US202117206359A Continuation | 2019-09-25 | 2021-03-19 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/478,979 Continuation US11638818B2 (en) | 2019-09-25 | 2021-09-20 | Transvenous intracardiac pacing catheter with sequentially deployable leads |
US18/358,961 Continuation-In-Part US12151099B2 (en) | 2021-01-20 | 2023-07-26 | Transvenous intracardiac pacing catheter having improved leads |
US18/521,093 Continuation US20240181248A1 (en) | 2019-09-25 | 2023-11-28 | Transvenous intracardiac pacing catheter |
Publications (3)
Publication Number | Publication Date |
---|---|
US20220193397A1 US20220193397A1 (en) | 2022-06-23 |
US20240115854A9 US20240115854A9 (en) | 2024-04-11 |
US11957900B2 true US11957900B2 (en) | 2024-04-16 |
Family
ID=75846263
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/153,875 Granted US20210138239A1 (en) | 2019-09-25 | 2021-01-20 | Transvenous Intracardiac Pacing Catheter |
US17/463,327 Active 2041-04-03 US11957900B2 (en) | 2019-09-25 | 2021-08-31 | Transvenous intracardiac pacing catheter |
US17/478,979 Active US11638818B2 (en) | 2019-09-25 | 2021-09-20 | Transvenous intracardiac pacing catheter with sequentially deployable leads |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/153,875 Granted US20210138239A1 (en) | 2019-09-25 | 2021-01-20 | Transvenous Intracardiac Pacing Catheter |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/478,979 Active US11638818B2 (en) | 2019-09-25 | 2021-09-20 | Transvenous intracardiac pacing catheter with sequentially deployable leads |
Country Status (1)
Country | Link |
---|---|
US (3) | US20210138239A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210138239A1 (en) | 2019-09-25 | 2021-05-13 | Swift Sync, Llc | Transvenous Intracardiac Pacing Catheter |
US12151099B2 (en) | 2021-01-20 | 2024-11-26 | Swift Sync, Inc. | Transvenous intracardiac pacing catheter having improved leads |
US11980756B2 (en) | 2021-01-20 | 2024-05-14 | Swift Sync, Inc. | Transvenous intracardiac pacing catheter |
Citations (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146036A (en) | 1977-10-06 | 1979-03-27 | Medtronic, Inc. | Body-implantable lead with protector for tissue securing means |
US4471777A (en) | 1983-03-30 | 1984-09-18 | Mccorkle Jr Charles E | Endocardial lead extraction apparatus and method |
US4576162A (en) | 1983-03-30 | 1986-03-18 | Mccorkle Charles E | Apparatus and method for separation of scar tissue in venous pathway |
US4582056A (en) | 1983-03-30 | 1986-04-15 | Mccorkle Jr Charles E | Endocardial lead extraction apparatus and method |
US4884567A (en) | 1987-12-03 | 1989-12-05 | Dimed Inc. | Method for transvenous implantation of objects into the pericardial space of patients |
US4946457A (en) | 1987-12-03 | 1990-08-07 | Dimed, Incorporated | Defibrillator system with cardiac leads and method for transvenous implantation |
US5353800A (en) | 1992-12-11 | 1994-10-11 | Medtronic, Inc. | Implantable pressure sensor lead |
US5575766A (en) | 1993-11-03 | 1996-11-19 | Daig Corporation | Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers |
US5639276A (en) | 1994-09-23 | 1997-06-17 | Rapid Development Systems, Inc. | Device for use in right ventricular placement and method for using same |
US5674217A (en) | 1993-10-01 | 1997-10-07 | Wahlstrom; Dale A. | Heart synchronized extractor for an implanted object |
US5727552A (en) | 1996-01-11 | 1998-03-17 | Medtronic, Inc. | Catheter and electrical lead location system |
US5871532A (en) | 1997-05-22 | 1999-02-16 | Sulzer Intermedics Inc. | Epicardial lead for minimally invasive implantation |
US5957966A (en) | 1998-02-18 | 1999-09-28 | Intermedics Inc. | Implantable cardiac lead with multiple shape memory polymer structures |
US6038472A (en) | 1997-04-29 | 2000-03-14 | Medtronic, Inc. | Implantable defibrillator and lead system |
US6125291A (en) | 1998-10-30 | 2000-09-26 | Medtronic, Inc. | Light barrier for medical electrical lead oxygen sensor |
US6125290A (en) | 1998-10-30 | 2000-09-26 | Medtronic, Inc. | Tissue overgrowth detector for implantable medical device |
USH1905H (en) | 1997-03-21 | 2000-10-03 | Medtronic, Inc. | Mechanism for adjusting the exposed surface area and position of an electrode along a lead body |
US6134459A (en) | 1998-10-30 | 2000-10-17 | Medtronic, Inc. | Light focusing apparatus for medical electrical lead oxygen sensor |
US6144866A (en) | 1998-10-30 | 2000-11-07 | Medtronic, Inc. | Multiple sensor assembly for medical electric lead |
US6198952B1 (en) | 1998-10-30 | 2001-03-06 | Medtronic, Inc. | Multiple lens oxygen sensor for medical electrical lead |
US6228052B1 (en) | 1996-02-29 | 2001-05-08 | Medtronic Inc. | Dilator for introducer system having injection port |
US6295476B1 (en) | 1999-11-01 | 2001-09-25 | Medtronic, Inc. | Medical lead conductor fracture visualization method and apparatus |
US20020016622A1 (en) | 1998-08-12 | 2002-02-07 | Cardiac Pacemakers, Inc. | Expandable seal for use with medical device and system |
US20020065544A1 (en) | 1999-11-29 | 2002-05-30 | Medtronic, Inc. | Medical electrical lead having variable bending stiffness |
US20020072737A1 (en) | 2000-12-08 | 2002-06-13 | Medtronic, Inc. | System and method for placing a medical electrical lead |
US20020077685A1 (en) | 2000-12-20 | 2002-06-20 | Medtronic, Inc. | Medical electrical lead and method of use |
US20020077684A1 (en) | 2000-12-20 | 2002-06-20 | Medtronic, Inc. | Perfusion lead and method of use |
US6419674B1 (en) | 1996-11-27 | 2002-07-16 | Cook Vascular Incorporated | Radio frequency dilator sheath |
US20020111663A1 (en) | 2000-12-29 | 2002-08-15 | Roger Dahl | System for providing electrical stimulation to a left chamber of a heart |
US20020128636A1 (en) | 2000-12-29 | 2002-09-12 | Chin Sing Fatt | Medical instrument positioning tool and method |
US20030083654A1 (en) | 2000-12-29 | 2003-05-01 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US6564096B2 (en) | 2001-02-28 | 2003-05-13 | Robert A. Mest | Method and system for treatment of tachycardia and fibrillation |
US20030092995A1 (en) | 2001-11-13 | 2003-05-15 | Medtronic, Inc. | System and method of positioning implantable medical devices |
US20030163128A1 (en) | 2000-12-29 | 2003-08-28 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20040002740A1 (en) | 2002-05-08 | 2004-01-01 | The Regents Of The University Of California | System and method for forming a non-ablative cardiac conduction block |
US6714823B1 (en) | 1998-04-29 | 2004-03-30 | Emory University | Cardiac pacing lead and delivery system |
US6738655B1 (en) | 1999-04-05 | 2004-05-18 | The Regents Of The University Of California | Endomyocardial monophasic action potential for early detection of myocardium pathology |
US6766200B2 (en) | 2001-11-01 | 2004-07-20 | Pacesetter, Inc. | Magnetic coupling antennas for implantable medical devices |
US20040215139A1 (en) | 2002-12-20 | 2004-10-28 | Todd Cohen | Apparatus and method for implanting left ventricular pacing leads within the coronary sinus |
US20040236395A1 (en) | 2001-02-09 | 2004-11-25 | Medtronic, Inc. | System and method for placing an implantable medical device within a body |
US20050010095A1 (en) | 1999-04-05 | 2005-01-13 | Medtronic, Inc. | Multi-purpose catheter apparatus and method of use |
US20050215991A1 (en) | 1997-03-13 | 2005-09-29 | Altman Peter A | Cardiac drug delivery system and method of use |
US20060036306A1 (en) | 2004-08-13 | 2006-02-16 | Heist E K | Telescoping, dual-site pacing lead |
US7004176B2 (en) | 2003-10-17 | 2006-02-28 | Edwards Lifesciences Ag | Heart valve leaflet locator |
US20060064150A1 (en) | 2004-08-13 | 2006-03-23 | Heist E K | Telescoping, dual-site pacing lead |
US20060247751A1 (en) | 2005-04-28 | 2006-11-02 | Seifert Kevin R | Guide catheters for accessing cardiac sites |
US20060253179A1 (en) | 2005-04-15 | 2006-11-09 | Cook Vascular Incorporated | Tip for lead extraction device |
US20070083217A1 (en) | 2002-05-30 | 2007-04-12 | Eversull Christian S | Apparatus and Methods for Placing Leads Using Direct Visualization |
US20070100439A1 (en) | 2005-10-31 | 2007-05-03 | Medtronic Vascular, Inc. | Chordae tendinae restraining ring |
US20070208402A1 (en) | 2006-03-06 | 2007-09-06 | Helland John R | Medical lead with tissue-protecting tip structure |
US7274966B2 (en) | 2002-10-02 | 2007-09-25 | Medtronic, Inc. | Medical fluid delivery system |
US20070255396A1 (en) | 2003-06-20 | 2007-11-01 | Medtronic Vascular, Inc. | Chrodae Tendinae Girdle |
US20070282413A1 (en) | 2006-06-02 | 2007-12-06 | Cardiac Pacemakers, Inc. | Cardiac lead having stiffening structures for fixation |
US7311731B2 (en) | 2001-04-27 | 2007-12-25 | Richard C. Satterfield | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US20080039904A1 (en) | 2006-08-08 | 2008-02-14 | Cherik Bulkes | Intravascular implant system |
US20080051840A1 (en) | 2006-07-05 | 2008-02-28 | Micardia Corporation | Methods and systems for cardiac remodeling via resynchronization |
US20080071341A1 (en) | 2005-04-15 | 2008-03-20 | Cook Vascular Incorporated | Tip for lead extraction device |
US20080109069A1 (en) | 2006-11-07 | 2008-05-08 | Coleman James E | Blood perfusion graft |
US20080183267A1 (en) | 2007-01-25 | 2008-07-31 | Cardiac Pacemakers, Inc. | Expandable member for venous lead fixation |
US20080283066A1 (en) | 2007-05-17 | 2008-11-20 | Cardiac Pacemakers, Inc. | Delivery device for implantable sensors |
US20080312725A1 (en) | 2007-06-13 | 2008-12-18 | E-Pacing, Inc. | Implantable Devices And Methods For Stimulation Of Cardiac And Other Tissues |
US20080312712A1 (en) | 2007-06-13 | 2008-12-18 | E-Pacing, Inc. | Implantable Devices and Methods for Stimulation of Cardiac or Other Tissues |
US20090005845A1 (en) | 2007-06-26 | 2009-01-01 | Tamir Ben David | Intra-Atrial parasympathetic stimulation |
US20090053208A1 (en) | 2007-08-20 | 2009-02-26 | Medtronic Vascular, Inc. | Methods and Systems for Improving Tissue Perfusion |
US7519424B2 (en) | 2006-01-30 | 2009-04-14 | Medtronic, Inc. | Intravascular medical device |
US7547301B2 (en) | 1998-04-08 | 2009-06-16 | Biocardia, Inc. | Device and method to slow or stop the heart temporarily |
US20090264863A1 (en) | 2008-04-22 | 2009-10-22 | Medtronic Vascular, Inc. | Articulating Tip Tetherless Catheter System |
US20090264859A1 (en) | 2008-04-21 | 2009-10-22 | Medtronic Vascular, Inc. | Catheter Having a Selectively Expandable Distal Tip |
US7616992B2 (en) | 2006-01-30 | 2009-11-10 | Medtronic, Inc. | Intravascular medical device |
US7630761B2 (en) | 2005-11-04 | 2009-12-08 | Cardiac Pacemakers, Inc. | Method and apparatus for modifying tissue to improve electrical stimulation efficacy |
US20100023088A1 (en) | 2008-03-27 | 2010-01-28 | Stack Richard S | System and method for transvascularly stimulating contents of the carotid sheath |
US7658727B1 (en) | 1998-04-20 | 2010-02-09 | Medtronic, Inc | Implantable medical device with enhanced biocompatibility and biostability |
US20100137936A1 (en) | 2006-01-30 | 2010-06-03 | Medtronic, Inc. | Intravascular medical device |
US20100185044A1 (en) | 2006-06-30 | 2010-07-22 | Cvdevices, Llc (A California Limited Liability Company) | Devices and methods for assisting heart function |
US20100217387A1 (en) | 2002-12-05 | 2010-08-26 | Abbott Medical Optics Inc. | Accommodating intraocular lens and method of manufacture thereof |
US20110022168A1 (en) | 2009-01-22 | 2011-01-27 | Cartledge Richard G | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US20110054582A1 (en) | 2001-04-13 | 2011-03-03 | Greatbatch Ltd. | Shielded network for an active medical device implantable lead |
US7935075B2 (en) | 2005-04-26 | 2011-05-03 | Cardiac Pacemakers, Inc. | Self-deploying vascular occlusion device |
US7949411B1 (en) | 2007-01-23 | 2011-05-24 | Pacesetter, Inc. | Epicardial lead |
US20110144572A1 (en) | 2007-04-27 | 2011-06-16 | Kassab Ghassan S | Steering engagement catheter devices, systems, and methods |
US7976551B1 (en) | 2007-06-14 | 2011-07-12 | Pacesetter, Inc. | Transseptal delivery instrument |
US8012143B1 (en) | 2006-12-12 | 2011-09-06 | Pacesetter, Inc. | Intrapericardial delivery tools and methods |
US8012127B2 (en) | 2007-02-28 | 2011-09-06 | Medtronic, Inc. | Systems and methods for gaining access around an implanted medical device |
US20110224720A1 (en) | 2010-03-11 | 2011-09-15 | Cvdevices, Llc | Devices, systems, and methods for closing a hole in cardiac tissue |
US20110238078A1 (en) | 2010-03-29 | 2011-09-29 | Cook Medical Technologies Llc | Device and method for positioning an implanted structure to facilitate removal |
US8036757B2 (en) | 2006-09-10 | 2011-10-11 | Seth Worley | Pacing lead and method for pacing in the pericardial space |
US20120016311A1 (en) | 1999-10-13 | 2012-01-19 | Biocardia, Inc. | Drug Delivery Catheters That Attach to Tissue and Methods for Their Use |
US20120059389A1 (en) | 2009-02-20 | 2012-03-08 | Loren Robert Larson | Implantable Micro-Generator Devices with Optimized Configuration, Methods of Use, Systems and Kits Therefor |
US8142363B1 (en) | 2007-07-11 | 2012-03-27 | Pacesetter, Inc. | Cardiac rhythm management lead with omni-directional pressure sensing |
US8150535B2 (en) | 2004-08-31 | 2012-04-03 | Cardiac Pacemakers, Inc. | Sensor guided epicardial lead |
US20120130320A1 (en) | 2007-04-27 | 2012-05-24 | Kassab Ghassan S | Devices, systems, and methods for myocardial infarct border zone reinforcement |
US8211084B2 (en) | 2006-06-30 | 2012-07-03 | Cvdevices, Llc | Devices, systems, and methods for accessing the epicardial surface of the heart |
US20120191181A1 (en) | 2007-04-27 | 2012-07-26 | Kassab Ghassan S | Systems and methods for localization of a puncture site relative to a mammalian tissue of interest |
US8260435B2 (en) | 2010-03-17 | 2012-09-04 | Greatbatch Ltd. | Implantable lead for an active medical device having an inductor design minimizing eddy current losses |
US20120290021A1 (en) | 2011-05-10 | 2012-11-15 | Medtronic, Inc. | Battery feedthrough for an implantable medical device |
US8321013B2 (en) | 1996-01-08 | 2012-11-27 | Impulse Dynamics, N.V. | Electrical muscle controller and pacing with hemodynamic enhancement |
US8328752B2 (en) | 2006-06-30 | 2012-12-11 | Cvdevices, Llc | Devices, systems, and methods for promotion of infarct healing and reinforcement of border zone |
US8346372B2 (en) | 2007-02-16 | 2013-01-01 | Pacesetter, Inc. | Motion-based optimization for placement of cardiac stimulation electrodes |
US8364281B2 (en) | 2008-11-07 | 2013-01-29 | W. L. Gore & Associates, Inc. | Implantable lead |
US8403866B2 (en) | 2005-04-28 | 2013-03-26 | Medtronic, Inc. | Guide catheters for accessing cardiac sites |
US8442656B2 (en) | 2006-06-02 | 2013-05-14 | Cardiac Pacemakers, Inc. | Cardiac lead having implantable stiffening structures for fixation |
US20130131591A1 (en) | 2011-11-17 | 2013-05-23 | Medtronic, Inc. | Delivery system assemblies and associated methods for implantable medical devices |
US8480662B2 (en) | 2007-08-22 | 2013-07-09 | Cardiac Pacemakers, Inc. | Systems and devices for photoablation |
US8509916B2 (en) | 2002-12-16 | 2013-08-13 | Medtronic, Inc. | Bilumen guide catheters for accessing cardiac sites |
US20140039612A1 (en) | 2006-04-25 | 2014-02-06 | Medtronic Vascular, Inc. | Method for Stabilizing a Cardiac Valve Annulus |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US8712544B2 (en) | 2001-04-13 | 2014-04-29 | Greatbatch Ltd. | Electromagnetic shield for a passive electronic component in an active medical device implantable lead |
US8751018B1 (en) | 2007-05-08 | 2014-06-10 | Pacesetter Inc. | Implantable lead and method of making the same |
US8758372B2 (en) | 2002-08-29 | 2014-06-24 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US8938310B2 (en) | 2009-07-07 | 2015-01-20 | The Trustees Of Columbia University In The City Of New York | Coronary sinus cannula with left ventricle lead and pressure tent |
US8945145B2 (en) | 2011-09-22 | 2015-02-03 | Medtronic, Inc. | Delivery system assemblies for implantable medical devices |
US20150080977A1 (en) | 2010-10-29 | 2015-03-19 | Medtronic, Inc. | Implantable medical device telemetry in disruptive energy field |
US20150094735A1 (en) | 2013-09-27 | 2015-04-02 | Medtronic, Inc. | Tools and assemblies thereof for implantable medical devices |
US9031647B2 (en) | 2010-11-18 | 2015-05-12 | Cardiac Pacemakers, Inc. | Guidewire and signal analyzer for pacing site optimization |
US9031670B2 (en) | 2006-11-09 | 2015-05-12 | Greatbatch Ltd. | Electromagnetic shield for a passive electronic component in an active medical device implantable lead |
US9050064B2 (en) | 2007-04-27 | 2015-06-09 | Cvdevices, Llc | Systems for engaging a bodily tissue and methods of using the same |
US20150207484A1 (en) | 2009-02-04 | 2015-07-23 | Greatbatch Ltd. | Composite rf current attenuator for a medical lead |
US20150231374A1 (en) | 2006-06-30 | 2015-08-20 | Cvdevices, Llc | Intravascular catheters, systems, and methods |
US20150238729A1 (en) | 2014-02-24 | 2015-08-27 | Mark Lynn Jenson | Cardiac Access Catheter, System, and Method |
US9168380B1 (en) | 2014-07-24 | 2015-10-27 | Medtronic, Inc. | System and method for triggered pacing |
US20150321011A1 (en) | 2014-05-06 | 2015-11-12 | Medtronic, Inc. | Triggered pacing system |
US20150320330A1 (en) | 2010-09-28 | 2015-11-12 | Biotrace Medical, Inc. | Device and method for positioning an electrode in a body cavity |
US9242098B2 (en) | 2013-10-30 | 2016-01-26 | The Charlotte-Mecklenburg Hospital Authority | Devices, systems, and methods for treating cardiac arrhythmias |
US9265938B2 (en) | 2006-10-03 | 2016-02-23 | Vincent A. Gaudiani | Transcoronary sinus pacing system, LV summit pacing, early mitral closure pacing, and methods therefor |
US20160220811A1 (en) | 2013-10-11 | 2016-08-04 | The Trustees Of Columbia University In The City Of New York | Right angle cannula probe for coronary sinus cannulation |
US20160250474A1 (en) | 2015-02-11 | 2016-09-01 | Interventional Autonomics Corporation | Intravascular Electrode System and Method |
US9446232B2 (en) | 2008-11-07 | 2016-09-20 | W. L. Gore & Associates, Inc. | Implantable lead |
US20160302925A1 (en) | 2000-01-19 | 2016-10-20 | Medtronic, Inc. | Methods and devices for ablating target tissue of a patient |
US9526891B2 (en) | 2015-04-24 | 2016-12-27 | Medtronic, Inc. | Intracardiac medical device |
US9597514B2 (en) | 2014-12-05 | 2017-03-21 | Vquad Medical | Epicardial heart rhythm management devices, systems and methods |
US20170079780A1 (en) | 2012-04-19 | 2017-03-23 | Caisson Interventional, LLC | Valve replacement systems and methods |
US9610438B2 (en) | 2008-04-16 | 2017-04-04 | Medtronic, Inc. | Delivery catheter including side port and electrodes |
US20170128719A1 (en) | 2011-02-21 | 2017-05-11 | Jerome Boogaard | Method for fabricating an implantable lead for applying electrical pulses to tissue of a patient and system for fabrication thereof |
US9656063B2 (en) | 2004-06-18 | 2017-05-23 | Medtronic, Inc. | Method and system for placement of electrical lead inside heart |
US9737264B2 (en) | 2014-08-18 | 2017-08-22 | St. Jude Medical, Cardiology Division, Inc. | Sensors for prosthetic heart devices |
US9808629B2 (en) | 2011-10-24 | 2017-11-07 | Medtronic, Inc. | Delivery system assemblies and associated methods for implantable medical devices |
US20180028264A1 (en) | 2015-02-06 | 2018-02-01 | Rfemb Holdings, Llc | Radio-frequency electrical membrane breakdown for the treatment of cardiac rhythm disorders and for renal neuromodulation |
US20180036514A1 (en) | 2007-04-27 | 2018-02-08 | Cvdevices, Llc | Engagement catheter devices, systems, and methods to use the same under suctional tissue engagement |
US9889312B2 (en) | 2004-12-16 | 2018-02-13 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation device employing distributed logic |
US20180110561A1 (en) | 2015-02-05 | 2018-04-26 | Axon Therapies, Inc. | Devices and methods for treatment of heart failure by splanchnic nerve ablation |
US9955999B2 (en) | 2007-04-27 | 2018-05-01 | Cvdevices, Llc | Systems, devices, and methods for transeptal atrial puncture using an engagement catheter platform |
US20180133463A1 (en) | 2016-11-17 | 2018-05-17 | Cardiac Pacemakers, Inc. | Electrode for sensing, pacing, and defibrillation deployable in the mediastinal space |
US20180153615A1 (en) | 2012-05-02 | 2018-06-07 | The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Healthcare System | Devices, systems, and methods for treating cardiac arrhythmias |
US9999774B2 (en) | 2014-05-06 | 2018-06-19 | Medtronic, Inc. | Optical trigger for therapy delivery |
US20180185153A1 (en) | 2016-12-30 | 2018-07-05 | Pipeline Medical Technologies, Inc. | Method and apparatus for transvascular implantation of neo chordae tendinae |
US20180256890A1 (en) | 2017-03-07 | 2018-09-13 | Cardiac Pacemakers, Inc. | Implantation of an active medical device |
US10076403B1 (en) | 2009-05-04 | 2018-09-18 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US10098695B2 (en) | 2016-03-10 | 2018-10-16 | Mayo Foundation For Medical Education And Research | Pericardial modification devices and methods |
US20180296824A1 (en) | 2017-04-18 | 2018-10-18 | Cardiac Pacemakers, Inc. | Active medical device with attachment features |
US10124175B2 (en) | 2011-11-17 | 2018-11-13 | Medtronic, Inc. | Delivery system assemblies for implantable medical devices |
US20190038906A1 (en) | 2017-08-03 | 2019-02-07 | Cardiac Pacemakers, Inc. | Delivery devices and methods for leadless cardiac devices |
US20190054289A1 (en) | 2017-08-17 | 2019-02-21 | Cardiac Pacemakers, Inc. | Retention mechanism for an implantable lead |
US10213304B2 (en) | 2011-07-27 | 2019-02-26 | The Cleveland Clinic Foundation | Apparatus, system, and method for treating a regurgitant heart valve |
US10232170B2 (en) | 2014-05-09 | 2019-03-19 | Biotrace Medical, Inc. | Device and method for positioning an electrode in a body cavity |
US20190083123A1 (en) | 2017-09-15 | 2019-03-21 | Sorin Crm Sas | Explantation assembly for retrieving intracorporeal autonomous capsules |
US20190105490A1 (en) | 2016-03-18 | 2019-04-11 | Teleflex Innovations S.À.R.L. | Pacing guidewire |
US20190142371A1 (en) | 2006-10-12 | 2019-05-16 | Perceptive Navigation Llc | Image guided catheters and methods of use |
US20190183576A1 (en) | 2017-12-15 | 2019-06-20 | Medtronic, Inc. | Augmented reality solution to disrupt, transform and enhance cardiovascular surgical and/or procedural mapping navigation and diagnostics |
US20190269929A1 (en) | 2018-03-02 | 2019-09-05 | Medtronic, Inc. | Implantable medical electrode assemblies, devices, systems, kits, and methods |
US20190298989A1 (en) | 2018-03-28 | 2019-10-03 | Medtronic, Inc. | Delivery device for delivery of implantable or insertable medical devices |
US10441777B2 (en) | 2014-09-09 | 2019-10-15 | Pacesetter, Inc. | Implantable medical device having restrained tether device |
US20190336779A1 (en) | 2018-05-01 | 2019-11-07 | Cardiac Pacemakers, Inc. | Retention mechanism for an implantable lead |
US10471250B2 (en) | 2016-08-05 | 2019-11-12 | Cardiac Pacemakers, Inc. | Pacemakers for implant in the internal thoracic vasculature with communication to other implantable devices |
US10537731B2 (en) | 2016-11-17 | 2020-01-21 | Cardiac Pacemakers, Inc. | Transvenous mediastinum access for the placement of cardiac pacing and defibrillation electrodes |
US10603487B2 (en) | 2014-11-04 | 2020-03-31 | Cardiac Pacemakers, Inc. | Implantable medical devices and methods for making and delivering implantable medical devices |
US20200101279A1 (en) | 2018-09-28 | 2020-04-02 | Medtronic, Inc. | Impedance-based verification for delivery of implantable medical devices |
US20200138319A1 (en) | 2013-01-16 | 2020-05-07 | University Of Vermont | Methods and systems for wavelength mapping cardiac fibrillation and optimizing ablation lesion placement |
US10646720B2 (en) | 2016-11-17 | 2020-05-12 | Cardiac Pacemakers, Inc. | Parasternal placement of an active medical device using the internal thoracic vasculature |
US20200155798A1 (en) | 2018-11-16 | 2020-05-21 | Medtronic, Inc. | Out of plane deflectable catheters |
US10667910B2 (en) | 2016-12-30 | 2020-06-02 | Pipeline Medical Technologies, Inc. | Method and apparatus for transvascular implantation of neo chordae tendinae |
US20200179045A1 (en) | 2016-07-29 | 2020-06-11 | Axon Therapies, Inc. | Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation |
US20200197706A1 (en) | 2018-12-21 | 2020-06-25 | Medtronic, Inc. | Delivery systems and methods for left ventricular pacing |
US10780280B2 (en) | 2016-04-26 | 2020-09-22 | Mayo Foundation For Medical Education And Research | Devices and methods for cardiac pacing and resynchronization |
US10786679B2 (en) | 2016-12-21 | 2020-09-29 | Cardiac Pacemakers, Inc. | Lead with integrated electrodes |
US10806932B2 (en) | 2017-03-20 | 2020-10-20 | Cardiac Pacemakers, Inc. | Implantable medical device |
US20200330780A1 (en) | 2017-10-25 | 2020-10-22 | Mayo Foundation For Medical Education And Research | Devices and methods for cardiac pacing and resynchronization |
US10850067B2 (en) | 2016-12-21 | 2020-12-01 | Cardiac Pacemakers, Inc. | Implantation of an active medical device using the intercostal vein |
US20200383717A1 (en) | 2018-02-22 | 2020-12-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic | Inner curvature charge concentration device for tissue laceration |
US20210001085A1 (en) | 2019-07-03 | 2021-01-07 | Medtronic, Inc. | Catheter for ultrasound-guided delivery |
US10905885B2 (en) | 2014-09-04 | 2021-02-02 | AtaCor Medical, Inc. | Cardiac defibrillation |
US10925706B2 (en) | 2009-05-04 | 2021-02-23 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US20210060340A1 (en) | 2019-08-26 | 2021-03-04 | Medtronic, Inc. | Vfa delivery and implant region detection |
US20210077810A1 (en) | 2019-09-18 | 2021-03-18 | Cardiac Pacemakers, Inc. | Implanting a lead in the internal thoracic vasculature |
US10980570B2 (en) | 2017-01-12 | 2021-04-20 | Cardiac Pacemakers, Inc. | Implantation of an active medical device using the internal thoracic vasculature |
US20210137579A1 (en) | 2019-10-09 | 2021-05-13 | Nasser Rafiee | Tissue excision, cutting, and removal systems and methods |
US20210138239A1 (en) * | 2019-09-25 | 2021-05-13 | Swift Sync, Llc | Transvenous Intracardiac Pacing Catheter |
US11020075B2 (en) | 2017-05-12 | 2021-06-01 | Cardiac Pacemakers, Inc. | Implantation of an active medical device using the internal thoracic vasculature |
US20210161637A1 (en) | 2009-05-04 | 2021-06-03 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US20220226642A1 (en) * | 2021-01-20 | 2022-07-21 | Swift Sync, Inc. | Transvenous intracardiac pacing catheter |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146836A (en) | 1977-08-22 | 1979-03-27 | Barber-Colman Company | Power monitor |
US20100217367A1 (en) | 2006-06-23 | 2010-08-26 | Amir Belson | Transesophageal implantation of cardiac electrodes and delivery of cardiac therapies |
WO2011080588A2 (en) | 2009-12-30 | 2011-07-07 | Vivasure Medical Limited | Closure system and uses thereof |
WO2012003184A1 (en) | 2010-06-29 | 2012-01-05 | The Procter & Gamble Company | Absorbent article having an improved leg cuff |
US11344224B2 (en) | 2012-12-19 | 2022-05-31 | Koninklijke Philips N.V. | Detection of respiratory disorders |
CA2948526A1 (en) | 2014-06-05 | 2015-12-30 | University Of Florida Research Foundation, Inc. | Functional electrical stimulation cycling device for people with impaired mobility |
US20210060348A1 (en) | 2019-08-28 | 2021-03-04 | Medtronic, Inc. | Cardiac resynchronization therapy mode switching using mechanical activity |
-
2021
- 2021-01-20 US US17/153,875 patent/US20210138239A1/en active Granted
- 2021-08-31 US US17/463,327 patent/US11957900B2/en active Active
- 2021-09-20 US US17/478,979 patent/US11638818B2/en active Active
Patent Citations (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146036A (en) | 1977-10-06 | 1979-03-27 | Medtronic, Inc. | Body-implantable lead with protector for tissue securing means |
US4471777A (en) | 1983-03-30 | 1984-09-18 | Mccorkle Jr Charles E | Endocardial lead extraction apparatus and method |
US4576162A (en) | 1983-03-30 | 1986-03-18 | Mccorkle Charles E | Apparatus and method for separation of scar tissue in venous pathway |
US4582056A (en) | 1983-03-30 | 1986-04-15 | Mccorkle Jr Charles E | Endocardial lead extraction apparatus and method |
US4884567A (en) | 1987-12-03 | 1989-12-05 | Dimed Inc. | Method for transvenous implantation of objects into the pericardial space of patients |
US4946457A (en) | 1987-12-03 | 1990-08-07 | Dimed, Incorporated | Defibrillator system with cardiac leads and method for transvenous implantation |
US5353800A (en) | 1992-12-11 | 1994-10-11 | Medtronic, Inc. | Implantable pressure sensor lead |
US5674217A (en) | 1993-10-01 | 1997-10-07 | Wahlstrom; Dale A. | Heart synchronized extractor for an implanted object |
US5575766A (en) | 1993-11-03 | 1996-11-19 | Daig Corporation | Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers |
US5639276A (en) | 1994-09-23 | 1997-06-17 | Rapid Development Systems, Inc. | Device for use in right ventricular placement and method for using same |
US8321013B2 (en) | 1996-01-08 | 2012-11-27 | Impulse Dynamics, N.V. | Electrical muscle controller and pacing with hemodynamic enhancement |
US5727552A (en) | 1996-01-11 | 1998-03-17 | Medtronic, Inc. | Catheter and electrical lead location system |
US6228052B1 (en) | 1996-02-29 | 2001-05-08 | Medtronic Inc. | Dilator for introducer system having injection port |
US6419674B1 (en) | 1996-11-27 | 2002-07-16 | Cook Vascular Incorporated | Radio frequency dilator sheath |
US20050215991A1 (en) | 1997-03-13 | 2005-09-29 | Altman Peter A | Cardiac drug delivery system and method of use |
USH1905H (en) | 1997-03-21 | 2000-10-03 | Medtronic, Inc. | Mechanism for adjusting the exposed surface area and position of an electrode along a lead body |
US6038472A (en) | 1997-04-29 | 2000-03-14 | Medtronic, Inc. | Implantable defibrillator and lead system |
US5871532A (en) | 1997-05-22 | 1999-02-16 | Sulzer Intermedics Inc. | Epicardial lead for minimally invasive implantation |
US5957966A (en) | 1998-02-18 | 1999-09-28 | Intermedics Inc. | Implantable cardiac lead with multiple shape memory polymer structures |
US7547301B2 (en) | 1998-04-08 | 2009-06-16 | Biocardia, Inc. | Device and method to slow or stop the heart temporarily |
US7658727B1 (en) | 1998-04-20 | 2010-02-09 | Medtronic, Inc | Implantable medical device with enhanced biocompatibility and biostability |
US6714823B1 (en) | 1998-04-29 | 2004-03-30 | Emory University | Cardiac pacing lead and delivery system |
US20020016622A1 (en) | 1998-08-12 | 2002-02-07 | Cardiac Pacemakers, Inc. | Expandable seal for use with medical device and system |
US6125290A (en) | 1998-10-30 | 2000-09-26 | Medtronic, Inc. | Tissue overgrowth detector for implantable medical device |
US6198952B1 (en) | 1998-10-30 | 2001-03-06 | Medtronic, Inc. | Multiple lens oxygen sensor for medical electrical lead |
US6144866A (en) | 1998-10-30 | 2000-11-07 | Medtronic, Inc. | Multiple sensor assembly for medical electric lead |
US6134459A (en) | 1998-10-30 | 2000-10-17 | Medtronic, Inc. | Light focusing apparatus for medical electrical lead oxygen sensor |
US6125291A (en) | 1998-10-30 | 2000-09-26 | Medtronic, Inc. | Light barrier for medical electrical lead oxygen sensor |
US6738655B1 (en) | 1999-04-05 | 2004-05-18 | The Regents Of The University Of California | Endomyocardial monophasic action potential for early detection of myocardium pathology |
US20050010095A1 (en) | 1999-04-05 | 2005-01-13 | Medtronic, Inc. | Multi-purpose catheter apparatus and method of use |
US20120016311A1 (en) | 1999-10-13 | 2012-01-19 | Biocardia, Inc. | Drug Delivery Catheters That Attach to Tissue and Methods for Their Use |
US6295476B1 (en) | 1999-11-01 | 2001-09-25 | Medtronic, Inc. | Medical lead conductor fracture visualization method and apparatus |
US20020065544A1 (en) | 1999-11-29 | 2002-05-30 | Medtronic, Inc. | Medical electrical lead having variable bending stiffness |
US20160302925A1 (en) | 2000-01-19 | 2016-10-20 | Medtronic, Inc. | Methods and devices for ablating target tissue of a patient |
US20020072737A1 (en) | 2000-12-08 | 2002-06-13 | Medtronic, Inc. | System and method for placing a medical electrical lead |
US20020077684A1 (en) | 2000-12-20 | 2002-06-20 | Medtronic, Inc. | Perfusion lead and method of use |
US20020077685A1 (en) | 2000-12-20 | 2002-06-20 | Medtronic, Inc. | Medical electrical lead and method of use |
US20020111663A1 (en) | 2000-12-29 | 2002-08-15 | Roger Dahl | System for providing electrical stimulation to a left chamber of a heart |
US20030163128A1 (en) | 2000-12-29 | 2003-08-28 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20030083654A1 (en) | 2000-12-29 | 2003-05-01 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20020128636A1 (en) | 2000-12-29 | 2002-09-12 | Chin Sing Fatt | Medical instrument positioning tool and method |
US20040236395A1 (en) | 2001-02-09 | 2004-11-25 | Medtronic, Inc. | System and method for placing an implantable medical device within a body |
US6564096B2 (en) | 2001-02-28 | 2003-05-13 | Robert A. Mest | Method and system for treatment of tachycardia and fibrillation |
US20110054582A1 (en) | 2001-04-13 | 2011-03-03 | Greatbatch Ltd. | Shielded network for an active medical device implantable lead |
US8712544B2 (en) | 2001-04-13 | 2014-04-29 | Greatbatch Ltd. | Electromagnetic shield for a passive electronic component in an active medical device implantable lead |
US7311731B2 (en) | 2001-04-27 | 2007-12-25 | Richard C. Satterfield | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US6766200B2 (en) | 2001-11-01 | 2004-07-20 | Pacesetter, Inc. | Magnetic coupling antennas for implantable medical devices |
US20030092995A1 (en) | 2001-11-13 | 2003-05-15 | Medtronic, Inc. | System and method of positioning implantable medical devices |
US20040002740A1 (en) | 2002-05-08 | 2004-01-01 | The Regents Of The University Of California | System and method for forming a non-ablative cardiac conduction block |
US20070083217A1 (en) | 2002-05-30 | 2007-04-12 | Eversull Christian S | Apparatus and Methods for Placing Leads Using Direct Visualization |
US8758372B2 (en) | 2002-08-29 | 2014-06-24 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US7274966B2 (en) | 2002-10-02 | 2007-09-25 | Medtronic, Inc. | Medical fluid delivery system |
US20100217387A1 (en) | 2002-12-05 | 2010-08-26 | Abbott Medical Optics Inc. | Accommodating intraocular lens and method of manufacture thereof |
US8509916B2 (en) | 2002-12-16 | 2013-08-13 | Medtronic, Inc. | Bilumen guide catheters for accessing cardiac sites |
US20040215139A1 (en) | 2002-12-20 | 2004-10-28 | Todd Cohen | Apparatus and method for implanting left ventricular pacing leads within the coronary sinus |
US20070255396A1 (en) | 2003-06-20 | 2007-11-01 | Medtronic Vascular, Inc. | Chrodae Tendinae Girdle |
US7004176B2 (en) | 2003-10-17 | 2006-02-28 | Edwards Lifesciences Ag | Heart valve leaflet locator |
US9656063B2 (en) | 2004-06-18 | 2017-05-23 | Medtronic, Inc. | Method and system for placement of electrical lead inside heart |
US20060064150A1 (en) | 2004-08-13 | 2006-03-23 | Heist E K | Telescoping, dual-site pacing lead |
US20060036306A1 (en) | 2004-08-13 | 2006-02-16 | Heist E K | Telescoping, dual-site pacing lead |
US8150535B2 (en) | 2004-08-31 | 2012-04-03 | Cardiac Pacemakers, Inc. | Sensor guided epicardial lead |
US9889312B2 (en) | 2004-12-16 | 2018-02-13 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation device employing distributed logic |
US20080071341A1 (en) | 2005-04-15 | 2008-03-20 | Cook Vascular Incorporated | Tip for lead extraction device |
US20060253179A1 (en) | 2005-04-15 | 2006-11-09 | Cook Vascular Incorporated | Tip for lead extraction device |
US7935075B2 (en) | 2005-04-26 | 2011-05-03 | Cardiac Pacemakers, Inc. | Self-deploying vascular occlusion device |
US20060247751A1 (en) | 2005-04-28 | 2006-11-02 | Seifert Kevin R | Guide catheters for accessing cardiac sites |
US8403866B2 (en) | 2005-04-28 | 2013-03-26 | Medtronic, Inc. | Guide catheters for accessing cardiac sites |
US20070100439A1 (en) | 2005-10-31 | 2007-05-03 | Medtronic Vascular, Inc. | Chordae tendinae restraining ring |
US7630761B2 (en) | 2005-11-04 | 2009-12-08 | Cardiac Pacemakers, Inc. | Method and apparatus for modifying tissue to improve electrical stimulation efficacy |
US7519424B2 (en) | 2006-01-30 | 2009-04-14 | Medtronic, Inc. | Intravascular medical device |
US7616992B2 (en) | 2006-01-30 | 2009-11-10 | Medtronic, Inc. | Intravascular medical device |
US20100137936A1 (en) | 2006-01-30 | 2010-06-03 | Medtronic, Inc. | Intravascular medical device |
US20070208402A1 (en) | 2006-03-06 | 2007-09-06 | Helland John R | Medical lead with tissue-protecting tip structure |
US20140039612A1 (en) | 2006-04-25 | 2014-02-06 | Medtronic Vascular, Inc. | Method for Stabilizing a Cardiac Valve Annulus |
US8442656B2 (en) | 2006-06-02 | 2013-05-14 | Cardiac Pacemakers, Inc. | Cardiac lead having implantable stiffening structures for fixation |
US20070282413A1 (en) | 2006-06-02 | 2007-12-06 | Cardiac Pacemakers, Inc. | Cardiac lead having stiffening structures for fixation |
US8211084B2 (en) | 2006-06-30 | 2012-07-03 | Cvdevices, Llc | Devices, systems, and methods for accessing the epicardial surface of the heart |
US8328752B2 (en) | 2006-06-30 | 2012-12-11 | Cvdevices, Llc | Devices, systems, and methods for promotion of infarct healing and reinforcement of border zone |
US20150231374A1 (en) | 2006-06-30 | 2015-08-20 | Cvdevices, Llc | Intravascular catheters, systems, and methods |
US20100185044A1 (en) | 2006-06-30 | 2010-07-22 | Cvdevices, Llc (A California Limited Liability Company) | Devices and methods for assisting heart function |
US20080051840A1 (en) | 2006-07-05 | 2008-02-28 | Micardia Corporation | Methods and systems for cardiac remodeling via resynchronization |
US20080039904A1 (en) | 2006-08-08 | 2008-02-14 | Cherik Bulkes | Intravascular implant system |
US8036757B2 (en) | 2006-09-10 | 2011-10-11 | Seth Worley | Pacing lead and method for pacing in the pericardial space |
US8676349B2 (en) | 2006-09-15 | 2014-03-18 | Cardiac Pacemakers, Inc. | Mechanism for releasably engaging an implantable medical device for implantation |
US9265938B2 (en) | 2006-10-03 | 2016-02-23 | Vincent A. Gaudiani | Transcoronary sinus pacing system, LV summit pacing, early mitral closure pacing, and methods therefor |
US20190142371A1 (en) | 2006-10-12 | 2019-05-16 | Perceptive Navigation Llc | Image guided catheters and methods of use |
US20080109069A1 (en) | 2006-11-07 | 2008-05-08 | Coleman James E | Blood perfusion graft |
US9031670B2 (en) | 2006-11-09 | 2015-05-12 | Greatbatch Ltd. | Electromagnetic shield for a passive electronic component in an active medical device implantable lead |
US8012143B1 (en) | 2006-12-12 | 2011-09-06 | Pacesetter, Inc. | Intrapericardial delivery tools and methods |
US7949411B1 (en) | 2007-01-23 | 2011-05-24 | Pacesetter, Inc. | Epicardial lead |
US20080183267A1 (en) | 2007-01-25 | 2008-07-31 | Cardiac Pacemakers, Inc. | Expandable member for venous lead fixation |
US8346372B2 (en) | 2007-02-16 | 2013-01-01 | Pacesetter, Inc. | Motion-based optimization for placement of cardiac stimulation electrodes |
US8012127B2 (en) | 2007-02-28 | 2011-09-06 | Medtronic, Inc. | Systems and methods for gaining access around an implanted medical device |
US20120130320A1 (en) | 2007-04-27 | 2012-05-24 | Kassab Ghassan S | Devices, systems, and methods for myocardial infarct border zone reinforcement |
US20180036514A1 (en) | 2007-04-27 | 2018-02-08 | Cvdevices, Llc | Engagement catheter devices, systems, and methods to use the same under suctional tissue engagement |
US20120191181A1 (en) | 2007-04-27 | 2012-07-26 | Kassab Ghassan S | Systems and methods for localization of a puncture site relative to a mammalian tissue of interest |
US20110144572A1 (en) | 2007-04-27 | 2011-06-16 | Kassab Ghassan S | Steering engagement catheter devices, systems, and methods |
US9955999B2 (en) | 2007-04-27 | 2018-05-01 | Cvdevices, Llc | Systems, devices, and methods for transeptal atrial puncture using an engagement catheter platform |
US9050064B2 (en) | 2007-04-27 | 2015-06-09 | Cvdevices, Llc | Systems for engaging a bodily tissue and methods of using the same |
US8751018B1 (en) | 2007-05-08 | 2014-06-10 | Pacesetter Inc. | Implantable lead and method of making the same |
US20080283066A1 (en) | 2007-05-17 | 2008-11-20 | Cardiac Pacemakers, Inc. | Delivery device for implantable sensors |
US20080312712A1 (en) | 2007-06-13 | 2008-12-18 | E-Pacing, Inc. | Implantable Devices and Methods for Stimulation of Cardiac or Other Tissues |
US20080312725A1 (en) | 2007-06-13 | 2008-12-18 | E-Pacing, Inc. | Implantable Devices And Methods For Stimulation Of Cardiac And Other Tissues |
US7976551B1 (en) | 2007-06-14 | 2011-07-12 | Pacesetter, Inc. | Transseptal delivery instrument |
US20090005845A1 (en) | 2007-06-26 | 2009-01-01 | Tamir Ben David | Intra-Atrial parasympathetic stimulation |
US8142363B1 (en) | 2007-07-11 | 2012-03-27 | Pacesetter, Inc. | Cardiac rhythm management lead with omni-directional pressure sensing |
US20090053208A1 (en) | 2007-08-20 | 2009-02-26 | Medtronic Vascular, Inc. | Methods and Systems for Improving Tissue Perfusion |
US8480662B2 (en) | 2007-08-22 | 2013-07-09 | Cardiac Pacemakers, Inc. | Systems and devices for photoablation |
US20100023088A1 (en) | 2008-03-27 | 2010-01-28 | Stack Richard S | System and method for transvascularly stimulating contents of the carotid sheath |
US9610438B2 (en) | 2008-04-16 | 2017-04-04 | Medtronic, Inc. | Delivery catheter including side port and electrodes |
US20090264859A1 (en) | 2008-04-21 | 2009-10-22 | Medtronic Vascular, Inc. | Catheter Having a Selectively Expandable Distal Tip |
US20090264863A1 (en) | 2008-04-22 | 2009-10-22 | Medtronic Vascular, Inc. | Articulating Tip Tetherless Catheter System |
US9446232B2 (en) | 2008-11-07 | 2016-09-20 | W. L. Gore & Associates, Inc. | Implantable lead |
US8364281B2 (en) | 2008-11-07 | 2013-01-29 | W. L. Gore & Associates, Inc. | Implantable lead |
US20110022168A1 (en) | 2009-01-22 | 2011-01-27 | Cartledge Richard G | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US20150207484A1 (en) | 2009-02-04 | 2015-07-23 | Greatbatch Ltd. | Composite rf current attenuator for a medical lead |
US20120059389A1 (en) | 2009-02-20 | 2012-03-08 | Loren Robert Larson | Implantable Micro-Generator Devices with Optimized Configuration, Methods of Use, Systems and Kits Therefor |
US10076403B1 (en) | 2009-05-04 | 2018-09-18 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US20210161637A1 (en) | 2009-05-04 | 2021-06-03 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US10925706B2 (en) | 2009-05-04 | 2021-02-23 | V-Wave Ltd. | Shunt for redistributing atrial blood volume |
US8938310B2 (en) | 2009-07-07 | 2015-01-20 | The Trustees Of Columbia University In The City Of New York | Coronary sinus cannula with left ventricle lead and pressure tent |
US20110224720A1 (en) | 2010-03-11 | 2011-09-15 | Cvdevices, Llc | Devices, systems, and methods for closing a hole in cardiac tissue |
US8260435B2 (en) | 2010-03-17 | 2012-09-04 | Greatbatch Ltd. | Implantable lead for an active medical device having an inductor design minimizing eddy current losses |
US20110238078A1 (en) | 2010-03-29 | 2011-09-29 | Cook Medical Technologies Llc | Device and method for positioning an implanted structure to facilitate removal |
US20150320330A1 (en) | 2010-09-28 | 2015-11-12 | Biotrace Medical, Inc. | Device and method for positioning an electrode in a body cavity |
US20150080977A1 (en) | 2010-10-29 | 2015-03-19 | Medtronic, Inc. | Implantable medical device telemetry in disruptive energy field |
US9031647B2 (en) | 2010-11-18 | 2015-05-12 | Cardiac Pacemakers, Inc. | Guidewire and signal analyzer for pacing site optimization |
US20170128719A1 (en) | 2011-02-21 | 2017-05-11 | Jerome Boogaard | Method for fabricating an implantable lead for applying electrical pulses to tissue of a patient and system for fabrication thereof |
US20120290021A1 (en) | 2011-05-10 | 2012-11-15 | Medtronic, Inc. | Battery feedthrough for an implantable medical device |
US10213304B2 (en) | 2011-07-27 | 2019-02-26 | The Cleveland Clinic Foundation | Apparatus, system, and method for treating a regurgitant heart valve |
US8945145B2 (en) | 2011-09-22 | 2015-02-03 | Medtronic, Inc. | Delivery system assemblies for implantable medical devices |
US9808629B2 (en) | 2011-10-24 | 2017-11-07 | Medtronic, Inc. | Delivery system assemblies and associated methods for implantable medical devices |
US20130131591A1 (en) | 2011-11-17 | 2013-05-23 | Medtronic, Inc. | Delivery system assemblies and associated methods for implantable medical devices |
US10124175B2 (en) | 2011-11-17 | 2018-11-13 | Medtronic, Inc. | Delivery system assemblies for implantable medical devices |
US20170079780A1 (en) | 2012-04-19 | 2017-03-23 | Caisson Interventional, LLC | Valve replacement systems and methods |
US20180153615A1 (en) | 2012-05-02 | 2018-06-07 | The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Healthcare System | Devices, systems, and methods for treating cardiac arrhythmias |
US20200138319A1 (en) | 2013-01-16 | 2020-05-07 | University Of Vermont | Methods and systems for wavelength mapping cardiac fibrillation and optimizing ablation lesion placement |
US20150094735A1 (en) | 2013-09-27 | 2015-04-02 | Medtronic, Inc. | Tools and assemblies thereof for implantable medical devices |
US20160220811A1 (en) | 2013-10-11 | 2016-08-04 | The Trustees Of Columbia University In The City Of New York | Right angle cannula probe for coronary sinus cannulation |
US9242098B2 (en) | 2013-10-30 | 2016-01-26 | The Charlotte-Mecklenburg Hospital Authority | Devices, systems, and methods for treating cardiac arrhythmias |
US20150238729A1 (en) | 2014-02-24 | 2015-08-27 | Mark Lynn Jenson | Cardiac Access Catheter, System, and Method |
US20150321011A1 (en) | 2014-05-06 | 2015-11-12 | Medtronic, Inc. | Triggered pacing system |
US9999774B2 (en) | 2014-05-06 | 2018-06-19 | Medtronic, Inc. | Optical trigger for therapy delivery |
US10232170B2 (en) | 2014-05-09 | 2019-03-19 | Biotrace Medical, Inc. | Device and method for positioning an electrode in a body cavity |
US9168380B1 (en) | 2014-07-24 | 2015-10-27 | Medtronic, Inc. | System and method for triggered pacing |
US9737264B2 (en) | 2014-08-18 | 2017-08-22 | St. Jude Medical, Cardiology Division, Inc. | Sensors for prosthetic heart devices |
US10905885B2 (en) | 2014-09-04 | 2021-02-02 | AtaCor Medical, Inc. | Cardiac defibrillation |
US10441777B2 (en) | 2014-09-09 | 2019-10-15 | Pacesetter, Inc. | Implantable medical device having restrained tether device |
US10603487B2 (en) | 2014-11-04 | 2020-03-31 | Cardiac Pacemakers, Inc. | Implantable medical devices and methods for making and delivering implantable medical devices |
US9597514B2 (en) | 2014-12-05 | 2017-03-21 | Vquad Medical | Epicardial heart rhythm management devices, systems and methods |
US20180110561A1 (en) | 2015-02-05 | 2018-04-26 | Axon Therapies, Inc. | Devices and methods for treatment of heart failure by splanchnic nerve ablation |
US20180028264A1 (en) | 2015-02-06 | 2018-02-01 | Rfemb Holdings, Llc | Radio-frequency electrical membrane breakdown for the treatment of cardiac rhythm disorders and for renal neuromodulation |
US20160250474A1 (en) | 2015-02-11 | 2016-09-01 | Interventional Autonomics Corporation | Intravascular Electrode System and Method |
US9526891B2 (en) | 2015-04-24 | 2016-12-27 | Medtronic, Inc. | Intracardiac medical device |
US10098695B2 (en) | 2016-03-10 | 2018-10-16 | Mayo Foundation For Medical Education And Research | Pericardial modification devices and methods |
US20190105490A1 (en) | 2016-03-18 | 2019-04-11 | Teleflex Innovations S.À.R.L. | Pacing guidewire |
US10780280B2 (en) | 2016-04-26 | 2020-09-22 | Mayo Foundation For Medical Education And Research | Devices and methods for cardiac pacing and resynchronization |
US20200179045A1 (en) | 2016-07-29 | 2020-06-11 | Axon Therapies, Inc. | Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation |
US10471250B2 (en) | 2016-08-05 | 2019-11-12 | Cardiac Pacemakers, Inc. | Pacemakers for implant in the internal thoracic vasculature with communication to other implantable devices |
US10646720B2 (en) | 2016-11-17 | 2020-05-12 | Cardiac Pacemakers, Inc. | Parasternal placement of an active medical device using the internal thoracic vasculature |
US20180133463A1 (en) | 2016-11-17 | 2018-05-17 | Cardiac Pacemakers, Inc. | Electrode for sensing, pacing, and defibrillation deployable in the mediastinal space |
US10537731B2 (en) | 2016-11-17 | 2020-01-21 | Cardiac Pacemakers, Inc. | Transvenous mediastinum access for the placement of cardiac pacing and defibrillation electrodes |
US10850067B2 (en) | 2016-12-21 | 2020-12-01 | Cardiac Pacemakers, Inc. | Implantation of an active medical device using the intercostal vein |
US10786679B2 (en) | 2016-12-21 | 2020-09-29 | Cardiac Pacemakers, Inc. | Lead with integrated electrodes |
US20180185153A1 (en) | 2016-12-30 | 2018-07-05 | Pipeline Medical Technologies, Inc. | Method and apparatus for transvascular implantation of neo chordae tendinae |
US10667910B2 (en) | 2016-12-30 | 2020-06-02 | Pipeline Medical Technologies, Inc. | Method and apparatus for transvascular implantation of neo chordae tendinae |
US10980570B2 (en) | 2017-01-12 | 2021-04-20 | Cardiac Pacemakers, Inc. | Implantation of an active medical device using the internal thoracic vasculature |
US20180256890A1 (en) | 2017-03-07 | 2018-09-13 | Cardiac Pacemakers, Inc. | Implantation of an active medical device |
US10806932B2 (en) | 2017-03-20 | 2020-10-20 | Cardiac Pacemakers, Inc. | Implantable medical device |
US20180296824A1 (en) | 2017-04-18 | 2018-10-18 | Cardiac Pacemakers, Inc. | Active medical device with attachment features |
US11020075B2 (en) | 2017-05-12 | 2021-06-01 | Cardiac Pacemakers, Inc. | Implantation of an active medical device using the internal thoracic vasculature |
US20190038906A1 (en) | 2017-08-03 | 2019-02-07 | Cardiac Pacemakers, Inc. | Delivery devices and methods for leadless cardiac devices |
US20190054289A1 (en) | 2017-08-17 | 2019-02-21 | Cardiac Pacemakers, Inc. | Retention mechanism for an implantable lead |
US20190083123A1 (en) | 2017-09-15 | 2019-03-21 | Sorin Crm Sas | Explantation assembly for retrieving intracorporeal autonomous capsules |
US20200330780A1 (en) | 2017-10-25 | 2020-10-22 | Mayo Foundation For Medical Education And Research | Devices and methods for cardiac pacing and resynchronization |
US20190183576A1 (en) | 2017-12-15 | 2019-06-20 | Medtronic, Inc. | Augmented reality solution to disrupt, transform and enhance cardiovascular surgical and/or procedural mapping navigation and diagnostics |
US20200383717A1 (en) | 2018-02-22 | 2020-12-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic | Inner curvature charge concentration device for tissue laceration |
US20190269929A1 (en) | 2018-03-02 | 2019-09-05 | Medtronic, Inc. | Implantable medical electrode assemblies, devices, systems, kits, and methods |
US20190298989A1 (en) | 2018-03-28 | 2019-10-03 | Medtronic, Inc. | Delivery device for delivery of implantable or insertable medical devices |
US20190336779A1 (en) | 2018-05-01 | 2019-11-07 | Cardiac Pacemakers, Inc. | Retention mechanism for an implantable lead |
US20200101279A1 (en) | 2018-09-28 | 2020-04-02 | Medtronic, Inc. | Impedance-based verification for delivery of implantable medical devices |
US20200155798A1 (en) | 2018-11-16 | 2020-05-21 | Medtronic, Inc. | Out of plane deflectable catheters |
US20200197706A1 (en) | 2018-12-21 | 2020-06-25 | Medtronic, Inc. | Delivery systems and methods for left ventricular pacing |
US20210001085A1 (en) | 2019-07-03 | 2021-01-07 | Medtronic, Inc. | Catheter for ultrasound-guided delivery |
US20210060340A1 (en) | 2019-08-26 | 2021-03-04 | Medtronic, Inc. | Vfa delivery and implant region detection |
US20210077810A1 (en) | 2019-09-18 | 2021-03-18 | Cardiac Pacemakers, Inc. | Implanting a lead in the internal thoracic vasculature |
US20210138239A1 (en) * | 2019-09-25 | 2021-05-13 | Swift Sync, Llc | Transvenous Intracardiac Pacing Catheter |
US20210137579A1 (en) | 2019-10-09 | 2021-05-13 | Nasser Rafiee | Tissue excision, cutting, and removal systems and methods |
US20220226642A1 (en) * | 2021-01-20 | 2022-07-21 | Swift Sync, Inc. | Transvenous intracardiac pacing catheter |
Also Published As
Publication number | Publication date |
---|---|
US20230001184A1 (en) | 2023-01-05 |
US20240115854A9 (en) | 2024-04-11 |
US11638818B2 (en) | 2023-05-02 |
US20220193397A1 (en) | 2022-06-23 |
US20210138239A1 (en) | 2021-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11980756B2 (en) | Transvenous intracardiac pacing catheter | |
US10537731B2 (en) | Transvenous mediastinum access for the placement of cardiac pacing and defibrillation electrodes | |
US10980570B2 (en) | Implantation of an active medical device using the internal thoracic vasculature | |
US20240024662A1 (en) | Systems and methods for implanting a medical device | |
JP6888112B2 (en) | Leadless pacing device for treating cardiac arrhythmias | |
JP6902617B2 (en) | Leadless pacing device and its positioning system | |
US10786679B2 (en) | Lead with integrated electrodes | |
US10646720B2 (en) | Parasternal placement of an active medical device using the internal thoracic vasculature | |
CN104203341B (en) | Tie the deployment of implantable medical device | |
US10441777B2 (en) | Implantable medical device having restrained tether device | |
US11638818B2 (en) | Transvenous intracardiac pacing catheter with sequentially deployable leads | |
CA2249993C (en) | Left ventricular access lead for heart failure pacing | |
US5824030A (en) | Lead with inter-electrode spacing adjustment | |
US4858623A (en) | Active fixation mechanism for lead assembly of an implantable cardiac stimulator | |
US9265937B2 (en) | Implantable indifferent reference electrode pole | |
CN111491694A (en) | Implantable medical device for vascular deployment | |
US9283383B2 (en) | Implantable epicardial electrode assembly | |
US11786741B2 (en) | Systems and methods for implanting a medical device using an active guidewire | |
WO2015057569A1 (en) | Methods and devices for subcutaneous lead implantation | |
US20210077810A1 (en) | Implanting a lead in the internal thoracic vasculature | |
US20240181248A1 (en) | Transvenous intracardiac pacing catheter | |
US20240091530A1 (en) | Transvenous intracardiac pacing catheter | |
US12151099B2 (en) | Transvenous intracardiac pacing catheter having improved leads | |
WO2025022188A1 (en) | Transvenous intracardiac pacing catheter having improved leads | |
US20170157393A1 (en) | Implantable indifferent electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: SWIFT SYNC, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARIN Y KALL, CHRISTIAN;DEMARHCENA, EDUARDO;REEL/FRAME:063548/0364 Effective date: 20200925 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: WITHDRAW FROM ISSUE AWAITING ACTION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |