US12063098B1 - System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites - Google Patents
System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites Download PDFInfo
- Publication number
- US12063098B1 US12063098B1 US18/517,363 US202318517363A US12063098B1 US 12063098 B1 US12063098 B1 US 12063098B1 US 202318517363 A US202318517363 A US 202318517363A US 12063098 B1 US12063098 B1 US 12063098B1
- Authority
- US
- United States
- Prior art keywords
- satellite
- satellites
- communication system
- frequency
- satellite communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18513—Transmission in a satellite or space-based system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18519—Operations control, administration or maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18532—Arrangements for managing transmission, i.e. for transporting data or a signalling message
- H04B7/18534—Arrangements for managing transmission, i.e. for transporting data or a signalling message for enhancing link reliablility, e.g. satellites diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/195—Non-synchronous stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Definitions
- the present invention relates to a high throughput fractionated satellite (HTFS) system and method where the functional capabilities of a conventional monolithic spacecraft are distributed across many small or very small satellites and a central command and relay satellite.
- the satellites are separated and fly in design formations that allow the creation of very large aperture or apertures in space.
- the aperture generally refers to the area of an antenna and relates to the ability of the antenna to receive and transmit signals. As the aperture increases, the effectiveness of the antenna in receiving, transmitting and directionality of signals also increases.
- the present invention relates to an array system of small or very small satellites and a central command and relay satellites.
- the array of small or very small satellites are coordinated to act as a large aperture in space. This reduces weight and power requirements and results in a drastic reduction in cost and drastic improvement in aperture gain and bandwidth reuse performance. Satellites can be partially connected or structurally unconnected and keep in close proximity using electromagnetic forces, solar forces and other natural orbit related forces aided by GPS systems and positioning.
- Present antennas are monolithic and are either fed power via a parabolic reflector or comprise phased arrays of many antenna elements. In both of these cases, the antenna aperture is structurally one and limited in size to typically few square meters.
- the main issues with deployment of large antenna structures in space are twofold. First, cost and weight drastically increase with size due to the cost of launching large and heavy objects into space. And second, any pre-fabricated structure (including deployment mechanisms and support structures) must withstand large accelerations at launch and its strength has to be designed to take into account these forces rather in than the micro-gravity operating environment.
- Spacecraft component weight and cost are related to the required payload power of a particular satellite mission. Payload power requirements are mostly driven by end user terminals required to target Signal to Noise ratio, number of simultaneous users and channel bandwidth requirements. As the payload power requirement increase the RF components, batteries, solar panels and other power handling components on the satellite also increase in weight and cost.
- end user devices and terminals such as handheld devices, very low power terminals like modern smartphones, geo location bracelets, radios, telephones, cellular, smart phones, IoT terminals, and bracelets for tracking people or machine tracking devices, collectively referred to herein as “end user devices” or “end user terminals”) become smaller and lighter, their transmitting power and directionality require larger apertures in space in order to enable direct connectivity from and to those end user devices and terminals.
- LEO communications satellites designed to connect directly to end user devices like satellite phones or low power IOT devices, weigh between 500 to 1,000 kg and are costly to build and launch.
- One object of the present invention is to provide a distributed aperture system having the capabilities of a large or very large antenna deployed in space ranging but not limited from 25 m 2 to 300,000 m 2 in aperture surface. Another object of the invention is to provide an aperture system in space that minimizes or entirely reduces pre-fabricated structure.
- the present invention includes an array of very small or small satellites, coordinated to act as a large aperture, but that are partially connected or structurally unconnected.
- the HTFS equivalent antenna aperture drastically increases in size due to the use of a distributed satellite aperture.
- the required size for RF components, batteries, solar panels and power handling components is drastically reduced in size or is eliminated, as in the case of waveguide systems of monolithic satellites. This also drastically reduces the weight and cost required for the satellite system.
- the HTFS architecture of the present invention utilizes commercial of the shelf components that are built in millions of units for consumer electronics.
- Critical components required in HTFS system like Software define radios, HPA, LNA and Filters then become available as commercial of the shelf components already optimize for weight and cost.
- HTFS systems described in this invention when compared with monolithic satellites, require a fraction (approximately one-tenth) of the weight compared to a monolithic satellite for an equivalent number of end users and similar bandwidth requirements.
- an equivalent capability monolithic satellite that weighs 1,000 kg can be constructed using a HTFS according to the present invention with a collective weight of approximately 100 kg, providing a drastic reduction in weight and cost.
- the HTFS system described in this invention creates an equivalent very large distributed aperture provides great benefit on cost, weight and Spectrum re-use. These benefits are particularly obvious for spectrum between 100 MHz and 2 GHZ typically use for direct connectivity to end user terminals.
- the low frequency spectrum e.g., between 100 MHz to 2 GHz
- Loses caused by buildings, trees, airplane fuselage, train, car and vessels structures and other obstructions to the line of sight get reduce as compared to higher frequency systems like V, Ka, Ku, C, X.
- costly and heavy satellite tracking system at end user terminals required on higher frequency spectrum are eliminated at lower band frequencies.
- low band frequencies connecting to an HTFS system of the present invention allow end user devices to connect directly to the HTFS system without VSAT terminals or costly and heavy tracking antennas enabling numerous applications and usage for this invention.
- FIGS. 1 ( a ), ( b ) show the satellite communication system in accordance with the preferred embodiment of the invention
- FIGS. 2 ( a ) and 2 ( b ) are block diagrams of the system of FIG. 1 ;
- FIG. 3 shows the noise temperature in a single-channel receiver
- FIG. 4 is a general array receiving system for each small satellite 302 and for the satellite array 300 as a whole;
- FIGS. 5 ( a ), ( b ), ( c ) show the communication footprints on Earth and beam switching
- FIG. 6 shows an alternative arrangement of small satellites in an array having a trapezoidal configuration
- FIG. 7 ( a ) shows the formation entering the footprint for the array of FIG. 6 ;
- FIG. 7 ( b ) shows the formation in the middle of the footprint for the array of FIG. 6 ;
- FIG. 7 ( c ) shows the formation leaving the footprint for the array of FIG. 6 ;
- FIGS. 8 ( a ), 8 ( b ), 8 ( c ) show beam switching
- FIGS. 9 ( a ), 9 ( b ) show radiation patterns
- FIG. 10 shows the footprint cell frequency layout.
- FIG. 1 ( a ) shows the satellite communication system or HTFS 100 in accordance with one exemplary, illustrative, non-limiting embodiment of the invention.
- the satellite system or satellite formation 100 includes a plurality of small or very small elements such as small or very small satellites 302 (e.g., slave or remote satellites) and a local controller and relay satellite 200 (e.g., master or central satellite, also referred to here as the control satellite).
- the satellites 302 can be any suitable satellite such as for example, altitude-controlled very small satellites 302 that are very small in size and can be lightweight (e.g., ⁇ 1.5 Kg in weight).
- each remote satellite can have a housing 304 that houses four antennas 306 that can be electrically connected together by a wire.
- FIG. 1 ( a ) For case of illustration, only three remote satellite housings 304 are shown in FIG. 1 ( a ) .
- the remote satellites 302 are operated in Low Earth Orbit (LEO).
- LEO Low Earth Orbit
- the small satellites 302 operate below the Van Allen belt of plasma at 1400 km because operating above the Van Allen Belt requires more expensive space-hardened components.
- the invention is not limited to operate in any particular orbit or combination of orbits, and other suitable orbits can be utilized on all LEO, MEO and GEO orbits, including above the Van Allen Belt.
- the system 100 (including the central satellite 200 and the small satellites 302 ) has two primary configurations: an operating configuration, and a shipping or storage configuration.
- a plurality of the small satellites 302 are formed together in space to form an array 300 .
- one-thousand (1,000) small satellites 302 are provided, though any number of small satellites 302 can be provided, including substantially greater or fewer than 1,000.
- the array 300 forms a very large spatial array 300 . In the example embodiment of 1,000 small satellites 302 , the array 300 can be over 500 meters in width and/or height.
- the small satellite 302 antennas are equivalent to a large antenna that enhances communication with the Earth.
- the remote satellites 302 in essence, are fractionated in that they provide a distributed phased-array antenna, rather than a monolithic or connected array.
- the array 300 is formed about the central satellite 200 .
- the array 300 is positioned and configured to face the Earth. That is, the array 300 defines a top surface that can be linear or curved, and that top surface generally faces the Earth.
- the larger satellite 200 is positioned substantially at the centre of mass of the array 300 formation.
- the small satellites can be positioned approximately a few centimetres to approximately 20 meters apart from each other.
- the system 100 and the small satellites 302 can be placed in a storage or transport configuration.
- the small satellites 302 are separate discrete devices and are not physically connected to one another.
- the small satellites 302 can be consolidated or combined together for storage and transportation and then formed into the large satellite array 300 in space.
- multiple small satellites 302 can be placed together in a single shipping container such as a box, for transport on a rocket or other transport device or space craft. Once the shipping container(s) reaches a release position in space at a desired orbit, the shipping container can be opened and the small satellites 302 can be released.
- the small satellites 302 can then automatically manoeuvre by themselves and/or with the assistance of the control satellite 200 , to enter into the operating configuration array in space.
- the central satellite 200 can be already positioned in space. Or the central satellite 200 can be transported in a separate shipping container and separately positioned in space either before or after the array 300 is formed.
- the small satellites 302 can take up a space of a few square meters depending on the number of satellites 302 , which converts to many square meters when deployed in space. This also substantially reduces the complexity of the array 300 and the launch mass because structural members are not needed to connect the small satellites 302 to each other or to the controller satellite 200 in the operating configuration.
- the satellite array 300 can be formed with minimal human intervention (such as to release the satellites 302 from the shipping container and space craft), and can even be formed without any physical human intervention (such as to build a frame or other structure for the array).
- multiple arrays 300 can be provided at various locations in space to form a constellation of satellite arrays 300 to obtain full communication coverage of Earth. For instance, approximately 50-100 arrays 300 located at LEO orbits can be provided to obtain complete continuous coverage of Earth.
- the remote satellites 302 can be moved and positioned in any suitable manner.
- the remote satellites 302 and central satellite 200 are provided with impulse actuators such as electromagnetic coils 314 , and with magnetorquers 316 to move the remote satellites 302 .
- FIG. 2 ( a ) is a block diagram of the small or very small remote satellites 302 .
- the remote satellites 302 include a processing device 306 , radio transceivers 308 in communication via an antenna 310 , a GPS 312 , electromagnetic coils 314 , magnetorquers 316 , electrical power management 320 , heat sink 322 , solar power 324 , and battery power 326 .
- the remote satellite 302 components are divided in two parts, those related to energy management and those related to the use of the energy.
- the electrical power is obtained from different sources like heat, light or chemical. These components are the heat sink 322 , the solar power 324 and the battery power 326 , respectively.
- Communications between remote satellites 302 or between a remote satellite 302 and the central satellite 200 are done by the radio transceiver 308 and the antenna 310 .
- FIG. 2 ( b ) is a block diagram of the electromagnetic system for maintaining a constant relative position between the remote satellites 302 and between the remote satellites 302 and the central satellite 200 .
- satellite positioning is done in terms of distance x and angle y.
- the onboard computer or processing device 306 computes the required maneuvers to maintain a predetermined or dynamically-determined desired (which can be variable or random) distance x and angle y for the remote satellite 302 with respect the other remote satellites 302 and with respect to the central satellite 200 . It does this by comparing the relative position of the remote satellite 302 with the other remote satellites 302 and with the central satellite 200 .
- the electromagnetic coils 314 generate electromagnetic forces to gain movement by changing the relative distance between the remote satellite 302 and other remote satellites 302 or between the remote satellite 302 and the central satellite 200 . It is noted that FIG. 2 ( b ) shows the distance and angle between the remote satellites 302 and the central satellite 200 . It will be appreciated that the distance and angle is also maintained between the remote satellites 30 themselves, in the same manner.
- the magnetorquer 316 generates rotations around the satellite center of mass to control the angle y with respect to other remote satellites 302 or with respect to the central satellite 200 .
- the global positioning system 312 compares the relative satellite position with respect to the global position.
- the central satellite 200 is the reference of the satellite array and it has to know its global position via the GPS 202 , but it does not need to know its relative position. Thus, the central satellite 200 does not use magnetorquers (as in the remote satellites), only electromagnetic coils 204 .
- the electromagnetic formation flight system maintains the desired distance x and the desired angle y between each small satellite 302 and/or the central satellite 200 , by generating electromagnetic forces and/or rotations.
- the electromagnetic coils 314 control the distance x by comparing its position with respect to the one obtained from the Global Positioning System 312 .
- the central satellite 200 includes a GPS 202 , which means that the remote satellites 302 only need to know its relative position to the neighboring and/or surrounding remote satellites 302 and the relative position between that remote satellite 302 and the central satellite 200 .
- one or more of the remote satellites 302 in the array 300 can use the GPS 312 to determine its global position to further facilitate positioning of the remote satellite 302 .
- the GPS 202 of the central satellite it is possible for the GPS 202 of the central satellite to be omitted and the central satellite 200 to only use its relative position to one or more of the remote satellites 302 .
- the magnetorquers 316 control the angle y by measuring the relative position. The corrections are done through a number of maneuvers until the position and the angle are stable. Then corrections are only required when any disturbance occurs like high charged particles (i.e., cosmic ray, Van Allen belt charged particles, etc.) impacting to a particular satellite.
- high charged particles i.e., cosmic ray, Van Allen belt charged particles, etc.
- the solar wind, the orbit rotation or the interaction between satellites are not considered disturbances because they are predictable and are part of the maneuvers.
- electromagnetics are used to maintain the distance between remote satellites 302 within an operating range and between the remote satellites 302 and the control satellite 200 within an operating range.
- the invention also makes use of first order gravitational forces between the remote satellites 302 and Earth and between the control satellite 200 and Earth, as well as due to the natural orbit of the remote satellites 302 and the control satellite 200 .
- the invention positions the remote satellites 302 and the control satellite 200 to make use of that gravitational force and minimize the amount of positioning that has to be done by using the electromagnetics or other outside forces.
- the gravity forces create an orbit for the satellites 302 , 200 .
- the invention uses the natural orbit of the satellites 200 , 302 to maintain the position of the remote satellites 302 in the array 300 , as well as the position of the control satellite 200 with respect to the remote satellites 302 .
- the array 300 and control satellite 200 naturally rotates, and the array 300 and position of the satellites 200 , 302 are configured to account for the natural rotation and minimize positional adjustments of the satellites 200 , 302 needed due to that rotation.
- an algorithm can be utilized by the control satellite 200 to dynamically adapt to volumetric shape rotation of the remote satellites 302 , and/or to dynamically adapt to relative position of the remote satellites and the target beam object or geography. That algorithm can account for gravitational forces, the natural orbit, and rotation.
- FIGS. 1 ( a ), 1 ( b ), 2 ( a ), 2 ( b ) are block diagrams of the system 100 showing central satellite 200 to very small satellites 302 communications via wireless communication network.
- the remote satellites 302 include a remote controller 304 (e.g., processor or processing device) with a control interface, antenna, and a transmitter and/or receiver 306 .
- the transmitter/receiver 306 communicate with the controller satellite 200 such as via wireless communication network.
- the satellites 302 are solar-cell powered and have a chargeable capacitor or battery for eclipses or the like.
- the satellites 302 can include an avionic system that includes electromagnetics or the like to position the satellites 302 in the array formation that is controlled by the controller 304 .
- the avionic system maintains the satellite 302 at the proper altitude, location and orientation, such as to maximize communications with devices on the Earth and the communication footprint and also to maintain the satellites 302 together in an array 300 formation.
- the remote satellite 302 can also communicate with other remote satellites 302 to achieve the proper avionics.
- Electromagnetic forces are utilized between the small remote satellites 302 and the control satellite 200 to keep the remote satellites 302 in formation and alignment and for distribution of power.
- the additional mass associated with the generation of magnetic forces is much lower than the mass of structural connections between elements and, potentially, their deployment mechanism.
- the central controller satellite 200 is provided for each array 300 .
- the controller satellite 200 can be a CubeSat or a small satellite.
- the controller satellite 200 communicates with each of the small satellites 200 .
- the controller satellite 200 can have a central controller (e.g., processor or processing device) that communicates with the remote controller 304 of each of the remote satellites 302 .
- the central controller can control operation of the remote satellites 302 via remote controller 304 , such as during normal communications between the central satellite 200 , the remote satellites 200 , and the ground station, and can implement commands to the remote satellites 200 that are received from the ground station.
- the central controller can control formation of the remote satellites 302 into the array 300 .
- the central controller can also position the central satellite 200 to avoid electromagnetic shading or occlusion by the array 300 and to control communication frequencies during deployment and operation.
- the remote satellites 302 can be of any shape.
- the satellite array 300 is either square, rectangular, hexagonal or circular in shape, with the remote satellites 302 aligned with each other in rows and columns, whereby the array is a two-dimensional array (i.e., the rows and arrays are in an x- and y-coordinate).
- the remote satellites 302 are controlled to be spaced apart from each other by a predetermined distance (or in an alternative embodiment, the distances can vary for each remote satellite 302 and can be dynamically controlled the remote satellite 302 and/or control satellite 200 ).
- any suitable size and shape can be provided for the satellites 302 and the satellite array 300 , as well as for the spacing, and the array can be three-dimensional.
- the end user terminal 500 communicates with a multitude of satellites 302 via a sub 2 GHz frequency. This frequency is called the Tx end user frequency.
- This frequency is called the Tx end user frequency.
- the ground footprint cells each communicate on one of four different frequencies. That is, the end user terminal 500 in a first footprint cell communicates at a first frequency F 1 , the end user terminal 500 in a second footprint cell communicates at a second frequency F 2 , the end user terminal 500 in a third footprint cell communicates at a third frequency F 3 , and the end user terminal 500 in a fourth footprint cell communicates at a fourth frequency F 4 .
- the frequencies F 1 -F 4 are reused multiple times (i.e., to communicate with end user terminals located in multiple different footprint cells), which enables a high throughput bandwidth.
- Multiple end user terminals 500 that are located in the same cell (e.g., the first footprint cell) can communicate over the same frequency (i.e., the first frequency F 1 ) by use of time division multiplexing or other suitable transmission scheme.
- the multitude of satellites 302 and the control satellite 200 form a WIFI wireless network to communicate between them in order to aggregate the satellite 302 receive signals at the control satellite 200 and to aid the positioning satellite system.
- the control satellite 200 communicates with a gateway 600 (which for example can be located at a ground station on Earth) via a high frequency like KA band or V Band, which in turn communicates with the Internet, cellular systems or a private network (such as via a fiber optic link or other link).
- This frequency is called the downlink gateway frequency.
- the gateway 600 communicates back to the control satellite 200 , also via a high frequency. This frequency is called the uplink gateway frequency.
- the control satellite 200 and the multitude of satellites 302 form a WiFi wireless network to communicate between them.
- the control satellite 200 can distribute signals to different small satellites 302 in such a way that transmit signals to the Earth generate specific beam forming 400 on the Earth field of view.
- the multitude of small satellites 302 transmit back to the end user devices 500 .
- This frequency is called the RX end user frequency, and can be a low frequency.
- the F 1 Rx is the same band, but different frequency as F 1 Tx.
- the same transmit frequency is reused in multiple cells—that is, F 1 Tx is the same in each of the multiple F 1 cells, and the F 1 Rx is the same in each of the multiple F 1 cells; and F 4 Tx is the same in each of the multiple F 4 cells, and the F 4 Rx is the same in each of the multiple F 4 cells, etc.
- the main frequencies are the transmit end user frequency Tx, the receive end user frequency Rx, the network (between the remote satellites 302 and the central satellite 200 ) frequency, the downlink gateway frequency and the uplink gateway frequency.
- the end user frequency Tx for example can be the LTE band 31 .
- the Rx end user frequency can be the LTE band 31 .
- the WiFi AC network frequency can be 5 GHZ.
- the downlink gateway frequency can be the Ka band.
- the uplink gateway frequency can be the Ka band uplink.
- the Up- and Down-links between the controller satellite 200 and the ground gateway (located on Earth) is via a high-frequency, and the system can be designed to communicate to other satellite systems in space over different communication bands in order to reduce the number of gateways required on Earth.
- the satellites 302 communicate with the end user device or terminals in low-frequencies and with the central satellite 200 via wireless communication network equivalent to WiFi.
- the system is capable of operating in Low Frequency connecting user devices and user terminal directly from and to the array 300 using low frequencies preferred for Moderate Obstacle Loss. Examples of frequency bands within the range of 100 MHZ-2 GHZ.
- the G/T and EIRP Equivalent Isotropic Radiated Power of the distributed antenna system array in Space determines the number of bits per Hertz, frequency reuse and required power in each small or very small satellite.
- FIG. 3 shows the noise temperature in a single-channel receiver. The following derives the antenna array's G/T of the satellite array 300 from a single channel receiver model.
- FIG. 4 is a general array receiving system for each small satellite 302 and for the satellite array 300 as a whole.
- the signal power at beam-forming network's output is:
- the array receiving system may be represented by an equivalent single antenna with output P o G a and a two-port receiver with
- the effective input noise temperature of the array receiver is
- T rec T + T 0 G ⁇ ( 1 G c - 1 ) .
- n ⁇ n array i.e., its gain and noise temperature in order to meet the field-strengths
- the control satellite 200 of each satellite formation 100 can handle beam-switching.
- a given region such as having a 400 km diameter
- the beams are mapped worldwide with each beam having a unique index. That information can be stored in memory at the control satellite 200 .
- the control satellite 200 (for example based on its global position determined from its GPS 202 ), determines which beam it should transmit to at any given time. In one preferred embodiment of the invention, each beam will only communicate with a single satellite formation 100 .
- the satellite formations 100 will conduct beam-switching as the formations 100 move into and out of a particular beam.
- the satellite formation 100 assigned to a particular beam will be the formation 100 from the entire constellation of formations 100 , that covers that beam location for the longest duration, i.e. period of time.
- the control satellites 200 can communicate their position to the other control satellites 200 to facilitate the beam switching operation.
- FIGS. 5 ( a )- 5 ( c ) depict communication protocol for beam-switching for purposes of illustrating the invention.
- Three (fixed) multi-beam footprints 400 are shown. Many fixed footprints tessellate (i.e., cover) the Earth, perhaps with some overlap between footprints.
- FIG. 5 shows a satellite formation 100 (which includes the control satellite 200 and the array 300 ) as it orbits the Earth and approaches a footprint ( FIG. 5 ( a ) ), then passes over that footprint ( FIG. 5 ( b ) ), and finally moves away from that footprint ( FIG. 5 ( c ) ).
- a first satellite formation 100 provides communication coverage for given first multi-beam footprint until an adjacent multi-beam is nadir (immediately below the satellite).
- the first formation 100 switches to serving an adjacent second multi-beam footprint under it.
- a rising second formation switches its multi-beam footprint so as to provide continuous coverage to the first multi-beam footprint.
- the beam-switching happens at the formation based on its ephemeris, i.e., when it starts to leave the multi-beam footprint and another formation starts to serve the multi-beam footprint.
- the control satellite 200 can communicate the appropriate communication protocol (frequency, etc.) to the remote satellites 302 . Though beam-switching is described as being performed by the control satellite 200 , it can be performed by one or more of the remote satellites 302 .
- the control satellite 200 commands the remote satellites 302 by sending them the beamforming coefficients.
- the controller satellite 200 at Ka-band or higher frequency, is based on the aggregation of array's 300 beams.
- the aggregation of all beams must be communicated by the control satellite to the Ground Station (and thence the network cloud) via its high-frequency downlink, while it distributes data uplinked to it in Ka band to the various very small satellites for communication to the hand-sets.
- an array 500 is shown in accordance with an alternative embodiment of the invention.
- the array 500 is formed by the small satellites 302 being positioned in a trapezoidal configuration substantially having the shape of a frustrum of a pyramid with a bottom array 502 and side arrays 504 a - 504 d . That is, the bottom array 502 is formed by small satellites 302 e positioned in rows and columns along the tracks of ellipses to form a bottom array 502 of satellites.
- each of the side arrays 504 a - 504 d (front side array 504 a , right side array 504 b , rear side array 504 c , and left side array 504 d ) are formed by the small satellites 302 being positioned in rows and columns along the tracks of ellipses orthogonal to the radio of the earth.
- small satellites 302 c , 302 d , 302 e are shown in FIG. 6 to illustrate the trapezoidal array 500 , though it will be recognized that the entire trapezoidal array 500 is comprised of small satellites 302 positioned along the bottom 502 and sides 504 of the array 500 .
- the side array 504 c is formed by small satellites 302 c being formed in columns and rows along the tracks of ellipses orthogonal to the radios of the earth
- the side array 504 d is formed by small satellites 302 d being formed in columns and rows along the track of ellipses orthogonal to the radios of the earth.
- the bottom array 502 can be substantially square or rectangular or an ellipse and the side arrays 504 can each substantially have an isosceles trapezoid shape.
- the side arrays 504 a - 504 d are angled outwardly from the planar surface of the bottom array 502 , and can either be adjacent to each other or spaced apart.
- each of the arrays 502 , 504 a - 504 d are substantially orthogonal to the radius of the earth.
- the small satellites 302 are all positioned in the same forward-facing direction 510 , which is substantially perpendicular to the planar surface of the bottom array 502 . That is, the small satellites 302 are of any shape and have a forward-facing top planar surface. The top surface faces in the direction 510 of the earth, whereby planar surfaces of the remote satellites are substantially orthogonal to the surface of the earth (i.e., orthogonal to the radius of the earth).
- the array is positioned to cover the nadir areas. For a large footprint, the nadir beam is not directly looking at other domains of the footprint. In order to cover these regions, we provide four more faces, inclined to the nadir plane.
- the trapezoid or any equivalent volumetric figure array 500 configuration addresses the signals to the region directly, or nearly so, so that the cosine loss is manageable the signals transmitted to/from the Earth ground station, and reduces cosine losses.
- the control satellite 200 is located at the center of mass of the array 500 .
- the “cosine loss” is the cosine of the angle of the normal to the plane to the line joining the center of the plane to the region being looked at. Since cosine is always less than or equal to 1, it is always a loss and never a gain, and the more the angle, the greater the loss.
- the additional planes to 502 , 504 a - d , in FIG. 6 of the trapezoid are provided to reduce that loss.
- the bottom 502 and sides 504 are shown as flat having planar dimensions and angled corners where they intersect. It should be noted that the shape can be more curved, with curved dimensions and curved corners as form by an ellipse. And other configurations of the array can be provided having different array shapes, including three-dimensional shapes or polymetric shapes. In addition, the array 500 can be oriented with respect to the Earth in any suitable manner to point to either earth 510 or space 512 .
- FIGS. 7 ( a )- 7 ( c ) show Ephemeris-based beam-to-sub-formation assignment use on a broadband communications applications of the invention, where FIG. 7 ( a ) shows the formation entering the footprint on Earth, FIG. 7 ( b ) shows the formation in the middle of the footprint, and FIG. 7 ( c ) shows the formation leaving the footprint.
- the boundaries in the footprint show the sub-formation being used to cover the beams.
- beam Tx and Rx are switched to/from the selected formation.
- the switch may be communicated by the central satellite 200 .
- the figures shows the satellite transit of footprint center, but off-center footprint transit is possible as well.
- the figure illustrates the assignment of beams to the various faces of the frustum as the formation passes over the footprint. It also illustrates that not all active faces of the frustum are necessarily active at any given time.
- FIGS. 8 ( a ), 8 ( b ) show an alternative communication protocol to FIGS. 5 , 7 as a further non-limiting example of a beam switching operation.
- FIG. 8 ( a ) (as in FIGS. 5 , 7 )
- the entire earth is mapped into numerous beams 450 and assigns each beam a unique beam index. That information can be stored in memory at the control satellites 200 .
- the satellite formation 100 is shown in orbit 102 around the earth. As the formation 100 travels in orbit 102 , its footprint 104 moves along the surface of the earth, whereby the satellite formation 100 can communicate with the beams 450 that are inside its footprint 102 . Thus, as the satellite formation orbits the earth, the footprint 104 of the satellite formation 100 moves from the position shown in FIG.
- FIG. 8 ( c ) there can be multiple satellite formations 100 in a single orbit 102 .
- six satellite formations 100 (three are shown on the half of the earth that is illustrated) can be in a single orbit 102 .
- the footprints 104 of the satellite formations 100 do not overlap with each other.
- Each beam 450 is uniquely allocated to only one satellite formation 100 based on the latitude and longitude of the beam 450 and the position of the satellite formation 100 .
- the beam 450 can be allocated to a satellite formation 100 that can provide coverage for the longest duration.
- FIGS. 9 ( a ), 9 ( b ) show radiation patterns (a radiation pattern is the antenna array gain as a function of its angle from the array's boresight) for a 64 ⁇ 64 element array and 16 ⁇ 16 element array, respectively.
- One possible patch (or printed-circuit board) antenna size is 80 mm ⁇ 80 mm ⁇ 2 mm, the element spacing is 166 mm, and the frequency is 700 MHz.
- a patch antenna one type of antenna that can be realized on a PCB.
- the composite radiation pattern of a 64 ⁇ 64 antenna is depicted. What is shown is the narrow main lobe and much smaller surrounding sidelobes. It may be one design choice to select the angle of the frustum so that one array is in another's null.
- the radiation pattern also shows where the nulls are.
- frequency assignment is shown for the footprint of the array 300 , for the transmit and receive frequencies Tx, Rx (which can communicate on a same band, but different frequencies).
- the 4-color configuration is shown, where each color represents a different frequency.
- frequencies i.e., frequencies
- frequency reuse factor may optimally be 4.
- the problem of optimal coloring of the interference graph G is NP-complete.
- Fixed Allocation uses no more than three times the optimal number of frequencies (or colors). We take frequency reuse factor of 7, bearing in mind that it could be brought down to 4 (since satellite beams closely follow a hexagonal grid and interference skipping one cell is small).
- the four frequencies can accommodate b beams (e.g., 500 ). Assuming each beam b can handle bandwidth bw, then the entire throughput will be b ⁇ bw for each cell.
- any suitable number of frequencies and footprint cells can be provided, more or less than four.
- Delay and Doppler Pre-Compensation by Formation is performed at the central satellite 200 .
- the satellite formation knowing its ephemeris, pre-compensates delay and doppler variations to the center of each beam of the footprint it is serving, so as to minimize the residual Doppler seen by a handset anywhere within that beam and so that the delay seen by the handset is as close to a constant delay as possible.
- Residual Doppler and delay variations after pre-compensation for the center of the beam (as a function of the formation ephemeris with respect to the center of each beam).
- the hand-phone will see delay and Doppler variations at off-center locations, but these will be small (of the order of three times what might be observed in a terrestrial base-station service).
- a central satellite 200 is utilized to control operation of the remote satellites 302 , such as to control formation, i.e., positioning of the small satellites 302 to form the satellite array 300 , 500 , including spacing between the respective remote satellites 302 .
- remote satellites 302 i.e., the remote controller 304
- Still other components can be provided in the remote satellites 302 , such as a proximity detector or sensor, to facilitate formation of the remote satellites 302 to achieve a predetermined or dynamic position between the remote satellites 302 . Formation of the array can be predefined or dynamically adjusted.
- the large antenna array 300 , 500 effectively operates as a large antenna for the control satellite 200 , which itself is a small satellite. As such, the antenna array 300 , 500 enables enhanced communication between the control satellite 200 and the Earth. Accordingly, the control satellite 200 can transmit and receive signals directly to low-powered antenna devices, such as cell phones or the like.
- tellite is generally used to describe the remote satellites 302 as an element, object or device that can be placed into space.
- the remote controller and/or the central controller can include a processing device to perform various functions and operations in accordance with the invention.
- the processing device can be, for instance, a computing device, processor, application specific integrated circuits (ASIC), or controller.
- the processing device can be provided with one or more of a wide variety of components or subsystems including, for example, a co-processor, register, data processing devices and subsystems, wired or wireless communication links, and/or storage device(s) such as memory, RAM, ROM, analog or digital memory or database. All or parts of the system, processes, and/or data utilized in the invention can be stored on or read from the storage device.
- the storage device can have stored thereon machine executable instructions for performing the processes of the invention.
- the processing device can execute software that can be stored on the storage device. Unless indicated otherwise, the process is preferably implemented in automatically by the processor substantially in real time without delay.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radio Relay Systems (AREA)
Abstract
A high throughput fractionated satellite (HTFS) system and method where the functional capabilities of a conventional monolithic spacecraft are distributed across many small or very small satellites and a central command and relay satellite, the satellites are separated and flight in carefully design formations that allows the creation of very large aperture or apertures in space drastically reducing cost and weight and enabling high throughput capabilities by spatially reuse spectrum.
Description
This application is a continuation of U.S. patent application Ser. No. 17/499,956, filed Oct. 13, 2021, which is a continuation of U.S. patent application Ser. No. 15/979,298, filed May 14, 2018, now U.S. Pat. No. 11,159,228, which is a continuation of U.S. patent application Ser. No. 15/675,155, filed Aug. 11, 2017, now U.S. Pat. No. 9,973,266, which claims priority to Indian Application No. 201711020428, filed Jun. 12, 2017, the entire disclosures of which are incorporated herein by reference.
The present invention relates to a high throughput fractionated satellite (HTFS) system and method where the functional capabilities of a conventional monolithic spacecraft are distributed across many small or very small satellites and a central command and relay satellite. The satellites are separated and fly in design formations that allow the creation of very large aperture or apertures in space. The aperture generally refers to the area of an antenna and relates to the ability of the antenna to receive and transmit signals. As the aperture increases, the effectiveness of the antenna in receiving, transmitting and directionality of signals also increases.
More particularly, the present invention relates to an array system of small or very small satellites and a central command and relay satellites. The array of small or very small satellites are coordinated to act as a large aperture in space. This reduces weight and power requirements and results in a drastic reduction in cost and drastic improvement in aperture gain and bandwidth reuse performance. Satellites can be partially connected or structurally unconnected and keep in close proximity using electromagnetic forces, solar forces and other natural orbit related forces aided by GPS systems and positioning.
Present antennas are monolithic and are either fed power via a parabolic reflector or comprise phased arrays of many antenna elements. In both of these cases, the antenna aperture is structurally one and limited in size to typically few square meters. The main issues with deployment of large antenna structures in space are twofold. First, cost and weight drastically increase with size due to the cost of launching large and heavy objects into space. And second, any pre-fabricated structure (including deployment mechanisms and support structures) must withstand large accelerations at launch and its strength has to be designed to take into account these forces rather in than the micro-gravity operating environment.
Spacecraft component weight and cost are related to the required payload power of a particular satellite mission. Payload power requirements are mostly driven by end user terminals required to target Signal to Noise ratio, number of simultaneous users and channel bandwidth requirements. As the payload power requirement increase the RF components, batteries, solar panels and other power handling components on the satellite also increase in weight and cost. In addition, as end user devices and terminals (such as handheld devices, very low power terminals like modern smartphones, geo location bracelets, radios, telephones, cellular, smart phones, IoT terminals, and bracelets for tracking people or machine tracking devices, collectively referred to herein as “end user devices” or “end user terminals”) become smaller and lighter, their transmitting power and directionality require larger apertures in space in order to enable direct connectivity from and to those end user devices and terminals.
State of the art LEO communications satellites designed to connect directly to end user devices like satellite phones or low power IOT devices, weigh between 500 to 1,000 kg and are costly to build and launch.
One object of the present invention is to provide a distributed aperture system having the capabilities of a large or very large antenna deployed in space ranging but not limited from 25 m2 to 300,000 m2 in aperture surface. Another object of the invention is to provide an aperture system in space that minimizes or entirely reduces pre-fabricated structure. In accordance with these and other objects, the present invention includes an array of very small or small satellites, coordinated to act as a large aperture, but that are partially connected or structurally unconnected.
There are several advantages to this approach. First, the interstitial mass of connecting elements is eliminated, reducing satellite launch weight, and hence launch cost. Second, very large apertures can be realized in space and this is of particular advantage in realizing high antenna efficiencies at relatively low frequencies. And third, bandwidth that is scarce and expensive can be re-used spatially more than tens of thousands of times, thereby enabling high throughput capabilities by realizing narrow-beams and beam forming using distributed signal processing algorithms at both the small and very small satellites and the control and relay satellites.
The HTFS equivalent antenna aperture drastically increases in size due to the use of a distributed satellite aperture. As a result, the required size for RF components, batteries, solar panels and power handling components is drastically reduced in size or is eliminated, as in the case of waveguide systems of monolithic satellites. This also drastically reduces the weight and cost required for the satellite system.
Another benefit is the reduction on the required power levels by each discrete satellite. The HTFS architecture of the present invention utilizes commercial of the shelf components that are built in millions of units for consumer electronics. Critical components required in HTFS system like Software define radios, HPA, LNA and Filters then become available as commercial of the shelf components already optimize for weight and cost.
HTFS systems described in this invention, when compared with monolithic satellites, require a fraction (approximately one-tenth) of the weight compared to a monolithic satellite for an equivalent number of end users and similar bandwidth requirements. For example, an equivalent capability monolithic satellite that weighs 1,000 kg can be constructed using a HTFS according to the present invention with a collective weight of approximately 100 kg, providing a drastic reduction in weight and cost.
The HTFS system described in this invention creates an equivalent very large distributed aperture provides great benefit on cost, weight and Spectrum re-use. These benefits are particularly obvious for spectrum between 100 MHz and 2 GHZ typically use for direct connectivity to end user terminals. The low frequency spectrum (e.g., between 100 MHz to 2 GHz) is particularly good for eliminating the use of antennas, gateways or VSAT systems between the end user and the HTFS systems in space. Loses caused by buildings, trees, airplane fuselage, train, car and vessels structures and other obstructions to the line of sight get reduce as compared to higher frequency systems like V, Ka, Ku, C, X. In addition, costly and heavy satellite tracking system at end user terminals required on higher frequency spectrum are eliminated at lower band frequencies. Also, low band frequencies connecting to an HTFS system of the present invention allow end user devices to connect directly to the HTFS system without VSAT terminals or costly and heavy tracking antennas enabling numerous applications and usage for this invention.
These and other objects of the invention, as well as many of the intended advantages thereof, will become more readily apparent when reference is made to the following description, taken in conjunction with the accompanying drawings.
In describing the preferred embodiments of the present invention illustrated in the drawings, specific terminology is resorted to for the sake of clarity. However, the present invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
Turning to the drawings, FIG. 1(a) shows the satellite communication system or HTFS 100 in accordance with one exemplary, illustrative, non-limiting embodiment of the invention. The satellite system or satellite formation 100 includes a plurality of small or very small elements such as small or very small satellites 302 (e.g., slave or remote satellites) and a local controller and relay satellite 200 (e.g., master or central satellite, also referred to here as the control satellite). The satellites 302 can be any suitable satellite such as for example, altitude-controlled very small satellites 302 that are very small in size and can be lightweight (e.g., <1.5 Kg in weight). As an alternative, many antenna elements may be integrated into a single assembly, the advantage of this being that some of the interstitial spacing between elements can also be used by solar cells in order to enhance power available to those elements. For example as shown, each remote satellite can have a housing 304 that houses four antennas 306 that can be electrically connected together by a wire. For case of illustration, only three remote satellite housings 304 are shown in FIG. 1(a) .
The remote satellites 302 are operated in Low Earth Orbit (LEO). The small satellites 302 operate below the Van Allen belt of plasma at 1400 km because operating above the Van Allen Belt requires more expensive space-hardened components. However, the invention is not limited to operate in any particular orbit or combination of orbits, and other suitable orbits can be utilized on all LEO, MEO and GEO orbits, including above the Van Allen Belt.
The system 100 (including the central satellite 200 and the small satellites 302) has two primary configurations: an operating configuration, and a shipping or storage configuration. In the operating configuration, a plurality of the small satellites 302 are formed together in space to form an array 300. In one example embodiment, one-thousand (1,000) small satellites 302 are provided, though any number of small satellites 302 can be provided, including substantially greater or fewer than 1,000. The array 300 forms a very large spatial array 300. In the example embodiment of 1,000 small satellites 302, the array 300 can be over 500 meters in width and/or height. In the array configuration, the small satellite 302 antennas are equivalent to a large antenna that enhances communication with the Earth. The remote satellites 302, in essence, are fractionated in that they provide a distributed phased-array antenna, rather than a monolithic or connected array.
Also in the operating configuration, the array 300 is formed about the central satellite 200. The array 300 is positioned and configured to face the Earth. That is, the array 300 defines a top surface that can be linear or curved, and that top surface generally faces the Earth. The larger satellite 200 is positioned substantially at the centre of mass of the array 300 formation. The small satellites can be positioned approximately a few centimetres to approximately 20 meters apart from each other.
In addition, the system 100 and the small satellites 302 can be placed in a storage or transport configuration. The small satellites 302 are separate discrete devices and are not physically connected to one another. The small satellites 302 can be consolidated or combined together for storage and transportation and then formed into the large satellite array 300 in space. For example in the shipping configuration, multiple small satellites 302 can be placed together in a single shipping container such as a box, for transport on a rocket or other transport device or space craft. Once the shipping container(s) reaches a release position in space at a desired orbit, the shipping container can be opened and the small satellites 302 can be released. The small satellites 302 can then automatically manoeuvre by themselves and/or with the assistance of the control satellite 200, to enter into the operating configuration array in space. The central satellite 200 can be already positioned in space. Or the central satellite 200 can be transported in a separate shipping container and separately positioned in space either before or after the array 300 is formed.
This reduces the space required by the small satellites 302 during transport, but enables the small satellites 302 to form a large array when in the operating configuration. The small satellites 302 can take up a space of a few square meters depending on the number of satellites 302, which converts to many square meters when deployed in space. This also substantially reduces the complexity of the array 300 and the launch mass because structural members are not needed to connect the small satellites 302 to each other or to the controller satellite 200 in the operating configuration. Thus, the satellite array 300 can be formed with minimal human intervention (such as to release the satellites 302 from the shipping container and space craft), and can even be formed without any physical human intervention (such as to build a frame or other structure for the array). In addition, multiple arrays 300 can be provided at various locations in space to form a constellation of satellite arrays 300 to obtain full communication coverage of Earth. For instance, approximately 50-100 arrays 300 located at LEO orbits can be provided to obtain complete continuous coverage of Earth.
It should be noted that the remote satellites 302 can be moved and positioned in any suitable manner. In one embodiment shown in FIGS. 2(a), 2(b) , the remote satellites 302 and central satellite 200 are provided with impulse actuators such as electromagnetic coils 314, and with magnetorquers 316 to move the remote satellites 302.
In more detail, FIG. 2(a) is a block diagram of the small or very small remote satellites 302. The remote satellites 302 include a processing device 306, radio transceivers 308 in communication via an antenna 310, a GPS 312, electromagnetic coils 314, magnetorquers 316, electrical power management 320, heat sink 322, solar power 324, and battery power 326. The remote satellite 302 components are divided in two parts, those related to energy management and those related to the use of the energy. The electrical power is obtained from different sources like heat, light or chemical. These components are the heat sink 322, the solar power 324 and the battery power 326, respectively. Communications between remote satellites 302 or between a remote satellite 302 and the central satellite 200 are done by the radio transceiver 308 and the antenna 310.
The magnetorquer 316 generates rotations around the satellite center of mass to control the angle y with respect to other remote satellites 302 or with respect to the central satellite 200. The global positioning system 312 compares the relative satellite position with respect to the global position.
The central satellite 200 is the reference of the satellite array and it has to know its global position via the GPS 202, but it does not need to know its relative position. Thus, the central satellite 200 does not use magnetorquers (as in the remote satellites), only electromagnetic coils 204. The electromagnetic formation flight system maintains the desired distance x and the desired angle y between each small satellite 302 and/or the central satellite 200, by generating electromagnetic forces and/or rotations. The electromagnetic coils 314 control the distance x by comparing its position with respect to the one obtained from the Global Positioning System 312.
It will be recognized, however, that the GPS 312 is optional in the remote satellite 302. The central satellite 200 includes a GPS 202, which means that the remote satellites 302 only need to know its relative position to the neighboring and/or surrounding remote satellites 302 and the relative position between that remote satellite 302 and the central satellite 200. However, one or more of the remote satellites 302 in the array 300 can use the GPS 312 to determine its global position to further facilitate positioning of the remote satellite 302. In that instance, it is possible for the GPS 202 of the central satellite to be omitted and the central satellite 200 to only use its relative position to one or more of the remote satellites 302.
The magnetorquers 316 control the angle y by measuring the relative position. The corrections are done through a number of maneuvers until the position and the angle are stable. Then corrections are only required when any disturbance occurs like high charged particles (i.e., cosmic ray, Van Allen belt charged particles, etc.) impacting to a particular satellite. The solar wind, the orbit rotation or the interaction between satellites are not considered disturbances because they are predictable and are part of the maneuvers.
It is noted that electromagnetics are used to maintain the distance between remote satellites 302 within an operating range and between the remote satellites 302 and the control satellite 200 within an operating range. However, the invention also makes use of first order gravitational forces between the remote satellites 302 and Earth and between the control satellite 200 and Earth, as well as due to the natural orbit of the remote satellites 302 and the control satellite 200. The invention positions the remote satellites 302 and the control satellite 200 to make use of that gravitational force and minimize the amount of positioning that has to be done by using the electromagnetics or other outside forces. In addition, the gravity forces create an orbit for the satellites 302, 200. The invention uses the natural orbit of the satellites 200, 302 to maintain the position of the remote satellites 302 in the array 300, as well as the position of the control satellite 200 with respect to the remote satellites 302. Finally, the array 300 and control satellite 200 naturally rotates, and the array 300 and position of the satellites 200, 302 are configured to account for the natural rotation and minimize positional adjustments of the satellites 200, 302 needed due to that rotation. For example, an algorithm can be utilized by the control satellite 200 to dynamically adapt to volumetric shape rotation of the remote satellites 302, and/or to dynamically adapt to relative position of the remote satellites and the target beam object or geography. That algorithm can account for gravitational forces, the natural orbit, and rotation.
The satellites 302 can include an avionic system that includes electromagnetics or the like to position the satellites 302 in the array formation that is controlled by the controller 304. The avionic system maintains the satellite 302 at the proper altitude, location and orientation, such as to maximize communications with devices on the Earth and the communication footprint and also to maintain the satellites 302 together in an array 300 formation. The remote satellite 302 can also communicate with other remote satellites 302 to achieve the proper avionics.
Electromagnetic forces are utilized between the small remote satellites 302 and the control satellite 200 to keep the remote satellites 302 in formation and alignment and for distribution of power. The additional mass associated with the generation of magnetic forces is much lower than the mass of structural connections between elements and, potentially, their deployment mechanism.
The central controller satellite 200 is provided for each array 300. In one embodiment, the controller satellite 200 can be a CubeSat or a small satellite. The controller satellite 200 communicates with each of the small satellites 200. For example, the controller satellite 200 can have a central controller (e.g., processor or processing device) that communicates with the remote controller 304 of each of the remote satellites 302. The central controller can control operation of the remote satellites 302 via remote controller 304, such as during normal communications between the central satellite 200, the remote satellites 200, and the ground station, and can implement commands to the remote satellites 200 that are received from the ground station. The central controller can control formation of the remote satellites 302 into the array 300. The central controller can also position the central satellite 200 to avoid electromagnetic shading or occlusion by the array 300 and to control communication frequencies during deployment and operation.
The remote satellites 302 can be of any shape. In addition, the satellite array 300 is either square, rectangular, hexagonal or circular in shape, with the remote satellites 302 aligned with each other in rows and columns, whereby the array is a two-dimensional array (i.e., the rows and arrays are in an x- and y-coordinate). The remote satellites 302 are controlled to be spaced apart from each other by a predetermined distance (or in an alternative embodiment, the distances can vary for each remote satellite 302 and can be dynamically controlled the remote satellite 302 and/or control satellite 200). However, any suitable size and shape can be provided for the satellites 302 and the satellite array 300, as well as for the spacing, and the array can be three-dimensional.
Referring to FIG. 1(b) , the communication scheme is shown. The end user terminal 500 communicates with a multitude of satellites 302 via a sub 2 GHz frequency. This frequency is called the Tx end user frequency. As shown, and as more fully discussed with respect to FIG. 10 below, the ground footprint cells each communicate on one of four different frequencies. That is, the end user terminal 500 in a first footprint cell communicates at a first frequency F1, the end user terminal 500 in a second footprint cell communicates at a second frequency F2, the end user terminal 500 in a third footprint cell communicates at a third frequency F3, and the end user terminal 500 in a fourth footprint cell communicates at a fourth frequency F4. Thus, the frequencies F1-F4 are reused multiple times (i.e., to communicate with end user terminals located in multiple different footprint cells), which enables a high throughput bandwidth. Multiple end user terminals 500 that are located in the same cell (e.g., the first footprint cell), can communicate over the same frequency (i.e., the first frequency F1) by use of time division multiplexing or other suitable transmission scheme.
The multitude of satellites 302 and the control satellite 200 form a WIFI wireless network to communicate between them in order to aggregate the satellite 302 receive signals at the control satellite 200 and to aid the positioning satellite system. As shown, there can be multiple control satellites 200 that communicate with each other or with a given array 300. The control satellite 200 communicates with a gateway 600 (which for example can be located at a ground station on Earth) via a high frequency like KA band or V Band, which in turn communicates with the Internet, cellular systems or a private network (such as via a fiber optic link or other link). This frequency is called the downlink gateway frequency. The gateway 600 communicates back to the control satellite 200, also via a high frequency. This frequency is called the uplink gateway frequency.
The control satellite 200 and the multitude of satellites 302 form a WiFi wireless network to communicate between them. Thus, the control satellite 200 can distribute signals to different small satellites 302 in such a way that transmit signals to the Earth generate specific beam forming 400 on the Earth field of view. The multitude of small satellites 302 transmit back to the end user devices 500. This frequency is called the RX end user frequency, and can be a low frequency. The F1 Rx is the same band, but different frequency as F1 Tx. The same transmit frequency is reused in multiple cells—that is, F1 Tx is the same in each of the multiple F1 cells, and the F1 Rx is the same in each of the multiple F1 cells; and F4 Tx is the same in each of the multiple F4 cells, and the F4 Rx is the same in each of the multiple F4 cells, etc.
The main frequencies are the transmit end user frequency Tx, the receive end user frequency Rx, the network (between the remote satellites 302 and the central satellite 200) frequency, the downlink gateway frequency and the uplink gateway frequency. The end user frequency Tx for example can be the LTE band 31. The Rx end user frequency can be the LTE band 31. The WiFi AC network frequency can be 5 GHZ. The downlink gateway frequency can be the Ka band. And, the uplink gateway frequency can be the Ka band uplink.
Thus, the Up- and Down-links between the controller satellite 200 and the ground gateway (located on Earth) is via a high-frequency, and the system can be designed to communicate to other satellite systems in space over different communication bands in order to reduce the number of gateways required on Earth. Thus, the satellites 302 communicate with the end user device or terminals in low-frequencies and with the central satellite 200 via wireless communication network equivalent to WiFi. The system is capable of operating in Low Frequency connecting user devices and user terminal directly from and to the array 300 using low frequencies preferred for Moderate Obstacle Loss. Examples of frequency bands within the range of 100 MHZ-2 GHZ.
The G/T and EIRP (Equivalent Isotropic Radiated Power) of the distributed antenna system array in Space determines the number of bits per Hertz, frequency reuse and required power in each small or very small satellite. In order to derive this, FIG. 3 shows the noise temperature in a single-channel receiver. The following derives the antenna array's G/T of the satellite array 300 from a single channel receiver model.
where Po is the lossless isotropic antenna's power output, Gen is array antenna element gain, Gn is available gain of a channel from the output of the n-th antenna element to the beam former output, Gm is the maximum value of Gn, used for normalization and an=Sqrt(Gn/Gm) is the effective amplitude taper of the n-th receiver channel transfer function. θn is the total phase shift of the n-th receiver channel with respect to that of the reference channel, accounting for beam steering and/or a phase taper.
Substituting the power gain of an array antenna
in the above equation, we get
The array receiving system may be represented by an equivalent single antenna with output PoGa and a two-port receiver with
The effective input noise temperature of the array receiver is
The excess output noise density is No=kTGrec+KT0(1−Gc). Therefore, the noise temperature is
For downlink multi-beam coverage, we select the size of the n×n array, i.e., its gain and noise temperature in order to meet the field-strengths,
according to Table 1 below, where the satellite array formation maintains the same field strength from the satellite (above) as provided by terrestrial base stations use on cellular systems(below).
TABLE 1 | ||
Mobile System | Average TIS [dBm] | Electrical fieldstrength [mV/m] |
GSM900 | −91.8 dBm | 177 μV/m |
GSM1800 | −93.7 dBm | 277 μV/m |
UMTS900 | −96.4 |
104 μV/m |
UMTS2100 | −99.6 dBm | 163 μV/m |
As best illustrated in FIG. 5 , the control satellite 200 of each satellite formation 100 can handle beam-switching. For example, a given region (such as having a 400 km diameter) is designated with a beam index corresponding to a particular set of longitudes and latitudes, and the beams are mapped worldwide with each beam having a unique index. That information can be stored in memory at the control satellite 200. The control satellite 200 (for example based on its global position determined from its GPS 202), determines which beam it should transmit to at any given time. In one preferred embodiment of the invention, each beam will only communicate with a single satellite formation 100. Accordingly, there is no overlap in beams, or minimal overlap, and the satellite formations 100 will conduct beam-switching as the formations 100 move into and out of a particular beam. To minimize beam switching, the satellite formation 100 assigned to a particular beam will be the formation 100 from the entire constellation of formations 100, that covers that beam location for the longest duration, i.e. period of time. The control satellites 200 can communicate their position to the other control satellites 200 to facilitate the beam switching operation.
The control satellite 200 commands the remote satellites 302 by sending them the beamforming coefficients. The controller satellite 200, at Ka-band or higher frequency, is based on the aggregation of array's 300 beams. The aggregation of all beams must be communicated by the control satellite to the Ground Station (and thence the network cloud) via its high-frequency downlink, while it distributes data uplinked to it in Ka band to the various very small satellites for communication to the hand-sets.
Turning to FIG. 6 , an array 500 is shown in accordance with an alternative embodiment of the invention. The array 500 is formed by the small satellites 302 being positioned in a trapezoidal configuration substantially having the shape of a frustrum of a pyramid with a bottom array 502 and side arrays 504 a-504 d. That is, the bottom array 502 is formed by small satellites 302 e positioned in rows and columns along the tracks of ellipses to form a bottom array 502 of satellites. And each of the side arrays 504 a-504 d (front side array 504 a, right side array 504 b, rear side array 504 c, and left side array 504 d) are formed by the small satellites 302 being positioned in rows and columns along the tracks of ellipses orthogonal to the radio of the earth.
Several small satellites 302 c, 302 d, 302 e are shown in FIG. 6 to illustrate the trapezoidal array 500, though it will be recognized that the entire trapezoidal array 500 is comprised of small satellites 302 positioned along the bottom 502 and sides 504 of the array 500. For example, the side array 504 c is formed by small satellites 302 c being formed in columns and rows along the tracks of ellipses orthogonal to the radios of the earth and the side array 504 d is formed by small satellites 302 d being formed in columns and rows along the track of ellipses orthogonal to the radios of the earth. The bottom array 502 can be substantially square or rectangular or an ellipse and the side arrays 504 can each substantially have an isosceles trapezoid shape. Thus, the side arrays 504 a-504 d are angled outwardly from the planar surface of the bottom array 502, and can either be adjacent to each other or spaced apart. Notably though, each of the arrays 502, 504 a-504 d are substantially orthogonal to the radius of the earth.
As further illustrated in FIG. 6 , the small satellites 302 are all positioned in the same forward-facing direction 510, which is substantially perpendicular to the planar surface of the bottom array 502. That is, the small satellites 302 are of any shape and have a forward-facing top planar surface. The top surface faces in the direction 510 of the earth, whereby planar surfaces of the remote satellites are substantially orthogonal to the surface of the earth (i.e., orthogonal to the radius of the earth). The array is positioned to cover the nadir areas. For a large footprint, the nadir beam is not directly looking at other domains of the footprint. In order to cover these regions, we provide four more faces, inclined to the nadir plane.
The trapezoid or any equivalent volumetric figure array 500 configuration addresses the signals to the region directly, or nearly so, so that the cosine loss is manageable the signals transmitted to/from the Earth ground station, and reduces cosine losses. The control satellite 200 is located at the center of mass of the array 500. The “cosine loss” is the cosine of the angle of the normal to the plane to the line joining the center of the plane to the region being looked at. Since cosine is always less than or equal to 1, it is always a loss and never a gain, and the more the angle, the greater the loss. The additional planes to 502, 504 a-d, in FIG. 6 of the trapezoid are provided to reduce that loss.
It is further noted that the bottom 502 and sides 504 are shown as flat having planar dimensions and angled corners where they intersect. It should be noted that the shape can be more curved, with curved dimensions and curved corners as form by an ellipse. And other configurations of the array can be provided having different array shapes, including three-dimensional shapes or polymetric shapes. In addition, the array 500 can be oriented with respect to the Earth in any suitable manner to point to either earth 510 or space 512.
Each beam 450 is uniquely allocated to only one satellite formation 100 based on the latitude and longitude of the beam 450 and the position of the satellite formation 100. When multiple satellite formations 100 can service a beam 450, the beam 450 can be allocated to a satellite formation 100 that can provide coverage for the longest duration.
Turning to FIG. 10 , frequency assignment is shown for the footprint of the array 300, for the transmit and receive frequencies Tx, Rx (which can communicate on a same band, but different frequencies). The 4-color configuration is shown, where each color represents a different frequency. Thus, only four colors (i.e., frequencies) are needed to color any 2-dimension map in such a way that no two adjacent cells have the same frequency. If the beams are hexagonal cells, then only 4 frequencies suffice (and they are regular with alternation of 2 frequencies on one row and an alternation of 2 other frequencies on the next, alternating the rows). Thus, frequency reuse factor may optimally be 4. However, even when the interference is restricted to adjacent cells, it has been shown that the problem of optimal coloring of the interference graph G is NP-complete. Several approximation algorithms have been devised for fixed assignments. Fixed Allocation (FA) uses no more than three times the optimal number of frequencies (or colors). We take frequency reuse factor of 7, bearing in mind that it could be brought down to 4 (since satellite beams closely follow a hexagonal grid and interference skipping one cell is small). The four frequencies can accommodate b beams (e.g., 500). Assuming each beam b can handle bandwidth bw, then the entire throughput will be b×bw for each cell. Of course, any suitable number of frequencies and footprint cells can be provided, more or less than four.
Delay and Doppler Pre-Compensation by Formation is performed at the central satellite 200. The satellite formation, knowing its ephemeris, pre-compensates delay and doppler variations to the center of each beam of the footprint it is serving, so as to minimize the residual Doppler seen by a handset anywhere within that beam and so that the delay seen by the handset is as close to a constant delay as possible. Residual Doppler and delay variations, after pre-compensation for the center of the beam (as a function of the formation ephemeris with respect to the center of each beam). As a consequence, the hand-phone will see delay and Doppler variations at off-center locations, but these will be small (of the order of three times what might be observed in a terrestrial base-station service).
As described above, a central satellite 200 is utilized to control operation of the remote satellites 302, such as to control formation, i.e., positioning of the small satellites 302 to form the satellite array 300, 500, including spacing between the respective remote satellites 302. It should be noted, however, that remote satellites 302 (i.e., the remote controller 304) can communicate with one another to perform certain operations, including formation of the satellite array 300, 500, instead of or in addition to utilizing the central satellite 200. Still other components can be provided in the remote satellites 302, such as a proximity detector or sensor, to facilitate formation of the remote satellites 302 to achieve a predetermined or dynamic position between the remote satellites 302. Formation of the array can be predefined or dynamically adjusted.
The large antenna array 300, 500 effectively operates as a large antenna for the control satellite 200, which itself is a small satellite. As such, the antenna array 300, 500 enables enhanced communication between the control satellite 200 and the Earth. Accordingly, the control satellite 200 can transmit and receive signals directly to low-powered antenna devices, such as cell phones or the like.
It is further noted that the term “satellite” is generally used to describe the remote satellites 302 as an element, object or device that can be placed into space.
In the embodiment of FIGS. 1-2 , the remote controller and/or the central controller can include a processing device to perform various functions and operations in accordance with the invention. The processing device can be, for instance, a computing device, processor, application specific integrated circuits (ASIC), or controller. The processing device can be provided with one or more of a wide variety of components or subsystems including, for example, a co-processor, register, data processing devices and subsystems, wired or wireless communication links, and/or storage device(s) such as memory, RAM, ROM, analog or digital memory or database. All or parts of the system, processes, and/or data utilized in the invention can be stored on or read from the storage device. The storage device can have stored thereon machine executable instructions for performing the processes of the invention. The processing device can execute software that can be stored on the storage device. Unless indicated otherwise, the process is preferably implemented in automatically by the processor substantially in real time without delay.
The description and drawings of the present invention provided in the paper should be considered as illustrative only of the principles of the invention. The invention may be configured in a variety of ways and is not intended to be limited by the preferred embodiment. Numerous applications of the invention will readily occur to those skilled in the art. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
Claims (20)
1. A satellite communication system, comprising:
a plurality of phased array antennas spatially arranged together to form an antenna aperture in Low Earth Orbit (LEO), the plurality of phased array antennas configured to:
provide a field of view comprising a plurality of cells associated with geographic areas on Earth;
provide a plurality of beams, wherein each of the plurality of beams is associated with one of the plurality of cells and has one or more frequencies;
detect and receive at least a first signal directly from a user device via one of the plurality of beams at a frequency in a first frequency range;
communicate at least a second signal to a ground device at a frequency in a second frequency range higher than the first frequency range, wherein the ground device is connected to a core terrestrial network;
detect and receive at least a third signal from the ground device at the frequency in the second frequency range; and
communicate at least a fourth signal directly to the user device via the one of the plurality of beams at the frequency in the first frequency range;
one or more doppler compensators configured to doppler compensate at least one of the second or fourth signals; and
one or more delay compensators configured to delay compensate at least one of the second or fourth signals.
2. The satellite communication system of claim 1 , wherein the system is configured to determine which geographic area on Earth the user device is located based on (1) an association of the one of the plurality of beams to a particular cell and (2) a mapping of the particular cell to a specific geographic area.
3. The satellite communication system of claim 1 , wherein the doppler compensation is performed so that residual doppler or delay seen anywhere within a given beam is minimized.
4. The satellite communication system of claim 1 , wherein the doppler compensation is performed so that residual doppler within a given cell results in a substantially constant delay experienced by the user device.
5. The satellite communication system of claim 1 , wherein each of the plurality of cells is sized such that residual doppler or delay seen anywhere within a given beam is minimized.
6. The satellite communication system of claim 1 , wherein the satellite communication system is further configured to perform beam switching as a footprint of the plurality of phased array antennas changes.
7. The satellite communication system of claim 1 , wherein the plurality of phased array antennas comprises a first satellite formation, and the satellite communication system further includes at least a second satellite formation comprising another plurality of phased array antennas.
8. The satellite communication system of claim 7 , wherein each beam is uniquely allocated to one of the first satellite formation or the second satellite formation.
9. The satellite communication system of claim 7 , wherein the satellite communication system is further configured to perform a beam switching operation between the first satellite formation and the second satellite formation as the satellite formations orbit the Earth.
10. The satellite communication system of claim 1 , wherein cell size corresponds to a size of the antenna aperture formed by the plurality of phased array antennas.
11. The satellite communication system of claim 1 , wherein the ground device is a ground station, a base station, or an eNodeB connected to the core terrestrial network.
12. The satellite communication system of claim 1 , wherein the first frequency range is in a cellular frequency band and has a frequency range of 100 megahertz (MHz) to 2 gigahertz (GHz).
13. The satellite communication system of claim 1 , wherein the plurality of phased array antennas is spatially arranged together via a plurality of LEO satellites.
14. A method for satellite communication, comprising:
providing, via a plurality of phased array antennas spatially arranged together to form an antenna aperture in Low Earth Orbit (LEO), a field of view comprising a plurality of cells associated with geographic areas on Earth;
providing a plurality of beams, wherein each of the plurality of beams is associated with one of the plurality of cells and has one or more frequencies;
detecting and receiving at least a first signal directly from a user device via one of the plurality of beams at a frequency in a first frequency range;
communicating at least a second signal to a ground device at a frequency in a second frequency range higher than the first frequency range, wherein the ground device is connected to a core terrestrial network;
detecting and receiving at least a third signal from the ground device at the frequency in the second frequency range;
communicating at least a fourth signal directly to the user device via the one of the plurality of beams at the frequency in the first frequency range;
performing, using one or more doppler compensators, doppler compensation of at least one of the second or fourth signals; and
performing, using one or more delay compensators, delay compensation of at least one of the second or fourth signals.
15. The method of claim 14 , further comprising determining which geographic area on Earth the user device is located based on (1) an association of the one of the plurality of beams to a particular cell and (2) a mapping of the particular cell to a specific geographic area.
16. The method of claim 14 , wherein the doppler compensation is performed so that residual doppler or delay seen anywhere within a given beam is minimized.
17. The method of claim 14 , wherein the doppler compensation is performed so that residual doppler within a given cell results in a substantially constant delay experienced by the user device.
18. The method of claim 14 , wherein each of the plurality of cells is sized such that residual doppler or delay seen anywhere within a given beam is minimized.
19. The method of claim 14 , further comprising performing beam switching as a footprint of the plurality of phased array antennas changes.
20. The method of claim 14 , wherein:
the plurality of phased array antennas comprises a first satellite formation;
a satellite communication system includes the first satellite formation and further includes at least a second satellite formation comprising another plurality of phased array antennas; and
the method further includes performing a beam switching operation for the satellite communication system between the first satellite formation and the second satellite formation as the satellite formations orbit the Earth.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/517,363 US12063098B1 (en) | 2017-06-12 | 2023-11-22 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US18/766,811 US20250119203A1 (en) | 2017-06-12 | 2024-07-09 | System and method for high throughput fractionated satellites (htfs) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201711020428 | 2017-06-12 | ||
IN201711020428 | 2017-06-12 | ||
US15/675,155 US9973266B1 (en) | 2017-06-12 | 2017-08-11 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US15/979,298 US11159228B2 (en) | 2017-06-12 | 2018-05-14 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US17/499,956 US11956066B2 (en) | 2017-06-12 | 2021-10-13 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US18/517,363 US12063098B1 (en) | 2017-06-12 | 2023-11-22 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/499,956 Continuation US11956066B2 (en) | 2017-06-12 | 2021-10-13 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/766,811 Continuation US20250119203A1 (en) | 2017-06-12 | 2024-07-09 | System and method for high throughput fractionated satellites (htfs) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
Publications (2)
Publication Number | Publication Date |
---|---|
US12063098B1 true US12063098B1 (en) | 2024-08-13 |
US20240275470A1 US20240275470A1 (en) | 2024-08-15 |
Family
ID=62091531
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/675,155 Active US9973266B1 (en) | 2017-06-12 | 2017-08-11 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US15/979,298 Active US11159228B2 (en) | 2017-06-12 | 2018-05-14 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US17/499,956 Active 2038-05-27 US11956066B2 (en) | 2017-06-12 | 2021-10-13 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US18/517,363 Active US12063098B1 (en) | 2017-06-12 | 2023-11-22 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US18/766,811 Pending US20250119203A1 (en) | 2017-06-12 | 2024-07-09 | System and method for high throughput fractionated satellites (htfs) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/675,155 Active US9973266B1 (en) | 2017-06-12 | 2017-08-11 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US15/979,298 Active US11159228B2 (en) | 2017-06-12 | 2018-05-14 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US17/499,956 Active 2038-05-27 US11956066B2 (en) | 2017-06-12 | 2021-10-13 | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/766,811 Pending US20250119203A1 (en) | 2017-06-12 | 2024-07-09 | System and method for high throughput fractionated satellites (htfs) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
Country Status (9)
Country | Link |
---|---|
US (5) | US9973266B1 (en) |
EP (1) | EP3416303B1 (en) |
JP (1) | JP6506365B2 (en) |
KR (2) | KR102564896B1 (en) |
AU (1) | AU2018283981B2 (en) |
CA (1) | CA3066691A1 (en) |
DK (1) | DK3416303T3 (en) |
ES (1) | ES2751723T3 (en) |
WO (1) | WO2018231714A1 (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2990213B1 (en) | 2012-05-04 | 2015-04-24 | Total Raffinage Marketing | LUBRICATING COMPOSITION FOR ENGINE |
CN105253330B (en) * | 2015-10-30 | 2017-04-05 | 中国空间技术研究院 | A kind of information fusion GEO satellite control system menu-type design method based on optimization |
US10957987B2 (en) * | 2016-07-14 | 2021-03-23 | Harris Corporation | Space deployable inflatable antenna apparatus and associated methods |
US10742311B2 (en) | 2017-03-02 | 2020-08-11 | Lynk Global, Inc. | Simplified inter-satellite link communications using orbital plane crossing to optimize inter-satellite data transfers |
US12250064B2 (en) | 2017-03-02 | 2025-03-11 | Lynk Global, Inc. | Method and apparatus for handling communications between spacecraft operating in an orbital environment and terrestrial telecommunications devices that use terrestrial base station communications |
US10084535B1 (en) | 2017-04-26 | 2018-09-25 | UbiquitiLink, Inc. | Method and apparatus for handling communications between spacecraft operating in an orbital environment and terrestrial telecommunications devices that use terrestrial base station communications |
US9973266B1 (en) | 2017-06-12 | 2018-05-15 | Ast & Science, Llc | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US10979133B2 (en) | 2017-06-12 | 2021-04-13 | Ast & Science, Llc | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US10951305B2 (en) | 2018-04-26 | 2021-03-16 | Lynk Global, Inc. | Orbital base station filtering of interference from terrestrial-terrestrial communications of devices that use protocols in common with orbital-terrestrial communications |
US11142347B1 (en) | 2018-05-15 | 2021-10-12 | AST&Defense, LLC | System and method for the assembly of large distributed structures in space |
WO2020028098A1 (en) | 2018-07-31 | 2020-02-06 | Loft Orbital Solutions Inc. | System and method for providing spacecraft-based services |
US10841890B2 (en) | 2018-11-09 | 2020-11-17 | SRS Space Limited | Delay tolerant node |
AU2019383384A1 (en) | 2018-11-19 | 2021-05-20 | Viasat Inc. | Fractionated satellite constellation |
CN111385013B (en) * | 2018-12-29 | 2021-12-28 | 华为技术有限公司 | Method and device for broadcasting data |
WO2020190517A1 (en) * | 2019-03-20 | 2020-09-24 | Ast & Science, Llc | High throughput fractionated satellites |
JP7606984B2 (en) | 2019-05-15 | 2024-12-26 | エーエスティー アンド サイエンス エルエルシー | Mechanically deployable structures in low Earth orbit |
WO2021030046A1 (en) | 2019-08-09 | 2021-02-18 | Ast & Science, Llc | Satellite mimo system |
US10972195B1 (en) | 2019-10-11 | 2021-04-06 | Ast & Science, Llc | Mutual coupling based calibration |
AU2020367157B2 (en) | 2019-10-18 | 2023-03-09 | Ast & Science, Llc | Network access management |
JP7671765B2 (en) | 2020-01-15 | 2025-05-02 | エーエスティー アンド サイエンス エルエルシー | System using modulated signal to compensate for frequency error of LTE signal |
US11652541B1 (en) | 2020-02-11 | 2023-05-16 | Ast & Science, Llc | Phase array routing connectivity |
KR20220152230A (en) | 2020-02-11 | 2022-11-15 | 에이에스티 앤 사이언스, 엘엘씨 | Geolocation of radio frequency devices using phased arrays of space relays |
US11722211B1 (en) * | 2020-02-13 | 2023-08-08 | Ast & Science, Llc | AOCS system to maintain planarity for space digital beam forming using carrier phase differential GPS, IMU and magnet torques on large space structures |
US11411638B2 (en) | 2020-02-13 | 2022-08-09 | Ast & Science, Llc | AI power management system for effective duty cycle for space constellations |
CA3168876A1 (en) | 2020-02-13 | 2021-11-18 | Ast & Science, Llc | System for tracking solar energy |
US12040553B1 (en) | 2020-02-13 | 2024-07-16 | Ast & Science, Llc | Compensating oscillations in a large-aperture phased array antenna |
WO2021168485A1 (en) * | 2020-02-21 | 2021-08-26 | Softbank, Corp. | Distribution of location information to aid user equipment link with moving non-terrestrial network nodes |
KR102273539B1 (en) * | 2020-12-28 | 2021-07-06 | (주)컨텍 | Platform providing device using launch vehicle-satellite-ground station-satellite image |
US11863250B2 (en) | 2021-01-06 | 2024-01-02 | Lynk Global, Inc. | Satellite communication system transmitting navigation signals using a wide beam and data signals using a directive beam |
EP4289084A4 (en) | 2021-02-05 | 2025-01-22 | Ast & Science Llc | SATCOM GSM SOLUTION THAT COMMUNICATES DIRECTLY WITH GSM PHONES |
WO2022176893A1 (en) * | 2021-02-19 | 2022-08-25 | 三菱電機株式会社 | Method for forming integrated satellite constellation, integrated data library, and integrated satellite constellation |
EP4309244A4 (en) | 2021-03-16 | 2024-11-06 | AST & Science, LLC | CALIBRATION BASED ON MUTUAL COUPLING |
JP2024508191A (en) * | 2021-03-16 | 2024-02-22 | エーエスティー アンド サイエンス エルエルシー | Momentum and reaction wheels for objects in space |
US12035263B2 (en) * | 2021-04-01 | 2024-07-09 | Qualcomm Incorporated | Dedicated unicast transmission of satellite location information |
WO2022254474A1 (en) * | 2021-05-31 | 2022-12-08 | 合同会社パッチドコニックス | Wireless observation system and signal processing method |
JP2023013851A (en) * | 2021-07-16 | 2023-01-26 | 国立研究開発法人情報通信研究機構 | MOBILE GROUP CONTROL SYSTEM AND METHOD, COMMUNICATION DEVICE |
US11848691B2 (en) | 2021-12-22 | 2023-12-19 | Waymo Llc | Method and system for inactive and active beam transition in a satellite radio access network |
KR102466480B1 (en) * | 2022-04-28 | 2022-11-11 | 한화시스템 주식회사 | Satellite and operating method thereof |
Citations (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3611435A (en) | 1969-03-24 | 1971-10-05 | Itt | Satellite communication system |
JPS6170823A (en) | 1984-09-13 | 1986-04-11 | Mitsubishi Electric Corp | Satellite communication system |
US4843397A (en) | 1987-03-26 | 1989-06-27 | Selenia Spazio Spa | Distributed-array radar system comprising an array of interconnected elementary satellites |
JPH06170823A (en) | 1992-12-07 | 1994-06-21 | Misawa Homes Co Ltd | Inorganic surface material and production thereof |
US5465096A (en) | 1993-03-01 | 1995-11-07 | Nec Corporation | Transmission apparatus for orbiting satellite |
US5777582A (en) | 1995-05-16 | 1998-07-07 | Cal Corporation | Deployable double-membrane surface antenna |
US5810297A (en) | 1996-04-29 | 1998-09-22 | Basuthakur; Sibnath | Satellite cluster attitude/orbit determination and control system and method |
US5909299A (en) | 1997-04-28 | 1999-06-01 | Sheldon, Jr.; L. Philip | Microsatellite system for high-volume orbital telemetry |
US5925092A (en) | 1996-12-02 | 1999-07-20 | Motorola, Inc. | Satellite cluster with synchronized payload processors and method for use in space-based systems |
US6058306A (en) | 1998-11-02 | 2000-05-02 | Hughes Electronics Corporation | Compensation of dynamic doppler frequency of large range in satellite communication systems |
US6157642A (en) | 1997-10-14 | 2000-12-05 | Teledesic Llc | Coding system and method for low-earth orbit satellite data communication |
US20010034206A1 (en) | 1998-12-23 | 2001-10-25 | James D. Thompson | Reconfigurable satellite and antenna coverage communications backup capabilities |
US6314269B1 (en) | 1994-07-22 | 2001-11-06 | International Mobile Satelitte Organization | Multi-beam TDMA satellite mobile communications system |
JP2002095190A (en) | 2000-09-14 | 2002-03-29 | Mitsubishi Electric Corp | Space solar power generation method and system using the method |
US20020102939A1 (en) | 2001-01-29 | 2002-08-01 | Motorola, Inc. | Communication system utiliizing a constellation of satellites and method therefor |
US20040209584A1 (en) | 2002-12-11 | 2004-10-21 | Bargroff Keith P. | Integrated crosspoint switch with band translation |
US20050248491A1 (en) | 2004-04-02 | 2005-11-10 | Alcatel | Satellite with electromagnetic control of objects |
US6975582B1 (en) | 1995-07-12 | 2005-12-13 | Ericsson Inc. | Dual mode satellite/cellular terminal |
US6990314B1 (en) | 1999-03-18 | 2006-01-24 | The Directv Group, Inc. | Multi-node point-to-point satellite communication system employing multiple geo satellites |
US20070155318A1 (en) | 2006-01-04 | 2007-07-05 | Globalstar, Inc. | Satellite communication system employing a combination of time slots and orthogonal codes |
US20070184778A1 (en) | 2006-02-09 | 2007-08-09 | Eagle River Holdings Llc | System and method for communication utilizing time division duplexing |
US20070250267A1 (en) | 2006-04-25 | 2007-10-25 | Northrop Grumman Corporation | Delta-V-free satellite cloud cluster flying |
US7357356B1 (en) | 2005-02-28 | 2008-04-15 | Lockheed Martin Corporation | Attitude and antenna steering system for geosynchronous earth orbit (GEO) spacecraft |
US20080087769A1 (en) | 2006-06-20 | 2008-04-17 | Kara Johnson | Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor |
US20080122690A1 (en) | 2006-06-30 | 2008-05-29 | Marlene Wan | Enhanced Aiding in GPS Systems |
US20100046853A1 (en) | 2007-08-23 | 2010-02-25 | Lockheed Martin Missiles And Fire Control | Multi-bank TDI approach for high-sensitivity scanners |
US20100195564A1 (en) | 2008-11-26 | 2010-08-05 | Je-Hong Jong | Method and system for providing timing and frequency synchronization for satellite diversity |
US20100317293A1 (en) | 2008-03-03 | 2010-12-16 | Fujitsu Limited | Broadcast service signal transmission method and transmission device |
US20120217348A1 (en) | 2011-02-21 | 2012-08-30 | European Space Agency | Earth observation satellite, satellite system, and launching system for launching satellites |
US20130113996A1 (en) | 2010-07-13 | 2013-05-09 | Thomson Licensing | Method of picture-in-picture for multimedia applications |
US20130148696A1 (en) | 2011-12-12 | 2013-06-13 | Electronics And Telecommunications Research Institute | Satellite broadcasting system and method |
CN103731935A (en) | 2013-12-19 | 2014-04-16 | 上海卫星工程研究所 | Space network communication method based on WIFI |
US20140266872A1 (en) | 2013-03-15 | 2014-09-18 | Hackproof Technologies Inc. | Space Needles |
US20150162656A1 (en) | 2012-06-11 | 2015-06-11 | University Of Florida Research Foundation, Inc. | Antennas for small satellites |
US20150217876A1 (en) | 2012-08-08 | 2015-08-06 | Arie Halsband | Low volume micro satellite with flexible winded panels expandable after launch |
US20150249462A1 (en) | 2011-06-16 | 2015-09-03 | Spatial Digital Systems, Inc. | System for processing data streams |
US9150313B2 (en) | 2012-08-06 | 2015-10-06 | Cal Poly Corporation | CubeSat system, method and apparatus |
JP2015204621A (en) | 2014-04-11 | 2015-11-16 | タレス | Satellite communication system and method capable of multi-spot coverage and variable capacity distribution |
US20150371431A1 (en) | 2013-01-29 | 2015-12-24 | Andrew Robert Korb | Methods for analyzing and compressing multiple images |
US20160011318A1 (en) | 2014-02-26 | 2016-01-14 | Clark Emerson Cohen | Performance and Cost Global Navigation Satellite System Architecture |
US20160065006A1 (en) | 2014-09-01 | 2016-03-03 | James Joshua Woods | Solar Energy Conversion and Transmission System and Method |
US20160251092A1 (en) | 2015-02-26 | 2016-09-01 | Spire Global, Inc. | System and method for power distribution in a autonomous modular system |
US20160254857A1 (en) | 2012-08-01 | 2016-09-01 | Emc Satcom Technologies, Llc | High throughput satellite |
US20160253284A1 (en) | 2015-02-26 | 2016-09-01 | Spire Global, Inc. | Processor system for control of modular autonomous system |
GB2536017A (en) | 2015-03-03 | 2016-09-07 | Stratospheric Platforms Ltd | Generation and use of similar multiple beams |
WO2016153823A1 (en) | 2015-03-20 | 2016-09-29 | Qualcomm Incorporated | Method and apparatus for time or frequency synchronization in non-geosynchronous satellite communication systems |
US9473234B2 (en) | 2014-03-06 | 2016-10-18 | Northrop Grumman Systems Corporation | Array processing for satellite communications |
US20160315693A1 (en) | 2013-12-20 | 2016-10-27 | Avanti Broadband Limited | Internet access via satellite |
EP3109659A1 (en) | 2015-06-24 | 2016-12-28 | M&M Corporation Comm. VA | Satellite fishing surveillance constellation and method |
US20170043885A1 (en) | 2014-04-24 | 2017-02-16 | Safran Aircraft Engines | Method for deploying a satellite constellation |
US20170047987A1 (en) | 2015-08-10 | 2017-02-16 | California Institute Of Technology | Systems and Methods for Performing Shape Estimation Using Sun Sensors in Large-Scale Space-Based Solar Power Stations |
US20170070939A1 (en) | 2015-09-08 | 2017-03-09 | Kepler Communications Inc. | System and method for providing continuous communications access to satellites in geocentric, non-geosynchronous orbits |
US20170099095A1 (en) | 2015-10-05 | 2017-04-06 | Space Systems/Loral, Llc | Satellite with transition beam size |
US9664726B2 (en) | 2014-10-15 | 2017-05-30 | Spire Global, Inc. | Satellite communication system |
US20170156069A1 (en) | 2012-08-08 | 2017-06-01 | Golba Llc | Method and system for optimizing communication in leaky wave distributed transceiver environments |
US9673889B2 (en) | 2014-10-15 | 2017-06-06 | Spire Global, Inc. | Satellite operating system, architecture, testing and radio communication system |
US20170188322A1 (en) | 2015-12-23 | 2017-06-29 | Thales | Solution with massive spatial distributing for telecom constellation |
US20170250751A1 (en) | 2016-02-29 | 2017-08-31 | Satellogic Overseas, Inc. (Bvi) | System for planetary-scale analytics |
US20170254905A1 (en) | 2015-12-14 | 2017-09-07 | Higher Ground Llc | Magnetic compass confirmation for avoidance of interference in wireless communications |
US20170285178A1 (en) | 2016-04-04 | 2017-10-05 | Spire Global, Inc | AIS Spoofing and Dark-Target Detection Methodology |
US20170300654A1 (en) | 2016-04-15 | 2017-10-19 | BR Invention Holding, LLC | Mobile medicine communication platform and methods and uses thereof |
US9973266B1 (en) | 2017-06-12 | 2018-05-15 | Ast & Science, Llc | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US20180241464A1 (en) | 2015-10-30 | 2018-08-23 | Paris Micheals | Mobile satellite communication system |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2027456C (en) * | 1989-11-08 | 1995-09-26 | Timothy A. Murphy | Satellite beam-forming network system having improved beam shaping |
ATE146637T1 (en) * | 1991-11-08 | 1997-01-15 | Calling Communications Corp | BEAM COMPENSATION METHOD FOR SATELLITE COMMUNICATION SYSTEM |
JP2001036448A (en) * | 1997-05-21 | 2001-02-09 | Hitachi Ltd | Orbital satellite with long residence time in the zenith direction, its orbit control method, and communication system using the same |
EP0940941A1 (en) * | 1998-03-05 | 1999-09-08 | ICO Services Ltd. | Transactional message handling in communications systems |
JP2003327200A (en) * | 2002-05-15 | 2003-11-19 | Mitsubishi Electric Corp | Observation direction control plan planning method |
US7584297B1 (en) * | 2002-09-26 | 2009-09-01 | Viasat, Inc. | Soft diversity satellite gateway architecture |
JP3960255B2 (en) * | 2003-04-24 | 2007-08-15 | 株式会社デンソー | In-vehicle integrated antenna device |
JP4324708B2 (en) * | 2004-12-27 | 2009-09-02 | 学校法人近畿大学 | Message display / print card release and storage system using artificial satellite and its usage |
US20080169992A1 (en) * | 2007-01-16 | 2008-07-17 | Harris Corporation | Dual-polarization, slot-mode antenna and associated methods |
US7495607B1 (en) * | 2007-11-28 | 2009-02-24 | Topcon Gps, Llc | Method and apparatus for adaptive processing of signals received from satellite navigation systems |
GB2506261B (en) | 2013-07-30 | 2015-02-18 | Rolls Royce Plc | A joint |
US11128179B2 (en) * | 2014-05-14 | 2021-09-21 | California Institute Of Technology | Large-scale space-based solar power station: power transmission using steerable beams |
US10312993B2 (en) * | 2015-10-30 | 2019-06-04 | The Florida International University Board Of Trustees | Cooperative clustering for enhancing MU-massive-MISO-based UAV communication |
-
2017
- 2017-08-11 US US15/675,155 patent/US9973266B1/en active Active
- 2017-09-22 EP EP17192639.7A patent/EP3416303B1/en active Active
- 2017-09-22 DK DK17192639T patent/DK3416303T3/en active
- 2017-09-22 ES ES17192639T patent/ES2751723T3/en active Active
- 2017-10-16 JP JP2017200577A patent/JP6506365B2/en active Active
-
2018
- 2018-05-14 US US15/979,298 patent/US11159228B2/en active Active
- 2018-06-11 WO PCT/US2018/036929 patent/WO2018231714A1/en active Application Filing
- 2018-06-11 AU AU2018283981A patent/AU2018283981B2/en active Active
- 2018-06-11 CA CA3066691A patent/CA3066691A1/en active Pending
- 2018-06-11 KR KR1020197038780A patent/KR102564896B1/en active Active
- 2018-06-11 KR KR1020237001185A patent/KR102658277B1/en active Active
-
2021
- 2021-10-13 US US17/499,956 patent/US11956066B2/en active Active
-
2023
- 2023-11-22 US US18/517,363 patent/US12063098B1/en active Active
-
2024
- 2024-07-09 US US18/766,811 patent/US20250119203A1/en active Pending
Patent Citations (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1282789A (en) | 1969-03-24 | 1972-07-26 | Int Standard Electric Corp | Satellite communication system |
US3611435A (en) | 1969-03-24 | 1971-10-05 | Itt | Satellite communication system |
JPS6170823A (en) | 1984-09-13 | 1986-04-11 | Mitsubishi Electric Corp | Satellite communication system |
US4843397A (en) | 1987-03-26 | 1989-06-27 | Selenia Spazio Spa | Distributed-array radar system comprising an array of interconnected elementary satellites |
JPH06170823A (en) | 1992-12-07 | 1994-06-21 | Misawa Homes Co Ltd | Inorganic surface material and production thereof |
US5465096A (en) | 1993-03-01 | 1995-11-07 | Nec Corporation | Transmission apparatus for orbiting satellite |
US6314269B1 (en) | 1994-07-22 | 2001-11-06 | International Mobile Satelitte Organization | Multi-beam TDMA satellite mobile communications system |
US5777582A (en) | 1995-05-16 | 1998-07-07 | Cal Corporation | Deployable double-membrane surface antenna |
US6975582B1 (en) | 1995-07-12 | 2005-12-13 | Ericsson Inc. | Dual mode satellite/cellular terminal |
US5810297A (en) | 1996-04-29 | 1998-09-22 | Basuthakur; Sibnath | Satellite cluster attitude/orbit determination and control system and method |
US5925092A (en) | 1996-12-02 | 1999-07-20 | Motorola, Inc. | Satellite cluster with synchronized payload processors and method for use in space-based systems |
US5909299A (en) | 1997-04-28 | 1999-06-01 | Sheldon, Jr.; L. Philip | Microsatellite system for high-volume orbital telemetry |
US6157642A (en) | 1997-10-14 | 2000-12-05 | Teledesic Llc | Coding system and method for low-earth orbit satellite data communication |
US6058306A (en) | 1998-11-02 | 2000-05-02 | Hughes Electronics Corporation | Compensation of dynamic doppler frequency of large range in satellite communication systems |
US20010034206A1 (en) | 1998-12-23 | 2001-10-25 | James D. Thompson | Reconfigurable satellite and antenna coverage communications backup capabilities |
US6990314B1 (en) | 1999-03-18 | 2006-01-24 | The Directv Group, Inc. | Multi-node point-to-point satellite communication system employing multiple geo satellites |
JP2002095190A (en) | 2000-09-14 | 2002-03-29 | Mitsubishi Electric Corp | Space solar power generation method and system using the method |
US20020102939A1 (en) | 2001-01-29 | 2002-08-01 | Motorola, Inc. | Communication system utiliizing a constellation of satellites and method therefor |
US20040209584A1 (en) | 2002-12-11 | 2004-10-21 | Bargroff Keith P. | Integrated crosspoint switch with band translation |
US20050248491A1 (en) | 2004-04-02 | 2005-11-10 | Alcatel | Satellite with electromagnetic control of objects |
US7357356B1 (en) | 2005-02-28 | 2008-04-15 | Lockheed Martin Corporation | Attitude and antenna steering system for geosynchronous earth orbit (GEO) spacecraft |
US20070155318A1 (en) | 2006-01-04 | 2007-07-05 | Globalstar, Inc. | Satellite communication system employing a combination of time slots and orthogonal codes |
US20070184778A1 (en) | 2006-02-09 | 2007-08-09 | Eagle River Holdings Llc | System and method for communication utilizing time division duplexing |
US20070250267A1 (en) | 2006-04-25 | 2007-10-25 | Northrop Grumman Corporation | Delta-V-free satellite cloud cluster flying |
US20080087769A1 (en) | 2006-06-20 | 2008-04-17 | Kara Johnson | Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor |
US20080122690A1 (en) | 2006-06-30 | 2008-05-29 | Marlene Wan | Enhanced Aiding in GPS Systems |
US20100046853A1 (en) | 2007-08-23 | 2010-02-25 | Lockheed Martin Missiles And Fire Control | Multi-bank TDI approach for high-sensitivity scanners |
US20100317293A1 (en) | 2008-03-03 | 2010-12-16 | Fujitsu Limited | Broadcast service signal transmission method and transmission device |
US20100195564A1 (en) | 2008-11-26 | 2010-08-05 | Je-Hong Jong | Method and system for providing timing and frequency synchronization for satellite diversity |
US20130113996A1 (en) | 2010-07-13 | 2013-05-09 | Thomson Licensing | Method of picture-in-picture for multimedia applications |
US20120217348A1 (en) | 2011-02-21 | 2012-08-30 | European Space Agency | Earth observation satellite, satellite system, and launching system for launching satellites |
US20150249462A1 (en) | 2011-06-16 | 2015-09-03 | Spatial Digital Systems, Inc. | System for processing data streams |
US20130148696A1 (en) | 2011-12-12 | 2013-06-13 | Electronics And Telecommunications Research Institute | Satellite broadcasting system and method |
US20150162656A1 (en) | 2012-06-11 | 2015-06-11 | University Of Florida Research Foundation, Inc. | Antennas for small satellites |
US20160254857A1 (en) | 2012-08-01 | 2016-09-01 | Emc Satcom Technologies, Llc | High throughput satellite |
US9248924B2 (en) | 2012-08-06 | 2016-02-02 | Cal Poly Corporation | CubeSat system, method and apparatus |
US9150313B2 (en) | 2012-08-06 | 2015-10-06 | Cal Poly Corporation | CubeSat system, method and apparatus |
US20150217876A1 (en) | 2012-08-08 | 2015-08-06 | Arie Halsband | Low volume micro satellite with flexible winded panels expandable after launch |
US20170156069A1 (en) | 2012-08-08 | 2017-06-01 | Golba Llc | Method and system for optimizing communication in leaky wave distributed transceiver environments |
US20150371431A1 (en) | 2013-01-29 | 2015-12-24 | Andrew Robert Korb | Methods for analyzing and compressing multiple images |
US20140266872A1 (en) | 2013-03-15 | 2014-09-18 | Hackproof Technologies Inc. | Space Needles |
CN103731935A (en) | 2013-12-19 | 2014-04-16 | 上海卫星工程研究所 | Space network communication method based on WIFI |
US20160315693A1 (en) | 2013-12-20 | 2016-10-27 | Avanti Broadband Limited | Internet access via satellite |
US20160011318A1 (en) | 2014-02-26 | 2016-01-14 | Clark Emerson Cohen | Performance and Cost Global Navigation Satellite System Architecture |
US9473234B2 (en) | 2014-03-06 | 2016-10-18 | Northrop Grumman Systems Corporation | Array processing for satellite communications |
JP2015204621A (en) | 2014-04-11 | 2015-11-16 | タレス | Satellite communication system and method capable of multi-spot coverage and variable capacity distribution |
US20170043885A1 (en) | 2014-04-24 | 2017-02-16 | Safran Aircraft Engines | Method for deploying a satellite constellation |
US20160065006A1 (en) | 2014-09-01 | 2016-03-03 | James Joshua Woods | Solar Energy Conversion and Transmission System and Method |
US9664726B2 (en) | 2014-10-15 | 2017-05-30 | Spire Global, Inc. | Satellite communication system |
US9673889B2 (en) | 2014-10-15 | 2017-06-06 | Spire Global, Inc. | Satellite operating system, architecture, testing and radio communication system |
US20160251092A1 (en) | 2015-02-26 | 2016-09-01 | Spire Global, Inc. | System and method for power distribution in a autonomous modular system |
US20160253284A1 (en) | 2015-02-26 | 2016-09-01 | Spire Global, Inc. | Processor system for control of modular autonomous system |
GB2536017A (en) | 2015-03-03 | 2016-09-07 | Stratospheric Platforms Ltd | Generation and use of similar multiple beams |
WO2016153823A1 (en) | 2015-03-20 | 2016-09-29 | Qualcomm Incorporated | Method and apparatus for time or frequency synchronization in non-geosynchronous satellite communication systems |
EP3109659A1 (en) | 2015-06-24 | 2016-12-28 | M&M Corporation Comm. VA | Satellite fishing surveillance constellation and method |
US20170047987A1 (en) | 2015-08-10 | 2017-02-16 | California Institute Of Technology | Systems and Methods for Performing Shape Estimation Using Sun Sensors in Large-Scale Space-Based Solar Power Stations |
US20170070939A1 (en) | 2015-09-08 | 2017-03-09 | Kepler Communications Inc. | System and method for providing continuous communications access to satellites in geocentric, non-geosynchronous orbits |
US20170099095A1 (en) | 2015-10-05 | 2017-04-06 | Space Systems/Loral, Llc | Satellite with transition beam size |
US20180241464A1 (en) | 2015-10-30 | 2018-08-23 | Paris Micheals | Mobile satellite communication system |
AU2016347539B2 (en) | 2015-10-30 | 2021-05-06 | Paris Michaels | Mobile satellite communication system |
US20170254905A1 (en) | 2015-12-14 | 2017-09-07 | Higher Ground Llc | Magnetic compass confirmation for avoidance of interference in wireless communications |
US20170188322A1 (en) | 2015-12-23 | 2017-06-29 | Thales | Solution with massive spatial distributing for telecom constellation |
US20170250751A1 (en) | 2016-02-29 | 2017-08-31 | Satellogic Overseas, Inc. (Bvi) | System for planetary-scale analytics |
US20170285178A1 (en) | 2016-04-04 | 2017-10-05 | Spire Global, Inc | AIS Spoofing and Dark-Target Detection Methodology |
US20170300654A1 (en) | 2016-04-15 | 2017-10-19 | BR Invention Holding, LLC | Mobile medicine communication platform and methods and uses thereof |
US9973266B1 (en) | 2017-06-12 | 2018-05-15 | Ast & Science, Llc | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US20180359022A1 (en) | 2017-06-12 | 2018-12-13 | Ast & Science, Llc | System and method for high throughput fractionated satellites (htfs) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
WO2018231714A1 (en) | 2017-06-12 | 2018-12-20 | Ast & Science, Llc | High throughput fractionated satellites for direct connectivity with end user devices and terminals using flight formations of small or very small satellites |
Non-Patent Citations (19)
Title |
---|
"ISRO sets new world record, successfully puts 104 satellites into Earth's orbit", India TV News Desk, Feb. 15, 2017, http://www. indianews.com/news/india-countdown-begins-india-to-launch-record-104-satellites-on-single-rocket-368925, 8 pages. |
3gpp: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio (NR) to support non terrestrial networks (Release 15)", Jun. 1, 2018 (Jun. 1, 2018), 118 pages. |
Examination Report for AU Application No. 2020241308, dated Nov. 9, 2021, 3 pgs. |
Examination Report for EP Application No. 17192639.7, (Dated Sep. 28, 2018, 5 pages. |
Examination Report No. 1 issued in corresponding Australian Patent Application No. 2022201566, mailed Mar. 30, 2023, 5 pages. |
Extended European Search Report for EP Application No. 20774081.2, dated Nov. 15, 2022. |
Extended European Search Report issued in corresponding European Patent Application No. 23177107.2, mailed Aug. 3, 2023, 18 pages. |
First Office Action issued in corresponding Indian Patent Application No. 202117043217, mailed Aug. 24, 2023, 6 pages. |
Gaudin, S. , "Swarms of smart nano-satellites may offer global connectivity (with video)", Sep. 15, 2015, Computerworld, https:/ /www. computerworld.com/article/2983637/emerging-technology-swarms-of-smart-nano-satellites-may-offer-global-connectivity-with-video-html, 6 pages. |
International Search Report & Written Opinion for PCT/US20/021215, dated Jul. 1, 2020, 12 pages. |
International Search Report and Written Opinion for PCT /US18/36929, dated Aug. 31, 2018, 11 pages. |
Konechy G., "Small Satellites—A tool for Earth observation?" Jan. 2004, https://www.researchgate/.net/publication/2290284 14_Small_satellites-A_tool_for_Earth_observation?, 4 pages. |
Nodes , "Spacecraft network operations demonstration using multiple spacecraft in an autonomously configured space network allowing crosslink communications and multipoint scientific measurements", National Aeronautics and Space Administration, www.nasa.gov, Aug. 1, 2016, 2 pages. |
Nokia et al: "Overview for NR supporting NTN", 3GPP Draft; R1-1901722, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; France, 3GPP TSG RAN WG1 Meeting #96, Athens, Greece, Feb. 25-Mar. 1, 2019, 10 pages. |
Notification of material filed by a third party received in AU Application No. 2020241308, mailed Jan. 27, 2022, 3 pages. |
Office Action for KR Application No. 10-2019-7038780, dated Jul. 19, 2022. |
Rainey K., "CubeSats: Shaping Possibilities in Space," Feb. 22, 2017, https://www.nasa.gov/mission_pages/station/research/news/cubesats_possibilities, 3 pages. |
The First Examination Report for Indian Patent Application No. 201711020428, Dec. 17, 2019. |
Williams, K., "NASA Small Satellites to Demonstrate Swarm Communications and Autonomy," Dec. 7, 2015, https://www.nasa.gov/feature/nasa-srnall-satellites-to-demonstrate-swarm-cornmunications-and-autonomy, 2 pages. |
Also Published As
Publication number | Publication date |
---|---|
US20240275470A1 (en) | 2024-08-15 |
EP3416303B1 (en) | 2019-09-04 |
JP6506365B2 (en) | 2019-04-24 |
KR20200015612A (en) | 2020-02-12 |
CA3066691A1 (en) | 2018-12-20 |
US20220038174A1 (en) | 2022-02-03 |
WO2018231714A1 (en) | 2018-12-20 |
KR20230014845A (en) | 2023-01-30 |
US20180359022A1 (en) | 2018-12-13 |
DK3416303T3 (en) | 2019-12-09 |
AU2018283981A1 (en) | 2020-01-23 |
ES2751723T3 (en) | 2020-04-01 |
KR102564896B1 (en) | 2023-08-07 |
JP2019001446A (en) | 2019-01-10 |
EP3416303A1 (en) | 2018-12-19 |
US9973266B1 (en) | 2018-05-15 |
AU2018283981B2 (en) | 2024-06-13 |
US11956066B2 (en) | 2024-04-09 |
US20250119203A1 (en) | 2025-04-10 |
KR102658277B1 (en) | 2024-04-16 |
US11159228B2 (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12063098B1 (en) | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites | |
US11870540B2 (en) | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites | |
AU2022201566B2 (en) | High throughput fractionated satellites | |
US9966658B2 (en) | Antennas for small satellites | |
US9293820B2 (en) | Compensating for a non-ideal surface of a reflector in a satellite communication system | |
Davarian et al. | Improving small satellite communications in deep space—a review of the existing systems and technologies with recommendations for improvement. Part i: direct to earth links and SmallSat telecommunications equipment | |
Hoth et al. | The Telstar satellite system | |
Miranda | Antenna technologies for future NASA exploration missions | |
DURRANI | Communication system configuration for the earth resources satellite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |