US12177067B2 - Service insertion at logical network gateway - Google Patents
Service insertion at logical network gateway Download PDFInfo
- Publication number
- US12177067B2 US12177067B2 US18/102,684 US202318102684A US12177067B2 US 12177067 B2 US12177067 B2 US 12177067B2 US 202318102684 A US202318102684 A US 202318102684A US 12177067 B2 US12177067 B2 US 12177067B2
- Authority
- US
- United States
- Prior art keywords
- service
- logical
- data
- gateway
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0806—Configuration setting for initial configuration or provisioning, e.g. plug-and-play
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0894—Policy-based network configuration management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/42—Centralised routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/355—Application aware switches, e.g. for HTTP
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/53—Network services using third party service providers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0895—Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
Definitions
- Some embodiments provide a network management and control system that enables integration of third-party service machines for processing data traffic entering and/or exiting a logical network.
- third-party services may include various types of non-packet-forwarding services, such as firewalls, virtual private network (VPN) service, network address translation (NAT), load balancing, etc.
- VPN virtual private network
- NAT network address translation
- the network management and control system manages the integration of these service machines, but does not manage the life cycle of the machines themselves.
- the logical network includes at least one logical switch to which logical network endpoints (e.g., data compute nodes such as virtual machines, containers, etc.) connect as well as a logical router for handling data traffic entering and/or exiting the logical network.
- the logical network may include multiple logical switches that logically connect to each other through either the aforementioned logical router or another logical router.
- the logical network includes multiple tiers of logical routers. Logical routers in a first tier connect groups of logical switches (e.g., the logical switches of a particular tenant).
- first-tier logical routers connect to logical routers in a second tier for data traffic sent to and from the logical network (e.g., data traffic from external clients connecting to web servers hosted in the logical network, etc.).
- the second-tier logical routers are implemented at least partly in a centralized manner for handling the connections to the external networks, and in some embodiments the third-party service machines attach to the centralized components of these logical routers.
- the logical networks of other embodiments include only a single tier of logical routers, to which the third-party services attach.
- the network management and control system receives both (i) configuration data defining the logical network (i.e., the logical switches, attachment of data compute nodes to the logical switches, logical routers, etc.) as well as (ii) configuration data attaching a third-party service to a logical router (i.e., the logical router that handles connections to external networks). Based on this configuration data, the network control system configures various managed forwarding elements to implement the logical forwarding elements (the logical switches, distributed aspects of the logical routers, etc.) as well as other packet processing operations for the logical network (e.g., distributed firewall rules).
- configuration data defining the logical network
- configuration data attaching a third-party service to a logical router i.e., the logical router that handles connections to external networks.
- the network control system configures various managed forwarding elements to implement the logical forwarding elements (the logical switches, distributed aspects of the logical routers, etc.) as well as other packet processing operations for the logical network (e
- some embodiments configure a particular managed forwarding element operating on a gateway machine to implement a centralized logical routing component that handles the connection of the logical network to one or more external networks.
- This managed forwarding element on the gateway machine is also configured to redirect (e.g., using policy-based routing) at least a subset of this ingress and/or egress data traffic between the logical network and the external networks to the attached third-party service via a separate interface of the gateway.
- receiving the configuration data to attach the third-party service includes several separate configuration inputs (e.g., from an administrator).
- the logical router After the logical router is configured, some embodiments receive configuration data (i) defining a service attachment interface for the logical router, (ii) defining a logical switch to which the service attachment interface connects, (iii) defining the service interface (e.g., the interface of the service machine to which data traffic is redirected), and (iv) connecting the service attachment interface of the logical router and the service interface to the logical switch.
- the administrator defines a rule or set of rules specifying which ingress and/or egress traffic is redirected to the service interface.
- Some embodiments enable multiple services to be connected to the logical router, using various different topologies. For instance, multiple services may be connected to the same logical switch, in which case these services all have interfaces in the same subnet and can send data traffic directly between each other if configured to do so.
- the logical router can have a single interface that connects to the logical switch (for traffic to all of the services) or a separate interface connected to the logical switch for each attached service.
- separate logical switches can be defined for each service (with separate logical router interfaces connected to each of the logical switches).
- multiple interfaces can be defined for each service machine, for handling different sets of traffic (e.g., traffic to/from different external networks or different logical network subnets).
- the service machines may be connected to the logical router via different types of connections in some embodiments.
- some embodiments allow for service machines to be connected in either (i) an L2 bump-in-the-wire mode or (ii) a L3 one-arm mode.
- L2 mode two interfaces of the logical router are connected to two separate interfaces of the service machine via two separate logical switches, and data traffic sent to the service machine via one of the interfaces and received back from the service machine via the other interface.
- Data traffic may be sent to the service machine via one interface for traffic entering the logical network and via the other interface for traffic exiting the logical network.
- the L3 mode a single interface is used on the logical router for each connection with the service machine.
- the gateway redirects some or all of the data traffic between the logical network and external networks to the service machine.
- some embodiments use a set of policy-based routing (PBR) rules to determine whether or not to redirect each data message.
- PBR policy-based routing
- the gateway applies these PBR rules to outgoing data messages after performing logical routing for the data messages, and applies the PBR rules to incoming data messages prior to performing logical routing and/or switching for incoming data messages.
- the gateway performs logical switching (if required), then logical routing for the routing component that connects to the external network to determine that the data message is in fact directed outside of the logical network, then applies the PBR rules to determine whether to redirect the data message to a service. If the data message is redirected, then upon its return from the service (if the data message is not dropped/blocked by the service) the gateway forwards the data message to the external network.
- the gateway For an incoming data message, the gateway applies the PBR rules to determine whether to redirect the data message to a service before processing the data message through any of the logical forwarding elements. If the data message is redirected, then upon its return from the service (if the data message is not dropped/blocked by the service) the gateway then performs logical routing and switching, etc. to the data message to determine how to forward the data message to the logical network.
- the PBR rules use a two-stage lookup to determine whether to redirect a data message (and to which interface to redirect the data message). Specifically, rather than the PBR rules (i.e., routing rules based on header fields other than destination network address) providing the redirection details, each rule specifies a unique identifier. Each identifier corresponds to a service machine, and the gateway stores a dynamically-updated data structure for each identifier.
- These data structures indicate the type of connection to the service (e.g., L2 bump-in-the-wire or L3 one-arm), a network address for the interface of the service to which the data message is redirected (for L2 mode, some embodiments use a dummy network address that corresponds to the data link layer address of the return service attachment interface of the gateway), dynamically-updated status data, and a failover policy.
- the status data is dynamically updated based on the health/reachability of the service, which may be tested using a heartbeat protocol such as bidirectional forwarding detection (BFD).
- BFD bidirectional forwarding detection
- the failover policy specifies what to do with the data message if the service is not reachable. These failover policy options may include, e.g., drop the data message, forward the data message to its destination without redirection to the service, redirect to a backup service machine, etc.
- FIG. 1 conceptually illustrates an example logical network of some embodiments to which third-party services can be connected.
- FIG. 2 conceptually illustrates an example of connecting a third-party service machine to a centralized router.
- FIG. 3 conceptually illustrates a process of some embodiments for configuring a gateway machine of a logical network to redirect ingress and/or egress data traffic to a third-party service machine.
- FIG. 4 conceptually illustrates a centralized routing component with two service attachment interfaces that connect to two separate service endpoint interfaces of a third-party service machine via two separate logical switches.
- FIG. 5 conceptually illustrates a centralized routing component with one service attachment interface that connects to two separate interfaces of a third-party service machine via one logical switch.
- FIG. 6 conceptually illustrates a centralized routing component with one service attachment interface that connects to interfaces of two different third-party service machines via one logical switch.
- FIG. 7 conceptually illustrates a centralized routing component with two service attachment interfaces that each connect to a different service machine of two service machines via separate logical switches.
- FIG. 8 illustrates the path of an ingress data message through multiple stages of logical processing implemented by a gateway managed forwarding element and a third-party service machine connected in L3 one-arm mode.
- FIG. 9 illustrates the path of an egress data message through the multiple stages of logical processing implemented by the gateway MFE and the third-party service machine of FIG. 8 .
- FIG. 10 illustrates the path of an ingress data message through multiple stages of logical processing implemented by a gateway MFE and a third-party service machine connected in L2 bump-in-the-wire mode.
- FIG. 11 illustrates the path of an egress data message through the multiple stages of logical processing implemented by the gateway MFE and the third-party service machine of FIG. 10 .
- FIG. 12 conceptually illustrates a process of some embodiments for applying policy-based routing redirection rules to a data message.
- FIG. 13 illustrates a table of policy-based routing rules.
- FIG. 14 conceptually illustrates the data structure being dynamically updated based on a change in the connection status of the service machine to which the data structure redirects data messages.
- FIG. 15 conceptually illustrates an electronic system with which some embodiments of the invention are implemented.
- Some embodiments provide a network management and control system that enables integration of third-party service machines for processing data traffic entering and/or exiting a logical network.
- These third-party services may include various types of non-packet-forwarding services, such as firewalls, virtual private network (VPN) service, network address translation (NAT), load balancing, etc.
- the network management and control system manages the integration of these service machines, but does not manage the life cycle of the machines themselves (hence referring to these service machines as third-party services).
- the logical network includes at least one logical switch to which logical network endpoints (e.g., data compute nodes such as virtual machines, containers, etc.) connect as well as a logical router for handling data traffic entering and/or exiting the logical network.
- logical network endpoints e.g., data compute nodes such as virtual machines, containers, etc.
- the logical network may include multiple logical switches that logically connect to each other through either the aforementioned logical router or another logical router.
- FIG. 1 conceptually illustrates an example logical network 100 of some embodiments, to which third-party services can be connected.
- this logical network 100 includes a tier-0 logical router 105 (also referred to as a provider logical router), a tier-1 logical router 110 (also referred to as a tenant logical router), and two logical switches 115 and 120 .
- Data compute nodes (DCNs) 125 - 140 e.g., virtual machines, containers, etc.
- These data compute nodes 125 exchange data messages with each other and with one or more external networks 145 through a physical network that implements this logical network (e.g., within a datacenter).
- the logical network 100 represents an abstraction of a network as configured by a user of the network management and control system of some embodiments. That is, in some embodiments, a network administrator configures the logical network 100 as a conceptual set of logical switches, routers, etc., with policies applied to these logical forwarding elements.
- the network management and control system generates configuration data for physical managed forwarding elements (e.g., software virtual switches operating in the virtualization software of host machines, virtual machines and/or bare metal machines operating as logical network gateways, etc.) to implement these logical forwarding elements.
- physical managed forwarding elements e.g., software virtual switches operating in the virtualization software of host machines, virtual machines and/or bare metal machines operating as logical network gateways, etc.
- a managed forwarding element executing in the virtualization software of the host machine processes the data message to implement the logical network.
- the managed forwarding element would apply the logical switch configuration for the logical switch to which the DCN attaches, then the tier-1 logical router configuration, etc. to determine the destination of the data message.
- the logical network includes multiple tiers of logical routers.
- Logical routers in a first tier e.g., the tier-1 logical router 110
- groups of logical switches e.g., the logical switches of a particular tenant.
- These first-tier logical routers connect to logical routers in a second tier (e.g., the tier-0 logical router 105 ) for data traffic sent to and from the logical network (e.g., data traffic from external clients connecting to web servers hosted in the logical network, etc.).
- the network management and control system of some embodiments defines multiple routing components for at least some of the logical routers.
- the tier-0 logical router 105 in this example has a distributed routing component 150 (“distributed router”) and a centralized routing component 155 , which are connected by an internal logical switch 160 referred to as a transit logical switch.
- distributed router distributed routing component 150
- centralized routing component 155 which are connected by an internal logical switch 160 referred to as a transit logical switch.
- multiple centralized routers are defined for a tier-0 logical router, each of which connects to the transit logical switch 160 .
- some embodiments define two centralized routers, one active and one standby.
- the distributed router 150 and the transit logical switch 160 are implemented in a distributed manner (as with the logical switches 115 and 120 , and the tier-1 logical router 110 ), meaning that the first-hop managed forwarding element for a data message applies the policies of those logical forwarding elements to the data message.
- the centralized router 155 is implemented in a centralized manner (i.e., a single host machine implements each such centralized router). These centralized routers handle the connections of the logical network to external networks (e.g., to other logical networks implemented at the same or other datacenters, to external web clients, etc.).
- the centralized router may perform various stateful services (e.g., network address translation, load balancing, etc.) as well as exchange routes with one or more external routers (using, e.g., BGP or OSPF).
- stateful services e.g., network address translation, load balancing, etc.
- external routers using, e.g., BGP or OSPF.
- Different embodiments may implement the centralized router using a bare metal machine, a virtual machine, a virtual switch executing in virtualization software of a host machine, or other contexts.
- some embodiments allow the administrator to use the network control system to attach third-party services to the logical routers.
- these third-party services are attached to centralized routers that handle data traffic between logical network endpoints and external networks (e.g., the centralized router 155 of a tier-0 router). While the subsequent discussion primarily relates to connection of the third-party services to tier-0 logical routers, in some embodiments the third-party services may also be connected to tier-1 logical routers.
- FIG. 2 conceptually illustrates an example of connecting a third-party service machine 200 to a centralized router 205 .
- a network administrator defines a service attachment interface 210 on the logical router, a service endpoint 215 for the third-party service machine, a specific logical switch 220 for the service attachment, and attaches both the service attachment interface 210 and the service endpoint 215 to the logical switch 220 .
- an administrator provides this information through application programming interfaces (APIs) of a management plane of the network control system (e.g., using a network management application user interface that translates user interactions into API calls to the management plane).
- APIs application programming interfaces
- the management plane receives both (i) configuration data defining the logical network (i.e., the logical switches, attachment of data compute nodes to the logical switches, logical routers, etc.) as well as the configuration data attaching one or more third-party services to the logical router that handles connections of the logical network to external networks.
- the network control system configures various managed forwarding elements to implement the logical forwarding elements (the logical switches, distributed aspects of the logical routers, etc.) as well as other packet processing operations for the logical network (e.g., distributed firewall rules).
- the management plane generates configuration data based on the inputs and provides this configuration data to a central control plane (e.g., a set of centralized controllers).
- the central control plane identifies the managed forwarding elements that require each atomic piece of configuration data, and distributes the configuration data to local controllers for each identified managed forwarding element.
- These local controllers are then responsible for configuring the managed forwarding elements (including the gateway machine that implements the centralized router) to implement the logical forwarding elements of the logical network, including redirecting appropriate data messages to the third-party services (e.g., according to policy-based routing rules provided by the administrator).
- receiving the configuration data to attach the third-party service includes several separate configuration inputs (e.g., from an administrator).
- FIG. 3 conceptually illustrates a process 300 of some embodiments for configuring a gateway machine of a logical network to redirect ingress and/or egress data traffic to a third-party service machine.
- the process 300 is performed by the management plane of a network control system, which receives input through API calls.
- this process it is assumed that a logical network has already been configured, and that this logical network includes a logical router with at least one centralized component configured to handle data traffic entering and exiting the logical network. Some embodiments configure particular managed forwarding elements operating on gateway machines to implement these centralized logical routing components that handle the connection of the logical network to one or more external networks.
- the process 300 begins by receiving (at 305 ) input to define a service attachment interface for a logical router.
- a service attachment interface is a specialized type of interface for the logical router.
- the administrator either defines this service attachment interface on a particular centralized component or on the logical router generally.
- the management plane either applies the interface to a specific one of the components (e.g., if the administrator defines that the service attachment interface will only handle traffic sent to or from a particular uplink interface of the logical router that is assigned to a particular centralized component) or creates separate interfaces for each of the centralized components of the logical router. For instance, in some embodiments, active and standby centralized routing components are defined, and interfaces are created on each of these components.
- the process 300 receives (at 310 ) input to define a logical switch for connecting the logical router to third-party services.
- the process receives (at 315 ) input to attach the service attachment interface to this logical switch.
- this logical switch is created similarly to the logical switches of the logical network, to which data compute nodes (e.g., VMs, etc.) attach.
- the logical switch is defined by the administrator as a specific service attachment logical switch.
- This logical switch has a privately allocated subnet that (i) includes the network address of the service attachment interface that is attached to the logical switch and (ii) only needs to include enough network addresses for any interfaces of third-party services and any service attachment interfaces that connect to the logical switch. For instance, as shown below, using Classless Inter-Domain Routing (CIDR) notation, a logical switch that connects a single logical router interface to a single third-party service interface could be a “/31” subnet.
- CIDR Classless Inter-Domain Routing
- the logical router performs route advertisement to external physical routers (e.g., using BGP or OSPF) for logical network subnets, the subnets for the service attachment logical switches are not advertised (or entered into the routing tables for the various logical router tiers) in some embodiments.
- external physical routers e.g., using BGP or OSPF
- the logical router includes multiple centralized components (e.g., active and standby components) and a service attachment interface corresponds to interfaces on each of these components, then attaching the service attachment interface actually attaches each of these interfaces to the logical switch.
- each of the centralized component interfaces has a separate network address in the subnet of the logical switch.
- the process 300 receives (at 320 ) input to define a service endpoint interface, and receives (at 325 ) input to attach this service endpoint interface to the logical switch (to which the service attachment interface of the logical router is attached).
- this service endpoint interface represents an interface on a third-party service machine.
- these interfaces can either be service endpoint interfaces (also referred to as logical endpoint interfaces, that correspond to service machines and connect to service attachment interfaces through a logical switch) or external interfaces (also referred to as virtual endpoint interfaces, which correspond to network addresses reachable from the centralized component. External router interfaces are examples of these latter interfaces.
- some embodiments require the administrator to define the third-party service machine (either through the network control system or through a separate datacenter compute manager). For example, in some embodiments the network administrator defines both a service type as well as a service instance (e.g., an instance of that service type). As noted above, the service endpoint interface should also have a network address within the subnet of the logical switch to which that interface is attached.
- operations 305 - 325 need not occur in the specific order shown in FIG. 3 .
- a network administrator could initially create both of the interfaces (the service attachment interface on the logical router as well as the service endpoint interface representing the third-party service), then subsequently create the logical switch and attach the interfaces to this logical switch.
- the process 300 receives (at 330 ) one or more rules for redirecting data messages to the service endpoint interface.
- these are policy-based routing rules that (i) specify which ingress and/or egress traffic will be redirected to the service interface and (ii) are applied by the gateway machine separately from its usual routing operations.
- the administrator defines the redirection rules in terms of one or more data message header fields, such as the source and/or destination network addresses, source and/or destination transport layer ports, transport protocol, interface on which a data message is received, etc.
- an administrator may create one redirection rule or multiple rules.
- the redirected data messages could include all incoming and/or outgoing data messages for a particular uplink, only data messages sent from or to a specific logical switch subnet, etc.
- the process 300 configures (at 335 ) the gateway machine to implement the centralized logical router and the redirection to the service endpoint interface.
- the process 300 then ends. If multiple centralized routing components have interfaces attached to the logical switch for the service endpoint, then the gateway machine for each of these components is configured.
- the management plane generates configuration data for the service attachment interface and the redirection rules and provides this information to the central control plane.
- the central control plane identifies each gateway machine that requires the information and provides the appropriate configuration data to the local controller for that gateway machine.
- the local controller of some embodiments converts this configuration data to a format readable by the gateway machine (if it is not already in such a format) and directly configures the gateway machine to implement the policy-based routing rules.
- Some embodiments enable multiple services to be connected to the logical router, using various different topologies. For instance, multiple services may be connected to the same logical switch, in which case these services all have interfaces in the same subnet and can send data traffic directly between each other if configured to do so.
- the logical router can have a single interface that connects to the logical switch (for traffic to all of the services) or a separate interface connected to the logical switch for each attached service.
- separate logical switches can be defined for each service (with separate logical router interfaces connected to each of the logical switches).
- multiple interfaces can be defined for each service machine, for handling different sets of traffic (e.g., traffic to/from different external networks or different logical network subnets).
- FIGS. 4 - 7 conceptually illustrate several different such topologies for connecting a centralized routing component of a logical router to one or more service machines.
- Each of these figures illustrates one centralized router connected to one or more logical switches to which one or more service machines are also connected. It should be understood that these figures represent a logical view of the connections, and that the gateway machine implementing the centralized router would also implement the logical switch(es) in some embodiments.
- FIG. 4 conceptually illustrates a centralized routing component 400 with two service attachment interfaces that connect to two separate service endpoint interfaces of a third-party service machine 405 via two separate logical switches 410 and 415 .
- This topology essentially uses a separate service attachment interface and separate logical switch for each connection to the third-party service.
- each of the logical switches 410 and 415 is assigned a “/31” subnet, which includes two network addresses. Because each of the logical switches is specifically created for connecting one service attachment interface of the centralized routing component 400 to the service machine 405 , only two addresses are needed for each switch.
- the redirection rules for the router redirect data messages sent to and from each of the uplinks to a different interface of the third-party service machine (and thus use a different one of the service attachment interfaces).
- FIG. 5 conceptually illustrates a centralized routing component 500 with one service attachment interface that connects to two separate interfaces of a third-party service machine 505 via one logical switch 510 .
- the administrator creates one logical switch for each third-party service machine with one service attachment interface on the centralized router component, but defines multiple service endpoint interfaces for that third-party service machine.
- the logical switch subnet accommodates a larger number of network addresses (in the present example, a “/24” subnet is used).
- the redirection rules are set up to redirect data messages sent to and from each of the uplinks to a different interface of the third-party service machine via the same service attachment interface and logical switch.
- using a setup with multiple service endpoint interfaces on the service machine that attach to the same logical switch requires that the third-party service machine use separate routing tables (e.g., virtual routing and forwarding instances) for each interface.
- FIG. 6 conceptually illustrates a centralized routing component 600 with one service attachment interface that connects to interfaces of two different third-party service machines 605 and 610 via one logical switch 615 .
- the service machines 605 and 610 in this scenario could provide two separate services (e.g., a firewall and a cloud extension service) or be master and standby machines for a single high-availability service.
- the interfaces of the service machines 605 and 610 are on the same logical switch, data messages can also be sent from one service to the other.
- the centralized routing component 600 has a single uplink; some embodiments using this configuration would include two service attachments and two logical switches that each connect to (different) interfaces of both service machines to handle data messages received or destined for two different uplinks.
- FIG. 7 conceptually illustrates a centralized routing component 700 with two service attachment interfaces that each connect to a different service machine of two service machines 705 and 710 via separate logical switches 715 and 720 .
- these two service machines could provide two separate services or be master and standby machines for a single high-availability service.
- the centralized routing component has a single uplink; some embodiment using this configuration would include two additional service attachments corresponding to each additional uplink that connect via separate logical switches to separate interfaces on each of the service machines.
- using separate interfaces on the service machines corresponding to each different uplink allows the service machines to apply specific processing configurations to data messages sent to or received from each different uplink.
- the third-party service machines may be connected to the centralized routing component via different types of connections in some embodiments.
- some embodiments allow for service machines to be connected in either (i) an L2 bump-in-the-wire mode or (ii) a L3 one-arm mode.
- L2 mode shown in FIGS. 10 and 11
- two interfaces of the logical router are connected to two separate interfaces of the service machine via two separate logical switches, and data traffic sent to the service machine via one of the interfaces and received back from the service machine via the other interface.
- Data traffic may be sent to the service machine via one interface for traffic entering the logical network and via the other interface for traffic exiting the logical network.
- the gateway redirects some or all of the data traffic between the logical network and external networks to the service machine.
- PBR policy-based routing
- some embodiments use a set of policy-based routing (PBR) rules to determine whether or not to redirect each data message.
- the gateway applies these PBR rules to outgoing data messages after performing logical routing for the data messages, and applies the PBR rules to incoming data messages prior to performing logical routing and/or switching for incoming data messages.
- FIG. 8 illustrates the path of an ingress data message (represented by the dashed line) through multiple stages of logical processing implemented by a gateway managed forwarding element 800 and a third-party service machine 805 .
- the third-party service machine is connected in an L3 one-arm mode. In this mode, data messages are transmitted to the network address of the third-party service machine, which transmits the data messages back to the network address of the logical router service attachment interface.
- the centralized routing component processing 815 identifies that the redirection interface corresponds to the service attachment logical switch, so the gateway MFE 800 then executes this logical switch processing 820 . Based on this logical switch processing, the gateway MFE transmits the data message (e.g., with encapsulation) to the third-party service machine 805 .
- This service machine 805 performs its service processing (e.g., firewall, NAT, cloud extension, etc.) and returns the data message to the gateway MFE (unless the service drops/blocks the data message).
- the gateway MFE Upon return of the data message from the service, the gateway MFE then performs the centralized routing component processing 815 (e.g., routing based on the destination network address) and, in turn, the additional logical processing operations 825 .
- the gateway MFE 800 transmits the data message to its destination in the logical network (e.g., by encapsulating the data message and transmitting the data message to a host machine in the data center).
- FIG. 9 illustrates the path of an egress data message (represented by the dashed line) through the multiple stages of logical processing implemented by the gateway MFE 800 and the third-party service machine 805 .
- the gateway MFE 800 Upon receipt of the data message, the gateway MFE 800 first applies any logical network processing 825 required before the centralized routing component, such as the transit logical switch (between the distributed routing component and the centralized routing component).
- the centralized routing component such as the transit logical switch (between the distributed routing component and the centralized routing component).
- a tier-1 logical router will also have a centralized routing component implemented on the gateway MFE, in which case the additional logical processing may include this centralized routing component, the distributed routing component of the tier-0 logical router, the transit logical switches between them, etc.
- the PBR rules are applied (for egress data messages) after the tier-1 logical router processing, and before the tier-0 logical router processing.
- the gateway MFE Upon return from the service machine, the gateway MFE then applies the tier-0 distributed routing component, transit logical switch, and tier-0 centralized routing component. Ingress traffic is handled similarly, with the application of the PBR rules after the tier-0 distributed routing component and prior to application of the tier-1 centralized routing component.
- FIGS. 10 and 11 illustrate the connection of a service machine to a centralized routing component using L2 bump-in-the-wire mode.
- FIG. 10 illustrates the path of an ingress data message (represented by the dashed line) through multiple stages of logical processing implemented by a gateway MFE 1000 and a third-party service machine 1005 .
- the L2 bump-in-the-wire mode two interfaces of the logical router are associated with each connection to the service machine 1005 . Data messages are transmitted to the service machine via one of the interfaces and returned via the other interface.
- the gateway MFE 1000 implements PBR redirection rules 1010 , centralized routing component processing 1015 , and additional logical processing 1030 . Because there are two separate interfaces for the connection to the service machine 1005 , the gateway MFE 1000 also implements two separate service attachment logical switches 1020 and 1025 . In some embodiments, the interface associated with the first logical switch 1020 is an “untrusted” interface, while the interface associated with the second logical switch 1025 is a “trusted” interface. In this figure, each of the centralized routing component service attachment interfaces is associated with a separate interface of the gateway MFE 1000 . In other embodiments, however, these service attachment interfaces share one gateway MFE interface.
- the centralized routing component processing 815 identifies that the redirection interface corresponds to the first service attachment logical switch 1020 . Because the service machine 1005 is connected in L2 bump-in-the-wire mode, the centralized routing component uses the MAC address of this interface as the source address for the redirected data message and the MAC address of the other service attachment interface (connected to the second logical switch 1025 ) as the destination address). This causes the data message to be returned by the service machine 1005 to this second (trusted) interface.
- the gateway MFE 1000 then executes the logical switch processing 1020 and, based on this logical switch processing, transmits the data message to the third-party service machine 1005 .
- This service machine 1005 performs its service processing (e.g., firewall, NAT, cloud extension, etc.) and returns the data message to the gateway MFE (unless the service drops/blocks the data message).
- the gateway MFE identifies the second logical switch 1025 for processing based on the destination address of the data message and/or the gateway MFE interface on which the message is received, then performs the processing for the centralized routing component 1015 (e.g., routing based on the destination network address) and, in turn, the additional logical processing operations 1030 .
- the centralized routing component 1015 e.g., routing based on the destination network address
- the centralized routing component processing 1015 then identifies the uplink interface as its output interface, which leads to application of the PBR rules 1010 . These rules, in this case, redirect outgoing data messages to the service machine 805 via the trusted interface attached to the second logical switch 1025 .
- the gateway MFE 800 applies the centralized routing component processing 1015 again and subsequently the processing for the second service attachment logical switch 1025 , and transmits the data message to the third-party service machine 1005 .
- the data message has the trusted interface MAC address as its source address and the untrusted interface MAC address as its destination address, traversing the opposite path from the centralized routing component 1015 to the service machine 1005 and back as for an ingress data message.
- the gateway MFE 800 receives the data message via its interface corresponding to the first service attachment logical switch 1020 .
- the centralized routing component processing 1015 again identifies the uplink as the output interface, and the gateway MFE transmits the data message to the external physical network router associated with the uplink.
- the data message is marked with a flag upon being received from the service machine 1005 so that the gateway MFE does not apply the PBR rules 1010 again in some embodiments.
- the PBR rules use a two-stage lookup to determine whether to redirect a data message (and to which interface to redirect the data message). Specifically, rather than the PBR rules providing the redirection details directly, each rule specifies a unique identifier. Each identifier corresponds to a service machine, and the gateway stores a dynamically-updated data structure for each identifier that provides details about how to redirect data messages.
- the process 1200 begins by receiving (at 1205 ) a data message for PBR processing.
- a data message for PBR processing may be a data message received via a logical router uplink from an external network or a data message sent by a logical network endpoint for which the gateway MFE has already identified the uplink as the egress port for the centralized routing component.
- the process 1200 is not applied to data messages for which a flag is set indicating that the data message is received from a third-party service machine. These data messages are
- the process 1200 then performs (at 1210 ) a lookup into a set of PBR rules.
- these rules are organized as a set of flow entries, with match conditions and actions for data messages that match each set of match conditions.
- the PBR rules of some embodiments use a hash table (or set of hash tables) using one or more hashes of sets of data message header fields. Other embodiments use other techniques to identify a matching PBR rule.
- FIG. 13 illustrates a table of PBR rules 1300 .
- the rules all match on the source and destination IP addresses, but PBR rules of some embodiments can also match on other header fields (and combinations of other header fields with source and/or destination IP addresses).
- the first two match conditions are inverses of each other, one for handling ingress data messages (from 70.70.70.0/24 in an external network to the 60.60.60.0/24 subnet in the logical network), and the other for handling the corresponding egress data messages.
- the third match condition matches on any data message sent from the source subnet 20.20.20.0/24 (i.e., irrespective of the destination address).
- the actions specify unique policy identifiers rather than specific redirection actions.
- the process 1200 determines (at 1215 ) whether the data message matches any of the PBR rules based on the PBR lookup.
- the PBR rules table includes a default (lowest priority) rule (or set of rules) for data messages that do not match any of the other rules. If the data message does not match any PBR rules (or only matches a default rule), the process forwards (at 1220 ) the data message to its destination without any redirection. Thus, outgoing data messages are transmitted to the appropriate physical router (after performing any additional IPSec or other local service processing), while incoming data messages begin logical processing at the centralized logical router.
- the data structure 1305 specifies the current BFD status of the connection to the service machine (the connection is currently up) as well as a failover policy indicating how to handle the data message if the BFD status is down.
- BFD the current BFD status of the connection to the service machine
- a failover policy indicates how to handle the data message if the BFD status is down.
- the failover policy indicates that data messages should be dropped if the service machine is not available.
- Other failover policy options may include, e.g. forwarding the data message to its destination without redirection to the service, redirection to a backup service machine, etc.
- the data structure 1310 indicates that the service machine to which this policy redirects is connected in L3 one-arm mode, and thus the redirection IP address provides the address of the service machine interface (rather than a dummy IP).
- the BFD status of this connection is also up, but in this case the failover policy provides for redirection to a backup service machine at a different IP address on a different subnet (i.e., connected to a different logical switch).
- a BFD thread executes on the gateway machine to (i) send BFD messages to the service machine and (ii) receive BFD messages from the service machine.
- the service machines For service machines connected in L3 one-arm mode, the service machines also execute a BFD thread that sends BFD messages to the gateway.
- the BFD thread sends BFD messages out one of the interfaces connecting the centralized routing component to the service machine and receives these messages back on the other interface.
- FIG. 14 conceptually illustrates the data structure 1310 being dynamically updated based on a change in the connection status of the service machine to which the data structure redirects data messages. This figure illustrates both the data structure 1310 as well as connections between the gateway machine 1400 and two service machines 1415 and 1420 over two stages 1405 and 1410 .
- the data structure 1310 is in the same state as in FIG. 13 , indicating that the connection to the service machine endpoint interface 169.254.10.1 is currently up as per the BFD status.
- the gateway machine 1400 in addition to operating the gateway MFE with its logical network processing, PBR rules, etc. also executes a BFD thread 1425 .
- This BFD thread 1425 sends BFD messages to both the first service machine 1415 at its interface with IP address 169.254.10.1 and the second service machine 1420 at its interface with IP address 169.254.11.1 at regular intervals.
- each of these service machines 1415 and 1420 execute their own BFD threads 1430 and 1435 , respectively, which send BFD messages to the gateway machine at regular intervals.
- the connection between the gateway machine 1400 and the first service machine 1415 goes down. This could occur due to a physical connection issue, an issue with the service machine 1415 crashing, etc. As a result, the BFD thread 1425 would no longer receive BFD messages from the service machine 1415 .
- the connection between the gateway machine 1400 and the service machine 1415 is no longer present.
- the data structure 1305 has been dynamically updated by the gateway MFE to indicate that the BFD status is down.
- data messages with a source IP in the subnet 20.20.20.0/24 would be redirected to the 169.254.11.1 interface of the second service machine 1420 until the connection to the first service machine 1415 comes back up.
- multiple threads can write to the data structures 1305 and 1310 .
- some embodiments allow the BFD thread as well as a configuration receiver thread to both write to these data structures (e.g., to modify the BFD status as well as to make any configuration changes received from the network control system).
- one or more packet processing threads are able to read these data structures for performing packet lookups. Some embodiments enable these packet processing threads to read from the data structures even if one of the writer threads is currently accessing the structures, so that packet processing is not interrupted by the writer threads.
- FIG. 15 conceptually illustrates an electronic system 1500 with which some embodiments of the invention are implemented.
- the electronic system 1500 may be a computer (e.g., a desktop computer, personal computer, tablet computer, server computer, mainframe, a blade computer etc.), phone, PDA, or any other sort of electronic device.
- Such an electronic system includes various types of computer readable media and interfaces for various other types of computer readable media.
- Electronic system 1500 includes a bus 1505 , processing unit(s) 1510 , a system memory 1525 , a read-only memory 1530 , a permanent storage device 1535 , input devices 1540 , and output devices 1545 .
- the bus 1505 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the electronic system 1500 .
- the bus 1505 communicatively connects the processing unit(s) 1510 with the read-only memory 1530 , the system memory 1525 , and the permanent storage device 1535 .
- the processing unit(s) 1510 retrieve instructions to execute and data to process in order to execute the processes of the invention.
- the processing unit(s) may be a single processor or a multi-core processor in different embodiments.
- the read-only-memory (ROM) 1530 stores static data and instructions that are needed by the processing unit(s) 1510 and other modules of the electronic system.
- the permanent storage device 1535 is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the electronic system 1500 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 1535 .
- the system memory 1525 is a read-and-write memory device. However, unlike storage device 1535 , the system memory is a volatile read-and-write memory, such a random-access memory.
- the system memory stores some of the instructions and data that the processor needs at runtime.
- the invention's processes are stored in the system memory 1525 , the permanent storage device 1535 , and/or the read-only memory 1530 . From these various memory units, the processing unit(s) 1510 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.
- the bus 1505 also connects to the input and output devices 1540 and 1545 .
- the input devices enable the user to communicate information and select commands to the electronic system.
- the input devices 1540 include alphanumeric keyboards and pointing devices (also called “cursor control devices”).
- the output devices 1545 display images generated by the electronic system.
- the output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as a touchscreen that function as both input and output devices.
- bus 1505 also couples electronic system 1500 to a network 1565 through a network adapter (not shown).
- the computer can be a part of a network of computers (such as a local area network (“LAN”), a wide area network (“WAN”), or an Intranet, or a network of networks, such as the Internet. Any or all components of electronic system 1500 may be used in conjunction with the invention.
- Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media).
- computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks.
- CD-ROM compact discs
- CD-R recordable compact
- the computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations.
- Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.
- ASICs application specific integrated circuits
- FPGAs field programmable gate arrays
- integrated circuits execute instructions that are stored on the circuit itself.
- the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people.
- display or displaying means displaying on an electronic device.
- the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral signals.
- DCNs data compute nodes
- addressable nodes may include non-virtualized physical hosts, virtual machines, containers that run on top of a host operating system without the need for a hypervisor or separate operating system, and hypervisor kernel network interface modules.
- VMs in some embodiments, operate with their own guest operating systems on a host using resources of the host virtualized by virtualization software (e.g., a hypervisor, virtual machine monitor, etc.).
- the tenant i.e., the owner of the VM
- Some containers are constructs that run on top of a host operating system without the need for a hypervisor or separate guest operating system.
- the host operating system uses name spaces to isolate the containers from each other and therefore provides operating-system level segregation of the different groups of applications that operate within different containers.
- This segregation is akin to the VM segregation that is offered in hypervisor-virtualized environments that virtualize system hardware, and thus can be viewed as a form of virtualization that isolates different groups of applications that operate in different containers.
- Such containers are more lightweight than VMs.
- Hypervisor kernel network interface modules in some embodiments, is a non-VM DCN that includes a network stack with a hypervisor kernel network interface and receive/transmit threads.
- a hypervisor kernel network interface module is the vmknic module that is part of the ESXiTM hypervisor of VMware, Inc.
- VMs virtual machines
- examples given could be any type of DCNs, including physical hosts, VMs, non-VM containers, and hypervisor kernel network interface modules.
- the example networks could include combinations of different types of DCNs in some embodiments.
- FIGS. 10 and 12 conceptually illustrate processes. The specific operations of these processes may not be performed in the exact order shown and described. The specific operations may not be performed in one continuous series of operations, and different specific operations may be performed in different embodiments. Furthermore, the process could be implemented using several sub-processes, or as part of a larger macro process. Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/102,684 US12177067B2 (en) | 2018-09-02 | 2023-01-28 | Service insertion at logical network gateway |
US18/952,462 US20250080414A1 (en) | 2018-09-02 | 2024-11-19 | Service insertion at logical network gateway |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/120,283 US11595250B2 (en) | 2018-09-02 | 2018-09-02 | Service insertion at logical network gateway |
US18/102,684 US12177067B2 (en) | 2018-09-02 | 2023-01-28 | Service insertion at logical network gateway |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/120,283 Continuation US11595250B2 (en) | 2018-09-02 | 2018-09-02 | Service insertion at logical network gateway |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/952,462 Continuation US20250080414A1 (en) | 2018-09-02 | 2024-11-19 | Service insertion at logical network gateway |
Publications (2)
Publication Number | Publication Date |
---|---|
US20230179474A1 US20230179474A1 (en) | 2023-06-08 |
US12177067B2 true US12177067B2 (en) | 2024-12-24 |
Family
ID=69640335
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/120,283 Active 2040-04-24 US11595250B2 (en) | 2018-09-02 | 2018-09-02 | Service insertion at logical network gateway |
US18/102,684 Active US12177067B2 (en) | 2018-09-02 | 2023-01-28 | Service insertion at logical network gateway |
US18/952,462 Pending US20250080414A1 (en) | 2018-09-02 | 2024-11-19 | Service insertion at logical network gateway |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/120,283 Active 2040-04-24 US11595250B2 (en) | 2018-09-02 | 2018-09-02 | Service insertion at logical network gateway |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/952,462 Pending US20250080414A1 (en) | 2018-09-02 | 2024-11-19 | Service insertion at logical network gateway |
Country Status (1)
Country | Link |
---|---|
US (3) | US11595250B2 (en) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9225638B2 (en) | 2013-05-09 | 2015-12-29 | Vmware, Inc. | Method and system for service switching using service tags |
US11722367B2 (en) | 2014-09-30 | 2023-08-08 | Nicira, Inc. | Method and apparatus for providing a service with a plurality of service nodes |
US10320679B2 (en) | 2014-09-30 | 2019-06-11 | Nicira, Inc. | Inline load balancing |
US11296930B2 (en) | 2014-09-30 | 2022-04-05 | Nicira, Inc. | Tunnel-enabled elastic service model |
US10609091B2 (en) | 2015-04-03 | 2020-03-31 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US10243848B2 (en) | 2015-06-27 | 2019-03-26 | Nicira, Inc. | Provisioning logical entities in a multi-datacenter environment |
US10797966B2 (en) | 2017-10-29 | 2020-10-06 | Nicira, Inc. | Service operation chaining |
US11012420B2 (en) | 2017-11-15 | 2021-05-18 | Nicira, Inc. | Third-party service chaining using packet encapsulation in a flow-based forwarding element |
US10797910B2 (en) | 2018-01-26 | 2020-10-06 | Nicira, Inc. | Specifying and utilizing paths through a network |
US10805192B2 (en) | 2018-03-27 | 2020-10-13 | Nicira, Inc. | Detecting failure of layer 2 service using broadcast messages |
US10942788B2 (en) | 2018-06-15 | 2021-03-09 | Vmware, Inc. | Policy constraint framework for an sddc |
US10812337B2 (en) | 2018-06-15 | 2020-10-20 | Vmware, Inc. | Hierarchical API for a SDDC |
US11086700B2 (en) | 2018-08-24 | 2021-08-10 | Vmware, Inc. | Template driven approach to deploy a multi-segmented application in an SDDC |
US10944673B2 (en) | 2018-09-02 | 2021-03-09 | Vmware, Inc. | Redirection of data messages at logical network gateway |
US11595250B2 (en) | 2018-09-02 | 2023-02-28 | Vmware, Inc. | Service insertion at logical network gateway |
US11537541B2 (en) | 2018-09-28 | 2022-12-27 | Xilinx, Inc. | Network interface device and host processing device |
US11570045B2 (en) | 2018-09-28 | 2023-01-31 | Xilinx, Inc. | Network interface device |
US11012411B2 (en) | 2018-11-05 | 2021-05-18 | Xilinx, Inc. | Network interface device |
US11082364B2 (en) * | 2019-04-25 | 2021-08-03 | Xilinx, Inc. | Network interface device |
US10931565B2 (en) | 2019-02-22 | 2021-02-23 | Vmware, Inc. | Multi-VRF and multi-service insertion on edge gateway virtual machines |
US11354148B2 (en) | 2019-02-22 | 2022-06-07 | Vmware, Inc. | Using service data plane for service control plane messaging |
US11140218B2 (en) | 2019-10-30 | 2021-10-05 | Vmware, Inc. | Distributed service chain across multiple clouds |
US11283717B2 (en) | 2019-10-30 | 2022-03-22 | Vmware, Inc. | Distributed fault tolerant service chain |
US11223494B2 (en) | 2020-01-13 | 2022-01-11 | Vmware, Inc. | Service insertion for multicast traffic at boundary |
US11153406B2 (en) | 2020-01-20 | 2021-10-19 | Vmware, Inc. | Method of network performance visualization of service function chains |
US11659061B2 (en) | 2020-01-20 | 2023-05-23 | Vmware, Inc. | Method of adjusting service function chains to improve network performance |
CN115380514B (en) | 2020-04-01 | 2024-03-01 | 威睿有限责任公司 | Automatic deployment of network elements for heterogeneous computing elements |
US11777793B2 (en) | 2020-04-06 | 2023-10-03 | Vmware, Inc. | Location criteria for security groups |
US11368387B2 (en) | 2020-04-06 | 2022-06-21 | Vmware, Inc. | Using router as service node through logical service plane |
US11088902B1 (en) | 2020-04-06 | 2021-08-10 | Vmware, Inc. | Synchronization of logical network state between global and local managers |
US11736383B2 (en) | 2020-04-06 | 2023-08-22 | Vmware, Inc. | Logical forwarding element identifier translation between datacenters |
US11258668B2 (en) | 2020-04-06 | 2022-02-22 | Vmware, Inc. | Network controller for multi-site logical network |
US11153170B1 (en) | 2020-04-06 | 2021-10-19 | Vmware, Inc. | Migration of data compute node across sites |
US11803408B2 (en) | 2020-07-29 | 2023-10-31 | Vmware, Inc. | Distributed network plugin agents for container networking |
US11863352B2 (en) | 2020-07-30 | 2024-01-02 | Vmware, Inc. | Hierarchical networking for nested container clusters |
US11343283B2 (en) | 2020-09-28 | 2022-05-24 | Vmware, Inc. | Multi-tenant network virtualization infrastructure |
US11734043B2 (en) | 2020-12-15 | 2023-08-22 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
US11611625B2 (en) | 2020-12-15 | 2023-03-21 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
US20230146880A1 (en) * | 2021-03-12 | 2023-05-11 | Rakuten Mobile, Inc. | Management system and management method |
US11698819B2 (en) * | 2021-04-01 | 2023-07-11 | Vmware, Inc. | System and method for scaling resources of a secondary network for disaster recovery |
US11606254B2 (en) | 2021-06-11 | 2023-03-14 | Vmware, Inc. | Automatic configuring of VLAN and overlay logical switches for container secondary interfaces |
US12231398B2 (en) | 2022-01-14 | 2025-02-18 | VMware LLC | Per-namespace IP address management method for container networks |
WO2023173404A1 (en) | 2022-03-18 | 2023-09-21 | Vmware Information Technology (China) Co., Ltd. | Mapping vlan of container network to logical network in hypervisor to support flexible ipam and routing container traffic |
US12056505B2 (en) * | 2022-07-11 | 2024-08-06 | Xilinx, Inc. | Distributed configuration of programmable devices |
US12107722B2 (en) | 2022-07-20 | 2024-10-01 | VMware LLC | Sharing network manager between multiple tenants |
US20240073140A1 (en) * | 2022-08-31 | 2024-02-29 | Juniper Networks, Inc. | Facilitating elasticity of a network device |
US12177124B2 (en) | 2022-10-04 | 2024-12-24 | VMware LLC | Using CRDs to create externally routable addresses and route records for pods |
US11848910B1 (en) | 2022-11-11 | 2023-12-19 | Vmware, Inc. | Assigning stateful pods fixed IP addresses depending on unique pod identity |
CN115865641A (en) * | 2022-11-28 | 2023-03-28 | 河南许继继保电气自动化有限公司 | Double-master-station system and data transmission method suitable for double-master-station system |
US12199833B2 (en) | 2022-11-29 | 2025-01-14 | VMware LLC | Network controller as a service (NCaaS) to define network policies for third-party container clusters |
US12267212B2 (en) | 2022-11-29 | 2025-04-01 | VMware LLC | Implementing defined service policies in a third-party container cluster |
US11831511B1 (en) | 2023-01-17 | 2023-11-28 | Vmware, Inc. | Enforcing network policies in heterogeneous systems |
US20240289157A1 (en) | 2023-02-23 | 2024-08-29 | VMware LLC | User interface for health monitoring of multi-service system |
WO2024254734A1 (en) | 2023-06-12 | 2024-12-19 | Vmware Information Technology (China) Co., Ltd. | Layer 7 network security for container workloads |
Citations (669)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999018534A2 (en) | 1997-10-06 | 1999-04-15 | Web Balance, Inc. | System for balancing loads among network servers |
US6006264A (en) | 1997-08-01 | 1999-12-21 | Arrowpoint Communications, Inc. | Method and system for directing a flow between a client and a server |
US6104700A (en) | 1997-08-29 | 2000-08-15 | Extreme Networks | Policy based quality of service |
US6154448A (en) | 1997-06-20 | 2000-11-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Next hop loopback |
US20020010783A1 (en) | 1999-12-06 | 2002-01-24 | Leonard Primak | System and method for enhancing operation of a web server cluster |
US20020078370A1 (en) | 2000-12-18 | 2002-06-20 | Tahan Thomas E. | Controlled information flow between communities via a firewall |
US20020097724A1 (en) | 2001-01-09 | 2002-07-25 | Matti Halme | Processing of data packets within a network element cluster |
US20020194350A1 (en) | 2001-06-18 | 2002-12-19 | Lu Leonard L. | Content-aware web switch without delayed binding and methods thereof |
US20030065711A1 (en) | 2001-10-01 | 2003-04-03 | International Business Machines Corporation | Method and apparatus for content-aware web switching |
US20030093481A1 (en) | 2001-11-09 | 2003-05-15 | Julian Mitchell | Middlebox control |
US20030097429A1 (en) | 2001-11-20 | 2003-05-22 | Wen-Che Wu | Method of forming a website server cluster and structure thereof |
US20030105812A1 (en) | 2001-08-09 | 2003-06-05 | Gigamedia Access Corporation | Hybrid system architecture for secure peer-to-peer-communications |
US20030123452A1 (en) * | 2001-12-27 | 2003-07-03 | Tippingpoint Technologies, Inc. | System and method for dynamically constructing packet classification rules |
US20030188026A1 (en) | 2001-05-18 | 2003-10-02 | Claude Denton | Multi-protocol networking processor with data traffic support spanning local, regional and wide area networks |
US20030236813A1 (en) | 2002-06-24 | 2003-12-25 | Abjanic John B. | Method and apparatus for off-load processing of a message stream |
US20040066769A1 (en) | 2002-10-08 | 2004-04-08 | Kalle Ahmavaara | Method and system for establishing a connection via an access network |
US6779030B1 (en) | 1997-10-06 | 2004-08-17 | Worldcom, Inc. | Intelligent network |
US20040210670A1 (en) | 1999-03-05 | 2004-10-21 | Nikolaos Anerousis | System, method and apparatus for network service load and reliability management |
US20040215703A1 (en) | 2003-02-18 | 2004-10-28 | Xiping Song | System supporting concurrent operation of multiple executable application operation sessions |
US6826694B1 (en) | 1998-10-22 | 2004-11-30 | At&T Corp. | High resolution access control |
US20040249776A1 (en) * | 2001-06-28 | 2004-12-09 | Microsoft Corporation | Composable presence and availability services |
US6880089B1 (en) | 2000-03-31 | 2005-04-12 | Avaya Technology Corp. | Firewall clustering for multiple network servers |
US20050089327A1 (en) | 2003-10-22 | 2005-04-28 | Shlomo Ovadia | Dynamic route discovery for optical switched networks |
US20050091396A1 (en) | 2003-08-05 | 2005-04-28 | Chandrasekharan Nilakantan | Method and apparatus for achieving dynamic capacity and high availability in multi-stage data networks using adaptive flow-based routing |
US20050114429A1 (en) | 2003-11-25 | 2005-05-26 | Caccavale Frank S. | Method and apparatus for load balancing of distributed processing units based on performance metrics |
US20050114648A1 (en) | 2003-11-24 | 2005-05-26 | Cisco Technology, Inc., A Corporation Of California | Dual mode firewall |
US20050132030A1 (en) | 2003-12-10 | 2005-06-16 | Aventail Corporation | Network appliance |
US20050198200A1 (en) | 2004-03-05 | 2005-09-08 | Nortel Networks Limited | Method and apparatus for facilitating fulfillment of web-service requests on a communication network |
JP2005311863A (en) | 2004-04-23 | 2005-11-04 | Hitachi Ltd | Traffic distribution control method, control device, and network system |
US20050249199A1 (en) | 1999-07-02 | 2005-11-10 | Cisco Technology, Inc., A California Corporation | Load balancing using distributed forwarding agents with application based feedback for different virtual machines |
US6985956B2 (en) | 2000-11-02 | 2006-01-10 | Sun Microsystems, Inc. | Switching system |
US7013389B1 (en) | 1999-09-29 | 2006-03-14 | Cisco Technology, Inc. | Method and apparatus for creating a secure communication channel among multiple event service nodes |
US20060069776A1 (en) | 2004-09-15 | 2006-03-30 | Shim Choon B | System and method for load balancing a communications network |
US20060112297A1 (en) | 2004-11-17 | 2006-05-25 | Raytheon Company | Fault tolerance and recovery in a high-performance computing (HPC) system |
US20060130133A1 (en) | 2004-12-14 | 2006-06-15 | International Business Machines Corporation | Automated generation of configuration elements of an information technology system |
US20060155862A1 (en) | 2005-01-06 | 2006-07-13 | Hari Kathi | Data traffic load balancing based on application layer messages |
US20060195896A1 (en) | 2004-12-22 | 2006-08-31 | Wake Forest University | Method, systems, and computer program products for implementing function-parallel network firewall |
US20060233155A1 (en) | 2002-03-19 | 2006-10-19 | Srivastava Sunil K | Server load balancing using IP option field approach to identify route to selected server |
US20070061492A1 (en) | 2005-08-05 | 2007-03-15 | Red Hat, Inc. | Zero-copy network i/o for virtual hosts |
US20070121615A1 (en) | 2005-11-28 | 2007-05-31 | Ofer Weill | Method and apparatus for self-learning of VPNS from combination of unidirectional tunnels in MPLS/VPN networks |
US20070153782A1 (en) | 2005-12-30 | 2007-07-05 | Gregory Fletcher | Reliable, high-throughput, high-performance transport and routing mechanism for arbitrary data flows |
US20070214282A1 (en) | 2006-03-13 | 2007-09-13 | Microsoft Corporation | Load balancing via rotation of cluster identity |
US20070248091A1 (en) | 2006-04-24 | 2007-10-25 | Mohamed Khalid | Methods and apparatus for tunnel stitching in a network |
US20070260750A1 (en) | 2006-03-09 | 2007-11-08 | Microsoft Corporation | Adaptable data connector |
US20070288615A1 (en) | 2006-06-09 | 2007-12-13 | Cisco Technology, Inc. | Technique for dispatching data packets to service control engines |
US20070291773A1 (en) | 2005-12-06 | 2007-12-20 | Shabbir Khan | Digital object routing based on a service request |
US20080005293A1 (en) | 2006-06-30 | 2008-01-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Router and method for server load balancing |
US20080031263A1 (en) | 2006-08-07 | 2008-02-07 | Cisco Technology, Inc. | Method and apparatus for load balancing over virtual network links |
US20080046400A1 (en) | 2006-08-04 | 2008-02-21 | Shi Justin Y | Apparatus and method of optimizing database clustering with zero transaction loss |
US20080049619A1 (en) | 2004-02-09 | 2008-02-28 | Adam Twiss | Methods and Apparatus for Routing in a Network |
US20080049614A1 (en) | 2006-08-23 | 2008-02-28 | Peter John Briscoe | Capacity Management for Data Networks |
US20080049786A1 (en) | 2006-08-22 | 2008-02-28 | Maruthi Ram | Systems and Methods for Providing Dynamic Spillover of Virtual Servers Based on Bandwidth |
US20080072305A1 (en) | 2006-09-14 | 2008-03-20 | Ouova, Inc. | System and method of middlebox detection and characterization |
US20080084819A1 (en) | 2006-10-04 | 2008-04-10 | Vladimir Parizhsky | Ip flow-based load balancing over a plurality of wireless network links |
US20080095153A1 (en) | 2006-10-19 | 2008-04-24 | Fujitsu Limited | Apparatus and computer product for collecting packet information |
US20080104608A1 (en) | 2006-10-27 | 2008-05-01 | Hyser Chris D | Starting up at least one virtual machine in a physical machine by a load balancer |
US7379465B2 (en) | 2001-12-07 | 2008-05-27 | Nortel Networks Limited | Tunneling scheme optimized for use in virtual private networks |
WO2008095010A1 (en) | 2007-02-01 | 2008-08-07 | The Board Of Trustees Of The Leland Stanford Jr. University | Secure network switching infrastructure |
US20080195755A1 (en) | 2007-02-12 | 2008-08-14 | Ying Lu | Method and apparatus for load balancing with server state change awareness |
US20080225714A1 (en) | 2007-03-12 | 2008-09-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic load balancing |
US20080239991A1 (en) | 2003-03-13 | 2008-10-02 | David Lee Applegate | Method and apparatus for efficient routing of variable traffic |
US20080247396A1 (en) | 2007-04-06 | 2008-10-09 | Ludovic Hazard | Method, system and computer processing an ip packet, routing a structured data carrier, preventing broadcast storms, load-balancing and converting a full broadcast ip packet |
US7447775B1 (en) | 2003-11-07 | 2008-11-04 | Cisco Technology, Inc. | Methods and apparatus for supporting transmission of streaming data |
US20080276085A1 (en) | 2007-05-02 | 2008-11-06 | Cisco Technology, Inc. | Allowing differential processing of encrypted tunnels |
US20080279196A1 (en) | 2004-04-06 | 2008-11-13 | Robert Friskney | Differential Forwarding in Address-Based Carrier Networks |
US20090003364A1 (en) | 2007-06-29 | 2009-01-01 | Kerry Fendick | Open platform architecture for integrating multiple heterogeneous network functions |
US20090003349A1 (en) | 2007-06-29 | 2009-01-01 | Martin Havemann | Network system having an extensible forwarding plane |
US20090003375A1 (en) | 2007-06-29 | 2009-01-01 | Martin Havemann | Network system having an extensible control plane |
US20090019135A1 (en) | 2007-07-09 | 2009-01-15 | Anand Eswaran | Method, Network and Computer Program For Processing A Content Request |
US7480737B2 (en) | 2002-10-25 | 2009-01-20 | International Business Machines Corporation | Technique for addressing a cluster of network servers |
US7487250B2 (en) | 2000-12-19 | 2009-02-03 | Cisco Technology, Inc. | Methods and apparatus for directing a flow of data between a client and multiple servers |
US20090037713A1 (en) | 2007-08-03 | 2009-02-05 | Cisco Technology, Inc. | Operation, administration and maintenance (oam) for chains of services |
US7499463B1 (en) | 2005-04-22 | 2009-03-03 | Sun Microsystems, Inc. | Method and apparatus for enforcing bandwidth utilization of a virtual serialization queue |
US20090063706A1 (en) | 2007-08-30 | 2009-03-05 | International Business Machines Corporation | Combined Layer 2 Virtual MAC Address with Layer 3 IP Address Routing |
US20090129271A1 (en) | 2007-11-19 | 2009-05-21 | Rajesh Ramankutty | Providing services to packet flows in a network |
US20090172666A1 (en) | 2007-12-31 | 2009-07-02 | Netapp, Inc. | System and method for automatic storage load balancing in virtual server environments |
US20090190506A1 (en) | 2006-05-05 | 2009-07-30 | Nokia Siemens Networks Gmbh & Co. Kg | Method for Allowing Control of the Quality of Service and/or of the Service Fees for Telecommunication Services |
US20090199268A1 (en) | 2008-02-06 | 2009-08-06 | Qualcomm, Incorporated | Policy control for encapsulated data flows |
US20090235325A1 (en) | 2006-03-02 | 2009-09-17 | Theo Dimitrakos | Message processing methods and systems |
US20090238084A1 (en) | 2008-03-18 | 2009-09-24 | Cisco Technology, Inc. | Network monitoring using a proxy |
US20090249472A1 (en) | 2008-03-27 | 2009-10-01 | Moshe Litvin | Hierarchical firewalls |
US20090259745A1 (en) * | 2008-04-11 | 2009-10-15 | Morris Lee | Methods and apparatus for nonintrusive monitoring of web browser usage |
US20090265467A1 (en) | 2008-04-17 | 2009-10-22 | Radware, Ltd. | Method and System for Load Balancing over a Cluster of Authentication, Authorization and Accounting (AAA) Servers |
US20090271586A1 (en) | 1998-07-31 | 2009-10-29 | Kom Networks Inc. | Method and system for providing restricted access to a storage medium |
CN101594358A (en) | 2009-06-29 | 2009-12-02 | 北京航空航天大学 | Layer-3 switching method, device, system and host |
US20090300210A1 (en) | 2008-05-28 | 2009-12-03 | James Michael Ferris | Methods and systems for load balancing in cloud-based networks |
US20090299791A1 (en) | 2003-06-25 | 2009-12-03 | Foundry Networks, Inc. | Method and system for management of licenses |
US20090303880A1 (en) | 2008-06-09 | 2009-12-10 | Microsoft Corporation | Data center interconnect and traffic engineering |
US20090307334A1 (en) | 2008-06-09 | 2009-12-10 | Microsoft Corporation | Data center without structural bottlenecks |
US20090327464A1 (en) | 2008-06-26 | 2009-12-31 | International Business Machines Corporation | Load Balanced Data Processing Performed On An Application Message Transmitted Between Compute Nodes |
US7649890B2 (en) | 2005-02-22 | 2010-01-19 | Hitachi Communication Technologies, Ltd. | Packet forwarding apparatus and communication bandwidth control method |
US20100031360A1 (en) | 2008-07-31 | 2010-02-04 | Arvind Seshadri | Systems and methods for preventing unauthorized modification of an operating system |
US20100036903A1 (en) | 2008-08-11 | 2010-02-11 | Microsoft Corporation | Distributed load balancer |
US7698458B1 (en) | 2004-10-29 | 2010-04-13 | Akamai Technologies, Inc. | Load balancing network traffic using race methods |
US20100100616A1 (en) | 2004-09-14 | 2010-04-22 | 3Com Corporation | Method and apparatus for controlling traffic between different entities on a network |
US20100131638A1 (en) | 2008-11-25 | 2010-05-27 | Ravi Kondamuru | Systems and Methods for GSLB Remote Service Monitoring |
CN101729412A (en) | 2009-11-05 | 2010-06-09 | 北京超图软件股份有限公司 | Distributed level cluster method and system of geographic information service |
US20100165985A1 (en) | 2008-12-29 | 2010-07-01 | Cisco Technology, Inc. | Service Selection Mechanism In Service Insertion Architecture Data Plane |
US20100223621A1 (en) | 2002-08-01 | 2010-09-02 | Foundry Networks, Inc. | Statistical tracking for global server load balancing |
US20100223364A1 (en) | 2009-02-27 | 2010-09-02 | Yottaa Inc | System and method for network traffic management and load balancing |
US20100235915A1 (en) | 2009-03-12 | 2010-09-16 | Nasir Memon | Using host symptoms, host roles, and/or host reputation for detection of host infection |
US20100257278A1 (en) | 2003-12-10 | 2010-10-07 | Foundry Networks, Inc. | Method and apparatus for load balancing based on packet header content |
US20100254385A1 (en) | 2009-04-07 | 2010-10-07 | Cisco Technology, Inc. | Service Insertion Architecture (SIA) in a Virtual Private Network (VPN) Aware Network |
US7818452B2 (en) | 2000-09-13 | 2010-10-19 | Fortinet, Inc. | Distributed virtual system to support managed, network-based services |
US20100265824A1 (en) | 2007-11-09 | 2010-10-21 | Blade Network Technologies, Inc | Session-less Load Balancing of Client Traffic Across Servers in a Server Group |
US20100281482A1 (en) | 2009-04-30 | 2010-11-04 | Microsoft Corporation | Application efficiency engine |
US20100332595A1 (en) | 2008-04-04 | 2010-12-30 | David Fullagar | Handling long-tail content in a content delivery network (cdn) |
US20110010578A1 (en) | 2007-02-22 | 2011-01-13 | Agundez Dominguez Jose Luis | Consistent and fault tolerant distributed hash table (dht) overlay network |
US20110016348A1 (en) | 2000-09-01 | 2011-01-20 | Pace Charles P | System and method for bridging assets to network nodes on multi-tiered networks |
US20110022812A1 (en) | 2009-05-01 | 2011-01-27 | Van Der Linden Rob | Systems and methods for establishing a cloud bridge between virtual storage resources |
US20110022695A1 (en) | 2009-07-27 | 2011-01-27 | Vmware, Inc. | Management and Implementation of Enclosed Local Networks in a Virtual Lab |
US20110035494A1 (en) | 2008-04-15 | 2011-02-10 | Blade Network Technologies | Network virtualization for a virtualized server data center environment |
US20110040893A1 (en) | 2009-08-14 | 2011-02-17 | Broadcom Corporation | Distributed Internet caching via multiple node caching management |
US7898959B1 (en) | 2007-06-28 | 2011-03-01 | Marvell Israel (Misl) Ltd. | Method for weighted load-balancing among network interfaces |
US20110055845A1 (en) | 2009-08-31 | 2011-03-03 | Thyagarajan Nandagopal | Technique for balancing loads in server clusters |
US20110058563A1 (en) | 2007-12-17 | 2011-03-10 | Girish Prabhakar Saraph | Architectural framework of communication network and a method of establishing qos connection |
US7921174B1 (en) * | 2009-07-24 | 2011-04-05 | Jason Adam Denise | Electronic communication reminder technology |
US20110090912A1 (en) | 2009-10-15 | 2011-04-21 | International Business Machines Corporation | Steering Data Communications Packets Among Service Applications With Server Selection Modulus Values |
US7948986B1 (en) | 2009-02-02 | 2011-05-24 | Juniper Networks, Inc. | Applying services within MPLS networks |
US20110164504A1 (en) | 2008-09-03 | 2011-07-07 | Nokia Siemens Networks Oy | Gateway network element, a method, and a group of load balanced access points configured for load balancing in a communications network |
US20110194563A1 (en) | 2010-02-11 | 2011-08-11 | Vmware, Inc. | Hypervisor Level Distributed Load-Balancing |
US20110211463A1 (en) | 2010-02-26 | 2011-09-01 | Eldad Matityahu | Add-on module and methods thereof |
US20110225293A1 (en) | 2005-07-22 | 2011-09-15 | Yogesh Chunilal Rathod | System and method for service based social network |
US20110235508A1 (en) | 2010-03-26 | 2011-09-29 | Deepak Goel | Systems and methods for link load balancing on a multi-core device |
US20110261811A1 (en) | 2010-04-26 | 2011-10-27 | International Business Machines Corporation | Load-balancing via modulus distribution and tcp flow redirection due to server overload |
US20110268118A1 (en) | 2010-04-30 | 2011-11-03 | Michael Schlansker | Method for routing data packets using vlans |
US20110271007A1 (en) | 2010-04-28 | 2011-11-03 | Futurewei Technologies, Inc. | System and Method for a Context Layer Switch |
US20110276695A1 (en) | 2010-05-06 | 2011-11-10 | Juliano Maldaner | Continuous upgrading of computers in a load balanced environment |
US20110283013A1 (en) | 2010-05-14 | 2011-11-17 | Grosser Donald B | Methods, systems, and computer readable media for stateless load balancing of network traffic flows |
US20110295991A1 (en) | 2010-02-01 | 2011-12-01 | Nec Corporation | Network system, controller, and network control method |
US8078903B1 (en) | 2008-11-25 | 2011-12-13 | Cisco Technology, Inc. | Automatic load-balancing and seamless failover of data flows in storage media encryption (SME) |
US20110317708A1 (en) | 2010-06-28 | 2011-12-29 | Alcatel-Lucent Usa, Inc. | Quality of service control for mpls user access |
US20120005265A1 (en) | 2010-06-30 | 2012-01-05 | Sony Corporation | Information processing device, content providing method and program |
US8094575B1 (en) | 2009-03-24 | 2012-01-10 | Juniper Networks, Inc. | Routing protocol extension for network acceleration service-aware path selection within computer networks |
US20120011281A1 (en) | 2010-07-07 | 2012-01-12 | Fujitsu Limited | Content conversion system and content conversion server |
US20120014386A1 (en) | 2010-06-29 | 2012-01-19 | Futurewei Technologies, Inc. | Delegate Gateways and Proxy for Target Hosts in Large Layer 2 and Address Resolution with Duplicated Internet Protocol Addresses |
US20120023231A1 (en) | 2009-10-23 | 2012-01-26 | Nec Corporation | Network system, control method for the same, and controller |
US20120054266A1 (en) | 2010-09-01 | 2012-03-01 | Kazerani Alexander A | Optimized Content Distribution Based on Metrics Derived from the End User |
EP2426956A1 (en) | 2009-04-27 | 2012-03-07 | China Mobile Communications Corporation | Data transferring method, system and related network device based on proxy mobile (pm) ipv6 |
US20120089664A1 (en) | 2010-10-12 | 2012-04-12 | Sap Portals Israel, Ltd. | Optimizing Distributed Computer Networks |
US20120110577A1 (en) | 2006-04-27 | 2012-05-03 | Vmware, Inc. | Controlling memory conditions in a virtual machine |
US8175863B1 (en) | 2008-02-13 | 2012-05-08 | Quest Software, Inc. | Systems and methods for analyzing performance of virtual environments |
US20120117058A1 (en) * | 2010-11-08 | 2012-05-10 | Microsoft Corporation | Presenting actions and providers associated with entities |
US20120117258A1 (en) * | 2010-11-09 | 2012-05-10 | Cbs Interactive Inc. | Techniques to deploy and undeploy content to and from web servers |
US8190767B1 (en) | 2003-06-24 | 2012-05-29 | Nvidia Corporation | Data structures and state tracking for network protocol processing |
US20120137004A1 (en) | 2000-07-17 | 2012-05-31 | Smith Philip S | Method and System for Operating a Commissioned E-Commerce Service Prover |
US20120144014A1 (en) | 2010-12-01 | 2012-06-07 | Cisco Technology, Inc. | Directing data flows in data centers with clustering services |
US8201219B2 (en) | 2007-09-24 | 2012-06-12 | Bridgewater Systems Corp. | Systems and methods for server load balancing using authentication, authorization, and accounting protocols |
US20120147894A1 (en) | 2010-12-08 | 2012-06-14 | Mulligan John T | Methods and apparatus to provision cloud computing network elements |
EP2466985A1 (en) | 2009-09-17 | 2012-06-20 | ZTE Corporation | Network based on identity identifier and location separation architecture, backbone network, and network element thereof |
US20120159307A1 (en) * | 2010-12-17 | 2012-06-21 | Microsoft Corporation | Rendering source regions into target regions of web pages |
US20120155266A1 (en) | 2010-12-17 | 2012-06-21 | Microsoft Corporation | Synchronizing state among load balancer components |
US20120176932A1 (en) | 2009-09-17 | 2012-07-12 | Zte Corporation | Communication method, method for forwarding data message during the communication process and communication node thereof |
US8223634B2 (en) | 2004-02-18 | 2012-07-17 | Fortinet, Inc. | Mechanism for implementing load balancing in a network |
US8224885B1 (en) | 2009-01-26 | 2012-07-17 | Teradici Corporation | Method and system for remote computing session management |
US20120185588A1 (en) | 2002-01-30 | 2012-07-19 | Brett Error | Distributed Data Collection and Aggregation |
US20120195196A1 (en) | 2010-08-11 | 2012-08-02 | Rajat Ghai | SYSTEM AND METHOD FOR QoS CONTROL OF IP FLOWS IN MOBILE NETWORKS |
US20120207174A1 (en) | 2011-02-10 | 2012-08-16 | Choung-Yaw Michael Shieh | Distributed service processing of network gateways using virtual machines |
US20120213074A1 (en) | 2011-01-27 | 2012-08-23 | Verint Systems Ltd. | System and method for flow table management |
US8266261B2 (en) | 2009-03-27 | 2012-09-11 | Nec Corporation | Server system, collective server apparatus, and MAC address management method |
US20120230187A1 (en) | 2011-03-09 | 2012-09-13 | Telefonaktiebolaget L M Ericsson (Publ) | Load balancing sctp associations using vtag mediation |
US20120239804A1 (en) | 2009-11-26 | 2012-09-20 | Chengdu Huawei Symantec Technologies Co., Ltd | Method, device and system for backup |
US20120246637A1 (en) | 2011-03-22 | 2012-09-27 | Cisco Technology, Inc. | Distributed load balancer in a virtual machine environment |
US20120266252A1 (en) | 2011-04-18 | 2012-10-18 | Bank Of America Corporation | Hardware-based root of trust for cloud environments |
US20120281540A1 (en) | 2011-05-03 | 2012-11-08 | Cisco Technology, Inc. | Mobile service routing in a network environment |
US20120287789A1 (en) | 2008-10-24 | 2012-11-15 | Juniper Networks, Inc. | Flow consistent dynamic load balancing |
US20120303809A1 (en) | 2011-05-25 | 2012-11-29 | Microsoft Corporation | Offloading load balancing packet modification |
US20120303784A1 (en) | 1998-07-15 | 2012-11-29 | Radware, Ltd. | Load balancing |
US20120311568A1 (en) | 2011-05-31 | 2012-12-06 | Jansen Gerardus T | Mechanism for Inter-Cloud Live Migration of Virtualization Systems |
US20120317260A1 (en) | 2011-06-07 | 2012-12-13 | Syed Mohammad Amir Husain | Network Controlled Serial and Audio Switch |
US20120317570A1 (en) | 2011-06-08 | 2012-12-13 | Dalcher Gregory W | System and method for virtual partition monitoring |
US8339959B1 (en) | 2008-05-20 | 2012-12-25 | Juniper Networks, Inc. | Streamlined packet forwarding using dynamic filters for routing and security in a shared forwarding plane |
US20120331188A1 (en) | 2010-06-29 | 2012-12-27 | Patrick Brian Riordan | Techniques for path selection |
US20130003735A1 (en) | 2011-06-28 | 2013-01-03 | Chao H Jonathan | Dynamically provisioning middleboxes |
US20130021942A1 (en) | 2011-07-18 | 2013-01-24 | Cisco Technology, Inc. | Granular Control of Multicast Delivery Services for Layer-2 Interconnect Solutions |
US20130031544A1 (en) | 2011-07-27 | 2013-01-31 | Microsoft Corporation | Virtual machine migration to minimize packet loss in virtualized network |
US20130039218A1 (en) | 2010-10-25 | 2013-02-14 | Force 10 Networks | Limiting mac address learning on access network switches |
US20130044636A1 (en) | 2011-08-17 | 2013-02-21 | Teemu Koponen | Distributed logical l3 routing |
US20130058346A1 (en) | 2011-09-07 | 2013-03-07 | Microsoft Corporation | Distributed Routing Domains in Multi-Tenant Datacenter Virtual Networks |
US20130073743A1 (en) | 2011-09-19 | 2013-03-21 | Cisco Technology, Inc. | Services controlled session based flow interceptor |
US20130100851A1 (en) | 2011-10-25 | 2013-04-25 | Cisco Technology, Inc. | Multicast Source Move Detection for Layer-2 Interconnect Solutions |
US20130125120A1 (en) | 2011-11-15 | 2013-05-16 | Nicira, Inc. | Migrating middlebox state for distributed middleboxes |
US8451735B2 (en) | 2009-09-28 | 2013-05-28 | Symbol Technologies, Inc. | Systems and methods for dynamic load balancing in a wireless network |
US20130136126A1 (en) | 2011-11-30 | 2013-05-30 | Industrial Technology Research Institute | Data center network system and packet forwarding method thereof |
US20130160024A1 (en) | 2011-12-20 | 2013-06-20 | Sybase, Inc. | Dynamic Load Balancing for Complex Event Processing |
US20130159487A1 (en) | 2011-12-14 | 2013-06-20 | Microsoft Corporation | Migration of Virtual IP Addresses in a Failover Cluster |
US20130163594A1 (en) | 2011-12-21 | 2013-06-27 | Cisco Technology, Inc. | Overlay-Based Packet Steering |
US20130166703A1 (en) | 2011-12-27 | 2013-06-27 | Michael P. Hammer | System And Method For Management Of Network-Based Services |
US20130174012A1 (en) * | 2012-01-03 | 2013-07-04 | Vistaprint Technologies Limited | Automated generation of mobile optimized website |
US20130170501A1 (en) | 2011-12-28 | 2013-07-04 | Futurewei Technologies, Inc. | Service Router Architecture |
US8488577B1 (en) | 2012-06-06 | 2013-07-16 | Google Inc. | Apparatus for controlling the availability of internet access to applications |
US20130201989A1 (en) | 2012-02-08 | 2013-08-08 | Radisys Corporation | Stateless load balancer in a multi-node system for transparent processing with packet preservation |
US8521879B1 (en) | 2008-03-11 | 2013-08-27 | United Services Automobile Assocation (USAA) | Systems and methods for a load balanced interior gateway protocol intranet |
US20130227097A1 (en) | 2010-09-14 | 2013-08-29 | Hitachi, Ltd. | Multi-tenancy information processing system, management server, and configuration management method |
US20130227550A1 (en) | 2012-02-27 | 2013-08-29 | Computer Associates Think, Inc. | System and method for isolated virtual image and appliance communication within a cloud environment |
US20130287036A1 (en) | 2012-04-30 | 2013-10-31 | International Business Machines Corporation | Providing services to virtual overlay network traffic |
US20130287026A1 (en) | 2012-04-13 | 2013-10-31 | Nicira Inc. | Extension of logical networks across layer 3 virtual private networks |
US20130291088A1 (en) | 2012-04-11 | 2013-10-31 | Choung-Yaw Michael Shieh | Cooperative network security inspection |
US20130297798A1 (en) | 2012-05-04 | 2013-11-07 | Mustafa Arisoylu | Two level packet distribution with stateless first level packet distribution to a group of servers and stateful second level packet distribution to a server within the group |
US20130301472A1 (en) | 2012-05-10 | 2013-11-14 | David Ian Allan | 802.1aq support over ietf evpn |
US20130311637A1 (en) | 2012-05-15 | 2013-11-21 | International Business Machines Corporation | Overlay tunnel information exchange protocol |
US20130318219A1 (en) | 2012-05-23 | 2013-11-28 | Brocade Communications Systems, Inc | Layer-3 overlay gateways |
US20130322446A1 (en) | 2012-06-05 | 2013-12-05 | International Business Machines Corporation | Virtual ethernet port aggregation (vepa)-enabled multi-tenant overlay network |
US20130332983A1 (en) | 2012-06-12 | 2013-12-12 | TELEFONAKTIEBOLAGET L M ERRICSSON (publ) | Elastic Enforcement Layer for Cloud Security Using SDN |
US20130336319A1 (en) | 2012-06-14 | 2013-12-19 | Liwu Liu | Multicast to unicast conversion technique |
US8615009B1 (en) | 2010-01-25 | 2013-12-24 | Juniper Networks, Inc. | Interface for extending service capabilities of a network device |
US20130343174A1 (en) | 2012-06-26 | 2013-12-26 | Juniper Networks, Inc. | Service plane triggered fast reroute protection |
US20130343378A1 (en) | 2012-06-21 | 2013-12-26 | Mark Veteikis | Virtual data loopback and/or data capture in a computing system |
US20140003422A1 (en) | 2012-06-29 | 2014-01-02 | Jeffrey C. Mogul | Implementing a software defined network using event records that are transmitted from a network switch |
US20140003232A1 (en) | 2012-06-27 | 2014-01-02 | Juniper Networks, Inc. | Feedback loop for service engineered paths |
US20140010085A1 (en) | 2012-07-09 | 2014-01-09 | Arun Kavunder | System and method associated with a service flow router |
CN103516807A (en) | 2013-10-14 | 2014-01-15 | 中国联合网络通信集团有限公司 | Cloud computing platform server load balancing system and method |
US20140029447A1 (en) | 2012-07-25 | 2014-01-30 | Qualcomm Atheros, Inc. | Forwarding tables for hybrid communication networks |
US20140046998A1 (en) | 2012-08-09 | 2014-02-13 | International Business Machines Corporation | Service management modes of operation in distributed node service management |
US20140046997A1 (en) | 2012-08-09 | 2014-02-13 | International Business Machines Corporation | Service management roles of processor nodes in distributed node service management |
US20140050223A1 (en) | 2012-08-15 | 2014-02-20 | Futurewei Technologies, Inc. | Method and System for Creating Software Defined Ordered Service Patterns in a Communications Network |
US20140052844A1 (en) | 2012-08-17 | 2014-02-20 | Vmware, Inc. | Management of a virtual machine in a storage area network environment |
US20140059544A1 (en) | 2012-08-27 | 2014-02-27 | Vmware, Inc. | Framework for networking and security services in virtual networks |
US20140059204A1 (en) | 2012-08-24 | 2014-02-27 | Filip Nguyen | Systems and methods for providing message flow analysis for an enterprise service bus |
US20140068602A1 (en) | 2012-09-04 | 2014-03-06 | Aaron Robert Gember | Cloud-Based Middlebox Management System |
US20140092738A1 (en) | 2012-09-28 | 2014-04-03 | Juniper Networks, Inc. | Maintaining load balancing after service application with a netwok device |
US20140092906A1 (en) | 2012-10-02 | 2014-04-03 | Cisco Technology, Inc. | System and method for binding flows in a service cluster deployment in a network environment |
US20140093167A1 (en) * | 2012-10-02 | 2014-04-03 | Oracle International Corporation | Recoloring images of a web page according to a representative color |
US20140092914A1 (en) | 2012-10-02 | 2014-04-03 | Lsi Corporation | Method and system for intelligent deep packet buffering |
US20140096183A1 (en) | 2012-10-01 | 2014-04-03 | International Business Machines Corporation | Providing services to virtual overlay network traffic |
US20140101226A1 (en) | 2012-10-08 | 2014-04-10 | Motorola Mobility Llc | Methods and apparatus for performing dynamic load balancing of processing resources |
US20140101656A1 (en) | 2012-10-10 | 2014-04-10 | Zhongwen Zhu | Virtual firewall mobility |
US20140108665A1 (en) | 2012-10-16 | 2014-04-17 | Citrix Systems, Inc. | Systems and methods for bridging between public and private clouds through multilevel api integration |
US8707383B2 (en) | 2006-08-16 | 2014-04-22 | International Business Machines Corporation | Computer workload management with security policy enforcement |
US20140115578A1 (en) | 2012-10-21 | 2014-04-24 | Geoffrey Howard Cooper | Providing a virtual security appliance architecture to a virtual cloud infrastructure |
US20140129715A1 (en) | 2012-11-07 | 2014-05-08 | Yahoo! Inc. | Method and system for work load balancing |
WO2014069978A1 (en) | 2012-11-02 | 2014-05-08 | Silverlake Mobility Ecosystem Sdn Bhd | Method of processing requests for digital services |
CN103795805A (en) | 2014-02-27 | 2014-05-14 | 中国科学技术大学苏州研究院 | Distributed server load balancing method based on SDN |
US8738702B1 (en) * | 2005-07-13 | 2014-05-27 | At&T Intellectual Property Ii, L.P. | Method and system for a personalized content dissemination platform |
US20140149696A1 (en) | 2012-11-28 | 2014-05-29 | Red Hat Israel, Ltd. | Virtual machine backup using snapshots and current configuration |
US20140164477A1 (en) | 2012-12-06 | 2014-06-12 | Gary M. Springer | System and method for providing horizontal scaling of stateful applications |
US20140169168A1 (en) | 2012-12-06 | 2014-06-19 | A10 Networks, Inc. | Configuration of a virtual service network |
US20140195666A1 (en) | 2011-08-04 | 2014-07-10 | Midokura Sarl | System and method for implementing and managing virtual networks |
US20140207968A1 (en) | 2013-01-23 | 2014-07-24 | Cisco Technology, Inc. | Server Load Balancer Traffic Steering |
US8804720B1 (en) | 2010-12-22 | 2014-08-12 | Juniper Networks, Inc. | Pass-through multicast admission control signaling |
US8832683B2 (en) | 2009-11-30 | 2014-09-09 | Red Hat Israel, Ltd. | Using memory-related metrics of host machine for triggering load balancing that migrate virtual machine |
US20140254374A1 (en) | 2013-03-11 | 2014-09-11 | Cisco Technology, Inc. | Methods and devices for providing service clustering in a trill network |
US20140254591A1 (en) | 2013-03-08 | 2014-09-11 | Dell Products L.P. | Processing of multicast traffic in computer networks |
US20140280896A1 (en) | 2013-03-15 | 2014-09-18 | Achilleas Papakostas | Methods and apparatus to credit usage of mobile devices |
US20140281029A1 (en) | 2013-03-14 | 2014-09-18 | Time Warner Cable Enterprises Llc | System and method for automatic routing of dynamic host configuration protocol (dhcp) traffic |
US20140282526A1 (en) | 2013-03-15 | 2014-09-18 | Avi Networks | Managing and controlling a distributed network service platform |
US20140269487A1 (en) | 2013-03-15 | 2014-09-18 | Vivint, Inc. | Multicast traffic management within a wireless mesh network |
US20140269724A1 (en) | 2013-03-04 | 2014-09-18 | Telefonaktiebolaget L M Ericsson (Publ) | Method and devices for forwarding ip data packets in an access network |
US20140269717A1 (en) | 2013-03-15 | 2014-09-18 | Cisco Technology, Inc. | Ipv6/ipv4 resolution-less forwarding up to a destination |
US8849746B2 (en) | 2006-12-19 | 2014-09-30 | Teradata Us, Inc. | High-throughput extract-transform-load (ETL) of program events for subsequent analysis |
US20140304231A1 (en) | 2013-04-06 | 2014-10-09 | Citrix Systems, Inc. | Systems and methods for application-state distributed replication table hunting |
US20140301388A1 (en) | 2013-04-06 | 2014-10-09 | Citrix Systems, Inc. | Systems and methods to cache packet steering decisions for a cluster of load balancers |
US8862883B2 (en) | 2012-05-16 | 2014-10-14 | Cisco Technology, Inc. | System and method for secure cloud service delivery with prioritized services in a network environment |
US20140310391A1 (en) | 2013-04-16 | 2014-10-16 | Amazon Technologies, Inc. | Multipath routing in a distributed load balancer |
US20140310418A1 (en) | 2013-04-16 | 2014-10-16 | Amazon Technologies, Inc. | Distributed load balancer |
US20140307744A1 (en) | 2013-04-12 | 2014-10-16 | Futurewei Technologies, Inc. | Service Chain Policy for Distributed Gateways in Virtual Overlay Networks |
US8868711B2 (en) | 2012-02-03 | 2014-10-21 | Microsoft Corporation | Dynamic load balancing in a scalable environment |
US20140317677A1 (en) | 2013-04-19 | 2014-10-23 | Vmware, Inc. | Framework for coordination between endpoint security and network security services |
US8874789B1 (en) | 2007-09-28 | 2014-10-28 | Trend Micro Incorporated | Application based routing arrangements and method thereof |
US20140321459A1 (en) | 2013-04-26 | 2014-10-30 | Cisco Technology, Inc. | Architecture for agentless service insertion |
US20140334488A1 (en) | 2013-05-10 | 2014-11-13 | Cisco Technology, Inc. | Data Plane Learning of Bi-Directional Service Chains |
US20140334485A1 (en) | 2013-05-09 | 2014-11-13 | Vmware, Inc. | Method and system for service switching using service tags |
US8892706B1 (en) | 2010-06-21 | 2014-11-18 | Vmware, Inc. | Private ethernet overlay networks over a shared ethernet in a virtual environment |
US20140341029A1 (en) | 2013-05-20 | 2014-11-20 | Telefonaktiebolaget L M Ericsson (Publ) | Encoding a payload hash in the da-mac to facilitate elastic chaining of packet processing elements |
US20140351452A1 (en) | 2013-05-21 | 2014-11-27 | Cisco Technology, Inc. | Chaining Service Zones by way of Route Re-Origination |
US20140362705A1 (en) | 2013-06-07 | 2014-12-11 | The Florida International University Board Of Trustees | Load-balancing algorithms for data center networks |
US20140362682A1 (en) | 2013-06-07 | 2014-12-11 | Cisco Technology, Inc. | Determining the Operations Performed Along a Service Path/Service Chain |
US8914406B1 (en) | 2012-02-01 | 2014-12-16 | Vorstack, Inc. | Scalable network security with fast response protocol |
US20140372616A1 (en) | 2013-06-17 | 2014-12-18 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of forwarding/receiving data packets using unicast and/or multicast communications and related load balancers and servers |
US20140372702A1 (en) | 2013-06-12 | 2014-12-18 | Oracle International Corporation | Handling memory pressure in an in-database sharded queue |
US20140369204A1 (en) | 2013-06-17 | 2014-12-18 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of load balancing using primary and stand-by addresses and related load balancers and servers |
US20140372567A1 (en) | 2013-06-17 | 2014-12-18 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of forwarding data packets using transient tables and related load balancers |
US20150003455A1 (en) | 2012-07-24 | 2015-01-01 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for enabling services chaining in a provider network |
US20150003453A1 (en) | 2013-06-28 | 2015-01-01 | Vmware, Inc. | Network service slotting |
US20150009995A1 (en) | 2013-07-08 | 2015-01-08 | Nicira, Inc. | Encapsulating Data Packets Using an Adaptive Tunnelling Protocol |
US20150016279A1 (en) | 2013-07-09 | 2015-01-15 | Nicira, Inc. | Using Headerspace Analysis to Identify Classes of Packets |
US20150023354A1 (en) | 2012-11-19 | 2015-01-22 | Huawei Technologies Co., Ltd. | Method and device for allocating packet switching resource |
US20150026362A1 (en) | 2013-07-17 | 2015-01-22 | Cisco Technology, Inc. | Dynamic Service Path Creation |
US20150026345A1 (en) | 2013-07-22 | 2015-01-22 | Vmware, Inc. | Managing link aggregation traffic in a virtual environment |
US20150026321A1 (en) | 2013-07-22 | 2015-01-22 | Vmware, Inc. | Managing link aggregation traffic in a virtual environment |
US20150030024A1 (en) | 2013-07-23 | 2015-01-29 | Dell Products L.P. | Systems and methods for a data center architecture facilitating layer 2 over layer 3 communication |
US20150052522A1 (en) * | 2013-08-14 | 2015-02-19 | Nicira, Inc. | Generation of DHCP Configuration Files |
US20150052262A1 (en) * | 2013-08-14 | 2015-02-19 | Nicira, Inc. | Providing Services for Logical Networks |
US8971345B1 (en) | 2010-03-22 | 2015-03-03 | Riverbed Technology, Inc. | Method and apparatus for scheduling a heterogeneous communication flow |
US20150063102A1 (en) | 2013-08-30 | 2015-03-05 | Cisco Technology, Inc. | Flow Based Network Service Insertion |
US20150063364A1 (en) * | 2013-09-04 | 2015-03-05 | Nicira, Inc. | Multiple Active L3 Gateways for Logical Networks |
US20150073967A1 (en) | 2012-09-12 | 2015-03-12 | Iex Group, Inc. | Transmission latency leveling apparatuses, methods and systems |
US20150071285A1 (en) | 2013-09-06 | 2015-03-12 | Cisco Technology, Inc. | Distributed service chaining in a network environment |
US20150078384A1 (en) | 2013-09-15 | 2015-03-19 | Nicira, Inc. | Tracking Prefixes of Values Associated with Different Rules to Generate Flows |
US8996610B1 (en) | 2010-03-15 | 2015-03-31 | Salesforce.Com, Inc. | Proxy system, method and computer program product for utilizing an identifier of a request to route the request to a networked device |
US20150092564A1 (en) | 2013-09-27 | 2015-04-02 | Futurewei Technologies, Inc. | Validation of Chained Network Services |
US20150092551A1 (en) | 2013-09-30 | 2015-04-02 | Juniper Networks, Inc. | Session-aware service chaining within computer networks |
US9009289B1 (en) | 2014-03-31 | 2015-04-14 | Flexera Software Llc | Systems and methods for assessing application usage |
US20150103679A1 (en) | 2013-10-13 | 2015-04-16 | Vmware, Inc. | Tracing Host-Originated Logical Network Packets |
US20150106802A1 (en) | 2013-10-14 | 2015-04-16 | Vmware, Inc. | Replicating virtual machines across different virtualization platforms |
US20150103827A1 (en) | 2013-10-14 | 2015-04-16 | Cisco Technology, Inc. | Configurable Service Proxy Mapping |
US20150103645A1 (en) | 2013-10-10 | 2015-04-16 | Vmware, Inc. | Controller side method of generating and updating a controller assignment list |
US20150109901A1 (en) | 2012-06-30 | 2015-04-23 | Huawei Technologies Co., Ltd. | Method for managing forwarding plane tunnel resource under control and forwarding decoupled architecture |
US20150124840A1 (en) | 2013-11-03 | 2015-05-07 | Ixia | Packet flow modification |
US20150124608A1 (en) | 2013-11-05 | 2015-05-07 | International Business Machines Corporation | Adaptive Scheduling of Data Flows in Data Center Networks for Efficient Resource Utilization |
US20150124815A1 (en) | 2013-11-04 | 2015-05-07 | Telefonaktiebolaget L M Ericsson (Publ) | Service chaining in a cloud environment using software defined networking |
US20150124622A1 (en) | 2013-11-01 | 2015-05-07 | Movik Networks, Inc. | Multi-Interface, Multi-Layer State-full Load Balancer For RAN-Analytics Deployments In Multi-Chassis, Cloud And Virtual Server Environments |
US20150138973A1 (en) | 2013-11-15 | 2015-05-21 | Cisco Technology, Inc. | Shortening of service paths in service chains in a communications network |
US20150139041A1 (en) | 2013-11-21 | 2015-05-21 | Cisco Technology, Inc. | Subscriber dependent redirection between a mobile packet core proxy and a cell site proxy in a network environment |
US20150146539A1 (en) | 2013-11-25 | 2015-05-28 | Versa Networks, Inc. | Flow distribution table for packet flow load balancing |
US20150188770A1 (en) | 2013-12-27 | 2015-07-02 | Big Switch Networks, Inc. | Systems and methods for performing network service insertion |
US20150195197A1 (en) | 2014-01-06 | 2015-07-09 | Futurewei Technologies, Inc. | Service Function Chaining in a Packet Network |
US9094464B1 (en) | 2014-12-18 | 2015-07-28 | Limelight Networks, Inc. | Connection digest for accelerating web traffic |
US20150215819A1 (en) | 2014-01-24 | 2015-07-30 | Cisco Technology, Inc. | Method for Providing Sticky Load Balancing |
US20150213087A1 (en) | 2014-01-28 | 2015-07-30 | Software Ag | Scaling framework for querying |
US20150222640A1 (en) | 2014-02-03 | 2015-08-06 | Cisco Technology, Inc. | Elastic Service Chains |
US20150236948A1 (en) | 2014-02-14 | 2015-08-20 | Futurewei Technologies, Inc. | Restoring service functions after changing a service chain instance path |
US20150237013A1 (en) | 2014-02-20 | 2015-08-20 | Nicira, Inc. | Specifying point of enforcement in a firewall rule |
US20150244617A1 (en) | 2012-06-06 | 2015-08-27 | Juniper Networks, Inc. | Physical path determination for virtual network packet flows |
US20150242197A1 (en) | 2014-02-25 | 2015-08-27 | Red Hat, Inc. | Automatic Installing and Scaling of Application Resources in a Multi-Tenant Platform-as-a-Service (PaaS) System |
US20150263946A1 (en) | 2014-03-14 | 2015-09-17 | Nicira, Inc. | Route advertisement by managed gateways |
US20150263901A1 (en) | 2014-03-13 | 2015-09-17 | Cisco Technology, Inc. | Service node originated service chains in a network environment |
US20150261873A1 (en) * | 2014-03-13 | 2015-09-17 | Go Daddy Operating Company, LLC | Lightweight web page generation |
US20150271102A1 (en) | 2014-03-21 | 2015-09-24 | Juniper Networks, Inc. | Selectable service node resources |
US20150281098A1 (en) | 2014-03-31 | 2015-10-01 | Nicira, Inc. | Flow Cache Hierarchy |
US20150281089A1 (en) | 2014-03-31 | 2015-10-01 | Sandvine Incorporated Ulc | System and method for load balancing in computer networks |
US20150281179A1 (en) | 2014-03-31 | 2015-10-01 | Chids Raman | Migrating firewall connection state for a firewall service virtual machine |
US20150280959A1 (en) | 2014-03-31 | 2015-10-01 | Amazon Technologies, Inc. | Session management in distributed storage systems |
US20150281180A1 (en) | 2014-03-31 | 2015-10-01 | Nicira, Inc. | Method and apparatus for integrating a service virtual machine |
US20150288679A1 (en) | 2014-04-02 | 2015-10-08 | Cisco Technology, Inc. | Interposer with Security Assistant Key Escrow |
US20150295831A1 (en) | 2014-04-10 | 2015-10-15 | Cisco Technology, Inc. | Network address translation offload to network infrastructure for service chains in a network environment |
US9178709B2 (en) | 2004-03-30 | 2015-11-03 | Panasonic Intellectual Property Management Co., Ltd. | Communication system and method for distributing content |
US20150319078A1 (en) | 2014-05-02 | 2015-11-05 | Futurewei Technologies, Inc. | Computing Service Chain-Aware Paths |
US20150319096A1 (en) | 2014-05-05 | 2015-11-05 | Nicira, Inc. | Secondary input queues for maintaining a consistent network state |
US9191293B2 (en) | 2008-12-22 | 2015-11-17 | Telefonaktiebolaget L M Ericsson (Publ) | Method and device for handling of connections between a client and a server via a communication network |
US9203748B2 (en) | 2012-12-24 | 2015-12-01 | Huawei Technologies Co., Ltd. | Software defined network-based data processing method, node, and system |
US20150347593A1 (en) * | 2014-06-03 | 2015-12-03 | Go Daddy Operating Company, LLC | System and methods for analyzing and improving online engagement |
US20150347432A1 (en) * | 2014-06-03 | 2015-12-03 | Go Daddy Operating Company, LLC | System and methods for auto-aligning website elements |
US20150358235A1 (en) | 2014-06-05 | 2015-12-10 | Futurewei Technologies, Inc. | Service Chain Topology Map Construction |
US20150358294A1 (en) | 2014-06-05 | 2015-12-10 | Cavium, Inc. | Systems and methods for secured hardware security module communication with web service hosts |
US20150365322A1 (en) | 2014-06-13 | 2015-12-17 | Cisco Technology, Inc. | Providing virtual private service chains in a network environment |
US20150370596A1 (en) | 2014-06-20 | 2015-12-24 | Google Inc. | System and method for live migration of a virtualized networking stack |
US20150372911A1 (en) | 2013-01-31 | 2015-12-24 | Hitachi, Ltd. | Communication path management method |
US20150372840A1 (en) | 2014-06-23 | 2015-12-24 | International Business Machines Corporation | Servicing packets in a virtual network and a software-defined network (sdn) |
US20150370586A1 (en) | 2014-06-23 | 2015-12-24 | Intel Corporation | Local service chaining with virtual machines and virtualized containers in software defined networking |
US20150381493A1 (en) | 2014-06-30 | 2015-12-31 | Juniper Networks, Inc. | Service chaining across multiple networks |
US20150381494A1 (en) | 2014-06-30 | 2015-12-31 | Nicira, Inc. | Methods and systems to offload overlay network packet encapsulation to hardware |
US20150381495A1 (en) | 2014-06-30 | 2015-12-31 | Nicira, Inc. | Methods and systems for providing multi-tenancy support for single root i/o virtualization |
US20150379277A1 (en) | 2014-06-30 | 2015-12-31 | Leonard Heyman | Encryption Architecture |
US9232342B2 (en) | 2011-10-24 | 2016-01-05 | Interdigital Patent Holdings, Inc. | Methods, systems and apparatuses for application service layer (ASL) inter-networking |
US20160006654A1 (en) | 2014-07-07 | 2016-01-07 | Cisco Technology, Inc. | Bi-directional flow stickiness in a network environment |
US9237098B2 (en) | 2012-07-03 | 2016-01-12 | Cisco Technologies, Inc. | Media access control (MAC) address summation in Datacenter Ethernet networking |
US20160028640A1 (en) | 2014-07-22 | 2016-01-28 | Futurewei Technologies, Inc. | Service Chain Header and Metadata Transport |
US9258742B1 (en) | 2013-09-30 | 2016-02-09 | Juniper Networks, Inc. | Policy-directed value-added services chaining |
US9256467B1 (en) | 2014-11-11 | 2016-02-09 | Amazon Technologies, Inc. | System for managing and scheduling containers |
US20160043952A1 (en) | 2014-08-06 | 2016-02-11 | Futurewei Technologies, Inc. | Mechanisms to support service chain graphs in a communication network |
US20160043901A1 (en) | 2012-09-25 | 2016-02-11 | A10 Networks, Inc. | Graceful scaling in software driven networks |
US9264313B1 (en) | 2013-10-31 | 2016-02-16 | Vmware, Inc. | System and method for performing a service discovery for virtual networks |
US20160057687A1 (en) | 2014-08-19 | 2016-02-25 | Qualcomm Incorporated | Inter/intra radio access technology mobility and user-plane split measurement configuration |
US20160057050A1 (en) | 2012-10-05 | 2016-02-25 | Stamoulis & Weinblatt LLC | Devices, methods, and systems for packet reroute permission based on content parameters embedded in packet header or payload |
US9277412B2 (en) | 2009-11-16 | 2016-03-01 | Interdigital Patent Holdings, Inc. | Coordination of silent periods for dynamic spectrum manager (DSM) |
US20160065503A1 (en) | 2014-08-29 | 2016-03-03 | Extreme Networks, Inc. | Methods, systems, and computer readable media for virtual fabric routing |
US20160080253A1 (en) | 2013-05-23 | 2016-03-17 | Huawei Technologies Co. Ltd. | Service routing system, device, and method |
US20160094453A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Load balancer of load balancers |
US20160094457A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Tunnel-Enabled Elastic Service Model |
US20160094642A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Dynamically adjusting load balancing |
US20160099948A1 (en) | 2013-06-14 | 2016-04-07 | Tocario Gmbh | Method and system for enabling access of a client device to a remote desktop |
US20160105333A1 (en) | 2014-10-10 | 2016-04-14 | Nicira, Inc. | Logical network traffic analysis |
US20160119226A1 (en) | 2014-10-24 | 2016-04-28 | Cisco Technology, Inc. | Transparent Network Service Header Path Proxies |
US20160127306A1 (en) | 2013-07-11 | 2016-05-05 | Huawei Technologies Co., Ltd. | Packet Transmission Method, Apparatus, and System in Multicast Domain Name System |
US20160127564A1 (en) | 2014-10-29 | 2016-05-05 | Alcatel-Lucent Usa Inc. | Policy decisions based on offline charging rules when service chaining is implemented |
US20160134528A1 (en) | 2014-11-10 | 2016-05-12 | Juniper Networks, Inc. | Signaling aliasing capability in data centers |
US20160149828A1 (en) | 2014-11-25 | 2016-05-26 | Netapp, Inc. | Clustered storage system path quiescence analysis |
US20160149784A1 (en) | 2014-11-20 | 2016-05-26 | Telefonaktiebolaget L M Ericsson (Publ) | Passive Performance Measurement for Inline Service Chaining |
US20160149816A1 (en) | 2013-06-14 | 2016-05-26 | Haitao Wu | Fault Tolerant and Load Balanced Routing |
US20160164787A1 (en) | 2014-06-05 | 2016-06-09 | KEMP Technologies Inc. | Methods for intelligent data traffic steering |
US20160164776A1 (en) | 2014-12-09 | 2016-06-09 | Aol Inc. | Systems and methods for software defined networking service function chaining |
US20160164826A1 (en) | 2014-12-04 | 2016-06-09 | Cisco Technology, Inc. | Policy Implementation at a Network Element based on Data from an Authoritative Source |
US20160173644A1 (en) * | 2014-11-17 | 2016-06-16 | Google Inc. | Structured Entity Information Page |
US20160173373A1 (en) | 2014-12-11 | 2016-06-16 | Cisco Technology, Inc. | Network service header metadata for load balancing |
US20160182684A1 (en) | 2014-12-23 | 2016-06-23 | Patrick Connor | Parallel processing of service functions in service function chains |
US20160188527A1 (en) | 2014-12-29 | 2016-06-30 | Vmware, Inc. | Methods and systems to achieve multi-tenancy in rdma over converged ethernet |
US20160197839A1 (en) | 2015-01-05 | 2016-07-07 | Futurewei Technologies, Inc. | Method and system for providing qos for in-band control traffic in an openflow network |
US20160197831A1 (en) | 2013-08-16 | 2016-07-07 | Interdigital Patent Holdings, Inc. | Method and apparatus for name resolution in software defined networking |
US20160203817A1 (en) * | 2012-02-28 | 2016-07-14 | Ten Eight Technology, Inc. | Automated voice-to-reporting/management system and method for voice call-ins of events/crimes |
US20160205015A1 (en) | 2015-01-08 | 2016-07-14 | Openwave Mobility Inc. | Software defined network and a communication network comprising the same |
US9397946B1 (en) | 2013-11-05 | 2016-07-19 | Cisco Technology, Inc. | Forwarding to clusters of service nodes |
US20160212237A1 (en) | 2015-01-16 | 2016-07-21 | Fujitsu Limited | Management server, communication system and path management method |
US20160212048A1 (en) | 2015-01-15 | 2016-07-21 | Hewlett Packard Enterprise Development Lp | Openflow service chain data packet routing using tables |
US20160218918A1 (en) | 2015-01-27 | 2016-07-28 | Xingjun Chu | Network virtualization for network infrastructure |
US20160226762A1 (en) | 2015-01-30 | 2016-08-04 | Nicira, Inc. | Implementing logical router uplinks |
US20160232019A1 (en) | 2015-02-09 | 2016-08-11 | Broadcom Corporation | Network Interface Controller with Integrated Network Flow Processing |
US20160248685A1 (en) | 2015-02-25 | 2016-08-25 | Cisco Technology, Inc. | Metadata augmentation in a service function chain |
US9442752B1 (en) | 2014-09-03 | 2016-09-13 | Amazon Technologies, Inc. | Virtual secure execution environments |
US20160277210A1 (en) | 2015-03-18 | 2016-09-22 | Juniper Networks, Inc. | Evpn inter-subnet multicast forwarding |
US20160277294A1 (en) | 2013-08-26 | 2016-09-22 | Nec Corporation | Communication apparatus, communication method, control apparatus, and management apparatus in a communication system |
US20160294935A1 (en) | 2015-04-03 | 2016-10-06 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US20160294612A1 (en) | 2015-04-04 | 2016-10-06 | Nicira, Inc. | Route Server Mode for Dynamic Routing Between Logical and Physical Networks |
US20160308758A1 (en) | 2015-04-17 | 2016-10-20 | Huawei Technologies Co., Ltd | Software Defined Network (SDN) Control Signaling for Traffic Engineering to Enable Multi-type Transport in a Data Plane |
US20160308961A1 (en) | 2014-01-06 | 2016-10-20 | Tencent Technology (Shenzhen) Company Limited | Methods, Devices, and Systems for Allocating Service Nodes in a Network |
US9479358B2 (en) | 2009-05-13 | 2016-10-25 | International Business Machines Corporation | Managing graphics load balancing strategies |
US20160330125A1 (en) * | 2015-05-08 | 2016-11-10 | Cisco Technology, Inc. | Policy enforcement for upstream flood traffic |
CN106134137A (en) | 2014-03-14 | 2016-11-16 | Nicira股份有限公司 | The advertising of route of managed gateway |
US20160337317A1 (en) | 2015-05-13 | 2016-11-17 | International Business Machines Corporation | Automated Migration Planning for Moving into a Setting of Multiple Firewalls |
US20160337249A1 (en) | 2014-01-29 | 2016-11-17 | Huawei Technologies Co., Ltd. | Communications network, device, and control method |
US20160337189A1 (en) | 2013-12-19 | 2016-11-17 | Rainer Liebhart | A method and apparatus for performing flexible service chaining |
US9503530B1 (en) | 2008-08-21 | 2016-11-22 | United Services Automobile Association (Usaa) | Preferential loading in data centers |
US20160344621A1 (en) | 2014-12-17 | 2016-11-24 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for relocating packet processing functions |
US20160344803A1 (en) | 2015-05-20 | 2016-11-24 | Cisco Technology, Inc. | System and method to facilitate the assignment of service functions for service chains in a network environment |
US20160352866A1 (en) | 2015-05-25 | 2016-12-01 | Juniper Networks, Inc. | Selecting and monitoring a plurality of services key performance indicators using twamp |
US20160366046A1 (en) | 2015-06-09 | 2016-12-15 | International Business Machines Corporation | Support for high availability of service appliances in a software-defined network (sdn) service chaining infrastructure |
US20160373364A1 (en) | 2014-03-04 | 2016-12-22 | Nec Corporation | Packet processing device, packet processing method and program |
US20160378537A1 (en) | 2014-03-12 | 2016-12-29 | Huawei Technologies Co., Ltd. | Method and Apparatus for Controlling Virtual Machine Migration |
US20160380812A1 (en) | 2015-06-26 | 2016-12-29 | Nicira, Inc. | Control plane integration with hardware switches |
US20170005923A1 (en) | 2015-06-30 | 2017-01-05 | Vmware, Inc. | Dynamic virtual machine network policy for ingress optimization |
US20170005988A1 (en) | 2015-06-30 | 2017-01-05 | Nicira, Inc. | Global objects for federated firewall rule management |
US20170005882A1 (en) | 2014-01-24 | 2017-01-05 | Zte Corporation | Service Chain Management Method, System and Device |
US20170005920A1 (en) | 2015-07-01 | 2017-01-05 | Cisco Technology, Inc. | Forwarding packets with encapsulated service chain headers |
US20170019303A1 (en) | 2015-07-14 | 2017-01-19 | Microsoft Technology Licensing, Llc | Service Chains for Network Services |
US20170019341A1 (en) | 2014-04-01 | 2017-01-19 | Huawei Technologies Co., Ltd. | Service link selection control method and device |
US20170019329A1 (en) | 2015-07-15 | 2017-01-19 | Argela-USA, Inc. | Method for forwarding rule hopping based secure communication |
US20170019331A1 (en) | 2015-07-13 | 2017-01-19 | Futurewei Technologies, Inc. | Internet Control Message Protocol Enhancement for Traffic Carried by a Tunnel over Internet Protocol Networks |
US20170026417A1 (en) | 2015-07-23 | 2017-01-26 | Cisco Technology, Inc. | Systems, methods, and devices for smart mapping and vpn policy enforcement |
US20170033939A1 (en) | 2015-07-28 | 2017-02-02 | Ciena Corporation | Multicast systems and methods for segment routing |
US20170063683A1 (en) | 2015-08-28 | 2017-03-02 | Nicira, Inc. | Traffic forwarding between geographically dispersed sites |
US20170063928A1 (en) | 2015-08-28 | 2017-03-02 | Nicira, Inc. | Defining Network Rules Based on Remote Device Management Attributes |
US20170064048A1 (en) | 2015-08-28 | 2017-03-02 | Nicira, Inc. | Packet Data Restoration for Flow-Based Forwarding Element |
US20170078176A1 (en) | 2015-09-11 | 2017-03-16 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for delay measurement of a traffic flow in a software-defined networking (sdn) system |
US20170078961A1 (en) | 2015-09-10 | 2017-03-16 | Qualcomm Incorporated | Smart co-processor for optimizing service discovery power consumption in wireless service platforms |
US9602380B2 (en) | 2014-03-28 | 2017-03-21 | Futurewei Technologies, Inc. | Context-aware dynamic policy selection for load balancing behavior |
US20170093758A1 (en) | 2015-09-30 | 2017-03-30 | Nicira, Inc. | Ip aliases in logical networks with hardware switches |
US20170093698A1 (en) | 2015-09-30 | 2017-03-30 | Huawei Technologies Co., Ltd. | Method and apparatus for supporting service function chaining in a communication network |
US20170099194A1 (en) | 2014-06-17 | 2017-04-06 | Huawei Technologies Co., Ltd. | Service flow processing method, apparatus, and device |
US20170126497A1 (en) * | 2015-10-31 | 2017-05-04 | Nicira, Inc. | Static Route Types for Logical Routers |
US20170126726A1 (en) | 2015-11-01 | 2017-05-04 | Nicira, Inc. | Securing a managed forwarding element that operates within a data compute node |
US20170126522A1 (en) | 2015-10-30 | 2017-05-04 | Oracle International Corporation | Methods, systems, and computer readable media for remote authentication dial in user service (radius) message loop detection and mitigation |
US20170134538A1 (en) | 2015-11-10 | 2017-05-11 | Telefonaktiebolaget L M Ericsson (Publ) | Systems and methods of an enhanced state-aware proxy device |
US20170147399A1 (en) | 2015-11-25 | 2017-05-25 | International Business Machines Corporation | Policy-based virtual machine selection during an optimization cycle |
US20170149582A1 (en) | 2015-11-20 | 2017-05-25 | Oracle International Corporation | Redirecting packets for egress from an autonomous system using tenant specific routing and forwarding tables |
US20170149675A1 (en) | 2015-11-25 | 2017-05-25 | Huawei Technologies Co., Ltd. | Packet retransmission method and apparatus |
US20170163724A1 (en) | 2015-12-04 | 2017-06-08 | Microsoft Technology Licensing, Llc | State-Aware Load Balancing |
US20170163531A1 (en) | 2015-12-04 | 2017-06-08 | Cisco Technology, Inc. | Infrastructure-exclusive service forwarding |
US20170171159A1 (en) | 2015-12-14 | 2017-06-15 | Nicira, Inc. | Packet tagging for improved guest system security |
US20170170990A1 (en) | 2015-12-15 | 2017-06-15 | Microsoft Technology Licensing, Llc | Scalable Tenant Networks |
US20170180240A1 (en) | 2015-12-16 | 2017-06-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Openflow configured horizontally split hybrid sdn nodes |
US20170195255A1 (en) | 2015-12-31 | 2017-07-06 | Fortinet, Inc. | Packet routing using a software-defined networking (sdn) switch |
US9705775B2 (en) | 2014-11-20 | 2017-07-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Passive performance measurement for inline service chaining |
US20170208011A1 (en) | 2016-01-19 | 2017-07-20 | Cisco Technology, Inc. | System and method for hosting mobile packet core and value-added services using a software defined network and service chains |
US20170208532A1 (en) | 2014-09-30 | 2017-07-20 | Huawei Technologies Co., Ltd. | Service path generation method and apparatus |
US20170208000A1 (en) | 2016-01-15 | 2017-07-20 | Cisco Technology, Inc. | Leaking routes in a service chain |
US20170214627A1 (en) | 2016-01-21 | 2017-07-27 | Futurewei Technologies, Inc. | Distributed Load Balancing for Network Service Function Chaining |
US20170220306A1 (en) | 2016-02-03 | 2017-08-03 | Google Inc. | Systems and methods for automatic content verification |
US20170230333A1 (en) | 2016-02-08 | 2017-08-10 | Cryptzone North America, Inc. | Protecting network devices by a firewall |
US20170230467A1 (en) | 2016-02-09 | 2017-08-10 | Cisco Technology, Inc. | Adding cloud service provider, could service, and cloud tenant awareness to network service chains |
US20170237656A1 (en) | 2016-02-12 | 2017-08-17 | Huawei Technologies Co., Ltd. | Method and apparatus for service function forwarding in a service domain |
US20170251065A1 (en) | 2016-02-29 | 2017-08-31 | Cisco Technology, Inc. | System and Method for Data Plane Signaled Packet Capture in a Service Function Chaining Network |
US20170250902A1 (en) | 2014-09-23 | 2017-08-31 | Nokia Solutions And Networks Oy | Control of communication using service function chaining |
US20170250917A1 (en) | 2014-09-19 | 2017-08-31 | Nokia Solutions And Networks Oy | Chaining of network service functions in a communication network |
US20170250869A1 (en) | 2014-09-12 | 2017-08-31 | Andreas Richard Voellmy | Managing network forwarding configurations using algorithmic policies |
US9755971B2 (en) | 2013-08-12 | 2017-09-05 | Cisco Technology, Inc. | Traffic flow redirection between border routers using routing encapsulation |
US20170257432A1 (en) | 2011-02-09 | 2017-09-07 | Cliqr Technologies Inc. | Apparatus, systems and methods for container based service deployment |
US20170264677A1 (en) | 2014-11-28 | 2017-09-14 | Huawei Technologies Co., Ltd. | Service Processing Apparatus and Method |
US20170273099A1 (en) | 2014-12-09 | 2017-09-21 | Huawei Technologies Co., Ltd. | Method and apparatus for processing adaptive flow table |
CN107204941A (en) | 2016-03-18 | 2017-09-26 | 中兴通讯股份有限公司 | The method and apparatus that a kind of flexible Ethernet path is set up |
US20170279938A1 (en) | 2014-12-11 | 2017-09-28 | Huawei Technologies Co., Ltd. | Packet processing method and apparatus |
US9787559B1 (en) | 2014-03-28 | 2017-10-10 | Juniper Networks, Inc. | End-to-end monitoring of overlay networks providing virtualized network services |
US20170295021A1 (en) | 2016-04-07 | 2017-10-12 | Telefonica, S.A. | Method to assure correct data packet traversal through a particular path of a network |
US20170295100A1 (en) | 2016-04-12 | 2017-10-12 | Nicira, Inc. | Virtual tunnel endpoints for congestion-aware load balancing |
US20170310611A1 (en) | 2016-04-26 | 2017-10-26 | Cisco Technology, Inc. | System and method for automated rendering of service chaining |
US20170310588A1 (en) | 2014-12-17 | 2017-10-26 | Huawei Technologies Co., Ltd. | Data forwarding method, device, and system in software-defined networking |
US9804797B1 (en) | 2014-09-29 | 2017-10-31 | EMC IP Holding Company LLC | Using dynamic I/O load differential for load balancing |
US20170317887A1 (en) | 2016-04-29 | 2017-11-02 | Deutsche Telekom Ag | Versioning system for network states in a software-defined network |
US20170317969A1 (en) | 2016-04-29 | 2017-11-02 | Nicira, Inc. | Implementing logical dhcp servers in logical networks |
US20170317954A1 (en) * | 2016-04-28 | 2017-11-02 | Nicira, Inc. | Automatic configuration of logical routers on edge nodes |
US20170317936A1 (en) | 2016-04-28 | 2017-11-02 | Cisco Technology, Inc. | Selective steering network traffic to virtual service(s) using policy |
US20170317926A1 (en) | 2016-04-27 | 2017-11-02 | Cisco Technology, Inc. | Generating packets in a reverse direction of a service function chain |
US20170318097A1 (en) | 2016-04-29 | 2017-11-02 | Hewlett Packard Enterprise Development Lp | Virtualized network function placements |
US20170324651A1 (en) | 2016-05-09 | 2017-11-09 | Cisco Technology, Inc. | Traceroute to return aggregated statistics in service chains |
US20170331672A1 (en) | 2016-05-11 | 2017-11-16 | Hewlett Packard Enterprise Development Lp | Filter tables for management functions |
US20170339600A1 (en) | 2014-12-19 | 2017-11-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and appratus for relocating packet processing functions |
US20170339110A1 (en) | 2015-02-13 | 2017-11-23 | Huawei Technologies Co., Ltd. | Access Control Apparatus, System, and Method |
US20170346764A1 (en) | 2012-06-29 | 2017-11-30 | Huawei Technologies Co., Ltd. | Method for Processing Information, Forwarding Plane Device and Control Plane Device |
US20170353387A1 (en) | 2016-06-07 | 2017-12-07 | Electronics And Telecommunications Research Institute | Distributed service function forwarding system |
US20170359252A1 (en) | 2016-06-08 | 2017-12-14 | Cisco Technology, Inc. | Techniques for efficient service chain analytics |
US20170364287A1 (en) | 2016-06-20 | 2017-12-21 | Vmware, Inc. | Virtual machine recovery in shared memory architecture |
US20170364794A1 (en) | 2016-06-20 | 2017-12-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for classifying the payload of encrypted traffic flows |
US20170366605A1 (en) | 2016-06-16 | 2017-12-21 | Alcatel-Lucent Usa Inc. | Providing data plane services for applications |
US20170373990A1 (en) | 2016-06-23 | 2017-12-28 | Cisco Technology, Inc. | Transmitting network overlay information in a service function chain |
US20180006935A1 (en) | 2016-06-30 | 2018-01-04 | Juniper Networks, Inc. | Auto discovery and auto scaling of services in software-defined network environment |
US20180004954A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | Secure booting of virtualization managers |
US20180027101A1 (en) | 2013-04-26 | 2018-01-25 | Cisco Technology, Inc. | High-efficiency service chaining with agentless service nodes |
US20180026911A1 (en) | 2016-07-25 | 2018-01-25 | Cisco Technology, Inc. | System and method for providing a resource usage advertising framework for sfc-based workloads |
US20180041470A1 (en) | 2016-08-08 | 2018-02-08 | Talari Networks Incorporated | Applications and integrated firewall design in an adaptive private network (apn) |
US20180041425A1 (en) | 2016-08-05 | 2018-02-08 | Huawei Technologies Co., Ltd. | Service-based traffic forwarding in virtual networks |
US20180041524A1 (en) | 2016-08-02 | 2018-02-08 | Cisco Technology, Inc. | Steering of cloned traffic in a service function chain |
US20180063018A1 (en) | 2016-08-30 | 2018-03-01 | Cisco Technology, Inc. | System and method for managing chained services in a network environment |
US20180063087A1 (en) | 2016-08-27 | 2018-03-01 | Nicira, Inc. | Managed forwarding element executing in separate namespace of public cloud data compute node than workload application |
US20180063000A1 (en) | 2016-08-29 | 2018-03-01 | Vmware, Inc. | Stateful connection optimization over stretched networks using packet introspection |
CA3034809A1 (en) | 2016-08-27 | 2018-03-08 | Nicira, Inc. | Extension of network control system into public cloud |
EP3300319A1 (en) | 2016-09-26 | 2018-03-28 | Juniper Networks, Inc. | Distributing service function chain data and service function instance data in a network |
US20180102965A1 (en) | 2016-10-07 | 2018-04-12 | Alcatel-Lucent Usa Inc. | Unicast branching based multicast |
US20180102919A1 (en) | 2015-06-10 | 2018-04-12 | Huawei Technologies Co., Ltd. | Method for implementing service chain, device, and system |
US20180115471A1 (en) | 2015-04-23 | 2018-04-26 | Hewlett Packard Enterprise Development Lp | Network infrastructure device to implement pre-filter rules |
US20180124061A1 (en) | 2016-11-03 | 2018-05-03 | Nicira, Inc. | Performing services on a host |
US20180123950A1 (en) | 2016-11-03 | 2018-05-03 | Parallel Wireless, Inc. | Traffic Shaping and End-to-End Prioritization |
US20180139098A1 (en) | 2016-11-14 | 2018-05-17 | Futurewei Technologies, Inc. | Integrating physical and virtual network functions in a service-chained network environment |
US20180145899A1 (en) | 2016-11-22 | 2018-05-24 | Gigamon Inc. | Dynamic Service Chaining and Late Binding |
US20180159801A1 (en) | 2016-12-07 | 2018-06-07 | Nicira, Inc. | Service function chain (sfc) data communications with sfc data in virtual local area network identifier (vlan id) data fields |
US20180159943A1 (en) | 2016-12-06 | 2018-06-07 | Nicira, Inc. | Performing context-rich attribute-based services on a host |
US20180176294A1 (en) | 2015-06-26 | 2018-06-21 | Hewlett Packard Enterprise Development Lp | Server load balancing |
US20180176177A1 (en) | 2016-12-20 | 2018-06-21 | Thomson Licensing | Method for managing service chaining at a network equipment, corresponding network equipment |
US20180176124A1 (en) * | 2016-12-21 | 2018-06-21 | Nicira, Inc. | Bypassing a load balancer in a return path of network traffic |
US20180183764A1 (en) | 2016-12-22 | 2018-06-28 | Nicira, Inc. | Collecting and processing contextual attributes on a host |
US20180184281A1 (en) | 2015-06-10 | 2018-06-28 | Soracom, Inc. | Communication System And Communication Method For Providing IP Network Access To Wireless Terminals |
US20180191600A1 (en) | 2015-08-31 | 2018-07-05 | Huawei Technologies Co., Ltd. | Redirection of service or device discovery messages in software-defined networks |
US20180198791A1 (en) | 2017-01-12 | 2018-07-12 | Zscaler, Inc. | Systems and methods for cloud-based service function chaining using security assertion markup language (saml) assertion |
US20180198692A1 (en) * | 2006-12-29 | 2018-07-12 | Kip Prod P1 Lp | Multi-services application gateway and system employing the same |
US20180198705A1 (en) | 2015-07-02 | 2018-07-12 | Zte Corporation | Method and apparatus for implementing service function chain |
US20180205637A1 (en) | 2015-09-14 | 2018-07-19 | Huawei Technologies Co., Ltd. | Method for obtaining information about service chain in cloud computing system and apparatus |
US20180203736A1 (en) | 2017-01-13 | 2018-07-19 | Red Hat, Inc. | Affinity based hierarchical container scheduling |
US20180213040A1 (en) | 2016-12-15 | 2018-07-26 | Arm Ip Limited | Enabling Communications Between Devices |
US20180219762A1 (en) | 2017-02-02 | 2018-08-02 | Fujitsu Limited | Seamless service function chaining across domains |
US10042722B1 (en) | 2015-06-23 | 2018-08-07 | Juniper Networks, Inc. | Service-chain fault tolerance in service virtualized environments |
US20180227216A1 (en) | 2017-02-06 | 2018-08-09 | Silver Peak Systems, Inc. | Multi-level Learning For Classifying Traffic Flows From First Packet Data |
US20180234360A1 (en) | 2017-02-16 | 2018-08-16 | Netscout Systems, Inc | Flow and time based reassembly of fragmented packets by ip protocol analyzers |
US20180248790A1 (en) | 2015-10-31 | 2018-08-30 | Huawei Technologies Co., Ltd. | Route determining method, and corresponding apparatus and system |
US20180248713A1 (en) | 2015-02-24 | 2018-08-30 | Nokia Solutions And Networks Oy | Integrated services processing for mobile networks |
US20180248755A1 (en) | 2015-10-28 | 2018-08-30 | Huawei Technologies Co., Ltd. | Control traffic in software defined networks |
US20180247082A1 (en) | 2016-08-11 | 2018-08-30 | Intel Corporation | Secure Public Cloud with Protected Guest-Verified Host Control |
US20180278530A1 (en) | 2017-03-24 | 2018-09-27 | Intel Corporation | Load balancing systems, devices, and methods |
US10091276B2 (en) | 2013-09-27 | 2018-10-02 | Transvoyant, Inc. | Computer-implemented systems and methods of analyzing data in an ad-hoc network for predictive decision-making |
US20180288129A1 (en) | 2017-03-29 | 2018-10-04 | Ca, Inc. | Introspection driven monitoring of multi-container applications |
US20180295036A1 (en) | 2017-04-07 | 2018-10-11 | Nicira, Inc. | Application/context-based management of virtual networks using customizable workflows |
US20180295053A1 (en) | 2017-04-10 | 2018-10-11 | Cisco Technology, Inc. | Service-function chaining using extended service-function chain proxy for service-function offload |
US10104169B1 (en) | 2013-12-18 | 2018-10-16 | Amazon Technologies, Inc. | Optimizing a load balancer configuration |
US20180302242A1 (en) | 2015-12-31 | 2018-10-18 | Huawei Technologies Co., Ltd. | Packet processing method, related apparatus, and nvo3 network system |
US20180309632A1 (en) | 2017-04-20 | 2018-10-25 | Cisco Technology, Inc. | Policy assurance for service chaining |
US10135636B2 (en) | 2014-03-25 | 2018-11-20 | Huawei Technologies Co., Ltd. | Method for generating forwarding information, controller, and service forwarding entity |
US20180337849A1 (en) | 2017-05-16 | 2018-11-22 | Sonus Networks, Inc. | Communications methods, apparatus and systems for providing scalable media services in sdn systems |
US20180351874A1 (en) | 2017-05-30 | 2018-12-06 | At&T Intellectual Property I, L.P. | Creating Cross-Service Chains of Virtual Network Functions in a Wide Area Network |
US20180349212A1 (en) | 2017-06-06 | 2018-12-06 | Shuhao Liu | System and method for inter-datacenter communication |
US10158573B1 (en) | 2017-05-01 | 2018-12-18 | Barefoot Networks, Inc. | Forwarding element with a data plane load balancer |
US20180375684A1 (en) | 2017-06-27 | 2018-12-27 | Cisco Technology, Inc. | Segment Routing Gateway Storing Segment Routing Encapsulating Header Used in Encapsulating and Forwarding of Returned Native Packet |
US20190007382A1 (en) | 2017-06-29 | 2019-01-03 | Vmware, Inc. | Ssh key validation in a hyper-converged computing environment |
CN109213573A (en) | 2018-09-14 | 2019-01-15 | 珠海国芯云科技有限公司 | The equipment blocking method and device of virtual desktop based on container |
US20190020580A1 (en) | 2017-07-14 | 2019-01-17 | Nicira, Inc. | Asymmetric network elements sharing an anycast address |
US20190020684A1 (en) | 2017-07-13 | 2019-01-17 | Nicira, Inc. | Systems and methods for storing a security parameter index in an options field of an encapsulation header |
US10187306B2 (en) | 2016-03-24 | 2019-01-22 | Cisco Technology, Inc. | System and method for improved service chaining |
US20190028347A1 (en) | 2017-07-21 | 2019-01-24 | Cisco Technology, Inc. | Service function chain optimization using live testing |
US20190028384A1 (en) | 2015-10-15 | 2019-01-24 | Cisco Technology, Inc. | Application identifier in service function chain metadata |
US20190028577A1 (en) | 2016-02-26 | 2019-01-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic re-route in a redundant system of a packet network |
US20190036819A1 (en) | 2017-07-31 | 2019-01-31 | Nicira, Inc. | Use of hypervisor for active-active stateful network service cluster |
US10200493B2 (en) | 2011-10-17 | 2019-02-05 | Microsoft Technology Licensing, Llc | High-density multi-tenant distributed cache as a service |
US20190068500A1 (en) | 2017-08-27 | 2019-02-28 | Nicira, Inc. | Performing in-line service in public cloud |
US20190089679A1 (en) | 2017-09-17 | 2019-03-21 | Mellanox Technologies, Ltd. | NIC with stateful connection tracking |
US20190097838A1 (en) | 2017-09-26 | 2019-03-28 | Oracle International Corporation | Virtual interface system and method for multi-tenant cloud networking |
US10250501B2 (en) | 2014-07-23 | 2019-04-02 | Huawei Technologies Co., Ltd. | Service packet forwarding method and apparatus |
US20190102280A1 (en) | 2017-09-30 | 2019-04-04 | Oracle International Corporation | Real-time debugging instances in a deployed container platform |
US20190116063A1 (en) | 2016-04-29 | 2019-04-18 | Hewlett Packard Enterprise Development Lp | Transforming a service packet from a first domain to a second domain |
US20190121961A1 (en) | 2017-10-23 | 2019-04-25 | L3 Technologies, Inc. | Configurable internet isolation and security for laptops and similar devices |
US20190124096A1 (en) | 2016-07-29 | 2019-04-25 | ShieldX Networks, Inc. | Channel data encapsulation system and method for use with client-server data channels |
US20190132221A1 (en) | 2017-10-29 | 2019-05-02 | Nicira, Inc. | Service operation chaining |
US20190140950A1 (en) | 2016-07-01 | 2019-05-09 | Huawei Technologies Co., Ltd. | Method, apparatus, and system for forwarding packet in service function chaining sfc |
US20190140863A1 (en) | 2017-11-06 | 2019-05-09 | Cisco Technology, Inc. | Dataplane signaled bidirectional/symmetric service chain instantiation for efficient load balancing |
US20190140947A1 (en) | 2016-07-01 | 2019-05-09 | Huawei Technologies Co., Ltd. | Service Function Chaining SFC-Based Packet Forwarding Method, Apparatus, and System |
US20190149518A1 (en) | 2017-11-15 | 2019-05-16 | Nicira, Inc. | Packet induced revalidation of connection tracker |
US20190149516A1 (en) | 2017-11-15 | 2019-05-16 | Nicira, Inc. | Stateful connection policy filtering |
US20190149512A1 (en) | 2017-11-15 | 2019-05-16 | Nicira, Inc. | Third-party service chaining using packet encapsulation in a flow-based forwarding element |
US10305822B2 (en) | 2014-04-04 | 2019-05-28 | Zte Corporation | Service chain routing method and system, and equipment in system |
US20190166045A1 (en) | 2016-07-27 | 2019-05-30 | Zte Corporation | Packet forwarding method and device |
US20190173851A1 (en) | 2017-12-04 | 2019-06-06 | Nicira, Inc. | Scaling gateway to gateway traffic using flow hash |
US20190173850A1 (en) | 2017-12-04 | 2019-06-06 | Nicira, Inc. | Scaling gateway to gateway traffic using flow hash |
US20190173778A1 (en) | 2016-08-26 | 2019-06-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Improving sf proxy performance in sdn networks |
US10333822B1 (en) | 2017-05-23 | 2019-06-25 | Cisco Technology, Inc. | Techniques for implementing loose hop service function chains price information |
US10341427B2 (en) | 2012-12-06 | 2019-07-02 | A10 Networks, Inc. | Forwarding policies on a virtual service network |
US20190222538A1 (en) | 2016-09-30 | 2019-07-18 | Huawei Technologies Co., Ltd. | Packet Processing Method, Computing Device, and Packet Processing Apparatus |
US20190230126A1 (en) | 2018-01-24 | 2019-07-25 | Nicira, Inc. | Flow-based forwarding element configuration |
US20190229937A1 (en) | 2018-01-25 | 2019-07-25 | Juniper Networks, Inc. | Multicast join message processing by multi-homing devices in an ethernet vpn |
US20190238364A1 (en) | 2018-01-26 | 2019-08-01 | Nicira, Inc. | Specifying and utilizing paths through a network |
WO2019147316A1 (en) | 2018-01-26 | 2019-08-01 | Nicira, Inc. | Specifying and utilizing paths through a network |
US20190238363A1 (en) | 2018-01-26 | 2019-08-01 | Nicira, Inc. | Specifying and utilizing paths through a network |
US10375155B1 (en) | 2013-02-19 | 2019-08-06 | F5 Networks, Inc. | System and method for achieving hardware acceleration for asymmetric flow connections |
WO2019157955A1 (en) | 2018-02-13 | 2019-08-22 | 华为技术有限公司 | Device access method, related platform and computer storage medium |
US20190268384A1 (en) | 2016-08-05 | 2019-08-29 | Alcatel Lucent | Security-on-demand architecture |
WO2019168532A1 (en) | 2018-03-01 | 2019-09-06 | Google Llc | High availability multi-single-tenant services |
US20190286475A1 (en) | 2018-03-14 | 2019-09-19 | Microsoft Technology Licensing, Llc | Opportunistic virtual machine migration |
US20190288915A1 (en) | 2018-03-19 | 2019-09-19 | Secure-24, Llc | Discovery and migration planning techniques optimized by environmental analysis and criticality |
US20190288946A1 (en) | 2018-03-13 | 2019-09-19 | Juniper Networks, Inc. | Adaptive load-balancing over a multi-point logical interface |
US20190306086A1 (en) | 2018-03-27 | 2019-10-03 | Nicira, Inc. | Incorporating layer 2 service between two interfaces of gateway device |
US20190306036A1 (en) | 2018-03-27 | 2019-10-03 | Nicira, Inc. | Detecting failure of layer 2 service using broadcast messages |
US20190342175A1 (en) | 2018-05-02 | 2019-11-07 | Nicira, Inc. | Application of profile setting groups to logical network entities |
US10484334B1 (en) | 2013-02-26 | 2019-11-19 | Zentera Systems, Inc. | Distributed firewall security system that extends across different cloud computing networks |
WO2019226327A1 (en) | 2018-05-23 | 2019-11-28 | Microsoft Technology Licensing, Llc | Data platform fabric |
US20190377604A1 (en) | 2018-06-11 | 2019-12-12 | Nuweba Labs Ltd. | Scalable function as a service platform |
US20190379579A1 (en) | 2018-06-11 | 2019-12-12 | Nicira, Inc. | Providing shared memory for access by multiple network service containers executing on single service machine |
US20190379578A1 (en) | 2018-06-11 | 2019-12-12 | Nicira, Inc. | Configuring a compute node to perform services on a host |
US20200007388A1 (en) | 2018-06-29 | 2020-01-02 | Cisco Technology, Inc. | Network traffic optimization using in-situ notification system |
US10547508B1 (en) | 2016-06-29 | 2020-01-28 | Juniper Networks, Inc. | Network services using pools of pre-configured virtualized network functions and service chains |
US20200036629A1 (en) | 2015-06-15 | 2020-01-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and network nodes for scalable mapping of tags to service function chain encapsulation headers |
US20200059761A1 (en) | 2018-08-17 | 2020-02-20 | Huawei Technologies Co., Ltd. | Systems and methods for enabling private communication within a user equipment group |
US20200067828A1 (en) | 2018-08-23 | 2020-02-27 | Agora Lab, Inc. | Large-Scale Real-Time Multimedia Communications |
US20200073739A1 (en) | 2018-08-28 | 2020-03-05 | Amazon Technologies, Inc. | Constraint solver execution service and infrastructure therefor |
US20200076734A1 (en) | 2018-09-02 | 2020-03-05 | Vmware, Inc. | Redirection of data messages at logical network gateway |
WO2020046686A1 (en) | 2018-09-02 | 2020-03-05 | Vmware, Inc. | Service insertion at logical network gateway |
US20200076684A1 (en) | 2018-09-02 | 2020-03-05 | Vmware, Inc. | Service insertion at logical network gateway |
US20200084141A1 (en) | 2018-09-12 | 2020-03-12 | Corsa Technology Inc. | Methods and systems for network security universal control point |
US20200084147A1 (en) | 2018-09-11 | 2020-03-12 | Cisco Technology, Inc. | In-situ passive performance measurement in a network environment |
US10609122B1 (en) | 2015-06-29 | 2020-03-31 | Amazon Technologies, Inc. | Instance backed building or place |
US10623309B1 (en) | 2016-12-19 | 2020-04-14 | International Business Machines Corporation | Rule processing of packets |
US10637750B1 (en) | 2017-10-18 | 2020-04-28 | Juniper Networks, Inc. | Dynamically modifying a service chain based on network traffic information |
US20200136960A1 (en) | 2018-10-27 | 2020-04-30 | Cisco Technology, Inc. | Software version aware networking |
US10645201B2 (en) | 2018-07-31 | 2020-05-05 | Vmware, Inc. | Packet handling during service virtualized computing instance migration |
US10645060B2 (en) | 2015-05-28 | 2020-05-05 | Xi'an Zhongxing New Software Co., Ltd | Method, device and system for forwarding message |
US20200145331A1 (en) | 2018-11-02 | 2020-05-07 | Cisco Technology, Inc., A California Corporation | Using In-Band Operations Data to Signal Packet Processing Departures in a Network |
US20200143388A1 (en) | 2018-11-01 | 2020-05-07 | EMC IP Holding Company LLC | Recommendation system to support mapping between regulations and controls |
US20200162318A1 (en) | 2018-11-20 | 2020-05-21 | Cisco Technology, Inc. | Seamless automation of network device migration to and from cloud managed systems |
US20200162352A1 (en) | 2011-07-15 | 2020-05-21 | Inetco Systems Limited | Method and system for monitoring performance of an application system |
US20200183724A1 (en) | 2018-12-11 | 2020-06-11 | Amazon Technologies, Inc. | Computing service with configurable virtualization control levels and accelerated launches |
US20200195711A1 (en) | 2018-12-17 | 2020-06-18 | At&T Intellectual Property I, L.P. | Model-based load balancing for network data plane |
US20200204492A1 (en) | 2018-12-21 | 2020-06-25 | Juniper Networks, Inc. | Facilitating flow symmetry for service chains in a computer network |
US20200220805A1 (en) | 2019-01-03 | 2020-07-09 | Citrix Systems, Inc. | Method for optimal path selection for data traffic undergoing high processing or queuing delay |
US20200272495A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Using service data plane for service control plane messaging |
US20200274801A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service path computation for service insertion |
US20200287962A1 (en) | 2019-03-05 | 2020-09-10 | Cisco Technology, Inc. | Load balancing in a distributed system |
CN107105061B (en) | 2017-05-31 | 2020-09-29 | 北京中电普华信息技术有限公司 | A service registration method and device |
US20200344088A1 (en) | 2019-04-29 | 2020-10-29 | Vmware, Inc. | Network interoperability support for non-virtualized entities |
US10834004B2 (en) | 2018-09-24 | 2020-11-10 | Netsia, Inc. | Path determination method and system for delay-optimized service function chaining |
US20200358696A1 (en) | 2018-02-01 | 2020-11-12 | Nokia Solutions And Networks Oy | Method and device for interworking between service function chain domains |
US10853111B1 (en) | 2015-09-30 | 2020-12-01 | Amazon Technologies, Inc. | Virtual machine instance migration feedback |
US20200382420A1 (en) | 2019-05-31 | 2020-12-03 | Juniper Networks, Inc. | Inter-network service chaining |
US20200382412A1 (en) | 2019-05-31 | 2020-12-03 | Microsoft Technology Licensing, Llc | Multi-Cast Support for a Virtual Network |
US20200389401A1 (en) | 2019-06-06 | 2020-12-10 | Cisco Technology, Inc. | Conditional composition of serverless network functions using segment routing |
CN112181632A (en) | 2019-07-02 | 2021-01-05 | 慧与发展有限责任合伙企业 | Deploy the service container in the adapter device |
US20210011816A1 (en) | 2019-07-10 | 2021-01-14 | Commvault Systems, Inc. | Preparing containerized applications for backup using a backup services container in a container-orchestration pod |
US20210029088A1 (en) | 2015-04-13 | 2021-01-28 | Nicira, Inc. | Method and system of establishing a virtual private network in a cloud service for branch networking |
US10938668B1 (en) | 2016-09-30 | 2021-03-02 | Amazon Technologies, Inc. | Safe deployment using versioned hash rings |
US10938716B1 (en) | 2017-11-29 | 2021-03-02 | Riverbed Technology, Inc. | Preserving policy with path selection |
US20210067439A1 (en) | 2019-08-26 | 2021-03-04 | Vmware, Inc. | Forwarding element with physical and virtual data planes |
WO2021041440A1 (en) | 2019-08-26 | 2021-03-04 | Microsoft Technology Licensing, Llc | Computer device including nested network interface controller switches |
US20210073736A1 (en) | 2019-09-10 | 2021-03-11 | Alawi Holdings LLC | Computer implemented system and associated methods for management of workplace incident reporting |
US20210117217A1 (en) | 2019-10-21 | 2021-04-22 | ForgeRock, Inc. | Systems and methods for tuning containers in a high availability environment |
US20210120080A1 (en) | 2019-10-16 | 2021-04-22 | Vmware, Inc. | Load balancing for third party services |
US10997177B1 (en) | 2018-07-27 | 2021-05-04 | Workday, Inc. | Distributed real-time partitioned MapReduce for a data fabric |
WO2021086462A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Distributed service chain across multiple clouds |
US20210136147A1 (en) | 2019-10-31 | 2021-05-06 | Keysight Technologies, Inc. | Methods, systems and computer readable media for self-replicating cluster appliances |
US20210136141A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Distributed service chain across multiple clouds |
US20210135992A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Distributed fault tolerant service chain |
US20210136140A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Using service containers to implement service chains |
US11026047B2 (en) * | 2016-07-21 | 2021-06-01 | International Business Machines Corporation | Associating multiple user devices with a single user |
US11055273B1 (en) | 2016-11-04 | 2021-07-06 | Amazon Technologies, Inc. | Software container event monitoring systems |
US20210218587A1 (en) | 2020-01-13 | 2021-07-15 | Vmware, Inc. | Service insertion for multicast traffic at boundary |
US20210227042A1 (en) | 2020-01-20 | 2021-07-22 | Vmware, Inc. | Method of adjusting service function chains to improve network performance |
US20210227041A1 (en) | 2020-01-20 | 2021-07-22 | Vmware, Inc. | Method of network performance visualization of service function chains |
US20210240734A1 (en) | 2020-02-03 | 2021-08-05 | Microstrategy Incorporated | Deployment of container-based computer environments |
US20210266295A1 (en) | 2020-02-25 | 2021-08-26 | Uatc, Llc | Deterministic Container-Based Network Configurations for Autonomous Vehicles |
US20210271565A1 (en) | 2020-03-02 | 2021-09-02 | Commvault Systems, Inc. | Platform-agnostic containerized application data protection |
US20210314253A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Generating forward and reverse direction connection-tracking records for service paths at a network edge |
US20210314310A1 (en) | 2020-04-02 | 2021-10-07 | Vmware, Inc. | Secured login management to container image registry in a virtualized computer system |
US20210311758A1 (en) | 2020-04-02 | 2021-10-07 | Vmware, Inc. | Management of a container image registry in a virtualized computer system |
US11153190B1 (en) | 2021-01-21 | 2021-10-19 | Zscaler, Inc. | Metric computation for traceroute probes using cached data to prevent a surge on destination servers |
US20210328913A1 (en) | 2020-04-20 | 2021-10-21 | Cisco Technology, Inc. | Service aware virtual private network for optimized forwarding in cloud native environment |
US11157304B2 (en) | 2019-11-01 | 2021-10-26 | Dell Products L.P. | System for peering container clusters running on different container orchestration systems |
US20210349767A1 (en) | 2020-05-05 | 2021-11-11 | Red Hat, Inc. | Migrating virtual machines between computing environments |
US11184397B2 (en) | 2018-08-20 | 2021-11-23 | Vmware, Inc. | Network policy migration to a public cloud |
US20210377160A1 (en) | 2018-01-12 | 2021-12-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Mechanism for control message redirection for sdn control channel failures |
US20220019698A1 (en) | 2016-08-11 | 2022-01-20 | Intel Corporation | Secure Public Cloud with Protected Guest-Verified Host Control |
US20220038310A1 (en) | 2020-07-28 | 2022-02-03 | Vmware, Inc. | Method for providing distributed gateway service at host computer |
US20220060467A1 (en) | 2020-08-24 | 2022-02-24 | Just One Technologies LLC | Systems and methods for phone number certification and verification |
US11316900B1 (en) | 2018-06-29 | 2022-04-26 | FireEye Security Holdings Inc. | System and method for automatically prioritizing rules for cyber-threat detection and mitigation |
US20220191304A1 (en) | 2020-12-15 | 2022-06-16 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
US20220188140A1 (en) | 2020-12-15 | 2022-06-16 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
WO2022132308A1 (en) | 2020-12-15 | 2022-06-23 | Vmware, Inc. | Providing stateful services a scalable manner for machines executing on host computers |
US11398983B2 (en) | 2018-11-04 | 2022-07-26 | Cisco Technology, Inc. | Processing packets by an offload platform adjunct to a packet switching device |
US11528213B2 (en) | 2020-12-30 | 2022-12-13 | Juniper Networks, Inc. | Sharing routes using an in-memory data store in a distributed network system |
-
2018
- 2018-09-02 US US16/120,283 patent/US11595250B2/en active Active
-
2023
- 2023-01-28 US US18/102,684 patent/US12177067B2/en active Active
-
2024
- 2024-11-19 US US18/952,462 patent/US20250080414A1/en active Pending
Patent Citations (915)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6154448A (en) | 1997-06-20 | 2000-11-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Next hop loopback |
US6006264A (en) | 1997-08-01 | 1999-12-21 | Arrowpoint Communications, Inc. | Method and system for directing a flow between a client and a server |
US6104700A (en) | 1997-08-29 | 2000-08-15 | Extreme Networks | Policy based quality of service |
US6779030B1 (en) | 1997-10-06 | 2004-08-17 | Worldcom, Inc. | Intelligent network |
US20050021713A1 (en) | 1997-10-06 | 2005-01-27 | Andrew Dugan | Intelligent network |
WO1999018534A2 (en) | 1997-10-06 | 1999-04-15 | Web Balance, Inc. | System for balancing loads among network servers |
US20120303784A1 (en) | 1998-07-15 | 2012-11-29 | Radware, Ltd. | Load balancing |
US20140330983A1 (en) | 1998-07-15 | 2014-11-06 | Radware Ltd. | Load balancing |
US20090271586A1 (en) | 1998-07-31 | 2009-10-29 | Kom Networks Inc. | Method and system for providing restricted access to a storage medium |
US6826694B1 (en) | 1998-10-22 | 2004-11-30 | At&T Corp. | High resolution access control |
US20040210670A1 (en) | 1999-03-05 | 2004-10-21 | Nikolaos Anerousis | System, method and apparatus for network service load and reliability management |
US20050249199A1 (en) | 1999-07-02 | 2005-11-10 | Cisco Technology, Inc., A California Corporation | Load balancing using distributed forwarding agents with application based feedback for different virtual machines |
US7013389B1 (en) | 1999-09-29 | 2006-03-14 | Cisco Technology, Inc. | Method and apparatus for creating a secure communication channel among multiple event service nodes |
US20020010783A1 (en) | 1999-12-06 | 2002-01-24 | Leonard Primak | System and method for enhancing operation of a web server cluster |
US6880089B1 (en) | 2000-03-31 | 2005-04-12 | Avaya Technology Corp. | Firewall clustering for multiple network servers |
US20120137004A1 (en) | 2000-07-17 | 2012-05-31 | Smith Philip S | Method and System for Operating a Commissioned E-Commerce Service Prover |
US20110016348A1 (en) | 2000-09-01 | 2011-01-20 | Pace Charles P | System and method for bridging assets to network nodes on multi-tiered networks |
US7818452B2 (en) | 2000-09-13 | 2010-10-19 | Fortinet, Inc. | Distributed virtual system to support managed, network-based services |
US6985956B2 (en) | 2000-11-02 | 2006-01-10 | Sun Microsystems, Inc. | Switching system |
US20020078370A1 (en) | 2000-12-18 | 2002-06-20 | Tahan Thomas E. | Controlled information flow between communities via a firewall |
US7487250B2 (en) | 2000-12-19 | 2009-02-03 | Cisco Technology, Inc. | Methods and apparatus for directing a flow of data between a client and multiple servers |
US20020097724A1 (en) | 2001-01-09 | 2002-07-25 | Matti Halme | Processing of data packets within a network element cluster |
US20030188026A1 (en) | 2001-05-18 | 2003-10-02 | Claude Denton | Multi-protocol networking processor with data traffic support spanning local, regional and wide area networks |
US20020194350A1 (en) | 2001-06-18 | 2002-12-19 | Lu Leonard L. | Content-aware web switch without delayed binding and methods thereof |
US6772211B2 (en) | 2001-06-18 | 2004-08-03 | Transtech Networks Usa, Inc. | Content-aware web switch without delayed binding and methods thereof |
US20040249776A1 (en) * | 2001-06-28 | 2004-12-09 | Microsoft Corporation | Composable presence and availability services |
US20030105812A1 (en) | 2001-08-09 | 2003-06-05 | Gigamedia Access Corporation | Hybrid system architecture for secure peer-to-peer-communications |
US20030065711A1 (en) | 2001-10-01 | 2003-04-03 | International Business Machines Corporation | Method and apparatus for content-aware web switching |
US7209977B2 (en) | 2001-10-01 | 2007-04-24 | International Business Machines Corporation | Method and apparatus for content-aware web switching |
US7406540B2 (en) | 2001-10-01 | 2008-07-29 | International Business Machines Corporation | Method and apparatus for content-aware web switching |
US20030093481A1 (en) | 2001-11-09 | 2003-05-15 | Julian Mitchell | Middlebox control |
US20030097429A1 (en) | 2001-11-20 | 2003-05-22 | Wen-Che Wu | Method of forming a website server cluster and structure thereof |
US7379465B2 (en) | 2001-12-07 | 2008-05-27 | Nortel Networks Limited | Tunneling scheme optimized for use in virtual private networks |
US7239639B2 (en) * | 2001-12-27 | 2007-07-03 | 3Com Corporation | System and method for dynamically constructing packet classification rules |
US20030123452A1 (en) * | 2001-12-27 | 2003-07-03 | Tippingpoint Technologies, Inc. | System and method for dynamically constructing packet classification rules |
US20120185588A1 (en) | 2002-01-30 | 2012-07-19 | Brett Error | Distributed Data Collection and Aggregation |
US20060233155A1 (en) | 2002-03-19 | 2006-10-19 | Srivastava Sunil K | Server load balancing using IP option field approach to identify route to selected server |
US20030236813A1 (en) | 2002-06-24 | 2003-12-25 | Abjanic John B. | Method and apparatus for off-load processing of a message stream |
US20100223621A1 (en) | 2002-08-01 | 2010-09-02 | Foundry Networks, Inc. | Statistical tracking for global server load balancing |
CN1689369A (en) | 2002-10-08 | 2005-10-26 | 诺基亚公司 | Method and system for establishing a connection via an access network |
US20040066769A1 (en) | 2002-10-08 | 2004-04-08 | Kalle Ahmavaara | Method and system for establishing a connection via an access network |
US7480737B2 (en) | 2002-10-25 | 2009-01-20 | International Business Machines Corporation | Technique for addressing a cluster of network servers |
US20040215703A1 (en) | 2003-02-18 | 2004-10-28 | Xiping Song | System supporting concurrent operation of multiple executable application operation sessions |
US20080239991A1 (en) | 2003-03-13 | 2008-10-02 | David Lee Applegate | Method and apparatus for efficient routing of variable traffic |
US8190767B1 (en) | 2003-06-24 | 2012-05-29 | Nvidia Corporation | Data structures and state tracking for network protocol processing |
US20090299791A1 (en) | 2003-06-25 | 2009-12-03 | Foundry Networks, Inc. | Method and system for management of licenses |
US20050091396A1 (en) | 2003-08-05 | 2005-04-28 | Chandrasekharan Nilakantan | Method and apparatus for achieving dynamic capacity and high availability in multi-stage data networks using adaptive flow-based routing |
US20050089327A1 (en) | 2003-10-22 | 2005-04-28 | Shlomo Ovadia | Dynamic route discovery for optical switched networks |
US7447775B1 (en) | 2003-11-07 | 2008-11-04 | Cisco Technology, Inc. | Methods and apparatus for supporting transmission of streaming data |
US20050114648A1 (en) | 2003-11-24 | 2005-05-26 | Cisco Technology, Inc., A Corporation Of California | Dual mode firewall |
US20050114429A1 (en) | 2003-11-25 | 2005-05-26 | Caccavale Frank S. | Method and apparatus for load balancing of distributed processing units based on performance metrics |
US20170318081A1 (en) | 2003-12-10 | 2017-11-02 | Aventail Llc | Routing of communications to one or more processors performing one or more services according to a load balancing function |
US20050132030A1 (en) | 2003-12-10 | 2005-06-16 | Aventail Corporation | Network appliance |
US20100257278A1 (en) | 2003-12-10 | 2010-10-07 | Foundry Networks, Inc. | Method and apparatus for load balancing based on packet header content |
US20080049619A1 (en) | 2004-02-09 | 2008-02-28 | Adam Twiss | Methods and Apparatus for Routing in a Network |
US8223634B2 (en) | 2004-02-18 | 2012-07-17 | Fortinet, Inc. | Mechanism for implementing load balancing in a network |
US20050198200A1 (en) | 2004-03-05 | 2005-09-08 | Nortel Networks Limited | Method and apparatus for facilitating fulfillment of web-service requests on a communication network |
US8484348B2 (en) | 2004-03-05 | 2013-07-09 | Rockstar Consortium Us Lp | Method and apparatus for facilitating fulfillment of web-service requests on a communication network |
US9178709B2 (en) | 2004-03-30 | 2015-11-03 | Panasonic Intellectual Property Management Co., Ltd. | Communication system and method for distributing content |
US20080279196A1 (en) | 2004-04-06 | 2008-11-13 | Robert Friskney | Differential Forwarding in Address-Based Carrier Networks |
JP2005311863A (en) | 2004-04-23 | 2005-11-04 | Hitachi Ltd | Traffic distribution control method, control device, and network system |
US20100100616A1 (en) | 2004-09-14 | 2010-04-22 | 3Com Corporation | Method and apparatus for controlling traffic between different entities on a network |
US20060069776A1 (en) | 2004-09-15 | 2006-03-30 | Shim Choon B | System and method for load balancing a communications network |
US7698458B1 (en) | 2004-10-29 | 2010-04-13 | Akamai Technologies, Inc. | Load balancing network traffic using race methods |
US20060112297A1 (en) | 2004-11-17 | 2006-05-25 | Raytheon Company | Fault tolerance and recovery in a high-performance computing (HPC) system |
US20060130133A1 (en) | 2004-12-14 | 2006-06-15 | International Business Machines Corporation | Automated generation of configuration elements of an information technology system |
US20060195896A1 (en) | 2004-12-22 | 2006-08-31 | Wake Forest University | Method, systems, and computer program products for implementing function-parallel network firewall |
US20060155862A1 (en) | 2005-01-06 | 2006-07-13 | Hari Kathi | Data traffic load balancing based on application layer messages |
US7649890B2 (en) | 2005-02-22 | 2010-01-19 | Hitachi Communication Technologies, Ltd. | Packet forwarding apparatus and communication bandwidth control method |
US7499463B1 (en) | 2005-04-22 | 2009-03-03 | Sun Microsystems, Inc. | Method and apparatus for enforcing bandwidth utilization of a virtual serialization queue |
US8738702B1 (en) * | 2005-07-13 | 2014-05-27 | At&T Intellectual Property Ii, L.P. | Method and system for a personalized content dissemination platform |
US20110225293A1 (en) | 2005-07-22 | 2011-09-15 | Yogesh Chunilal Rathod | System and method for service based social network |
US20070061492A1 (en) | 2005-08-05 | 2007-03-15 | Red Hat, Inc. | Zero-copy network i/o for virtual hosts |
US20070121615A1 (en) | 2005-11-28 | 2007-05-31 | Ofer Weill | Method and apparatus for self-learning of VPNS from combination of unidirectional tunnels in MPLS/VPN networks |
US20070291773A1 (en) | 2005-12-06 | 2007-12-20 | Shabbir Khan | Digital object routing based on a service request |
US20070153782A1 (en) | 2005-12-30 | 2007-07-05 | Gregory Fletcher | Reliable, high-throughput, high-performance transport and routing mechanism for arbitrary data flows |
US20090235325A1 (en) | 2006-03-02 | 2009-09-17 | Theo Dimitrakos | Message processing methods and systems |
US20070260750A1 (en) | 2006-03-09 | 2007-11-08 | Microsoft Corporation | Adaptable data connector |
US20070214282A1 (en) | 2006-03-13 | 2007-09-13 | Microsoft Corporation | Load balancing via rotation of cluster identity |
US20070248091A1 (en) | 2006-04-24 | 2007-10-25 | Mohamed Khalid | Methods and apparatus for tunnel stitching in a network |
US20120110577A1 (en) | 2006-04-27 | 2012-05-03 | Vmware, Inc. | Controlling memory conditions in a virtual machine |
US9900410B2 (en) | 2006-05-01 | 2018-02-20 | Nicira, Inc. | Private ethernet overlay networks over a shared ethernet in a virtual environment |
US20150071301A1 (en) | 2006-05-01 | 2015-03-12 | Vmware, Inc. | Private ethernet overlay networks over a shared ethernet in a virtual environment |
US20090190506A1 (en) | 2006-05-05 | 2009-07-30 | Nokia Siemens Networks Gmbh & Co. Kg | Method for Allowing Control of the Quality of Service and/or of the Service Fees for Telecommunication Services |
US20070288615A1 (en) | 2006-06-09 | 2007-12-13 | Cisco Technology, Inc. | Technique for dispatching data packets to service control engines |
US20080005293A1 (en) | 2006-06-30 | 2008-01-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Router and method for server load balancing |
US20080046400A1 (en) | 2006-08-04 | 2008-02-21 | Shi Justin Y | Apparatus and method of optimizing database clustering with zero transaction loss |
US20080031263A1 (en) | 2006-08-07 | 2008-02-07 | Cisco Technology, Inc. | Method and apparatus for load balancing over virtual network links |
US8707383B2 (en) | 2006-08-16 | 2014-04-22 | International Business Machines Corporation | Computer workload management with security policy enforcement |
US20080049786A1 (en) | 2006-08-22 | 2008-02-28 | Maruthi Ram | Systems and Methods for Providing Dynamic Spillover of Virtual Servers Based on Bandwidth |
US20080049614A1 (en) | 2006-08-23 | 2008-02-28 | Peter John Briscoe | Capacity Management for Data Networks |
US20080072305A1 (en) | 2006-09-14 | 2008-03-20 | Ouova, Inc. | System and method of middlebox detection and characterization |
US20080084819A1 (en) | 2006-10-04 | 2008-04-10 | Vladimir Parizhsky | Ip flow-based load balancing over a plurality of wireless network links |
US20080095153A1 (en) | 2006-10-19 | 2008-04-24 | Fujitsu Limited | Apparatus and computer product for collecting packet information |
US20080104608A1 (en) | 2006-10-27 | 2008-05-01 | Hyser Chris D | Starting up at least one virtual machine in a physical machine by a load balancer |
US8849746B2 (en) | 2006-12-19 | 2014-09-30 | Teradata Us, Inc. | High-throughput extract-transform-load (ETL) of program events for subsequent analysis |
US20180198692A1 (en) * | 2006-12-29 | 2018-07-12 | Kip Prod P1 Lp | Multi-services application gateway and system employing the same |
WO2008095010A1 (en) | 2007-02-01 | 2008-08-07 | The Board Of Trustees Of The Leland Stanford Jr. University | Secure network switching infrastructure |
US20080195755A1 (en) | 2007-02-12 | 2008-08-14 | Ying Lu | Method and apparatus for load balancing with server state change awareness |
US20110010578A1 (en) | 2007-02-22 | 2011-01-13 | Agundez Dominguez Jose Luis | Consistent and fault tolerant distributed hash table (dht) overlay network |
US20080225714A1 (en) | 2007-03-12 | 2008-09-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic load balancing |
US20080247396A1 (en) | 2007-04-06 | 2008-10-09 | Ludovic Hazard | Method, system and computer processing an ip packet, routing a structured data carrier, preventing broadcast storms, load-balancing and converting a full broadcast ip packet |
US20080276085A1 (en) | 2007-05-02 | 2008-11-06 | Cisco Technology, Inc. | Allowing differential processing of encrypted tunnels |
US8230493B2 (en) | 2007-05-02 | 2012-07-24 | Cisco Technology, Inc. | Allowing differential processing of encrypted tunnels |
US7898959B1 (en) | 2007-06-28 | 2011-03-01 | Marvell Israel (Misl) Ltd. | Method for weighted load-balancing among network interfaces |
US20090003375A1 (en) | 2007-06-29 | 2009-01-01 | Martin Havemann | Network system having an extensible control plane |
US20090003349A1 (en) | 2007-06-29 | 2009-01-01 | Martin Havemann | Network system having an extensible forwarding plane |
US20090003364A1 (en) | 2007-06-29 | 2009-01-01 | Kerry Fendick | Open platform architecture for integrating multiple heterogeneous network functions |
US20090019135A1 (en) | 2007-07-09 | 2009-01-15 | Anand Eswaran | Method, Network and Computer Program For Processing A Content Request |
US20090037713A1 (en) | 2007-08-03 | 2009-02-05 | Cisco Technology, Inc. | Operation, administration and maintenance (oam) for chains of services |
US20090063706A1 (en) | 2007-08-30 | 2009-03-05 | International Business Machines Corporation | Combined Layer 2 Virtual MAC Address with Layer 3 IP Address Routing |
US8201219B2 (en) | 2007-09-24 | 2012-06-12 | Bridgewater Systems Corp. | Systems and methods for server load balancing using authentication, authorization, and accounting protocols |
US8874789B1 (en) | 2007-09-28 | 2014-10-28 | Trend Micro Incorporated | Application based routing arrangements and method thereof |
US20100265824A1 (en) | 2007-11-09 | 2010-10-21 | Blade Network Technologies, Inc | Session-less Load Balancing of Client Traffic Across Servers in a Server Group |
US20090129271A1 (en) | 2007-11-19 | 2009-05-21 | Rajesh Ramankutty | Providing services to packet flows in a network |
US20110058563A1 (en) | 2007-12-17 | 2011-03-10 | Girish Prabhakar Saraph | Architectural framework of communication network and a method of establishing qos connection |
US20090172666A1 (en) | 2007-12-31 | 2009-07-02 | Netapp, Inc. | System and method for automatic storage load balancing in virtual server environments |
US20090199268A1 (en) | 2008-02-06 | 2009-08-06 | Qualcomm, Incorporated | Policy control for encapsulated data flows |
US8175863B1 (en) | 2008-02-13 | 2012-05-08 | Quest Software, Inc. | Systems and methods for analyzing performance of virtual environments |
US8521879B1 (en) | 2008-03-11 | 2013-08-27 | United Services Automobile Assocation (USAA) | Systems and methods for a load balanced interior gateway protocol intranet |
US20090238084A1 (en) | 2008-03-18 | 2009-09-24 | Cisco Technology, Inc. | Network monitoring using a proxy |
US20090249472A1 (en) | 2008-03-27 | 2009-10-01 | Moshe Litvin | Hierarchical firewalls |
US20100332595A1 (en) | 2008-04-04 | 2010-12-30 | David Fullagar | Handling long-tail content in a content delivery network (cdn) |
US20090259745A1 (en) * | 2008-04-11 | 2009-10-15 | Morris Lee | Methods and apparatus for nonintrusive monitoring of web browser usage |
US8090822B2 (en) * | 2008-04-11 | 2012-01-03 | The Nielsen Company (Us), Llc | Methods and apparatus for nonintrusive monitoring of web browser usage |
US20110035494A1 (en) | 2008-04-15 | 2011-02-10 | Blade Network Technologies | Network virtualization for a virtualized server data center environment |
US20090265467A1 (en) | 2008-04-17 | 2009-10-22 | Radware, Ltd. | Method and System for Load Balancing over a Cluster of Authentication, Authorization and Accounting (AAA) Servers |
US8339959B1 (en) | 2008-05-20 | 2012-12-25 | Juniper Networks, Inc. | Streamlined packet forwarding using dynamic filters for routing and security in a shared forwarding plane |
US20090300210A1 (en) | 2008-05-28 | 2009-12-03 | James Michael Ferris | Methods and systems for load balancing in cloud-based networks |
US20090307334A1 (en) | 2008-06-09 | 2009-12-10 | Microsoft Corporation | Data center without structural bottlenecks |
US20090303880A1 (en) | 2008-06-09 | 2009-12-10 | Microsoft Corporation | Data center interconnect and traffic engineering |
US20090327464A1 (en) | 2008-06-26 | 2009-12-31 | International Business Machines Corporation | Load Balanced Data Processing Performed On An Application Message Transmitted Between Compute Nodes |
US20100031360A1 (en) | 2008-07-31 | 2010-02-04 | Arvind Seshadri | Systems and methods for preventing unauthorized modification of an operating system |
US20100036903A1 (en) | 2008-08-11 | 2010-02-11 | Microsoft Corporation | Distributed load balancer |
US9503530B1 (en) | 2008-08-21 | 2016-11-22 | United Services Automobile Association (Usaa) | Preferential loading in data centers |
US8873399B2 (en) | 2008-09-03 | 2014-10-28 | Nokia Siemens Networks Oy | Gateway network element, a method, and a group of load balanced access points configured for load balancing in a communications network |
US20110164504A1 (en) | 2008-09-03 | 2011-07-07 | Nokia Siemens Networks Oy | Gateway network element, a method, and a group of load balanced access points configured for load balancing in a communications network |
US20120287789A1 (en) | 2008-10-24 | 2012-11-15 | Juniper Networks, Inc. | Flow consistent dynamic load balancing |
US20100131638A1 (en) | 2008-11-25 | 2010-05-27 | Ravi Kondamuru | Systems and Methods for GSLB Remote Service Monitoring |
US8078903B1 (en) | 2008-11-25 | 2011-12-13 | Cisco Technology, Inc. | Automatic load-balancing and seamless failover of data flows in storage media encryption (SME) |
US9191293B2 (en) | 2008-12-22 | 2015-11-17 | Telefonaktiebolaget L M Ericsson (Publ) | Method and device for handling of connections between a client and a server via a communication network |
US20100165985A1 (en) | 2008-12-29 | 2010-07-01 | Cisco Technology, Inc. | Service Selection Mechanism In Service Insertion Architecture Data Plane |
US8224885B1 (en) | 2009-01-26 | 2012-07-17 | Teradici Corporation | Method and system for remote computing session management |
US7948986B1 (en) | 2009-02-02 | 2011-05-24 | Juniper Networks, Inc. | Applying services within MPLS networks |
US20100223364A1 (en) | 2009-02-27 | 2010-09-02 | Yottaa Inc | System and method for network traffic management and load balancing |
US20100235915A1 (en) | 2009-03-12 | 2010-09-16 | Nasir Memon | Using host symptoms, host roles, and/or host reputation for detection of host infection |
US8094575B1 (en) | 2009-03-24 | 2012-01-10 | Juniper Networks, Inc. | Routing protocol extension for network acceleration service-aware path selection within computer networks |
US8266261B2 (en) | 2009-03-27 | 2012-09-11 | Nec Corporation | Server system, collective server apparatus, and MAC address management method |
US20100254385A1 (en) | 2009-04-07 | 2010-10-07 | Cisco Technology, Inc. | Service Insertion Architecture (SIA) in a Virtual Private Network (VPN) Aware Network |
EP2426956A1 (en) | 2009-04-27 | 2012-03-07 | China Mobile Communications Corporation | Data transferring method, system and related network device based on proxy mobile (pm) ipv6 |
US20120140719A1 (en) | 2009-04-27 | 2012-06-07 | Min Hui | Data transmission method, system and related network device based on proxy mobile (pm) ipv6 |
US20100281482A1 (en) | 2009-04-30 | 2010-11-04 | Microsoft Corporation | Application efficiency engine |
US20110022812A1 (en) | 2009-05-01 | 2011-01-27 | Van Der Linden Rob | Systems and methods for establishing a cloud bridge between virtual storage resources |
US9479358B2 (en) | 2009-05-13 | 2016-10-25 | International Business Machines Corporation | Managing graphics load balancing strategies |
CN101594358A (en) | 2009-06-29 | 2009-12-02 | 北京航空航天大学 | Layer-3 switching method, device, system and host |
US7921174B1 (en) * | 2009-07-24 | 2011-04-05 | Jason Adam Denise | Electronic communication reminder technology |
US20110022695A1 (en) | 2009-07-27 | 2011-01-27 | Vmware, Inc. | Management and Implementation of Enclosed Local Networks in a Virtual Lab |
US20110040893A1 (en) | 2009-08-14 | 2011-02-17 | Broadcom Corporation | Distributed Internet caching via multiple node caching management |
US20110055845A1 (en) | 2009-08-31 | 2011-03-03 | Thyagarajan Nandagopal | Technique for balancing loads in server clusters |
EP2466985A1 (en) | 2009-09-17 | 2012-06-20 | ZTE Corporation | Network based on identity identifier and location separation architecture, backbone network, and network element thereof |
US20120176932A1 (en) | 2009-09-17 | 2012-07-12 | Zte Corporation | Communication method, method for forwarding data message during the communication process and communication node thereof |
US8804746B2 (en) | 2009-09-17 | 2014-08-12 | Zte Corporation | Network based on identity identifier and location separation architecture backbone network, and network element thereof |
US8451735B2 (en) | 2009-09-28 | 2013-05-28 | Symbol Technologies, Inc. | Systems and methods for dynamic load balancing in a wireless network |
US20110090912A1 (en) | 2009-10-15 | 2011-04-21 | International Business Machines Corporation | Steering Data Communications Packets Among Service Applications With Server Selection Modulus Values |
US8811412B2 (en) | 2009-10-15 | 2014-08-19 | International Business Machines Corporation | Steering data communications packets among service applications with server selection modulus values |
US20120023231A1 (en) | 2009-10-23 | 2012-01-26 | Nec Corporation | Network system, control method for the same, and controller |
CN101729412A (en) | 2009-11-05 | 2010-06-09 | 北京超图软件股份有限公司 | Distributed level cluster method and system of geographic information service |
US9277412B2 (en) | 2009-11-16 | 2016-03-01 | Interdigital Patent Holdings, Inc. | Coordination of silent periods for dynamic spectrum manager (DSM) |
US20120239804A1 (en) | 2009-11-26 | 2012-09-20 | Chengdu Huawei Symantec Technologies Co., Ltd | Method, device and system for backup |
US8832683B2 (en) | 2009-11-30 | 2014-09-09 | Red Hat Israel, Ltd. | Using memory-related metrics of host machine for triggering load balancing that migrate virtual machine |
US8615009B1 (en) | 2010-01-25 | 2013-12-24 | Juniper Networks, Inc. | Interface for extending service capabilities of a network device |
US20110295991A1 (en) | 2010-02-01 | 2011-12-01 | Nec Corporation | Network system, controller, and network control method |
US20110194563A1 (en) | 2010-02-11 | 2011-08-11 | Vmware, Inc. | Hypervisor Level Distributed Load-Balancing |
US20110211463A1 (en) | 2010-02-26 | 2011-09-01 | Eldad Matityahu | Add-on module and methods thereof |
US8996610B1 (en) | 2010-03-15 | 2015-03-31 | Salesforce.Com, Inc. | Proxy system, method and computer program product for utilizing an identifier of a request to route the request to a networked device |
US8971345B1 (en) | 2010-03-22 | 2015-03-03 | Riverbed Technology, Inc. | Method and apparatus for scheduling a heterogeneous communication flow |
US9225659B2 (en) | 2010-03-22 | 2015-12-29 | Riverbed Technology, Inc. | Method and apparatus for scheduling a heterogeneous communication flow |
US20110235508A1 (en) | 2010-03-26 | 2011-09-29 | Deepak Goel | Systems and methods for link load balancing on a multi-core device |
US20110261811A1 (en) | 2010-04-26 | 2011-10-27 | International Business Machines Corporation | Load-balancing via modulus distribution and tcp flow redirection due to server overload |
US20110271007A1 (en) | 2010-04-28 | 2011-11-03 | Futurewei Technologies, Inc. | System and Method for a Context Layer Switch |
US20110268118A1 (en) | 2010-04-30 | 2011-11-03 | Michael Schlansker | Method for routing data packets using vlans |
US20110276695A1 (en) | 2010-05-06 | 2011-11-10 | Juliano Maldaner | Continuous upgrading of computers in a load balanced environment |
US20110283013A1 (en) | 2010-05-14 | 2011-11-17 | Grosser Donald B | Methods, systems, and computer readable media for stateless load balancing of network traffic flows |
US20180248986A1 (en) | 2010-06-21 | 2018-08-30 | Nicira, Inc. | Private ethernet overlay networks over a shared ethernet in a virtual environment |
US8892706B1 (en) | 2010-06-21 | 2014-11-18 | Vmware, Inc. | Private ethernet overlay networks over a shared ethernet in a virtual environment |
US20110317708A1 (en) | 2010-06-28 | 2011-12-29 | Alcatel-Lucent Usa, Inc. | Quality of service control for mpls user access |
US20120331188A1 (en) | 2010-06-29 | 2012-12-27 | Patrick Brian Riordan | Techniques for path selection |
US20120014386A1 (en) | 2010-06-29 | 2012-01-19 | Futurewei Technologies, Inc. | Delegate Gateways and Proxy for Target Hosts in Large Layer 2 and Address Resolution with Duplicated Internet Protocol Addresses |
US20120005265A1 (en) | 2010-06-30 | 2012-01-05 | Sony Corporation | Information processing device, content providing method and program |
US20120011281A1 (en) | 2010-07-07 | 2012-01-12 | Fujitsu Limited | Content conversion system and content conversion server |
US20120195196A1 (en) | 2010-08-11 | 2012-08-02 | Rajat Ghai | SYSTEM AND METHOD FOR QoS CONTROL OF IP FLOWS IN MOBILE NETWORKS |
US20120054266A1 (en) | 2010-09-01 | 2012-03-01 | Kazerani Alexander A | Optimized Content Distribution Based on Metrics Derived from the End User |
US20130227097A1 (en) | 2010-09-14 | 2013-08-29 | Hitachi, Ltd. | Multi-tenancy information processing system, management server, and configuration management method |
US20120089664A1 (en) | 2010-10-12 | 2012-04-12 | Sap Portals Israel, Ltd. | Optimizing Distributed Computer Networks |
US20130039218A1 (en) | 2010-10-25 | 2013-02-14 | Force 10 Networks | Limiting mac address learning on access network switches |
US20120117058A1 (en) * | 2010-11-08 | 2012-05-10 | Microsoft Corporation | Presenting actions and providers associated with entities |
US20120117258A1 (en) * | 2010-11-09 | 2012-05-10 | Cbs Interactive Inc. | Techniques to deploy and undeploy content to and from web servers |
US20120144014A1 (en) | 2010-12-01 | 2012-06-07 | Cisco Technology, Inc. | Directing data flows in data centers with clustering services |
US20120147894A1 (en) | 2010-12-08 | 2012-06-14 | Mulligan John T | Methods and apparatus to provision cloud computing network elements |
US20120155266A1 (en) | 2010-12-17 | 2012-06-21 | Microsoft Corporation | Synchronizing state among load balancer components |
US20120159307A1 (en) * | 2010-12-17 | 2012-06-21 | Microsoft Corporation | Rendering source regions into target regions of web pages |
US9378294B2 (en) * | 2010-12-17 | 2016-06-28 | Microsoft Technology Licensing, Llc | Presenting source regions of rendered source web pages in target regions of target web pages |
US8804720B1 (en) | 2010-12-22 | 2014-08-12 | Juniper Networks, Inc. | Pass-through multicast admission control signaling |
US20120213074A1 (en) | 2011-01-27 | 2012-08-23 | Verint Systems Ltd. | System and method for flow table management |
US20170257432A1 (en) | 2011-02-09 | 2017-09-07 | Cliqr Technologies Inc. | Apparatus, systems and methods for container based service deployment |
US20120207174A1 (en) | 2011-02-10 | 2012-08-16 | Choung-Yaw Michael Shieh | Distributed service processing of network gateways using virtual machines |
US20120230187A1 (en) | 2011-03-09 | 2012-09-13 | Telefonaktiebolaget L M Ericsson (Publ) | Load balancing sctp associations using vtag mediation |
US20120246637A1 (en) | 2011-03-22 | 2012-09-27 | Cisco Technology, Inc. | Distributed load balancer in a virtual machine environment |
US20120266252A1 (en) | 2011-04-18 | 2012-10-18 | Bank Of America Corporation | Hardware-based root of trust for cloud environments |
US20140169375A1 (en) | 2011-05-03 | 2014-06-19 | Cisco Technology, Inc. | Mobile service routing in a network environment |
US8743885B2 (en) | 2011-05-03 | 2014-06-03 | Cisco Technology, Inc. | Mobile service routing in a network environment |
US20120281540A1 (en) | 2011-05-03 | 2012-11-08 | Cisco Technology, Inc. | Mobile service routing in a network environment |
US20120303809A1 (en) | 2011-05-25 | 2012-11-29 | Microsoft Corporation | Offloading load balancing packet modification |
US20120311568A1 (en) | 2011-05-31 | 2012-12-06 | Jansen Gerardus T | Mechanism for Inter-Cloud Live Migration of Virtualization Systems |
US20120317260A1 (en) | 2011-06-07 | 2012-12-13 | Syed Mohammad Amir Husain | Network Controlled Serial and Audio Switch |
US20120317570A1 (en) | 2011-06-08 | 2012-12-13 | Dalcher Gregory W | System and method for virtual partition monitoring |
US20130003735A1 (en) | 2011-06-28 | 2013-01-03 | Chao H Jonathan | Dynamically provisioning middleboxes |
US20200162352A1 (en) | 2011-07-15 | 2020-05-21 | Inetco Systems Limited | Method and system for monitoring performance of an application system |
US20130021942A1 (en) | 2011-07-18 | 2013-01-24 | Cisco Technology, Inc. | Granular Control of Multicast Delivery Services for Layer-2 Interconnect Solutions |
US20130031544A1 (en) | 2011-07-27 | 2013-01-31 | Microsoft Corporation | Virtual machine migration to minimize packet loss in virtualized network |
US20140195666A1 (en) | 2011-08-04 | 2014-07-10 | Midokura Sarl | System and method for implementing and managing virtual networks |
US20130044636A1 (en) | 2011-08-17 | 2013-02-21 | Teemu Koponen | Distributed logical l3 routing |
US9407599B2 (en) | 2011-08-17 | 2016-08-02 | Nicira, Inc. | Handling NAT migration in logical L3 routing |
US20130142048A1 (en) | 2011-08-17 | 2013-06-06 | Nicira, Inc. | Flow templating in logical l3 routing |
US20130151661A1 (en) | 2011-08-17 | 2013-06-13 | Nicira, Inc. | Handling nat migration in logical l3 routing |
US20130148505A1 (en) | 2011-08-17 | 2013-06-13 | Nicira, Inc. | Load balancing in a logical pipeline |
US8856518B2 (en) | 2011-09-07 | 2014-10-07 | Microsoft Corporation | Secure and efficient offloading of network policies to network interface cards |
US20130058346A1 (en) | 2011-09-07 | 2013-03-07 | Microsoft Corporation | Distributed Routing Domains in Multi-Tenant Datacenter Virtual Networks |
US20130073743A1 (en) | 2011-09-19 | 2013-03-21 | Cisco Technology, Inc. | Services controlled session based flow interceptor |
US10200493B2 (en) | 2011-10-17 | 2019-02-05 | Microsoft Technology Licensing, Llc | High-density multi-tenant distributed cache as a service |
US9232342B2 (en) | 2011-10-24 | 2016-01-05 | Interdigital Patent Holdings, Inc. | Methods, systems and apparatuses for application service layer (ASL) inter-networking |
US20130100851A1 (en) | 2011-10-25 | 2013-04-25 | Cisco Technology, Inc. | Multicast Source Move Detection for Layer-2 Interconnect Solutions |
US9195491B2 (en) | 2011-11-15 | 2015-11-24 | Nicira, Inc. | Migrating middlebox state for distributed middleboxes |
US9172603B2 (en) | 2011-11-15 | 2015-10-27 | Nicira, Inc. | WAN optimizer for logical networks |
US10514941B2 (en) | 2011-11-15 | 2019-12-24 | Nicira, Inc. | Load balancing and destination network address translation middleboxes |
US8913611B2 (en) | 2011-11-15 | 2014-12-16 | Nicira, Inc. | Connection identifier assignment and source network address translation |
US8966024B2 (en) | 2011-11-15 | 2015-02-24 | Nicira, Inc. | Architecture of networks with middleboxes |
US20130125120A1 (en) | 2011-11-15 | 2013-05-16 | Nicira, Inc. | Migrating middlebox state for distributed middleboxes |
US8966029B2 (en) | 2011-11-15 | 2015-02-24 | Nicira, Inc. | Network control system for configuring middleboxes |
US9015823B2 (en) | 2011-11-15 | 2015-04-21 | Nicira, Inc. | Firewalls in logical networks |
US10089127B2 (en) | 2011-11-15 | 2018-10-02 | Nicira, Inc. | Control plane interface for logical middlebox services |
US20130136126A1 (en) | 2011-11-30 | 2013-05-30 | Industrial Technology Research Institute | Data center network system and packet forwarding method thereof |
US20130159487A1 (en) | 2011-12-14 | 2013-06-20 | Microsoft Corporation | Migration of Virtual IP Addresses in a Failover Cluster |
US20130160024A1 (en) | 2011-12-20 | 2013-06-20 | Sybase, Inc. | Dynamic Load Balancing for Complex Event Processing |
US8830834B2 (en) | 2011-12-21 | 2014-09-09 | Cisco Technology, Inc. | Overlay-based packet steering |
US20130163594A1 (en) | 2011-12-21 | 2013-06-27 | Cisco Technology, Inc. | Overlay-Based Packet Steering |
US20130166703A1 (en) | 2011-12-27 | 2013-06-27 | Michael P. Hammer | System And Method For Management Of Network-Based Services |
US20130170501A1 (en) | 2011-12-28 | 2013-07-04 | Futurewei Technologies, Inc. | Service Router Architecture |
US9311427B2 (en) * | 2012-01-03 | 2016-04-12 | Cimpress Schweiz Gmbh | Automated generation of mobile optimized website based on an existing conventional web page description |
US20130174012A1 (en) * | 2012-01-03 | 2013-07-04 | Vistaprint Technologies Limited | Automated generation of mobile optimized website |
US8914406B1 (en) | 2012-02-01 | 2014-12-16 | Vorstack, Inc. | Scalable network security with fast response protocol |
US8868711B2 (en) | 2012-02-03 | 2014-10-21 | Microsoft Corporation | Dynamic load balancing in a scalable environment |
US20130201989A1 (en) | 2012-02-08 | 2013-08-08 | Radisys Corporation | Stateless load balancer in a multi-node system for transparent processing with packet preservation |
US20130227550A1 (en) | 2012-02-27 | 2013-08-29 | Computer Associates Think, Inc. | System and method for isolated virtual image and appliance communication within a cloud environment |
US20160203817A1 (en) * | 2012-02-28 | 2016-07-14 | Ten Eight Technology, Inc. | Automated voice-to-reporting/management system and method for voice call-ins of events/crimes |
US20130291088A1 (en) | 2012-04-11 | 2013-10-31 | Choung-Yaw Michael Shieh | Cooperative network security inspection |
US20130287026A1 (en) | 2012-04-13 | 2013-10-31 | Nicira Inc. | Extension of logical networks across layer 3 virtual private networks |
JP2015519822A (en) | 2012-04-30 | 2015-07-09 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | A method, system, and computer program for servicing virtual overlay network traffic. |
US20130287036A1 (en) | 2012-04-30 | 2013-10-31 | International Business Machines Corporation | Providing services to virtual overlay network traffic |
US20130297798A1 (en) | 2012-05-04 | 2013-11-07 | Mustafa Arisoylu | Two level packet distribution with stateless first level packet distribution to a group of servers and stateful second level packet distribution to a server within the group |
US20130301472A1 (en) | 2012-05-10 | 2013-11-14 | David Ian Allan | 802.1aq support over ietf evpn |
CN104471899A (en) | 2012-05-10 | 2015-03-25 | 瑞典爱立信有限公司 | 802.1AQ support via IETF EVPN |
US20130311637A1 (en) | 2012-05-15 | 2013-11-21 | International Business Machines Corporation | Overlay tunnel information exchange protocol |
US8862883B2 (en) | 2012-05-16 | 2014-10-14 | Cisco Technology, Inc. | System and method for secure cloud service delivery with prioritized services in a network environment |
US20130318219A1 (en) | 2012-05-23 | 2013-11-28 | Brocade Communications Systems, Inc | Layer-3 overlay gateways |
US20130322446A1 (en) | 2012-06-05 | 2013-12-05 | International Business Machines Corporation | Virtual ethernet port aggregation (vepa)-enabled multi-tenant overlay network |
US8488577B1 (en) | 2012-06-06 | 2013-07-16 | Google Inc. | Apparatus for controlling the availability of internet access to applications |
US20150244617A1 (en) | 2012-06-06 | 2015-08-27 | Juniper Networks, Inc. | Physical path determination for virtual network packet flows |
US20130332983A1 (en) | 2012-06-12 | 2013-12-12 | TELEFONAKTIEBOLAGET L M ERRICSSON (publ) | Elastic Enforcement Layer for Cloud Security Using SDN |
US20130336319A1 (en) | 2012-06-14 | 2013-12-19 | Liwu Liu | Multicast to unicast conversion technique |
US20170149680A1 (en) | 2012-06-14 | 2017-05-25 | Aerohive Networks, Inc. | Multicast to unicast conversion technique |
US20130343378A1 (en) | 2012-06-21 | 2013-12-26 | Mark Veteikis | Virtual data loopback and/or data capture in a computing system |
US20130343174A1 (en) | 2012-06-26 | 2013-12-26 | Juniper Networks, Inc. | Service plane triggered fast reroute protection |
US20140003232A1 (en) | 2012-06-27 | 2014-01-02 | Juniper Networks, Inc. | Feedback loop for service engineered paths |
US20170346764A1 (en) | 2012-06-29 | 2017-11-30 | Huawei Technologies Co., Ltd. | Method for Processing Information, Forwarding Plane Device and Control Plane Device |
US20140003422A1 (en) | 2012-06-29 | 2014-01-02 | Jeffrey C. Mogul | Implementing a software defined network using event records that are transmitted from a network switch |
US20150109901A1 (en) | 2012-06-30 | 2015-04-23 | Huawei Technologies Co., Ltd. | Method for managing forwarding plane tunnel resource under control and forwarding decoupled architecture |
US9237098B2 (en) | 2012-07-03 | 2016-01-12 | Cisco Technologies, Inc. | Media access control (MAC) address summation in Datacenter Ethernet networking |
US20140010085A1 (en) | 2012-07-09 | 2014-01-09 | Arun Kavunder | System and method associated with a service flow router |
US20150003455A1 (en) | 2012-07-24 | 2015-01-01 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for enabling services chaining in a provider network |
US20140029447A1 (en) | 2012-07-25 | 2014-01-30 | Qualcomm Atheros, Inc. | Forwarding tables for hybrid communication networks |
US20140046997A1 (en) | 2012-08-09 | 2014-02-13 | International Business Machines Corporation | Service management roles of processor nodes in distributed node service management |
US20140046998A1 (en) | 2012-08-09 | 2014-02-13 | International Business Machines Corporation | Service management modes of operation in distributed node service management |
US20140050223A1 (en) | 2012-08-15 | 2014-02-20 | Futurewei Technologies, Inc. | Method and System for Creating Software Defined Ordered Service Patterns in a Communications Network |
US9705702B2 (en) | 2012-08-15 | 2017-07-11 | Futurewei Technologies, Inc. | Method and system for creating software defined ordered service patterns in a communications network |
US8989192B2 (en) | 2012-08-15 | 2015-03-24 | Futurewei Technologies, Inc. | Method and system for creating software defined ordered service patterns in a communications network |
CN104521195A (en) | 2012-08-15 | 2015-04-15 | 华为技术有限公司 | Method and system for creating software defined ordered service patterns in communications network |
US20150156035A1 (en) | 2012-08-15 | 2015-06-04 | Futurewei Technologies, Inc. | Method and System for Creating Software Defined Ordered Service Patterns in a Communications Network |
US20140052844A1 (en) | 2012-08-17 | 2014-02-20 | Vmware, Inc. | Management of a virtual machine in a storage area network environment |
US20140059204A1 (en) | 2012-08-24 | 2014-02-27 | Filip Nguyen | Systems and methods for providing message flow analysis for an enterprise service bus |
US20140059544A1 (en) | 2012-08-27 | 2014-02-27 | Vmware, Inc. | Framework for networking and security services in virtual networks |
US20140068602A1 (en) | 2012-09-04 | 2014-03-06 | Aaron Robert Gember | Cloud-Based Middlebox Management System |
US20150073967A1 (en) | 2012-09-12 | 2015-03-12 | Iex Group, Inc. | Transmission latency leveling apparatuses, methods and systems |
US20160043901A1 (en) | 2012-09-25 | 2016-02-11 | A10 Networks, Inc. | Graceful scaling in software driven networks |
US20140092738A1 (en) | 2012-09-28 | 2014-04-03 | Juniper Networks, Inc. | Maintaining load balancing after service application with a netwok device |
US20140096183A1 (en) | 2012-10-01 | 2014-04-03 | International Business Machines Corporation | Providing services to virtual overlay network traffic |
US9148367B2 (en) | 2012-10-02 | 2015-09-29 | Cisco Technology, Inc. | System and method for binding flows in a service cluster deployment in a network environment |
US20140092914A1 (en) | 2012-10-02 | 2014-04-03 | Lsi Corporation | Method and system for intelligent deep packet buffering |
US20140093167A1 (en) * | 2012-10-02 | 2014-04-03 | Oracle International Corporation | Recoloring images of a web page according to a representative color |
US20140092906A1 (en) | 2012-10-02 | 2014-04-03 | Cisco Technology, Inc. | System and method for binding flows in a service cluster deployment in a network environment |
US8731289B2 (en) * | 2012-10-02 | 2014-05-20 | Oracle International Corporation | Recoloring images of a web page according to a representative color |
US20160057050A1 (en) | 2012-10-05 | 2016-02-25 | Stamoulis & Weinblatt LLC | Devices, methods, and systems for packet reroute permission based on content parameters embedded in packet header or payload |
US20140101226A1 (en) | 2012-10-08 | 2014-04-10 | Motorola Mobility Llc | Methods and apparatus for performing dynamic load balancing of processing resources |
US20140101656A1 (en) | 2012-10-10 | 2014-04-10 | Zhongwen Zhu | Virtual firewall mobility |
US20140108665A1 (en) | 2012-10-16 | 2014-04-17 | Citrix Systems, Inc. | Systems and methods for bridging between public and private clouds through multilevel api integration |
US20140115578A1 (en) | 2012-10-21 | 2014-04-24 | Geoffrey Howard Cooper | Providing a virtual security appliance architecture to a virtual cloud infrastructure |
US20150288671A1 (en) | 2012-11-02 | 2015-10-08 | Silverlake Mobility Ecosystem Sdn Bhd | Method of processing requests for digital services |
WO2014069978A1 (en) | 2012-11-02 | 2014-05-08 | Silverlake Mobility Ecosystem Sdn Bhd | Method of processing requests for digital services |
US9104497B2 (en) | 2012-11-07 | 2015-08-11 | Yahoo! Inc. | Method and system for work load balancing |
US20140129715A1 (en) | 2012-11-07 | 2014-05-08 | Yahoo! Inc. | Method and system for work load balancing |
US20150023354A1 (en) | 2012-11-19 | 2015-01-22 | Huawei Technologies Co., Ltd. | Method and device for allocating packet switching resource |
US20140149696A1 (en) | 2012-11-28 | 2014-05-29 | Red Hat Israel, Ltd. | Virtual machine backup using snapshots and current configuration |
US10341427B2 (en) | 2012-12-06 | 2019-07-02 | A10 Networks, Inc. | Forwarding policies on a virtual service network |
US20140164477A1 (en) | 2012-12-06 | 2014-06-12 | Gary M. Springer | System and method for providing horizontal scaling of stateful applications |
US20140169168A1 (en) | 2012-12-06 | 2014-06-19 | A10 Networks, Inc. | Configuration of a virtual service network |
US9203748B2 (en) | 2012-12-24 | 2015-12-01 | Huawei Technologies Co., Ltd. | Software defined network-based data processing method, node, and system |
US20140207968A1 (en) | 2013-01-23 | 2014-07-24 | Cisco Technology, Inc. | Server Load Balancer Traffic Steering |
US20150372911A1 (en) | 2013-01-31 | 2015-12-24 | Hitachi, Ltd. | Communication path management method |
US10375155B1 (en) | 2013-02-19 | 2019-08-06 | F5 Networks, Inc. | System and method for achieving hardware acceleration for asymmetric flow connections |
US10484334B1 (en) | 2013-02-26 | 2019-11-19 | Zentera Systems, Inc. | Distributed firewall security system that extends across different cloud computing networks |
US20140269724A1 (en) | 2013-03-04 | 2014-09-18 | Telefonaktiebolaget L M Ericsson (Publ) | Method and devices for forwarding ip data packets in an access network |
US20140254591A1 (en) | 2013-03-08 | 2014-09-11 | Dell Products L.P. | Processing of multicast traffic in computer networks |
US20140254374A1 (en) | 2013-03-11 | 2014-09-11 | Cisco Technology, Inc. | Methods and devices for providing service clustering in a trill network |
US20140281029A1 (en) | 2013-03-14 | 2014-09-18 | Time Warner Cable Enterprises Llc | System and method for automatic routing of dynamic host configuration protocol (dhcp) traffic |
US20140269717A1 (en) | 2013-03-15 | 2014-09-18 | Cisco Technology, Inc. | Ipv6/ipv4 resolution-less forwarding up to a destination |
US20140269487A1 (en) | 2013-03-15 | 2014-09-18 | Vivint, Inc. | Multicast traffic management within a wireless mesh network |
US20140282526A1 (en) | 2013-03-15 | 2014-09-18 | Avi Networks | Managing and controlling a distributed network service platform |
US20140280896A1 (en) | 2013-03-15 | 2014-09-18 | Achilleas Papakostas | Methods and apparatus to credit usage of mobile devices |
US20140301388A1 (en) | 2013-04-06 | 2014-10-09 | Citrix Systems, Inc. | Systems and methods to cache packet steering decisions for a cluster of load balancers |
US20140304231A1 (en) | 2013-04-06 | 2014-10-09 | Citrix Systems, Inc. | Systems and methods for application-state distributed replication table hunting |
US20140307744A1 (en) | 2013-04-12 | 2014-10-16 | Futurewei Technologies, Inc. | Service Chain Policy for Distributed Gateways in Virtual Overlay Networks |
US9660905B2 (en) | 2013-04-12 | 2017-05-23 | Futurewei Technologies, Inc. | Service chain policy for distributed gateways in virtual overlay networks |
US20140310418A1 (en) | 2013-04-16 | 2014-10-16 | Amazon Technologies, Inc. | Distributed load balancer |
US20140310391A1 (en) | 2013-04-16 | 2014-10-16 | Amazon Technologies, Inc. | Multipath routing in a distributed load balancer |
US10075470B2 (en) | 2013-04-19 | 2018-09-11 | Nicira, Inc. | Framework for coordination between endpoint security and network security services |
US20140317677A1 (en) | 2013-04-19 | 2014-10-23 | Vmware, Inc. | Framework for coordination between endpoint security and network security services |
US10237379B2 (en) | 2013-04-26 | 2019-03-19 | Cisco Technology, Inc. | High-efficiency service chaining with agentless service nodes |
US20180027101A1 (en) | 2013-04-26 | 2018-01-25 | Cisco Technology, Inc. | High-efficiency service chaining with agentless service nodes |
US20140321459A1 (en) | 2013-04-26 | 2014-10-30 | Cisco Technology, Inc. | Architecture for agentless service insertion |
US20200322271A1 (en) | 2013-05-09 | 2020-10-08 | Nicira, Inc. | Method and system for service switching using service tags |
US20140334485A1 (en) | 2013-05-09 | 2014-11-13 | Vmware, Inc. | Method and system for service switching using service tags |
US9979641B2 (en) | 2013-05-09 | 2018-05-22 | Nicira, Inc. | Method and system for service switching using service tags |
US9225638B2 (en) | 2013-05-09 | 2015-12-29 | Vmware, Inc. | Method and system for service switching using service tags |
US20160087888A1 (en) | 2013-05-09 | 2016-03-24 | Vmware, Inc. | Method and system for service switching using service tags |
US11438267B2 (en) | 2013-05-09 | 2022-09-06 | Nicira, Inc. | Method and system for service switching using service tags |
US10693782B2 (en) | 2013-05-09 | 2020-06-23 | Nicira, Inc. | Method and system for service switching using service tags |
US20180262427A1 (en) | 2013-05-09 | 2018-09-13 | Nicira, Inc. | Method and system for service switching using service tags |
WO2014182529A1 (en) | 2013-05-09 | 2014-11-13 | Vmware, Inc. | Method and system for service switching using service tags |
US20220417150A1 (en) | 2013-05-09 | 2022-12-29 | Nicira, Inc. | Method and system for service switching using service tags |
US20140334488A1 (en) | 2013-05-10 | 2014-11-13 | Cisco Technology, Inc. | Data Plane Learning of Bi-Directional Service Chains |
US20140341029A1 (en) | 2013-05-20 | 2014-11-20 | Telefonaktiebolaget L M Ericsson (Publ) | Encoding a payload hash in the da-mac to facilitate elastic chaining of packet processing elements |
US20140351452A1 (en) | 2013-05-21 | 2014-11-27 | Cisco Technology, Inc. | Chaining Service Zones by way of Route Re-Origination |
US20160080253A1 (en) | 2013-05-23 | 2016-03-17 | Huawei Technologies Co. Ltd. | Service routing system, device, and method |
US20140362705A1 (en) | 2013-06-07 | 2014-12-11 | The Florida International University Board Of Trustees | Load-balancing algorithms for data center networks |
US20140362682A1 (en) | 2013-06-07 | 2014-12-11 | Cisco Technology, Inc. | Determining the Operations Performed Along a Service Path/Service Chain |
US20140372702A1 (en) | 2013-06-12 | 2014-12-18 | Oracle International Corporation | Handling memory pressure in an in-database sharded queue |
US20160099948A1 (en) | 2013-06-14 | 2016-04-07 | Tocario Gmbh | Method and system for enabling access of a client device to a remote desktop |
US20160149816A1 (en) | 2013-06-14 | 2016-05-26 | Haitao Wu | Fault Tolerant and Load Balanced Routing |
US20140372616A1 (en) | 2013-06-17 | 2014-12-18 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of forwarding/receiving data packets using unicast and/or multicast communications and related load balancers and servers |
US20140369204A1 (en) | 2013-06-17 | 2014-12-18 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of load balancing using primary and stand-by addresses and related load balancers and servers |
US20140372567A1 (en) | 2013-06-17 | 2014-12-18 | Telefonaktiebolaget L M Ericsson (Publ) | Methods of forwarding data packets using transient tables and related load balancers |
US20150003453A1 (en) | 2013-06-28 | 2015-01-01 | Vmware, Inc. | Network service slotting |
US9686192B2 (en) | 2013-06-28 | 2017-06-20 | Niciria, Inc. | Network service slotting |
US20150009995A1 (en) | 2013-07-08 | 2015-01-08 | Nicira, Inc. | Encapsulating Data Packets Using an Adaptive Tunnelling Protocol |
US20150016279A1 (en) | 2013-07-09 | 2015-01-15 | Nicira, Inc. | Using Headerspace Analysis to Identify Classes of Packets |
US20160127306A1 (en) | 2013-07-11 | 2016-05-05 | Huawei Technologies Co., Ltd. | Packet Transmission Method, Apparatus, and System in Multicast Domain Name System |
US20150026362A1 (en) | 2013-07-17 | 2015-01-22 | Cisco Technology, Inc. | Dynamic Service Path Creation |
US20150026321A1 (en) | 2013-07-22 | 2015-01-22 | Vmware, Inc. | Managing link aggregation traffic in a virtual environment |
US20150026345A1 (en) | 2013-07-22 | 2015-01-22 | Vmware, Inc. | Managing link aggregation traffic in a virtual environment |
US20150030024A1 (en) | 2013-07-23 | 2015-01-29 | Dell Products L.P. | Systems and methods for a data center architecture facilitating layer 2 over layer 3 communication |
US9755971B2 (en) | 2013-08-12 | 2017-09-05 | Cisco Technology, Inc. | Traffic flow redirection between border routers using routing encapsulation |
US20150052262A1 (en) * | 2013-08-14 | 2015-02-19 | Nicira, Inc. | Providing Services for Logical Networks |
US20150052522A1 (en) * | 2013-08-14 | 2015-02-19 | Nicira, Inc. | Generation of DHCP Configuration Files |
US20160197831A1 (en) | 2013-08-16 | 2016-07-07 | Interdigital Patent Holdings, Inc. | Method and apparatus for name resolution in software defined networking |
US20160277294A1 (en) | 2013-08-26 | 2016-09-22 | Nec Corporation | Communication apparatus, communication method, control apparatus, and management apparatus in a communication system |
US20150063102A1 (en) | 2013-08-30 | 2015-03-05 | Cisco Technology, Inc. | Flow Based Network Service Insertion |
US9577845B2 (en) | 2013-09-04 | 2017-02-21 | Nicira, Inc. | Multiple active L3 gateways for logical networks |
US20150063364A1 (en) * | 2013-09-04 | 2015-03-05 | Nicira, Inc. | Multiple Active L3 Gateways for Logical Networks |
US20170142012A1 (en) | 2013-09-04 | 2017-05-18 | Nicira, Inc. | Multiple Active L3 Gateways for Logical Networks |
US20150071285A1 (en) | 2013-09-06 | 2015-03-12 | Cisco Technology, Inc. | Distributed service chaining in a network environment |
US9407540B2 (en) | 2013-09-06 | 2016-08-02 | Cisco Technology, Inc. | Distributed service chaining in a network environment |
US20150078384A1 (en) | 2013-09-15 | 2015-03-19 | Nicira, Inc. | Tracking Prefixes of Values Associated with Different Rules to Generate Flows |
US10091276B2 (en) | 2013-09-27 | 2018-10-02 | Transvoyant, Inc. | Computer-implemented systems and methods of analyzing data in an ad-hoc network for predictive decision-making |
US20150092564A1 (en) | 2013-09-27 | 2015-04-02 | Futurewei Technologies, Inc. | Validation of Chained Network Services |
US20150092551A1 (en) | 2013-09-30 | 2015-04-02 | Juniper Networks, Inc. | Session-aware service chaining within computer networks |
US9258742B1 (en) | 2013-09-30 | 2016-02-09 | Juniper Networks, Inc. | Policy-directed value-added services chaining |
US20150103645A1 (en) | 2013-10-10 | 2015-04-16 | Vmware, Inc. | Controller side method of generating and updating a controller assignment list |
US20150103679A1 (en) | 2013-10-13 | 2015-04-16 | Vmware, Inc. | Tracing Host-Originated Logical Network Packets |
US20150103827A1 (en) | 2013-10-14 | 2015-04-16 | Cisco Technology, Inc. | Configurable Service Proxy Mapping |
CN103516807A (en) | 2013-10-14 | 2014-01-15 | 中国联合网络通信集团有限公司 | Cloud computing platform server load balancing system and method |
US20150106802A1 (en) | 2013-10-14 | 2015-04-16 | Vmware, Inc. | Replicating virtual machines across different virtualization platforms |
US9264313B1 (en) | 2013-10-31 | 2016-02-16 | Vmware, Inc. | System and method for performing a service discovery for virtual networks |
US20150124622A1 (en) | 2013-11-01 | 2015-05-07 | Movik Networks, Inc. | Multi-Interface, Multi-Layer State-full Load Balancer For RAN-Analytics Deployments In Multi-Chassis, Cloud And Virtual Server Environments |
US20150124840A1 (en) | 2013-11-03 | 2015-05-07 | Ixia | Packet flow modification |
US20150124815A1 (en) | 2013-11-04 | 2015-05-07 | Telefonaktiebolaget L M Ericsson (Publ) | Service chaining in a cloud environment using software defined networking |
US20150124608A1 (en) | 2013-11-05 | 2015-05-07 | International Business Machines Corporation | Adaptive Scheduling of Data Flows in Data Center Networks for Efficient Resource Utilization |
US9397946B1 (en) | 2013-11-05 | 2016-07-19 | Cisco Technology, Inc. | Forwarding to clusters of service nodes |
US20150138973A1 (en) | 2013-11-15 | 2015-05-21 | Cisco Technology, Inc. | Shortening of service paths in service chains in a communications network |
US20150139041A1 (en) | 2013-11-21 | 2015-05-21 | Cisco Technology, Inc. | Subscriber dependent redirection between a mobile packet core proxy and a cell site proxy in a network environment |
US20150146539A1 (en) | 2013-11-25 | 2015-05-28 | Versa Networks, Inc. | Flow distribution table for packet flow load balancing |
US10104169B1 (en) | 2013-12-18 | 2018-10-16 | Amazon Technologies, Inc. | Optimizing a load balancer configuration |
US20160337189A1 (en) | 2013-12-19 | 2016-11-17 | Rainer Liebhart | A method and apparatus for performing flexible service chaining |
US20150188770A1 (en) | 2013-12-27 | 2015-07-02 | Big Switch Networks, Inc. | Systems and methods for performing network service insertion |
US20160308961A1 (en) | 2014-01-06 | 2016-10-20 | Tencent Technology (Shenzhen) Company Limited | Methods, Devices, and Systems for Allocating Service Nodes in a Network |
US20150195197A1 (en) | 2014-01-06 | 2015-07-09 | Futurewei Technologies, Inc. | Service Function Chaining in a Packet Network |
US20170005882A1 (en) | 2014-01-24 | 2017-01-05 | Zte Corporation | Service Chain Management Method, System and Device |
US20150215819A1 (en) | 2014-01-24 | 2015-07-30 | Cisco Technology, Inc. | Method for Providing Sticky Load Balancing |
US20150213087A1 (en) | 2014-01-28 | 2015-07-30 | Software Ag | Scaling framework for querying |
US20160337249A1 (en) | 2014-01-29 | 2016-11-17 | Huawei Technologies Co., Ltd. | Communications network, device, and control method |
US9467382B2 (en) | 2014-02-03 | 2016-10-11 | Cisco Technology, Inc. | Elastic service chains |
US20150222640A1 (en) | 2014-02-03 | 2015-08-06 | Cisco Technology, Inc. | Elastic Service Chains |
US20150236948A1 (en) | 2014-02-14 | 2015-08-20 | Futurewei Technologies, Inc. | Restoring service functions after changing a service chain instance path |
US20150237013A1 (en) | 2014-02-20 | 2015-08-20 | Nicira, Inc. | Specifying point of enforcement in a firewall rule |
US20150242197A1 (en) | 2014-02-25 | 2015-08-27 | Red Hat, Inc. | Automatic Installing and Scaling of Application Resources in a Multi-Tenant Platform-as-a-Service (PaaS) System |
CN103795805A (en) | 2014-02-27 | 2014-05-14 | 中国科学技术大学苏州研究院 | Distributed server load balancing method based on SDN |
US20160373364A1 (en) | 2014-03-04 | 2016-12-22 | Nec Corporation | Packet processing device, packet processing method and program |
US20160378537A1 (en) | 2014-03-12 | 2016-12-29 | Huawei Technologies Co., Ltd. | Method and Apparatus for Controlling Virtual Machine Migration |
US20150263901A1 (en) | 2014-03-13 | 2015-09-17 | Cisco Technology, Inc. | Service node originated service chains in a network environment |
US20150261873A1 (en) * | 2014-03-13 | 2015-09-17 | Go Daddy Operating Company, LLC | Lightweight web page generation |
US9633128B2 (en) * | 2014-03-13 | 2017-04-25 | Go Daddy Operating Company, LLC | Lightweight web page generation |
US9344337B2 (en) | 2014-03-13 | 2016-05-17 | Cisco Technology, Inc. | Service node originated service chains in a network environment |
US9608896B2 (en) | 2014-03-13 | 2017-03-28 | Cisco Technology, Inc. | Service node originated service chains in a network environment |
US20150263946A1 (en) | 2014-03-14 | 2015-09-17 | Nicira, Inc. | Route advertisement by managed gateways |
CN106134137A (en) | 2014-03-14 | 2016-11-16 | Nicira股份有限公司 | The advertising of route of managed gateway |
US20150271102A1 (en) | 2014-03-21 | 2015-09-24 | Juniper Networks, Inc. | Selectable service node resources |
US10135636B2 (en) | 2014-03-25 | 2018-11-20 | Huawei Technologies Co., Ltd. | Method for generating forwarding information, controller, and service forwarding entity |
US9787559B1 (en) | 2014-03-28 | 2017-10-10 | Juniper Networks, Inc. | End-to-end monitoring of overlay networks providing virtualized network services |
US9602380B2 (en) | 2014-03-28 | 2017-03-21 | Futurewei Technologies, Inc. | Context-aware dynamic policy selection for load balancing behavior |
US20150281098A1 (en) | 2014-03-31 | 2015-10-01 | Nicira, Inc. | Flow Cache Hierarchy |
US9686200B2 (en) | 2014-03-31 | 2017-06-20 | Nicira, Inc. | Flow cache hierarchy |
US20150281180A1 (en) | 2014-03-31 | 2015-10-01 | Nicira, Inc. | Method and apparatus for integrating a service virtual machine |
US20150280959A1 (en) | 2014-03-31 | 2015-10-01 | Amazon Technologies, Inc. | Session management in distributed storage systems |
US9009289B1 (en) | 2014-03-31 | 2015-04-14 | Flexera Software Llc | Systems and methods for assessing application usage |
US20150281125A1 (en) | 2014-03-31 | 2015-10-01 | Nicira, Inc. | Caching of service decisions |
US9985896B2 (en) | 2014-03-31 | 2018-05-29 | Nicira, Inc. | Caching of service decisions |
US20180262434A1 (en) | 2014-03-31 | 2018-09-13 | Nicira, Inc. | Processing packets according to hierarchy of flow entry storages |
US20150281089A1 (en) | 2014-03-31 | 2015-10-01 | Sandvine Incorporated Ulc | System and method for load balancing in computer networks |
US20150281179A1 (en) | 2014-03-31 | 2015-10-01 | Chids Raman | Migrating firewall connection state for a firewall service virtual machine |
US20170019341A1 (en) | 2014-04-01 | 2017-01-19 | Huawei Technologies Co., Ltd. | Service link selection control method and device |
US20150288679A1 (en) | 2014-04-02 | 2015-10-08 | Cisco Technology, Inc. | Interposer with Security Assistant Key Escrow |
US10305822B2 (en) | 2014-04-04 | 2019-05-28 | Zte Corporation | Service chain routing method and system, and equipment in system |
US9363183B2 (en) | 2014-04-10 | 2016-06-07 | Cisco Technology, Inc. | Network address translation offload to network infrastructure for service chains in a network environment |
US20150295831A1 (en) | 2014-04-10 | 2015-10-15 | Cisco Technology, Inc. | Network address translation offload to network infrastructure for service chains in a network environment |
US20150319078A1 (en) | 2014-05-02 | 2015-11-05 | Futurewei Technologies, Inc. | Computing Service Chain-Aware Paths |
US20150319096A1 (en) | 2014-05-05 | 2015-11-05 | Nicira, Inc. | Secondary input queues for maintaining a consistent network state |
US20150347432A1 (en) * | 2014-06-03 | 2015-12-03 | Go Daddy Operating Company, LLC | System and methods for auto-aligning website elements |
US20150347593A1 (en) * | 2014-06-03 | 2015-12-03 | Go Daddy Operating Company, LLC | System and methods for analyzing and improving online engagement |
US9646096B2 (en) * | 2014-06-03 | 2017-05-09 | Go Daddy Operating Company, LLC | System and methods for analyzing and improving online engagement |
US9659103B2 (en) * | 2014-06-03 | 2017-05-23 | Go Daddy Operating Company, LLC | Auto-aligning website elements by grouping elements based on a plurality of contextual indicators |
US20150358294A1 (en) | 2014-06-05 | 2015-12-10 | Cavium, Inc. | Systems and methods for secured hardware security module communication with web service hosts |
US20160164787A1 (en) | 2014-06-05 | 2016-06-09 | KEMP Technologies Inc. | Methods for intelligent data traffic steering |
US20150358235A1 (en) | 2014-06-05 | 2015-12-10 | Futurewei Technologies, Inc. | Service Chain Topology Map Construction |
US20150365322A1 (en) | 2014-06-13 | 2015-12-17 | Cisco Technology, Inc. | Providing virtual private service chains in a network environment |
US20170099194A1 (en) | 2014-06-17 | 2017-04-06 | Huawei Technologies Co., Ltd. | Service flow processing method, apparatus, and device |
US20150370596A1 (en) | 2014-06-20 | 2015-12-24 | Google Inc. | System and method for live migration of a virtualized networking stack |
US10013276B2 (en) | 2014-06-20 | 2018-07-03 | Google Llc | System and method for live migration of a virtualized networking stack |
US20150370586A1 (en) | 2014-06-23 | 2015-12-24 | Intel Corporation | Local service chaining with virtual machines and virtualized containers in software defined networking |
US20150372840A1 (en) | 2014-06-23 | 2015-12-24 | International Business Machines Corporation | Servicing packets in a virtual network and a software-defined network (sdn) |
US9419897B2 (en) | 2014-06-30 | 2016-08-16 | Nicira, Inc. | Methods and systems for providing multi-tenancy support for Single Root I/O Virtualization |
US20150381493A1 (en) | 2014-06-30 | 2015-12-31 | Juniper Networks, Inc. | Service chaining across multiple networks |
US20150381494A1 (en) | 2014-06-30 | 2015-12-31 | Nicira, Inc. | Methods and systems to offload overlay network packet encapsulation to hardware |
US10445509B2 (en) | 2014-06-30 | 2019-10-15 | Nicira, Inc. | Encryption architecture |
US20150379277A1 (en) | 2014-06-30 | 2015-12-31 | Leonard Heyman | Encryption Architecture |
US20170295033A1 (en) | 2014-06-30 | 2017-10-12 | Nicira, Inc. | Methods and systems to offload overlay network packet encapsulation to hardware |
US20150381495A1 (en) | 2014-06-30 | 2015-12-31 | Nicira, Inc. | Methods and systems for providing multi-tenancy support for single root i/o virtualization |
US20160006654A1 (en) | 2014-07-07 | 2016-01-07 | Cisco Technology, Inc. | Bi-directional flow stickiness in a network environment |
US11411863B2 (en) | 2014-07-22 | 2022-08-09 | Futurewei Technologies, Inc. | Service chain header and metadata transport |
US20160028640A1 (en) | 2014-07-22 | 2016-01-28 | Futurewei Technologies, Inc. | Service Chain Header and Metadata Transport |
US10250501B2 (en) | 2014-07-23 | 2019-04-02 | Huawei Technologies Co., Ltd. | Service packet forwarding method and apparatus |
US20160043952A1 (en) | 2014-08-06 | 2016-02-11 | Futurewei Technologies, Inc. | Mechanisms to support service chain graphs in a communication network |
US20160057687A1 (en) | 2014-08-19 | 2016-02-25 | Qualcomm Incorporated | Inter/intra radio access technology mobility and user-plane split measurement configuration |
US20160065503A1 (en) | 2014-08-29 | 2016-03-03 | Extreme Networks, Inc. | Methods, systems, and computer readable media for virtual fabric routing |
US9442752B1 (en) | 2014-09-03 | 2016-09-13 | Amazon Technologies, Inc. | Virtual secure execution environments |
US20170250869A1 (en) | 2014-09-12 | 2017-08-31 | Andreas Richard Voellmy | Managing network forwarding configurations using algorithmic policies |
US10826835B2 (en) | 2014-09-19 | 2020-11-03 | Nokia Solutions And Networks Oy | Chaining of network service functions in a communication network |
US20170250917A1 (en) | 2014-09-19 | 2017-08-31 | Nokia Solutions And Networks Oy | Chaining of network service functions in a communication network |
US20170250902A1 (en) | 2014-09-23 | 2017-08-31 | Nokia Solutions And Networks Oy | Control of communication using service function chaining |
US9804797B1 (en) | 2014-09-29 | 2017-10-31 | EMC IP Holding Company LLC | Using dynamic I/O load differential for load balancing |
US11075842B2 (en) | 2014-09-30 | 2021-07-27 | Nicira, Inc. | Inline load balancing |
US20160094457A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Tunnel-Enabled Elastic Service Model |
US9531590B2 (en) | 2014-09-30 | 2016-12-27 | Nicira, Inc. | Load balancing across a group of load balancers |
US9825810B2 (en) | 2014-09-30 | 2017-11-21 | Nicira, Inc. | Method and apparatus for distributing load among a plurality of service nodes |
US10516568B2 (en) | 2014-09-30 | 2019-12-24 | Nicira, Inc. | Controller driven reconfiguration of a multi-layered application or service model |
US20160094632A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Inline Service Switch |
US20160094642A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Dynamically adjusting load balancing |
US20160094661A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Sticky Service Sessions in a Datacenter |
US20210359945A1 (en) | 2014-09-30 | 2021-11-18 | Nicira, Inc. | Inline load balancing |
US20190288947A1 (en) | 2014-09-30 | 2019-09-19 | Nicira, Inc. | Inline load balancing |
US10390285B2 (en) | 2014-09-30 | 2019-08-20 | Huawei Technologies Co., Ltd. | Service path generation method and apparatus |
US20160094643A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Dynamically adjusting load balancing |
US9935827B2 (en) | 2014-09-30 | 2018-04-03 | Nicira, Inc. | Method and apparatus for distributing load among a plurality of service nodes |
US9774537B2 (en) | 2014-09-30 | 2017-09-26 | Nicira, Inc. | Dynamically adjusting load balancing |
US10341233B2 (en) | 2014-09-30 | 2019-07-02 | Nicira, Inc. | Dynamically adjusting a data compute node group |
US10320679B2 (en) | 2014-09-30 | 2019-06-11 | Nicira, Inc. | Inline load balancing |
US20160094631A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Dynamically adjusting a data compute node group |
US9755898B2 (en) | 2014-09-30 | 2017-09-05 | Nicira, Inc. | Elastically managing a service node group |
US20160094455A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Method and apparatus for distributing load among a plurality of service nodes |
US20160094389A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Elastically managing a service node group |
US10257095B2 (en) | 2014-09-30 | 2019-04-09 | Nicira, Inc. | Dynamically adjusting load balancing |
US11296930B2 (en) | 2014-09-30 | 2022-04-05 | Nicira, Inc. | Tunnel-enabled elastic service model |
US11722367B2 (en) | 2014-09-30 | 2023-08-08 | Nicira, Inc. | Method and apparatus for providing a service with a plurality of service nodes |
US20160094451A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc | Inline load balancing |
US20160094633A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Configuring and Operating a XaaS Model in a Datacenter |
US10225137B2 (en) | 2014-09-30 | 2019-03-05 | Nicira, Inc. | Service node selection by an inline service switch |
CN107005584A (en) | 2014-09-30 | 2017-08-01 | Nicira股份有限公司 | Inline service switch |
US11496606B2 (en) | 2014-09-30 | 2022-11-08 | Nicira, Inc. | Sticky service sessions in a datacenter |
US20160094452A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Distributed load balancing systems |
US20170208532A1 (en) | 2014-09-30 | 2017-07-20 | Huawei Technologies Co., Ltd. | Service path generation method and apparatus |
US20160094384A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Controller Driven Reconfiguration of a Multi-Layered Application or Service Model |
US20160094454A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Method and apparatus for providing a service with a plurality of service nodes |
WO2016054272A1 (en) | 2014-09-30 | 2016-04-07 | Nicira, Inc. | Inline service switch |
US20230052818A1 (en) | 2014-09-30 | 2023-02-16 | Nicira, Inc. | Controller driven reconfiguration of a multi-layered application or service model |
US10135737B2 (en) | 2014-09-30 | 2018-11-20 | Nicira, Inc. | Distributed load balancing systems |
US10129077B2 (en) | 2014-09-30 | 2018-11-13 | Nicira, Inc. | Configuring and operating a XaaS model in a datacenter |
US20160094456A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Method and apparatus for distributing load among a plurality of service nodes |
WO2016053373A1 (en) | 2014-09-30 | 2016-04-07 | Nicira, Inc. | Load balancing |
US20160094453A1 (en) | 2014-09-30 | 2016-03-31 | Nicira, Inc. | Load balancer of load balancers |
US20160105333A1 (en) | 2014-10-10 | 2016-04-14 | Nicira, Inc. | Logical network traffic analysis |
CN107078950A (en) | 2014-10-24 | 2017-08-18 | 思科技术公司 | Transparent network Service Headers path agent |
US20160119226A1 (en) | 2014-10-24 | 2016-04-28 | Cisco Technology, Inc. | Transparent Network Service Header Path Proxies |
EP3210345A1 (en) | 2014-10-24 | 2017-08-30 | Cisco Technology, Inc. | Transparent network service header path proxies |
US20160127564A1 (en) | 2014-10-29 | 2016-05-05 | Alcatel-Lucent Usa Inc. | Policy decisions based on offline charging rules when service chaining is implemented |
US20160134528A1 (en) | 2014-11-10 | 2016-05-12 | Juniper Networks, Inc. | Signaling aliasing capability in data centers |
US20160162320A1 (en) | 2014-11-11 | 2016-06-09 | Amazon Technologies, Inc. | System for managing and scheduling containers |
US9256467B1 (en) | 2014-11-11 | 2016-02-09 | Amazon Technologies, Inc. | System for managing and scheduling containers |
US20190108049A1 (en) | 2014-11-11 | 2019-04-11 | Amazon Technologies, Inc. | System for managing and scheduling containers |
US9996380B2 (en) | 2014-11-11 | 2018-06-12 | Amazon Technologies, Inc. | System for managing and scheduling containers |
US20160173644A1 (en) * | 2014-11-17 | 2016-06-16 | Google Inc. | Structured Entity Information Page |
US9705775B2 (en) | 2014-11-20 | 2017-07-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Passive performance measurement for inline service chaining |
US20160149784A1 (en) | 2014-11-20 | 2016-05-26 | Telefonaktiebolaget L M Ericsson (Publ) | Passive Performance Measurement for Inline Service Chaining |
US20160149828A1 (en) | 2014-11-25 | 2016-05-26 | Netapp, Inc. | Clustered storage system path quiescence analysis |
US20170264677A1 (en) | 2014-11-28 | 2017-09-14 | Huawei Technologies Co., Ltd. | Service Processing Apparatus and Method |
US20160164826A1 (en) | 2014-12-04 | 2016-06-09 | Cisco Technology, Inc. | Policy Implementation at a Network Element based on Data from an Authoritative Source |
US20170273099A1 (en) | 2014-12-09 | 2017-09-21 | Huawei Technologies Co., Ltd. | Method and apparatus for processing adaptive flow table |
US20160164776A1 (en) | 2014-12-09 | 2016-06-09 | Aol Inc. | Systems and methods for software defined networking service function chaining |
US20160173373A1 (en) | 2014-12-11 | 2016-06-16 | Cisco Technology, Inc. | Network service header metadata for load balancing |
US20170279938A1 (en) | 2014-12-11 | 2017-09-28 | Huawei Technologies Co., Ltd. | Packet processing method and apparatus |
US20160344621A1 (en) | 2014-12-17 | 2016-11-24 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for relocating packet processing functions |
US20170310588A1 (en) | 2014-12-17 | 2017-10-26 | Huawei Technologies Co., Ltd. | Data forwarding method, device, and system in software-defined networking |
US9094464B1 (en) | 2014-12-18 | 2015-07-28 | Limelight Networks, Inc. | Connection digest for accelerating web traffic |
US20170339600A1 (en) | 2014-12-19 | 2017-11-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and appratus for relocating packet processing functions |
US20160182684A1 (en) | 2014-12-23 | 2016-06-23 | Patrick Connor | Parallel processing of service functions in service function chains |
US20160188527A1 (en) | 2014-12-29 | 2016-06-30 | Vmware, Inc. | Methods and systems to achieve multi-tenancy in rdma over converged ethernet |
US20160197839A1 (en) | 2015-01-05 | 2016-07-07 | Futurewei Technologies, Inc. | Method and system for providing qos for in-band control traffic in an openflow network |
US20160205015A1 (en) | 2015-01-08 | 2016-07-14 | Openwave Mobility Inc. | Software defined network and a communication network comprising the same |
US20160212048A1 (en) | 2015-01-15 | 2016-07-21 | Hewlett Packard Enterprise Development Lp | Openflow service chain data packet routing using tables |
US20160212237A1 (en) | 2015-01-16 | 2016-07-21 | Fujitsu Limited | Management server, communication system and path management method |
US20160218918A1 (en) | 2015-01-27 | 2016-07-28 | Xingjun Chu | Network virtualization for network infrastructure |
CN107113208A (en) | 2015-01-27 | 2017-08-29 | 华为技术有限公司 | The network virtualization of network infrastructure |
CN107210959A (en) | 2015-01-30 | 2017-09-26 | Nicira股份有限公司 | Router logic with multiple route parts |
US20190020600A1 (en) | 2015-01-30 | 2019-01-17 | Nicira, Inc. | Logical router with multiple routing components |
US9787605B2 (en) | 2015-01-30 | 2017-10-10 | Nicira, Inc. | Logical router with multiple routing components |
US20160226754A1 (en) | 2015-01-30 | 2016-08-04 | Nicira, Inc. | Logical router with multiple routing components |
US20160226700A1 (en) | 2015-01-30 | 2016-08-04 | Nicira, Inc. | Transit logical switch within logical router |
US20160226762A1 (en) | 2015-01-30 | 2016-08-04 | Nicira, Inc. | Implementing logical router uplinks |
US10079779B2 (en) | 2015-01-30 | 2018-09-18 | Nicira, Inc. | Implementing logical router uplinks |
US10129180B2 (en) | 2015-01-30 | 2018-11-13 | Nicira, Inc. | Transit logical switch within logical router |
US20160232019A1 (en) | 2015-02-09 | 2016-08-11 | Broadcom Corporation | Network Interface Controller with Integrated Network Flow Processing |
US20170339110A1 (en) | 2015-02-13 | 2017-11-23 | Huawei Technologies Co., Ltd. | Access Control Apparatus, System, and Method |
US20180248713A1 (en) | 2015-02-24 | 2018-08-30 | Nokia Solutions And Networks Oy | Integrated services processing for mobile networks |
US20160248685A1 (en) | 2015-02-25 | 2016-08-25 | Cisco Technology, Inc. | Metadata augmentation in a service function chain |
US20160277210A1 (en) | 2015-03-18 | 2016-09-22 | Juniper Networks, Inc. | Evpn inter-subnet multicast forwarding |
US10609091B2 (en) | 2015-04-03 | 2020-03-31 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US20160294935A1 (en) | 2015-04-03 | 2016-10-06 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US11405431B2 (en) | 2015-04-03 | 2022-08-02 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US20200213366A1 (en) | 2015-04-03 | 2020-07-02 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US10594743B2 (en) | 2015-04-03 | 2020-03-17 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US20160294933A1 (en) | 2015-04-03 | 2016-10-06 | Nicira, Inc. | Method, apparatus, and system for implementing a content switch |
US20160294612A1 (en) | 2015-04-04 | 2016-10-06 | Nicira, Inc. | Route Server Mode for Dynamic Routing Between Logical and Physical Networks |
US20210029088A1 (en) | 2015-04-13 | 2021-01-28 | Nicira, Inc. | Method and system of establishing a virtual private network in a cloud service for branch networking |
US20160308758A1 (en) | 2015-04-17 | 2016-10-20 | Huawei Technologies Co., Ltd | Software Defined Network (SDN) Control Signaling for Traffic Engineering to Enable Multi-type Transport in a Data Plane |
US20180115471A1 (en) | 2015-04-23 | 2018-04-26 | Hewlett Packard Enterprise Development Lp | Network infrastructure device to implement pre-filter rules |
US20160330125A1 (en) * | 2015-05-08 | 2016-11-10 | Cisco Technology, Inc. | Policy enforcement for upstream flood traffic |
US20160337317A1 (en) | 2015-05-13 | 2016-11-17 | International Business Machines Corporation | Automated Migration Planning for Moving into a Setting of Multiple Firewalls |
US20160344565A1 (en) | 2015-05-20 | 2016-11-24 | Cisco Technology, Inc. | System and method to facilitate the assignment of service functions for service chains in a network environment |
US20160344803A1 (en) | 2015-05-20 | 2016-11-24 | Cisco Technology, Inc. | System and method to facilitate the assignment of service functions for service chains in a network environment |
US20160352866A1 (en) | 2015-05-25 | 2016-12-01 | Juniper Networks, Inc. | Selecting and monitoring a plurality of services key performance indicators using twamp |
US10645060B2 (en) | 2015-05-28 | 2020-05-05 | Xi'an Zhongxing New Software Co., Ltd | Method, device and system for forwarding message |
US20160366046A1 (en) | 2015-06-09 | 2016-12-15 | International Business Machines Corporation | Support for high availability of service appliances in a software-defined network (sdn) service chaining infrastructure |
US20180102919A1 (en) | 2015-06-10 | 2018-04-12 | Huawei Technologies Co., Ltd. | Method for implementing service chain, device, and system |
US10700891B2 (en) | 2015-06-10 | 2020-06-30 | Huawei Technologies Co., Ltd. | Method for implementing service chain, device, and system |
US20180184281A1 (en) | 2015-06-10 | 2018-06-28 | Soracom, Inc. | Communication System And Communication Method For Providing IP Network Access To Wireless Terminals |
US20200036629A1 (en) | 2015-06-15 | 2020-01-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and network nodes for scalable mapping of tags to service function chain encapsulation headers |
US10742544B2 (en) | 2015-06-15 | 2020-08-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and network nodes for scalable mapping of tags to service function chain encapsulation headers |
US10042722B1 (en) | 2015-06-23 | 2018-08-07 | Juniper Networks, Inc. | Service-chain fault tolerance in service virtualized environments |
US10554484B2 (en) | 2015-06-26 | 2020-02-04 | Nicira, Inc. | Control plane integration with hardware switches |
US20180176294A1 (en) | 2015-06-26 | 2018-06-21 | Hewlett Packard Enterprise Development Lp | Server load balancing |
US20160380812A1 (en) | 2015-06-26 | 2016-12-29 | Nicira, Inc. | Control plane integration with hardware switches |
US10609122B1 (en) | 2015-06-29 | 2020-03-31 | Amazon Technologies, Inc. | Instance backed building or place |
US20170005923A1 (en) | 2015-06-30 | 2017-01-05 | Vmware, Inc. | Dynamic virtual machine network policy for ingress optimization |
US20170005988A1 (en) | 2015-06-30 | 2017-01-05 | Nicira, Inc. | Global objects for federated firewall rule management |
US20170324654A1 (en) | 2015-07-01 | 2017-11-09 | Cisco Technology, Inc. | Forwarding packets with encapsulated service chain headers |
US9749229B2 (en) | 2015-07-01 | 2017-08-29 | Cisco Technology, Inc. | Forwarding packets with encapsulated service chain headers |
US20170005920A1 (en) | 2015-07-01 | 2017-01-05 | Cisco Technology, Inc. | Forwarding packets with encapsulated service chain headers |
US20180198705A1 (en) | 2015-07-02 | 2018-07-12 | Zte Corporation | Method and apparatus for implementing service function chain |
US20170019331A1 (en) | 2015-07-13 | 2017-01-19 | Futurewei Technologies, Inc. | Internet Control Message Protocol Enhancement for Traffic Carried by a Tunnel over Internet Protocol Networks |
US20170019303A1 (en) | 2015-07-14 | 2017-01-19 | Microsoft Technology Licensing, Llc | Service Chains for Network Services |
US20170019329A1 (en) | 2015-07-15 | 2017-01-19 | Argela-USA, Inc. | Method for forwarding rule hopping based secure communication |
US20170026417A1 (en) | 2015-07-23 | 2017-01-26 | Cisco Technology, Inc. | Systems, methods, and devices for smart mapping and vpn policy enforcement |
US20170033939A1 (en) | 2015-07-28 | 2017-02-02 | Ciena Corporation | Multicast systems and methods for segment routing |
US20170064048A1 (en) | 2015-08-28 | 2017-03-02 | Nicira, Inc. | Packet Data Restoration for Flow-Based Forwarding Element |
US20170063683A1 (en) | 2015-08-28 | 2017-03-02 | Nicira, Inc. | Traffic forwarding between geographically dispersed sites |
US20170063928A1 (en) | 2015-08-28 | 2017-03-02 | Nicira, Inc. | Defining Network Rules Based on Remote Device Management Attributes |
US10397275B2 (en) | 2015-08-28 | 2019-08-27 | Nicira, Inc. | Creating and using remote device management attribute rule data store |
US20170064749A1 (en) | 2015-08-28 | 2017-03-02 | Nicira, Inc. | Associating Service Tags with Remote Data Message Flows Based on Remote Device Management Attributes |
US20180191600A1 (en) | 2015-08-31 | 2018-07-05 | Huawei Technologies Co., Ltd. | Redirection of service or device discovery messages in software-defined networks |
US20170078961A1 (en) | 2015-09-10 | 2017-03-16 | Qualcomm Incorporated | Smart co-processor for optimizing service discovery power consumption in wireless service platforms |
US20170078176A1 (en) | 2015-09-11 | 2017-03-16 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for delay measurement of a traffic flow in a software-defined networking (sdn) system |
US10735311B2 (en) | 2015-09-14 | 2020-08-04 | Huawei Technologies Co., Ltd. | Method for obtaining information about service chain in cloud computing system and apparatus |
US20180205637A1 (en) | 2015-09-14 | 2018-07-19 | Huawei Technologies Co., Ltd. | Method for obtaining information about service chain in cloud computing system and apparatus |
US20170093758A1 (en) | 2015-09-30 | 2017-03-30 | Nicira, Inc. | Ip aliases in logical networks with hardware switches |
US20170093698A1 (en) | 2015-09-30 | 2017-03-30 | Huawei Technologies Co., Ltd. | Method and apparatus for supporting service function chaining in a communication network |
US10853111B1 (en) | 2015-09-30 | 2020-12-01 | Amazon Technologies, Inc. | Virtual machine instance migration feedback |
US20190028384A1 (en) | 2015-10-15 | 2019-01-24 | Cisco Technology, Inc. | Application identifier in service function chain metadata |
US20180248755A1 (en) | 2015-10-28 | 2018-08-30 | Huawei Technologies Co., Ltd. | Control traffic in software defined networks |
US20170126522A1 (en) | 2015-10-30 | 2017-05-04 | Oracle International Corporation | Methods, systems, and computer readable media for remote authentication dial in user service (radius) message loop detection and mitigation |
US20180248790A1 (en) | 2015-10-31 | 2018-08-30 | Huawei Technologies Co., Ltd. | Route determining method, and corresponding apparatus and system |
US20170126497A1 (en) * | 2015-10-31 | 2017-05-04 | Nicira, Inc. | Static Route Types for Logical Routers |
US20170126726A1 (en) | 2015-11-01 | 2017-05-04 | Nicira, Inc. | Securing a managed forwarding element that operates within a data compute node |
US20170134538A1 (en) | 2015-11-10 | 2017-05-11 | Telefonaktiebolaget L M Ericsson (Publ) | Systems and methods of an enhanced state-aware proxy device |
US9860079B2 (en) | 2015-11-20 | 2018-01-02 | Oracle International Corporation | Redirecting packets for egress from an autonomous system using tenant specific routing and forwarding tables |
US20170149582A1 (en) | 2015-11-20 | 2017-05-25 | Oracle International Corporation | Redirecting packets for egress from an autonomous system using tenant specific routing and forwarding tables |
US20170147399A1 (en) | 2015-11-25 | 2017-05-25 | International Business Machines Corporation | Policy-based virtual machine selection during an optimization cycle |
US20170149675A1 (en) | 2015-11-25 | 2017-05-25 | Huawei Technologies Co., Ltd. | Packet retransmission method and apparatus |
US20170163531A1 (en) | 2015-12-04 | 2017-06-08 | Cisco Technology, Inc. | Infrastructure-exclusive service forwarding |
US20170163724A1 (en) | 2015-12-04 | 2017-06-08 | Microsoft Technology Licensing, Llc | State-Aware Load Balancing |
US10084703B2 (en) | 2015-12-04 | 2018-09-25 | Cisco Technology, Inc. | Infrastructure-exclusive service forwarding |
US20170171159A1 (en) | 2015-12-14 | 2017-06-15 | Nicira, Inc. | Packet tagging for improved guest system security |
US20170170990A1 (en) | 2015-12-15 | 2017-06-15 | Microsoft Technology Licensing, Llc | Scalable Tenant Networks |
US20170180240A1 (en) | 2015-12-16 | 2017-06-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Openflow configured horizontally split hybrid sdn nodes |
US20170195255A1 (en) | 2015-12-31 | 2017-07-06 | Fortinet, Inc. | Packet routing using a software-defined networking (sdn) switch |
US20180302242A1 (en) | 2015-12-31 | 2018-10-18 | Huawei Technologies Co., Ltd. | Packet processing method, related apparatus, and nvo3 network system |
US20170208000A1 (en) | 2016-01-15 | 2017-07-20 | Cisco Technology, Inc. | Leaking routes in a service chain |
US20170208011A1 (en) | 2016-01-19 | 2017-07-20 | Cisco Technology, Inc. | System and method for hosting mobile packet core and value-added services using a software defined network and service chains |
US20170214627A1 (en) | 2016-01-21 | 2017-07-27 | Futurewei Technologies, Inc. | Distributed Load Balancing for Network Service Function Chaining |
US20170220306A1 (en) | 2016-02-03 | 2017-08-03 | Google Inc. | Systems and methods for automatic content verification |
US20170230333A1 (en) | 2016-02-08 | 2017-08-10 | Cryptzone North America, Inc. | Protecting network devices by a firewall |
US20170230467A1 (en) | 2016-02-09 | 2017-08-10 | Cisco Technology, Inc. | Adding cloud service provider, could service, and cloud tenant awareness to network service chains |
US10547692B2 (en) | 2016-02-09 | 2020-01-28 | Cisco Technology, Inc. | Adding cloud service provider, cloud service, and cloud tenant awareness to network service chains |
US20170237656A1 (en) | 2016-02-12 | 2017-08-17 | Huawei Technologies Co., Ltd. | Method and apparatus for service function forwarding in a service domain |
US20190028577A1 (en) | 2016-02-26 | 2019-01-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic re-route in a redundant system of a packet network |
US20170251065A1 (en) | 2016-02-29 | 2017-08-31 | Cisco Technology, Inc. | System and Method for Data Plane Signaled Packet Capture in a Service Function Chaining Network |
CN107204941A (en) | 2016-03-18 | 2017-09-26 | 中兴通讯股份有限公司 | The method and apparatus that a kind of flexible Ethernet path is set up |
US10812378B2 (en) | 2016-03-24 | 2020-10-20 | Cisco Technology, Inc. | System and method for improved service chaining |
US10187306B2 (en) | 2016-03-24 | 2019-01-22 | Cisco Technology, Inc. | System and method for improved service chaining |
US20170295021A1 (en) | 2016-04-07 | 2017-10-12 | Telefonica, S.A. | Method to assure correct data packet traversal through a particular path of a network |
US20170295100A1 (en) | 2016-04-12 | 2017-10-12 | Nicira, Inc. | Virtual tunnel endpoints for congestion-aware load balancing |
US10931793B2 (en) | 2016-04-26 | 2021-02-23 | Cisco Technology, Inc. | System and method for automated rendering of service chaining |
US20170310611A1 (en) | 2016-04-26 | 2017-10-26 | Cisco Technology, Inc. | System and method for automated rendering of service chaining |
US20170317926A1 (en) | 2016-04-27 | 2017-11-02 | Cisco Technology, Inc. | Generating packets in a reverse direction of a service function chain |
US20170317936A1 (en) | 2016-04-28 | 2017-11-02 | Cisco Technology, Inc. | Selective steering network traffic to virtual service(s) using policy |
US20170317954A1 (en) * | 2016-04-28 | 2017-11-02 | Nicira, Inc. | Automatic configuration of logical routers on edge nodes |
US20170317887A1 (en) | 2016-04-29 | 2017-11-02 | Deutsche Telekom Ag | Versioning system for network states in a software-defined network |
US20170318097A1 (en) | 2016-04-29 | 2017-11-02 | Hewlett Packard Enterprise Development Lp | Virtualized network function placements |
US20190116063A1 (en) | 2016-04-29 | 2019-04-18 | Hewlett Packard Enterprise Development Lp | Transforming a service packet from a first domain to a second domain |
US20170317969A1 (en) | 2016-04-29 | 2017-11-02 | Nicira, Inc. | Implementing logical dhcp servers in logical networks |
US20170324651A1 (en) | 2016-05-09 | 2017-11-09 | Cisco Technology, Inc. | Traceroute to return aggregated statistics in service chains |
US20170331672A1 (en) | 2016-05-11 | 2017-11-16 | Hewlett Packard Enterprise Development Lp | Filter tables for management functions |
US20170353387A1 (en) | 2016-06-07 | 2017-12-07 | Electronics And Telecommunications Research Institute | Distributed service function forwarding system |
US10284390B2 (en) | 2016-06-08 | 2019-05-07 | Cisco Technology, Inc. | Techniques for efficient service chain analytics |
US20170359252A1 (en) | 2016-06-08 | 2017-12-14 | Cisco Technology, Inc. | Techniques for efficient service chain analytics |
US20170366605A1 (en) | 2016-06-16 | 2017-12-21 | Alcatel-Lucent Usa Inc. | Providing data plane services for applications |
US20170364287A1 (en) | 2016-06-20 | 2017-12-21 | Vmware, Inc. | Virtual machine recovery in shared memory architecture |
US20170364794A1 (en) | 2016-06-20 | 2017-12-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for classifying the payload of encrypted traffic flows |
US20170373990A1 (en) | 2016-06-23 | 2017-12-28 | Cisco Technology, Inc. | Transmitting network overlay information in a service function chain |
US10547508B1 (en) | 2016-06-29 | 2020-01-28 | Juniper Networks, Inc. | Network services using pools of pre-configured virtualized network functions and service chains |
US20180006935A1 (en) | 2016-06-30 | 2018-01-04 | Juniper Networks, Inc. | Auto discovery and auto scaling of services in software-defined network environment |
US20180004954A1 (en) | 2016-06-30 | 2018-01-04 | Amazon Technologies, Inc. | Secure booting of virtualization managers |
US20190140950A1 (en) | 2016-07-01 | 2019-05-09 | Huawei Technologies Co., Ltd. | Method, apparatus, and system for forwarding packet in service function chaining sfc |
US11075839B2 (en) | 2016-07-01 | 2021-07-27 | Huawei Technologies Co., Ltd. | Method, apparatus, and system for forwarding packet in service function chaining SFC |
US20190140947A1 (en) | 2016-07-01 | 2019-05-09 | Huawei Technologies Co., Ltd. | Service Function Chaining SFC-Based Packet Forwarding Method, Apparatus, and System |
US11026047B2 (en) * | 2016-07-21 | 2021-06-01 | International Business Machines Corporation | Associating multiple user devices with a single user |
US20180026911A1 (en) | 2016-07-25 | 2018-01-25 | Cisco Technology, Inc. | System and method for providing a resource usage advertising framework for sfc-based workloads |
US20190166045A1 (en) | 2016-07-27 | 2019-05-30 | Zte Corporation | Packet forwarding method and device |
US20190124096A1 (en) | 2016-07-29 | 2019-04-25 | ShieldX Networks, Inc. | Channel data encapsulation system and method for use with client-server data channels |
US20180041524A1 (en) | 2016-08-02 | 2018-02-08 | Cisco Technology, Inc. | Steering of cloned traffic in a service function chain |
US20180041425A1 (en) | 2016-08-05 | 2018-02-08 | Huawei Technologies Co., Ltd. | Service-based traffic forwarding in virtual networks |
US20190268384A1 (en) | 2016-08-05 | 2019-08-29 | Alcatel Lucent | Security-on-demand architecture |
US20180041470A1 (en) | 2016-08-08 | 2018-02-08 | Talari Networks Incorporated | Applications and integrated firewall design in an adaptive private network (apn) |
US20180247082A1 (en) | 2016-08-11 | 2018-08-30 | Intel Corporation | Secure Public Cloud with Protected Guest-Verified Host Control |
US20220019698A1 (en) | 2016-08-11 | 2022-01-20 | Intel Corporation | Secure Public Cloud with Protected Guest-Verified Host Control |
US20190173778A1 (en) | 2016-08-26 | 2019-06-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Improving sf proxy performance in sdn networks |
US20180063087A1 (en) | 2016-08-27 | 2018-03-01 | Nicira, Inc. | Managed forwarding element executing in separate namespace of public cloud data compute node than workload application |
CA3034809A1 (en) | 2016-08-27 | 2018-03-08 | Nicira, Inc. | Extension of network control system into public cloud |
US20180063000A1 (en) | 2016-08-29 | 2018-03-01 | Vmware, Inc. | Stateful connection optimization over stretched networks using packet introspection |
US20180063018A1 (en) | 2016-08-30 | 2018-03-01 | Cisco Technology, Inc. | System and method for managing chained services in a network environment |
US20180091420A1 (en) | 2016-09-26 | 2018-03-29 | Juniper Networks, Inc. | Distributing service function chain data and service function instance data in a network |
EP3300319A1 (en) | 2016-09-26 | 2018-03-28 | Juniper Networks, Inc. | Distributing service function chain data and service function instance data in a network |
US10938668B1 (en) | 2016-09-30 | 2021-03-02 | Amazon Technologies, Inc. | Safe deployment using versioned hash rings |
US20190222538A1 (en) | 2016-09-30 | 2019-07-18 | Huawei Technologies Co., Ltd. | Packet Processing Method, Computing Device, and Packet Processing Apparatus |
US20180102965A1 (en) | 2016-10-07 | 2018-04-12 | Alcatel-Lucent Usa Inc. | Unicast branching based multicast |
US20180124061A1 (en) | 2016-11-03 | 2018-05-03 | Nicira, Inc. | Performing services on a host |
US20180123950A1 (en) | 2016-11-03 | 2018-05-03 | Parallel Wireless, Inc. | Traffic Shaping and End-to-End Prioritization |
US11055273B1 (en) | 2016-11-04 | 2021-07-06 | Amazon Technologies, Inc. | Software container event monitoring systems |
US20180139098A1 (en) | 2016-11-14 | 2018-05-17 | Futurewei Technologies, Inc. | Integrating physical and virtual network functions in a service-chained network environment |
US20180145899A1 (en) | 2016-11-22 | 2018-05-24 | Gigamon Inc. | Dynamic Service Chaining and Late Binding |
US20180159943A1 (en) | 2016-12-06 | 2018-06-07 | Nicira, Inc. | Performing context-rich attribute-based services on a host |
US20180159733A1 (en) | 2016-12-06 | 2018-06-07 | Nicira, Inc. | Performing context-rich attribute-based services on a host |
US20180159801A1 (en) | 2016-12-07 | 2018-06-07 | Nicira, Inc. | Service function chain (sfc) data communications with sfc data in virtual local area network identifier (vlan id) data fields |
US20180213040A1 (en) | 2016-12-15 | 2018-07-26 | Arm Ip Limited | Enabling Communications Between Devices |
US10623309B1 (en) | 2016-12-19 | 2020-04-14 | International Business Machines Corporation | Rule processing of packets |
US20180176177A1 (en) | 2016-12-20 | 2018-06-21 | Thomson Licensing | Method for managing service chaining at a network equipment, corresponding network equipment |
US10212071B2 (en) * | 2016-12-21 | 2019-02-19 | Nicira, Inc. | Bypassing a load balancer in a return path of network traffic |
US20180176124A1 (en) * | 2016-12-21 | 2018-06-21 | Nicira, Inc. | Bypassing a load balancer in a return path of network traffic |
US20180183764A1 (en) | 2016-12-22 | 2018-06-28 | Nicira, Inc. | Collecting and processing contextual attributes on a host |
US20200364074A1 (en) | 2016-12-22 | 2020-11-19 | Nicira, Inc. | Collecting and processing contextual attributes on a host |
US10802858B2 (en) | 2016-12-22 | 2020-10-13 | Nicira, Inc. | Collecting and processing contextual attributes on a host |
US20180198791A1 (en) | 2017-01-12 | 2018-07-12 | Zscaler, Inc. | Systems and methods for cloud-based service function chaining using security assertion markup language (saml) assertion |
US20180203736A1 (en) | 2017-01-13 | 2018-07-19 | Red Hat, Inc. | Affinity based hierarchical container scheduling |
US20180219762A1 (en) | 2017-02-02 | 2018-08-02 | Fujitsu Limited | Seamless service function chaining across domains |
US20180227216A1 (en) | 2017-02-06 | 2018-08-09 | Silver Peak Systems, Inc. | Multi-level Learning For Classifying Traffic Flows From First Packet Data |
US20180234360A1 (en) | 2017-02-16 | 2018-08-16 | Netscout Systems, Inc | Flow and time based reassembly of fragmented packets by ip protocol analyzers |
US20180278530A1 (en) | 2017-03-24 | 2018-09-27 | Intel Corporation | Load balancing systems, devices, and methods |
US20180288129A1 (en) | 2017-03-29 | 2018-10-04 | Ca, Inc. | Introspection driven monitoring of multi-container applications |
US20180295036A1 (en) | 2017-04-07 | 2018-10-11 | Nicira, Inc. | Application/context-based management of virtual networks using customizable workflows |
US20180295053A1 (en) | 2017-04-10 | 2018-10-11 | Cisco Technology, Inc. | Service-function chaining using extended service-function chain proxy for service-function offload |
CN110521169A (en) | 2017-04-20 | 2019-11-29 | 思科技术公司 | Strategy for service chaining guarantees |
US20180309632A1 (en) | 2017-04-20 | 2018-10-25 | Cisco Technology, Inc. | Policy assurance for service chaining |
US10158573B1 (en) | 2017-05-01 | 2018-12-18 | Barefoot Networks, Inc. | Forwarding element with a data plane load balancer |
US20180337849A1 (en) | 2017-05-16 | 2018-11-22 | Sonus Networks, Inc. | Communications methods, apparatus and systems for providing scalable media services in sdn systems |
US10333822B1 (en) | 2017-05-23 | 2019-06-25 | Cisco Technology, Inc. | Techniques for implementing loose hop service function chains price information |
US20180351874A1 (en) | 2017-05-30 | 2018-12-06 | At&T Intellectual Property I, L.P. | Creating Cross-Service Chains of Virtual Network Functions in a Wide Area Network |
CN107105061B (en) | 2017-05-31 | 2020-09-29 | 北京中电普华信息技术有限公司 | A service registration method and device |
US20180349212A1 (en) | 2017-06-06 | 2018-12-06 | Shuhao Liu | System and method for inter-datacenter communication |
US20180375684A1 (en) | 2017-06-27 | 2018-12-27 | Cisco Technology, Inc. | Segment Routing Gateway Storing Segment Routing Encapsulating Header Used in Encapsulating and Forwarding of Returned Native Packet |
US20190007382A1 (en) | 2017-06-29 | 2019-01-03 | Vmware, Inc. | Ssh key validation in a hyper-converged computing environment |
US20190020684A1 (en) | 2017-07-13 | 2019-01-17 | Nicira, Inc. | Systems and methods for storing a security parameter index in an options field of an encapsulation header |
US20190020580A1 (en) | 2017-07-14 | 2019-01-17 | Nicira, Inc. | Asymmetric network elements sharing an anycast address |
US20190028347A1 (en) | 2017-07-21 | 2019-01-24 | Cisco Technology, Inc. | Service function chain optimization using live testing |
US20190036819A1 (en) | 2017-07-31 | 2019-01-31 | Nicira, Inc. | Use of hypervisor for active-active stateful network service cluster |
US20190068500A1 (en) | 2017-08-27 | 2019-02-28 | Nicira, Inc. | Performing in-line service in public cloud |
US20190089679A1 (en) | 2017-09-17 | 2019-03-21 | Mellanox Technologies, Ltd. | NIC with stateful connection tracking |
US20190097838A1 (en) | 2017-09-26 | 2019-03-28 | Oracle International Corporation | Virtual interface system and method for multi-tenant cloud networking |
US20190102280A1 (en) | 2017-09-30 | 2019-04-04 | Oracle International Corporation | Real-time debugging instances in a deployed container platform |
US10637750B1 (en) | 2017-10-18 | 2020-04-28 | Juniper Networks, Inc. | Dynamically modifying a service chain based on network traffic information |
US20190121961A1 (en) | 2017-10-23 | 2019-04-25 | L3 Technologies, Inc. | Configurable internet isolation and security for laptops and similar devices |
US10797966B2 (en) | 2017-10-29 | 2020-10-06 | Nicira, Inc. | Service operation chaining |
WO2019084066A1 (en) | 2017-10-29 | 2019-05-02 | Nicira, Inc. | Service operation chaining methods and computer programs |
US20190132220A1 (en) | 2017-10-29 | 2019-05-02 | Nicira, Inc. | Service operation chaining |
US20190132221A1 (en) | 2017-10-29 | 2019-05-02 | Nicira, Inc. | Service operation chaining |
US10805181B2 (en) | 2017-10-29 | 2020-10-13 | Nicira, Inc. | Service operation chaining |
US20210044502A1 (en) | 2017-10-29 | 2021-02-11 | Nicira, Inc. | Service operation chaining |
US11750476B2 (en) | 2017-10-29 | 2023-09-05 | Nicira, Inc. | Service operation chaining |
US20190140863A1 (en) | 2017-11-06 | 2019-05-09 | Cisco Technology, Inc. | Dataplane signaled bidirectional/symmetric service chain instantiation for efficient load balancing |
US20190149518A1 (en) | 2017-11-15 | 2019-05-16 | Nicira, Inc. | Packet induced revalidation of connection tracker |
US10757077B2 (en) | 2017-11-15 | 2020-08-25 | Nicira, Inc. | Stateful connection policy filtering |
US20190149512A1 (en) | 2017-11-15 | 2019-05-16 | Nicira, Inc. | Third-party service chaining using packet encapsulation in a flow-based forwarding element |
US20190149516A1 (en) | 2017-11-15 | 2019-05-16 | Nicira, Inc. | Stateful connection policy filtering |
US11012420B2 (en) | 2017-11-15 | 2021-05-18 | Nicira, Inc. | Third-party service chaining using packet encapsulation in a flow-based forwarding element |
US10708229B2 (en) | 2017-11-15 | 2020-07-07 | Nicira, Inc. | Packet induced revalidation of connection tracker |
US10938716B1 (en) | 2017-11-29 | 2021-03-02 | Riverbed Technology, Inc. | Preserving policy with path selection |
US20190173851A1 (en) | 2017-12-04 | 2019-06-06 | Nicira, Inc. | Scaling gateway to gateway traffic using flow hash |
US20190173850A1 (en) | 2017-12-04 | 2019-06-06 | Nicira, Inc. | Scaling gateway to gateway traffic using flow hash |
US20210377160A1 (en) | 2018-01-12 | 2021-12-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Mechanism for control message redirection for sdn control channel failures |
US20190230126A1 (en) | 2018-01-24 | 2019-07-25 | Nicira, Inc. | Flow-based forwarding element configuration |
US20190229937A1 (en) | 2018-01-25 | 2019-07-25 | Juniper Networks, Inc. | Multicast join message processing by multi-homing devices in an ethernet vpn |
US20190238364A1 (en) | 2018-01-26 | 2019-08-01 | Nicira, Inc. | Specifying and utilizing paths through a network |
US20200366526A1 (en) | 2018-01-26 | 2020-11-19 | Nicira, Inc. | Specifying and utilizing paths through a network |
US20190238363A1 (en) | 2018-01-26 | 2019-08-01 | Nicira, Inc. | Specifying and utilizing paths through a network |
WO2019147316A1 (en) | 2018-01-26 | 2019-08-01 | Nicira, Inc. | Specifying and utilizing paths through a network |
US10797910B2 (en) | 2018-01-26 | 2020-10-06 | Nicira, Inc. | Specifying and utilizing paths through a network |
US10659252B2 (en) | 2018-01-26 | 2020-05-19 | Nicira, Inc | Specifying and utilizing paths through a network |
US11265187B2 (en) | 2018-01-26 | 2022-03-01 | Nicira, Inc. | Specifying and utilizing paths through a network |
US20200358696A1 (en) | 2018-02-01 | 2020-11-12 | Nokia Solutions And Networks Oy | Method and device for interworking between service function chain domains |
WO2019157955A1 (en) | 2018-02-13 | 2019-08-22 | 华为技术有限公司 | Device access method, related platform and computer storage medium |
WO2019168532A1 (en) | 2018-03-01 | 2019-09-06 | Google Llc | High availability multi-single-tenant services |
US20190288946A1 (en) | 2018-03-13 | 2019-09-19 | Juniper Networks, Inc. | Adaptive load-balancing over a multi-point logical interface |
US20190286475A1 (en) | 2018-03-14 | 2019-09-19 | Microsoft Technology Licensing, Llc | Opportunistic virtual machine migration |
US20190288915A1 (en) | 2018-03-19 | 2019-09-19 | Secure-24, Llc | Discovery and migration planning techniques optimized by environmental analysis and criticality |
US11038782B2 (en) | 2018-03-27 | 2021-06-15 | Nicira, Inc. | Detecting failure of layer 2 service using broadcast messages |
US20200366584A1 (en) | 2018-03-27 | 2020-11-19 | Nicira, Inc. | Detecting failure of layer 2 service using broadcast messages |
US10728174B2 (en) | 2018-03-27 | 2020-07-28 | Nicira, Inc. | Incorporating layer 2 service between two interfaces of gateway device |
US10805192B2 (en) | 2018-03-27 | 2020-10-13 | Nicira, Inc. | Detecting failure of layer 2 service using broadcast messages |
US20190306036A1 (en) | 2018-03-27 | 2019-10-03 | Nicira, Inc. | Detecting failure of layer 2 service using broadcast messages |
US20190306086A1 (en) | 2018-03-27 | 2019-10-03 | Nicira, Inc. | Incorporating layer 2 service between two interfaces of gateway device |
US20210306240A1 (en) | 2018-03-27 | 2021-09-30 | Nicira, Inc. | Detecting failure of layer 2 service using broadcast messages |
US20190342175A1 (en) | 2018-05-02 | 2019-11-07 | Nicira, Inc. | Application of profile setting groups to logical network entities |
WO2019226327A1 (en) | 2018-05-23 | 2019-11-28 | Microsoft Technology Licensing, Llc | Data platform fabric |
US20190379578A1 (en) | 2018-06-11 | 2019-12-12 | Nicira, Inc. | Configuring a compute node to perform services on a host |
US20190379579A1 (en) | 2018-06-11 | 2019-12-12 | Nicira, Inc. | Providing shared memory for access by multiple network service containers executing on single service machine |
US20190377604A1 (en) | 2018-06-11 | 2019-12-12 | Nuweba Labs Ltd. | Scalable function as a service platform |
US20200007388A1 (en) | 2018-06-29 | 2020-01-02 | Cisco Technology, Inc. | Network traffic optimization using in-situ notification system |
US11316900B1 (en) | 2018-06-29 | 2022-04-26 | FireEye Security Holdings Inc. | System and method for automatically prioritizing rules for cyber-threat detection and mitigation |
US10997177B1 (en) | 2018-07-27 | 2021-05-04 | Workday, Inc. | Distributed real-time partitioned MapReduce for a data fabric |
US10645201B2 (en) | 2018-07-31 | 2020-05-05 | Vmware, Inc. | Packet handling during service virtualized computing instance migration |
US20200059761A1 (en) | 2018-08-17 | 2020-02-20 | Huawei Technologies Co., Ltd. | Systems and methods for enabling private communication within a user equipment group |
US11184397B2 (en) | 2018-08-20 | 2021-11-23 | Vmware, Inc. | Network policy migration to a public cloud |
US20200067828A1 (en) | 2018-08-23 | 2020-02-27 | Agora Lab, Inc. | Large-Scale Real-Time Multimedia Communications |
US20200073739A1 (en) | 2018-08-28 | 2020-03-05 | Amazon Technologies, Inc. | Constraint solver execution service and infrastructure therefor |
US20200076684A1 (en) | 2018-09-02 | 2020-03-05 | Vmware, Inc. | Service insertion at logical network gateway |
US20200076734A1 (en) | 2018-09-02 | 2020-03-05 | Vmware, Inc. | Redirection of data messages at logical network gateway |
US10944673B2 (en) * | 2018-09-02 | 2021-03-09 | Vmware, Inc. | Redirection of data messages at logical network gateway |
WO2020046686A1 (en) | 2018-09-02 | 2020-03-05 | Vmware, Inc. | Service insertion at logical network gateway |
EP3815312A1 (en) | 2018-09-02 | 2021-05-05 | VMware, Inc. | Service insertion at logical network gateway |
US11595250B2 (en) | 2018-09-02 | 2023-02-28 | Vmware, Inc. | Service insertion at logical network gateway |
US20200084147A1 (en) | 2018-09-11 | 2020-03-12 | Cisco Technology, Inc. | In-situ passive performance measurement in a network environment |
US20200084141A1 (en) | 2018-09-12 | 2020-03-12 | Corsa Technology Inc. | Methods and systems for network security universal control point |
CN109213573A (en) | 2018-09-14 | 2019-01-15 | 珠海国芯云科技有限公司 | The equipment blocking method and device of virtual desktop based on container |
US10834004B2 (en) | 2018-09-24 | 2020-11-10 | Netsia, Inc. | Path determination method and system for delay-optimized service function chaining |
US20200136960A1 (en) | 2018-10-27 | 2020-04-30 | Cisco Technology, Inc. | Software version aware networking |
US20200143388A1 (en) | 2018-11-01 | 2020-05-07 | EMC IP Holding Company LLC | Recommendation system to support mapping between regulations and controls |
US20200145331A1 (en) | 2018-11-02 | 2020-05-07 | Cisco Technology, Inc., A California Corporation | Using In-Band Operations Data to Signal Packet Processing Departures in a Network |
US11398983B2 (en) | 2018-11-04 | 2022-07-26 | Cisco Technology, Inc. | Processing packets by an offload platform adjunct to a packet switching device |
US20200162318A1 (en) | 2018-11-20 | 2020-05-21 | Cisco Technology, Inc. | Seamless automation of network device migration to and from cloud managed systems |
US20200183724A1 (en) | 2018-12-11 | 2020-06-11 | Amazon Technologies, Inc. | Computing service with configurable virtualization control levels and accelerated launches |
US20200195711A1 (en) | 2018-12-17 | 2020-06-18 | At&T Intellectual Property I, L.P. | Model-based load balancing for network data plane |
US20200204492A1 (en) | 2018-12-21 | 2020-06-25 | Juniper Networks, Inc. | Facilitating flow symmetry for service chains in a computer network |
US20200220805A1 (en) | 2019-01-03 | 2020-07-09 | Citrix Systems, Inc. | Method for optimal path selection for data traffic undergoing high processing or queuing delay |
US20200272500A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service path generation in load balanced manner |
US10929171B2 (en) | 2019-02-22 | 2021-02-23 | Vmware, Inc. | Distributed forwarding for performing service chain operations |
US11288088B2 (en) | 2019-02-22 | 2022-03-29 | Vmware, Inc. | Service control plane messaging in service data plane |
US11294703B2 (en) | 2019-02-22 | 2022-04-05 | Vmware, Inc. | Providing services by using service insertion and service transport layers |
US20200272493A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Providing services with service vm mobility |
US11301281B2 (en) | 2019-02-22 | 2022-04-12 | Vmware, Inc. | Service control plane messaging in service data plane |
US11249784B2 (en) | 2019-02-22 | 2022-02-15 | Vmware, Inc. | Specifying service chains |
US20200274810A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Distributed forwarding for performing service chain operations |
US20200274778A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Providing services by using service insertion and service transport layers |
US10949244B2 (en) | 2019-02-22 | 2021-03-16 | Vmware, Inc. | Specifying and distributing service chains |
US11321113B2 (en) | 2019-02-22 | 2022-05-03 | Vmware, Inc. | Creating and distributing service chain descriptions |
US11194610B2 (en) | 2019-02-22 | 2021-12-07 | Vmware, Inc. | Service rule processing and path selection at the source |
US20200274945A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service control plane messaging in service data plane |
US20200274779A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service proxy operations |
US20200274769A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Specifying and distributing service chains |
US11354148B2 (en) | 2019-02-22 | 2022-06-07 | Vmware, Inc. | Using service data plane for service control plane messaging |
US11360796B2 (en) | 2019-02-22 | 2022-06-14 | Vmware, Inc. | Distributed forwarding for performing service chain operations |
US20200272494A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Segregated service and forwarding planes |
US11397604B2 (en) | 2019-02-22 | 2022-07-26 | Vmware, Inc. | Service path selection in load balanced manner |
US11003482B2 (en) | 2019-02-22 | 2021-05-11 | Vmware, Inc. | Service proxy operations |
US20200272498A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Distributed forwarding for performing service chain operations |
US11012351B2 (en) | 2019-02-22 | 2021-05-18 | Vmware, Inc. | Service path computation for service insertion |
US20200274808A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service path selection in load balanced manner |
US20200274944A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Specifying service chains |
US11036538B2 (en) | 2019-02-22 | 2021-06-15 | Vmware, Inc. | Providing services with service VM mobility |
US11042397B2 (en) | 2019-02-22 | 2021-06-22 | Vmware, Inc. | Providing services with guest VM mobility |
US20200272497A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Configuring distributed forwarding for performing service chain operations |
US20200274795A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service control plane messaging in service data plane |
US20200272495A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Using service data plane for service control plane messaging |
US20200272496A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service rule processing and path selection at the source |
US11074097B2 (en) | 2019-02-22 | 2021-07-27 | Vmware, Inc. | Specifying service chains |
US20200272499A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Creating and distributing service chain descriptions |
US20200272501A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Specifying service chains |
US11467861B2 (en) | 2019-02-22 | 2022-10-11 | Vmware, Inc. | Configuring distributed forwarding for performing service chain operations |
US11086654B2 (en) | 2019-02-22 | 2021-08-10 | Vmware, Inc. | Providing services by using multiple service planes |
US20230168917A1 (en) | 2019-02-22 | 2023-06-01 | Vmware, Inc. | Providing services with guest vm mobility |
US11609781B2 (en) | 2019-02-22 | 2023-03-21 | Vmware, Inc. | Providing services with guest VM mobility |
US11119804B2 (en) | 2019-02-22 | 2021-09-14 | Vmware, Inc. | Segregated service and forwarding planes |
US20200274826A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Providing services with guest vm mobility |
WO2020171937A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Providing services with guest vm mobility |
US11604666B2 (en) | 2019-02-22 | 2023-03-14 | Vmware, Inc. | Service path generation in load balanced manner |
US20200274801A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Service path computation for service insertion |
US20200274757A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Providing services by using multiple service planes |
US20200274809A1 (en) | 2019-02-22 | 2020-08-27 | Vmware, Inc. | Providing services by using service insertion and service transport layers |
US20210311772A1 (en) | 2019-02-22 | 2021-10-07 | Vmware, Inc. | Providing services with guest vm mobility |
US20200287962A1 (en) | 2019-03-05 | 2020-09-10 | Cisco Technology, Inc. | Load balancing in a distributed system |
US20200344088A1 (en) | 2019-04-29 | 2020-10-29 | Vmware, Inc. | Network interoperability support for non-virtualized entities |
US20200382420A1 (en) | 2019-05-31 | 2020-12-03 | Juniper Networks, Inc. | Inter-network service chaining |
US20200382412A1 (en) | 2019-05-31 | 2020-12-03 | Microsoft Technology Licensing, Llc | Multi-Cast Support for a Virtual Network |
US20200389401A1 (en) | 2019-06-06 | 2020-12-10 | Cisco Technology, Inc. | Conditional composition of serverless network functions using segment routing |
US20210004245A1 (en) | 2019-07-02 | 2021-01-07 | Hewlett Packard Enterprise Development Lp | Deploying service containers in an adapter device |
CN112181632A (en) | 2019-07-02 | 2021-01-05 | 慧与发展有限责任合伙企业 | Deploy the service container in the adapter device |
US20210011816A1 (en) | 2019-07-10 | 2021-01-14 | Commvault Systems, Inc. | Preparing containerized applications for backup using a backup services container in a container-orchestration pod |
US20210011812A1 (en) | 2019-07-10 | 2021-01-14 | Commvault Systems, Inc. | Preparing containerized applications for backup using a backup services container and a backup services container-orchestration pod |
US20210067439A1 (en) | 2019-08-26 | 2021-03-04 | Vmware, Inc. | Forwarding element with physical and virtual data planes |
WO2021041440A1 (en) | 2019-08-26 | 2021-03-04 | Microsoft Technology Licensing, Llc | Computer device including nested network interface controller switches |
US20210073736A1 (en) | 2019-09-10 | 2021-03-11 | Alawi Holdings LLC | Computer implemented system and associated methods for management of workplace incident reporting |
US20210120080A1 (en) | 2019-10-16 | 2021-04-22 | Vmware, Inc. | Load balancing for third party services |
US20210117217A1 (en) | 2019-10-21 | 2021-04-22 | ForgeRock, Inc. | Systems and methods for tuning containers in a high availability environment |
US20210136140A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Using service containers to implement service chains |
WO2021086462A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Distributed service chain across multiple clouds |
US20220030058A1 (en) | 2019-10-30 | 2022-01-27 | Vmware, Inc. | Distributed service chain across multiple clouds |
US20210136141A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Distributed service chain across multiple clouds |
US20210135992A1 (en) | 2019-10-30 | 2021-05-06 | Vmware, Inc. | Distributed fault tolerant service chain |
US11140218B2 (en) | 2019-10-30 | 2021-10-05 | Vmware, Inc. | Distributed service chain across multiple clouds |
US11283717B2 (en) | 2019-10-30 | 2022-03-22 | Vmware, Inc. | Distributed fault tolerant service chain |
US11722559B2 (en) | 2019-10-30 | 2023-08-08 | Vmware, Inc. | Distributed service chain across multiple clouds |
US20210136147A1 (en) | 2019-10-31 | 2021-05-06 | Keysight Technologies, Inc. | Methods, systems and computer readable media for self-replicating cluster appliances |
US11157304B2 (en) | 2019-11-01 | 2021-10-26 | Dell Products L.P. | System for peering container clusters running on different container orchestration systems |
US11223494B2 (en) | 2020-01-13 | 2022-01-11 | Vmware, Inc. | Service insertion for multicast traffic at boundary |
US20220078037A1 (en) | 2020-01-13 | 2022-03-10 | Vmware, Inc. | Service insertion for multicast traffic at boundary |
US20210218587A1 (en) | 2020-01-13 | 2021-07-15 | Vmware, Inc. | Service insertion for multicast traffic at boundary |
US11153406B2 (en) | 2020-01-20 | 2021-10-19 | Vmware, Inc. | Method of network performance visualization of service function chains |
US20230283689A1 (en) | 2020-01-20 | 2023-09-07 | Vmware, Inc. | Method of adjusting service function chains to improve network performance |
US20210227042A1 (en) | 2020-01-20 | 2021-07-22 | Vmware, Inc. | Method of adjusting service function chains to improve network performance |
US20210227041A1 (en) | 2020-01-20 | 2021-07-22 | Vmware, Inc. | Method of network performance visualization of service function chains |
US11659061B2 (en) | 2020-01-20 | 2023-05-23 | Vmware, Inc. | Method of adjusting service function chains to improve network performance |
US20210240734A1 (en) | 2020-02-03 | 2021-08-05 | Microstrategy Incorporated | Deployment of container-based computer environments |
US20210266295A1 (en) | 2020-02-25 | 2021-08-26 | Uatc, Llc | Deterministic Container-Based Network Configurations for Autonomous Vehicles |
US20210271565A1 (en) | 2020-03-02 | 2021-09-02 | Commvault Systems, Inc. | Platform-agnostic containerized application data protection |
US20210311758A1 (en) | 2020-04-02 | 2021-10-07 | Vmware, Inc. | Management of a container image registry in a virtualized computer system |
US20210314310A1 (en) | 2020-04-02 | 2021-10-07 | Vmware, Inc. | Secured login management to container image registry in a virtualized computer system |
US11368387B2 (en) | 2020-04-06 | 2022-06-21 | Vmware, Inc. | Using router as service node through logical service plane |
US20210314415A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Providing services at the edge of a network using selected virtual tunnel interfaces |
WO2021206789A1 (en) | 2020-04-06 | 2021-10-14 | Vmware, Inc. | Using service planes to perform services at the edge of a network |
US11743172B2 (en) | 2020-04-06 | 2023-08-29 | Vmware, Inc. | Using multiple transport mechanisms to provide services at the edge of a network |
US20210314277A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Using router as service node through logical service plane |
US11277331B2 (en) | 2020-04-06 | 2022-03-15 | Vmware, Inc. | Updating connection-tracking records at a network edge using flow programming |
US11438257B2 (en) | 2020-04-06 | 2022-09-06 | Vmware, Inc. | Generating forward and reverse direction connection-tracking records for service paths at a network edge |
US20210314252A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Using applied-to field to identify connection-tracking records for different interfaces |
US20210314423A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Using service planes to perform services at the edge of a network |
US11212356B2 (en) | 2020-04-06 | 2021-12-28 | Vmware, Inc. | Providing services at the edge of a network using selected virtual tunnel interfaces |
US11528219B2 (en) | 2020-04-06 | 2022-12-13 | Vmware, Inc. | Using applied-to field to identify connection-tracking records for different interfaces |
US20210314268A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Using multiple transport mechanisms to provide services at the edge of a network |
US20210314248A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Updating connection-tracking records at a network edge using flow programming |
US20210314253A1 (en) | 2020-04-06 | 2021-10-07 | Vmware, Inc. | Generating forward and reverse direction connection-tracking records for service paths at a network edge |
US20210328913A1 (en) | 2020-04-20 | 2021-10-21 | Cisco Technology, Inc. | Service aware virtual private network for optimized forwarding in cloud native environment |
US20210349767A1 (en) | 2020-05-05 | 2021-11-11 | Red Hat, Inc. | Migrating virtual machines between computing environments |
US20220038310A1 (en) | 2020-07-28 | 2022-02-03 | Vmware, Inc. | Method for providing distributed gateway service at host computer |
US20220060467A1 (en) | 2020-08-24 | 2022-02-24 | Just One Technologies LLC | Systems and methods for phone number certification and verification |
US20220188140A1 (en) | 2020-12-15 | 2022-06-16 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
US11611625B2 (en) | 2020-12-15 | 2023-03-21 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
US20220191304A1 (en) | 2020-12-15 | 2022-06-16 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
US11734043B2 (en) | 2020-12-15 | 2023-08-22 | Vmware, Inc. | Providing stateful services in a scalable manner for machines executing on host computers |
WO2022132308A1 (en) | 2020-12-15 | 2022-06-23 | Vmware, Inc. | Providing stateful services a scalable manner for machines executing on host computers |
US11528213B2 (en) | 2020-12-30 | 2022-12-13 | Juniper Networks, Inc. | Sharing routes using an in-memory data store in a distributed network system |
US11153190B1 (en) | 2021-01-21 | 2021-10-19 | Zscaler, Inc. | Metric computation for traceroute probes using cached data to prevent a surge on destination servers |
Non-Patent Citations (30)
Title |
---|
Author Unknown, "AppLogic Features," Jul. 2007, 2 pages, 3TERA, Inc. |
Author Unknown, "Datagram," Jun. 22, 2012, 2 pages, retrieved from https://web.archive.org/web/20120622031055/https://en.wikipedia.org/wiki/datagram. |
Author Unknown, "Enabling Service Chaining on Cisco Nexus 1000V Series," Month Unknown, 2012, 25 pages, Cisco. |
Author Unknown, "MPLS," Mar. 3, 2008, 47 pages. |
Author Unknown, "Reference Design: VMware NSX for vSphere (NSX), Network Virtualization Design Guide,", Aug. 21, 2014, 167 pages, VMware, Inc., Palo Alto, CA, retrieved from https:// communities.vmware.com/docs/DOC-27683. |
Author Unknown, "Research on Multi-tenancy Network Technology for Datacenter Network," May 2015, 64 pages, Beijing Jiaotong University. |
Author Unknown, "Service Chaining in OpenStack with NSX," Dec. 28, 2016, 2 pages, retrieved from https://www.youtube.com/watch?v=xY1uz6PjWlo. |
Casado, Martin, et al., "Virtualizing the Network Forwarding Plane," Dec. 2010, 6 pages. |
Cianfrani, Antonio, et al., "Translating Traffic Engineering Outcome into Segment Routing Paths: the Encoding Problem," 2016 IEEE Conference on Computer Communications Workshops (Infocom Wkshps): GI 2016: 9th IEEE Global Internet Symposium, Apr. 10-14, 2016, 6 pages, IEEE, San Francisco, CA, USA. |
Dixon, Colin, et al., "An End to the Middle," Proceedings of the 12th Conference on Hot Topics in Operating Systems, May 2009, 5 pages, USENIX Association, Berkeley, CA, USA. |
Dumitriu, Dan Mihai, et al., (U.S. Appl. No. 61/514,990), filed Aug. 4, 2011, 31 pages. |
Greenberg, Albert, et al., "VL2: A Scalable and Flexible Data Center Network," SIGCOMM '09, Aug. 17-21, 2009, 12 pages, ACM, Barcelona, Spain. |
Guichard, J., et al., "Network Service Chaining Problem Statement," Network Working Group, Jun. 13, 2013, 14 pages, Cisco Systems, Inc. |
Halpern, J., et al., "Service Function Chaining (SFC) Architecture," draft-ietf-sfc-architecture-02, Sep. 20, 2014, 26 pages, IETF. |
Halpern, J., et al., "Service Function Chaining (SFC) Architecture," RFC 7665, Oct. 2015, 32 pages, IETF Trust. |
Joseph, Dilip Anthony, et al., "A Policy-aware Switching Layer for Data Centers," Jun. 24, 2008, 26 pages, Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA. |
Karakus, Murat, et al., "Quality of Service (QoS) in Software Defined Networking (SDN): A Survey," Journal of Network and Computer Applications, Dec. 9, 2016, 19 pages, vol. 80, Elsevier, Ltd. |
Kumar, S., et al., "Service Function Chaining Use Cases in Data Centers," draft-ietf-sfc-dc-use-cases-01, Jul. 21, 2014, 23 pages, IETF. |
Li, Qing-Gu, "Network Virtualization of Data Center Security," Information Security and Technology, Oct. 2012, 3 pages. |
Lin, Po-Ching, et al., "Balanced Service Chaining in Software-Defined Networks with Network Function Virtualization," Computer: Research Feature, Nov. 2016, 9 pages, vol. 49, No. 11, IEEE. |
Liu, W., et al., "Service Function Chaining (SFC) Use Cases," draft-liu-sfc-use-cases-02, Feb. 13, 2014, 17 pages, IETF. |
Non-Published Commonly Owned U.S. Appl. No. 17/976,783, filed Oct. 29, 2022, 86 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/211,580, filed Jun. 19, 2023, 88 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/227,303, filed Jul. 28, 2023, 65 pages, Nicira, Inc. |
PCT International Search Report and Written Opinion of Commonly Owned International Patent Application PCT/US2019/047586, mailed Jan. 10, 2020, 16 pages, International Searching Authority (EPO). |
Salsano, Stefano, et al., "Generalized Virtual Networking: An Enabler for Service Centric Networking and Network Function Virtualization," 2014 16th International Telecommunications Network Strategy and Planning Symposium, Sep. 17-19, 2014, 7 pages, IEEE, Funchal, Portugal. |
Sekar, Vyas, et al., "Design and Implementation of a Consolidated Middlebox Architecture," 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 25-27, 2012, 14 pages, USENIX, San Jose, CA, USA. |
Sherry, Justine, et al., "Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service," In Proc. of SIGCOMM '12, Aug. 13-17, 2012, 12 pages, Helsinki, Finland. |
Siasi, N., et al., "Container-Based Service Function Chain Mapping," 2019 SoutheastCon, Apr. 11-14, 2019, 6 pages, IEEE, Huntsville, AL, USA. |
Xiong, Gang, et al., "A Mechanism for Configurable Network Service Chaining and Its Implementation," KSII Transactions on Internet and Information Systems, Aug. 2016, 27 pages, vol. 10, No. 8, KSII. |
Also Published As
Publication number | Publication date |
---|---|
US20230179474A1 (en) | 2023-06-08 |
US20200076684A1 (en) | 2020-03-05 |
US11595250B2 (en) | 2023-02-28 |
US20250080414A1 (en) | 2025-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12177067B2 (en) | Service insertion at logical network gateway | |
US10944673B2 (en) | Redirection of data messages at logical network gateway | |
CN112673596B (en) | Service insertion method, device and system at logic gateway | |
US12074731B2 (en) | Transitive routing in public cloud | |
US11902050B2 (en) | Method for providing distributed gateway service at host computer | |
US11115465B2 (en) | Accessing endpoints in logical networks and public cloud service providers native networks using a single network interface and a single routing table | |
US10659431B2 (en) | Implementing logical network security on a hardware switch | |
US10601705B2 (en) | Failover of centralized routers in public cloud logical networks | |
US10491516B2 (en) | Packet communication between logical networks and public cloud service providers native networks using a single network interface and a single routing table | |
US10938788B2 (en) | Static routes for policy-based VPN | |
US10491466B1 (en) | Intelligent use of peering in public cloud | |
US10862753B2 (en) | High availability for stateful services in public cloud logical networks | |
US11451413B2 (en) | Method for advertising availability of distributed gateway service and machines at host computer | |
EP4164196B1 (en) | High availability for stateful services in public cloud logical networks | |
US20220038379A1 (en) | Route advertisement to support distributed gateway services architecture | |
EP3673365A1 (en) | Accessing endpoints in logical networks and public cloud service providers native networks using a single network interface and a single routing table | |
US10491483B2 (en) | Using application programming interface calls for communication between network functions | |
US12021682B1 (en) | Scaling of logical router pods | |
EP4518272A1 (en) | Network management system configuring pods to implement logical router | |
US20250077249A1 (en) | Network management system configuring pods to implement logical router | |
US20250080630A1 (en) | Definition of logical router service rules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: VMWARE LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:VMWARE, INC.;REEL/FRAME:066692/0103 Effective date: 20231121 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: VMWARE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAVEEN, AKHILA;MUNDARAGI, KANTESH;MISHRA, RAHUL;AND OTHERS;REEL/FRAME:069052/0434 Effective date: 20180830 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |