US20050177111A1 - Miniature infusion pump - Google Patents
Miniature infusion pump Download PDFInfo
- Publication number
- US20050177111A1 US20050177111A1 US10/773,672 US77367204A US2005177111A1 US 20050177111 A1 US20050177111 A1 US 20050177111A1 US 77367204 A US77367204 A US 77367204A US 2005177111 A1 US2005177111 A1 US 2005177111A1
- Authority
- US
- United States
- Prior art keywords
- actuator
- stopper
- pressure
- syringe
- plunger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001802 infusion Methods 0.000 title description 17
- 230000007246 mechanism Effects 0.000 claims abstract description 45
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims abstract description 6
- 102000004877 Insulin Human genes 0.000 claims abstract description 3
- 108090001061 Insulin Proteins 0.000 claims abstract description 3
- 229940125396 insulin Drugs 0.000 claims abstract description 3
- 238000012544 monitoring process Methods 0.000 claims abstract description 3
- 230000033001 locomotion Effects 0.000 claims description 14
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000007257 malfunction Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 239000003814 drug Substances 0.000 abstract description 14
- 229940079593 drug Drugs 0.000 abstract description 13
- 238000012545 processing Methods 0.000 abstract description 4
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 206010012601 diabetes mellitus Diseases 0.000 abstract 1
- 239000011505 plaster Substances 0.000 abstract 1
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/1452—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
- A61M5/1456—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir comprising a piston rod to be moved into the reservoir, e.g. the piston rod is part of the removable reservoir
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0266—Shape memory materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
Definitions
- the present invention relates to the field of infusion pumps for controlled delivery of medication to patients, more specifically to an infusion pump with an improved minute lightweight drive mechanism.
- Infusion pumps deliver a volumetrically controlled medication to the patient over a period of time.
- a processing circuitry controls the periodic delivery of dosages of medication to a patient at predetermined rates.
- Infusion pumps often contain an electrical motor which rotates a lead-screw; the rotation of the lead-screw causes a nut to linearly move along it. The nut pushes a plunger through a syringe or a cartridge internal to the pump that causes medication to move from the syringe to the patient along the infusion path.
- Prior art of Infusion pumps contain a large electrical motor which are strong enough to rotate the lead-screw against the opposing pressure of the medication inside the syringe.
- Such mechanism is described, for example, in U.S. Pat. Nos. 6,248,093, 5,637,095, 5,097,122, and 5,505,709. These devices contain electrical motors which are relatively large and heavy. Since dosages are given at discrete intervals over a period of time, each time the processing circuit activates the motor it consumes large current to operate.
- a micro pump device for dispensing proportioned quantities of medical fluid.
- the medical fluid which may be, but is not limited to, insulin, is driven into the patient's body by applying pulsed pressure on syringe's plunger stem containing the medical fluid.
- the medical fluid is injected through syringe-tube connector to the patient's body.
- the device comprised of the following components: a vertically expending actuator means for applying pressure at the direction of the syringe plunger wherein the actuator activation is controlled by a programmable logic means; a stopper element for preventing the actuator movement in the opposite direction; plunger stem holder for preventing the plunger's movement back toward the actuator; guiding walls for applying pressure on the plunger stem holder; power mechanism causing gradual movement of the stopper toward the actuator.
- the actuator may be a piezoelectric (PZT) element which expends in the direction of the plunger stem upon receiving electrical current; another option is that the actuator is an electromagnetic actuator.
- the power mechanism is an electric motor which is controlled by programmable logic means and the stopper element is then a nut lever connected to a screwing nut which is screwed along a lead screw, said lead screw is rotated by the electric motor.
- the power mechanism is a spring and the stopper mechanism is comprised of two cylinders elements, connected by a supporting spring, which apply pressure on the guiding walls and are connected by a second actuator.
- the second actuator contracts in reaction to electric pulses, pulling the cylinder elements toward each other, decreasing the pressure on the guiding walls and enabling the spring to pull the stopper element toward the actuator.
- the given pulses are controlled by programmable logic means.
- the second actuator may be a Shape Memory Alloy (SMA) actuator.
- the operation of the device is controlled by programmable logic means.
- the said logic means is a microprocessor controller which coordinates the operation of the power means and of the actuator in accordance with predefined parameters determined by the user. The controller further alerts the user of malfunctions.
- the controller receives feedback about the operation of the device from two sources: an optical linear encoder and a force sensor resistor.
- the optical linear encoder gives indications as for the position of the stopper mechanism; the force sensor resistor measures changes in the movement of the plunger and the pressure within the syringe. These measurements are compared against defined plan values and analyzed to give an accurate report of the status of operation.
- the device's housing is small, lightweight and watertight.
- the device may include a remote control unit for the user's control interface.
- the stopper which can be manually adjusted to its initial position for the purpose of reloading the syringe, may be comprised of a split nut to allow of adjusting the stopper to its initial position.
- FIG. 1 is a schematic overview of the first embodiment of the present invention
- FIG. 1A portrays a detailed illustration of the physical mechanism and a block diagram of the logical mechanism of first embodiment of the present invention
- FIG. 2 is a detailed illustration of the mechanism of the first embodiment of the present invention
- FIG. 2A illustrates the infusion pump's drive mechanism according to the first embodiment of the present invention in its initial position
- FIG. 2B illustrates the second stage of the operation cycle of the infusion pump's drive mechanism according to the first embodiment of the present invention
- FIG. 2C illustrates the third stage of the operation cycle of the infusion pump's drive mechanism according to the first embodiment of the present
- FIG. 2D illustrates the final stage of the operation cycle the infusion pump's drive mechanism according to the first embodiment of the present invention
- FIG. 3 is a detailed illustration of the mechanism of the second embodiment of the present invention.
- FIG. 3A illustrates the infusion pump's drive mechanism according to the second embodiment of the present invention in its initial position
- FIG. 3B illustrates the second stage of the operation cycle of the infusion pump's drive mechanism according to the second embodiment of the present invention
- FIG. 3C illustrates the third stage of the operation cycle of the infusion pump's drive mechanism according to the second embodiment of the present
- FIG. 3D illustrates the fourth stage of the operation cycle of the infusion pump's drive mechanism according to the second embodiment of the present
- FIG. 3E illustrates the final stage of the operation cycle the infusion pump's drive mechanism according to the second embodiment of the present invention
- FIG. 4 illustrates the configuration of the stop mechanism of the second embodiment
- FIG. 5 illustrates the syringe loading operation according to the second embodiment of the present invention.
- the present invention discloses a new small lightweight mechanism for a controlled drug infusion to a patient.
- the mechanism is integrated in a miniature apparatus which operates on low energy and may dispense precise quantities of chemical reagents into a patient's body, having improved dynamic range of operation.
- the general structure of the apparatus is illustrated in FIG. 1 .
- the apparatus is composed of a waterproof device container 100 , a syringe-tube connector 108 , a tube 110 and attachment means 104 that fasten the device's container 100 to the patient's body or to a belt.
- the container 100 is comprised of a mechanism for driving the chemical reagent, which is in the syringe's hollow barrel 204 , through the syringe-tube connector 108 to the tube 110 that leads to the patient's body.
- the chemical reagent is slowly released from the syringe 105 as a controlled amount of pressure is applied on the syringe's hollow barrel 204 by the plunger stem 102 .
- the pressure of the plunger stem 102 is created by the expansion of the piezoelectric (PZT) actuator 101 which is placed at the plunger stem's 102 opposite end.
- PZT piezoelectric
- There is a substantial friction at these points of contact that ensures that the plunger may move forward towards the syringe 105 whenever a pressure pulse is applied in that direction, but prevents it from moving back in the direction of the PZT actuator 101 when pressure stops.
- the pressure on the plunger stem holder 206 is stabilized by the guiding walls springs 201 , or by an internal spring inside the plunger stem holder 206 .
- PZT actuators 101 convert electrical energy to mechanical energy by expending in analog proportions to the voltage that is applied to them.
- an electric current is applied to the PZT actuator 101 .
- the actuator is situated between the plunger stem 102 and a stopper 106 which prevents it from expending in the opposite direction. The full change in length of the PZT actuator is therefore applied on the plunger stem 102 .
- the stopper 106 which in the present embodiment is a nut lever, is connected to a screw nut 107 that is screwed on a lead screw 110 .
- the lead screw 110 is connected to an electrical motor 109 through a belt transmission 111 or via a gear mechanism (not shown). Due to this connection, the rotary motion of the motor 109 causes a similar motion of the lead screw 110 .
- the mechanism is adjusted so that the motion of the motor 109 causes the screw nut 107 and the nut lever 106 , which operate as a stopper, to move forward towards the syringe.
- FIG. 2A illustrates the mechanism at the initial stage of each cycle.
- an electric current is applied to the PZT actuator 101 which causes it to expend in the direction of the plunger stem 102 .
- the current to the PZT actuator 101 is turned off and the PZT actuator 101 shrinks back to its normal size as illustrated in FIG. 2C .
- the plunger stem holder 206 then holds the plunger stem 102 in place, and prevents it from moving back to its initial position such as in FIG. 2A .
- a gap 210 is them created between the PZT actuator 101 and the plunger stem holder 206 .
- This gap is completely reduced by the operation of the motor 109 as illustrated in FIG. 2D .
- the motor 109 turns the lead screw 110 which causes the screw nut 107 and the nut lever 106 to move forward and reduce this gap 210 .
- the operation of the device is manages, synchronizes and monitors by the microprocessor controller 224 . It controls the activation of the PTZ actuator 101 and the motor 109 according to parameters given by the user and coordinates between them. It also receives feedback indications for the operation of the device, such as from the optical linear encoder 221 and from the Force Sense Resistor (FSR) 222 for example.
- the optical linear encoder 221 is a linear array of photodiodes. Attaching a led 203 to the screw nut 107 enables the encoder 221 to detect changes in the position of the screw nut 107 and the nut lever 106 in a high level of resolution.
- the FSR 222 is a resistor which changes its electrical resistance according to the mechanical pressure on it. It is placed between the syringe 105 and the device's container 100 and is used to measure the fluid pressure and to warn the controller 224 whenever sudden changes of pressure occur in a state of occlusion. As an alternative the FSR 222 may be placed between the plunger stem holder 206 and the plunger stem 102 or between the PZT actuator 101 and the plunger stem holder 206 . Inconsistencies in the amount of pressure measured by the FSR 222 are then calculated accordingly.
- a different method for finding the exact location of the plunger stem holder 206 and amount of pressure in the syringe hollow barrel 204 at any given moment utilizes the transition of a high frequency ultrasound signal.
- the signal transmitter is attached to the PTZ actuator 101 and is transmitted in the direction of the syringe.
- a mirror is placed at the far end of the syringe and the returning signal may give indications as for this distance or for the amount of pressure inside the syringe hollow barrel 204 .
- the device also includes a control panel 226 which operates as the user interface and allows determining the manner in which the device operates. Through the control panel 226 users may turn the device on and off and control the dosages of chemical reagents released by the device over any period of time.
- the control panel 226 also provides the users with indicators of the device's mode of operation: whether it is operating normally or if there is any abnormality in its operation. Since the device may be attached directly to the patient's body, the present invention may also include a hand held wireless remote control 229 to facilitate the controlling procedures of the device.
- the remote control 229 establishes a wireless communication with the controller 224 via the wireless link 223 .
- the device's includes a source of energy 227 , such as a battery, taking into account that the operation of the mechanism consumes low levels of energy, and that the device is intended to be as small and as lightweight as possible. Also included is a power amplifier 225 that ensures that the motor 109 receives ample power for operation and a serial connector 228 for uploading and downloading data.
- a source of energy 227 such as a battery
- the second embodiment of the said mechanism is illustrated in FIGS. 3-7 .
- the structure of the second embodiment is in many ways similar to the one of the first embodiment. It utilizes a different stopper mechanism 303 from one in the first embodiment 106 and therefore does not include a motor 109 and its accompanying mechanism (the belt transmission 111 or gear, the lead screw 110 , the screw nut 107 and the nut lever 106 ).
- the stopper mechanism 303 of the second embodiment is described in details below.
- FIGS. 3A-3E The five steps of the cycle of operation of the second embodiment are illustrated in FIGS. 3A-3E .
- the operation of the plunger stem 102 , the plunger stem holder 206 and the PZT actuator 101 is identical to the one described in the first embodiment, but instead of a nut lever 106 operating as a stopper at the far end of the PZT actuator 101 , there is a different stopper mechanism 303 whose constitution is described below.
- FIG. 3A illustrates the initial position of the mechanism in the cycle of operation.
- the PTZ actuator 101 receives an electrical current and expends in the direction of the plunger stem 102 and the syringe 105 .
- the other end of the PTZ actuator 101 is connected to a stopper 303 , which prevents it from expending in the opposite direction.
- the electrical current is stopped and the PTZ actuator 101 shrinks to its normal size.
- a gap 310 is then created between the PTZ actuator 101 and the plunger stem holder 206 .
- the stopper 303 detaches from the mechanism's guiding walls 202 , according to a method that is described below.
- the main pulling spring 305 pulls the PTZ actuator 101 in the direction of the plunger stem holder 206 and reduces gap 310 completely.
- the stopper 303 comprises of an upper holding cylinder 402 and a lower holding cylinder 403 which are connected by a cylinder internal spring 401 and a shape memory alloy (SMA) actuator 404 .
- the spring 401 allows the two cylinders 402 , 403 to reduce and expend their relative proximity and allows flexibility in the amount of pressure that the cylinders 402 , 403 apply on the guiding walls 202 .
- the SMA actuator 404 contracts in length when electrically heated and easily returns to its normal size as it cools back to an ambient temperature.
- the cylinders 402 , 403 are pressed against the guiding walls 202 and resist movement whenever the PZT actuator 101 expends and ensure that the full length of the PZT actuator's 101 expansion is in the direction of the plunger 102 .
- the SMA actuator 404 receives an electric current via wires 405 and heats up. The change in temperature causes the SMA actuator 404 to contract. As the SMA actuator 404 contracts it pulls the upper and the lower cylinders 402 , 403 towards each other, reduces the pressure at their points of contact with the guiding walls 202 and enables the stopper 303 and the PZT actuator 101 to move freely along the guiding walls 202 . This operation enables the fourth and fifth steps of the second embodiment.
- the operation of the second embodiment is managed by a microprocessor controller 224 , powered by a source of energy such as a battery 227 , programmed through a control panel 226 and a hand held remote control.
- the monitoring mechanism of the second embodiment also operates in the same manner as the one of the first embodiment by utilizing a Force Sense Resistor (FSR) 222 and an optical linear encoder 221 .
- FSR Force Sense Resistor
- the led 203 in this embodiment may be attached to a rod that is connected to the stopper 303 to enable the encoder 221 to detect changes its position, monitor the movement of the plunger, verify that it is moving according the preprogrammed scheme and has not been mechanically stuck.
- the manual operation of loading the syringe includes the following steps: first, the guiding walls 202 , which are held in place by springs 201 , are released by the user and then the nut lever 106 is released from the screw nut 107 . The user may them return the screw nut 107 back into its initial position at the far end of the lead screw 110 and the nut lever 106 can then reconnect to the screw nut 107 . Returning the screw nut 107 to its initial position may be achieved by screwing it back on the lead screw 110 , or by using a split nut mechanism which allows for easily changing the position of the screw nut 107 on the lead screw 110 . The user removes the syringe 105 , fills it with the appropriate chemical reagents and places it back into place in the device. The device is then ready to be turned on and put into use.
- FIG. 5 The manual operation of loading the syringe according to the second invention is illustrated in FIG. 5 .
- the guiding walls 202 which are held in place by springs 201 or by clips, are released by the user and the plunger pushing mechanism 501 is then free to be pulled back into its initial position.
- the user removes the syringe 105 , fills it with the appropriate chemical reagents and places it back into place in the device. Once the user puts the guiding walls back in their initial position the device is ready to be turned on and put into use.
- the PTZ actuator 101 may be replaced by a SMA or by electromagnetic solenoid without having to change any of the other components of the invention.
Landscapes
- Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
A micro-pump that supplies medication from a reservoir to a patient through a flexible tube is disclosed. The pump, which is especially suitable but not confined to delivering insulin to diabetic patients, is small and light enough to be attached to the body using adhesive plaster or to be strapped to the body in any other manner. In the preferred embodiment the pump mechanism comprises a lead screw, a weak force rotating element, an actuator, and a high force holding element. The device also includes a processing circuitry for controlling and monitoring the drive mechanism, a force sensor to measure medication pressure which generates indicative signals to the processing circuitry, a sensor for tracking the position of the syringe plunger, and a remote control unit.
Description
- The present invention relates to the field of infusion pumps for controlled delivery of medication to patients, more specifically to an infusion pump with an improved minute lightweight drive mechanism.
- Infusion pumps deliver a volumetrically controlled medication to the patient over a period of time. A processing circuitry controls the periodic delivery of dosages of medication to a patient at predetermined rates. Infusion pumps often contain an electrical motor which rotates a lead-screw; the rotation of the lead-screw causes a nut to linearly move along it. The nut pushes a plunger through a syringe or a cartridge internal to the pump that causes medication to move from the syringe to the patient along the infusion path.
- Prior art of Infusion pumps contain a large electrical motor which are strong enough to rotate the lead-screw against the opposing pressure of the medication inside the syringe. Such mechanism is described, for example, in U.S. Pat. Nos. 6,248,093, 5,637,095, 5,097,122, and 5,505,709. These devices contain electrical motors which are relatively large and heavy. Since dosages are given at discrete intervals over a period of time, each time the processing circuit activates the motor it consumes large current to operate.
- The in addition to the disadvantages in size, weight and power consumption of existing medication pumps, theses devices also suffer from an additional drawback which stems from the principles according to which they operate. The amount of medication delivered from the device into the patient's body is controlled by the operation of the motor. The accuracy of these devices is therefore hard to control and dependent on the reliability and accuracy of the operation of the motor; minute fluctuations in the motor's behavior might cause significant deviations in the amount of medication delivered to the patient. The medication delivery is therefore calculated statistically.
- As solutions to this problem elaborated devices have been developed to detect and respond to inconsistent flow rates. In cases of pressure buildup inside the syringe most commonly these devices compensate for the reduction of flow by changing the time intervals between successive pulses while informing the user of that change. If the pressure reaches the occlusion level, the pump stops pumping and the user is alerted. Due to the limitation of the motor, this is not a very satisfactory solution. Further, once the blockage is opened, the pressure which is built inside the container and delivery tube is released through the tube, forcing a possibility dangerously larger than prescribed dose of medicine into the patient's body.
- There is therefore a need for a medication pump that in addition to being very small, lightweight and low in energy consumption will be able to deliver accurate and consistent dosage rate of medication over periods of time.
- A micro pump device for dispensing proportioned quantities of medical fluid. The medical fluid which may be, but is not limited to, insulin, is driven into the patient's body by applying pulsed pressure on syringe's plunger stem containing the medical fluid. The medical fluid is injected through syringe-tube connector to the patient's body. The device comprised of the following components: a vertically expending actuator means for applying pressure at the direction of the syringe plunger wherein the actuator activation is controlled by a programmable logic means; a stopper element for preventing the actuator movement in the opposite direction; plunger stem holder for preventing the plunger's movement back toward the actuator; guiding walls for applying pressure on the plunger stem holder; power mechanism causing gradual movement of the stopper toward the actuator. The actuator may be a piezoelectric (PZT) element which expends in the direction of the plunger stem upon receiving electrical current; another option is that the actuator is an electromagnetic actuator.
- According to the first embodiment the power mechanism is an electric motor which is controlled by programmable logic means and the stopper element is then a nut lever connected to a screwing nut which is screwed along a lead screw, said lead screw is rotated by the electric motor.
- According to the second embodiment the power mechanism is a spring and the stopper mechanism is comprised of two cylinders elements, connected by a supporting spring, which apply pressure on the guiding walls and are connected by a second actuator. The second actuator contracts in reaction to electric pulses, pulling the cylinder elements toward each other, decreasing the pressure on the guiding walls and enabling the spring to pull the stopper element toward the actuator. The given pulses are controlled by programmable logic means. The second actuator may be a Shape Memory Alloy (SMA) actuator.
- The operation of the device is controlled by programmable logic means. The said logic means is a microprocessor controller which coordinates the operation of the power means and of the actuator in accordance with predefined parameters determined by the user. The controller further alerts the user of malfunctions.
- The controller receives feedback about the operation of the device from two sources: an optical linear encoder and a force sensor resistor. The optical linear encoder gives indications as for the position of the stopper mechanism; the force sensor resistor measures changes in the movement of the plunger and the pressure within the syringe. These measurements are compared against defined plan values and analyzed to give an accurate report of the status of operation.
- The device's housing is small, lightweight and watertight. The device may include a remote control unit for the user's control interface.
- The stopper, which can be manually adjusted to its initial position for the purpose of reloading the syringe, may be comprised of a split nut to allow of adjusting the stopper to its initial position.
- These and further features and advantages of the invention will become more clearly understood in the light of the ensuing description of a preferred embodiment thereof, given by way of example only, with reference to the accompanying drawings, wherein
-
FIG. 1 is a schematic overview of the first embodiment of the present invention; -
FIG. 1A portrays a detailed illustration of the physical mechanism and a block diagram of the logical mechanism of first embodiment of the present invention; -
FIG. 2 is a detailed illustration of the mechanism of the first embodiment of the present invention; -
FIG. 2A illustrates the infusion pump's drive mechanism according to the first embodiment of the present invention in its initial position; -
FIG. 2B illustrates the second stage of the operation cycle of the infusion pump's drive mechanism according to the first embodiment of the present invention; -
FIG. 2C illustrates the third stage of the operation cycle of the infusion pump's drive mechanism according to the first embodiment of the present; -
FIG. 2D illustrates the final stage of the operation cycle the infusion pump's drive mechanism according to the first embodiment of the present invention; -
FIG. 3 is a detailed illustration of the mechanism of the second embodiment of the present invention; -
FIG. 3A illustrates the infusion pump's drive mechanism according to the second embodiment of the present invention in its initial position; -
FIG. 3B illustrates the second stage of the operation cycle of the infusion pump's drive mechanism according to the second embodiment of the present invention; -
FIG. 3C illustrates the third stage of the operation cycle of the infusion pump's drive mechanism according to the second embodiment of the present; -
FIG. 3D illustrates the fourth stage of the operation cycle of the infusion pump's drive mechanism according to the second embodiment of the present; -
FIG. 3E illustrates the final stage of the operation cycle the infusion pump's drive mechanism according to the second embodiment of the present invention; -
FIG. 4 illustrates the configuration of the stop mechanism of the second embodiment; -
FIG. 5 illustrates the syringe loading operation according to the second embodiment of the present invention. - The present invention discloses a new small lightweight mechanism for a controlled drug infusion to a patient. The mechanism is integrated in a miniature apparatus which operates on low energy and may dispense precise quantities of chemical reagents into a patient's body, having improved dynamic range of operation.
- The general structure of the apparatus is illustrated in
FIG. 1 . The apparatus is composed of awaterproof device container 100, a syringe-tube connector 108, atube 110 and attachment means 104 that fasten the device'scontainer 100 to the patient's body or to a belt. As illustrated inFIG. 2 , thecontainer 100 is comprised of a mechanism for driving the chemical reagent, which is in the syringe'shollow barrel 204, through the syringe-tube connector 108 to thetube 110 that leads to the patient's body. - The chemical reagent is slowly released from the
syringe 105 as a controlled amount of pressure is applied on the syringe'shollow barrel 204 by theplunger stem 102. The pressure of theplunger stem 102 is created by the expansion of the piezoelectric (PZT)actuator 101 which is placed at the plunger stem's 102 opposite end. Between theplunger 102 and thePZT actuator 101 there is aplunger stem holder 206 that is in contact with the guidingwalls 202. There is a substantial friction at these points of contact that ensures that the plunger may move forward towards thesyringe 105 whenever a pressure pulse is applied in that direction, but prevents it from moving back in the direction of thePZT actuator 101 when pressure stops. The pressure on theplunger stem holder 206 is stabilized by the guiding walls springs 201, or by an internal spring inside theplunger stem holder 206.PZT actuators 101 convert electrical energy to mechanical energy by expending in analog proportions to the voltage that is applied to them. In order to produce a controllable amount of pressure on the syringe'shollow barrel 204, an electric current is applied to thePZT actuator 101. The actuator is situated between theplunger stem 102 and astopper 106 which prevents it from expending in the opposite direction. The full change in length of the PZT actuator is therefore applied on theplunger stem 102. Thestopper 106, which in the present embodiment is a nut lever, is connected to ascrew nut 107 that is screwed on alead screw 110. Thelead screw 110 is connected to anelectrical motor 109 through abelt transmission 111 or via a gear mechanism (not shown). Due to this connection, the rotary motion of themotor 109 causes a similar motion of thelead screw 110. The mechanism is adjusted so that the motion of themotor 109 causes thescrew nut 107 and thenut lever 106, which operate as a stopper, to move forward towards the syringe. - The four steps of this mechanism's cycle of operation are illustrated in
FIGS. 2A-2D .FIG. 2A illustrates the mechanism at the initial stage of each cycle. InFIG. 2B an electric current is applied to thePZT actuator 101 which causes it to expend in the direction of theplunger stem 102. Having expended, the current to thePZT actuator 101 is turned off and thePZT actuator 101 shrinks back to its normal size as illustrated inFIG. 2C . Theplunger stem holder 206 then holds theplunger stem 102 in place, and prevents it from moving back to its initial position such as inFIG. 2A . Agap 210 is them created between thePZT actuator 101 and theplunger stem holder 206. This gap is completely reduced by the operation of themotor 109 as illustrated inFIG. 2D . Through thebelt transmission 111 or the gear mechanism themotor 109 turns thelead screw 110 which causes thescrew nut 107 and thenut lever 106 to move forward and reduce thisgap 210. - The operation of the device is manages, synchronizes and monitors by the
microprocessor controller 224. It controls the activation of thePTZ actuator 101 and themotor 109 according to parameters given by the user and coordinates between them. It also receives feedback indications for the operation of the device, such as from the opticallinear encoder 221 and from the Force Sense Resistor (FSR) 222 for example. The opticallinear encoder 221 is a linear array of photodiodes. Attaching a led 203 to thescrew nut 107 enables theencoder 221 to detect changes in the position of thescrew nut 107 and thenut lever 106 in a high level of resolution. This is used to monitor the movement of the plunger, to verify it is moving according the preprogrammed scheme and has not been mechanically stuck. TheFSR 222 is a resistor which changes its electrical resistance according to the mechanical pressure on it. It is placed between thesyringe 105 and the device'scontainer 100 and is used to measure the fluid pressure and to warn thecontroller 224 whenever sudden changes of pressure occur in a state of occlusion. As an alternative theFSR 222 may be placed between theplunger stem holder 206 and theplunger stem 102 or between thePZT actuator 101 and theplunger stem holder 206. Inconsistencies in the amount of pressure measured by theFSR 222 are then calculated accordingly. A different method for finding the exact location of theplunger stem holder 206 and amount of pressure in the syringehollow barrel 204 at any given moment utilizes the transition of a high frequency ultrasound signal. The signal transmitter is attached to thePTZ actuator 101 and is transmitted in the direction of the syringe. In this case a mirror is placed at the far end of the syringe and the returning signal may give indications as for this distance or for the amount of pressure inside the syringehollow barrel 204. - The device also includes a
control panel 226 which operates as the user interface and allows determining the manner in which the device operates. Through thecontrol panel 226 users may turn the device on and off and control the dosages of chemical reagents released by the device over any period of time. Thecontrol panel 226 also provides the users with indicators of the device's mode of operation: whether it is operating normally or if there is any abnormality in its operation. Since the device may be attached directly to the patient's body, the present invention may also include a hand held wirelessremote control 229 to facilitate the controlling procedures of the device. Theremote control 229 establishes a wireless communication with thecontroller 224 via thewireless link 223. The device's includes a source ofenergy 227, such as a battery, taking into account that the operation of the mechanism consumes low levels of energy, and that the device is intended to be as small and as lightweight as possible. Also included is apower amplifier 225 that ensures that themotor 109 receives ample power for operation and aserial connector 228 for uploading and downloading data. - The second embodiment of the said mechanism is illustrated in
FIGS. 3-7 . As illustrated inFIG. 3 the structure of the second embodiment is in many ways similar to the one of the first embodiment. It utilizes adifferent stopper mechanism 303 from one in thefirst embodiment 106 and therefore does not include amotor 109 and its accompanying mechanism (thebelt transmission 111 or gear, thelead screw 110, thescrew nut 107 and the nut lever 106). Thestopper mechanism 303 of the second embodiment is described in details below. - The five steps of the cycle of operation of the second embodiment are illustrated in
FIGS. 3A-3E . The operation of theplunger stem 102, theplunger stem holder 206 and thePZT actuator 101 is identical to the one described in the first embodiment, but instead of anut lever 106 operating as a stopper at the far end of thePZT actuator 101, there is adifferent stopper mechanism 303 whose constitution is described below.FIG. 3A illustrates the initial position of the mechanism in the cycle of operation. In the second stage, which is illustrated inFIG. 3B , thePTZ actuator 101 receives an electrical current and expends in the direction of theplunger stem 102 and thesyringe 105. The other end of thePTZ actuator 101 is connected to astopper 303, which prevents it from expending in the opposite direction. In the third stage inFIG. 3C the electrical current is stopped and thePTZ actuator 101 shrinks to its normal size. Agap 310 is then created between thePTZ actuator 101 and theplunger stem holder 206. At the fourth stage of the cycle of operation, which is portrayed inFIG. 3D , thestopper 303 detaches from the mechanism's guidingwalls 202, according to a method that is described below. And finally, in the fifth stage described inFIG. 3E the main pullingspring 305 pulls thePTZ actuator 101 in the direction of theplunger stem holder 206 and reducesgap 310 completely. - The constitution of the
stopper 303 and its method of operation are illustrated inFIG. 4 . Thestopper 303 comprises of anupper holding cylinder 402 and alower holding cylinder 403 which are connected by a cylinderinternal spring 401 and a shape memory alloy (SMA)actuator 404. Thespring 401 allows the twocylinders cylinders walls 202. The SMA actuator 404 contracts in length when electrically heated and easily returns to its normal size as it cools back to an ambient temperature. In the normal state of thestopper 303 thecylinders walls 202 and resist movement whenever thePZT actuator 101 expends and ensure that the full length of the PZT actuator's 101 expansion is in the direction of theplunger 102. After thePZT actuator 101 contracted back to its normal size theSMA actuator 404 receives an electric current viawires 405 and heats up. The change in temperature causes the SMA actuator 404 to contract. As theSMA actuator 404 contracts it pulls the upper and thelower cylinders walls 202 and enables thestopper 303 and the PZT actuator 101 to move freely along the guidingwalls 202. This operation enables the fourth and fifth steps of the second embodiment. - Similarly to the first embodiment the operation of the second embodiment is managed by a
microprocessor controller 224, powered by a source of energy such as abattery 227, programmed through acontrol panel 226 and a hand held remote control. The monitoring mechanism of the second embodiment also operates in the same manner as the one of the first embodiment by utilizing a Force Sense Resistor (FSR) 222 and an opticallinear encoder 221. The only difference is that instead of being attached to thescrew nut 107 the led 203 in this embodiment may be attached to a rod that is connected to thestopper 303 to enable theencoder 221 to detect changes its position, monitor the movement of the plunger, verify that it is moving according the preprogrammed scheme and has not been mechanically stuck. - The manual operation of loading the syringe according to the first embodiment includes the following steps: first, the guiding
walls 202, which are held in place bysprings 201, are released by the user and then thenut lever 106 is released from thescrew nut 107. The user may them return thescrew nut 107 back into its initial position at the far end of thelead screw 110 and thenut lever 106 can then reconnect to thescrew nut 107. Returning thescrew nut 107 to its initial position may be achieved by screwing it back on thelead screw 110, or by using a split nut mechanism which allows for easily changing the position of thescrew nut 107 on thelead screw 110. The user removes thesyringe 105, fills it with the appropriate chemical reagents and places it back into place in the device. The device is then ready to be turned on and put into use. - The manual operation of loading the syringe according to the second invention is illustrated in
FIG. 5 . The guidingwalls 202, which are held in place bysprings 201 or by clips, are released by the user and theplunger pushing mechanism 501 is then free to be pulled back into its initial position. As in the loading of the syringe according the first embodiment, the user removes thesyringe 105, fills it with the appropriate chemical reagents and places it back into place in the device. Once the user puts the guiding walls back in their initial position the device is ready to be turned on and put into use. - In the embodiments described above the
PTZ actuator 101 may be replaced by a SMA or by electromagnetic solenoid without having to change any of the other components of the invention. - While the above description contains many specifities, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of the preferred embodiments. Those skilled in the art will envision other possible variations that are within its scope. Accordingly, the scope of the invention should be determined not by the embodiment illustrated, but by the appended claims and their legal equivalents.
Claims (16)
1. A micro pump device for dispensing proportioned quantities of medical fluid by applying pulsed pressure on syringe's plunger stem containing the medical fluid which is injected through syringe-tube connector to the patient's body, said device comprised of:
a vertically expending actuator means for applying pressure at the direction of the syringe plunger wherein the actuator activation is controlled by a programmable logic means;
a stopper element for preventing the actuator movement in the opposite direction;
plunger stem holder for preventing the plunger's movement back toward the actuator;
guiding walls for applying pressure on the plunger stem holder;
power mechanism causing gradual movement of the stopper toward the actuator.
2. The device of claim 1 wherein the power mechanism is a mechanical spring.
3. The device of claim 1 wherein the actuator is piezoelectric element which expends in the direction of the plunger stem upon receiving electrical current.
4. The device of claim 2 wherein the actuator is an electromagnetic actuator.
5. The device of claim 2 wherein the power mechanism is an electric motor which is controlled by programmable logic means and the stopper element is a nut lever connected to a screwing nut which is screwed along a lead screw, said lead screw is rotated by the electric motor.
6. The device of claim 2 further comprising a second actuator, wherein the stopper element is comprised of two cylinders elements which apply pressure on the guiding walls and are connected by a second actuator, wherein said second actuator contracts in reaction to given pulses, pulling the cylinder elements toward each other, decreasing the pressure on the guiding walls and enabling the spring to pull the stopper element toward the actuator, wherein the given pulses are controlled by programmable logic means.
7. The device of claim 4 wherein the second actuator is a Shape Memory Alloy actuator
8. The device of claim 4 wherein the stopper further comprises an internal spring wherein the internal spring is situated in between the cylindrical elements applying pressure thereof.
9. The device of claim 1 further comprising supporting springs applying outside pressure on the guiding walls.
10. The device of claim 1 wherein the programmable logic means is a microprocessor controller which coordinates the operation of the power means and of the actuator in accordance with predefined parameters determined by the user and further alerts the user of malfunctions.
11. The device of claim 1 further comprising optical linear encoder and force sensor resistor for measuring changes in the movement of the plunger and the pressure within the syringe wherein said measurements are compared against defined plan values and analyzed for providing the controller input data as for monitoring the operation status.
12. The device of claim 1 wherein the device housing is watertight.
13. The device of claim 1 further comprising communication means for communicating with a remote control unit.
14. The device of claim 1 wherein the medical fluid is insulin.
15. The device of claim 1 wherein the stopper can be manually adjusted to its initial position.
16. The device of claim 5 further comprises a split nut for purpose of adjusting the stopper to its initial position.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/773,672 US20050177111A1 (en) | 2004-02-06 | 2004-02-06 | Miniature infusion pump |
PCT/IL2005/000147 WO2005074374A2 (en) | 2004-02-06 | 2005-02-06 | A miniature infusion pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/773,672 US20050177111A1 (en) | 2004-02-06 | 2004-02-06 | Miniature infusion pump |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050177111A1 true US20050177111A1 (en) | 2005-08-11 |
Family
ID=34826813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/773,672 Abandoned US20050177111A1 (en) | 2004-02-06 | 2004-02-06 | Miniature infusion pump |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050177111A1 (en) |
WO (1) | WO2005074374A2 (en) |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1752172A1 (en) * | 2005-08-12 | 2007-02-14 | F.Hoffmann-La Roche Ag | Drive mechanism for an infusionpump |
US20070129681A1 (en) * | 2005-11-01 | 2007-06-07 | Par Technologies, Llc | Piezoelectric actuation of piston within dispensing chamber |
US20090093818A1 (en) * | 2006-04-07 | 2009-04-09 | Societe De Commercialisation Des Produits De La Recherche Appliquee Socpra Sciences Et Genie S.E.C | Intergrated cement delivery system for bone augmentation procedures and methods |
US20090105650A1 (en) * | 2007-10-18 | 2009-04-23 | Roche Diagnostics Operations, Inc. | Drug delivery pump drive using linear piezoelectric motor |
US20090112155A1 (en) * | 2007-10-30 | 2009-04-30 | Lifescan, Inc. | Micro Diaphragm Pump |
US20090157003A1 (en) * | 2007-12-14 | 2009-06-18 | Jones Daniel W | Method And Apparatus For Occlusion Prevention And Remediation |
US20090163803A1 (en) * | 2004-10-13 | 2009-06-25 | Mallinckrodt Inc. | Powerhead of a power injection system |
US20090283377A1 (en) * | 2008-05-15 | 2009-11-19 | Roe Steven N | Drug delivery pump drive using a shaped memory alloy wire |
US20100312188A1 (en) * | 2008-12-15 | 2010-12-09 | Timothy Robertson | Body-Associated Receiver and Method |
US20110023644A1 (en) * | 2009-07-30 | 2011-02-03 | Ramadoss Mohanlal | Lifter Assembly |
US8016789B2 (en) | 2008-10-10 | 2011-09-13 | Deka Products Limited Partnership | Pump assembly with a removable cover assembly |
US8034026B2 (en) | 2001-05-18 | 2011-10-11 | Deka Products Limited Partnership | Infusion pump assembly |
US8066672B2 (en) | 2008-10-10 | 2011-11-29 | Deka Products Limited Partnership | Infusion pump assembly with a backup power supply |
US8113244B2 (en) | 2006-02-09 | 2012-02-14 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US8223028B2 (en) | 2008-10-10 | 2012-07-17 | Deka Products Limited Partnership | Occlusion detection system and method |
US8262616B2 (en) | 2008-10-10 | 2012-09-11 | Deka Products Limited Partnership | Infusion pump assembly |
US8267892B2 (en) | 2008-10-10 | 2012-09-18 | Deka Products Limited Partnership | Multi-language / multi-processor infusion pump assembly |
US8308630B2 (en) | 2006-01-04 | 2012-11-13 | Allergan, Inc. | Hydraulic gastric band with collapsible reservoir |
US20120330571A1 (en) * | 2011-06-27 | 2012-12-27 | Lacourse John R | System to measure forces on an insertion device |
US8382703B1 (en) | 2011-10-18 | 2013-02-26 | King Saud University | Piezoelectric dual-syringe insulin pump |
US8414563B2 (en) | 2007-12-31 | 2013-04-09 | Deka Products Limited Partnership | Pump assembly with switch |
CN103083758A (en) * | 2013-02-01 | 2013-05-08 | 杭州电子科技大学 | Closed-loop insulin delivery device integrating micropump and microneedle array |
US8496646B2 (en) | 2007-02-09 | 2013-07-30 | Deka Products Limited Partnership | Infusion pump assembly |
US8627816B2 (en) | 2011-02-28 | 2014-01-14 | Intelliject, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US20140052055A1 (en) * | 2008-04-09 | 2014-02-20 | Medingo Ltd. | Modular skin-adherable system for medical fluid delivery |
US8708376B2 (en) | 2008-10-10 | 2014-04-29 | Deka Products Limited Partnership | Medium connector |
US8725435B2 (en) | 2011-04-13 | 2014-05-13 | Apollo Endosurgery, Inc. | Syringe-based leak detection system |
CN103920211A (en) * | 2014-05-06 | 2014-07-16 | 深圳市尚荣医疗股份有限公司 | High-precision micro-injection pump and application thereof |
US8840541B2 (en) | 2010-02-25 | 2014-09-23 | Apollo Endosurgery, Inc. | Pressure sensing gastric banding system |
US8900118B2 (en) | 2008-10-22 | 2014-12-02 | Apollo Endosurgery, Inc. | Dome and screw valves for remotely adjustable gastric banding systems |
US8905915B2 (en) | 2006-01-04 | 2014-12-09 | Apollo Endosurgery, Inc. | Self-regulating gastric band with pressure data processing |
US8939888B2 (en) | 2010-04-28 | 2015-01-27 | Apollo Endosurgery, Inc. | Method and system for determining the pressure of a fluid in a syringe, an access port, a catheter, and a gastric band |
US8939943B2 (en) | 2011-01-26 | 2015-01-27 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US20150057616A1 (en) * | 2011-09-05 | 2015-02-26 | Roche Diagnostics Operations, Inc. | Hand-Held Injection Devices and Methods of Use |
WO2015073604A1 (en) * | 2013-11-15 | 2015-05-21 | Ivenix, Inc. | Fluid control system and disposable assembly |
US9095392B2 (en) | 2009-11-06 | 2015-08-04 | Gamal Baroud | Bone cement delivery system |
US9173996B2 (en) | 2001-05-18 | 2015-11-03 | Deka Products Limited Partnership | Infusion set for a fluid pump |
US9180245B2 (en) | 2008-10-10 | 2015-11-10 | Deka Products Limited Partnership | System and method for administering an infusible fluid |
US9192501B2 (en) | 2010-04-30 | 2015-11-24 | Apollo Endosurgery, Inc. | Remotely powered remotely adjustable gastric band system |
WO2016099891A1 (en) * | 2014-12-19 | 2016-06-23 | Smiths Medical Asd, Inc. | Compact medical infusion pumps |
EP3050585A1 (en) | 2015-01-27 | 2016-08-03 | Weibel CDS AG | Dosing device for dispensing a fluid under aseptic conditions |
US9517307B2 (en) | 2014-07-18 | 2016-12-13 | Kaleo, Inc. | Devices and methods for delivering opioid antagonists including formulations for naloxone |
US20170049957A1 (en) * | 2015-08-20 | 2017-02-23 | Tandem Diabetes Care, Inc. | Drive mechanism for infusion pump |
US9867646B2 (en) | 2006-04-07 | 2018-01-16 | Gamal Baroud | Integrated cement delivery system for bone augmentation procedures and methods |
US20180028761A1 (en) * | 2016-07-29 | 2018-02-01 | Alcyone Lifesciences, Inc. | Automated drug delivery systems and methods |
US10010686B2 (en) | 2006-02-27 | 2018-07-03 | Ivenix, Inc. | Fluid control system and disposable assembly |
WO2018210914A1 (en) * | 2017-05-17 | 2018-11-22 | Cambridge Mechatronics Limited | Shape memory alloy based drug delivery device |
WO2019055516A3 (en) * | 2017-09-12 | 2019-04-25 | Smiths Medical Asd, Inc. | User experience for infusion pumps |
US10279106B1 (en) | 2014-05-08 | 2019-05-07 | Tandem Diabetes Care, Inc. | Insulin patch pump |
US20190307960A1 (en) * | 2018-04-10 | 2019-10-10 | Beyoung Scientific Co., Ltd. | Automatic Jet Injector for Administering Tissue |
CN110662567A (en) * | 2017-05-24 | 2020-01-07 | 费森尤斯维尔公司 | Pump device comprising a storage device for receiving a handle |
US10881800B2 (en) | 2016-06-08 | 2021-01-05 | Shl Medical Ag | Device for dispensing a fluid |
US10912881B2 (en) | 2015-04-27 | 2021-02-09 | Shane Maguire | Implantable infusion pumping catheter |
CN113825540A (en) * | 2019-05-17 | 2021-12-21 | 阿普塔尔法国简易股份公司 | Fluid product dispensing device |
US11364335B2 (en) | 2006-02-09 | 2022-06-21 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11395877B2 (en) | 2006-02-09 | 2022-07-26 | Deka Products Limited Partnership | Systems and methods for fluid delivery |
US11404776B2 (en) | 2007-12-31 | 2022-08-02 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US11426512B2 (en) | 2006-02-09 | 2022-08-30 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US11458246B2 (en) | 2018-02-05 | 2022-10-04 | Tandem Diabetes Care, Inc. | Methods and systems for detecting infusion pump conditions |
US11478623B2 (en) | 2006-02-09 | 2022-10-25 | Deka Products Limited Partnership | Infusion pump assembly |
US11497846B2 (en) | 2006-02-09 | 2022-11-15 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11497686B2 (en) | 2007-12-31 | 2022-11-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11523972B2 (en) | 2018-04-24 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11524151B2 (en) | 2012-03-07 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11534542B2 (en) | 2007-12-31 | 2022-12-27 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11597541B2 (en) | 2013-07-03 | 2023-03-07 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11642283B2 (en) | 2007-12-31 | 2023-05-09 | Deka Products Limited Partnership | Method for fluid delivery |
US11723841B2 (en) | 2007-12-31 | 2023-08-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11890448B2 (en) | 2006-02-09 | 2024-02-06 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US11964126B2 (en) | 2006-02-09 | 2024-04-23 | Deka Products Limited Partnership | Infusion pump assembly |
US12064590B2 (en) | 2006-02-09 | 2024-08-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US12070574B2 (en) | 2006-02-09 | 2024-08-27 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US12151080B2 (en) | 2006-02-09 | 2024-11-26 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US12186531B2 (en) | 2008-10-10 | 2025-01-07 | Deka Products Limited Partnership | Infusion pump assembly |
US12274857B2 (en) | 2006-02-09 | 2025-04-15 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US12296141B2 (en) | 2022-09-21 | 2025-05-13 | Tandem Diabetes Care, Inc | Methods and systems for detecting infusion pump conditions |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109395207A (en) * | 2018-10-15 | 2019-03-01 | 深圳市晓控通信科技有限公司 | A kind of injection device with warning function |
KR102726729B1 (en) * | 2022-05-27 | 2024-11-08 | 주식회사 지투이 | Insulin Syringe Replacement System Applicable to Insulin Pump |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544336A (en) * | 1981-04-08 | 1985-10-01 | Fresenius Ag | Medical peristaltic pump |
US5928197A (en) * | 1993-11-24 | 1999-07-27 | Liebel-Flarsheim Company | Controlling plunger drives for fluid injections in animals |
US6423035B1 (en) * | 1999-06-18 | 2002-07-23 | Animas Corporation | Infusion pump with a sealed drive mechanism and improved method of occlusion detection |
US6723072B2 (en) * | 2002-06-06 | 2004-04-20 | Insulet Corporation | Plunger assembly for patient infusion device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6375638B2 (en) * | 1999-02-12 | 2002-04-23 | Medtronic Minimed, Inc. | Incremental motion pump mechanisms powered by shape memory alloy wire or the like |
-
2004
- 2004-02-06 US US10/773,672 patent/US20050177111A1/en not_active Abandoned
-
2005
- 2005-02-06 WO PCT/IL2005/000147 patent/WO2005074374A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544336A (en) * | 1981-04-08 | 1985-10-01 | Fresenius Ag | Medical peristaltic pump |
US5928197A (en) * | 1993-11-24 | 1999-07-27 | Liebel-Flarsheim Company | Controlling plunger drives for fluid injections in animals |
US6423035B1 (en) * | 1999-06-18 | 2002-07-23 | Animas Corporation | Infusion pump with a sealed drive mechanism and improved method of occlusion detection |
US6723072B2 (en) * | 2002-06-06 | 2004-04-20 | Insulet Corporation | Plunger assembly for patient infusion device |
Cited By (141)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8034026B2 (en) | 2001-05-18 | 2011-10-11 | Deka Products Limited Partnership | Infusion pump assembly |
US9173996B2 (en) | 2001-05-18 | 2015-11-03 | Deka Products Limited Partnership | Infusion set for a fluid pump |
US8366671B2 (en) * | 2004-10-13 | 2013-02-05 | Mallinckrodt Llc | Powerhead of a power injection system |
US20090163803A1 (en) * | 2004-10-13 | 2009-06-25 | Mallinckrodt Inc. | Powerhead of a power injection system |
EP1752172A1 (en) * | 2005-08-12 | 2007-02-14 | F.Hoffmann-La Roche Ag | Drive mechanism for an infusionpump |
US20070129681A1 (en) * | 2005-11-01 | 2007-06-07 | Par Technologies, Llc | Piezoelectric actuation of piston within dispensing chamber |
US8905915B2 (en) | 2006-01-04 | 2014-12-09 | Apollo Endosurgery, Inc. | Self-regulating gastric band with pressure data processing |
US8323180B2 (en) | 2006-01-04 | 2012-12-04 | Allergan, Inc. | Hydraulic gastric band with collapsible reservoir |
US8308630B2 (en) | 2006-01-04 | 2012-11-13 | Allergan, Inc. | Hydraulic gastric band with collapsible reservoir |
US8414522B2 (en) | 2006-02-09 | 2013-04-09 | Deka Products Limited Partnership | Fluid delivery systems and methods |
US11690952B2 (en) | 2006-02-09 | 2023-07-04 | Deka Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
US11339774B2 (en) | 2006-02-09 | 2022-05-24 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US12070574B2 (en) | 2006-02-09 | 2024-08-27 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US12151080B2 (en) | 2006-02-09 | 2024-11-26 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US12064590B2 (en) | 2006-02-09 | 2024-08-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US12036387B2 (en) | 2006-02-09 | 2024-07-16 | Deka Products Limited Partnership | Device to determine volume of fluid dispensed |
US8113244B2 (en) | 2006-02-09 | 2012-02-14 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11992650B2 (en) | 2006-02-09 | 2024-05-28 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11964126B2 (en) | 2006-02-09 | 2024-04-23 | Deka Products Limited Partnership | Infusion pump assembly |
US11904134B2 (en) | 2006-02-09 | 2024-02-20 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11890448B2 (en) | 2006-02-09 | 2024-02-06 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US12233236B2 (en) | 2006-02-09 | 2025-02-25 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US12274857B2 (en) | 2006-02-09 | 2025-04-15 | Deka Products Limited Partnership | Method and system for shape-memory alloy wire control |
US11844926B2 (en) | 2006-02-09 | 2023-12-19 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11364335B2 (en) | 2006-02-09 | 2022-06-21 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11391273B2 (en) | 2006-02-09 | 2022-07-19 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11786651B2 (en) | 2006-02-09 | 2023-10-17 | Deka Products Limited Partnership | Patch-sized fluid delivery system |
US11395877B2 (en) | 2006-02-09 | 2022-07-26 | Deka Products Limited Partnership | Systems and methods for fluid delivery |
US11738139B2 (en) | 2006-02-09 | 2023-08-29 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11406753B2 (en) | 2006-02-09 | 2022-08-09 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11717609B2 (en) | 2006-02-09 | 2023-08-08 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11712513B2 (en) | 2006-02-09 | 2023-08-01 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11408414B2 (en) | 2006-02-09 | 2022-08-09 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11413391B2 (en) | 2006-02-09 | 2022-08-16 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US8545445B2 (en) | 2006-02-09 | 2013-10-01 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US8585377B2 (en) | 2006-02-09 | 2013-11-19 | Deka Products Limited Partnership | Pumping fluid delivery systems and methods using force application assembly |
US11617826B2 (en) | 2006-02-09 | 2023-04-04 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11559625B2 (en) | 2006-02-09 | 2023-01-24 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11534543B2 (en) | 2006-02-09 | 2022-12-27 | Deka Products Limited Partnership | Method for making patch-sized fluid delivery systems |
US11426512B2 (en) | 2006-02-09 | 2022-08-30 | Deka Products Limited Partnership | Apparatus, systems and methods for an infusion pump assembly |
US11497846B2 (en) | 2006-02-09 | 2022-11-15 | Deka Products Limited Partnership | Patch-sized fluid delivery systems and methods |
US11491273B2 (en) | 2006-02-09 | 2022-11-08 | Deka Products Limited Partnership | Adhesive and peripheral systems and methods for medical devices |
US11478623B2 (en) | 2006-02-09 | 2022-10-25 | Deka Products Limited Partnership | Infusion pump assembly |
US10010686B2 (en) | 2006-02-27 | 2018-07-03 | Ivenix, Inc. | Fluid control system and disposable assembly |
US20090093818A1 (en) * | 2006-04-07 | 2009-04-09 | Societe De Commercialisation Des Produits De La Recherche Appliquee Socpra Sciences Et Genie S.E.C | Intergrated cement delivery system for bone augmentation procedures and methods |
US9867646B2 (en) | 2006-04-07 | 2018-01-16 | Gamal Baroud | Integrated cement delivery system for bone augmentation procedures and methods |
US8409211B2 (en) | 2006-04-07 | 2013-04-02 | Societe De Commercialisation Des Produits De La Recherche Appliquee Socpra Sciences Et Genie S.E.C. | Integrated cement delivery system for bone augmentation procedures and methods |
US9204913B2 (en) | 2006-04-07 | 2015-12-08 | Sociéte de Commercialisation Des Produits de la Recherche Appliquée SOCPRA Sciences et Génie S.E.C. | Integrated cement delivery system for bone augmentation procedures and methods |
US10004549B2 (en) | 2006-04-07 | 2018-06-26 | Gamal Baroud | Integrated cement delivery system for bone augmentation procedures and methods |
US8496646B2 (en) | 2007-02-09 | 2013-07-30 | Deka Products Limited Partnership | Infusion pump assembly |
US8936574B2 (en) | 2007-10-18 | 2015-01-20 | Roche Diagnostics Operations, Inc. | Drug delivery pump drive using linear piezoelectric motor |
US7922695B2 (en) | 2007-10-18 | 2011-04-12 | Roche Diagnostics Operations, Inc. | Drug delivery pump drive using linear piezoelectric motor |
US8377004B2 (en) | 2007-10-18 | 2013-02-19 | Roche Diagnostics Operations, Inc. | Drug delivery pump drive using linear piezoelectric motor |
US20110152827A1 (en) * | 2007-10-18 | 2011-06-23 | Christopher Wiegel | Drug delivery pump drive using linear piezoelectric motor |
US20090105650A1 (en) * | 2007-10-18 | 2009-04-23 | Roche Diagnostics Operations, Inc. | Drug delivery pump drive using linear piezoelectric motor |
US20090112155A1 (en) * | 2007-10-30 | 2009-04-30 | Lifescan, Inc. | Micro Diaphragm Pump |
US20090157003A1 (en) * | 2007-12-14 | 2009-06-18 | Jones Daniel W | Method And Apparatus For Occlusion Prevention And Remediation |
US11497686B2 (en) | 2007-12-31 | 2022-11-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11894609B2 (en) | 2007-12-31 | 2024-02-06 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US11404776B2 (en) | 2007-12-31 | 2022-08-02 | Deka Products Limited Partnership | Split ring resonator antenna adapted for use in wirelessly controlled medical device |
US11534542B2 (en) | 2007-12-31 | 2022-12-27 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11642283B2 (en) | 2007-12-31 | 2023-05-09 | Deka Products Limited Partnership | Method for fluid delivery |
US9526830B2 (en) | 2007-12-31 | 2016-12-27 | Deka Products Limited Partnership | Wearable pump assembly |
US8491570B2 (en) | 2007-12-31 | 2013-07-23 | Deka Products Limited Partnership | Infusion pump assembly |
US11701300B2 (en) | 2007-12-31 | 2023-07-18 | Deka Products Limited Partnership | Method for fluid delivery |
US12128006B2 (en) | 2007-12-31 | 2024-10-29 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US12121497B2 (en) | 2007-12-31 | 2024-10-22 | Deka Products Limited Partnership | Method for fluid delivery |
US11723841B2 (en) | 2007-12-31 | 2023-08-15 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US8414563B2 (en) | 2007-12-31 | 2013-04-09 | Deka Products Limited Partnership | Pump assembly with switch |
US20140052055A1 (en) * | 2008-04-09 | 2014-02-20 | Medingo Ltd. | Modular skin-adherable system for medical fluid delivery |
US9486574B2 (en) * | 2008-04-09 | 2016-11-08 | Roche Diabetes Care, Inc. | Modular skin-adherable system for medical fluid delivery |
US8480633B2 (en) | 2008-05-15 | 2013-07-09 | Roche Diagnostics Operations, Inc. | Drug delivery pump drive using a shaped memory alloy wire |
US8172811B2 (en) | 2008-05-15 | 2012-05-08 | Roche Diagnostics Operations, Inc. | Drug delivery pump drive using a shaped memory alloy wire |
US20090283377A1 (en) * | 2008-05-15 | 2009-11-19 | Roe Steven N | Drug delivery pump drive using a shaped memory alloy wire |
US9463274B2 (en) | 2008-05-15 | 2016-10-11 | Roche Diabetes Care, Inc. | Drug delivery pump drive using a shaped memory alloy wire |
US12186531B2 (en) | 2008-10-10 | 2025-01-07 | Deka Products Limited Partnership | Infusion pump assembly |
US8708376B2 (en) | 2008-10-10 | 2014-04-29 | Deka Products Limited Partnership | Medium connector |
US8066672B2 (en) | 2008-10-10 | 2011-11-29 | Deka Products Limited Partnership | Infusion pump assembly with a backup power supply |
US8223028B2 (en) | 2008-10-10 | 2012-07-17 | Deka Products Limited Partnership | Occlusion detection system and method |
US8016789B2 (en) | 2008-10-10 | 2011-09-13 | Deka Products Limited Partnership | Pump assembly with a removable cover assembly |
US8262616B2 (en) | 2008-10-10 | 2012-09-11 | Deka Products Limited Partnership | Infusion pump assembly |
US9180245B2 (en) | 2008-10-10 | 2015-11-10 | Deka Products Limited Partnership | System and method for administering an infusible fluid |
US8267892B2 (en) | 2008-10-10 | 2012-09-18 | Deka Products Limited Partnership | Multi-language / multi-processor infusion pump assembly |
US8900118B2 (en) | 2008-10-22 | 2014-12-02 | Apollo Endosurgery, Inc. | Dome and screw valves for remotely adjustable gastric banding systems |
US8114021B2 (en) * | 2008-12-15 | 2012-02-14 | Proteus Biomedical, Inc. | Body-associated receiver and method |
US20100312188A1 (en) * | 2008-12-15 | 2010-12-09 | Timothy Robertson | Body-Associated Receiver and Method |
US8617108B2 (en) | 2009-07-30 | 2013-12-31 | Johnson Electric S.A. | Lifter assembly |
US20110023644A1 (en) * | 2009-07-30 | 2011-02-03 | Ramadoss Mohanlal | Lifter Assembly |
US9095392B2 (en) | 2009-11-06 | 2015-08-04 | Gamal Baroud | Bone cement delivery system |
US8840541B2 (en) | 2010-02-25 | 2014-09-23 | Apollo Endosurgery, Inc. | Pressure sensing gastric banding system |
US8939888B2 (en) | 2010-04-28 | 2015-01-27 | Apollo Endosurgery, Inc. | Method and system for determining the pressure of a fluid in a syringe, an access port, a catheter, and a gastric band |
US9192501B2 (en) | 2010-04-30 | 2015-11-24 | Apollo Endosurgery, Inc. | Remotely powered remotely adjustable gastric band system |
US10322239B2 (en) | 2011-01-26 | 2019-06-18 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US8939943B2 (en) | 2011-01-26 | 2015-01-27 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US9814838B2 (en) | 2011-01-26 | 2017-11-14 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US10143792B2 (en) | 2011-02-28 | 2018-12-04 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US9474869B2 (en) | 2011-02-28 | 2016-10-25 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US8627816B2 (en) | 2011-02-28 | 2014-01-14 | Intelliject, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US9022022B2 (en) | 2011-02-28 | 2015-05-05 | Kaleo, Inc. | Medicament delivery device for administration of opioid antagonists including formulations for naloxone |
US8725435B2 (en) | 2011-04-13 | 2014-05-13 | Apollo Endosurgery, Inc. | Syringe-based leak detection system |
US20120330571A1 (en) * | 2011-06-27 | 2012-12-27 | Lacourse John R | System to measure forces on an insertion device |
US20150057616A1 (en) * | 2011-09-05 | 2015-02-26 | Roche Diagnostics Operations, Inc. | Hand-Held Injection Devices and Methods of Use |
US10463791B2 (en) * | 2011-09-05 | 2019-11-05 | Roche Diagnostics Operations, Inc. | Hand-held injection devices and methods of use |
US8382703B1 (en) | 2011-10-18 | 2013-02-26 | King Saud University | Piezoelectric dual-syringe insulin pump |
US11524151B2 (en) | 2012-03-07 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
CN103083758A (en) * | 2013-02-01 | 2013-05-08 | 杭州电子科技大学 | Closed-loop insulin delivery device integrating micropump and microneedle array |
US12012241B2 (en) | 2013-07-03 | 2024-06-18 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
US11597541B2 (en) | 2013-07-03 | 2023-03-07 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
JP2017501762A (en) * | 2013-11-15 | 2017-01-19 | アイヴェニクス インクIvenix, Inc. | Fluid control system and disposable assembly |
WO2015073604A1 (en) * | 2013-11-15 | 2015-05-21 | Ivenix, Inc. | Fluid control system and disposable assembly |
CN103920211A (en) * | 2014-05-06 | 2014-07-16 | 深圳市尚荣医疗股份有限公司 | High-precision micro-injection pump and application thereof |
US11033677B2 (en) | 2014-05-08 | 2021-06-15 | Tandem Diabetes Care, Inc. | Insulin patch pump |
US10279106B1 (en) | 2014-05-08 | 2019-05-07 | Tandem Diabetes Care, Inc. | Insulin patch pump |
US10220158B2 (en) | 2014-07-18 | 2019-03-05 | Kaleo, Inc. | Devices and methods for delivering opioid antagonists including formulations for naloxone |
US9517307B2 (en) | 2014-07-18 | 2016-12-13 | Kaleo, Inc. | Devices and methods for delivering opioid antagonists including formulations for naloxone |
WO2016099891A1 (en) * | 2014-12-19 | 2016-06-23 | Smiths Medical Asd, Inc. | Compact medical infusion pumps |
US11040146B2 (en) | 2015-01-27 | 2021-06-22 | Shl Medical Ag | Dosing apparatus for dispensing a fluid under aseptic conditions |
US10653846B2 (en) | 2015-01-27 | 2020-05-19 | Idorsia Pharmaceuticals Ltd | Dosing apparatus for dispensing a fluid under aseptic conditions |
EP3050585A1 (en) | 2015-01-27 | 2016-08-03 | Weibel CDS AG | Dosing device for dispensing a fluid under aseptic conditions |
US10912881B2 (en) | 2015-04-27 | 2021-02-09 | Shane Maguire | Implantable infusion pumping catheter |
US12268839B2 (en) | 2015-08-20 | 2025-04-08 | Tandem Diabetes Care, Inc | Drive mechanism for infusion pump |
US11147916B2 (en) | 2015-08-20 | 2021-10-19 | Tandem Diabetes Care, Inc. | Drive mechanism for infusion pump |
US20170049957A1 (en) * | 2015-08-20 | 2017-02-23 | Tandem Diabetes Care, Inc. | Drive mechanism for infusion pump |
US10279107B2 (en) * | 2015-08-20 | 2019-05-07 | Tandem Diabetes Care, Inc. | Drive mechanism for infusion pump |
US10881800B2 (en) | 2016-06-08 | 2021-01-05 | Shl Medical Ag | Device for dispensing a fluid |
US20180028761A1 (en) * | 2016-07-29 | 2018-02-01 | Alcyone Lifesciences, Inc. | Automated drug delivery systems and methods |
US10828424B2 (en) * | 2016-07-29 | 2020-11-10 | Alcyone Lifesciences, Inc. | Automated drug delivery systems and methods |
AU2017302599B2 (en) * | 2016-07-29 | 2022-09-01 | Alcyone Therapeutics, Inc. | Automated drug delivery systems and methods |
GB2576446A (en) * | 2017-05-17 | 2020-02-19 | Cambridge Mechatronics Ltd | Shape memory alloy based drug delivery device |
WO2018210914A1 (en) * | 2017-05-17 | 2018-11-22 | Cambridge Mechatronics Limited | Shape memory alloy based drug delivery device |
GB2576446B (en) * | 2017-05-17 | 2022-04-13 | Cambridge Mechatronics Ltd | Shape memory alloy based drug delivery device |
US11565038B2 (en) | 2017-05-24 | 2023-01-31 | Fresenius Vial Sas | Pump device comprising a storage device for receiving a handset |
CN110662567A (en) * | 2017-05-24 | 2020-01-07 | 费森尤斯维尔公司 | Pump device comprising a storage device for receiving a handle |
WO2019055516A3 (en) * | 2017-09-12 | 2019-04-25 | Smiths Medical Asd, Inc. | User experience for infusion pumps |
US11801341B2 (en) | 2017-09-12 | 2023-10-31 | Smiths Medical Asd, Inc. | User experience for infusion pumps |
US11458246B2 (en) | 2018-02-05 | 2022-10-04 | Tandem Diabetes Care, Inc. | Methods and systems for detecting infusion pump conditions |
US11097056B2 (en) * | 2018-04-10 | 2021-08-24 | Beyoung Scientific Co., Ltd. | Automatic jet injector for administering tissue |
US20190307960A1 (en) * | 2018-04-10 | 2019-10-10 | Beyoung Scientific Co., Ltd. | Automatic Jet Injector for Administering Tissue |
US11523972B2 (en) | 2018-04-24 | 2022-12-13 | Deka Products Limited Partnership | Apparatus, system and method for fluid delivery |
CN113825540A (en) * | 2019-05-17 | 2021-12-21 | 阿普塔尔法国简易股份公司 | Fluid product dispensing device |
US12296141B2 (en) | 2022-09-21 | 2025-05-13 | Tandem Diabetes Care, Inc | Methods and systems for detecting infusion pump conditions |
Also Published As
Publication number | Publication date |
---|---|
WO2005074374A3 (en) | 2006-06-29 |
WO2005074374A2 (en) | 2005-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050177111A1 (en) | Miniature infusion pump | |
AU2022224723B2 (en) | Systems and methods for controlled drug delivery pumps | |
US11077244B2 (en) | Fluid dispensing device with a flow detector | |
US7144384B2 (en) | Dispenser components and methods for patient infusion device | |
US8079983B2 (en) | Device and method employing shape memory alloy | |
US20130178826A1 (en) | Accurate flow control in drug pump devices | |
US20070244469A1 (en) | Miniature infusion pump for a controlled delivery of medication | |
US20080132842A1 (en) | Plunger assembly for patient infusion device | |
US20050238507A1 (en) | Fluid delivery device | |
WO2021129403A1 (en) | Monitoring system, method, and apparatus for driving state of dosing drive | |
CA2813470A1 (en) | Medicine delivery device | |
CN117677413A (en) | Monitoring dispensing process with drug delivery device | |
US20230077167A1 (en) | Clutch device for compact positive displacement pump of a wearable drug delivery device | |
KR102482395B1 (en) | Drug injection device and method of determining the remaining amount of drug thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |