US12091981B2 - Insertion tool and method - Google Patents

Insertion tool and method Download PDF

Info

Publication number
US12091981B2
US12091981B2 US16/898,629 US202016898629A US12091981B2 US 12091981 B2 US12091981 B2 US 12091981B2 US 202016898629 A US202016898629 A US 202016898629A US 12091981 B2 US12091981 B2 US 12091981B2
Authority
US
United States
Prior art keywords
insertion tool
cavity
base
tool arm
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/898,629
Other versions
US20210388737A1 (en
Inventor
Julian Matthew Foxall
Trevor Owen Hawke
Andrew Crispin Graham
Chiara Mellucci
Todd William DANKO
Ambarish Jayant Kulkarni
Michael Dean Fullington
Margeaux Wallace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oliver Crispin Robotics Ltd
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to OLIVER CRISPIN ROBOTICS LIMITED reassignment OLIVER CRISPIN ROBOTICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOXALL, JULIAN MATTHEW, HAWKE, TREVOR OWEN, GRAHAM, ANDREW CRISPIN
Priority to US16/898,629 priority Critical patent/US12091981B2/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FULLINGTON, MICHAEL DEAN, WALLACE, MARGEAUX, Kulkarni, Ambarish Jayant, DANKO, TODD WILLIAM
Application filed by General Electric Co filed Critical General Electric Co
Assigned to OLIVER CRISPIN ROBOTICS LIMITED reassignment OLIVER CRISPIN ROBOTICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MELLUCCI, Chiara
Priority to EP21171692.3A priority patent/EP3933169A3/en
Priority to CA3120629A priority patent/CA3120629C/en
Priority to CN202110643037.6A priority patent/CN113803169B/en
Priority to CN202510049384.4A priority patent/CN119844216A/en
Publication of US20210388737A1 publication Critical patent/US20210388737A1/en
Priority to US18/649,333 priority patent/US20240280033A1/en
Publication of US12091981B2 publication Critical patent/US12091981B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • F01D25/285Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/32Arrangement, mounting, or driving, of auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/13Parts of turbine combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/72Maintenance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/40Movement of components
    • F05D2250/42Movement of components with two degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • F05D2260/56Kinematic linkage, i.e. transmission of position using cams or eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/804Optical devices
    • F05D2270/8041Cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00019Repairing or maintaining combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present subject matter relates generally to a tool and method for inspecting cavity through an access opening, such as an annular space in a turbine engine through an inspection port.
  • At least certain gas turbine engines include, in serial flow arrangement, a compressor section including a low pressure compressor and a high-pressure compressor for compressing air flowing through the engine, a combustor for mixing fuel with the compressed air such that the mixture may be ignited, and a turbine section including a high pressure turbine and a low pressure turbine for providing power to the compressor section.
  • At least certain gas turbine engines define an annular opening. Certain of these annular openings may vary in size. An inspection tool for inspecting one or more of these annular openings may be beneficial.
  • an insertion tool for an engine defining an access opening and including a component defining at least in part a cavity.
  • the insertion tool includes: an insertion tool arm having a plurality of segments, the insertion tool arm configured for insertion through the access opening into the cavity and the plurality of segments configured to be in a fixed position relative to one another within the cavity; and a base coupled to the insertion tool arm and configured to be positioned outside the cavity and to move the insertion tool arm along at least two degrees of freedom.
  • FIG. 1 is a schematic, cross-sectional view of a gas turbine engine in accordance with an exemplary aspect of the present disclosure.
  • FIG. 2 is a close-up, cross-sectional view of a combustion section of the exemplary gas turbine engine of FIG. 1 including an insertion tool in accordance with an exemplary embodiment of the present disclosure, along an axial direction and a radial direction.
  • FIG. 3 is another close-up, cross-sectional view of the combustion section of the exemplary gas turbine engine of FIG. 1 including the exemplary insertion tool, along the radial direction and a circumferential direction.
  • FIG. 4 is a close-up view of an insertion tool in accordance with another exemplary embodiment of the present disclosure in a first position.
  • FIG. 5 is a close-up view of the exemplary insertion tool of FIG. 4 in a second position.
  • FIG. 6 is a radial view of the exemplary insertion tool of FIG. 4 in the first position.
  • FIG. 7 is a radial view of the exemplary insertion tool of FIG. 4 in the second position.
  • FIG. 8 is a flow diagram of a method for inserting a tool into an interior of an engine in accordance with an exemplary aspect of the present disclosure.
  • first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
  • forward and aft refer to relative positions within a component or system, and refer to the normal operational attitude of the component or system. For example, with regard to a gas turbine engine, forward refers to a position closer to an inlet of the gas turbine engine and aft refers to a position closer to an exhaust of the gas turbine engine.
  • Coupled to refers to both direct coupling, fixing, or attaching, as well as indirect coupling, fixing, or attaching through one or more intermediate components or features, unless otherwise specified herein.
  • Approximating language is applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value, or the precision of the methods or machines for constructing or manufacturing the components and/or systems. For example, the approximating language may refer to being within a 10 percent margin.
  • annular opening(s) are defined, and these annular openings may vary in size within the particular make/model of gas turbine engine, and across different makes/models of gas turbine engines, such that a dedicated, specialized inspection tool must be utilized with each annular opening to extend around and through such annular opening. Maintaining inspection tools for each of the various annular openings may be expensive and inconvenient.
  • an inspection tool for inspecting annular openings having varying sizes within, e.g., an individual gas turbine engine, or within various gas turbine engines.
  • an insertion tool that includes: an insertion tool arm having a plurality of segments, and base coupled to the insertion tool arm.
  • the insertion tool arm is configured for insertion through an access opening of the gas turbine engine into a cavity.
  • the plurality of segments are configured to be in a fixed position relative to one another within the cavity.
  • the base is configured to be positioned outside the cavity and is further configured to move the insertion tool arm along at least two degrees of freedom.
  • the base may be capable of moving an insertion arm that defines a radius of curvature when in the fixed position different than a radius of curvature of the annular opening, allowing for the inspection tool to be utilized with a variety of different-sized annular openings/gas turbine engines.
  • FIG. 1 is a schematic cross-sectional view of a gas turbine engine in accordance with an exemplary embodiment of the present disclosure. More particularly, for the embodiment of FIG. 1 , the gas turbine engine is a high-bypass turbofan jet engine 10 , referred to herein as “turbofan engine 10 .” As shown in FIG. 1 , the turbofan engine 10 defines an axial direction A (extending parallel to a longitudinal centerline 12 provided for reference) and a radial direction R. The turbofan engine 10 also defines a circumferential direction C (see FIG. 3 ) extending circumferentially about the axial direction A. In general, the turbofan 10 includes a fan section 14 and a turbomachine 16 disposed downstream from the fan section 14 .
  • the exemplary turbomachine 16 depicted is generally enclosed within a substantially tubular outer casing 18 that defines an annular inlet 20 and an annular exhaust 21 .
  • the outer casing 18 encases, in serial flow relationship, a compressor section including a booster or low pressure (LP) compressor 22 and a high pressure (HP) compressor 24 ; a combustion section 26 ; a turbine section including a high pressure (HP) turbine 28 and a low pressure (LP) turbine 30 ; and a jet exhaust nozzle section 32 .
  • a high pressure (HP) shaft or spool 34 drivingly connects the HP turbine 28 to the HP compressor 24 .
  • a low pressure (LP) shaft or spool 36 drivingly connects the LP turbine 30 to the LP compressor 22 .
  • the compressor section, combustion section 26 , turbine section, and nozzle section 32 together define a core air flowpath 37 therethrough.
  • the fan section 14 includes a fixed pitch fan 38 having a plurality of fan blades 40 .
  • the fan blades 40 are each attached to a disk 42 , with the fan blades 40 and disk 42 together rotatable about the longitudinal axis 12 by the LP shaft 36 .
  • the turbofan engine 10 is a direct drive turbofan engine, such that the LP shaft 36 drives the fan 38 of the fan section 14 directly, without use of a reduction gearbox.
  • the fan 38 may instead be a variable pitch fan, and the turbofan engine 10 may include a reduction gearbox, in which case the LP shaft 36 may drive the fan 38 of the fan section 14 across the gearbox.
  • the disk 42 is covered by rotatable front hub 48 aerodynamically contoured to promote an airflow through the plurality of fan blades 40 .
  • the exemplary turbofan engine 10 includes an annular nacelle assembly 50 that circumferentially surrounds the fan 38 and/or at least a portion of the turbomachine 16 .
  • the nacelle assembly 50 is supported relative to the turbomachine 16 by a plurality of circumferentially-spaced outlet guide vanes 52 .
  • a downstream section 54 of the nacelle assembly 50 extends over an outer portion of the casing 18 so as to define a bypass airflow passage 56 therebetween.
  • the ratio between a first portion of air through the bypass airflow passage 56 and a second portion of air through the inlet 20 of the turbomachine 16 , and through the core air flowpath 37 is commonly known as a bypass ratio.
  • the turbofan engine 10 may further define a plurality of openings allowing for inspection of various components within the turbomachine 16 .
  • the turbofan engine 10 may define a plurality of borescope openings at various axial positions within the compressor section, combustion section 26 , and turbine section.
  • the turbofan engine 10 may include one or more igniter ports within, e.g., the combustion section 26 of the turbomachine 16 , that may allow for inspection of the combustion section 26 .
  • turbofan engine 10 depicted in FIG. 1 is by way of example only, and that in other exemplary embodiments, the turbofan engine 10 may have any other suitable configuration, including, for example, any other suitable number of shafts or spools, turbines, compressors, etc. Additionally, or alternatively, in other exemplary embodiments, any other suitable turbine engine may be provided.
  • the turbine engine may not be a turbofan engine, and instead may be configured as a turboshaft engine, a turboprop engine, turbojet engine, etc.
  • FIG. 2 a close-up, schematic view of the combustion section 26 of the turbomachine 16 of the exemplary gas turbine engine 10 of FIG. 1 is provided.
  • the combustion section 26 generally includes a combustor 60 positioned within a combustor casing 62 .
  • the combustor 60 includes an inner liner 64 , an outer liner 66 , and a dome 68 together defining at least in part a combustion chamber 70 .
  • the dome 68 for the embodiment depicted, is an annular dome and the combustor 60 is configured as an annular combustor. In such a manner, the combustion chamber 70 generally defines an annular shape.
  • the combustor 60 defines, or rather, the dome 68 defines, a nozzle opening 72
  • the combustion section 26 further includes a fuel-air mixer 74 , or nozzle, positioned within the nozzle opening 72 .
  • the fuel-air mixer 74 is configured to provide a mixture of fuel and compressed air to the combustion chamber 70 during operation of the turbofan engine 10 to generate combustion gases.
  • the combustion gases flow from the combustion chamber 70 to the HP turbine 28 , and more specifically, through a plurality of inlet guide vanes 76 of the HP turbine 28 .
  • the combustor 60 may further include a plurality of circumferentially spaced nozzle openings 72 and a respective plurality of fuel-air mixers 74 positioned within the nozzle openings 72 .
  • the combustion section 26 typically includes an igniter (not installed or depicted) extending through one or more igniter openings 78 defined in the combustor casing 62 and the outer liner 66 of the combustor 60 .
  • the igniter may be removed and the igniter openings 78 may be utilized for inspecting, e.g., the combustion chamber 70 , inlet guide vanes 76 of the HP turbine 28 , and/or other components.
  • an insertion tool for inserting one or more implements into an interior of an engine in accordance with an exemplary embodiment of the present disclosure is depicted.
  • the insertion tool is a tool 100 for inspecting an annular section of an engine in accordance with an exemplary embodiment of the present disclosure, and is depicted extending through the pair of igniter openings 78 defined in the combustor casing 62 and the outer liner 66 of the combustor 60 .
  • FIG. 3 providing a partial, axial cross-sectional view of the combustion section 26 of FIG.
  • the tool 100 generally includes an insertion tool arm 101 formed generally of a plurality of segments 102 and an insertion tube 104 , with the plurality of segments 102 of the insertion tool arm 101 movable through the insertion tube 104 into the combustion chamber 70 .
  • the insertion tube 104 includes a bend 106 .
  • the bend 106 may be a substantially 90 degree bend, or may be larger or smaller than 90 degrees.
  • the insertion tube 104 includes a radial portion 108 extending substantially along the radial direction R and a circumferential portion 110 extending substantially along the circumferential direction C. The radial portion 108 and circumferential portion 110 are joined at the bend 106 .
  • the plurality of segments 102 are fed through the radial portion 108 , pivot in a first angular direction relative to one another to go through the bend 106 , and then pivot in a second, opposite angular direction relative to one another and couple to one another such that they are configured to be in a fixed position relative to one another as they move through to the circumferential portion 110 . From the circumferential portion 110 , the segments 102 extend through the annular combustion chamber 70 .
  • the term “configured to be fixed position relative to one another” means that the segments 102 are not configured to appreciable bend or deflect at joints between adjacent segments 102 during anticipated operations of the tool 100 , with the exception of the actual insertion operation.
  • the segments 102 may be biased towards the fixed position with a sufficient biasing force to hold the segments in place during anticipated operations of the tool 100 , but may allow for some deflection in the event the tool 100 , e.g., encounters an object in the environment, or is being inserted or removed from the environment.
  • the tool 100 further includes an insertion tool arm position sensor, or simply position sensor 111 , positioned proximate a distal end of the insertion tool arm 101 .
  • the position sensor 111 is positioned at a forward-most segment 102 ′ of the plurality of segments 102 of the insertion tool arm 101 .
  • the position sensor 111 may include one or more cameras.
  • the one or more cameras may include two or more sensors providing stereo feedback data (e.g., information from two separate locations which may be combined to provide relatively accurate distance/positioning data).
  • the position sensor 11 may include a camera, such that the position sensor 111 may further function as an implement for inspecting the interior of the engine.
  • the camera may additionally or alternatively provide a video feed for inspecting one or more components of the engine, such as for inspecting various components of the combustor 60 and/or high pressure turbine 28 .
  • the insertion tool arm 101 may additionally or alternatively include any other suitable position sensor 111 for sensing data indicative of a position of the insertion tool arm 101 within the cavity.
  • the plurality of segments 102 of the tool 100 extending through the annular combustion chamber 70 together define an average arc shape 112 (i.e., an average arc line).
  • the annular combustion chamber 70 defines inspection radius 114 , the inspection radius 114 being a distance along the radial direction R from which it is desired to view the annular section, i.e., annular combustion chamber 70 , of the turbofan engine 10 .
  • the inspection radius 114 may be a radial midpoint within the combustion chamber 70 .
  • the average arc shape 112 of the plurality of segments 102 extending through the annular combustion chamber 70 defines a segment 102 radius 116 (or “radius of curvature”).
  • the segment 102 radius 116 of the average arc shape 112 may not be substantially equal to the inspection radius 114 , in which case the insertion tool arm 101 may be moved along various degrees of freedom from a base 120 located outside the interior of the gas turbine engine. Such operation will be described in more detail below.
  • the radius of curvature/segment 102 radius 116 refers to the radius of a circle that aligns with the average arc shape 112 of the plurality of segments 102 extending through the annulus of the engine 10 , which is the annular combustion chamber 70 for the embodiment depicted.
  • the tool 100 may additionally, or alternatively, be used to inspect other areas of the turbofan engine 10 having different inspection radii 114 .
  • the tool 100 may be utilized to inspect annular sections of the compressor section or the turbine section, or alternatively still, other engines or systems altogether.
  • the various segments 102 of the insertion tool arm 101 may be configured in a similar manner to the segments 102 of the tool described in U.S. Patent Application No. 2019/0360794, filed May 23, 2018, entitled “INSPECTION TOOL AND METHOD,” with Andrew Crispin Graham listed as the lead inventor, and such reference is hereby incorporated fully herein by reference.
  • the plurality of segments 102 may include adjustment members for changing an average arc shape 112 of the plurality of segments 102 (either beforehand, or in response to sensed real-time data).
  • the segments 102 of the insertion tool arm 101 may be configured in any other suitable manner.
  • the segments 102 may not be adjustable, such that they only have one geometry when moved to a fixed position within the interior of the engine. Additionally, or alternatively, less than all of the segments 102 may be adjustable, or one or more of the segments 102 may be adjustable in any other suitable manner.
  • the insertion tool further includes a base 120 coupled to the insertion tool arm 101 and in communication with the position sensor 111 .
  • the base 120 is positioned outside the cavity and is configured to move the insertion tool arm 101 along at least one degree of freedom in response to data received from the position sensor 111 .
  • the base 120 is mounted to an outer casing 18 of the engine surrounding the combustion section 26 of the engine.
  • the base 120 may provide for movement of the insertion tool arm 101 along at least two degrees of freedom, such as along at least four degrees of freedom, such as along at least six degrees of freedom.
  • the various degrees of freedom in which the base 120 may move the insertion tool arm 101 are depicted in FIG. 3 as a longitudinal direction L 1 , a lateral direction L 2 , a transverse direction T, an orientation about the longitudinal direction L 1 ′, an orientation about the lateral direction L 2 ′, and an orientation about the transverse direction T′.
  • the tool 100 further includes a controller 150 .
  • the controller 150 has one or more processors 152 and memory 154 .
  • the memory 154 stores data 156 .
  • the data 156 may include instructions that, when executed by the one or more processors 152 , cause the tool 100 to perform certain functions.
  • One or more the functions may be one or more of the functions described below with reference to, e.g., the exemplary method 200 .
  • the controller 150 includes a network interface 158 .
  • the network interface 158 may utilize any suitable wired or wireless communications network 160 to communicate with other components of the tool 100 and/or other components.
  • the controller 150 is operably coupled to both the position sensor 111 and the base 120 .
  • the base 120 may receive data indicative of a position of the plurality of segments 102 of the insertion tool arm 101 within the cavity (i.e., the combustion chamber 70 for the embodiment shown), data indicative of a desired position of the insertion tool arm 101 within the cavity (e.g., a desired position of the forward-most segment 102 ′ and/or sensor 111 within the cavity), and control the insertion tool arm 101 to move the insertion tool arm 101 to the desired position within the cavity while avoiding a collision with a component defining at least in part the cavity.
  • collision refers to any unwanted contact between the insertion tool arm 101 and the component.
  • the controller 150 may be operable with the base 120 to facilitate movement of the insertion tool arm 101 , sensor 111 , or both within the cavity of the engine, such as within the combustion chamber 70 of the engine to move the insertion tool arm 101 , sensor 111 , or both to the desired location within the cavity of the engine.
  • the controller 150 may operate on a feedback loop based on data sensed with the sensor 111 .
  • the base 120 may be configured to control a length of the insertion tool arm 101 within the cavity.
  • the exemplary base 120 depicted includes a feeding mechanism 122 configured to move the plurality of segments 102 through the insertion tube 104 and into the annular combustion chamber 70 .
  • the feeding mechanism 122 is also in communication with the controller 150 through the network 160 .
  • the feeding mechanism 122 may use a rotating wheel having a gripper surface (such as an elastomeric surface, or a geared surface corresponding to a geared surface of the segments 102 ) to feed the segments 102 into the insertion tube 104 .
  • the insertion tool 100 may include any suitable implements for performing one or more maintenance, repair, or inspection operations within the interior of the engine.
  • the position sensor 111 may include one or more cameras for inspecting the interior of the engine.
  • the insertion tool arm 101 may include one or more implements, such as one or more of a drill, heater, welder, etc., to perform a maintenance and/or repair operation in which material is added to a component of the engine, material is removed from a component of the engine, or a physical property of a component of the engine is changed.
  • an insertion tool 100 for an engine 10 in accordance with another exemplary embodiment of the present disclosure is provided.
  • the exemplary insertion tool 100 of FIGS. 4 and 5 may be configured in substantially the same manner as exemplary insertion tool 100 described above with reference to FIGS. 2 and 3 , and further, may be operable with a gas turbine engine 10 in accordance with one or more of the exemplary embodiments described above with reference to FIGS. 1 through 3 .
  • the engine 10 may be a gas turbine engine 10 defining an access opening and including a component defining at least in part a cavity.
  • the access port is an igniter port 78 or borescope port
  • the component is a combustion chamber liner 64 , 66 , a combustor dome 68 , a fuel nozzle 74 , or a combination thereof.
  • the cavity is a combustion chamber 70 of the engine 10 .
  • the exemplary insertion tool 100 of FIGS. 4 and 5 generally includes insertion tool arm 101 and a base 120 , the insertion tool arm 101 having a plurality of segments 102 and a position sensor 111 .
  • the position sensor 111 is positioned proximate a distal end of the insertion tool arm 101 , and more specifically, is positioned at a forward-most segment 102 ′ of the plurality of segments 102 of the insertion tool arm 101 .
  • the base 120 of the insertion tool 100 is configured to be mounted at a location separate from the engine 10 , and more specifically, from the base 120 of the insertion tool 100 is configured to be mounted to a ground location 124 .
  • the term “ground location” refers generically to any location separate from the engine 10 or a structure on which the engine 10 is mounted (such as an aircraft).
  • the ground location may be, e.g., the actual ground beneath the engine 10 , a stand or cart separate from the engine 10 positioned proximate the engine 10 , etc.
  • the insertion tool 100 further includes a second position sensor 126 configured to sense data indicative of a location of one or more aspects of the insertion tool 100 outside of the interior of the engine 10 , relative to the engine 10 .
  • the second position sensor 126 is included with the base 120 and is configured to sense data indicative of a location of the base 120 relative to the engine 10 (such as data indicative of relative distance and/or orientation).
  • the insertion tool 100 may include one or more of the features discussed in U.S. application Ser. No. 16/008,475, filed Jan. 14, 2018, which is incorporated herein in its entirety for all purposes.
  • the base 120 of the exemplary embodiment of FIGS. 4 and 5 is coupled to the insertion tool arm 101 and is in communication with the position sensor 111 of the insertion tool arm 101 .
  • the base 120 is configured to move insertion tool arm 101 along at least two degrees of freedom in response to data received from the position sensor 111 . More specifically, for the embodiment shown, the base 120 is configured to move insertion tool arm 101 along at least four degrees of freedom at least in part in response to data received from the position sensor 111 .
  • the base 120 is configured to move insertion tool arm 101 along at least six degrees of freedom, plus one degree of freedom from changing a length of the insertion tool arm 101 using the feeding mechanism 122 , at least in part in response to data received from the position sensor 111 .
  • the degrees of freedom in which the base 120 is configured to move the insertion tool arm 101 includes one or more of the following: a longitudinal direction L 1 , a lateral direction L 2 , a transverse direction T, an orientation about longitudinal direction L 1 ′, an orientation about the lateral direction L 2 ′, and an orientation about the transverse direction T′.
  • exemplary base 120 depicted includes a plurality of members pivotably coupled to one another about respective pivot points.
  • the base 120 includes a first member 130 pivotably coupled to a second member 132 about a first pivot point 134 , the second member 132 pivotally coupled to a third member 136 about a second pivot point 138 , and the third member 136 pivotally coupled to a fourth member 140 about a third pivot point 142 .
  • one or more of these members 130 , 132 , 136 , 140 may allow for rotation about a length thereof.
  • the first member 130 allows for rotation about a length of the first member 130
  • the second member 132 allows for rotation about a length of the second member 132
  • the third member 136 similarly allows for rotation about a length of the third member 136
  • the fourth member 140 allows for rotation about a length of the fourth member 140 .
  • the base 120 may include one or more electric motors operable with the members 130 , 132 , 136 , 140 and/or pivot points 134 , 138 , 142 to provide for the relative movement and rotation.
  • the base 120 may have any other suitable configuration for providing the movement of the insertion tool arm 101 along the desired degrees of freedom.
  • the base 102 may include a pair of linear actuators to only move the insertion tool arm 101 along the transverse direction T and longitudinal direction L 1 .
  • Other configurations are contemplated as well.
  • the insertion tool arm 101 may be moved by the base 120 (e.g., at the direction of the controller 150 ) to substantially any desired position and/or orientation within the cavity of the engine 10 .
  • such may be beneficial in order to allow for the insertion tool arm 101 to navigate through annular spaces within the same engine 10 , or different engines 10 , having different radii of curvatures 114 .
  • the insertion tool arm 101 made define a radius of curvature 114 different than that of the annular space through which it is being inserted, the capability of maneuvering the insertion tool arm 101 to various positions and orientations along the particular degrees of freedom may nonetheless allow for the insertion tool arm 101 to navigate through such annular space without collision.
  • the ability to move in the various degrees of freedom may facilitate the use of the insertion tool arm 101 in the various annular geometries (having, e.g., various radii of curvature 114 ) despite the constraint on the movement of the insertion tool arm 101 provided by the fixed position of the access opening of the engine 10 through which the insertion tool arm 101 is inserted.
  • the ability to move in the various degrees of freedom may facilitate the use of the insertion tool arm 101 in the various annular geometries while maintaining a desired clearance with the component(s) defining the access opening.
  • the insertion tool 100 may be able to move the insertion tool arm 101 inward and outward of the access opening, while pivoting the insertion tool arm 101 at the access opening, and/or changing an orientation of the insertion tool arm 101 , to position, e.g., the sensor 111 at a desired location within the cavity (combustion chamber 70 or other annular space within the engine 10 ) without colliding with any components.
  • the distal end of the insertion tool arm 101 is moved from a first location ( FIG. 4 ; depicted in phantom in FIG. 5 ) to a second location ( FIG. 5 ).
  • the insertion tool arm 101 is moved along the longitudinal direction L 1 and along the lateral direction L 2 , and is also changed in orientation about the transverse direction T.
  • such movement of the insertion tool arm 101 is made while maintaining a clearance with the component(s) defining the access opening, and includes pivoting the insertion tool arm 101 at the access opening.
  • Such may facilitate the movement of the distal end of the insertion tool arm 101 from the first location to the second location, despite any mismatch between the radii of curvature of insertion tool arm 101 and the cavity of the engine 10 .
  • the ability to move the insertion tool arm 101 about the various degrees of freedom may also allow for the distal end of the insertion tool arm 101 to be positioned at various location along a length of the engine.
  • the distal end of the insertion tool arm 101 may also allow for the distal end of the insertion tool arm 101 to be positioned at various location along a length of the engine.
  • FIGS. 6 and 7 each providing an outward-looking-in along a radial direction of the engine 10 view of the insertion tool arm 101 of FIGS. 4 and 5 , respectively
  • changing an orientation of the insertion arm tool 101 about one or more of the degrees of freedom may allow for the distal end of the insertion tool arm 101 to further be positioned at various directions along a length of the engine (e.g., along the axial direction A of the engine of FIG. 1 , shown as the lateral direction L 2 in FIGS. 6 and 7 ).
  • the base 120 may further increase or decrease a length of the insertion tool arm 101 within the cavity by adding or removing segments 102 within the cavity. Accordingly, there may be a variety of potential manners in which to move the distal end of the insertion tool arm 101 from the first location the second location.
  • the insertion tool 100 may utilize any method that provides for a lowest risk of collision, or alternatively meets some other design objective.
  • the exemplary insertion tool 100 and base 102 are provided by way of example only. In other exemplary embodiments, the insertion tool 100 and base 102 may have any other suitable configuration.
  • the base 102 may not include each of the features providing the various degrees of freedom discussed with respect to FIGS. 4 and 5 .
  • FIG. 4 depicts seven degrees of freedom, one or more of the members 132 , 136 , 140 may not allow for rotation about a length thereof, and/or the base 102 may not include each of the members 132 , 136 , 140 .
  • the exemplary insertion tool 100 described above includes the position sensor 111 on the insertion tool arm 101 , and the base 102 is configured to move the insertion tool arm 101 in response to data received from the position sensor 111 on the insertion tool arm 101
  • the position sensor 111 may be separate from the insertion tool arm 101 and, e.g., inserted through a separate access port of the engine.
  • the base 102 may be configured to be operated manually to move the insertion tool arm 101 along the various degrees of freedom in response to sensed data from, e.g., the position sensor 111 , or in response to a user's or operator's visual inspection of the location of the insertion arm tool 101 within the cavity of the engine.
  • the insertion tool includes an insertion tool arm having a position sensor and a base coupled to the insertion tool arm.
  • the method 200 may utilize one or more the exemplary insertion tools described above with reference to FIGS. 1 through 7 .
  • the method 200 includes at ( 202 ) receiving data from the position sensor indicative of a position of the insertion tool arm within a cavity of the gas turbine engine.
  • the data may be image data from, e.g., one or more cameras, distance data from one or more distance sensors, etc. Further, the data may be 1-dimensional distance data, or may be 2-dimensional data, or may be 3-dimensional data. For example, the data may be image data received from at least two cameras, such that 3-dimensional distance data may be determined for the environment.
  • the method 200 further includes at ( 204 ) moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom at least in part based on the data received from the position sensor at ( 202 ) to avoid a collision between the insertion tool arm and a component defining at least in part the cavity.
  • moving the insertion tool arm along at least two degrees of freedom at ( 204 ) includes at ( 206 ) maintaining a clearance between the insertion tool arm and a component defining an access opening of the gas turbine engine.
  • moving the insertion tool arm along at least two degrees of freedom at ( 204 ) includes at ( 208 ) changing a position of the insertion tool arm relative to the access opening and changing an orientation of the insertion tool arm relative to the access opening.
  • movement of the insertion tool arm is constrained by the size and position of the access opening.
  • the method 200 may ensure this constraint is properly accounted for when moving the insertion tool arm at ( 204 ).
  • moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom at ( 204 ) further includes at ( 210 ) moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least four degrees of freedom, and more specifically includes at ( 212 ) moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least six degrees of freedom.
  • the method 200 may additionally move the insertion tool arm based on other mission goals, such as to inspect a particular component, make a particular repair, etc.
  • the method 200 additionally includes at ( 214 ) receiving data indicative of a desired location for the insertion tool arm.
  • the data received at ( 214 ) may be coordinate data of a location within the cavity, and may further include orientation data for such a location. Additionally, the data received at ( 214 ) may include a series of coordinates and corresponding orientations.
  • moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine at least in part based on the data received from the position sensor at ( 204 ) further includes at ( 216 ) moving the insertion tool arm at least in part based on the data received indicative of the desired location for the insertion tool arm.
  • moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine at least in part based on the data received from the position sensor at ( 204 ) further includes at ( 216 ) moving the insertion tool arm at least in part based on the data received indicative of the desired location for the insertion tool arm.
  • the method 200 further includes at ( 218 ) inspecting with the insertion tool one or more components defining the cavity.
  • Inspecting the one or more components at ( 218 ) may include receiving images from a sensor, such as a camera being used as the position sensor, a separate sensor, or both. The images may be analyzed by a controller to determine, e.g., a condition of the one or more components, and/or one or more aspects of the one or more components.
  • the method 200 may additionally or alternatively be capable of performing other functions.
  • the insertion tool may include one or more additional tool implements (e.g., drill, welder, fluid nozzle, etc.).
  • the method 200 may include performing one or more repair operations.
  • the base may not be fixed to the engine.
  • the method 200 may further include at ( 222 ) receiving data indicative of a location of the base relative to the engine.
  • moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine at least in part based on the data received from the position sensor at ( 204 ) may further include at ( 220 ) moving the insertion tool arm at least in part based on the data received indicative of the location of the base relative to the engine.
  • the method 200 may be configured in any other suitable manner to perform any other suitable steps, and the that the process described above is by way of example only.
  • An insertion tool for an engine defining an access opening and comprising a component defining at least in part a cavity comprising: an insertion tool arm comprising a plurality of segments, the insertion tool arm configured for insertion through the access opening into the cavity and the plurality of segments configured to be in a fixed position relative to one another within the cavity; and a base coupled to the insertion tool arm and configured to be positioned outside the cavity and to move the insertion tool arm along at least two degrees of freedom.
  • the insertion tool arm further comprises a position sensor configured to sense a location of the insertion tool arm within the cavity, and wherein the base is configured to move the insertion tool arm along at least two degrees of freedom in response to data received from the position sensor.
  • the insertion tool of one or more of these clauses wherein the base is configured to move the insertion tool arm along at least four degrees of freedom at least in part in response to data received from the position sensor.
  • the insertion tool of one or more of these clauses wherein the base is configured to move the insertion tool arm along at least six degrees of freedom at least in part in response to data received from the position sensor.
  • the insertion tool of one or more of these clauses further comprising: a controller operably coupled to the position sensor and the base for receiving data from the position sensor and providing control decisions to the base in response to the data received from the position sensor.
  • the base comprises a base position sensor configured to sense data indicative of a location of the base relative to the engine, and wherein the base is further configured to move the insertion tool arm in response to data received from the base position sensor.
  • the insertion tool of one or more of these clauses further comprising: an insertion tube extending at least partially through the access opening, wherein the insertion tool is configured to feed the plurality of segments of the insertion tool arm through the insertion tube into the cavity, and wherein the plurality of segments of the insertion tool arm are in the fixed position within the cavity relative to each other.
  • the base is further configured to change a length of the insertion tool arm within the cavity in response to data received from the position sensor.
  • the access port is an ignitor port or a borescope port
  • the component is a combustor liner, a combustor dome, a combustion nozzle, or a combination thereof, and wherein the cavity is a combustion chamber.
  • a method of inserting an insertion tool into a cavity of a gas turbine engine comprising an insertion tool arm having a position sensor and a base coupled to the insertion tool arm, the method comprising: receiving data from the position sensor indicative of a position of the insertion tool arm within a cavity of the gas turbine engine; and moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom at least in part based on the data received from the position sensor to avoid a collision between the insertion tool arm and a component defining at least in part the cavity.
  • moving the insertion tool arm along at least two degrees of freedom comprises maintaining a clearance between the insertion tool arm and a component defining an access opening of the gas turbine engine.
  • moving the insertion tool arm along at least two degrees of freedom comprises changing a position of the insertion tool arm relative to the access opening and changing an orientation of the insertion tool arm relative to the access opening.
  • moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom comprises moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least four degrees of freedom.
  • moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom comprises moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least six degrees of freedom.
  • a gas turbine engine assembly comprising: a section defining an access opening; a component defining at least in part a cavity; and an insertion tool comprising an insertion tool arm comprising a plurality of segments, the insertion tool arm configured for insertion through the access opening into the cavity and the plurality of segments configured to be in a fixed position relative to one another within the cavity; and a base coupled to the insertion tool arm and configured to be positioned outside the cavity and to move the insertion tool arm along at least two degrees of freedom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Workshop Equipment, Work Benches, Supports, Or Storage Means (AREA)

Abstract

An insertion tool is provided for an engine defining an access opening and including a component defining at least in part a cavity. The insertion tool includes: an insertion tool arm having a plurality of segments, the insertion tool arm configured for insertion through the access opening into the cavity and the plurality of segments configured to be in a fixed position relative to one another within the cavity; and a base coupled to the insertion tool arm and configured to be positioned outside the cavity and to move the insertion tool arm along at least two degrees of freedom.

Description

FIELD
The present subject matter relates generally to a tool and method for inspecting cavity through an access opening, such as an annular space in a turbine engine through an inspection port.
BACKGROUND
At least certain gas turbine engines include, in serial flow arrangement, a compressor section including a low pressure compressor and a high-pressure compressor for compressing air flowing through the engine, a combustor for mixing fuel with the compressed air such that the mixture may be ignited, and a turbine section including a high pressure turbine and a low pressure turbine for providing power to the compressor section.
Within one or more of the sections, at least certain gas turbine engines define an annular opening. Certain of these annular openings may vary in size. An inspection tool for inspecting one or more of these annular openings may be beneficial.
BRIEF DESCRIPTION
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In an aspect of the present disclosure, an insertion tool is provided for an engine defining an access opening and including a component defining at least in part a cavity. The insertion tool includes: an insertion tool arm having a plurality of segments, the insertion tool arm configured for insertion through the access opening into the cavity and the plurality of segments configured to be in a fixed position relative to one another within the cavity; and a base coupled to the insertion tool arm and configured to be positioned outside the cavity and to move the insertion tool arm along at least two degrees of freedom.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
FIG. 1 is a schematic, cross-sectional view of a gas turbine engine in accordance with an exemplary aspect of the present disclosure.
FIG. 2 is a close-up, cross-sectional view of a combustion section of the exemplary gas turbine engine of FIG. 1 including an insertion tool in accordance with an exemplary embodiment of the present disclosure, along an axial direction and a radial direction.
FIG. 3 is another close-up, cross-sectional view of the combustion section of the exemplary gas turbine engine of FIG. 1 including the exemplary insertion tool, along the radial direction and a circumferential direction.
FIG. 4 is a close-up view of an insertion tool in accordance with another exemplary embodiment of the present disclosure in a first position.
FIG. 5 is a close-up view of the exemplary insertion tool of FIG. 4 in a second position.
FIG. 6 is a radial view of the exemplary insertion tool of FIG. 4 in the first position.
FIG. 7 is a radial view of the exemplary insertion tool of FIG. 4 in the second position.
FIG. 8 is a flow diagram of a method for inserting a tool into an interior of an engine in accordance with an exemplary aspect of the present disclosure.
DETAILED DESCRIPTION
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.
As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
The terms “forward” and “aft” refer to relative positions within a component or system, and refer to the normal operational attitude of the component or system. For example, with regard to a gas turbine engine, forward refers to a position closer to an inlet of the gas turbine engine and aft refers to a position closer to an exhaust of the gas turbine engine.
The terms “coupled to,” “fixed to,” “attached to,” and the like refer to both direct coupling, fixing, or attaching, as well as indirect coupling, fixing, or attaching through one or more intermediate components or features, unless otherwise specified herein.
The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
Approximating language, as used herein throughout the specification and claims, is applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value, or the precision of the methods or machines for constructing or manufacturing the components and/or systems. For example, the approximating language may refer to being within a 10 percent margin.
Here and throughout the specification and claims, range limitations are combined and interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise. For example, all ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other.
In certain gas turbine engines, annular opening(s) are defined, and these annular openings may vary in size within the particular make/model of gas turbine engine, and across different makes/models of gas turbine engines, such that a dedicated, specialized inspection tool must be utilized with each annular opening to extend around and through such annular opening. Maintaining inspection tools for each of the various annular openings may be expensive and inconvenient.
Accordingly, the present disclosure provides for an inspection tool for inspecting annular openings having varying sizes within, e.g., an individual gas turbine engine, or within various gas turbine engines. In particular, certain aspects of the present disclosure provide for an insertion tool that includes: an insertion tool arm having a plurality of segments, and base coupled to the insertion tool arm. The insertion tool arm is configured for insertion through an access opening of the gas turbine engine into a cavity. The plurality of segments are configured to be in a fixed position relative to one another within the cavity. The base is configured to be positioned outside the cavity and is further configured to move the insertion tool arm along at least two degrees of freedom.
In such a manner, it will be appreciated, that the base may be capable of moving an insertion arm that defines a radius of curvature when in the fixed position different than a radius of curvature of the annular opening, allowing for the inspection tool to be utilized with a variety of different-sized annular openings/gas turbine engines.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures, FIG. 1 is a schematic cross-sectional view of a gas turbine engine in accordance with an exemplary embodiment of the present disclosure. More particularly, for the embodiment of FIG. 1 , the gas turbine engine is a high-bypass turbofan jet engine 10, referred to herein as “turbofan engine 10.” As shown in FIG. 1 , the turbofan engine 10 defines an axial direction A (extending parallel to a longitudinal centerline 12 provided for reference) and a radial direction R. The turbofan engine 10 also defines a circumferential direction C (see FIG. 3 ) extending circumferentially about the axial direction A. In general, the turbofan 10 includes a fan section 14 and a turbomachine 16 disposed downstream from the fan section 14.
The exemplary turbomachine 16 depicted is generally enclosed within a substantially tubular outer casing 18 that defines an annular inlet 20 and an annular exhaust 21. The outer casing 18 encases, in serial flow relationship, a compressor section including a booster or low pressure (LP) compressor 22 and a high pressure (HP) compressor 24; a combustion section 26; a turbine section including a high pressure (HP) turbine 28 and a low pressure (LP) turbine 30; and a jet exhaust nozzle section 32. A high pressure (HP) shaft or spool 34 drivingly connects the HP turbine 28 to the HP compressor 24. A low pressure (LP) shaft or spool 36 drivingly connects the LP turbine 30 to the LP compressor 22. The compressor section, combustion section 26, turbine section, and nozzle section 32 together define a core air flowpath 37 therethrough.
For the embodiment depicted, the fan section 14 includes a fixed pitch fan 38 having a plurality of fan blades 40. The fan blades 40 are each attached to a disk 42, with the fan blades 40 and disk 42 together rotatable about the longitudinal axis 12 by the LP shaft 36. For the embodiment depicted, the turbofan engine 10 is a direct drive turbofan engine, such that the LP shaft 36 drives the fan 38 of the fan section 14 directly, without use of a reduction gearbox. However, in other exemplary embodiments of the present disclosure, the fan 38 may instead be a variable pitch fan, and the turbofan engine 10 may include a reduction gearbox, in which case the LP shaft 36 may drive the fan 38 of the fan section 14 across the gearbox.
Referring still to the exemplary embodiment of FIG. 1 , the disk 42 is covered by rotatable front hub 48 aerodynamically contoured to promote an airflow through the plurality of fan blades 40. Additionally, the exemplary turbofan engine 10 includes an annular nacelle assembly 50 that circumferentially surrounds the fan 38 and/or at least a portion of the turbomachine 16. For the embodiment depicted, the nacelle assembly 50 is supported relative to the turbomachine 16 by a plurality of circumferentially-spaced outlet guide vanes 52. Moreover, a downstream section 54 of the nacelle assembly 50 extends over an outer portion of the casing 18 so as to define a bypass airflow passage 56 therebetween. The ratio between a first portion of air through the bypass airflow passage 56 and a second portion of air through the inlet 20 of the turbomachine 16, and through the core air flowpath 37, is commonly known as a bypass ratio.
It will be appreciated that although not depicted in FIG. 1 , the turbofan engine 10 may further define a plurality of openings allowing for inspection of various components within the turbomachine 16. For example, the turbofan engine 10 may define a plurality of borescope openings at various axial positions within the compressor section, combustion section 26, and turbine section. Additionally, as will be discussed below, the turbofan engine 10 may include one or more igniter ports within, e.g., the combustion section 26 of the turbomachine 16, that may allow for inspection of the combustion section 26.
It should further be appreciated that the exemplary turbofan engine 10 depicted in FIG. 1 is by way of example only, and that in other exemplary embodiments, the turbofan engine 10 may have any other suitable configuration, including, for example, any other suitable number of shafts or spools, turbines, compressors, etc. Additionally, or alternatively, in other exemplary embodiments, any other suitable turbine engine may be provided. For example, in other exemplary embodiments, the turbine engine may not be a turbofan engine, and instead may be configured as a turboshaft engine, a turboprop engine, turbojet engine, etc.
Referring now to FIG. 2 , a close-up, schematic view of the combustion section 26 of the turbomachine 16 of the exemplary gas turbine engine 10 of FIG. 1 is provided.
As is depicted, the combustion section 26 generally includes a combustor 60 positioned within a combustor casing 62. Additionally, the combustor 60 includes an inner liner 64, an outer liner 66, and a dome 68 together defining at least in part a combustion chamber 70. It will be appreciated that the dome 68, for the embodiment depicted, is an annular dome and the combustor 60 is configured as an annular combustor. In such a manner, the combustion chamber 70 generally defines an annular shape. At a forward end 61, the combustor 60 defines, or rather, the dome 68 defines, a nozzle opening 72, and the combustion section 26 further includes a fuel-air mixer 74, or nozzle, positioned within the nozzle opening 72. The fuel-air mixer 74 is configured to provide a mixture of fuel and compressed air to the combustion chamber 70 during operation of the turbofan engine 10 to generate combustion gases. The combustion gases flow from the combustion chamber 70 to the HP turbine 28, and more specifically, through a plurality of inlet guide vanes 76 of the HP turbine 28.
Notably, although a single nozzle opening 72 and fuel-air mixer 74 is depicted in FIG. 2 , the combustor 60 may further include a plurality of circumferentially spaced nozzle openings 72 and a respective plurality of fuel-air mixers 74 positioned within the nozzle openings 72.
In order to initiate a combustion of the fuel and compressed air provided to the combustion chamber 70 by the fuel-air mixer 74, the combustion section 26 typically includes an igniter (not installed or depicted) extending through one or more igniter openings 78 defined in the combustor casing 62 and the outer liner 66 of the combustor 60. However, when the turbofan engine 10 is not operating, the igniter may be removed and the igniter openings 78 may be utilized for inspecting, e.g., the combustion chamber 70, inlet guide vanes 76 of the HP turbine 28, and/or other components.
More specifically, for the embodiment of FIG. 2 , an insertion tool for inserting one or more implements into an interior of an engine in accordance with an exemplary embodiment of the present disclosure is depicted. In particular, for the embodiment shown, the insertion tool is a tool 100 for inspecting an annular section of an engine in accordance with an exemplary embodiment of the present disclosure, and is depicted extending through the pair of igniter openings 78 defined in the combustor casing 62 and the outer liner 66 of the combustor 60. Referring now also to FIG. 3 , providing a partial, axial cross-sectional view of the combustion section 26 of FIG. 2 , it will be appreciated that the tool 100 generally includes an insertion tool arm 101 formed generally of a plurality of segments 102 and an insertion tube 104, with the plurality of segments 102 of the insertion tool arm 101 movable through the insertion tube 104 into the combustion chamber 70.
More specifically, for the exemplary embodiment depicted, the insertion tube 104 includes a bend 106. In at least certain embodiments, the bend 106 may be a substantially 90 degree bend, or may be larger or smaller than 90 degrees. For example, the insertion tube 104 includes a radial portion 108 extending substantially along the radial direction R and a circumferential portion 110 extending substantially along the circumferential direction C. The radial portion 108 and circumferential portion 110 are joined at the bend 106. The plurality of segments 102 are fed through the radial portion 108, pivot in a first angular direction relative to one another to go through the bend 106, and then pivot in a second, opposite angular direction relative to one another and couple to one another such that they are configured to be in a fixed position relative to one another as they move through to the circumferential portion 110. From the circumferential portion 110, the segments 102 extend through the annular combustion chamber 70. As used herein, the term “configured to be fixed position relative to one another” means that the segments 102 are not configured to appreciable bend or deflect at joints between adjacent segments 102 during anticipated operations of the tool 100, with the exception of the actual insertion operation. In such a manner, it will be appreciated that the segments 102 may be biased towards the fixed position with a sufficient biasing force to hold the segments in place during anticipated operations of the tool 100, but may allow for some deflection in the event the tool 100, e.g., encounters an object in the environment, or is being inserted or removed from the environment.
As will be described in greater detail below, the tool 100 further includes an insertion tool arm position sensor, or simply position sensor 111, positioned proximate a distal end of the insertion tool arm 101. Specifically, for the embodiment shown, the position sensor 111 is positioned at a forward-most segment 102′ of the plurality of segments 102 of the insertion tool arm 101. In at least certain exemplary embodiments, the position sensor 111 may include one or more cameras. For example, as will be described in greater detail below, the one or more cameras may include two or more sensors providing stereo feedback data (e.g., information from two separate locations which may be combined to provide relatively accurate distance/positioning data). Further for example, the position sensor 11 may include a camera, such that the position sensor 111 may further function as an implement for inspecting the interior of the engine. For example, the camera may additionally or alternatively provide a video feed for inspecting one or more components of the engine, such as for inspecting various components of the combustor 60 and/or high pressure turbine 28. It will further be appreciated that the insertion tool arm 101 may additionally or alternatively include any other suitable position sensor 111 for sensing data indicative of a position of the insertion tool arm 101 within the cavity.
As will be described in more detail below, the plurality of segments 102 of the tool 100 extending through the annular combustion chamber 70 together define an average arc shape 112 (i.e., an average arc line). Additionally, the annular combustion chamber 70 defines inspection radius 114, the inspection radius 114 being a distance along the radial direction R from which it is desired to view the annular section, i.e., annular combustion chamber 70, of the turbofan engine 10. For example, the inspection radius 114 may be a radial midpoint within the combustion chamber 70. Also, for the embodiment depicted, the average arc shape 112 of the plurality of segments 102 extending through the annular combustion chamber 70 (i.e., the plurality of segments 102 coupled to one another within the combustion chamber 70) defines a segment 102 radius 116 (or “radius of curvature”). In certain exemplary embodiments, the segment 102 radius 116 of the average arc shape 112 may not be substantially equal to the inspection radius 114, in which case the insertion tool arm 101 may be moved along various degrees of freedom from a base 120 located outside the interior of the gas turbine engine. Such operation will be described in more detail below.
Notably, the radius of curvature/segment 102 radius 116 refers to the radius of a circle that aligns with the average arc shape 112 of the plurality of segments 102 extending through the annulus of the engine 10, which is the annular combustion chamber 70 for the embodiment depicted.
Accordingly, it will be appreciated that although the tool 100 is depicted in FIGS. 2 and 3 as being used to inspect the combustion chamber 70, in other exemplary embodiments, the tool 100 may additionally, or alternatively, be used to inspect other areas of the turbofan engine 10 having different inspection radii 114. For example, the tool 100 may be utilized to inspect annular sections of the compressor section or the turbine section, or alternatively still, other engines or systems altogether.
In at least certain exemplary embodiments, the various segments 102 of the insertion tool arm 101 may be configured in a similar manner to the segments 102 of the tool described in U.S. Patent Application No. 2019/0360794, filed May 23, 2018, entitled “INSPECTION TOOL AND METHOD,” with Andrew Crispin Graham listed as the lead inventor, and such reference is hereby incorporated fully herein by reference. In such a manner, it will be appreciated that in certain exemplary embodiments, the plurality of segments 102 may include adjustment members for changing an average arc shape 112 of the plurality of segments 102 (either beforehand, or in response to sensed real-time data). Alternatively, however, in other exemplary embodiments the segments 102 of the insertion tool arm 101 may be configured in any other suitable manner. For example, in other embodiments, the segments 102 may not be adjustable, such that they only have one geometry when moved to a fixed position within the interior of the engine. Additionally, or alternatively, less than all of the segments 102 may be adjustable, or one or more of the segments 102 may be adjustable in any other suitable manner.
Referring now particularly to FIG. 3 , as briefly noted above, it will further be appreciated that the insertion tool further includes a base 120 coupled to the insertion tool arm 101 and in communication with the position sensor 111. The base 120 is positioned outside the cavity and is configured to move the insertion tool arm 101 along at least one degree of freedom in response to data received from the position sensor 111.
In particular, for the exemplary embodiment of FIG. 3 , the base 120 is mounted to an outer casing 18 of the engine surrounding the combustion section 26 of the engine. As will be explained in more detail below with reference to the embodiment of FIGS. 4 and 5 , the base 120 may provide for movement of the insertion tool arm 101 along at least two degrees of freedom, such as along at least four degrees of freedom, such as along at least six degrees of freedom. For reference, the various degrees of freedom in which the base 120 may move the insertion tool arm 101 are depicted in FIG. 3 as a longitudinal direction L1, a lateral direction L2, a transverse direction T, an orientation about the longitudinal direction L1′, an orientation about the lateral direction L2′, and an orientation about the transverse direction T′.
Moreover, the tool 100 further includes a controller 150. The controller 150 has one or more processors 152 and memory 154. The memory 154 stores data 156. The data 156 may include instructions that, when executed by the one or more processors 152, cause the tool 100 to perform certain functions. One or more the functions may be one or more of the functions described below with reference to, e.g., the exemplary method 200. Additionally, the controller 150 includes a network interface 158. The network interface 158 may utilize any suitable wired or wireless communications network 160 to communicate with other components of the tool 100 and/or other components.
As is depicted in phantom in FIG. 3 , the controller 150 is operably coupled to both the position sensor 111 and the base 120. In such a manner, the base 120 may receive data indicative of a position of the plurality of segments 102 of the insertion tool arm 101 within the cavity (i.e., the combustion chamber 70 for the embodiment shown), data indicative of a desired position of the insertion tool arm 101 within the cavity (e.g., a desired position of the forward-most segment 102′ and/or sensor 111 within the cavity), and control the insertion tool arm 101 to move the insertion tool arm 101 to the desired position within the cavity while avoiding a collision with a component defining at least in part the cavity. As used herein, the term “collision” refers to any unwanted contact between the insertion tool arm 101 and the component.
In such a manner, it will be appreciated that the controller 150 may be operable with the base 120 to facilitate movement of the insertion tool arm 101, sensor 111, or both within the cavity of the engine, such as within the combustion chamber 70 of the engine to move the insertion tool arm 101, sensor 111, or both to the desired location within the cavity of the engine. The controller 150 may operate on a feedback loop based on data sensed with the sensor 111.
Further, the base 120 may be configured to control a length of the insertion tool arm 101 within the cavity. In such a manner, the exemplary base 120 depicted includes a feeding mechanism 122 configured to move the plurality of segments 102 through the insertion tube 104 and into the annular combustion chamber 70. The feeding mechanism 122 is also in communication with the controller 150 through the network 160. In certain embodiments, the feeding mechanism 122 may use a rotating wheel having a gripper surface (such as an elastomeric surface, or a geared surface corresponding to a geared surface of the segments 102) to feed the segments 102 into the insertion tube 104.
Moreover, although not depicted, the insertion tool 100 may include any suitable implements for performing one or more maintenance, repair, or inspection operations within the interior of the engine. For example, in certain exemplary embodiments, as noted above, the position sensor 111 may include one or more cameras for inspecting the interior of the engine. Additionally, or alternatively, the insertion tool arm 101 may include one or more implements, such as one or more of a drill, heater, welder, etc., to perform a maintenance and/or repair operation in which material is added to a component of the engine, material is removed from a component of the engine, or a physical property of a component of the engine is changed.
Referring now to FIGS. 4 and 5 , an insertion tool 100 for an engine 10 in accordance with another exemplary embodiment of the present disclosure is provided. The exemplary insertion tool 100 of FIGS. 4 and 5 may be configured in substantially the same manner as exemplary insertion tool 100 described above with reference to FIGS. 2 and 3 , and further, may be operable with a gas turbine engine 10 in accordance with one or more of the exemplary embodiments described above with reference to FIGS. 1 through 3 . For example, the engine 10 may be a gas turbine engine 10 defining an access opening and including a component defining at least in part a cavity. For the embodiment shown, the access port is an igniter port 78 or borescope port, and the component is a combustion chamber liner 64, 66, a combustor dome 68, a fuel nozzle 74, or a combination thereof. Accordingly, it will be appreciated that for the embodiment shown, the cavity is a combustion chamber 70 of the engine 10.
Further, as with the exemplary insertion tool 100 described above with reference to FIGS. 2 and 3 , the exemplary insertion tool 100 of FIGS. 4 and 5 generally includes insertion tool arm 101 and a base 120, the insertion tool arm 101 having a plurality of segments 102 and a position sensor 111. For the embodiment shown, the position sensor 111 is positioned proximate a distal end of the insertion tool arm 101, and more specifically, is positioned at a forward-most segment 102′ of the plurality of segments 102 of the insertion tool arm 101.
However, for the embodiment shown, the base 120 of the insertion tool 100 is configured to be mounted at a location separate from the engine 10, and more specifically, from the base 120 of the insertion tool 100 is configured to be mounted to a ground location 124. The term “ground location” refers generically to any location separate from the engine 10 or a structure on which the engine 10 is mounted (such as an aircraft). For example, the ground location may be, e.g., the actual ground beneath the engine 10, a stand or cart separate from the engine 10 positioned proximate the engine 10, etc.
In order to accommodate any relative movement between the engine 10 and the ground location 124, the insertion tool 100 further includes a second position sensor 126 configured to sense data indicative of a location of one or more aspects of the insertion tool 100 outside of the interior of the engine 10, relative to the engine 10. Specifically, for the embodiment shown, the second position sensor 126 is included with the base 120 and is configured to sense data indicative of a location of the base 120 relative to the engine 10 (such as data indicative of relative distance and/or orientation). In certain exemplary embodiments, the insertion tool 100 may include one or more of the features discussed in U.S. application Ser. No. 16/008,475, filed Jan. 14, 2018, which is incorporated herein in its entirety for all purposes.
As noted with the embodiment of FIGS. 2 and 3 , the base 120 of the exemplary embodiment of FIGS. 4 and 5 is coupled to the insertion tool arm 101 and is in communication with the position sensor 111 of the insertion tool arm 101. The base 120 is configured to move insertion tool arm 101 along at least two degrees of freedom in response to data received from the position sensor 111. More specifically, for the embodiment shown, the base 120 is configured to move insertion tool arm 101 along at least four degrees of freedom at least in part in response to data received from the position sensor 111. More specifically, still, the base 120 is configured to move insertion tool arm 101 along at least six degrees of freedom, plus one degree of freedom from changing a length of the insertion tool arm 101 using the feeding mechanism 122, at least in part in response to data received from the position sensor 111.
For the embodiment shown, the degrees of freedom in which the base 120 is configured to move the insertion tool arm 101 includes one or more of the following: a longitudinal direction L1, a lateral direction L2, a transverse direction T, an orientation about longitudinal direction L1′, an orientation about the lateral direction L2′, and an orientation about the transverse direction T′. In order to effectuate such movement along these degrees of freedom, exemplary base 120 depicted includes a plurality of members pivotably coupled to one another about respective pivot points. In particular, for the embodiment shown, the base 120 includes a first member 130 pivotably coupled to a second member 132 about a first pivot point 134, the second member 132 pivotally coupled to a third member 136 about a second pivot point 138, and the third member 136 pivotally coupled to a fourth member 140 about a third pivot point 142.
Further, for the embodiment shown, one or more of these members 130, 132, 136, 140 may allow for rotation about a length thereof. Specifically, the embodiment shown, the first member 130 allows for rotation about a length of the first member 130, the second member 132 allows for rotation about a length of the second member 132, the third member 136 similarly allows for rotation about a length of the third member 136, and the fourth member 140 allows for rotation about a length of the fourth member 140. These respective directions of rotation are depicted with arrows, which are not labeled for clarity.
In certain exemplary embodiments, the base 120 may include one or more electric motors operable with the members 130, 132, 136, 140 and/or pivot points 134, 138, 142 to provide for the relative movement and rotation.
It will be appreciated, however, that in other exemplary embodiments, the base 120 may have any other suitable configuration for providing the movement of the insertion tool arm 101 along the desired degrees of freedom. For example, in other exemplary embodiments, the base 102 may include a pair of linear actuators to only move the insertion tool arm 101 along the transverse direction T and longitudinal direction L1. Other configurations are contemplated as well.
In such manner, the insertion tool arm 101 may be moved by the base 120 (e.g., at the direction of the controller 150) to substantially any desired position and/or orientation within the cavity of the engine 10.
Notably, such may be beneficial in order to allow for the insertion tool arm 101 to navigate through annular spaces within the same engine 10, or different engines 10, having different radii of curvatures 114. For example, although the insertion tool arm 101 made define a radius of curvature 114 different than that of the annular space through which it is being inserted, the capability of maneuvering the insertion tool arm 101 to various positions and orientations along the particular degrees of freedom may nonetheless allow for the insertion tool arm 101 to navigate through such annular space without collision.
Further, it will be appreciated that the ability to move in the various degrees of freedom may facilitate the use of the insertion tool arm 101 in the various annular geometries (having, e.g., various radii of curvature 114) despite the constraint on the movement of the insertion tool arm 101 provided by the fixed position of the access opening of the engine 10 through which the insertion tool arm 101 is inserted. As will be appreciated from the discussion herein, the ability to move in the various degrees of freedom may facilitate the use of the insertion tool arm 101 in the various annular geometries while maintaining a desired clearance with the component(s) defining the access opening. For example, the insertion tool 100 may be able to move the insertion tool arm 101 inward and outward of the access opening, while pivoting the insertion tool arm 101 at the access opening, and/or changing an orientation of the insertion tool arm 101, to position, e.g., the sensor 111 at a desired location within the cavity (combustion chamber 70 or other annular space within the engine 10) without colliding with any components.
For example, referring now also to FIG. 5 , it will be appreciated that the distal end of the insertion tool arm 101 is moved from a first location (FIG. 4 ; depicted in phantom in FIG. 5 ) to a second location (FIG. 5 ). As part of such movement, the insertion tool arm 101 is moved along the longitudinal direction L1 and along the lateral direction L2, and is also changed in orientation about the transverse direction T. Notably, such movement of the insertion tool arm 101 is made while maintaining a clearance with the component(s) defining the access opening, and includes pivoting the insertion tool arm 101 at the access opening. Such may facilitate the movement of the distal end of the insertion tool arm 101 from the first location to the second location, despite any mismatch between the radii of curvature of insertion tool arm 101 and the cavity of the engine 10.
Further, it will be appreciated that the ability to move the insertion tool arm 101 about the various degrees of freedom may also allow for the distal end of the insertion tool arm 101 to be positioned at various location along a length of the engine. For example, referring briefly to FIGS. 6 and 7 , each providing an outward-looking-in along a radial direction of the engine 10 view of the insertion tool arm 101 of FIGS. 4 and 5 , respectively, it will be appreciated that changing an orientation of the insertion arm tool 101 about one or more of the degrees of freedom may allow for the distal end of the insertion tool arm 101 to further be positioned at various directions along a length of the engine (e.g., along the axial direction A of the engine of FIG. 1 , shown as the lateral direction L2 in FIGS. 6 and 7 ).
It will be appreciated, however, in other embodiments, in addition to movement of the insertion tool arm 101 by the base 120, the base 120 may further increase or decrease a length of the insertion tool arm 101 within the cavity by adding or removing segments 102 within the cavity. Accordingly, there may be a variety of potential manners in which to move the distal end of the insertion tool arm 101 from the first location the second location. The insertion tool 100 may utilize any method that provides for a lowest risk of collision, or alternatively meets some other design objective.
It will further be appreciated that the exemplary insertion tool 100 and base 102 are provided by way of example only. In other exemplary embodiments, the insertion tool 100 and base 102 may have any other suitable configuration. For example, in certain exemplary embodiments the base 102 may not include each of the features providing the various degrees of freedom discussed with respect to FIGS. 4 and 5 . For example, although FIG. 4 depicts seven degrees of freedom, one or more of the members 132, 136, 140 may not allow for rotation about a length thereof, and/or the base 102 may not include each of the members 132, 136, 140.
Moreover, it will be appreciated that although the exemplary insertion tool 100 described above includes the position sensor 111 on the insertion tool arm 101, and the base 102 is configured to move the insertion tool arm 101 in response to data received from the position sensor 111 on the insertion tool arm 101, in other embodiments, other configurations are contemplated. For example, in other exemplary embodiments, the position sensor 111 may be separate from the insertion tool arm 101 and, e.g., inserted through a separate access port of the engine. Additionally, or alternatively, the base 102 may be configured to be operated manually to move the insertion tool arm 101 along the various degrees of freedom in response to sensed data from, e.g., the position sensor 111, or in response to a user's or operator's visual inspection of the location of the insertion arm tool 101 within the cavity of the engine.
Referring now to FIG. 8 , a method 200 of inserting an insertion tool into a cavity of a gas turbine engine is provided. In certain exemplary aspects, the insertion tool includes an insertion tool arm having a position sensor and a base coupled to the insertion tool arm. For example, in certain exemplary aspects, the method 200 may utilize one or more the exemplary insertion tools described above with reference to FIGS. 1 through 7 .
The method 200 includes at (202) receiving data from the position sensor indicative of a position of the insertion tool arm within a cavity of the gas turbine engine. The data may be image data from, e.g., one or more cameras, distance data from one or more distance sensors, etc. Further, the data may be 1-dimensional distance data, or may be 2-dimensional data, or may be 3-dimensional data. For example, the data may be image data received from at least two cameras, such that 3-dimensional distance data may be determined for the environment.
The method 200 further includes at (204) moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom at least in part based on the data received from the position sensor at (202) to avoid a collision between the insertion tool arm and a component defining at least in part the cavity.
In certain exemplary aspects, moving the insertion tool arm along at least two degrees of freedom at (204) includes at (206) maintaining a clearance between the insertion tool arm and a component defining an access opening of the gas turbine engine. For example, in the exemplary aspect depicted, moving the insertion tool arm along at least two degrees of freedom at (204) includes at (208) changing a position of the insertion tool arm relative to the access opening and changing an orientation of the insertion tool arm relative to the access opening. In such a manner, it will be appreciated that movement of the insertion tool arm is constrained by the size and position of the access opening. Thus, the method 200 may ensure this constraint is properly accounted for when moving the insertion tool arm at (204).
Moreover, it will be appreciated that for the exemplary method 200 depicted, moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom at (204) further includes at (210) moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least four degrees of freedom, and more specifically includes at (212) moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least six degrees of freedom.
Further, it will be appreciated that in addition to moving the insertion tool arm based on the feedback from the position sensor, the method 200 may additionally move the insertion tool arm based on other mission goals, such as to inspect a particular component, make a particular repair, etc. Specifically, for the exemplary aspect depicted, the method 200 additionally includes at (214) receiving data indicative of a desired location for the insertion tool arm. The data received at (214) may be coordinate data of a location within the cavity, and may further include orientation data for such a location. Additionally, the data received at (214) may include a series of coordinates and corresponding orientations. With such an exemplary aspect, moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine at least in part based on the data received from the position sensor at (204) further includes at (216) moving the insertion tool arm at least in part based on the data received indicative of the desired location for the insertion tool arm. Such may enable the method 200 to achieve certain missions.
In such a manner, it will be appreciated that for the exemplary aspect shown, the method 200 further includes at (218) inspecting with the insertion tool one or more components defining the cavity. Inspecting the one or more components at (218) may include receiving images from a sensor, such as a camera being used as the position sensor, a separate sensor, or both. The images may be analyzed by a controller to determine, e.g., a condition of the one or more components, and/or one or more aspects of the one or more components.
Although not depicted, the method 200 may additionally or alternatively be capable of performing other functions. For example, in other exemplary aspects, the insertion tool may include one or more additional tool implements (e.g., drill, welder, fluid nozzle, etc.). In such a case, the method 200 may include performing one or more repair operations.
Furthermore, it will be appreciated that in certain exemplary aspects, the base may not be fixed to the engine. With such an exemplary aspect, the method 200 may further include at (222) receiving data indicative of a location of the base relative to the engine. With such an exemplary aspect, moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine at least in part based on the data received from the position sensor at (204) may further include at (220) moving the insertion tool arm at least in part based on the data received indicative of the location of the base relative to the engine.
It will be appreciated, however, that in other exemplary aspects, the method 200 may be configured in any other suitable manner to perform any other suitable steps, and the that the process described above is by way of example only.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Further aspects of the invention are provided by the subject matter of the following clauses:
An insertion tool for an engine defining an access opening and comprising a component defining at least in part a cavity, the insertion tool comprising: an insertion tool arm comprising a plurality of segments, the insertion tool arm configured for insertion through the access opening into the cavity and the plurality of segments configured to be in a fixed position relative to one another within the cavity; and a base coupled to the insertion tool arm and configured to be positioned outside the cavity and to move the insertion tool arm along at least two degrees of freedom.
The insertion tool of one or more of these clauses, wherein the insertion tool arm further comprises a position sensor configured to sense a location of the insertion tool arm within the cavity, and wherein the base is configured to move the insertion tool arm along at least two degrees of freedom in response to data received from the position sensor.
The insertion tool of one or more of these clauses, wherein the base is configured to move the insertion tool arm along at least four degrees of freedom at least in part in response to data received from the position sensor.
The insertion tool of one or more of these clauses, wherein the base is configured to move the insertion tool arm along at least six degrees of freedom at least in part in response to data received from the position sensor.
The insertion tool of one or more of these clauses, further comprising: a controller operably coupled to the position sensor and the base for receiving data from the position sensor and providing control decisions to the base in response to the data received from the position sensor.
The insertion tool of one or more of these clauses, wherein the base is configured to be mounted to the engine.
The insertion tool of one or more of these clauses, wherein the base is configured to be mounted at a location separate from the engine.
The insertion tool of one or more of these clauses, wherein the base comprises a base position sensor configured to sense data indicative of a location of the base relative to the engine, and wherein the base is further configured to move the insertion tool arm in response to data received from the base position sensor.
The insertion tool of one or more of these clauses, further comprising: an insertion tube extending at least partially through the access opening, wherein the insertion tool is configured to feed the plurality of segments of the insertion tool arm through the insertion tube into the cavity, and wherein the plurality of segments of the insertion tool arm are in the fixed position within the cavity relative to each other.
The insertion tool of one or more of these clauses, wherein the base is further configured to change a length of the insertion tool arm within the cavity in response to data received from the position sensor.
The insertion tool of one or more of these clauses, wherein the access port is an ignitor port or a borescope port, wherein the component is a combustor liner, a combustor dome, a combustion nozzle, or a combination thereof, and wherein the cavity is a combustion chamber.
A method of inserting an insertion tool into a cavity of a gas turbine engine, the insertion tool comprising an insertion tool arm having a position sensor and a base coupled to the insertion tool arm, the method comprising: receiving data from the position sensor indicative of a position of the insertion tool arm within a cavity of the gas turbine engine; and moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom at least in part based on the data received from the position sensor to avoid a collision between the insertion tool arm and a component defining at least in part the cavity.
The method of one or more of these clauses, wherein moving the insertion tool arm along at least two degrees of freedom comprises maintaining a clearance between the insertion tool arm and a component defining an access opening of the gas turbine engine.
The method of one or more of these clauses, wherein moving the insertion tool arm along at least two degrees of freedom comprises changing a position of the insertion tool arm relative to the access opening and changing an orientation of the insertion tool arm relative to the access opening.
The method of one or more of these clauses, further comprising: receiving data indicative of a desired location for the insertion tool arm; wherein moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine at least in part based on the data received from the position sensor comprises moving the insertion tool arm at least in part based on the data received indicative of the desired location for the insertion tool arm.
The method of one or more of these clauses, wherein moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom comprises moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least four degrees of freedom.
The method of one or more of these clauses, wherein moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least two degrees of freedom comprises moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine along at least six degrees of freedom.
The method of one or more of these clauses, further comprising: receiving data indicative of a location of the base relative to the engine, and wherein moving the insertion tool arm with the base positioned outside the cavity of the gas turbine engine at least in part based on the data received from the position sensor comprises moving the insertion tool arm at least in part based on the data received indicative of the location of the base relative to the engine.
The method of one or more of these clauses, further comprising: performing an inspection operation, a maintenance operation, or a repair operation with the insertion tool one or more components defining the cavity.
A gas turbine engine assembly comprising: a section defining an access opening; a component defining at least in part a cavity; and an insertion tool comprising an insertion tool arm comprising a plurality of segments, the insertion tool arm configured for insertion through the access opening into the cavity and the plurality of segments configured to be in a fixed position relative to one another within the cavity; and a base coupled to the insertion tool arm and configured to be positioned outside the cavity and to move the insertion tool arm along at least two degrees of freedom.

Claims (19)

What is claimed is:
1. An insertion tool for extending at least in part into a cavity, the insertion tool comprising:
an insertion tool arm comprising a distal end and a plurality of segments cantilevered into the cavity from an insertion tube, the plurality of segments having a curvature defined by abutting ends of the plurality of segments extending into the cavity, the plurality of segments not bending or deflecting at joints between adjacent segments during operations of the insertion tool except during an insertion operation, a removal operation, or in an event the insertion tool encounters an object, the distal end being at a deviation relative to a predetermined location for the distal end due to the curvature; and
a base coupled to the insertion tube and positioned outside the cavity, the base moving the insertion tube along at least two degrees of freedom to compensate for the deviation to position the distal end at the predetermined location within the cavity.
2. The insertion tool of claim 1, wherein the insertion tool arm further comprises a position sensor configured to sense a location of the insertion tool arm within the cavity, and wherein the base is configured to move the insertion tool arm along the at least two degrees of freedom in response to data received from the position sensor.
3. The insertion tool of claim 2, wherein the deviation is a mismatch between a radius of curvature defined by the insertion tool arm and an inspection radius of curvature.
4. The insertion tool of claim 1, wherein the plurality of segments are movable relative to one another during an insertion operation and are fixed relative to one another to define an average arc shape during operations within the cavity.
5. The insertion tool of claim 2, further comprising:
a controller operably coupled to the position sensor and the base receiving data from the position sensor and providing control decisions to the base in response to the data received from the position sensor.
6. The insertion tool of claim 1, wherein the base comprises a base position sensor configured to sense data indicative of a location of the base, and wherein the base is further configured to move the insertion tool arm in response to data received from the base position sensor.
7. The insertion tool of claim 1,
wherein the insertion tube extends at least partially through an access opening associated with the cavity, wherein the insertion tool is configured to feed the plurality of segments of the insertion tool arm through the insertion tube into the cavity, and wherein the plurality of segments of the insertion tool arm are in a fixed position within the cavity relative to each other.
8. The insertion tool of claim 2, wherein the base is further configured to change a length of the insertion tool arm within the cavity in response to data received from the position sensor.
9. A gas turbine engine assembly comprising:
a section defining an access opening;
a component defining at least in part a cavity; and
an insertion tool comprising:
an insertion tool arm comprising a distal end and a plurality of segments cantilevered into the cavity from an insertion tube, the plurality of segments having a curvature defined by abutting ends of the plurality of segments extending into the cavity, the plurality of segments not bending or deflecting at joints between adjacent segments during operations of the insertion tool except during an insertion operation, a removal operation, or in an event the insertion tool encounters an object, the distal end being at a deviation relative to a predetermined location due to the curvature; and
a base coupled to the insertion tube and positioned outside the cavity, the base moving the insertion tube in at least two degrees of freedom to compensate for the deviation to position the distal end at the predetermined location within the cavity.
10. The gas turbine engine assembly of claim 9, wherein the insertion tool arm further comprises a position sensor configured to sense a location of the insertion tool arm within the cavity, and wherein the base is configured to move the insertion tool arm along the at least two degrees of freedom in response to data received from the position sensor.
11. The gas turbine engine assembly of claim 9, wherein the deviation is a mismatch between a radius of curvature defined by the insertion tool arm and an inspection radius of curvature.
12. The gas turbine engine assembly of claim 9, wherein the plurality of segments are movable relative to one another during an insertion operation and are fixed relative to one another to define an average arc shape during operations within the cavity.
13. The gas turbine engine assembly of claim 10, further comprising:
a controller operably coupled to the position sensor and the base receiving data from the position sensor and providing control decisions to the base in response to the data received from the position sensor.
14. The gas turbine engine assembly of claim 9, wherein the base comprises a base position sensor configured to sense data indicative of a location of the base relative to the gas turbine engine assembly, and wherein the base is further configured to move the insertion tool arm in response to data received from the base position sensor.
15. The gas turbine engine assembly of claim 9,
wherein the insertion tube extends at least partially through the access opening, wherein the insertion tool is configured to feed the plurality of segments of the insertion tool arm through the insertion tube into the cavity, and wherein the plurality of segments of the insertion tool arm are in a fixed position within the cavity relative to each other.
16. The insertion tool of claim 1 further comprising a feeder to increase or decrease the plurality of segments that are inserted into the cavity.
17. The insertion tool of claim 2, wherein the position sensor is coupled to one of the plurality of segments.
18. The insertion tool of claim 1, wherein the base includes a first member pivotably coupled to a second member about a first pivot point, the second member pivotable coupled to a third member about a second pivot point in order to effectuate movement in the at least two degrees of freedom.
19. The gas turbine engine assembly of claim 9, wherein the base is mounted to a ground location.
US16/898,629 2020-06-11 2020-06-11 Insertion tool and method Active 2040-09-11 US12091981B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/898,629 US12091981B2 (en) 2020-06-11 2020-06-11 Insertion tool and method
EP21171692.3A EP3933169A3 (en) 2020-06-11 2021-04-30 Insertion tool for a gas turbine engine
CA3120629A CA3120629C (en) 2020-06-11 2021-06-02 Insertion tool and method
CN202510049384.4A CN119844216A (en) 2020-06-11 2021-06-09 Insertion tool and method
CN202110643037.6A CN113803169B (en) 2020-06-11 2021-06-09 Insertion tool and method
US18/649,333 US20240280033A1 (en) 2020-06-11 2024-04-29 Insertion tool and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/898,629 US12091981B2 (en) 2020-06-11 2020-06-11 Insertion tool and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/649,333 Continuation US20240280033A1 (en) 2020-06-11 2024-04-29 Insertion tool and method

Publications (2)

Publication Number Publication Date
US20210388737A1 US20210388737A1 (en) 2021-12-16
US12091981B2 true US12091981B2 (en) 2024-09-17

Family

ID=75746546

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/898,629 Active 2040-09-11 US12091981B2 (en) 2020-06-11 2020-06-11 Insertion tool and method
US18/649,333 Pending US20240280033A1 (en) 2020-06-11 2024-04-29 Insertion tool and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/649,333 Pending US20240280033A1 (en) 2020-06-11 2024-04-29 Insertion tool and method

Country Status (4)

Country Link
US (2) US12091981B2 (en)
EP (1) EP3933169A3 (en)
CN (2) CN119844216A (en)
CA (1) CA3120629C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12194620B2 (en) 2018-10-15 2025-01-14 Oliver Crisipin Robotics Limited Selectively flexible extension tool
US12264591B2 (en) 2019-01-14 2025-04-01 General Electric Company Component repair system and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
US11371437B2 (en) 2020-03-10 2022-06-28 Oliver Crispin Robotics Limited Insertion tool
US11977217B2 (en) 2020-12-04 2024-05-07 General Electric Company Insertion tool
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool
US11732673B2 (en) * 2021-07-27 2023-08-22 General Electric Company Variable area exhaust nozzle system and method for control thereof
US12281590B2 (en) * 2022-06-29 2025-04-22 Ge Infrastructure Technology Llc System and method for installation or removal of one or more combustion cans

Citations (372)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US338310A (en) 1886-03-23 Armor for rubber hose
US1774986A (en) 1928-04-11 1930-09-02 Gat Gun Lubricating Corp Metallic hose
US1987972A (en) 1933-01-07 1935-01-15 Linde Air Prod Co Decoking lance
US2073903A (en) 1936-04-14 1937-03-16 Maurice B O'neil Flexible tool
US2510198A (en) 1947-10-17 1950-06-06 Earl B Tesmer Flexible positioner
GB779248A (en) 1952-12-23 1957-07-17 British Petroleum Co Improvements in or relating to gas turbine engines
US2974676A (en) 1959-02-17 1961-03-14 George A Hagelthorn Hose and conduit system
US3096962A (en) 1960-02-04 1963-07-09 Meijs Pieter Johannes Locking device for a measuring apparatus or the like
US3190286A (en) 1961-10-31 1965-06-22 Bausch & Lomb Flexible viewing probe for endoscopic use
US3266059A (en) 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US3270641A (en) 1963-07-01 1966-09-06 Iota Cam Corp Remote inspection device and threaded member used therein
US3583393A (en) 1967-12-26 1971-06-08 Olympus Optical Co Bendable tube assembly
US3625084A (en) 1970-09-21 1971-12-07 Nasa Flexible/rigidifiable cable assembly
US3778170A (en) 1972-11-02 1973-12-11 Gen Electric Borescope guide tube
GB1437405A (en) 1972-09-25 1976-05-26 Titan Coder Carriages for supporting pipes
US4035137A (en) 1973-04-26 1977-07-12 Forney Engineering Company Burner unit
US4041695A (en) 1975-11-21 1977-08-16 The Garrett Corporation Fuel system pneumatic purge apparatus and method
US4095418A (en) 1975-10-28 1978-06-20 Stal-Laval Turbin Ab Fuel flushing from injector for combustion chamber
US4170489A (en) 1977-10-11 1979-10-09 Teledyne Sprague Engineering Division of Teledyne, Inc. Process for cleaning jet engine nozzles
US4215979A (en) 1978-03-01 1980-08-05 Toyota Jidosha Kogyo Kabushiki Kaisha Ignition torch
US4227584A (en) 1978-12-19 1980-10-14 Driver W B Downhole flexible drive system
US4242863A (en) 1978-03-16 1981-01-06 Caterpillar Tractor Co. Dual phase fuel vaporizing combustor
US4483326A (en) 1981-04-21 1984-11-20 Kabushiki Kaisha Medos Kenkyusho Curvature control mechanism in endoscopes
CN86101283A (en) 1985-02-12 1986-08-27 英国石油公司 Operating means
US4625936A (en) 1983-06-06 1986-12-02 Sine Products Company Flexible support and carrier assembly
US4651718A (en) 1984-06-29 1987-03-24 Warner-Lambert Technologies Inc. Vertebra for articulatable shaft
US4655673A (en) 1983-05-10 1987-04-07 Graham S. Hawkes Apparatus providing tactile feedback to operators of remotely controlled manipulators
US4696544A (en) 1985-11-18 1987-09-29 Olympus Corporation Fiberscopic device for inspection of internal sections of construction, and method for using same
US4703888A (en) 1985-06-11 1987-11-03 Isuzu Motors Limited Cleaning apparatus for fuel burner
US4713120A (en) 1986-02-13 1987-12-15 United Technologies Corporation Method for cleaning a gas turbine engine
US4714339A (en) 1986-02-28 1987-12-22 The United States Of America As Represented By The Secretary Of Commerce Three and five axis laser tracking systems
US4730960A (en) 1986-12-15 1988-03-15 Wilbur Lewis Flexible socket extension
US4735501A (en) 1986-04-21 1988-04-05 Identechs Corporation Method and apparatus for fluid propelled borescopes
US4757258A (en) 1985-11-27 1988-07-12 Westinghouse Electric Corp. Probe carrier system for inspecting boiler tubes
GB2199842A (en) 1986-12-30 1988-07-20 Us Energy Power generating system and method utilizing hydropyrolysis
US4773395A (en) 1987-05-12 1988-09-27 Olympus Optical Co., Ltd. Endoscope
US4790294A (en) 1987-07-28 1988-12-13 Welch Allyn, Inc. Ball-and-socket bead endoscope steering section
US4790624A (en) 1986-10-31 1988-12-13 Identechs Corporation Method and apparatus for spatially orienting movable members using shape memory effect alloy actuator
US4846573A (en) 1987-04-10 1989-07-11 Identechs Corporation Shape memory effect alloy pull wire articulator for borescopes
US4890602A (en) 1987-11-25 1990-01-02 Hake Lawrence W Endoscope construction with means for controlling rigidity and curvature of flexible endoscope tube
US4911206A (en) 1987-07-21 1990-03-27 Witzenmann Gmbh Metallschlauch-Fabrik Pforzheim Supported flexible thin-walled tube structure
GB2228644A (en) 1989-01-06 1990-08-29 Pearpoint Ltd Miniature TV camera system
US4972048A (en) 1988-06-06 1990-11-20 W. L. Gore & Associates, Inc. Flexible housing for a transmission line in a hydrostatically pressurized environment
US4991565A (en) 1989-06-26 1991-02-12 Asahi Kogaku Kogyo Kabushiki Kaisha Sheath device for endoscope and fluid conduit connecting structure therefor
WO1991016598A1 (en) 1990-04-25 1991-10-31 Metronor A/S Device for determination of the topography of a surface
US5090205A (en) 1989-08-28 1992-02-25 Foster Charles D Methods and apparatus for periodic chemical cleanings of turbines
US5102221A (en) 1989-10-25 1992-04-07 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Apparatus for retouching, in situ, components such as the rotor blades of a turbomachine, and a retouching method using the apparatus
US5164826A (en) 1991-08-19 1992-11-17 Westinghouse Electric Corp. Method and apparatus for visual inspection of the internal structure of apparatus through internal passages
US5203646A (en) 1992-02-06 1993-04-20 Cornell Research Foundation, Inc. Cable crawling underwater inspection and cleaning robot
US5254809A (en) 1990-10-26 1993-10-19 W. L. Gore & Associates, Inc. Segmented flexible housing
US5271382A (en) 1991-07-24 1993-12-21 Kabushiki Kaisha Machida Seisakusho Bending device
US5323962A (en) 1992-03-31 1994-06-28 Irt Inspection Research And Technologies Ltd. Flexible guide system
US5337733A (en) 1989-10-23 1994-08-16 Peter Bauerfeind Tubular inserting device with variable rigidity
US5339845A (en) 1993-07-26 1994-08-23 Fuel Systems Textron, Inc. Cleaning apparatus and method for fuel and other passages
US5372162A (en) 1992-03-06 1994-12-13 Frey; Andre F. Repair device for the in situ repair of pipes, and a method of repairing pipes
US5385102A (en) 1991-11-29 1995-01-31 Commissariat A L'energie Atomique Vehicle for the automatic laying of a track by a vehicle travelling on said track and track designed for installation by such a vehicle
US5390402A (en) 1993-01-26 1995-02-21 General Electric Company Apparatus for installing guide tubes for instrumentation signal bearing wires in the bearing housing of a turbine
US5399164A (en) 1992-11-02 1995-03-21 Catheter Imaging Systems Catheter having a multiple durometer
US5408970A (en) 1994-05-02 1995-04-25 General Motors Corporation Electronically controlled continuous flow fuel system
US5482029A (en) 1992-06-26 1996-01-09 Kabushiki Kaisha Toshiba Variable flexibility endoscope system
US5501156A (en) 1992-09-05 1996-03-26 Richter; Hans Curved guide rail
US5558665A (en) 1994-06-24 1996-09-24 Archimedes Surgical, Inc. Surgical instrument and method for intraluminal retraction of an anatomic structure
US5644394A (en) 1994-10-19 1997-07-01 United Technologies Corporation System for repairing damaged gas turbine engine airfoils
US5667023A (en) 1994-11-22 1997-09-16 Baker Hughes Incorporated Method and apparatus for drilling and completing wells
CN1162516A (en) 1996-01-11 1997-10-22 布克刀具股份有限公司 Combination tool with oppositely deploying handles
US5807241A (en) 1995-09-22 1998-09-15 Richard Wolf Gmbh Bendable tube and method for its manufacture
US5816769A (en) 1995-11-07 1998-10-06 Siemens Aktiengesellschaft Flexible manipulator
US5842381A (en) 1994-07-28 1998-12-01 Siemens Aktiengesellschaft Precisely controllable flexible actuator
DE29902753U1 (en) 1999-02-16 1999-06-24 Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg Flexible guide gear for handling technology
WO2000006336A1 (en) 1998-07-28 2000-02-10 Keymed (Medical & Industrial Equipment) Limited Apparatus for performing operations on a workpiece at an inaccessible location
CN1050781C (en) 1992-10-06 2000-03-29 陈威宇 Apparatus for internal cleaning of processing systems
US6123273A (en) 1997-09-30 2000-09-26 General Electric Co. Dual-fuel nozzle for inhibiting carbon deposition onto combustor surfaces in a gas turbine
US6156974A (en) 1996-02-16 2000-12-05 Igus Spritzgussteile Fur Die Industrie Gmbh Flexible raceway for energy lines
US6213974B1 (en) 1996-12-30 2001-04-10 Visionary Biomedical, Inc. Steerable catheter having segmented tip and one-piece inlet housing, and method of fabricating same
US6216439B1 (en) 1998-05-08 2001-04-17 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system comprising fuel oil distribution control system, fuel oil purge system, purging air supply system and fuel nozzle wash system
US6287206B1 (en) 1998-10-26 2001-09-11 Jack W. Stage Limited angle universal joint
US6311704B1 (en) 2000-03-03 2001-11-06 Hydrochem Industrial Services Methods and apparatus for chemically cleaning turbines
US6371148B1 (en) 1999-03-31 2002-04-16 Certainteed Corporation Hose feed and retrieval system related applications
EP1216797A1 (en) 2000-12-19 2002-06-26 General Electric Company Methods for robotically inspecting gas turbine combustion components
US6431824B2 (en) 1999-10-01 2002-08-13 General Electric Company Turbine nozzle stage having thermocouple guide tube
US6432046B1 (en) 1996-07-15 2002-08-13 Universal Technologies International, Inc. Hand-held, portable camera for producing video images of an object
US6478033B1 (en) 2000-05-26 2002-11-12 Hydrochem Industrial Services, Inc. Methods for foam cleaning combustion turbines
US6481195B1 (en) 1998-04-20 2002-11-19 Igus Spritzgussteile für die Industrie GmbH Energy transmission chain system
US20030171736A1 (en) 2002-03-07 2003-09-11 Edwin Bon Catheter shaft with coextruded stiffener
US6643877B1 (en) 1999-09-21 2003-11-11 Wera Werk Hermann Werner Gmbh & Co. Kg Tool set
US20030229420A1 (en) 2000-08-18 2003-12-11 Buckingham Robert Oliver Robotic positioning of a work tool or sensor
US6698456B2 (en) 2001-03-08 2004-03-02 Frankische Rohrwerke Gebr. Kirchner Gmbh + Co Kg Protective corrugated plastic pipe
US20040059191A1 (en) 2002-06-17 2004-03-25 Robert Krupa Mechanical steering mechanism for borescopes, endoscopes, catheters, guide tubes, and working tools
US20040138525A1 (en) 2003-01-15 2004-07-15 Usgi Medical Corp. Endoluminal tool deployment system
US6783491B2 (en) 2002-06-13 2004-08-31 Vahid Saadat Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US20040186350A1 (en) 2003-01-13 2004-09-23 Usgi Medical Corp. Apparatus and methods for guiding an endoscope via a rigidizable wire guide
US20040193016A1 (en) 2002-06-17 2004-09-30 Thomas Root Endoscopic delivery system for the non-destructive testing and evaluation of remote flaws
US20040249367A1 (en) 2003-01-15 2004-12-09 Usgi Medical Corp. Endoluminal tool deployment system
EP1489269A2 (en) 2003-06-18 2004-12-22 General Electric Company Methods and apparatus for injecting cleaning fluids into combustors
US6837846B2 (en) 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
US20050075538A1 (en) 2003-04-01 2005-04-07 Banik Michael S. Single use endoscopic imaging system
US20050107667A1 (en) 2003-05-23 2005-05-19 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US20050124856A1 (en) 2003-12-05 2005-06-09 Tetsuya Fujikura Insertion assisting tool for endoscope
US20050148287A1 (en) 2003-11-18 2005-07-07 Dieter Moeller Rotary grinding apparatus for blending defects on turbine blades and associated method of use
CN1656312A (en) 2002-03-22 2005-08-17 克里萨里斯技术公司 Apparatus and method for preparing and delivering fuel
US6941974B2 (en) 2003-09-11 2005-09-13 Tsubakimoto Chain Co. Cable or the like protection and guide device
US6943570B2 (en) 2003-09-26 2005-09-13 Honeywell International, Inc. Device for detecting a crack on a turbine blade of an aircraft engine
EP1574675A2 (en) 2004-03-12 2005-09-14 General Electric Company Mobile flushing unit and process
US20050203340A1 (en) 2002-03-06 2005-09-15 John Butler Steerable colonoscope probe with variable stiffness
US20050204489A1 (en) 2004-03-16 2005-09-22 United Technologies Corporation Rotary probe for cleaning an internal cavity
US6955023B2 (en) 2000-12-13 2005-10-18 Kevin Chaite Rotheroe Unitary metal structural member with internal reinforcement
US6957781B2 (en) 2003-09-15 2005-10-25 Kraft Food Holdings, Inc. Cleaning attachment for fluid dispenser nozzles and fluid dispensers using same
US20050273085A1 (en) 2004-06-07 2005-12-08 Novare Surgical Systems, Inc. Articulating mechanism with flex-hinged links
US6974411B2 (en) 2000-04-03 2005-12-13 Neoguide Systems, Inc. Endoscope with single step guiding apparatus
US20060074283A1 (en) 2004-10-05 2006-04-06 Theron Technologies, L.L.C. Apparatuses and methods for non-invasively monitoring blood parameters
US20060074383A1 (en) 2004-09-30 2006-04-06 Boulais Dennis R Steerable device and system
US20060073348A1 (en) 2004-10-06 2006-04-06 General Electric Company Electroplated fuel nozzle/swirler wear coat
US20060131908A1 (en) 2004-11-01 2006-06-22 Sharp Kabushiki Kaisha Joint drive mechanism and robot hand
JP2006184832A (en) 2004-12-28 2006-07-13 Olympus Corp Endoscopic device
US20060156851A1 (en) 2004-12-02 2006-07-20 Jacobsen Stephen C Mechanical serpentine device
US20060170386A1 (en) 2003-06-17 2006-08-03 Science Applications International Corporation Toroidal propulsion and steering system
US7150416B2 (en) 2004-04-09 2006-12-19 Tronox Llc Liquid fuel injection
CN1903517A (en) 2006-08-02 2007-01-31 葛汉祥 Hand gripping device
US7182025B2 (en) 2001-10-17 2007-02-27 William Marsh Rice University Autonomous robotic crawler for in-pipe inspection
US7182024B2 (en) 2005-03-16 2007-02-27 Seagate Technology Llc Flexible rail section
US7185407B2 (en) 2004-05-27 2007-03-06 The Boeing Company Side rack rail system apparatus and method
US7258521B2 (en) 2005-05-31 2007-08-21 Scriptpro Llc Chain-driven robotic arm
CN101048102A (en) 2004-06-07 2007-10-03 诺瓦尔外科系统公司 Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
US20080066821A1 (en) 2006-09-20 2008-03-20 Shoichiro Komiya Folding type cable protection and guide device
EP1914010A2 (en) 2006-10-16 2008-04-23 Gas Turbine Efficiency Sweden AB System and method for optimized gas turbine compressor cleaning and performance measurement
US20080149141A1 (en) 2004-06-14 2008-06-26 Sales Hubert E Turboengine water wash system
US20080161971A1 (en) * 2005-06-21 2008-07-03 Robert Oliver Buckingham Robotic Arms
US20080199304A1 (en) 2005-05-03 2008-08-21 Rolls-Royce Plc Instruments Including Tools
US20080218728A1 (en) 2004-11-19 2008-09-11 Leica Geosystems Ag Method for Determining the Orientation of an Orientation Indicator
US20080250769A1 (en) 2006-09-11 2008-10-16 Gas Turbine Efficiency Sweden Ab, System and method for augmenting turbine power output
EP2011619A2 (en) 2007-07-05 2009-01-07 SKF Aerospace France Mechanical joint assembly, such as a rotating assembly, and method of manufacturing such a rotating assembly
US7509735B2 (en) 2004-04-22 2009-03-31 Siemens Energy, Inc. In-frame repairing system of gas turbine components
US20090084408A1 (en) 2005-09-24 2009-04-02 Karl Georg Thiemann Method of Cleaning Cavities on Gas Turbine Components
US20090086014A1 (en) 2007-09-28 2009-04-02 The Boeing Company Local positioning system and method
US20090084411A1 (en) 2004-10-19 2009-04-02 Honeywell International Inc. On-wing combustor cleaning using direct insertion nozzle, wash agent, and procedure
US20090084108A1 (en) 2005-01-14 2009-04-02 Lev Alexander Prociw Integral heater for fuel conveying member
EP2052792A2 (en) 2007-10-09 2009-04-29 Gas Turbine Efficiency Sweden AB Drain valve, washing system and sensing of rinse and wash completion
US20090132085A1 (en) 2007-03-09 2009-05-21 Abb Research Ltd. Detection of condition changes in an industrial robot system
US7543518B2 (en) 2001-06-13 2009-06-09 Oliver Crispin Robotics Limited Link assembly for a snake like robot arm
WO2009081164A1 (en) 2007-12-21 2009-07-02 Oliver Crispin Robotics Limited Robotic arm
US7559340B2 (en) 2007-04-17 2009-07-14 Tsubakimoto Chain Co. Tube type cable protection and guide device
US7571735B2 (en) 2006-09-29 2009-08-11 Gas Turbine Efficiency Sweden Ab Nozzle for online and offline washing of gas turbine compressors
US20090216245A1 (en) 2008-02-26 2009-08-27 Tyco Healthcare Group Lp Flexible Hollow Spine With Locking Feature And Manipulation Structure
US20090216374A1 (en) 2008-02-25 2009-08-27 Sri International Mitigating effects of biodynamic feedthrough on an electronic control device
CN101528111A (en) 2006-08-14 2009-09-09 卡迪欧机器人技术股份有限公司 Steerable multi-linked device having multiple working ports
US20090255116A1 (en) 2008-04-11 2009-10-15 General Electric Company Method of repairing a fuel nozzle
US20090320891A1 (en) 2006-08-16 2009-12-31 Ralf Liedtke Burner cleaning device
US7654143B2 (en) 2007-04-03 2010-02-02 General Electric Company Method and apparatus for in-situ inspection of rotary machine components
US20100030377A1 (en) 2006-05-24 2010-02-04 John Unsworth Snaking Robotic Arm with Movable Shapers
US7662091B2 (en) 2004-12-30 2010-02-16 General Electric Company Flexible borescope assembly for inspecting internal turbine components at elevated temperatures
US20100037924A1 (en) 2008-08-12 2010-02-18 General Electric Company System for reducing deposits on a compressor
US7677181B2 (en) 2006-11-06 2010-03-16 The Boeing Company Interlocking precision flexible rail system
US7707704B2 (en) 2001-03-13 2010-05-04 Enterprise Managed Services Limited Sealing methods
US20100108107A1 (en) 2008-10-31 2010-05-06 General Electric Company System and apparatus for fluoride ion cleaning
US7712301B1 (en) 2006-09-11 2010-05-11 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US7718894B2 (en) 2003-10-15 2010-05-18 Igus Gmbh Line guide device
US20100147330A1 (en) 2006-10-16 2010-06-17 Gas Turbine Efficiency Sweden Ab Gas turbine compressor water wash control of drain water purge and sensing of rinse and wash completion
US7741563B2 (en) 2006-11-27 2010-06-22 Tsubakimoto Chain Co. Closed type cable or the like protection and guide device
US20100160736A1 (en) 2004-08-31 2010-06-24 Surgical Solutions Llc Medical Device With Articulating Shaft
US20100234988A1 (en) 2007-06-23 2010-09-16 Robert Oliver Buckingham Robotic Arm With A Plurality Of Articulated Segments
US20100256447A1 (en) 2007-09-24 2010-10-07 Shay Dubi Virtual channel enabling device for use in endoscopic instrument insertion and body cavity cleansing
US20100275404A1 (en) 2009-05-04 2010-11-04 General Electric Company On-line cleaning of turbine hot gas path deposits via pressure pulsations
US7854109B2 (en) 2006-10-24 2010-12-21 Carnegie Mellon University Steerable multi-linked device having a modular link assembly
EP1967295B1 (en) 2007-03-07 2011-01-26 Gas Turbine Efficiency Sweden AB Transportable integrated wash unit
US7883674B2 (en) 2006-05-10 2011-02-08 United Technologies Corporation In-situ continuous coke deposit removal by catalytic steam gasification
US20110030381A1 (en) 2008-04-09 2011-02-10 Sordyl John Gas turbine engine rotary injection system and method
CN201769177U (en) 2010-09-01 2011-03-23 嘉兴敏惠汽车零部件有限公司 Arc decoration strip pressing device
CN201800016U (en) 2009-06-25 2011-04-20 纽弗雷公司 Telescopic pre-winding device assembly with infinite adjusting capability for mounting spiral wound wire insert
EP2320262A1 (en) 2009-11-10 2011-05-11 Siemens Aktiengesellschaft Inspection device and method for positioning an inspection device
US20110112527A1 (en) 2009-11-06 2011-05-12 Angiodynamics, Inc. Flexible medical ablation device and method of use
US20110174108A1 (en) 2008-06-30 2011-07-21 Andrew Crispin Graham Robotic arm
WO2011092891A1 (en) 2010-01-28 2011-08-04 オリンパス株式会社 Flexible tube for endoscope, and endoscope having said flexible tube
FR2956608A1 (en) 2010-02-19 2011-08-26 Tecks Eac M Mechanical articulated device controlling device for use in military application, has mechanical forward orientation device placed in median plane that equalizes orientation angle authorized by articulations with orientation angle
EP2375104A1 (en) 2008-12-19 2011-10-12 Kawabuchi Mechanical Engineering Laboratory, Inc. Linearly moving extendable mechanism and robot arm equipped with linearly moving extendable mechanism
EP2286933B1 (en) 2009-08-21 2011-11-09 Gas Turbine Efficiency Sweden AB Staged compressor water wash system
US20110295427A1 (en) 2010-05-26 2011-12-01 Motzer William P Methods and systems for inspection sensor placement
US8069747B2 (en) 2006-01-06 2011-12-06 Oliver Crispin Robotics Limited Robotic arms with coaxially mounted helical spring means
US20110303053A1 (en) 2010-06-10 2011-12-15 Steven Schneider Flexible socket wrench extension
CN102292013A (en) 2008-09-05 2011-12-21 卡内基梅隆大学 Multi-linked endoscopic device with spherical distal assembly
US8096030B2 (en) 2007-10-18 2012-01-17 Siemens Aktiengesellschaft Mobile repair apparatus for repairing a stationary rotor seal of a turbo machine
US8100031B2 (en) 2007-02-27 2012-01-24 Carnegie Mellon University Multi-linked device having a reinforcing member
US8125755B2 (en) 2007-07-26 2012-02-28 Sri International Selectively rigidizable and actively steerable articulatable device
US20120067158A1 (en) 2010-09-17 2012-03-22 Rolls-Royce Plc Flexible tool
WO2012042921A1 (en) 2010-09-30 2012-04-05 国立大学法人東京工業大学 Device for testing piping
US8152934B2 (en) 2006-07-27 2012-04-10 Rolls-Royce Plc Aeroengine washing system and method
WO2012054829A2 (en) 2010-10-22 2012-04-26 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
US20120125164A1 (en) 2008-09-18 2012-05-24 Eazypower Corporation Extension Shaft For Hold a Tool for Rotary Driven Motion
US8205522B2 (en) 2001-06-13 2012-06-26 Oliver Crispin Robotics Limited Link assembly with defined boundaries for a snake like robot arm
US8206488B2 (en) 2008-10-31 2012-06-26 General Electric Company Fluoride ion cleaning method
US20120167547A1 (en) 2011-01-03 2012-07-05 Hua Zhang Combustion turbine purge system and method of assembling same
US20120184817A1 (en) 2010-09-30 2012-07-19 Olympus Medical Systems Corp. Insertion aid and endoscope apparatus
US20120197241A1 (en) 2011-01-31 2012-08-02 Boston Scientific Scimed, Inc. Articulation joints for torque transmission
CN102687057A (en) 2009-11-10 2012-09-19 西门子公司 Inspection device and method for positioning an inspection device
CN102711585A (en) 2009-11-02 2012-10-03 波士顿科学国际医疗贸易公司 Flexible endoscope with modifiable stiffness
CN102729240A (en) 2012-06-28 2012-10-17 中国民航大学 Plane fuel tank inspecting robot based on connector structure and control method thereof
US20120260497A1 (en) 2009-10-08 2012-10-18 Surgical Innovations Limited Surgical instrument
US8299785B2 (en) 2009-07-09 2012-10-30 Snecma Device for the non-destructive testing of parts in a turbomachine
US8303243B2 (en) 2009-01-15 2012-11-06 Pratt & Whitney Canada Corp. Turbine wash port for a gas turbine engine
US8327518B2 (en) 2009-04-09 2012-12-11 Richard Wolf Gmbh Method for manufacturing a bendable tube
US8395300B2 (en) 2006-11-28 2013-03-12 University Of Tartu Uses of electroactive polymer materials
US8400501B2 (en) 2008-05-12 2013-03-19 Rolls-Royce Plc Inspection arrangement
US8409248B2 (en) 2000-12-14 2013-04-02 Core Medical, Inc. Plug with detachable guidewire element and methods for use
US20130125753A1 (en) 2010-03-26 2013-05-23 Yanmar Co., Ltd. Method and Apparatus for Cleaning a Filter for Removing Particulate Matter
EP2597273A2 (en) 2011-11-28 2013-05-29 Rolls-Royce plc An apparatus and a method of inspecting a turbomachine
US8453533B2 (en) 2010-02-05 2013-06-04 The Regents Of The University Of California Four degree of freedom (4-DOF) single modular robot unit or joint
US20130192353A1 (en) 2012-01-31 2013-08-01 Clifford Hatcher System and method for automated optical inspection of industrial gas turbines and other power generation machinery with multi-axis inspection scope
US20130199040A1 (en) 2012-02-06 2013-08-08 Rolls-Royce Deutschland Ltd & Co Kg Device and method for treatment of high-pressure turbine blades of a gas turbine
US20130226033A1 (en) 2012-02-28 2013-08-29 Tyco Healthcare Group Lp Intravascular guidewire
US20130255410A1 (en) 2012-04-02 2013-10-03 Samsung Electronics Co., Ltd Robot arm driving apparatus and robot arm having the same
TW201341090A (en) 2011-07-29 2013-10-16 Bosch Tool Corp Hinge connections and power miter saw with hinge linkage linear guide including such hinge connections
US8571711B2 (en) 2007-07-10 2013-10-29 Raytheon Company Modular robotic crawler
US20130335530A1 (en) 2012-01-31 2013-12-19 Clifford Hatcher, JR. System and method for visual inspection and 3d white light scanning of off-line industrial gas turbines and other power generation machinery
CN203370761U (en) 2013-07-12 2014-01-01 西安航空动力股份有限公司 Nozzle cleaning device of aero-engine
US20140012288A1 (en) 2010-11-11 2014-01-09 Medrobotics Corporation Introduction devices for highly articulated robotic probes and methods of production and use of such probes
US8635849B2 (en) 2005-04-29 2014-01-28 Bruce A. Tassone Method and system for introducing fluid into an airstream
US8640531B2 (en) 2012-04-17 2014-02-04 General Electric Company Turbine inspection system and related method of operation
US20140055596A1 (en) * 2012-08-23 2014-02-27 Clifford Hatcher, JR. Flexible linkage camera system and method for visual inspection of off line industrial gas turbines and other power generation machinery
US20140069460A1 (en) 2012-09-07 2014-03-13 Rolls-Royce Plc Boroscope and a method of processing a component within an assembled apparatus using a boroscope
US8674222B2 (en) 2011-12-26 2014-03-18 Kang Yang Hardware Enterprises Co., Ltd. Guiding and protecting device for cable and conduit
CN103639156A (en) 2013-10-25 2014-03-19 沈阳黎明航空发动机(集团)有限责任公司 Aero-engine nozzle deposit carbon removing method
FR2995996A1 (en) 2012-09-26 2014-03-28 Snecma Measurement device for measuring parameters of combustion chamber of gas turbine engine mounted on test bench, has elbow connecting rectilinear portions of tube, where elbow presents oblong section
US20140125791A1 (en) 2012-11-07 2014-05-08 Solar Turbines Incorporated Combustor imaging inspection system
CN103895012A (en) 2014-04-25 2014-07-02 清华大学 Trunk-simulating mechanical arm unit device
US8786848B2 (en) 2011-05-05 2014-07-22 Siemens Energy, Inc. Inspection system for a combustor of a turbine engine
US8833826B2 (en) 2011-03-21 2014-09-16 Sri International Mobile robotic manipulator system
US20140260755A1 (en) 2013-03-14 2014-09-18 Rolls-Royce Plc Multi-jointed arm assembly
CN104175325A (en) 2013-05-23 2014-12-03 江南大学 Self-locking boosting type flexible and smooth tail end gripper for serial connection loose hinge
US20150032252A1 (en) 2013-07-25 2015-01-29 IAM Robotics, LLC System and method for piece-picking or put-away with a mobile manipulation robot
US8945096B2 (en) 2008-06-05 2015-02-03 Carnegie Mellon University Extendable articulated probe device
US20150036150A1 (en) 2013-07-30 2015-02-05 Olympus Corporation Blade inspection apparatus and blade inspection method
US8959902B2 (en) 2013-02-27 2015-02-24 Tenneco Automotive Operating Company Inc. Exhaust treatment burner and mixer system
US20150064008A1 (en) 2013-09-04 2015-03-05 General Electric Company Turbomachine bucket having angel wing for differently sized discouragers and related methods
US8991163B2 (en) 2013-02-27 2015-03-31 Tenneco Automotive Operating Company Inc. Burner with air-assisted fuel nozzle and vaporizing ignition system
US8998567B2 (en) 2012-06-08 2015-04-07 General Electric Company Method, system and apparatus for enhanced off line compressor and turbine cleaning
US20150159557A1 (en) 2013-12-06 2015-06-11 General Electric Company Gas turbine engine systems and methods for imparting corrosion resistance to gas turbine engines
CN104870141A (en) 2013-12-24 2015-08-26 费斯托股份有限两合公司 Linear driver and method for manufacturing same
US20150246449A1 (en) * 2014-02-28 2015-09-03 Nachi-Fujikoshi Corp. Industrial robot
US9127234B2 (en) 2011-06-22 2015-09-08 Envirochem Solutions Llc Coke compositions for on-line gas turbine cleaning
US20150300920A1 (en) 2012-01-31 2015-10-22 Siemens Energy, Inc. Method and system for surface profile inspection of off-line industrial gas turbines and other power generation machinery
US9187700B2 (en) 2012-01-13 2015-11-17 United Technologies Corporation Method for reducing coke deposition
US20150338353A1 (en) 2012-01-31 2015-11-26 Siemens Energy, Inc. Optical inspection scope with deformable, self-supporting deployment tether
US20150341600A1 (en) 2014-05-22 2015-11-26 Siemens Energy, Inc. Flexible tether position tracking camera inspection system for visual inspection of off line industrial gas turbines and other power generation machinery
CN105144514A (en) 2013-04-05 2015-12-09 易格斯有限公司 Line guide made of multi-axially angle-adjustable links
US20150360629A1 (en) 2013-02-05 2015-12-17 Yazaki Corporation Reinforcement structure for power-supplying case
US9220398B2 (en) 2007-10-11 2015-12-29 Intuitive Surgical Operations, Inc. System for managing Bowden cables in articulating instruments
US20160000629A1 (en) 2014-07-07 2016-01-07 Roger P. Jackson Radiolucent Hinge for a Surgical Table
US20160032761A1 (en) 2014-08-04 2016-02-04 Rolls-Royce Corporation Aircraft engine cleaning system
US20160031078A1 (en) 2014-07-30 2016-02-04 Kabushiki Kaisha Yaskawa Denki Robot and device having multi-axis motion sensor, and method of use thereof
US9263866B2 (en) 2012-10-05 2016-02-16 Sumitomo Wiring Systems, Ltd. Corrugated tube and wire harness with corrugated tube
CN105377116A (en) 2013-05-07 2016-03-02 杰特普雷普有限公司 Rigid head for a body passage device
CN105436127A (en) 2015-12-03 2016-03-30 中国南方航空工业(集团)有限公司 Deposited carbon removing method for fuel nozzle
WO2016063074A2 (en) 2014-10-22 2016-04-28 Q-Bot Limited Robotic device
US20160114488A1 (en) 2014-10-24 2016-04-28 Fellow Robots, Inc. Customer service robot and related systems and methods
US20160146036A1 (en) 2014-11-24 2016-05-26 General Electric Technology Gmbh Engine casing element
US20160182776A1 (en) 2014-12-19 2016-06-23 Oasis Scientific 180 Degree Bendable Articulating Borescope Endoscope
US20160175057A1 (en) 2013-09-05 2016-06-23 MAQUET GmbH Assistance device for imaging support of a surgeon during a surgical operation
US20160174816A1 (en) 2004-06-25 2016-06-23 Carnegie Mellon University Steerable, follow the leader device
US20160186602A1 (en) 2014-12-31 2016-06-30 Aerocore Technologies Llc Nozzle for foam washing of jet engine
US9389150B2 (en) 2013-03-15 2016-07-12 Aegion Coating Services, Llc Pipe outer surface inspection apparatus
US9399299B2 (en) 2011-04-01 2016-07-26 Igus Gmbh Guide system for supply lines and a robot with a guide system
US9403244B2 (en) 2011-12-28 2016-08-02 Rolls-Royce Deutschland Ltd & Co Kg Method for repairing an abradable coating of a compressor of a gas turbine
US9409292B2 (en) 2013-09-13 2016-08-09 Sarcos Lc Serpentine robotic crawler for performing dexterous operations
EP3061923A1 (en) 2015-02-13 2016-08-31 General Electric Company Detergent delivery methods and systems for turbine engines
US9435750B2 (en) 2012-09-12 2016-09-06 Honda Motor Co., Ltd. Borescope
CN105927820A (en) 2016-07-07 2016-09-07 西南石油大学 Pipeline robot capable of active steering
US20160262840A1 (en) 2011-09-13 2016-09-15 Medrobotics Corporation Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures
EP3072642A2 (en) 2015-03-23 2016-09-28 Rolls-Royce plc Flexible tools and apparatus for machining objects
US9458735B1 (en) 2015-12-09 2016-10-04 General Electric Company System and method for performing a visual inspection of a gas turbine engine
US9492906B2 (en) 2010-08-03 2016-11-15 Mtu Aero Engines Gmbh Cleaning of a turbo-machine stage
CN106113019A (en) 2016-07-22 2016-11-16 长春理工大学 Multi-joint flexible manipulator arm
CN106163431A (en) 2013-12-04 2016-11-23 福蒂美迪克斯外科医疗器材有限公司 Access arrangement and the assembly including this equipment
US20160339584A1 (en) 2015-05-20 2016-11-24 Airbus Defence and Space S.A. Robot for inspection of confined spaces
US9549663B2 (en) 2006-06-13 2017-01-24 Intuitive Surgical Operations, Inc. Teleoperated surgical retractor system
US20170023154A1 (en) 2014-04-03 2017-01-26 Igus Gmbh Guide system for supply lines and robot having a guide system
CN106427289A (en) 2015-08-07 2017-02-22 张世明 Universal-wheel pen tip
US9581440B2 (en) 2013-10-02 2017-02-28 Siemens Energy, Inc. In-situ blade-mounted optical camera inspected systems for turbine engines
US20170095922A1 (en) 2015-10-05 2017-04-06 James Michael LICHT Medical devices having smoothly articulating multi-cluster joints
EP3153604A1 (en) 2015-10-05 2017-04-12 General Electric Company Cleaning solution and methods of cleaning a turbine engine
US20170100197A1 (en) 2014-06-05 2017-04-13 Medrobotics Corporation Articulating robotic probes, systesm and methods incorporating the same, and methods for performing surgical procedures
CN106659438A (en) 2014-08-26 2017-05-10 威蓝诺血管股份有限公司 Systems and methods for phlebotomy through a peripheral iv catheter
US20170129110A1 (en) 2015-11-05 2017-05-11 Irobot Corporation Robotic fingers and end effectors including same
EP3176365A1 (en) 2015-12-03 2017-06-07 General Electric Company System and method for performing an in situ repair of an internal component of a gas turbine engine
US20170167289A1 (en) 2015-12-09 2017-06-15 General Electric Company System and Method for Locating a Probe within a Gas Turbine Engine
US20170175569A1 (en) 2015-12-17 2017-06-22 General Electric Company System and Method for In Situ Cleaning of Internal Components of a Gas Turbine Engine and a Related Plug Assembly
US20170191376A1 (en) 2016-01-05 2017-07-06 General Electric Company Abrasive Gel Detergent for Cleaning Gas Turbine Engine Components
US20170219815A1 (en) 2012-01-31 2017-08-03 Siemens Energy, Inc. Single-axis inspection scope with bendable knuckle and method for internal inspection of power generation machinery
US20170219814A1 (en) 2012-01-31 2017-08-03 Siemens Energy, Inc. Single-axis inspection scope with anti-rotation extension and method for internal inspection of power generation machinery
US9726628B2 (en) 2014-09-09 2017-08-08 Siemens Energy, Inc. Hardware and method for implementation of in situ acoustic thermograph inspections
US9733195B2 (en) * 2015-12-18 2017-08-15 General Electric Company System and method for inspecting turbine blades
US20170239762A1 (en) 2016-02-22 2017-08-24 General Electric Company System and Method for In Situ Repair of Gas Turbine Engine Casing Clearance
CA2960352A1 (en) 2016-03-22 2017-09-22 General Electric Company Gas turbine in situ inflatable bladders for on-wing repair
CN107205622A (en) 2015-01-16 2017-09-26 B-K医疗公司 Joint motion uniaxial stress for ultrasound imaging probe is eliminated
US9788141B2 (en) 2015-09-17 2017-10-10 Sunpower Corporation Communicating with arrays of module units
US20170319048A1 (en) 2015-01-28 2017-11-09 Olympus Corporation Flexible tube insertion apparatus
US20170328497A1 (en) 2014-11-21 2017-11-16 Airbus Group Sas "flexible-rigid" air pipe
US20170359530A1 (en) 2016-06-13 2017-12-14 Siemens Energy, Inc. Flash thermography device for inspecting turbine components
CN107468339A (en) 2017-08-04 2017-12-15 吉林大学 A kind of robot assisted Minimally Invasive Surgery Flexible Multi-joint operating theater instruments
US20170361470A1 (en) 2016-06-21 2017-12-21 Ansaldo Energia Ip Uk Limited Robotic system for confined space operations
WO2017221982A1 (en) 2016-06-23 2017-12-28 ライフロボティクス株式会社 Linear-motion expansion/contraction mechanism
US9857002B2 (en) 2014-05-09 2018-01-02 United Technologies Corporation Fluid couplings and methods for additive manufacturing thereof
WO2018001967A1 (en) 2016-06-30 2018-01-04 Lebrun-Nimy Sa Device for extending and retracting a conditioned air hose for aircraft on the ground
US9902024B2 (en) 2012-11-28 2018-02-27 Lufthansa Technik Ag Method and device for repairing an aircraft and/or gas turbine component
US20180058233A1 (en) 2016-08-26 2018-03-01 Rolls-Royce Plc Apparatus for insertion into a cavity of an object
US9909694B2 (en) 2009-12-18 2018-03-06 Ge Oil & Gas Uk Limited Flexible pipe having a carcass layer
US20180071039A1 (en) 2013-12-20 2018-03-15 Corbin E. Barnett Surgical system and related methods
US20180094538A1 (en) 2013-12-09 2018-04-05 General Electric Company Methods of cleaning a hot gas flowpath comonent of a turbine engine
US20180119568A1 (en) 2015-04-10 2018-05-03 General Electric Company Systems and methods for attaching a borescope flexible probe or a guide tube to a component of a gas turbine
US20180149038A1 (en) 2016-11-30 2018-05-31 General Electric Company Gas turbine engine wash system
US20180156132A1 (en) 2016-12-06 2018-06-07 General Electric Company Gas turbine engine maintenance tool
US20180156062A1 (en) 2016-12-06 2018-06-07 General Electric Company Gas turbine engine maintenance method
CN108356747A (en) 2013-10-16 2018-08-03 艾沛克斯品牌公司 Ratchet tool for driven socket
US20180231162A1 (en) 2017-02-14 2018-08-16 Zhuhai Pusheng Medical Science&Technology Co., Ltd Snake bone
US10060569B2 (en) 2014-06-25 2018-08-28 Orlande Wayne Sivacoe Pipe pig
US10085624B2 (en) 2013-07-26 2018-10-02 Olympus Corporation Manipulator and manipulator system
CN207941781U (en) 2017-08-08 2018-10-09 中石化河南油建工程有限公司 Spherical pig group and ball serving device
US20180313225A1 (en) 2017-04-26 2018-11-01 General Electric Company Methods of cleaning a component within a turbine engine
CN108972527A (en) 2018-07-09 2018-12-11 中南大学 A kind of snakelike arm robot of variable rigidity based on phase-change material
US20180361960A1 (en) 2015-12-22 2018-12-20 Autonetworks Technologies, Ltd. Slide wiring apparatus
CN109068938A (en) 2016-04-12 2018-12-21 奥林巴斯株式会社 insertion system
US20190022877A1 (en) 2017-07-18 2019-01-24 General Electric Company Actuated sensor module and method for in situ gap inspection robots
US20190054638A1 (en) 2017-08-18 2019-02-21 Rolls-Royce Plc Hyper-redundant manipulators
CN109476019A (en) 2016-07-26 2019-03-15 Groove X 株式会社 Articulated robot
US10238457B2 (en) 2013-09-13 2019-03-26 Vanderbilt University System and method for endoscopic deployment of robotic concentric tube manipulators for performing surgery
CN109561935A (en) 2016-05-23 2019-04-02 帝国创新有限公司 Surgical instrument, robots arm and the control system for robots arm
WO2019076876A1 (en) 2017-10-16 2019-04-25 Lufthansa Technik Ag Device and method for borescope inspection of jet engines
CN109716194A (en) 2016-10-13 2019-05-03 康普技术有限责任公司 Fiber optic tap transitioning component comprising epoxy plugs and cable strain relief member
US20190145498A1 (en) 2016-07-30 2019-05-16 Life Robotics Inc. Robot arm mechanism
WO2019097688A1 (en) 2017-11-17 2019-05-23 オリンパス株式会社 Variable-rigidity device, variable-rigidity system, and endoscope
US20190190190A1 (en) 2017-12-15 2019-06-20 Radiall Sa Cable joint articulated extension piece for a connector intended to be linked to at least one cable
CN110001286A (en) 2017-12-05 2019-07-12 坎培诺洛有限公司 Bicycle use spoke wheel and spoke attachment element for this wheel
US20190246878A1 (en) 2015-11-13 2019-08-15 Daryl BODNER Endoscope
US20190277770A1 (en) 2018-03-07 2019-09-12 General Electric Company Probe Insertion System
US10428993B2 (en) 2017-01-25 2019-10-01 Whitefield Plastics Corporation Non-metallic clip connection system
US20190308319A1 (en) * 2018-04-10 2019-10-10 General Electric Company Systems and methods for inspecting, cleaning, and/or repairing one or more blades attached to a rotor of a gas turbine engine using a robotic system
US10470831B2 (en) 2015-09-04 2019-11-12 Memic Innovative Surgery Ltd. Actuation of a device comprising mechanical arms
CA3043720A1 (en) 2018-05-23 2019-11-23 General Electric Company System and method for controlling a robotic arm
US10488349B2 (en) 2017-11-14 2019-11-26 General Electric Company Automated borescope insertion system
EP3572632A1 (en) 2018-05-23 2019-11-27 General Electric Company Inspection tool and method
US20190358833A1 (en) 2018-05-23 2019-11-28 General Electric Company Robotic Arm Assembly Construction
US20190366536A1 (en) 2018-05-29 2019-12-05 General Electric Company Robotic Arm Assembly Construction
FR3082136A1 (en) 2018-06-12 2019-12-13 Safran Aircraft Engines MOBILE INSPECTION ROBOT OF A TURBOMACHINE
US20190383158A1 (en) 2018-06-14 2019-12-19 General Electric Company Probe Motion Compensation
US20190383161A1 (en) 2018-06-14 2019-12-19 General Electric Company Inspection Tool and Method
CN110757412A (en) 2019-11-27 2020-02-07 河南中烟工业有限责任公司 Valve opening and closing tool
US20200114528A1 (en) 2018-10-15 2020-04-16 General Electric Company Selectively Flexible Extension Tool
US20200113412A1 (en) 2018-10-12 2020-04-16 Ambu A/S Articulated tip part for an endoscope
US20200114497A1 (en) 2018-10-15 2020-04-16 General Electric Company Selectively Flexible Extension Tool
US20200205908A1 (en) 2018-12-28 2020-07-02 Auris Health, Inc. Medical instrument with articulable segment
US20200224552A1 (en) 2019-01-14 2020-07-16 General Electric Company Component repair system and method
US20200316789A1 (en) 2019-04-02 2020-10-08 Ford Global Technologies, Llc Robotic arm with a detachable and mobile end-effector
DE102019002892A1 (en) 2019-04-23 2020-10-29 Kuka Deutschland Gmbh Tool and gripper having a tool
US20200359879A1 (en) 2019-05-17 2020-11-19 Boston Scientific Scimed, Inc. Systems and devices for an endoscope tubeless working channel
US20200405142A1 (en) 2019-06-30 2020-12-31 Innovasis, Inc. Medical use camera
US10884232B1 (en) 2019-12-30 2021-01-05 General Electric Company Insertion apparatus including rigidizable body
US10926403B1 (en) 2018-10-24 2021-02-23 Amazon Technologies, Inc. Gripping tool having adjustable gripping area, and related methods
WO2021040376A1 (en) 2019-08-29 2021-03-04 한국과학기술원 Flexible actuator
US20210078165A1 (en) 2017-05-24 2021-03-18 China University Of Mining And Technology Serpentine inspection robot mechanism for lifting cage guide driven by magnetic wheels
US10967504B2 (en) 2017-09-13 2021-04-06 Vanderbilt University Continuum robots with multi-scale motion through equilibrium modulation
US20210102870A1 (en) 2019-10-04 2021-04-08 General Electric Company Insertion apparatus for use with rotary machines
US20210137354A1 (en) 2018-05-03 2021-05-13 Konstantin Bob Endoscope deflection using a distal folding mechanism
US20210223142A1 (en) 2020-01-21 2021-07-22 Mitsubishi Heavy Industries Compressor Corporation Probe device
CN113146599A (en) 2020-01-23 2021-07-23 通用电气公司 Extension tool with multiple links
US20210231239A1 (en) 2020-01-23 2021-07-29 General Electric Company Selectively flexible extension tool
US20210229270A1 (en) 2020-01-24 2021-07-29 General Electric Company Line assembly for an extension tool having a plurality of links
EP3879075A1 (en) 2020-03-10 2021-09-15 Oliver Crispin Robotics Limited Insertion tool
DE102020106508A1 (en) 2020-03-10 2021-09-16 Lufthansa Technik Aktiengesellschaft Device for the borescope inspection of technical devices
US20220221707A1 (en) 2021-01-08 2022-07-14 General Electric Company Insertion tool
US20220221706A1 (en) 2021-01-08 2022-07-14 General Electric Company Insertion tool
US11413763B2 (en) 2019-07-25 2022-08-16 Lg Electronics Inc. Charging robot and control method thereof
US20220314430A1 (en) 2021-03-31 2022-10-06 Oliver Crispin Robotics Limited Extension tool
US20230194234A1 (en) 2021-12-16 2023-06-22 Oliver Crispin Robotics Limited System and method of adjusting a tool
US11787069B2 (en) 2021-11-01 2023-10-17 Oliver Crispin Robotics Limited Insertion tool with flexible spine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610007B2 (en) * 2000-04-03 2003-08-26 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
WO2007098494A1 (en) * 2006-02-22 2007-08-30 Hansen Medical, Inc. System and apparatus for measuring distal forces on a working instrument
DE102011114541A1 (en) * 2011-09-30 2013-04-04 Lufthansa Technik Ag Endoscopy system and corresponding method for inspecting gas turbines
US20140207406A1 (en) * 2013-01-22 2014-07-24 General Electric Company Self-directed inspection plan

Patent Citations (453)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US338310A (en) 1886-03-23 Armor for rubber hose
US1774986A (en) 1928-04-11 1930-09-02 Gat Gun Lubricating Corp Metallic hose
US1987972A (en) 1933-01-07 1935-01-15 Linde Air Prod Co Decoking lance
US2073903A (en) 1936-04-14 1937-03-16 Maurice B O'neil Flexible tool
US2510198A (en) 1947-10-17 1950-06-06 Earl B Tesmer Flexible positioner
GB779248A (en) 1952-12-23 1957-07-17 British Petroleum Co Improvements in or relating to gas turbine engines
US2974676A (en) 1959-02-17 1961-03-14 George A Hagelthorn Hose and conduit system
US3096962A (en) 1960-02-04 1963-07-09 Meijs Pieter Johannes Locking device for a measuring apparatus or the like
US3190286A (en) 1961-10-31 1965-06-22 Bausch & Lomb Flexible viewing probe for endoscopic use
US3266059A (en) 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US3270641A (en) 1963-07-01 1966-09-06 Iota Cam Corp Remote inspection device and threaded member used therein
US3583393A (en) 1967-12-26 1971-06-08 Olympus Optical Co Bendable tube assembly
US3625084A (en) 1970-09-21 1971-12-07 Nasa Flexible/rigidifiable cable assembly
GB1437405A (en) 1972-09-25 1976-05-26 Titan Coder Carriages for supporting pipes
US3778170A (en) 1972-11-02 1973-12-11 Gen Electric Borescope guide tube
US4035137A (en) 1973-04-26 1977-07-12 Forney Engineering Company Burner unit
US4095418A (en) 1975-10-28 1978-06-20 Stal-Laval Turbin Ab Fuel flushing from injector for combustion chamber
US4041695A (en) 1975-11-21 1977-08-16 The Garrett Corporation Fuel system pneumatic purge apparatus and method
US4170489A (en) 1977-10-11 1979-10-09 Teledyne Sprague Engineering Division of Teledyne, Inc. Process for cleaning jet engine nozzles
US4215979A (en) 1978-03-01 1980-08-05 Toyota Jidosha Kogyo Kabushiki Kaisha Ignition torch
US4242863A (en) 1978-03-16 1981-01-06 Caterpillar Tractor Co. Dual phase fuel vaporizing combustor
US4227584A (en) 1978-12-19 1980-10-14 Driver W B Downhole flexible drive system
US4483326A (en) 1981-04-21 1984-11-20 Kabushiki Kaisha Medos Kenkyusho Curvature control mechanism in endoscopes
US4655673A (en) 1983-05-10 1987-04-07 Graham S. Hawkes Apparatus providing tactile feedback to operators of remotely controlled manipulators
US4625936A (en) 1983-06-06 1986-12-02 Sine Products Company Flexible support and carrier assembly
US4651718A (en) 1984-06-29 1987-03-24 Warner-Lambert Technologies Inc. Vertebra for articulatable shaft
CN86101283A (en) 1985-02-12 1986-08-27 英国石油公司 Operating means
US4826087A (en) 1985-02-12 1989-05-02 David Chinery Manipulative device
US4703888A (en) 1985-06-11 1987-11-03 Isuzu Motors Limited Cleaning apparatus for fuel burner
US4696544A (en) 1985-11-18 1987-09-29 Olympus Corporation Fiberscopic device for inspection of internal sections of construction, and method for using same
US4757258A (en) 1985-11-27 1988-07-12 Westinghouse Electric Corp. Probe carrier system for inspecting boiler tubes
US4713120A (en) 1986-02-13 1987-12-15 United Technologies Corporation Method for cleaning a gas turbine engine
US4714339B2 (en) 1986-02-28 2000-05-23 Us Commerce Three and five axis laser tracking systems
US4714339A (en) 1986-02-28 1987-12-22 The United States Of America As Represented By The Secretary Of Commerce Three and five axis laser tracking systems
US4714339B1 (en) 1986-02-28 1997-03-18 Us Army Three and five axis laser tracking systems
US4735501A (en) 1986-04-21 1988-04-05 Identechs Corporation Method and apparatus for fluid propelled borescopes
US4735501B1 (en) 1986-04-21 1990-11-06 Identechs Inc
US4790624A (en) 1986-10-31 1988-12-13 Identechs Corporation Method and apparatus for spatially orienting movable members using shape memory effect alloy actuator
US4730960A (en) 1986-12-15 1988-03-15 Wilbur Lewis Flexible socket extension
GB2199842A (en) 1986-12-30 1988-07-20 Us Energy Power generating system and method utilizing hydropyrolysis
US4846573A (en) 1987-04-10 1989-07-11 Identechs Corporation Shape memory effect alloy pull wire articulator for borescopes
US4773395A (en) 1987-05-12 1988-09-27 Olympus Optical Co., Ltd. Endoscope
US4911206A (en) 1987-07-21 1990-03-27 Witzenmann Gmbh Metallschlauch-Fabrik Pforzheim Supported flexible thin-walled tube structure
US4790294A (en) 1987-07-28 1988-12-13 Welch Allyn, Inc. Ball-and-socket bead endoscope steering section
US4890602A (en) 1987-11-25 1990-01-02 Hake Lawrence W Endoscope construction with means for controlling rigidity and curvature of flexible endoscope tube
US4972048A (en) 1988-06-06 1990-11-20 W. L. Gore & Associates, Inc. Flexible housing for a transmission line in a hydrostatically pressurized environment
GB2228644A (en) 1989-01-06 1990-08-29 Pearpoint Ltd Miniature TV camera system
US4991565A (en) 1989-06-26 1991-02-12 Asahi Kogaku Kogyo Kabushiki Kaisha Sheath device for endoscope and fluid conduit connecting structure therefor
US5090205A (en) 1989-08-28 1992-02-25 Foster Charles D Methods and apparatus for periodic chemical cleanings of turbines
US5337733A (en) 1989-10-23 1994-08-16 Peter Bauerfeind Tubular inserting device with variable rigidity
US5102221A (en) 1989-10-25 1992-04-07 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Apparatus for retouching, in situ, components such as the rotor blades of a turbomachine, and a retouching method using the apparatus
WO1991016598A1 (en) 1990-04-25 1991-10-31 Metronor A/S Device for determination of the topography of a surface
US5254809A (en) 1990-10-26 1993-10-19 W. L. Gore & Associates, Inc. Segmented flexible housing
US5271382A (en) 1991-07-24 1993-12-21 Kabushiki Kaisha Machida Seisakusho Bending device
US5164826A (en) 1991-08-19 1992-11-17 Westinghouse Electric Corp. Method and apparatus for visual inspection of the internal structure of apparatus through internal passages
US5385102A (en) 1991-11-29 1995-01-31 Commissariat A L'energie Atomique Vehicle for the automatic laying of a track by a vehicle travelling on said track and track designed for installation by such a vehicle
US5203646A (en) 1992-02-06 1993-04-20 Cornell Research Foundation, Inc. Cable crawling underwater inspection and cleaning robot
US5372162A (en) 1992-03-06 1994-12-13 Frey; Andre F. Repair device for the in situ repair of pipes, and a method of repairing pipes
US5323962A (en) 1992-03-31 1994-06-28 Irt Inspection Research And Technologies Ltd. Flexible guide system
US5482029A (en) 1992-06-26 1996-01-09 Kabushiki Kaisha Toshiba Variable flexibility endoscope system
US5501156A (en) 1992-09-05 1996-03-26 Richter; Hans Curved guide rail
CN1050781C (en) 1992-10-06 2000-03-29 陈威宇 Apparatus for internal cleaning of processing systems
US5399164A (en) 1992-11-02 1995-03-21 Catheter Imaging Systems Catheter having a multiple durometer
US5390402A (en) 1993-01-26 1995-02-21 General Electric Company Apparatus for installing guide tubes for instrumentation signal bearing wires in the bearing housing of a turbine
US5339845A (en) 1993-07-26 1994-08-23 Fuel Systems Textron, Inc. Cleaning apparatus and method for fuel and other passages
US5408970A (en) 1994-05-02 1995-04-25 General Motors Corporation Electronically controlled continuous flow fuel system
US5787897A (en) 1994-06-24 1998-08-04 Archimedes Surgical, Inc. Surgical method for intraluminally plicating a fundus of a patient
US5558665A (en) 1994-06-24 1996-09-24 Archimedes Surgical, Inc. Surgical instrument and method for intraluminal retraction of an anatomic structure
US5842381A (en) 1994-07-28 1998-12-01 Siemens Aktiengesellschaft Precisely controllable flexible actuator
US5644394A (en) 1994-10-19 1997-07-01 United Technologies Corporation System for repairing damaged gas turbine engine airfoils
US5667023A (en) 1994-11-22 1997-09-16 Baker Hughes Incorporated Method and apparatus for drilling and completing wells
US5667023B1 (en) 1994-11-22 2000-04-18 Baker Hughes Inc Method and apparatus for drilling and completing wells
US5807241A (en) 1995-09-22 1998-09-15 Richard Wolf Gmbh Bendable tube and method for its manufacture
US5816769A (en) 1995-11-07 1998-10-06 Siemens Aktiengesellschaft Flexible manipulator
CN1162516A (en) 1996-01-11 1997-10-22 布克刀具股份有限公司 Combination tool with oppositely deploying handles
US6156974A (en) 1996-02-16 2000-12-05 Igus Spritzgussteile Fur Die Industrie Gmbh Flexible raceway for energy lines
US6432046B1 (en) 1996-07-15 2002-08-13 Universal Technologies International, Inc. Hand-held, portable camera for producing video images of an object
US6213974B1 (en) 1996-12-30 2001-04-10 Visionary Biomedical, Inc. Steerable catheter having segmented tip and one-piece inlet housing, and method of fabricating same
US6123273A (en) 1997-09-30 2000-09-26 General Electric Co. Dual-fuel nozzle for inhibiting carbon deposition onto combustor surfaces in a gas turbine
US6481195B1 (en) 1998-04-20 2002-11-19 Igus Spritzgussteile für die Industrie GmbH Energy transmission chain system
US6216439B1 (en) 1998-05-08 2001-04-17 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel system comprising fuel oil distribution control system, fuel oil purge system, purging air supply system and fuel nozzle wash system
WO2000006336A1 (en) 1998-07-28 2000-02-10 Keymed (Medical & Industrial Equipment) Limited Apparatus for performing operations on a workpiece at an inaccessible location
US6542230B1 (en) 1998-07-28 2003-04-01 Keymed (Medical & Industrial) Ltd. Apparatus for performing operations on a workpiece at an inaccessible location
US6287206B1 (en) 1998-10-26 2001-09-11 Jack W. Stage Limited angle universal joint
DE29902753U1 (en) 1999-02-16 1999-06-24 Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg Flexible guide gear for handling technology
US6371148B1 (en) 1999-03-31 2002-04-16 Certainteed Corporation Hose feed and retrieval system related applications
US6643877B1 (en) 1999-09-21 2003-11-11 Wera Werk Hermann Werner Gmbh & Co. Kg Tool set
US6431824B2 (en) 1999-10-01 2002-08-13 General Electric Company Turbine nozzle stage having thermocouple guide tube
US6311704B1 (en) 2000-03-03 2001-11-06 Hydrochem Industrial Services Methods and apparatus for chemically cleaning turbines
US6974411B2 (en) 2000-04-03 2005-12-13 Neoguide Systems, Inc. Endoscope with single step guiding apparatus
US6837846B2 (en) 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
US6478033B1 (en) 2000-05-26 2002-11-12 Hydrochem Industrial Services, Inc. Methods for foam cleaning combustion turbines
US20030229420A1 (en) 2000-08-18 2003-12-11 Buckingham Robert Oliver Robotic positioning of a work tool or sensor
US7171279B2 (en) 2000-08-18 2007-01-30 Oliver Crispin Robotics Limited Articulating arm for positioning a tool at a location
EP2267508A2 (en) 2000-08-18 2010-12-29 Oliver Crispin Robotics Limited Improvements in and relating to the robotic positioning of a work tool or sensor
CN1678937A (en) 2000-08-18 2005-10-05 奥利弗克里斯品机器人有限公司 Improvements in and relating to the robotic positioning of a work tool or sensor
US6955023B2 (en) 2000-12-13 2005-10-18 Kevin Chaite Rotheroe Unitary metal structural member with internal reinforcement
US8409248B2 (en) 2000-12-14 2013-04-02 Core Medical, Inc. Plug with detachable guidewire element and methods for use
EP1216797A1 (en) 2000-12-19 2002-06-26 General Electric Company Methods for robotically inspecting gas turbine combustion components
US6698456B2 (en) 2001-03-08 2004-03-02 Frankische Rohrwerke Gebr. Kirchner Gmbh + Co Kg Protective corrugated plastic pipe
US7707704B2 (en) 2001-03-13 2010-05-04 Enterprise Managed Services Limited Sealing methods
US8205522B2 (en) 2001-06-13 2012-06-26 Oliver Crispin Robotics Limited Link assembly with defined boundaries for a snake like robot arm
US7543518B2 (en) 2001-06-13 2009-06-09 Oliver Crispin Robotics Limited Link assembly for a snake like robot arm
US7182025B2 (en) 2001-10-17 2007-02-27 William Marsh Rice University Autonomous robotic crawler for in-pipe inspection
US20050203340A1 (en) 2002-03-06 2005-09-15 John Butler Steerable colonoscope probe with variable stiffness
US20030171736A1 (en) 2002-03-07 2003-09-11 Edwin Bon Catheter shaft with coextruded stiffener
CN1656312A (en) 2002-03-22 2005-08-17 克里萨里斯技术公司 Apparatus and method for preparing and delivering fuel
US6783491B2 (en) 2002-06-13 2004-08-31 Vahid Saadat Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US20040193016A1 (en) 2002-06-17 2004-09-30 Thomas Root Endoscopic delivery system for the non-destructive testing and evaluation of remote flaws
US20040059191A1 (en) 2002-06-17 2004-03-25 Robert Krupa Mechanical steering mechanism for borescopes, endoscopes, catheters, guide tubes, and working tools
US20040186350A1 (en) 2003-01-13 2004-09-23 Usgi Medical Corp. Apparatus and methods for guiding an endoscope via a rigidizable wire guide
US20040249367A1 (en) 2003-01-15 2004-12-09 Usgi Medical Corp. Endoluminal tool deployment system
US20040138525A1 (en) 2003-01-15 2004-07-15 Usgi Medical Corp. Endoluminal tool deployment system
US20050075538A1 (en) 2003-04-01 2005-04-07 Banik Michael S. Single use endoscopic imaging system
US20130340559A1 (en) 2003-05-23 2013-12-26 Intuitive Surgical Operations, Inc. Articulating mechanisms with actuatable elements actuatable
US20050107667A1 (en) 2003-05-23 2005-05-19 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US20060170386A1 (en) 2003-06-17 2006-08-03 Science Applications International Corporation Toroidal propulsion and steering system
US20040255422A1 (en) 2003-06-18 2004-12-23 Reback Scott Mitchell Methods and apparatus for injecting cleaning fluids into combustors
EP1489269A2 (en) 2003-06-18 2004-12-22 General Electric Company Methods and apparatus for injecting cleaning fluids into combustors
US6941974B2 (en) 2003-09-11 2005-09-13 Tsubakimoto Chain Co. Cable or the like protection and guide device
US6957781B2 (en) 2003-09-15 2005-10-25 Kraft Food Holdings, Inc. Cleaning attachment for fluid dispenser nozzles and fluid dispensers using same
US6943570B2 (en) 2003-09-26 2005-09-13 Honeywell International, Inc. Device for detecting a crack on a turbine blade of an aircraft engine
US7718894B2 (en) 2003-10-15 2010-05-18 Igus Gmbh Line guide device
US20050148287A1 (en) 2003-11-18 2005-07-07 Dieter Moeller Rotary grinding apparatus for blending defects on turbine blades and associated method of use
US20060258265A1 (en) 2003-11-18 2006-11-16 Dieter Moeller Rotary Grinding Apparatus For Blending Defects on Turbine Blades and Associated Method of Use
US20050124856A1 (en) 2003-12-05 2005-06-09 Tetsuya Fujikura Insertion assisting tool for endoscope
EP1574675A2 (en) 2004-03-12 2005-09-14 General Electric Company Mobile flushing unit and process
US20050204489A1 (en) 2004-03-16 2005-09-22 United Technologies Corporation Rotary probe for cleaning an internal cavity
US7150416B2 (en) 2004-04-09 2006-12-19 Tronox Llc Liquid fuel injection
US7509735B2 (en) 2004-04-22 2009-03-31 Siemens Energy, Inc. In-frame repairing system of gas turbine components
US7185407B2 (en) 2004-05-27 2007-03-06 The Boeing Company Side rack rail system apparatus and method
US20050273085A1 (en) 2004-06-07 2005-12-08 Novare Surgical Systems, Inc. Articulating mechanism with flex-hinged links
CN101048102A (en) 2004-06-07 2007-10-03 诺瓦尔外科系统公司 Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
CN101048101A (en) 2004-06-07 2007-10-03 诺瓦尔外科系统公司 Articulating mechanism with flex-hinged links
CN102871636A (en) 2004-06-07 2013-01-16 诺瓦尔外科系统公司 Articulating mechanism with flex-hinged links
US20080149141A1 (en) 2004-06-14 2008-06-26 Sales Hubert E Turboengine water wash system
US20160174816A1 (en) 2004-06-25 2016-06-23 Carnegie Mellon University Steerable, follow the leader device
US20100160736A1 (en) 2004-08-31 2010-06-24 Surgical Solutions Llc Medical Device With Articulating Shaft
US20060074383A1 (en) 2004-09-30 2006-04-06 Boulais Dennis R Steerable device and system
US20060074283A1 (en) 2004-10-05 2006-04-06 Theron Technologies, L.L.C. Apparatuses and methods for non-invasively monitoring blood parameters
US20060073348A1 (en) 2004-10-06 2006-04-06 General Electric Company Electroplated fuel nozzle/swirler wear coat
US20090084411A1 (en) 2004-10-19 2009-04-02 Honeywell International Inc. On-wing combustor cleaning using direct insertion nozzle, wash agent, and procedure
US20060131908A1 (en) 2004-11-01 2006-06-22 Sharp Kabushiki Kaisha Joint drive mechanism and robot hand
US20080218728A1 (en) 2004-11-19 2008-09-11 Leica Geosystems Ag Method for Determining the Orientation of an Orientation Indicator
US20060156851A1 (en) 2004-12-02 2006-07-20 Jacobsen Stephen C Mechanical serpentine device
JP2006184832A (en) 2004-12-28 2006-07-13 Olympus Corp Endoscopic device
US7662091B2 (en) 2004-12-30 2010-02-16 General Electric Company Flexible borescope assembly for inspecting internal turbine components at elevated temperatures
US20090084108A1 (en) 2005-01-14 2009-04-02 Lev Alexander Prociw Integral heater for fuel conveying member
US7182024B2 (en) 2005-03-16 2007-02-27 Seagate Technology Llc Flexible rail section
US8635849B2 (en) 2005-04-29 2014-01-28 Bruce A. Tassone Method and system for introducing fluid into an airstream
US20080199304A1 (en) 2005-05-03 2008-08-21 Rolls-Royce Plc Instruments Including Tools
US8714038B2 (en) * 2005-05-03 2014-05-06 Rolls Royce Plc Instruments including tools
US7258521B2 (en) 2005-05-31 2007-08-21 Scriptpro Llc Chain-driven robotic arm
US20080161971A1 (en) * 2005-06-21 2008-07-03 Robert Oliver Buckingham Robotic Arms
US20090084408A1 (en) 2005-09-24 2009-04-02 Karl Georg Thiemann Method of Cleaning Cavities on Gas Turbine Components
US8069747B2 (en) 2006-01-06 2011-12-06 Oliver Crispin Robotics Limited Robotic arms with coaxially mounted helical spring means
US7883674B2 (en) 2006-05-10 2011-02-08 United Technologies Corporation In-situ continuous coke deposit removal by catalytic steam gasification
US20100030377A1 (en) 2006-05-24 2010-02-04 John Unsworth Snaking Robotic Arm with Movable Shapers
US9549663B2 (en) 2006-06-13 2017-01-24 Intuitive Surgical Operations, Inc. Teleoperated surgical retractor system
US8152934B2 (en) 2006-07-27 2012-04-10 Rolls-Royce Plc Aeroengine washing system and method
CN1903517A (en) 2006-08-02 2007-01-31 葛汉祥 Hand gripping device
CN101528111A (en) 2006-08-14 2009-09-09 卡迪欧机器人技术股份有限公司 Steerable multi-linked device having multiple working ports
US8920579B2 (en) 2006-08-16 2014-12-30 Siemens Aktiengesellschaft Burner cleaning device
US20090320891A1 (en) 2006-08-16 2009-12-31 Ralf Liedtke Burner cleaning device
EP2275648B1 (en) 2006-09-11 2012-03-28 Gas Turbine Efficiency Sweden AB System and method for augmenting turbine power output
EP1903188B1 (en) 2006-09-11 2013-05-01 Gas Turbine Efficiency Sweden AB Gas turbine
US7703272B2 (en) 2006-09-11 2010-04-27 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US20080250769A1 (en) 2006-09-11 2008-10-16 Gas Turbine Efficiency Sweden Ab, System and method for augmenting turbine power output
US7712301B1 (en) 2006-09-11 2010-05-11 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US20080066821A1 (en) 2006-09-20 2008-03-20 Shoichiro Komiya Folding type cable protection and guide device
EP1908928B1 (en) 2006-09-29 2016-12-14 Gas Turbine Efficiency Sweden AB Nozzle for online and offline washing of gas turbine compressors
US7571735B2 (en) 2006-09-29 2009-08-11 Gas Turbine Efficiency Sweden Ab Nozzle for online and offline washing of gas turbine compressors
US7849878B2 (en) 2006-10-16 2010-12-14 Gas Turbine Efficiency Sweden Ab Gas turbine compressor water wash control of drain water purge and sensing of rinse and wash completion
US20100116292A1 (en) 2006-10-16 2010-05-13 Gas Turbine Efficiency Sweden Ab System and method for optimized gas turbine compressor cleaning and performance measurement
EP1914010A2 (en) 2006-10-16 2008-04-23 Gas Turbine Efficiency Sweden AB System and method for optimized gas turbine compressor cleaning and performance measurement
US20100147330A1 (en) 2006-10-16 2010-06-17 Gas Turbine Efficiency Sweden Ab Gas turbine compressor water wash control of drain water purge and sensing of rinse and wash completion
US7854109B2 (en) 2006-10-24 2010-12-21 Carnegie Mellon University Steerable multi-linked device having a modular link assembly
US7677181B2 (en) 2006-11-06 2010-03-16 The Boeing Company Interlocking precision flexible rail system
US7741563B2 (en) 2006-11-27 2010-06-22 Tsubakimoto Chain Co. Closed type cable or the like protection and guide device
US8395300B2 (en) 2006-11-28 2013-03-12 University Of Tartu Uses of electroactive polymer materials
US8100031B2 (en) 2007-02-27 2012-01-24 Carnegie Mellon University Multi-linked device having a reinforcing member
EP2353739A1 (en) 2007-03-07 2011-08-10 Gas Turbine Efficiency Sweden AB Transportable integrated wash unit
EP1967295B1 (en) 2007-03-07 2011-01-26 Gas Turbine Efficiency Sweden AB Transportable integrated wash unit
US20090132085A1 (en) 2007-03-09 2009-05-21 Abb Research Ltd. Detection of condition changes in an industrial robot system
US8190294B2 (en) 2007-03-09 2012-05-29 Abb Research Ltd. Detection of condition changes in an industrial robot system
US7654143B2 (en) 2007-04-03 2010-02-02 General Electric Company Method and apparatus for in-situ inspection of rotary machine components
US7559340B2 (en) 2007-04-17 2009-07-14 Tsubakimoto Chain Co. Tube type cable protection and guide device
US20100234988A1 (en) 2007-06-23 2010-09-16 Robert Oliver Buckingham Robotic Arm With A Plurality Of Articulated Segments
US8505204B2 (en) 2007-07-05 2013-08-13 Skf Aerospace France Method of manufacturing a ball joint assembly
EP2011619A2 (en) 2007-07-05 2009-01-07 SKF Aerospace France Mechanical joint assembly, such as a rotating assembly, and method of manufacturing such a rotating assembly
US8571711B2 (en) 2007-07-10 2013-10-29 Raytheon Company Modular robotic crawler
US8125755B2 (en) 2007-07-26 2012-02-28 Sri International Selectively rigidizable and actively steerable articulatable device
US20100256447A1 (en) 2007-09-24 2010-10-07 Shay Dubi Virtual channel enabling device for use in endoscopic instrument insertion and body cavity cleansing
US20090086014A1 (en) 2007-09-28 2009-04-02 The Boeing Company Local positioning system and method
EP2052792A2 (en) 2007-10-09 2009-04-29 Gas Turbine Efficiency Sweden AB Drain valve, washing system and sensing of rinse and wash completion
US9220398B2 (en) 2007-10-11 2015-12-29 Intuitive Surgical Operations, Inc. System for managing Bowden cables in articulating instruments
US8096030B2 (en) 2007-10-18 2012-01-17 Siemens Aktiengesellschaft Mobile repair apparatus for repairing a stationary rotor seal of a turbo machine
US8374722B2 (en) * 2007-12-21 2013-02-12 Oliver Crispin Robotics Limited Robotic arm
WO2009081164A1 (en) 2007-12-21 2009-07-02 Oliver Crispin Robotics Limited Robotic arm
EP2237931A1 (en) 2007-12-21 2010-10-13 Oliver Crispin Robotics Limited Robotic arm
US20090216374A1 (en) 2008-02-25 2009-08-27 Sri International Mitigating effects of biodynamic feedthrough on an electronic control device
US20090216245A1 (en) 2008-02-26 2009-08-27 Tyco Healthcare Group Lp Flexible Hollow Spine With Locking Feature And Manipulation Structure
US20110030381A1 (en) 2008-04-09 2011-02-10 Sordyl John Gas turbine engine rotary injection system and method
US20090255116A1 (en) 2008-04-11 2009-10-15 General Electric Company Method of repairing a fuel nozzle
US20090256007A1 (en) 2008-04-11 2009-10-15 Mcmasters Marie Ann Repairable fuel nozzle
US20090255102A1 (en) 2008-04-11 2009-10-15 Mcmasters Marie Ann Repair of fuel nozzle component
US8400501B2 (en) 2008-05-12 2013-03-19 Rolls-Royce Plc Inspection arrangement
US8945096B2 (en) 2008-06-05 2015-02-03 Carnegie Mellon University Extendable articulated probe device
US9505125B2 (en) 2008-06-05 2016-11-29 Carnegie Mellon University Extendable articulated probe device
US8758232B2 (en) 2008-06-30 2014-06-24 Oliver Crispin Robotics Limited Robotic arm
US20110174108A1 (en) 2008-06-30 2011-07-21 Andrew Crispin Graham Robotic arm
US20100037924A1 (en) 2008-08-12 2010-02-18 General Electric Company System for reducing deposits on a compressor
CN102292013A (en) 2008-09-05 2011-12-21 卡内基梅隆大学 Multi-linked endoscopic device with spherical distal assembly
US20110313243A1 (en) 2008-09-05 2011-12-22 Carnegie Mellon University Multi-linked endoscopic device with spherical distal assembly
US20120125164A1 (en) 2008-09-18 2012-05-24 Eazypower Corporation Extension Shaft For Hold a Tool for Rotary Driven Motion
US8206488B2 (en) 2008-10-31 2012-06-26 General Electric Company Fluoride ion cleaning method
US20100108107A1 (en) 2008-10-31 2010-05-06 General Electric Company System and apparatus for fluoride ion cleaning
EP2375104A1 (en) 2008-12-19 2011-10-12 Kawabuchi Mechanical Engineering Laboratory, Inc. Linearly moving extendable mechanism and robot arm equipped with linearly moving extendable mechanism
US8303243B2 (en) 2009-01-15 2012-11-06 Pratt & Whitney Canada Corp. Turbine wash port for a gas turbine engine
US8327518B2 (en) 2009-04-09 2012-12-11 Richard Wolf Gmbh Method for manufacturing a bendable tube
CN101881218A (en) 2009-05-04 2010-11-10 通用电气公司 Turbine hot gas path deposits is by the online removing of pressure pulsation
US20100275404A1 (en) 2009-05-04 2010-11-04 General Electric Company On-line cleaning of turbine hot gas path deposits via pressure pulsations
US8377232B2 (en) 2009-05-04 2013-02-19 General Electric Company On-line cleaning of turbine hot gas path deposits via pressure pulsations
CN201800016U (en) 2009-06-25 2011-04-20 纽弗雷公司 Telescopic pre-winding device assembly with infinite adjusting capability for mounting spiral wound wire insert
US8299785B2 (en) 2009-07-09 2012-10-30 Snecma Device for the non-destructive testing of parts in a turbomachine
US20130074879A1 (en) 2009-08-21 2013-03-28 Gas Turbine Efficiency Sweden Ab Staged compressor water wash system
EP2286933B1 (en) 2009-08-21 2011-11-09 Gas Turbine Efficiency Sweden AB Staged compressor water wash system
US9016293B2 (en) 2009-08-21 2015-04-28 Gas Turbine Efficiency Sweden Ab Staged compressor water wash system
US9028618B2 (en) 2009-08-21 2015-05-12 Gas Turbine Efficiency Sweden Ab Staged compressor water wash system
US20150233263A1 (en) 2009-08-21 2015-08-20 Gas Turbine Efficiency Sweden Ab Stage compressor water wash system
US20120260497A1 (en) 2009-10-08 2012-10-18 Surgical Innovations Limited Surgical instrument
CN102711585A (en) 2009-11-02 2012-10-03 波士顿科学国际医疗贸易公司 Flexible endoscope with modifiable stiffness
US20110112527A1 (en) 2009-11-06 2011-05-12 Angiodynamics, Inc. Flexible medical ablation device and method of use
US20120312103A1 (en) * 2009-11-10 2012-12-13 Kerstin Hannott Inspection device and method for positioning an inspection device
EP2320262A1 (en) 2009-11-10 2011-05-11 Siemens Aktiengesellschaft Inspection device and method for positioning an inspection device
CN102687057A (en) 2009-11-10 2012-09-19 西门子公司 Inspection device and method for positioning an inspection device
JP2013510339A (en) 2009-11-10 2013-03-21 シーメンス アクティエンゲゼルシャフト Inspection device and method for positioning inspection device
US20120279323A1 (en) 2009-11-10 2012-11-08 Karsten Broda Inspection device and method for positioning an inspection device
US9909694B2 (en) 2009-12-18 2018-03-06 Ge Oil & Gas Uk Limited Flexible pipe having a carcass layer
WO2011092891A1 (en) 2010-01-28 2011-08-04 オリンパス株式会社 Flexible tube for endoscope, and endoscope having said flexible tube
US8453533B2 (en) 2010-02-05 2013-06-04 The Regents Of The University Of California Four degree of freedom (4-DOF) single modular robot unit or joint
FR2956608A1 (en) 2010-02-19 2011-08-26 Tecks Eac M Mechanical articulated device controlling device for use in military application, has mechanical forward orientation device placed in median plane that equalizes orientation angle authorized by articulations with orientation angle
US20130125753A1 (en) 2010-03-26 2013-05-23 Yanmar Co., Ltd. Method and Apparatus for Cleaning a Filter for Removing Particulate Matter
US9149929B2 (en) 2010-05-26 2015-10-06 The Boeing Company Methods and systems for inspection sensor placement
US20110295427A1 (en) 2010-05-26 2011-12-01 Motzer William P Methods and systems for inspection sensor placement
US20110303053A1 (en) 2010-06-10 2011-12-15 Steven Schneider Flexible socket wrench extension
US9492906B2 (en) 2010-08-03 2016-11-15 Mtu Aero Engines Gmbh Cleaning of a turbo-machine stage
CN201769177U (en) 2010-09-01 2011-03-23 嘉兴敏惠汽车零部件有限公司 Arc decoration strip pressing device
US20120067158A1 (en) 2010-09-17 2012-03-22 Rolls-Royce Plc Flexible tool
US9016159B2 (en) 2010-09-17 2015-04-28 Rolls-Royce Plc Flexible tool
US20120184817A1 (en) 2010-09-30 2012-07-19 Olympus Medical Systems Corp. Insertion aid and endoscope apparatus
WO2012042921A1 (en) 2010-09-30 2012-04-05 国立大学法人東京工業大学 Device for testing piping
US20140005683A1 (en) 2010-10-22 2014-01-02 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
WO2012054829A2 (en) 2010-10-22 2012-04-26 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
US8992421B2 (en) 2010-10-22 2015-03-31 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
EP2629655A2 (en) 2010-10-22 2013-08-28 Medrobotics Corporation Highly articulated robotic probes and methods of production and use of such probes
US20140012288A1 (en) 2010-11-11 2014-01-09 Medrobotics Corporation Introduction devices for highly articulated robotic probes and methods of production and use of such probes
US20120167547A1 (en) 2011-01-03 2012-07-05 Hua Zhang Combustion turbine purge system and method of assembling same
US20120197241A1 (en) 2011-01-31 2012-08-02 Boston Scientific Scimed, Inc. Articulation joints for torque transmission
US9272425B2 (en) 2011-03-21 2016-03-01 Sri International Twisted string actuator systems
US8833826B2 (en) 2011-03-21 2014-09-16 Sri International Mobile robotic manipulator system
US9399299B2 (en) 2011-04-01 2016-07-26 Igus Gmbh Guide system for supply lines and a robot with a guide system
US8786848B2 (en) 2011-05-05 2014-07-22 Siemens Energy, Inc. Inspection system for a combustor of a turbine engine
US9127234B2 (en) 2011-06-22 2015-09-08 Envirochem Solutions Llc Coke compositions for on-line gas turbine cleaning
TW201341090A (en) 2011-07-29 2013-10-16 Bosch Tool Corp Hinge connections and power miter saw with hinge linkage linear guide including such hinge connections
US20160262840A1 (en) 2011-09-13 2016-09-15 Medrobotics Corporation Highly articulated probes with anti-twist link arrangement, methods of formation thereof, and methods of performing medical procedures
US9300926B2 (en) 2011-11-28 2016-03-29 Rolls-Royce Plc Apparatus and a method of inspecting a turbomachine
EP2597273A2 (en) 2011-11-28 2013-05-29 Rolls-Royce plc An apparatus and a method of inspecting a turbomachine
US8674222B2 (en) 2011-12-26 2014-03-18 Kang Yang Hardware Enterprises Co., Ltd. Guiding and protecting device for cable and conduit
US9403244B2 (en) 2011-12-28 2016-08-02 Rolls-Royce Deutschland Ltd & Co Kg Method for repairing an abradable coating of a compressor of a gas turbine
US9187700B2 (en) 2012-01-13 2015-11-17 United Technologies Corporation Method for reducing coke deposition
US9778141B2 (en) 2012-01-31 2017-10-03 Siemens Energy, Inc. Video inspection system with deformable, self-supporting deployment tether
US20170219815A1 (en) 2012-01-31 2017-08-03 Siemens Energy, Inc. Single-axis inspection scope with bendable knuckle and method for internal inspection of power generation machinery
US20130335530A1 (en) 2012-01-31 2013-12-19 Clifford Hatcher, JR. System and method for visual inspection and 3d white light scanning of off-line industrial gas turbines and other power generation machinery
US20130192353A1 (en) 2012-01-31 2013-08-01 Clifford Hatcher System and method for automated optical inspection of industrial gas turbines and other power generation machinery with multi-axis inspection scope
US20150300920A1 (en) 2012-01-31 2015-10-22 Siemens Energy, Inc. Method and system for surface profile inspection of off-line industrial gas turbines and other power generation machinery
US20150338353A1 (en) 2012-01-31 2015-11-26 Siemens Energy, Inc. Optical inspection scope with deformable, self-supporting deployment tether
US20170219814A1 (en) 2012-01-31 2017-08-03 Siemens Energy, Inc. Single-axis inspection scope with anti-rotation extension and method for internal inspection of power generation machinery
US20130199040A1 (en) 2012-02-06 2013-08-08 Rolls-Royce Deutschland Ltd & Co Kg Device and method for treatment of high-pressure turbine blades of a gas turbine
US20130226033A1 (en) 2012-02-28 2013-08-29 Tyco Healthcare Group Lp Intravascular guidewire
US20130255410A1 (en) 2012-04-02 2013-10-03 Samsung Electronics Co., Ltd Robot arm driving apparatus and robot arm having the same
US8640531B2 (en) 2012-04-17 2014-02-04 General Electric Company Turbine inspection system and related method of operation
US8998567B2 (en) 2012-06-08 2015-04-07 General Electric Company Method, system and apparatus for enhanced off line compressor and turbine cleaning
CN102729240A (en) 2012-06-28 2012-10-17 中国民航大学 Plane fuel tank inspecting robot based on connector structure and control method thereof
US9294737B2 (en) 2012-08-23 2016-03-22 Siemens Energy, Inc. Flexible linkage camera system and method for visual inspection of off line industrial gas turbines and other power generation machinery
CN104582909A (en) 2012-08-23 2015-04-29 西门子能量股份有限公司 Flexible linkage camera system and method for visual inspection of off-line industrial gas turbines and other power generation machinery
US20140055596A1 (en) * 2012-08-23 2014-02-27 Clifford Hatcher, JR. Flexible linkage camera system and method for visual inspection of off line industrial gas turbines and other power generation machinery
US9329377B2 (en) 2012-09-07 2016-05-03 Rolls-Royce Plc Boroscope and a method of processing a component within an assembled apparatus using a boroscope
US20140069460A1 (en) 2012-09-07 2014-03-13 Rolls-Royce Plc Boroscope and a method of processing a component within an assembled apparatus using a boroscope
US9435750B2 (en) 2012-09-12 2016-09-06 Honda Motor Co., Ltd. Borescope
FR2995996A1 (en) 2012-09-26 2014-03-28 Snecma Measurement device for measuring parameters of combustion chamber of gas turbine engine mounted on test bench, has elbow connecting rectilinear portions of tube, where elbow presents oblong section
US9263866B2 (en) 2012-10-05 2016-02-16 Sumitomo Wiring Systems, Ltd. Corrugated tube and wire harness with corrugated tube
US20140125791A1 (en) 2012-11-07 2014-05-08 Solar Turbines Incorporated Combustor imaging inspection system
US9902024B2 (en) 2012-11-28 2018-02-27 Lufthansa Technik Ag Method and device for repairing an aircraft and/or gas turbine component
US20150360629A1 (en) 2013-02-05 2015-12-17 Yazaki Corporation Reinforcement structure for power-supplying case
US8959902B2 (en) 2013-02-27 2015-02-24 Tenneco Automotive Operating Company Inc. Exhaust treatment burner and mixer system
US8991163B2 (en) 2013-02-27 2015-03-31 Tenneco Automotive Operating Company Inc. Burner with air-assisted fuel nozzle and vaporizing ignition system
US20140260755A1 (en) 2013-03-14 2014-09-18 Rolls-Royce Plc Multi-jointed arm assembly
US9389150B2 (en) 2013-03-15 2016-07-12 Aegion Coating Services, Llc Pipe outer surface inspection apparatus
US20160040803A1 (en) 2013-04-05 2016-02-11 Igus Gmbh Line guide made of multi-axially angle-adjustable links
CN105144514A (en) 2013-04-05 2015-12-09 易格斯有限公司 Line guide made of multi-axially angle-adjustable links
CN105377116A (en) 2013-05-07 2016-03-02 杰特普雷普有限公司 Rigid head for a body passage device
CN104175325A (en) 2013-05-23 2014-12-03 江南大学 Self-locking boosting type flexible and smooth tail end gripper for serial connection loose hinge
CN203370761U (en) 2013-07-12 2014-01-01 西安航空动力股份有限公司 Nozzle cleaning device of aero-engine
US20150032252A1 (en) 2013-07-25 2015-01-29 IAM Robotics, LLC System and method for piece-picking or put-away with a mobile manipulation robot
US10085624B2 (en) 2013-07-26 2018-10-02 Olympus Corporation Manipulator and manipulator system
US20150036150A1 (en) 2013-07-30 2015-02-05 Olympus Corporation Blade inspection apparatus and blade inspection method
US20150064008A1 (en) 2013-09-04 2015-03-05 General Electric Company Turbomachine bucket having angel wing for differently sized discouragers and related methods
US20160175057A1 (en) 2013-09-05 2016-06-23 MAQUET GmbH Assistance device for imaging support of a surgeon during a surgical operation
US10238457B2 (en) 2013-09-13 2019-03-26 Vanderbilt University System and method for endoscopic deployment of robotic concentric tube manipulators for performing surgery
US9409292B2 (en) 2013-09-13 2016-08-09 Sarcos Lc Serpentine robotic crawler for performing dexterous operations
US9581440B2 (en) 2013-10-02 2017-02-28 Siemens Energy, Inc. In-situ blade-mounted optical camera inspected systems for turbine engines
CN108356747A (en) 2013-10-16 2018-08-03 艾沛克斯品牌公司 Ratchet tool for driven socket
CN103639156A (en) 2013-10-25 2014-03-19 沈阳黎明航空发动机(集团)有限责任公司 Aero-engine nozzle deposit carbon removing method
CN106163431A (en) 2013-12-04 2016-11-23 福蒂美迪克斯外科医疗器材有限公司 Access arrangement and the assembly including this equipment
US20150159557A1 (en) 2013-12-06 2015-06-11 General Electric Company Gas turbine engine systems and methods for imparting corrosion resistance to gas turbine engines
US20180094538A1 (en) 2013-12-09 2018-04-05 General Electric Company Methods of cleaning a hot gas flowpath comonent of a turbine engine
US20180071039A1 (en) 2013-12-20 2018-03-15 Corbin E. Barnett Surgical system and related methods
CN104870141A (en) 2013-12-24 2015-08-26 费斯托股份有限两合公司 Linear driver and method for manufacturing same
US20150246449A1 (en) * 2014-02-28 2015-09-03 Nachi-Fujikoshi Corp. Industrial robot
US20170023154A1 (en) 2014-04-03 2017-01-26 Igus Gmbh Guide system for supply lines and robot having a guide system
CN103895012A (en) 2014-04-25 2014-07-02 清华大学 Trunk-simulating mechanical arm unit device
US9857002B2 (en) 2014-05-09 2018-01-02 United Technologies Corporation Fluid couplings and methods for additive manufacturing thereof
US20150341600A1 (en) 2014-05-22 2015-11-26 Siemens Energy, Inc. Flexible tether position tracking camera inspection system for visual inspection of off line industrial gas turbines and other power generation machinery
US20170100197A1 (en) 2014-06-05 2017-04-13 Medrobotics Corporation Articulating robotic probes, systesm and methods incorporating the same, and methods for performing surgical procedures
US10060569B2 (en) 2014-06-25 2018-08-28 Orlande Wayne Sivacoe Pipe pig
US20160000629A1 (en) 2014-07-07 2016-01-07 Roger P. Jackson Radiolucent Hinge for a Surgical Table
US20160031078A1 (en) 2014-07-30 2016-02-04 Kabushiki Kaisha Yaskawa Denki Robot and device having multi-axis motion sensor, and method of use thereof
US20160032761A1 (en) 2014-08-04 2016-02-04 Rolls-Royce Corporation Aircraft engine cleaning system
CN106659438A (en) 2014-08-26 2017-05-10 威蓝诺血管股份有限公司 Systems and methods for phlebotomy through a peripheral iv catheter
US9726628B2 (en) 2014-09-09 2017-08-08 Siemens Energy, Inc. Hardware and method for implementation of in situ acoustic thermograph inspections
WO2016063074A2 (en) 2014-10-22 2016-04-28 Q-Bot Limited Robotic device
US20160114488A1 (en) 2014-10-24 2016-04-28 Fellow Robots, Inc. Customer service robot and related systems and methods
US20170328497A1 (en) 2014-11-21 2017-11-16 Airbus Group Sas "flexible-rigid" air pipe
US20160146036A1 (en) 2014-11-24 2016-05-26 General Electric Technology Gmbh Engine casing element
US20160182776A1 (en) 2014-12-19 2016-06-23 Oasis Scientific 180 Degree Bendable Articulating Borescope Endoscope
US20160186602A1 (en) 2014-12-31 2016-06-30 Aerocore Technologies Llc Nozzle for foam washing of jet engine
CN107205622A (en) 2015-01-16 2017-09-26 B-K医疗公司 Joint motion uniaxial stress for ultrasound imaging probe is eliminated
US20170319048A1 (en) 2015-01-28 2017-11-09 Olympus Corporation Flexible tube insertion apparatus
EP3061923A1 (en) 2015-02-13 2016-08-31 General Electric Company Detergent delivery methods and systems for turbine engines
EP3072642A2 (en) 2015-03-23 2016-09-28 Rolls-Royce plc Flexible tools and apparatus for machining objects
US10213919B2 (en) 2015-03-23 2019-02-26 Rolls-Royce Plc Flexible tools and apparatus for machining objects
US20180119568A1 (en) 2015-04-10 2018-05-03 General Electric Company Systems and methods for attaching a borescope flexible probe or a guide tube to a component of a gas turbine
US20160339584A1 (en) 2015-05-20 2016-11-24 Airbus Defence and Space S.A. Robot for inspection of confined spaces
CN106427289A (en) 2015-08-07 2017-02-22 张世明 Universal-wheel pen tip
US10470831B2 (en) 2015-09-04 2019-11-12 Memic Innovative Surgery Ltd. Actuation of a device comprising mechanical arms
US9788141B2 (en) 2015-09-17 2017-10-10 Sunpower Corporation Communicating with arrays of module units
EP3153604A1 (en) 2015-10-05 2017-04-12 General Electric Company Cleaning solution and methods of cleaning a turbine engine
US20170095922A1 (en) 2015-10-05 2017-04-06 James Michael LICHT Medical devices having smoothly articulating multi-cluster joints
CN108472025A (en) 2015-10-05 2018-08-31 弗莱克斯德克斯公司 Medical device with smoothly articulating multi-tuft joint
US20170129110A1 (en) 2015-11-05 2017-05-11 Irobot Corporation Robotic fingers and end effectors including same
US20190246878A1 (en) 2015-11-13 2019-08-15 Daryl BODNER Endoscope
US10265810B2 (en) 2015-12-03 2019-04-23 General Electric Company System and method for performing an in situ repair of an internal component of a gas turbine engine
CN105436127A (en) 2015-12-03 2016-03-30 中国南方航空工业(集团)有限公司 Deposited carbon removing method for fuel nozzle
EP3176365A1 (en) 2015-12-03 2017-06-07 General Electric Company System and method for performing an in situ repair of an internal component of a gas turbine engine
US20170157719A1 (en) 2015-12-03 2017-06-08 General Electric Company System and Method for Performing an In Situ Repair of an Internal Component of a Gas Turbine Engine
CN106988798A (en) 2015-12-03 2017-07-28 通用电气公司 The system and method for performing the spot reconditioning of the internals of gas-turbine unit
US20170167953A1 (en) 2015-12-09 2017-06-15 General Electric Company System and Method for Performing a Visual Inspection of a Gas Turbine Engine
US10197473B2 (en) 2015-12-09 2019-02-05 General Electric Company System and method for performing a visual inspection of a gas turbine engine
US20170167289A1 (en) 2015-12-09 2017-06-15 General Electric Company System and Method for Locating a Probe within a Gas Turbine Engine
US9458735B1 (en) 2015-12-09 2016-10-04 General Electric Company System and method for performing a visual inspection of a gas turbine engine
US20170175569A1 (en) 2015-12-17 2017-06-22 General Electric Company System and Method for In Situ Cleaning of Internal Components of a Gas Turbine Engine and a Related Plug Assembly
US9951647B2 (en) 2015-12-17 2018-04-24 General Electric Company System and method for in situ cleaning of internal components of a gas turbine engine and a related plug assembly
US9733195B2 (en) * 2015-12-18 2017-08-15 General Electric Company System and method for inspecting turbine blades
US20180361960A1 (en) 2015-12-22 2018-12-20 Autonetworks Technologies, Ltd. Slide wiring apparatus
US20170191376A1 (en) 2016-01-05 2017-07-06 General Electric Company Abrasive Gel Detergent for Cleaning Gas Turbine Engine Components
US20170239762A1 (en) 2016-02-22 2017-08-24 General Electric Company System and Method for In Situ Repair of Gas Turbine Engine Casing Clearance
CA2960352A1 (en) 2016-03-22 2017-09-22 General Electric Company Gas turbine in situ inflatable bladders for on-wing repair
US20170274484A1 (en) 2016-03-22 2017-09-28 General Electric Company Gas Turbine In Situ Inflatable Bladders for On-Wing Repair
US20190046010A1 (en) 2016-04-12 2019-02-14 Olympus Corporation Insertion system
CN109068938A (en) 2016-04-12 2018-12-21 奥林巴斯株式会社 insertion system
CN109561935A (en) 2016-05-23 2019-04-02 帝国创新有限公司 Surgical instrument, robots arm and the control system for robots arm
US20170359530A1 (en) 2016-06-13 2017-12-14 Siemens Energy, Inc. Flash thermography device for inspecting turbine components
US20170361470A1 (en) 2016-06-21 2017-12-21 Ansaldo Energia Ip Uk Limited Robotic system for confined space operations
WO2017221982A1 (en) 2016-06-23 2017-12-28 ライフロボティクス株式会社 Linear-motion expansion/contraction mechanism
WO2018001967A1 (en) 2016-06-30 2018-01-04 Lebrun-Nimy Sa Device for extending and retracting a conditioned air hose for aircraft on the ground
CN105927820A (en) 2016-07-07 2016-09-07 西南石油大学 Pipeline robot capable of active steering
CN106113019A (en) 2016-07-22 2016-11-16 长春理工大学 Multi-joint flexible manipulator arm
CN109476019A (en) 2016-07-26 2019-03-15 Groove X 株式会社 Articulated robot
US20190145498A1 (en) 2016-07-30 2019-05-16 Life Robotics Inc. Robot arm mechanism
US20180058233A1 (en) 2016-08-26 2018-03-01 Rolls-Royce Plc Apparatus for insertion into a cavity of an object
CN109716194A (en) 2016-10-13 2019-05-03 康普技术有限责任公司 Fiber optic tap transitioning component comprising epoxy plugs and cable strain relief member
US20180149038A1 (en) 2016-11-30 2018-05-31 General Electric Company Gas turbine engine wash system
US20180156132A1 (en) 2016-12-06 2018-06-07 General Electric Company Gas turbine engine maintenance tool
US20180156062A1 (en) 2016-12-06 2018-06-07 General Electric Company Gas turbine engine maintenance method
CN110462169A (en) 2016-12-06 2019-11-15 通用电气公司 Gas-turbine unit maintenance tool
US10428993B2 (en) 2017-01-25 2019-10-01 Whitefield Plastics Corporation Non-metallic clip connection system
US20180231162A1 (en) 2017-02-14 2018-08-16 Zhuhai Pusheng Medical Science&Technology Co., Ltd Snake bone
US20180313225A1 (en) 2017-04-26 2018-11-01 General Electric Company Methods of cleaning a component within a turbine engine
US20210078165A1 (en) 2017-05-24 2021-03-18 China University Of Mining And Technology Serpentine inspection robot mechanism for lifting cage guide driven by magnetic wheels
US20190022877A1 (en) 2017-07-18 2019-01-24 General Electric Company Actuated sensor module and method for in situ gap inspection robots
CN107468339A (en) 2017-08-04 2017-12-15 吉林大学 A kind of robot assisted Minimally Invasive Surgery Flexible Multi-joint operating theater instruments
CN207941781U (en) 2017-08-08 2018-10-09 中石化河南油建工程有限公司 Spherical pig group and ball serving device
US20190054638A1 (en) 2017-08-18 2019-02-21 Rolls-Royce Plc Hyper-redundant manipulators
US10967504B2 (en) 2017-09-13 2021-04-06 Vanderbilt University Continuum robots with multi-scale motion through equilibrium modulation
CA3077622A1 (en) 2017-10-16 2019-04-25 Lufthansa Technik Ag Device and method for borescope inspection of jet engines
WO2019076876A1 (en) 2017-10-16 2019-04-25 Lufthansa Technik Ag Device and method for borescope inspection of jet engines
US20200319119A1 (en) * 2017-10-16 2020-10-08 Lufthansa Technik Ag Device and method for borescope inspection of jet engines
US10488349B2 (en) 2017-11-14 2019-11-26 General Electric Company Automated borescope insertion system
WO2019097688A1 (en) 2017-11-17 2019-05-23 オリンパス株式会社 Variable-rigidity device, variable-rigidity system, and endoscope
CN110001286A (en) 2017-12-05 2019-07-12 坎培诺洛有限公司 Bicycle use spoke wheel and spoke attachment element for this wheel
US20190190190A1 (en) 2017-12-15 2019-06-20 Radiall Sa Cable joint articulated extension piece for a connector intended to be linked to at least one cable
US20190277770A1 (en) 2018-03-07 2019-09-12 General Electric Company Probe Insertion System
US10775315B2 (en) 2018-03-07 2020-09-15 General Electric Company Probe insertion system
US20190308319A1 (en) * 2018-04-10 2019-10-10 General Electric Company Systems and methods for inspecting, cleaning, and/or repairing one or more blades attached to a rotor of a gas turbine engine using a robotic system
US20210137354A1 (en) 2018-05-03 2021-05-13 Konstantin Bob Endoscope deflection using a distal folding mechanism
US10962345B2 (en) 2018-05-23 2021-03-30 General Electric Company Tool and method for inspecting an annular space of an engine
CN110529254A (en) 2018-05-23 2019-12-03 通用电气公司 Checking tool and method
CA3043720A1 (en) 2018-05-23 2019-11-23 General Electric Company System and method for controlling a robotic arm
US20190360794A1 (en) 2018-05-23 2019-11-28 General Electric Company Inspection Tool and Method
US20190358833A1 (en) 2018-05-23 2019-11-28 General Electric Company Robotic Arm Assembly Construction
EP3572632A1 (en) 2018-05-23 2019-11-27 General Electric Company Inspection tool and method
US20190358813A1 (en) 2018-05-23 2019-11-28 General Electric Company System and Method for Controlling a Robotic Arm
US20190366536A1 (en) 2018-05-29 2019-12-05 General Electric Company Robotic Arm Assembly Construction
FR3082136A1 (en) 2018-06-12 2019-12-13 Safran Aircraft Engines MOBILE INSPECTION ROBOT OF A TURBOMACHINE
US20190383158A1 (en) 2018-06-14 2019-12-19 General Electric Company Probe Motion Compensation
US20190383161A1 (en) 2018-06-14 2019-12-19 General Electric Company Inspection Tool and Method
CN108972527A (en) 2018-07-09 2018-12-11 中南大学 A kind of snakelike arm robot of variable rigidity based on phase-change material
US20200113412A1 (en) 2018-10-12 2020-04-16 Ambu A/S Articulated tip part for an endoscope
CN111037602A (en) 2018-10-15 2020-04-21 通用电气公司 Selective flexible extension tool
US20200114497A1 (en) 2018-10-15 2020-04-16 General Electric Company Selectively Flexible Extension Tool
US20200114528A1 (en) 2018-10-15 2020-04-16 General Electric Company Selectively Flexible Extension Tool
US10926403B1 (en) 2018-10-24 2021-02-23 Amazon Technologies, Inc. Gripping tool having adjustable gripping area, and related methods
US20200205908A1 (en) 2018-12-28 2020-07-02 Auris Health, Inc. Medical instrument with articulable segment
US20200224552A1 (en) 2019-01-14 2020-07-16 General Electric Company Component repair system and method
CN111486008A (en) 2019-01-14 2020-08-04 通用电气公司 Component repair system and method
US20240011413A1 (en) 2019-01-14 2024-01-11 General Electric Company Component repair system and method
US20200316789A1 (en) 2019-04-02 2020-10-08 Ford Global Technologies, Llc Robotic arm with a detachable and mobile end-effector
DE102019002892A1 (en) 2019-04-23 2020-10-29 Kuka Deutschland Gmbh Tool and gripper having a tool
US20200359879A1 (en) 2019-05-17 2020-11-19 Boston Scientific Scimed, Inc. Systems and devices for an endoscope tubeless working channel
US20200405142A1 (en) 2019-06-30 2020-12-31 Innovasis, Inc. Medical use camera
US11413763B2 (en) 2019-07-25 2022-08-16 Lg Electronics Inc. Charging robot and control method thereof
WO2021040376A1 (en) 2019-08-29 2021-03-04 한국과학기술원 Flexible actuator
US20210102870A1 (en) 2019-10-04 2021-04-08 General Electric Company Insertion apparatus for use with rotary machines
CN110757412A (en) 2019-11-27 2020-02-07 河南中烟工业有限责任公司 Valve opening and closing tool
US10884232B1 (en) 2019-12-30 2021-01-05 General Electric Company Insertion apparatus including rigidizable body
US20210223142A1 (en) 2020-01-21 2021-07-22 Mitsubishi Heavy Industries Compressor Corporation Probe device
CN113146599A (en) 2020-01-23 2021-07-23 通用电气公司 Extension tool with multiple links
US20210231239A1 (en) 2020-01-23 2021-07-29 General Electric Company Selectively flexible extension tool
US20210229269A1 (en) 2020-01-23 2021-07-29 General Electric Company Extension tool having a plurality of links
CN113232042A (en) 2020-01-23 2021-08-10 通用电气公司 Selective flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US20210229270A1 (en) 2020-01-24 2021-07-29 General Electric Company Line assembly for an extension tool having a plurality of links
US11371437B2 (en) 2020-03-10 2022-06-28 Oliver Crispin Robotics Limited Insertion tool
DE102020106508A1 (en) 2020-03-10 2021-09-16 Lufthansa Technik Aktiengesellschaft Device for the borescope inspection of technical devices
US20220290608A1 (en) 2020-03-10 2022-09-15 Oliver Crispin Robotics Limited Insertion tool
US20210285374A1 (en) 2020-03-10 2021-09-16 Oliver Crispin Robotics Limited Insertion tool
EP3879075A1 (en) 2020-03-10 2021-09-15 Oliver Crispin Robotics Limited Insertion tool
US20220221707A1 (en) 2021-01-08 2022-07-14 General Electric Company Insertion tool
US20220221706A1 (en) 2021-01-08 2022-07-14 General Electric Company Insertion tool
US20220314430A1 (en) 2021-03-31 2022-10-06 Oliver Crispin Robotics Limited Extension tool
US11787069B2 (en) 2021-11-01 2023-10-17 Oliver Crispin Robotics Limited Insertion tool with flexible spine
US20230194234A1 (en) 2021-12-16 2023-06-22 Oliver Crispin Robotics Limited System and method of adjusting a tool

Non-Patent Citations (71)

* Cited by examiner, † Cited by third party
Title
Bakhshi, M. et al., Tunnel Segmental Lining Geometry, Tolerance and Measurement, Tunnelling & Trenchless Conference, 2018, 10 pp.
FET20 (Wireless Borescope, Klein Tools, Jan. 2019) (Year: 2019).
Huang et al., In-Situ Continuous Coke Deposit Removal by Catalytic Steam Gasification for Fuel-Cooled Thermal Management, Journal of Engineering for Gas Turbines and Power, vol. 134, Oct. 2012, 8 Pages.
Mascarenas et al., "A Compliant Mechanism for Inspecting Extremely Confined Spaces" Smart Materials and Structures, vol. No: 26, pp. 1-16, Oct. 26, 2017.
Mascarenas, et al., A compliant mechanism for inspecting extremely confined spaces, Smart Materials and Structures, Oct. 26, 2017, vol. 26, 26 pgs.
U.S. Appl. No. 15/812,004, filed Nov. 14, 2017.
U.S. Appl. No. 15/914,469, filed Mar. 7, 2018.
U.S. Appl. No. 15/986,958, filed May 23, 2018.
U.S. Appl. No. 16/577,268; Final Rejection dated Jul. 3, 2023; (pp. 1-26).
U.S. Appl. No. 16/577,268; Non-Final Rejection dated Jan. 20, 2023; (pp. 1-29).
U.S. Appl. No. 16/577,268; Non-Final Rejection dated Oct. 19, 2023; (pp. 1-30).
U.S. Appl. No. 16/577,331; Non-Final Rejection dated Jan. 19, 2022; (pp. 1-8).
U.S. Appl. No. 16/577,331; Notice of Allowance and Fees Due (PTOL-85) dated Feb. 15, 2023; (pp. 1-5).
U.S. Appl. No. 16/577,331; Notice of Allowance and Fees Due (PTOL-85) dated Jul. 25, 2022; (pp. 1-5).
U.S. Appl. No. 16/577,331; Notice of Allowance and Fees Due (PTOL-85) dated May 26, 2023 (pp. 1-5).
U.S. Appl. No. 16/577,331; Notice of Allowance and Fees Due (PTOL-85) dated Nov. 7, 2022; (pp. 1-16).
U.S. Appl. No. 16/577,331; Notice of Allowance and Fees Due (PTOL-85) dated Nov. 7, 2022; (pp. 1-5).
U.S. Appl. No. 16/696,025, filed Nov. 26, 2019.
U.S. Appl. No. 16/696,025; Final Rejection dated Sep. 16, 2022; (pp. 1-34).
U.S. Appl. No. 16/696,025; Non-Final Rejection dated Mar. 28, 2023; (pp. 1-29).
U.S. Appl. No. 16/735,191; Non-Final Rejection dated Aug. 3, 2022; (pp. 1-11).
U.S. Appl. No. 16/735,191; Notice of Allowance and Fees Due (PTOL-85) dated Dec. 8, 2022; (pp. 1-8).
U.S. Appl. No. 16/735,191; Notice of Allowance and Fees Due (PTOL-85) dated Mar. 27, 2023; (pp. 1-5).
U.S. Appl. No. 16/750,665, filed Jan. 23, 2020.
U.S. Appl. No. 16/750,665; Non-Final Rejection dated Jul. 20, 2022; (pp. 1-9).
U.S. Appl. No. 16/750,665; Notice of Allowance and Fees Due (PTOL-85) dated Aug. 7, 2023; (pp. 1-8).
U.S. Appl. No. 16/750,665; Notice of Allowance and Fees Due (PTOL-85) dated Mar. 24, 2023; (pp. 1-6).
U.S. Appl. No. 16/750,665; Notice of Allowance and Fees Due (PTOL-85) dated Nov. 17, 2022; (pp. 1-5).
U.S. Appl. No. 16/750,743, filed Jan. 23, 2020.
U.S. Appl. No. 16/750,743; Final Rejection dated Nov. 7, 2022; (pp. 1-13).
U.S. Appl. No. 16/750,743; Final Rejection dated Nov. 7, 2022; (pp. 1-28).
U.S. Appl. No. 16/750,743; Non-Final Rejection dated Apr. 27, 2022; (pp. 1-12).
U.S. Appl. No. 16/750,743; Notice of Allowance and Fees Due (PTOL-85) dated Jan. 23, 2023; (pp. 1-5).
U.S. Appl. No. 16/750,743; Notice of Allowance and Fees Due (PTOL-85) dated May 16, 2023; (pp. 1-5).
U.S. Appl. No. 16/751,802, filed Jan. 24, 2020.
U.S. Appl. No. 16/751,802; Final Rejection dated Jul. 28, 2022; (pp. 1-9).
U.S. Appl. No. 16/751,802; Non-Final Rejection dated Feb. 28, 2022; (pp. 1-12).
U.S. Appl. No. 16/751,802; Notice of Allowance and Fees Due (PTOL-85) dated Feb. 6, 2023; (pp. 1-5).
U.S. Appl. No. 16/751,802; Notice of Allowance and Fees Due (PTOL-85) dated Oct. 19, 2022 (pp. 1-7).
U.S. Appl. No. 16/751,802; Supplemental Notice of Allowance dated Feb. 27, 2023; (pp. 1-4).
U.S. Appl. No. 16/813,829, filed Mar. 10, 2020.
U.S. Appl. No. 16/898,629, filed Jun. 11, 2020.
U.S. Appl. No. 17/144,487, filed Jan. 8, 2021.
U.S. Appl. No. 17/144,487; Final Rejection dated Jan. 11, 2023; (pp. 1-5).
U.S. Appl. No. 17/144,487; Final Rejection dated Jul. 20, 2023; (pp. 1-7).
U.S. Appl. No. 17/144,487; Non-Final Rejection dated Aug. 23, 2022; (pp. 1-6).
U.S. Appl. No. 17/144,487; Non-Final Rejection dated Mar. 22, 2023; (pp. 1-6).
U.S. Appl. No. 17/144,487; Non-Final Rejection dated Nov. 1, 2023; (pp. 1-15).
U.S. Appl. No. 17/219,577; Notice of Allowance and Fees Due (PTOL-85) dated Jan. 4, 2023; (pp. 1-5).
U.S. Appl. No. 17/824,691; Notice of Allowance and Fees Due (PTOL-85) dated Jun. 21, 2023; (pp. 1-9).
U.S. Appl. No. 17/824,691; Notice of Allowance and Fees Due (PTOL-85) dated Oct. 10, 2023; (pp. 1-8).
U.S. Final Office Action from U.S. Appl. No. 15/986,958 dated Sep. 9, 2020, 10 pgs.
U.S. Non-Final Office Action from U.S. Appl. No. 15/986,958 dated Apr. 23, 2020, 12 pgs.
U.S. Notice of Allowance and Notice of Allowability, dated Nov. 18, 2020, from U.S. Appl. No. 15/986,958, 9 pgs.
USPTO; U.S. Appl. No. 16/008,475; Final Rejection mailed Aug. 4, 2022; (pp. 1-8).
USPTO; U.S. Appl. No. 16/008,475; Final Rejection mailed Dec. 15, 2023; (pp. 1-24).
USPTO; U.S. Appl. No. 16/008,475; Final Rejection mailed Mar. 2, 2023; (pp. 1-21).
USPTO; U.S. Appl. No. 16/008,475; Non-Final Rejection mailed Apr. 22, 2024; (pp. 1-33).
USPTO; U.S. Appl. No. 16/008,475; Non-Final Rejection mailed Jun. 15, 2023; (pp. 1-23).
USPTO; U.S. Appl. No. 16/008,475; Non-Final Rejection mailed Oct. 21, 2022; (pp. 1-18).
USPTO; U.S. Appl. No. 16/577,268; Non-Final Rejection mailed Jun. 10, 2024; (pp. 1-28).
USPTO; U.S. Appl. No. 16/577,268; Notice of Allowance and Fees Due (PTOL-85) mailed Feb. 26, 2024; (pp. 1-12).
USPTO; U.S. Appl. No. 16/696,025; Final Rejection mailed Dec. 28, 2023; (pp. 1-15).
USPTO; U.S. Appl. No. 16/696,025; Non-Final Rejection mailed May 7, 2024; (pp. 1-25).
USPTO; U.S. Appl. No. 17/144,435; Non-Final Rejection mailed Mar. 11, 2024; (pp. 1-12).
USPTO; U.S. Appl. No. 17/144,487; Final Rejection mailed Feb. 12, 2024; (pp. 1-5).
USPTO; U.S. Appl. No. 17/144,487; Non-Final Rejection mailed Apr. 18, 2024; (pp. 1-12).
USPTO; U.S. Appl. No. 17/552,848; Non-Final Rejection mailed Jun. 21, 2024; (pp. 1-38).
USPTO; U.S. Appl. No. 17/552,848; Requirement for Restriction/Election mailed Feb. 26, 2024; (pp. 1-8).
USPTO; U.S. Appl. No. 18/328,076; Non-Final Rejection mailed Feb. 27, 2024; (pp. 1-14).
Wickham et al., High Heat Flux Surface Coke Deposition and Removal Assessment, Technical Paper, Air Force Research Laboratory, Edwards AFB, Jan. 2015, California, 21 Pages.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12194620B2 (en) 2018-10-15 2025-01-14 Oliver Crisipin Robotics Limited Selectively flexible extension tool
US12264591B2 (en) 2019-01-14 2025-04-01 General Electric Company Component repair system and method

Also Published As

Publication number Publication date
CA3120629A1 (en) 2021-12-11
CN113803169B (en) 2025-02-11
CA3120629C (en) 2023-09-19
EP3933169A3 (en) 2022-03-23
CN113803169A (en) 2021-12-17
US20210388737A1 (en) 2021-12-16
CN119844216A (en) 2025-04-18
US20240280033A1 (en) 2024-08-22
EP3933169A2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
US12091981B2 (en) Insertion tool and method
EP3572632B1 (en) Inspection tool and method
CA3043720C (en) System and method for controlling a robotic arm
US11739695B2 (en) Gas turbine engine maintenance tool
EP3879075B1 (en) Insertion tool
US11111813B2 (en) Gas turbine engine maintenance method
EP3926149A1 (en) Inspection and repair tool
US10822997B2 (en) Inspection tool and method
CN112664278B (en) System and method for repairing a turbomachine
EP4008495B1 (en) Insertion tool
EP3564491B1 (en) Variable vane actuation system with nested direct vane angle measurement shaft

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DANKO, TODD WILLIAM;KULKARNI, AMBARISH JAYANT;FULLINGTON, MICHAEL DEAN;AND OTHERS;SIGNING DATES FROM 20200418 TO 20200605;REEL/FRAME:052906/0713

Owner name: OLIVER CRISPIN ROBOTICS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FOXALL, JULIAN MATTHEW;HAWKE, TREVOR OWEN;GRAHAM, ANDREW CRISPIN;SIGNING DATES FROM 20200504 TO 20200518;REEL/FRAME:052906/0371

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: OLIVER CRISPIN ROBOTICS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MELLUCCI, CHIARA;REEL/FRAME:056064/0840

Effective date: 20200528

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

OSZAR »