US12220232B2 - Apparatus for controlling operations of continuous glucose monitoring system - Google Patents
Apparatus for controlling operations of continuous glucose monitoring system Download PDFInfo
- Publication number
- US12220232B2 US12220232B2 US17/264,796 US201917264796A US12220232B2 US 12220232 B2 US12220232 B2 US 12220232B2 US 201917264796 A US201917264796 A US 201917264796A US 12220232 B2 US12220232 B2 US 12220232B2
- Authority
- US
- United States
- Prior art keywords
- user terminal
- communication module
- bluetooth communication
- monitoring system
- glucose monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 122
- 239000008103 glucose Substances 0.000 title claims abstract description 122
- 238000012544 monitoring process Methods 0.000 title claims abstract description 80
- 238000004891 communication Methods 0.000 claims abstract description 103
- 230000004044 response Effects 0.000 claims description 11
- 239000008280 blood Substances 0.000 description 41
- 210000004369 blood Anatomy 0.000 description 41
- 206010012601 diabetes mellitus Diseases 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 208000013016 Hypoglycemia Diseases 0.000 description 5
- 230000002218 hypoglycaemic effect Effects 0.000 description 5
- 208000002193 Pain Diseases 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010017711 Gangrene Diseases 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 208000004880 Polyuria Diseases 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 235000020980 bad eating habits Nutrition 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000004296 neuralgia Diseases 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 208000021090 palsy Diseases 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 206010036067 polydipsia Diseases 0.000 description 1
- 208000022530 polyphagia Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150847—Communication to or from blood sampling device
- A61B5/15087—Communication to or from blood sampling device short range, e.g. between console and disposable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/002—Monitoring the patient using a local or closed circuit, e.g. in a room or building
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150946—Means for varying, regulating, indicating or limiting the speed or time of blood collection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0204—Operational features of power management
- A61B2560/0214—Operational features of power management of power generation or supply
Definitions
- the present disclosure relates to an apparatus for controlling operations of a continuous glucose monitoring system. More specifically, in the apparatus for controlling operations of the continuous glucose monitoring system, when a continuous glucose monitoring system is located within a certain distance of a user terminal, power of a battery can be supplied to the continuous glucose monitoring system through a power switch switched on in response to an enable signal generated by a near field communication module, thereby starting operations of the continuous glucose monitoring system without user intervention.
- the near field communication module can provide connection information to the user terminal, thereby automatically performing a pairing connection with the user terminal using the near field communication module and a bluetooth communication module.
- an enable signal generated by the bluetooth communication module can be provided to the power switch, thereby maintaining the pairing connection with the user terminal, even when the user terminal is outside of a range for near field communication.
- Diabetes is a chronic disease common in modern people. In the Republic of Korea, two million or more people, about 5% of the total population, suffer from diabetes.
- Diabetes is caused by the pancreas producing an entirely, or relatively, insufficient amount of insulin due to a variety of reasons, such as obesity, stress, and bad eating habits, and due to congenital or hereditary reasons, so that glucose levels are absolutely high in blood, instead of being balanced in blood.
- Blood contains a certain concentration of glucose, from which tissue cells produce energy.
- Diabetes has subtle or no subjective symptoms in the early stages of the disease. With the progression of the disease, however, the classic symptoms of diabetes, such as polydipsia, polyphagia, polyuria, weight loss, fatigue, itchy skin, and slow healing of cuts of the hands and feet, appear. Prolonged diabetes may cause complications, such as blurred vision, high blood pressure, nephropathy, palsy, periodontal diseases, muscle spasms, neuralgia, and gangrene.
- the glucose monitoring device uses a method in which a user draws blood from a finger tip and performs a blood glucose measurement once and a method in which the glucose monitoring system is attached to a user's abdomen and arm and blood glucose measurement is continuously performed.
- CGMSs continuous glucose monitoring systems
- Invasive glucose monitoring systems measure blood glucose through a method in which a diabetic patient collects blood by stabbing a pain-sensitive finger tip with a needle to check blood glucose thereof, which may causes pain and repulsion when blood is collected.
- CGMSs that continuously measure blood glucose after a needle-shaped sensor is inserted into a part of the abdomen, the arm, or the like which is relatively less sensitive to pain.
- the CGMS includes a sensor module attached to the skin of the body to extract a body fluid and measure blood glucose and a transmitter configured to transmit a blood glucose level measured by the sensor module to a user terminal.
- the user terminal is provided with a dedicated application program for managing blood glucose information received from the CGMS. A user may check the measured blood glucose information through the dedicated application program of the user terminal.
- a process for establishing communication channel between the CGMS and the user terminal should be primarily performed.
- the user terminal and the CGMS are paired and connected using Bluetooth communication and then communicate with each other.
- the CGMS has the expiration date about two weeks.
- a user In order to pair and connect the CGMS to the user terminal, a user should directly input pairing connection information to the user terminal every time.
- it may be difficult for the user to accurately measure blood glucose information or the user may not be able to measure blood glucose information during a set period due to limited battery power.
- Various aspects of the present disclosure provide an apparatus for controlling operations of a continuous glucose monitoring system.
- a continuous glucose monitoring system When a continuous glucose monitoring system is located within a certain distance of a user terminal, power of a battery can be supplied to the continuous glucose monitoring system through a power switch switched on in response to an enable signal generated by a near field communication module, thereby starting operation of the continuous glucose monitoring system.
- an apparatus for controlling operations of a continuous glucose monitoring system the apparatus being able to maintain a pairing communication with a user terminal by providing an enable signal generated by a bluetooth communication module to a power switch when the pairing connection with the user terminal is completed.
- an apparatus for controlling operations of a continuous glucose monitoring system may include: a near field wireless communication (NFC) module generating a first enable signal when power is supplied from a user terminal; a Bluetooth communication module; and a power switch switched on when the first enable signal is received from the NFC module and supplying power from a battery to the Bluetooth communication module, wherein the Bluetooth communication module transmits an advertising message to the user terminal when the power is supplied from the battery through the power switch.
- NFC near field wireless communication
- the Bluetooth communication module may be activated in response to a connection signal provided through the NFC module and may transmit the advertising message to the user terminal.
- connection signal may be received from the user terminal through the NFC module.
- the NFC module may transmit connection information to the user terminal.
- the NFC module may transmit the connection information provided from the Bluetooth communication module to the user terminal.
- the Bluetooth communication module may maintain communication with the user terminal.
- the Bluetooth communication module may generate a second enable signal and may provide the generated second enable signal to the power switch.
- the power switch may be switched on to supply the power of the battery to the Bluetooth communication module.
- the apparatus for controlling operations of a continuous glucose monitoring system has the following effects.
- the apparatus for controlling operations of a continuous glucose monitoring system when a continuous glucose monitoring system is located within a certain distance from a user terminal, power of the battery can be supplied to the continuous glucose monitoring system through the power switch switched on in response to an enable signal generated by the near field communication module, thereby starting operations of the continuous glucose monitoring system without separate user intervention.
- the near field communication module provides connection information to a user terminal, a pairing connection with the user terminal is automatically performed using the near field communication module and the Bluetooth communication module.
- an enable signal generated by the Bluetooth communication module can be provided to the power switch, thereby maintaining the pairing connection with the user terminal even when the user terminal is out of a distance for short range communication.
- a pairing connection can be performed by transmitting connection information to the user terminal. Accordingly, information of the continuous glucose monitoring system can be transmitted only to a limited user terminal, thereby safely protecting user's personal information.
- FIG. 1 is a diagram illustrating a continuous glucose monitoring system according to the present disclosure
- FIG. 2 is a functional block diagram illustrating an apparatus for controlling operations of a continuous glucose monitoring system according to the present disclosure
- FIG. 3 is a functional block diagram illustrating an example of a Bluetooth communication module according to the present disclosure
- FIG. 4 is a flow diagram illustrating messages transmitted and received in the continuous glucose monitoring system according to the present disclosure.
- FIG. 5 is a set of diagrams illustrating operation examples of a dedicated application program of a user terminal in the continuous blood glucose measurement system according to the present disclosure.
- FIG. 1 is a diagram illustrating a continuous glucose monitoring system.
- a continuous glucose monitoring system 100 is attached to a skin of a user 1 to periodically extract a body fluid of the user 1 and continuously measure bioinformation of the user 1 , for example, a blood glucose level using the extracted body fluid.
- the continuous glucose monitoring system 100 and a user terminal 10 are connected to each other through short range communication, such as bluetooth communication or near field communication (NFC), to transmit and receive data through the short range communication. That is, when the continuous glucose monitoring system 100 and the user terminal 10 are located within a range of the short range communication, the continuous glucose monitoring system 100 transmits measured bioinformation of the user 1 to the user terminal 10 .
- short range communication such as bluetooth communication or near field communication (NFC)
- NFC near field communication
- an NFC module (not shown) provided in the continuous glucose monitoring system 100 starts to be operated by receiving power from the user terminal 10 .
- the operated NFC module starts to operate a bluetooth communication module (not shown) provided in the continuous glucose monitoring system 100 .
- the continuous glucose monitoring system 100 automatically performs a communication connection procedure using the NFC module and the bluetooth communication module to be connected to and communicate with the user terminal 10 .
- the continuous glucose monitoring system 100 periodically transmits measured blood glucose information of the user to the user terminal 10 .
- the user terminal 10 is a device capable of storing or outputting the blood glucose information of the user 1 received from the continuous glucose monitoring system 100 such that the blood glucose information may be checked and output to the user.
- a dedicated application program for managing blood glucose information may be executed in the user terminal 10 .
- a smartphone, a notebook, a personal digital assistant (PDA), a blood glucose management dedicated terminal, or the like may be used.
- the user terminal 10 and a management server 50 are connected to each other via a network 30 .
- the user terminal 10 transmits the blood glucose information of the user 1 , received from the continuous glucose monitoring system 100 , to the management server 50 or transmits sensor use information of the continuous glucose monitoring system 100 to the management server 50 .
- the user terminal 10 identifies a user on the basis of inputted user information and registers the received blood glucose information by mapping the received blood glucose information to the identified user.
- the user terminal 10 transmits the registered blood glucose information, mapped to the user, or transmits the sensor use information to the management server 50 together with the user information.
- FIG. 2 is a functional block diagram illustrating an apparatus for controlling operations of a continuous glucose monitoring system according to the present disclosure.
- the NFC module 110 of a continuous glucose monitoring system receives operating power from the user terminal.
- the NFC communication module 110 receiving the operation power generates a first enable signal EN 1 and provides the first enable signal EN 1 to a power switch 130 .
- the NFC module 110 does not generate an enable signal. Only when the operating power is received from the user terminal, does the NFC module 110 generate the first enable signal EN 1 .
- the power switch 130 controls connection between a battery 150 and a bluetooth communication module 170 in response to a signal input to an enable terminal (not shown).
- an enable terminal not shown.
- the power switch 130 maintains a switched off state.
- the power switch 130 is switched on to connect the battery 150 and the bluetooth communication module 170 to each other.
- the battery 150 and the bluetooth communication module 170 are connected to each other through the power switch 130 , power is supplied from the battery 150 to the bluetooth communication module 170 .
- the bluetooth communication module 170 When the power is supplied from the battery 150 to the bluetooth communication module 170 , the bluetooth communication module 170 starts to be operated.
- the bluetooth communication module 170 first transmits an advertising message including an identifier of the continuous glucose monitoring system to the user terminal. After the bluetooth communication module 170 transmits the advertising message, the bluetooth communication module 170 controls the NFC module 110 to transmit connection information, for example, a pin code necessary for pairing and connecting the user terminal and the continuous glucose monitoring system to the user terminal.
- the bluetooth communication module 170 receives a connection complete message from the user terminal.
- the bluetooth communication module 170 generates a second enable signal and provides the generated second enable signal to an enable terminal of the power switch 130 .
- the NFC module 110 of the continuous glucose monitoring system When the NFC module 110 of the continuous glucose monitoring system does not receive power from the user terminal, due to the distance between the user terminal and the continuous glucose monitoring system being greater than the first distance and, the NFC module 110 stops generating the first enable signal EN 1 .
- the power switch 130 receives at least one of the first enable signal EN 1 and the second enable signal EN 2 through the enable terminal, the power switch 130 is switched on to connect the battery 150 and the bluetooth communication module 170 to each other.
- the bluetooth communication module 170 may generate the second enable signal EN 2 and may provide the second enable signal EN 2 to an enable terminal of the NFC module 110 .
- the power of the battery 150 may be continuously supplied to the bluetooth communication module 170 .
- FIG. 3 is a functional block diagram illustrating an example of the bluetooth communication module 170 according to the present disclosure.
- a communication connector 171 when a connection signal is received from the user terminal through the NFC module, a communication connector 171 generates an advertising message and transmits the advertising message to the user terminal.
- the communication connector 171 generates the advertising message by providing an identifier of the continuous glucose monitoring system stored in a storage 173 .
- connection information such as a connection pin code of the continuous glucose monitoring system, stored in the storage 173 , and transmits the extracted connection information to the user terminal through the NFC module.
- the user terminal and the continuous glucose monitoring system are automatically paired and connected using the identifier of the continuous glucose monitoring system and the connection information.
- the communication connector 171 receives a connection complete message from the user terminal, the communication connector 171 transmits connection complete information to a power connector 175 .
- the power connector 175 When the power connector 175 receives the connection complete information from the communication connector 171 , the power connector 175 generates the second enable signal EN 2 and provides the generated second enable signal EN 2 to the enable terminal of the power switch.
- FIG. 4 is a flow diagram illustrating messages transmitted and received in the continuous glucose monitoring system according to the present disclosure.
- the NFC module when the user terminal and the continuous glucose monitoring system are located within the first distance, the NFC module receives operating power from the user terminal in S 10 .
- An NFC module is also provided in the user terminal.
- the NFC module receiving the operating power from the user terminal starts to be operated, generates a first enable signal, and provides the generated first enable signal to the power switch in S 20 .
- the power switch is switched on in response to the first enable signal and provides power of the battery to the bluetooth communication module.
- the bluetooth communication module receives a connection signal from the user terminal through the NFC module in S 31 and S 33 .
- the connection signal is generated in a dedicated application program of the user terminal and is provided to the continuous glucose monitoring system to start a pairing connection between the user terminal and the continuous glucose monitoring system.
- the bluetooth communication module generates an advertising message including an identifier of the continuous glucose monitoring system in response to the connection signal and transmits the generated advertising message to the user terminal in S 40 .
- the bluetooth communication module transmits connection information to the user terminal through the NFC module in S 51 and S 53 .
- a user may confirm the continuous glucose monitoring system displayed on the user terminal, on the basis of the advertising message, and may automatically perform a pairing connection using the connection information received through the NFC module.
- the bluetooth communication module When the bluetooth communication module receives a connection complete message from the user terminal in S 60 , the bluetooth communication module generates a second enable signal and provides the generated second enable signal to the power switch in S 70 . Until the pairing connection between the continuous glucose monitoring system and the user terminal is completed, the power switch is switched on in response to the first enable signal received from the NFC module and provides power of the battery to the bluetooth communication module. When the pairing connection between the continuous glucose monitoring system and the user terminal is completed, the power switch is switched on in response the second enable signal received from the bluetooth communication module and provides the power of the battery to the Bluetooth communication module.
- FIG. 5 is a set of diagrams illustrating an example of operation of a dedicated application program of the user terminal in the continuous glucose monitoring system according to the present disclosure.
- identifiers of devices which are searched for and are connectable, are displayed on the user terminal.
- the continuous glucose monitoring system and the user terminal are automatically paired and connected, on the basis of a received pin code.
- the continuous glucose monitoring system corresponding to a received pin code, among the connectable devices may be automatically selected, and thus, the user terminal and the continuous glucose monitoring system may be automatically paired and connected.
- the user terminal receives periodically measured blood glucose information from the continuous glucose monitoring system and displays the received blood glucose information to the user.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Optics & Photonics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Telephone Function (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
Claims (11)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180091868A KR102200139B1 (en) | 2018-08-07 | 2018-08-07 | Apparatus for controlling operation of CGMS |
KR10-2018-0091868 | 2018-08-07 | ||
PCT/KR2019/007511 WO2020032382A1 (en) | 2018-08-07 | 2019-06-21 | Apparatus for controlling operation of continuous blood glucose tester |
Publications (2)
Publication Number | Publication Date |
---|---|
US20210290118A1 US20210290118A1 (en) | 2021-09-23 |
US12220232B2 true US12220232B2 (en) | 2025-02-11 |
Family
ID=69415249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/264,796 Active 2042-02-05 US12220232B2 (en) | 2018-08-07 | 2019-06-21 | Apparatus for controlling operations of continuous glucose monitoring system |
Country Status (7)
Country | Link |
---|---|
US (1) | US12220232B2 (en) |
EP (1) | EP3653123B1 (en) |
JP (2) | JP7212141B2 (en) |
KR (1) | KR102200139B1 (en) |
AU (2) | AU2019318970B2 (en) |
NZ (1) | NZ773218A (en) |
WO (1) | WO2020032382A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102569413B1 (en) * | 2020-12-14 | 2023-08-24 | 주식회사 아이센스 | Sensor unit for continuous glucose monitoring system |
KR102438798B1 (en) * | 2021-12-22 | 2022-09-01 | 제일기술(주) | Continuous blood glucose measurement device |
KR102420940B1 (en) * | 2022-02-10 | 2022-07-14 | 네메시스 주식회사 | Continuous blood glucose measurement data receiving device, the control method thereof and the system comprising the same |
KR20250015525A (en) | 2023-07-25 | 2025-02-03 | 주식회사 솔루엠 | Applicator built-in patch-type continuous blood glucose meter |
KR20250015527A (en) | 2023-07-25 | 2025-02-03 | 주식회사 솔루엠 | Applicator built-in patch-type continuous blood glucose meter |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006114297A1 (en) | 2005-04-26 | 2006-11-02 | Disetronic Licensing Ag | Energy-optimised data transmission for a medical appliance |
US20100198034A1 (en) | 2009-02-03 | 2010-08-05 | Abbott Diabetes Care Inc. | Compact On-Body Physiological Monitoring Devices and Methods Thereof |
WO2011119896A1 (en) | 2010-03-24 | 2011-09-29 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US20120156993A1 (en) * | 2010-12-20 | 2012-06-21 | Samsung Electronics Co., Ltd. | Dongle and method for operating external input means, and external input system with the dongle |
JP2012123552A (en) | 2010-12-07 | 2012-06-28 | Picolab Co Ltd | Authentication method, management device, and authentication system |
JP2013176579A (en) | 2006-11-17 | 2013-09-09 | Medtronic Minimed Inc | Connector, system and method for diabetes management using consumer electronic device |
US20140138432A1 (en) | 2012-11-16 | 2014-05-22 | Electronics And Telecommunications Research Institute | Sensor tag and method of providing service using the same |
US20140253323A1 (en) * | 2013-03-06 | 2014-09-11 | Lifescan, Inc. | Low analyte level alert system from continuous analyte monitor |
US20140273824A1 (en) | 2013-03-15 | 2014-09-18 | Medtronic, Inc. | Systems, apparatus and methods facilitating secure pairing of an implantable device with a remote device using near field communication |
JP2016505808A (en) | 2012-11-01 | 2016-02-25 | ブルー スパーク テクノロジーズ,インク. | Patch for body temperature logging |
CN205232211U (en) | 2015-12-18 | 2016-05-11 | 深圳市宏电技术股份有限公司 | Low -power consumption, high transmission rate's wearable equipment and data transmission system thereof |
KR20160066930A (en) | 2014-12-03 | 2016-06-13 | 한국전자통신연구원 | Method and apparatus for measurement of electrocardiogram based on NFC tag |
KR20160070924A (en) | 2014-12-10 | 2016-06-21 | 재단법인 다차원 스마트 아이티 융합시스템 연구단 | Apparatus and method for measuring using near field communication and biosensor using the same |
JP2016520379A (en) | 2013-04-30 | 2016-07-14 | アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. | System, apparatus, and method for operation of energy efficient electrical equipment |
US20160210099A1 (en) * | 2015-01-21 | 2016-07-21 | Dexcom, Inc. | Continuous glucose monitor communication with multiple display devices |
JP2016139917A (en) | 2015-01-27 | 2016-08-04 | キヤノン株式会社 | Radio communication apparatus and radio communication method |
US20170091412A1 (en) | 2014-05-30 | 2017-03-30 | Apple Inc. | Systems and Methods for Facilitating Health Research Using a Personal Wearable Device With Multiple Pairing Configurations |
US20170126070A1 (en) | 2015-10-30 | 2017-05-04 | Samsung Electronics Co., Ltd. | Wireless power receiver and method for controlling same |
KR20170051134A (en) | 2015-11-02 | 2017-05-11 | 삼성전자주식회사 | Electonic apparatus, system and the controlling method thereof |
US20170331524A1 (en) | 2014-11-18 | 2017-11-16 | Mc10, Inc. | System, device, and method for electronic device activation |
US20180026678A1 (en) * | 2016-07-25 | 2018-01-25 | Verily Life Sciences Llc | Systems and methods for passive radio enabled power gating for a body mountable device |
US20180027106A1 (en) | 2016-07-20 | 2018-01-25 | Dexcom, Inc. | System and method for wireless communication of glucose data |
US20180060529A1 (en) | 2016-08-29 | 2018-03-01 | Bigfoot Biomedical, Inc. | Network Topology for Insulin Pump Systems |
KR20180051215A (en) | 2016-11-08 | 2018-05-16 | 건양대학교산학협력단 | Bio Information Sensing Device and Patient Management Method Using It |
WO2018125841A1 (en) | 2016-12-27 | 2018-07-05 | Dexcom, Inc. | Systems and methods for patient monitoring using an hcp - specific device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10911515B2 (en) * | 2012-05-24 | 2021-02-02 | Deka Products Limited Partnership | System, method, and apparatus for electronic patient care |
-
2018
- 2018-08-07 KR KR1020180091868A patent/KR102200139B1/en active Active
-
2019
- 2019-06-21 JP JP2021506293A patent/JP7212141B2/en active Active
- 2019-06-21 EP EP19845690.7A patent/EP3653123B1/en active Active
- 2019-06-21 WO PCT/KR2019/007511 patent/WO2020032382A1/en unknown
- 2019-06-21 AU AU2019318970A patent/AU2019318970B2/en active Active
- 2019-06-21 NZ NZ773218A patent/NZ773218A/en unknown
- 2019-06-21 US US17/264,796 patent/US12220232B2/en active Active
-
2022
- 2022-09-14 AU AU2022231711A patent/AU2022231711A1/en not_active Abandoned
-
2023
- 2023-01-12 JP JP2023003164A patent/JP2023040230A/en active Pending
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006114297A1 (en) | 2005-04-26 | 2006-11-02 | Disetronic Licensing Ag | Energy-optimised data transmission for a medical appliance |
JP2013176579A (en) | 2006-11-17 | 2013-09-09 | Medtronic Minimed Inc | Connector, system and method for diabetes management using consumer electronic device |
US20100198034A1 (en) | 2009-02-03 | 2010-08-05 | Abbott Diabetes Care Inc. | Compact On-Body Physiological Monitoring Devices and Methods Thereof |
WO2011119896A1 (en) | 2010-03-24 | 2011-09-29 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
JP2012123552A (en) | 2010-12-07 | 2012-06-28 | Picolab Co Ltd | Authentication method, management device, and authentication system |
US20120156993A1 (en) * | 2010-12-20 | 2012-06-21 | Samsung Electronics Co., Ltd. | Dongle and method for operating external input means, and external input system with the dongle |
JP2016505808A (en) | 2012-11-01 | 2016-02-25 | ブルー スパーク テクノロジーズ,インク. | Patch for body temperature logging |
US9782082B2 (en) | 2012-11-01 | 2017-10-10 | Blue Spark Technologies, Inc. | Body temperature logging patch |
US20140138432A1 (en) | 2012-11-16 | 2014-05-22 | Electronics And Telecommunications Research Institute | Sensor tag and method of providing service using the same |
US20140253323A1 (en) * | 2013-03-06 | 2014-09-11 | Lifescan, Inc. | Low analyte level alert system from continuous analyte monitor |
US20140273824A1 (en) | 2013-03-15 | 2014-09-18 | Medtronic, Inc. | Systems, apparatus and methods facilitating secure pairing of an implantable device with a remote device using near field communication |
JP2016520379A (en) | 2013-04-30 | 2016-07-14 | アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. | System, apparatus, and method for operation of energy efficient electrical equipment |
US20170091412A1 (en) | 2014-05-30 | 2017-03-30 | Apple Inc. | Systems and Methods for Facilitating Health Research Using a Personal Wearable Device With Multiple Pairing Configurations |
US20170331524A1 (en) | 2014-11-18 | 2017-11-16 | Mc10, Inc. | System, device, and method for electronic device activation |
KR20160066930A (en) | 2014-12-03 | 2016-06-13 | 한국전자통신연구원 | Method and apparatus for measurement of electrocardiogram based on NFC tag |
KR20160070924A (en) | 2014-12-10 | 2016-06-21 | 재단법인 다차원 스마트 아이티 융합시스템 연구단 | Apparatus and method for measuring using near field communication and biosensor using the same |
US20160210099A1 (en) * | 2015-01-21 | 2016-07-21 | Dexcom, Inc. | Continuous glucose monitor communication with multiple display devices |
JP2016139917A (en) | 2015-01-27 | 2016-08-04 | キヤノン株式会社 | Radio communication apparatus and radio communication method |
US20170126070A1 (en) | 2015-10-30 | 2017-05-04 | Samsung Electronics Co., Ltd. | Wireless power receiver and method for controlling same |
KR20170051134A (en) | 2015-11-02 | 2017-05-11 | 삼성전자주식회사 | Electonic apparatus, system and the controlling method thereof |
CN205232211U (en) | 2015-12-18 | 2016-05-11 | 深圳市宏电技术股份有限公司 | Low -power consumption, high transmission rate's wearable equipment and data transmission system thereof |
US20180027106A1 (en) | 2016-07-20 | 2018-01-25 | Dexcom, Inc. | System and method for wireless communication of glucose data |
US20180026678A1 (en) * | 2016-07-25 | 2018-01-25 | Verily Life Sciences Llc | Systems and methods for passive radio enabled power gating for a body mountable device |
WO2018022235A1 (en) | 2016-07-25 | 2018-02-01 | Verily Life Sciences Llc | Systems and methods for passive radio enabled power gating for a body mountable device |
US20180060529A1 (en) | 2016-08-29 | 2018-03-01 | Bigfoot Biomedical, Inc. | Network Topology for Insulin Pump Systems |
KR20180051215A (en) | 2016-11-08 | 2018-05-16 | 건양대학교산학협력단 | Bio Information Sensing Device and Patient Management Method Using It |
WO2018125841A1 (en) | 2016-12-27 | 2018-07-05 | Dexcom, Inc. | Systems and methods for patient monitoring using an hcp - specific device |
Non-Patent Citations (9)
Title |
---|
Examination Report No. 1 dated Apr. 19, 2024 for Australian Patent Application No. 2022231711. |
Extended European Search Report mailed on Mar. 1, 2021for European Patent Application No. 19845690.7. |
International Preliminary Report on Patentability (Chapter I) for PCT/KR2019/007511 issued on Feb. 9, 2021 and its English translation from WIPO (now published as WO2020/032382). |
International Search Report for PCT/KR2019/007511 mailed on Sep. 23, 2019 and its English translation from WIPO (now published as WO2020/032382). |
Office Action dated Jun. 4, 2024 for Japanese Patent Application No. 2023-003164 and its English translation provided by Applicant's foreign counsel. |
Office Action mailed on Feb. 14, 2022 for New Zealand Patent Application No. 773218. |
Office Action mailed on Mar. 15, 2022 for Japanese Patent Application No. 2021- 506293 and its English translation provided from Global Dossier. |
Office Action mailed on Nov. 15, 2021 for Australian Patent Application No. 2019318970. |
Written Opinion of the International Searching Authority for PCT/KR2019/007511 mailed on Sep. 23, 2019 and its English translation by Google Translate (now published as WO2020/032382). |
Also Published As
Publication number | Publication date |
---|---|
EP3653123B1 (en) | 2024-11-13 |
NZ773218A (en) | 2022-07-29 |
AU2019318970A1 (en) | 2021-03-04 |
AU2019318970B2 (en) | 2022-06-23 |
JP2023040230A (en) | 2023-03-22 |
JP2022503522A (en) | 2022-01-12 |
WO2020032382A1 (en) | 2020-02-13 |
KR20200016590A (en) | 2020-02-17 |
AU2022231711A1 (en) | 2022-10-06 |
EP3653123A1 (en) | 2020-05-20 |
JP7212141B2 (en) | 2023-01-24 |
US20210290118A1 (en) | 2021-09-23 |
KR102200139B1 (en) | 2021-01-08 |
EP3653123A4 (en) | 2021-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12220232B2 (en) | Apparatus for controlling operations of continuous glucose monitoring system | |
US20200237298A1 (en) | Hypoglycemic Treatment Methods And Systems | |
ES2554469T3 (en) | Diabetes treatment system for the detection of an analyte and procedure for selective data transmission | |
CN101111186A (en) | Mobile medical device and communication method between medical devices | |
CA2488866A1 (en) | Method and device for monitoring physiologic signs and implementing emergency disposals | |
CN101125086A (en) | Closed-loop automatic controlling insulin-injecting system | |
JP2002526137A (en) | Remote trait monitor system | |
US20190021659A1 (en) | Wireless Medical Evaluation Device | |
CN111601543A (en) | Method for managing biometric information using sensor usage information | |
CN112996429A (en) | System for the immediate personalized treatment of patients in medical emergencies | |
WO2014119575A1 (en) | Management device, management system and management method | |
US11284816B2 (en) | Multi-analyte continuous glucose monitoring | |
AU2019220110B2 (en) | Continuous biometric information measuring device using sensor usage information stored in memory | |
TW200922520A (en) | System and method for wireless physiological signal integration | |
JP2014038489A (en) | Prescription information management device, prescription information management system, and prescription information management device control method | |
Vonteddu et al. | Smart Wearable Wristband for Patients' Health Monitoring System through IoT | |
US20210219909A1 (en) | Wearable personal healthcare sensor apparatus | |
CN105447802A (en) | Wearable diabetes patient management system | |
CN213097821U (en) | Pressure pain diagnosis and treatment system | |
JP2019154573A (en) | Biological information system | |
US20240057905A1 (en) | Multi-analyte continuous glucose monitoring | |
CN111432717A (en) | Information processing device, biological information measurement device, method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: I-SENS, INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JIN WON;YOU, CHOONG BEOM;PARK, HYO SEON;AND OTHERS;REEL/FRAME:067571/0519 Effective date: 20210128 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |