US20050247319A1 - Medical implant device with RFID tag and method of identification of device - Google Patents
Medical implant device with RFID tag and method of identification of device Download PDFInfo
- Publication number
- US20050247319A1 US20050247319A1 US10/840,384 US84038404A US2005247319A1 US 20050247319 A1 US20050247319 A1 US 20050247319A1 US 84038404 A US84038404 A US 84038404A US 2005247319 A1 US2005247319 A1 US 2005247319A1
- Authority
- US
- United States
- Prior art keywords
- implant
- medical implant
- medical
- antenna
- rfid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
- A61B90/98—Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0204—Operational features of power management
- A61B2560/0214—Operational features of power management of power generation or supply
- A61B2560/0219—Operational features of power management of power generation or supply of externally powered implanted units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/08—Sensors provided with means for identification, e.g. barcodes or memory chips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0031—Implanted circuitry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4528—Joints
Definitions
- the present invention relates generally to a method of determining the manufacturer and model of a medical implant device after implantation and to construction of a medical implant device employing an RFID tag on a surface of the medical implant.
- Radiofrequency identification tags can be manufactured in various shapes, sizes and configurations to suit an intended purpose. The no contact, non-line-of-sight nature of the technology and its speed are important advantages of radiofrequency identification (RFID) systems.
- RFID radiofrequency identification
- a tag and reader communicate in most cases with a response in less than 100 milliseconds and radiofrequency identification (RFID) tags can be read through environmentally challenging conditions.
- the tags can work in a temperature range from ⁇ 40° C. to +200° C. and are very durable and resistant to wear.
- Passive radiofrequency identification (RFID) tags are typically read-only tags programmed with a unique set of data that cannot be modified. This awards a high level of security. Passive radiofrequency identification (RFID) tags operate without a separate external power source and obtain operating power generated from the exciter/reader. Passive tags are small, inexpensive, currently ranging from 25 ⁇ to 50 ⁇ , and are expected to rapidly drop in price to 50 or less, and offer a theoretically unlimited operational lifetime. The tags will usually last longer than the object to which they are attached. A passive radiofrequency tag does not add to any radiofrequency energy already in the environment.
- RFID radio frequency identification
- EPC electronics product code
- Radiofrequency identification tags are currently used for identifying and locating animals.
- the application created for animal identification is invaluable for farmers and pet owners.
- Animal tracking tags, inserted under the skin of an animal, are only a few millimeters in size.
- the specific identification coded in tag is recorded in a database. This system can monitor the animal's identity, location, type of diet, and living conditions.
- a radiofrequency identification system consists of three major components; comprising a reader (or interrogator), its associated antenna and the transponders (radio frequency tags, /RFID Cards) that carry the unique programmed data and a computer or other system for processing data which is read by a reader.
- the present invention is directed to a RFID tag embedded or mounted into an implantable medical device for the identification of the medical device as to manufacturer and model, for determination of global positioning of the device and identifying the instruments used to insert and remove the medical device.
- RFID radiofrequency identification tag
- the surgical implantation of the device could be monitored by a global positioning navigational system.
- the implanted device could be serially monitored for any change in alignment, wear or loosening during the lifetime of the implant.
- Radiofrequency identification tags (RFID) are virtually impossible to copy. Radiofrequency identification technology can easily be adopted for medical confidentiality.
- the present invention is directed toward a method for integrating labeling of implantable medical devices and management of medical information comprising the steps of: labeling the medical device with a radiofrequency identification device (RFID) and maintaining a medical product database which associates the information, including manufacturer, type of implant, composition of implant, dimensions and measurements of implant, date of implantation, expiration date if applicable, type of instruments required for removal of implant and any other type of data that may be beneficial, with the specific tag identification for use by the physician or surgeon.
- RFID radiofrequency identification
- the invention is also directed toward a medical implant with an RFID tag and/or patient information database including patient name, address, medical history, treating physicians and institution, implanted device history.
- RFID radiofrequency identification
- RFID radiofrequency identification
- RFID radiofrequency identification
- RFID radiofrequency identification
- RFID radiofrequency identification
- RFID radiofrequency identification
- RFID radiofrequency identification
- RFID radiofrequency identification
- FIG. 1 is a perspective view of a medical implant with an RFID tag placed thereon;
- FIG. 2 is the medical implant of FIG. 1 implanted in the knee of a human patient
- FIG. 3 is a schematic representation of a medical implant RFID tag being excited by a reader and the identification information of the tag being received;
- FIG. 4 is a schematic representation of a medical implant RFID tag being excited by a reader antenna with the specific implant information going to data base and connected with product information and/or patient medical information.
- the present invention is directed to a medical implant with an associated RFID tag and a method of making an interactive medical implant which is sealed against liquid engagement with a radio frequency identification integrated circuit and associated antenna disposed on or within the implant.
- the medical implants which will be used are those implants currently used in orthopaedics and cardiac procedures.
- Orthopaedic implants can consist of implants for joint replacement, implants for hip replacement, implants for knee replacement, implantable spinal cages, implantable spinal plates, implantable bone plates and bone screws; implantable rods, implantable nails, implantable bone screws, and implantable bone stents.
- Cardiac implants can consist of cardiac and vascular stents, pacemakers and defibrillation devices.
- the tagged medical implant facilitates its use for a variety of applications, including product identification after implantation, recipient medical identification, storage and dissemination of product processing information, and product quality assurance, including verification of manufacturers and original equipment.
- Use of medical implants formed in accordance with the present invention permits efficient inventory control.
- the implant 10 which can be formed in accordance with the present invention comprises seal or pouch 12 of a waterproof biocompatible plastic and an associated RFID tag 14 having an integrated circuit 16 and antenna 18 .
- the RFID tag 14 includes a radio frequency identification integrated circuit 16 in semiconductor chip form which is about the size of a grain of sand electrically connected to an antenna 18 placed in contrast with the semiconductor circuit and mounted on a substrate 15 .
- the RFID tag when placed on medical implant 10 is covered by a plastic seal or closure 12 which acts as a moisture impermeable barrier protecting the circuit against body fluids and damage.
- the chip is of standard construction and can be obtained from Alien Inc. or Matrix, Inc. which are several of many chip manufacturers in the RFID chip industry.
- the antenna 18 is operatively connected to the integrated circuit 16 , with the antenna cooperating with the integrated circuit to permit the integrated circuit to be externally powered without physical connection of a power supply thereto.
- the antenna 18 provides the desired radio frequency interface with an associated radio frequency input/output device 20 ( FIG. 3 ) which can be configured to provide remote RF to the tag 14 and/or reading and retrieval of electronic information carried by the integrated circuit 16 by the reader 22 .
- the integrated circuit 16 and antenna 18 , and any associated components, including interconnections with the integrated circuit be positioned within the seal 12 by disposition of the electronic components on a substrate or liner 15 which is inserted into or covered by the seal 12 .
- External powering of the integrated circuit 16 precludes the need for an internal power supply operatively connected to the integrated circuit for providing electrical power thereto.
- an alternate compact power supply 24 such as diagrammatically illustrated in FIG. 3 , which is operatively connected to the integrated circuit 16 .
- the microelectronics assembly of the package can be configured to include one or more different types of compact-size (i.e., micro) sensing or medical treatment devices.
- Such sensing devices are in the form of a microchip circuit and may include, by way of example, a pressure sensor 26 , a temperature sensor 28 , a chemical sensor 30 for sensing the presence of chemicals such as oxygen, and/or a biological sensor 32 for sensing the presence of microorganisms or a micro wave form generator 34 for generating electronic energy in the range of 20-50 microamps to heal the area in the patient surrounding the implant 10 . While the above noted sensors ( 26 - 32 ) are known in the art, the use of same with RFID tags has not been used.
- the configuration of the circuit 16 and antenna 18 with one or more of the internal sensor devices noted above greatly enhances versatile use of the medical implant, including determination of the manufacturer of the implant, years after implantation, allowing the medical history of the patient to be displayed after reading the implant identification code, anti-counterfeiting and preventing the use of used medical implants.
- An array of sensors can be provided for certain applications, with the array preferably integrated with radio frequency integrated circuit 16 as is schematically shown in FIG. 3 .
- the microelectronics assembly used in practicing the present invention can be positioned on a mounting substrate 15 inserted into the seal or pouch 12 made of durable biocompatible plastic with the seal 12 in turn being secured by biocompatible cements, adhesives or glue to the sterile medical implant device.
- the RFID tag is positioned in an area which is not subject to wear by engagement with surrounding various body parts.
- the present invention particularly contemplates that the mounting substrate for the microelectronics be provided in the form of a substrate or liner 15 for insertion into the seal or pouch 12 .
- the RFID tags 14 are preferably are inserted into pre-molded closures or seals 12 (as opposed to in situ molding of a liner).
- Closure manufacturers typically use thin sheet material ranging from 0.015 to 0.030 inches thick, depending upon the particular closure design. This material is supplied in large rolls, and is typically fed into punching machines that punch circular discs from the lining material, and substantially simultaneously insert the punched discs into closure shells. The remaining “skeleton” is typically re-ground and returned to the material supplier for recycling and inclusion in future rolls of lining material.
- the sealing liner thus acts to provide the desired sealing engagement between the closure assembly and the medical implant devices, with the microelectronics assembly thus securely positioned within the closure, yet isolated from the fluids of the body after implantation, in accordance with FDA requirements.
- the present invention contemplates that various techniques can be employed for providing the antenna 18 , and associated interconnections, on the mounting substrate 15 for the electronics assembly.
- the antenna and interconnections are printed on the substrate 15 with electrically conductive inks, with the printing steps selected from the group consisting of ink jet printing, silk screen printing, and offset printing.
- the antenna and interconnections can be formed by thin film deposition utilizing evaporation or sputtering on the mounting substrate, with etching or laser machining of the thin film effected to form the antenna and interconnections.
- the antenna and interconnections can be formed by lamination on the mounting substrate, with the lamination etched or laser machined for formation of the antenna and interconnections.
- Laser “writing” can be employed through the use of organo-metallic gas which forms metal deposits when subjected to laser light.
- the integrated circuit 16 on the mounting substrate can also be effected in various ways.
- the integrated circuit can be positioned active-side-down on the mounting substrate with connection from the pads on the integrated circuit made directly to the antenna or interconnection by soldering, stud-bump bonding or with a conductive adhesive, or active-side-up on the substrate with connection from the pads on the integrated circuit made directly to the antenna or interconnection with wire bonds.
- Formation of the microelectronics assembly can include the steps of first positioning the integrated circuit on the mounting substrate, and forming a planarization layer over the integrated circuit. One or more openings are then formed in the planarization layer, such as by photolithography or laser machining. The antenna is then formed on the planarization layer, and interconnections formed through the openings in the layer.
- the antenna and interconnections can be formed by metal deposition followed by photolithography.
- microelectronics assembly can be positioned on the mounting substrate by printing the integrated circuit with semi-conductor inks as well as the associated antenna and interconnections with electrically-conductive inks directly on the.
- the apparatus employed for insertion of the microelectronics and mounting substrate into the associated closure be a so-called “smart machine”, that is, capable of reading information from, and writing information onto, the microelectronics assembly. It is particularly contemplated that this apparatus be configured for testing the installed microelectronics prior to shipment of the RFID tags.
- the sterile medical implant 10 is implanted into a patient 11 with an RFID tag affixed thereto which has a specific identifying code.
- the tag 14 is accessed by exciting the same in a field ranging from 870 Mhtz to 990 Mhtz at a power of up to three watts generated by an outside powered antenna 20 .
- the RFID tag 14 emits a binary code which is read by a reader 22 and the reader 22 transmits the code to a computer 40 which accesses a data base 50 by the internet 44 to link the code generated specific to the medical implant to a specific manufacturer.
- the surgeon or physician can then click up the diagrams and schematics for the medical implant or alternatively link the code of the medical implant to a database 60 of a specific patient in which the device has been implanted and pull up the file history for the patient including records and/or pictures of the implant operation as well as the medical history of the patient so that the data is stored and displayed on terminal 70 of the user or physician.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Prostheses (AREA)
Abstract
Description
- There is no related application.
- The present invention relates generally to a method of determining the manufacturer and model of a medical implant device after implantation and to construction of a medical implant device employing an RFID tag on a surface of the medical implant.
- Radiofrequency identification (RFID) is a type of automatic identification technology that uses low wattage radio frequency transmission for identification and data cataloguing. Radiofrequency identification (RFID) accelerates and facilitates the collection of data and eliminates the need for human operations in the process. Radiofrequency identification (RFID) uses a reader and antenna array which generates an EM-field from 850 MHz and 2 GHz and special tags which respond to the EM-field with the emission of data are attached or embedded to an object. There are no moving parts in radiofrequency identification (RFID) tags and readers and the systems are able to operate effectively for extended periods without maintenance. The broadcasted radio frequency waves do not require a direct line of sight and locate objects in a three dimensional orientation and will travel through non-metallic materials.
- Radiofrequency identification tags can be manufactured in various shapes, sizes and configurations to suit an intended purpose. The no contact, non-line-of-sight nature of the technology and its speed are important advantages of radiofrequency identification (RFID) systems. A tag and reader communicate in most cases with a response in less than 100 milliseconds and radiofrequency identification (RFID) tags can be read through environmentally challenging conditions. The tags can work in a temperature range from −40° C. to +200° C. and are very durable and resistant to wear.
- Passive radiofrequency identification (RFID) tags are typically read-only tags programmed with a unique set of data that cannot be modified. This awards a high level of security. Passive radiofrequency identification (RFID) tags operate without a separate external power source and obtain operating power generated from the exciter/reader. Passive tags are small, inexpensive, currently ranging from 25¢ to 50¢, and are expected to rapidly drop in price to 50 or less, and offer a theoretically unlimited operational lifetime. The tags will usually last longer than the object to which they are attached. A passive radiofrequency tag does not add to any radiofrequency energy already in the environment.
- The development of radio frequency identification, called RFID, integrated circuitry and the adoption of a standardized EPC (electronics product code) in late 2003 has permitted use of RFID tags in a wide range of applications. Use of such arrangements in a product package has a wide variety of applications, including inventory, product processing, and tamper-indication, by monitoring the unique tag of the product package.
- Radiofrequency identification tags are currently used for identifying and locating animals. The application created for animal identification is invaluable for farmers and pet owners. Animal tracking tags, inserted under the skin of an animal, are only a few millimeters in size. The specific identification coded in tag is recorded in a database. This system can monitor the animal's identity, location, type of diet, and living conditions.
- The microelectronics assembly is configured for radio frequency interaction by the provision of a suitable radio frequency identification (RFID) integrated circuit currently placed on a silicon chip the size of a grain of sand, an antenna, and one or more interconnections operatively connecting the circuit and the antenna. The resulting assembly is commonly referred to as an RFID tag.
- A radiofrequency identification system consists of three major components; comprising a reader (or interrogator), its associated antenna and the transponders (radio frequency tags, /RFID Cards) that carry the unique programmed data and a computer or other system for processing data which is read by a reader.
- The reader transmits a low-power radio signal generally, under 3 watts, through its antenna, that the tag receives via its own antenna to power an integrated circuit (chip). Using the energy it gets from the signal when it enters the radio field, the tag will briefly converse with the reader for verification and the exchange of data. Once that data is received by the reader it can be sent to a controlling computer for processing and management.
- A radiofrequency identification tag contains an electronic chip as a principal element, which is controlling the communication with the reader. This contains a section of memory functioning to store the identification codes or other data; the memory being accessed at the communication time. The RFID tags can be attached or integrated in the objects for identification.
- The present invention is directed to a RFID tag embedded or mounted into an implantable medical device for the identification of the medical device as to manufacturer and model, for determination of global positioning of the device and identifying the instruments used to insert and remove the medical device. For example in total joint replacement, if the medical implant device is embedded with a radiofrequency identification tag (RFID) the surgical implantation of the device could be monitored by a global positioning navigational system. The implanted device could be serially monitored for any change in alignment, wear or loosening during the lifetime of the implant. Radiofrequency identification tags (RFID) are virtually impossible to copy. Radiofrequency identification technology can easily be adopted for medical confidentiality.
- The present invention is directed toward a method for integrating labeling of implantable medical devices and management of medical information comprising the steps of: labeling the medical device with a radiofrequency identification device (RFID) and maintaining a medical product database which associates the information, including manufacturer, type of implant, composition of implant, dimensions and measurements of implant, date of implantation, expiration date if applicable, type of instruments required for removal of implant and any other type of data that may be beneficial, with the specific tag identification for use by the physician or surgeon. The invention is also directed toward a medical implant with an RFID tag and/or patient information database including patient name, address, medical history, treating physicians and institution, implanted device history.
- It is an object of the invention to integrate radiofrequency identification (RFID) tags with implantable medical devices for automatic device identification, monitoring and patient information.
- It is another object of the invention to use radiofrequency identification (RFID) to provide more exact implant information and improved data acquisition regarding the implant.
- It is still another object of the invention to use radiofrequency identification (RFID) of implantable medical devices to improve the access and control of critical medical information.
- It is yet another object of the invention to specify and accurately identify medical implants by using radiofrequency identification (RFID) tags placed upon the medical implant.
- It is another object of the invention to provide radiofrequency identification (RFID) tags on implants that are substantially maintenance and error free.
- It is another object of the invention to use radiofrequency identification (RFID) tags can be read through aqueous environment of the human body.
- It is yet another object of invention to use radiofrequency identification (RFID) tags for monitoring of the implanted device.
- It is another object of the invention to utilize radiofrequency identification (RFID) tags to control electrical stimulation, magnetic stimulation, and administration of pharmaceutical or other therapeutic modalities.
- It is also an object of the invention to utilize radiofrequency identification (RFID) tags on medical implants to prevent counterfeiting of the implants or reusing the same in other patients.
- It is yet another object of the invention to utilize radiofrequency identification (RFID) of implantable medical devices to facilitate increased efficiency and productivity and of related patient information.
- These and other objects, advantages and novel features of the present invention will become apparent when considered with the teaching contained in the detailed disclosure along with the accompanying drawings.
-
FIG. 1 is a perspective view of a medical implant with an RFID tag placed thereon; -
FIG. 2 is the medical implant ofFIG. 1 implanted in the knee of a human patient; -
FIG. 3 is a schematic representation of a medical implant RFID tag being excited by a reader and the identification information of the tag being received; and -
FIG. 4 is a schematic representation of a medical implant RFID tag being excited by a reader antenna with the specific implant information going to data base and connected with product information and/or patient medical information. - While the present invention is susceptible of embodiment in various forms as is shown in the drawings, and will hereinafter be described, a presently preferred embodiment, with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiments disclosed herein.
- The present invention is directed to a medical implant with an associated RFID tag and a method of making an interactive medical implant which is sealed against liquid engagement with a radio frequency identification integrated circuit and associated antenna disposed on or within the implant. It is envisioned that the medical implants which will be used are those implants currently used in orthopaedics and cardiac procedures. Orthopaedic implants can consist of implants for joint replacement, implants for hip replacement, implants for knee replacement, implantable spinal cages, implantable spinal plates, implantable bone plates and bone screws; implantable rods, implantable nails, implantable bone screws, and implantable bone stents. Cardiac implants can consist of cardiac and vascular stents, pacemakers and defibrillation devices. One problem which occurs with pacemakers in addition to the insertion and operation of same is a problem of selling used pacemakers or recalled pacemakers for reinsertion into new patients. The tagged medical implant facilitates its use for a variety of applications, including product identification after implantation, recipient medical identification, storage and dissemination of product processing information, and product quality assurance, including verification of manufacturers and original equipment. Use of medical implants formed in accordance with the present invention permits efficient inventory control.
- As illustrated in
FIG. 2 , theimplant 10 which can be formed in accordance with the present invention comprises seal orpouch 12 of a waterproof biocompatible plastic and an associatedRFID tag 14 having an integratedcircuit 16 andantenna 18. - The
RFID tag 14 includes a radio frequency identification integratedcircuit 16 in semiconductor chip form which is about the size of a grain of sand electrically connected to anantenna 18 placed in contrast with the semiconductor circuit and mounted on asubstrate 15. The RFID tag when placed onmedical implant 10 is covered by a plastic seal orclosure 12 which acts as a moisture impermeable barrier protecting the circuit against body fluids and damage. The chip is of standard construction and can be obtained from Alien Inc. or Matrix, Inc. which are several of many chip manufacturers in the RFID chip industry. Theantenna 18 is operatively connected to theintegrated circuit 16, with the antenna cooperating with the integrated circuit to permit the integrated circuit to be externally powered without physical connection of a power supply thereto. Theantenna 18 provides the desired radio frequency interface with an associated radio frequency input/output device 20 (FIG. 3 ) which can be configured to provide remote RF to thetag 14 and/or reading and retrieval of electronic information carried by the integratedcircuit 16 by thereader 22. - In accordance with the present disclosure, it is contemplated that the
integrated circuit 16 andantenna 18, and any associated components, including interconnections with the integrated circuit, be positioned within theseal 12 by disposition of the electronic components on a substrate orliner 15 which is inserted into or covered by theseal 12. - External powering of the
integrated circuit 16 precludes the need for an internal power supply operatively connected to the integrated circuit for providing electrical power thereto. However, for some configurations of the present package (such as providing for capturing continuous historical data such as pressure and/or temperature), it may be desirable to provide an alternatecompact power supply 24, such as diagrammatically illustrated inFIG. 3 , which is operatively connected to theintegrated circuit 16. - The microelectronics assembly of the package can be configured to include one or more different types of compact-size (i.e., micro) sensing or medical treatment devices. Such sensing devices are in the form of a microchip circuit and may include, by way of example, a
pressure sensor 26, a temperature sensor 28, achemical sensor 30 for sensing the presence of chemicals such as oxygen, and/or abiological sensor 32 for sensing the presence of microorganisms or a microwave form generator 34 for generating electronic energy in the range of 20-50 microamps to heal the area in the patient surrounding theimplant 10. While the above noted sensors (26-32) are known in the art, the use of same with RFID tags has not been used. The configuration of thecircuit 16 andantenna 18 with one or more of the internal sensor devices noted above greatly enhances versatile use of the medical implant, including determination of the manufacturer of the implant, years after implantation, allowing the medical history of the patient to be displayed after reading the implant identification code, anti-counterfeiting and preventing the use of used medical implants. An array of sensors can be provided for certain applications, with the array preferably integrated with radio frequency integratedcircuit 16 as is schematically shown inFIG. 3 . - It is contemplated that the microelectronics assembly used in practicing the present invention can be positioned on a mounting
substrate 15 inserted into the seal orpouch 12 made of durable biocompatible plastic with theseal 12 in turn being secured by biocompatible cements, adhesives or glue to the sterile medical implant device. The RFID tag is positioned in an area which is not subject to wear by engagement with surrounding various body parts. The present invention particularly contemplates that the mounting substrate for the microelectronics be provided in the form of a substrate orliner 15 for insertion into the seal orpouch 12. The RFID tags 14 are preferably are inserted into pre-molded closures or seals 12 (as opposed to in situ molding of a liner). Closure manufacturers typically use thin sheet material ranging from 0.015 to 0.030 inches thick, depending upon the particular closure design. This material is supplied in large rolls, and is typically fed into punching machines that punch circular discs from the lining material, and substantially simultaneously insert the punched discs into closure shells. The remaining “skeleton” is typically re-ground and returned to the material supplier for recycling and inclusion in future rolls of lining material. - In such an arrangement, the sealing liner thus acts to provide the desired sealing engagement between the closure assembly and the medical implant devices, with the microelectronics assembly thus securely positioned within the closure, yet isolated from the fluids of the body after implantation, in accordance with FDA requirements.
- The present invention contemplates that various techniques can be employed for providing the
antenna 18, and associated interconnections, on the mountingsubstrate 15 for the electronics assembly. In one form, the antenna and interconnections are printed on thesubstrate 15 with electrically conductive inks, with the printing steps selected from the group consisting of ink jet printing, silk screen printing, and offset printing. Alternatively, the antenna and interconnections can be formed by thin film deposition utilizing evaporation or sputtering on the mounting substrate, with etching or laser machining of the thin film effected to form the antenna and interconnections. - Other techniques can be employed in accordance with the present invention for formation of the antenna and interconnections of the microelectronics assembly. The antenna and interconnections can be formed by lamination on the mounting substrate, with the lamination etched or laser machined for formation of the antenna and interconnections. Laser “writing” can be employed through the use of organo-metallic gas which forms metal deposits when subjected to laser light.
- Mounting of the
integrated circuit 16 on the mounting substrate can also be effected in various ways. As is known by those skilled in the art, the integrated circuit can be positioned active-side-down on the mounting substrate with connection from the pads on the integrated circuit made directly to the antenna or interconnection by soldering, stud-bump bonding or with a conductive adhesive, or active-side-up on the substrate with connection from the pads on the integrated circuit made directly to the antenna or interconnection with wire bonds. Formation of the microelectronics assembly can include the steps of first positioning the integrated circuit on the mounting substrate, and forming a planarization layer over the integrated circuit. One or more openings are then formed in the planarization layer, such as by photolithography or laser machining. The antenna is then formed on the planarization layer, and interconnections formed through the openings in the layer. The antenna and interconnections can be formed by metal deposition followed by photolithography. - It is within the purview of the present invention that the microelectronics assembly can be positioned on the mounting substrate by printing the integrated circuit with semi-conductor inks as well as the associated antenna and interconnections with electrically-conductive inks directly on the.
- To facilitate efficient use of the present interactive information package, it is contemplated that the apparatus employed for insertion of the microelectronics and mounting substrate into the associated closure be a so-called “smart machine”, that is, capable of reading information from, and writing information onto, the microelectronics assembly. It is particularly contemplated that this apparatus be configured for testing the installed microelectronics prior to shipment of the RFID tags.
- In operation as shown in
FIG. 4 the sterilemedical implant 10 is implanted into a patient 11 with an RFID tag affixed thereto which has a specific identifying code. Thetag 14 is accessed by exciting the same in a field ranging from 870 Mhtz to 990 Mhtz at a power of up to three watts generated by an outsidepowered antenna 20. TheRFID tag 14 emits a binary code which is read by areader 22 and thereader 22 transmits the code to acomputer 40 which accesses adata base 50 by theinternet 44 to link the code generated specific to the medical implant to a specific manufacturer. Upon determination of the manufacturer of the medical implant and model of the medical implant, the surgeon or physician can then click up the diagrams and schematics for the medical implant or alternatively link the code of the medical implant to adatabase 60 of a specific patient in which the device has been implanted and pull up the file history for the patient including records and/or pictures of the implant operation as well as the medical history of the patient so that the data is stored and displayed onterminal 70 of the user or physician. - The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claims:
Claims (22)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/840,384 US7333013B2 (en) | 2004-05-07 | 2004-05-07 | Medical implant device with RFID tag and method of identification of device |
US11/905,744 US7932825B2 (en) | 2004-05-07 | 2007-10-03 | Medical implant device with RFID tag and method of identification of device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/840,384 US7333013B2 (en) | 2004-05-07 | 2004-05-07 | Medical implant device with RFID tag and method of identification of device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/905,744 Continuation US7932825B2 (en) | 2004-05-07 | 2007-10-03 | Medical implant device with RFID tag and method of identification of device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050247319A1 true US20050247319A1 (en) | 2005-11-10 |
US7333013B2 US7333013B2 (en) | 2008-02-19 |
Family
ID=35238325
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/840,384 Expired - Fee Related US7333013B2 (en) | 2004-05-07 | 2004-05-07 | Medical implant device with RFID tag and method of identification of device |
US11/905,744 Expired - Fee Related US7932825B2 (en) | 2004-05-07 | 2007-10-03 | Medical implant device with RFID tag and method of identification of device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/905,744 Expired - Fee Related US7932825B2 (en) | 2004-05-07 | 2007-10-03 | Medical implant device with RFID tag and method of identification of device |
Country Status (1)
Country | Link |
---|---|
US (2) | US7333013B2 (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050159802A1 (en) * | 2004-01-15 | 2005-07-21 | Icon Interventional Systems, Inc., An Ohio Corporation | Method for verifying position on an angioplasty balloon |
US20050165317A1 (en) * | 2003-11-04 | 2005-07-28 | Turner Nicholas M. | Medical devices |
US20060212096A1 (en) * | 2005-03-21 | 2006-09-21 | Greatbatch-Sierra, Inc. | Rfid detection and identification system for implantable medical devices |
US20060232408A1 (en) * | 2005-04-18 | 2006-10-19 | Sdgi Holdings, Inc. | Method and apparatus for implant identification |
US20070006887A1 (en) * | 2005-07-08 | 2007-01-11 | Med-Track Partners Llc | Tracking system for prosthetic and implantable devices |
US20070018810A1 (en) * | 2005-07-20 | 2007-01-25 | Smythe Alan H | Radio frequency identification and tagging for implantable medical devices and medical device systems |
US20070159337A1 (en) * | 2006-01-12 | 2007-07-12 | Sdgi Holdings, Inc. | Modular RFID tag |
WO2007090026A1 (en) * | 2006-01-30 | 2007-08-09 | Warsaw Orthopedic, Inc. | Surgical instrument tray rfid tag |
DE102006016043A1 (en) * | 2006-04-05 | 2007-10-18 | Siemens Ag | Safety system for detection of possible danger of patient, has processing unit verifying personal data for possible danger of persons based on operational data of technical device, and outputting warning signals during detection of danger |
EP1867955A1 (en) * | 2006-06-08 | 2007-12-19 | BrainLAB AG | Calibrated medical instrument with environment sensor |
WO2008008426A2 (en) * | 2006-07-13 | 2008-01-17 | Abbott Cardiovascular Systems Inc. | Radio frequency identification monitoring of stents |
US20080088436A1 (en) * | 2006-10-17 | 2008-04-17 | Bellsouth Intellectual Property Corporation | Methods, Systems, Devices and Computer Program Products for Transmitting Medical Information from Mobile Personal Medical Devices |
US20080204236A1 (en) * | 2007-02-22 | 2008-08-28 | Oded Shlomo Kraft-Oz | Embedded medical data system and method |
US20080308518A1 (en) * | 2007-06-14 | 2008-12-18 | Drug Plastics & Glass Company, Inc. | Container having an automatic identification device for identifying the contents therein |
US20080314900A1 (en) * | 2007-06-14 | 2008-12-25 | Drug Plastics & Glass Company, Inc. | Enclosure having an automatic identification device |
US20090015413A1 (en) * | 2006-07-21 | 2009-01-15 | Texas Instruments Incorporated | Wirelessly transmitting biological parameters |
US20090155744A1 (en) * | 2007-12-13 | 2009-06-18 | Global Implant Solutions, Llc | Dental Implant Identification System |
US20090184825A1 (en) * | 2008-01-23 | 2009-07-23 | General Electric Company | RFID Transponder Used for Instrument Identification in an Electromagnetic Tracking System |
US20090266736A1 (en) * | 2008-04-25 | 2009-10-29 | Drug Plastics & Glass Company, Inc. | Container having an identification device molded therein and method of making same |
WO2009132733A1 (en) * | 2008-04-30 | 2009-11-05 | Neue Magnetodyn Gmbh | Apparatus for stimulating a healing process in the region of an implant |
EP2116208A1 (en) * | 2008-05-06 | 2009-11-11 | Sferic Stellite | Invasive surgical instrument equipped with a transponder |
ES2328759A1 (en) * | 2006-01-25 | 2009-11-17 | Createch Medical, S.L. | System of transfer of information for elaboration of prótesis on dental, maxillofacial and articular implants. (Machine-translation by Google Translate, not legally binding) |
US20100094195A1 (en) * | 2006-03-03 | 2010-04-15 | Smith & Nephew, Inc. | Systems and methods for delivering a medicament |
US7706896B2 (en) * | 2006-09-29 | 2010-04-27 | Nellcor Puritan Bennett Llc | User interface and identification in a medical device system and method |
US20100161003A1 (en) * | 2007-05-28 | 2010-06-24 | Patrik Malmberg | Implantable medical device |
US20100171596A1 (en) * | 2008-12-31 | 2010-07-08 | Burke Peter J | In vivo rfid chip |
US20100170352A1 (en) * | 2008-03-27 | 2010-07-08 | Michael Petersen | Environment monitoring and recording tag with remote sensing capability |
US20100217136A1 (en) * | 2003-11-04 | 2010-08-26 | L & P 100 Limited | Medical devices |
US20100328049A1 (en) * | 2008-11-19 | 2010-12-30 | Greatbatch Ltd. | Aimd external programmer incorporating a multifunction rfid reader having a limited transmit time and a time-out period |
US20110230883A1 (en) * | 2010-03-19 | 2011-09-22 | Smith & Nephew, Inc. | Telescoping im nail and actuating mechanism |
US8126736B2 (en) | 2009-01-23 | 2012-02-28 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US8152854B2 (en) | 2009-09-30 | 2012-04-10 | Imbriglia Joseph E | Resurfacing implant for the wrist and method of implantation thereof |
US20120143020A1 (en) * | 2009-04-29 | 2012-06-07 | Bio-Signal Group Corp. | Eeg kit |
US8388553B2 (en) | 2004-11-04 | 2013-03-05 | Smith & Nephew, Inc. | Cycle and load measurement device |
US8410899B2 (en) | 2008-11-19 | 2013-04-02 | Greatbatch Ltd. | Automobile keyless entry system having an RFID interrogator |
US8486070B2 (en) | 2005-08-23 | 2013-07-16 | Smith & Nephew, Inc. | Telemetric orthopaedic implant |
US20130226068A1 (en) * | 2007-10-31 | 2013-08-29 | Codman & Shurtleff, Inc. | Wireless shunts with storage |
JP2013212375A (en) * | 2012-03-31 | 2013-10-17 | Depuy Synthes Products Llc | System and method for verifying orthopedic surgery plan |
US8570187B2 (en) | 2007-09-06 | 2013-10-29 | Smith & Nephew, Inc. | System and method for communicating with a telemetric implant |
US20140019076A1 (en) * | 2012-07-16 | 2014-01-16 | Cardiac Innovation, Llc. | Medical device identifier |
US8685093B2 (en) | 2009-01-23 | 2014-04-01 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
USRE45030E1 (en) | 2009-09-24 | 2014-07-22 | Greatbatch Ltd. | Hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna |
US20140379376A1 (en) * | 2006-04-07 | 2014-12-25 | DePuy Synthes Products, LLC | System and method for transmitting orthopaedic implant data |
FR3017227A1 (en) * | 2014-02-04 | 2015-08-07 | Stephane Naudi | IMPLANT DATA MANAGEMENT DEVICE, SYSTEM COMPRISING SAID DEVICE AND USE THEREOF. |
US9445720B2 (en) | 2007-02-23 | 2016-09-20 | Smith & Nephew, Inc. | Processing sensed accelerometer data for determination of bone healing |
US9492210B2 (en) | 2008-10-15 | 2016-11-15 | Smith & Nephew, Inc. | Composite internal fixators |
US9918742B2 (en) | 2011-05-16 | 2018-03-20 | Smith & Nephew, Inc. | Measuring skeletal distraction |
EP2581887B1 (en) | 2005-02-08 | 2018-04-04 | Abbott Diabetes Care Inc. | Glucose monitoring system |
DE102017118847A1 (en) * | 2017-04-26 | 2018-10-31 | Smartem Gmbh | Documentation system for medical devices and devices of rescue technology |
US10130278B2 (en) | 2012-10-15 | 2018-11-20 | Jordan Neuroscience, Inc. | Wireless EEG unit |
US10188307B2 (en) | 2012-02-23 | 2019-01-29 | Bio-Signal Group Corp. | Shielded multi-channel EEG headset systems and methods |
US10206792B2 (en) | 2012-03-31 | 2019-02-19 | Depuy Ireland Unlimited Company | Orthopaedic surgical system for determining joint forces of a patients knee joint |
US10248525B2 (en) | 2016-10-11 | 2019-04-02 | Bayer Oy | Intelligent medical implant and monitoring system |
US10492685B2 (en) | 2009-08-31 | 2019-12-03 | Abbott Diabetes Care Inc. | Medical devices and methods |
US10617823B2 (en) | 2007-02-15 | 2020-04-14 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US10653317B2 (en) | 2007-05-08 | 2020-05-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10750952B2 (en) | 2002-12-31 | 2020-08-25 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US11006872B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11051712B2 (en) * | 2016-02-09 | 2021-07-06 | Verily Life Sciences Llc | Systems and methods for determining the location and orientation of implanted devices |
US11211155B2 (en) * | 2011-10-11 | 2021-12-28 | Solomon Systems, Inc. | System and method for providing identification and medical information from a subject |
DE102020121954A1 (en) | 2020-08-21 | 2022-02-24 | Universität Rostock | Arrangement for determining the condition of tissues surrounding implants, the ingrowth behavior and the loosening condition of implants |
US11264133B2 (en) | 2007-06-21 | 2022-03-01 | Abbott Diabetes Care Inc. | Health management devices and methods |
US11475993B1 (en) * | 2021-12-31 | 2022-10-18 | Scott Robert Hansen | Method of unlocking an operation of a Class III medical device |
US11701180B2 (en) * | 2015-11-02 | 2023-07-18 | Medivation Ag | Surgical instrument system |
US11793936B2 (en) | 2009-05-29 | 2023-10-24 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US12123654B2 (en) | 2010-05-04 | 2024-10-22 | Fractal Heatsink Technologies LLC | System and method for maintaining efficiency of a fractal heat sink |
US12239463B2 (en) | 2020-08-31 | 2025-03-04 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
US12251201B2 (en) | 2019-08-16 | 2025-03-18 | Poltorak Technologies Llc | Device and method for medical diagnostics |
US12268496B2 (en) | 2017-01-23 | 2025-04-08 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US12274548B2 (en) | 2022-09-02 | 2025-04-15 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
Families Citing this family (210)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8177762B2 (en) | 1998-12-07 | 2012-05-15 | C. R. Bard, Inc. | Septum including at least one identifiable feature, access ports including same, and related methods |
US7787958B2 (en) | 2001-04-13 | 2010-08-31 | Greatbatch Ltd. | RFID detection and identification system for implantable medical lead systems |
US7955357B2 (en) | 2004-07-02 | 2011-06-07 | Ellipse Technologies, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US8597360B2 (en) | 2004-11-03 | 2013-12-03 | Neuropro Technologies, Inc. | Bone fusion device |
US20060155336A1 (en) * | 2005-01-13 | 2006-07-13 | Heath Roger L | Medical resuscitation system and patient information module |
US8029482B2 (en) | 2005-03-04 | 2011-10-04 | C. R. Bard, Inc. | Systems and methods for radiographically identifying an access port |
EP1858565B1 (en) | 2005-03-04 | 2021-08-11 | C.R. Bard, Inc. | Access port identification systems and methods |
US7947022B2 (en) | 2005-03-04 | 2011-05-24 | C. R. Bard, Inc. | Access port identification systems and methods |
US9474888B2 (en) | 2005-03-04 | 2016-10-25 | C. R. Bard, Inc. | Implantable access port including a sandwiched radiopaque insert |
EP2939703B1 (en) | 2005-04-27 | 2017-03-01 | C. R. Bard, Inc. | Infusion apparatuses and related methods |
WO2006116613A1 (en) | 2005-04-27 | 2006-11-02 | C.R. Bard, Inc. | Infusion apparatuses |
US10307581B2 (en) | 2005-04-27 | 2019-06-04 | C. R. Bard, Inc. | Reinforced septum for an implantable medical device |
US7609155B2 (en) * | 2005-08-25 | 2009-10-27 | Hinkamp Thomas J | System providing medical personnel with immediate critical data for emergency treatments |
US8253555B2 (en) * | 2006-01-25 | 2012-08-28 | Greatbatch Ltd. | Miniature hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna for use in conjunction with an AIMD |
US20100191306A1 (en) * | 2006-01-25 | 2010-07-29 | Greatbatch Ltd. | Transient voltage suppression circuit for an implanted rfid chip |
DE102006008258B4 (en) * | 2006-02-22 | 2012-01-26 | Siemens Ag | System for identifying a medical implant |
US9173661B2 (en) | 2006-02-27 | 2015-11-03 | Biomet Manufacturing, Llc | Patient specific alignment guide with cutting surface and laser indicator |
US8377066B2 (en) | 2006-02-27 | 2013-02-19 | Biomet Manufacturing Corp. | Patient-specific elbow guides and associated methods |
US9918740B2 (en) | 2006-02-27 | 2018-03-20 | Biomet Manufacturing, Llc | Backup surgical instrument system and method |
US8298237B2 (en) * | 2006-06-09 | 2012-10-30 | Biomet Manufacturing Corp. | Patient-specific alignment guide for multiple incisions |
US8608749B2 (en) | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US8568487B2 (en) | 2006-02-27 | 2013-10-29 | Biomet Manufacturing, Llc | Patient-specific hip joint devices |
US9289253B2 (en) | 2006-02-27 | 2016-03-22 | Biomet Manufacturing, Llc | Patient-specific shoulder guide |
US7967868B2 (en) | 2007-04-17 | 2011-06-28 | Biomet Manufacturing Corp. | Patient-modified implant and associated method |
US9339278B2 (en) | 2006-02-27 | 2016-05-17 | Biomet Manufacturing, Llc | Patient-specific acetabular guides and associated instruments |
US20150335438A1 (en) | 2006-02-27 | 2015-11-26 | Biomet Manufacturing, Llc. | Patient-specific augments |
US8092465B2 (en) | 2006-06-09 | 2012-01-10 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US8133234B2 (en) | 2006-02-27 | 2012-03-13 | Biomet Manufacturing Corp. | Patient specific acetabular guide and method |
US8282646B2 (en) | 2006-02-27 | 2012-10-09 | Biomet Manufacturing Corp. | Patient specific knee alignment guide and associated method |
US8070752B2 (en) | 2006-02-27 | 2011-12-06 | Biomet Manufacturing Corp. | Patient specific alignment guide and inter-operative adjustment |
US8858561B2 (en) * | 2006-06-09 | 2014-10-14 | Blomet Manufacturing, LLC | Patient-specific alignment guide |
US8473305B2 (en) | 2007-04-17 | 2013-06-25 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US9907659B2 (en) | 2007-04-17 | 2018-03-06 | Biomet Manufacturing, Llc | Method and apparatus for manufacturing an implant |
US9113971B2 (en) | 2006-02-27 | 2015-08-25 | Biomet Manufacturing, Llc | Femoral acetabular impingement guide |
US10278711B2 (en) | 2006-02-27 | 2019-05-07 | Biomet Manufacturing, Llc | Patient-specific femoral guide |
US8591516B2 (en) | 2006-02-27 | 2013-11-26 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US8535387B2 (en) | 2006-02-27 | 2013-09-17 | Biomet Manufacturing, Llc | Patient-specific tools and implants |
US9345548B2 (en) | 2006-02-27 | 2016-05-24 | Biomet Manufacturing, Llc | Patient-specific pre-operative planning |
US8608748B2 (en) * | 2006-02-27 | 2013-12-17 | Biomet Manufacturing, Llc | Patient specific guides |
US8407067B2 (en) | 2007-04-17 | 2013-03-26 | Biomet Manufacturing Corp. | Method and apparatus for manufacturing an implant |
US8864769B2 (en) | 2006-02-27 | 2014-10-21 | Biomet Manufacturing, Llc | Alignment guides with patient-specific anchoring elements |
US8241293B2 (en) * | 2006-02-27 | 2012-08-14 | Biomet Manufacturing Corp. | Patient specific high tibia osteotomy |
US8603180B2 (en) | 2006-02-27 | 2013-12-10 | Biomet Manufacturing, Llc | Patient-specific acetabular alignment guides |
US20070285249A1 (en) * | 2006-06-06 | 2007-12-13 | Rf Surgical Systems, Inc. | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
US9795399B2 (en) | 2006-06-09 | 2017-10-24 | Biomet Manufacturing, Llc | Patient-specific knee alignment guide and associated method |
US9526525B2 (en) | 2006-08-22 | 2016-12-27 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
WO2008048361A1 (en) * | 2006-10-18 | 2008-04-24 | Medical Components, Inc. | Venous access port assembly with radiopaque indicia |
US7862502B2 (en) | 2006-10-20 | 2011-01-04 | Ellipse Technologies, Inc. | Method and apparatus for adjusting a gastrointestinal restriction device |
US9265912B2 (en) | 2006-11-08 | 2016-02-23 | C. R. Bard, Inc. | Indicia informative of characteristics of insertable medical devices |
US9642986B2 (en) | 2006-11-08 | 2017-05-09 | C. R. Bard, Inc. | Resource information key for an insertable medical device |
US8761895B2 (en) * | 2008-03-20 | 2014-06-24 | Greatbatch Ltd. | RF activated AIMD telemetry transceiver |
US8600478B2 (en) | 2007-02-19 | 2013-12-03 | Medtronic Navigation, Inc. | Automatic identification of instruments used with a surgical navigation system |
US8710957B2 (en) * | 2007-02-28 | 2014-04-29 | Rf Surgical Systems, Inc. | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
US7518502B2 (en) * | 2007-05-24 | 2009-04-14 | Smith & Nephew, Inc. | System and method for tracking surgical assets |
EP2164559B1 (en) | 2007-06-20 | 2017-10-25 | Medical Components, Inc. | Venous access port with molded and/or radiopaque indicia |
EP2180915B2 (en) | 2007-07-19 | 2025-02-19 | Medical Components, Inc. | Venous access port assembly with x-ray discernable indicia |
US9610432B2 (en) * | 2007-07-19 | 2017-04-04 | Innovative Medical Devices, Llc | Venous access port assembly with X-ray discernable indicia |
US8057472B2 (en) | 2007-10-30 | 2011-11-15 | Ellipse Technologies, Inc. | Skeletal manipulation method |
US9579496B2 (en) | 2007-11-07 | 2017-02-28 | C. R. Bard, Inc. | Radiopaque and septum-based indicators for a multi-lumen implantable port |
US11202707B2 (en) | 2008-03-25 | 2021-12-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
US8136728B2 (en) * | 2008-04-25 | 2012-03-20 | Warsaw Orthopedic, Inc. | Medical device tracking system with tag and method |
WO2009151946A2 (en) * | 2008-05-27 | 2009-12-17 | Rf Surgical Systems, Inc. | Multi-modal transponder and method and apparatus to detect same |
US11241257B2 (en) | 2008-10-13 | 2022-02-08 | Nuvasive Specialized Orthopedics, Inc. | Spinal distraction system |
US20100094302A1 (en) * | 2008-10-13 | 2010-04-15 | Scott Pool | Spinal distraction system |
US8264342B2 (en) * | 2008-10-28 | 2012-09-11 | RF Surgical Systems, Inc | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
US8726911B2 (en) | 2008-10-28 | 2014-05-20 | Rf Surgical Systems, Inc. | Wirelessly detectable objects for use in medical procedures and methods of making same |
CN102271737B (en) * | 2008-10-31 | 2016-02-17 | C·R·巴德股份有限公司 | For providing the subcutaneous entry port entered of patient |
US8382756B2 (en) | 2008-11-10 | 2013-02-26 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
US11890443B2 (en) | 2008-11-13 | 2024-02-06 | C. R. Bard, Inc. | Implantable medical devices including septum-based indicators |
US8932271B2 (en) | 2008-11-13 | 2015-01-13 | C. R. Bard, Inc. | Implantable medical devices including septum-based indicators |
US8170641B2 (en) | 2009-02-20 | 2012-05-01 | Biomet Manufacturing Corp. | Method of imaging an extremity of a patient |
US8197490B2 (en) | 2009-02-23 | 2012-06-12 | Ellipse Technologies, Inc. | Non-invasive adjustable distraction system |
US8721568B2 (en) | 2009-03-31 | 2014-05-13 | Depuy (Ireland) | Method for performing an orthopaedic surgical procedure |
US8551023B2 (en) | 2009-03-31 | 2013-10-08 | Depuy (Ireland) | Device and method for determining force of a knee joint |
US9622792B2 (en) | 2009-04-29 | 2017-04-18 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
US9792408B2 (en) | 2009-07-02 | 2017-10-17 | Covidien Lp | Method and apparatus to detect transponder tagged objects and to communicate with medical telemetry devices, for example during medical procedures |
US8715244B2 (en) | 2009-07-07 | 2014-05-06 | C. R. Bard, Inc. | Extensible internal bolster for a medical device |
US8079518B2 (en) * | 2009-07-30 | 2011-12-20 | Warsaw Orthopedic, Inc. | Devices and methods for implant tracking |
DE102009028503B4 (en) | 2009-08-13 | 2013-11-14 | Biomet Manufacturing Corp. | Resection template for the resection of bones, method for producing such a resection template and operation set for performing knee joint surgery |
KR101792472B1 (en) | 2009-09-04 | 2017-10-31 | 누베이시브 스페셜라이즈드 오소페딕스, 인크. | Bone growth device and method |
WO2011062750A1 (en) | 2009-11-17 | 2011-05-26 | C. R. Bard, Inc. | Overmolded access port including anchoring and identification features |
US9226686B2 (en) * | 2009-11-23 | 2016-01-05 | Rf Surgical Systems, Inc. | Method and apparatus to account for transponder tagged objects used during medical procedures |
CN102667825A (en) * | 2009-11-25 | 2012-09-12 | 艾利丹尼森公司 | RFID apparel tag for use in industrial processing and post care treatment |
US8632547B2 (en) | 2010-02-26 | 2014-01-21 | Biomet Sports Medicine, Llc | Patient-specific osteotomy devices and methods |
US20110218418A1 (en) * | 2010-03-02 | 2011-09-08 | Medtronic, Inc. | Identification patch for a medical system |
US9066727B2 (en) * | 2010-03-04 | 2015-06-30 | Materialise Nv | Patient-specific computed tomography guides |
US9248043B2 (en) | 2010-06-30 | 2016-02-02 | Ellipse Technologies, Inc. | External adjustment device for distraction device |
US8734488B2 (en) | 2010-08-09 | 2014-05-27 | Ellipse Technologies, Inc. | Maintenance feature in magnetic implant |
US9271744B2 (en) | 2010-09-29 | 2016-03-01 | Biomet Manufacturing, Llc | Patient-specific guide for partial acetabular socket replacement |
US9968376B2 (en) | 2010-11-29 | 2018-05-15 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
USD682416S1 (en) | 2010-12-30 | 2013-05-14 | C. R. Bard, Inc. | Implantable access port |
USD676955S1 (en) | 2010-12-30 | 2013-02-26 | C. R. Bard, Inc. | Implantable access port |
US8852187B2 (en) | 2011-02-14 | 2014-10-07 | Ellipse Technologies, Inc. | Variable length device and method |
US9241745B2 (en) | 2011-03-07 | 2016-01-26 | Biomet Manufacturing, Llc | Patient-specific femoral version guide |
US8715289B2 (en) | 2011-04-15 | 2014-05-06 | Biomet Manufacturing, Llc | Patient-specific numerically controlled instrument |
US9675400B2 (en) | 2011-04-19 | 2017-06-13 | Biomet Manufacturing, Llc | Patient-specific fracture fixation instrumentation and method |
US8668700B2 (en) | 2011-04-29 | 2014-03-11 | Biomet Manufacturing, Llc | Patient-specific convertible guides |
US8956364B2 (en) | 2011-04-29 | 2015-02-17 | Biomet Manufacturing, Llc | Patient-specific partial knee guides and other instruments |
US8532807B2 (en) | 2011-06-06 | 2013-09-10 | Biomet Manufacturing, Llc | Pre-operative planning and manufacturing method for orthopedic procedure |
US9084618B2 (en) | 2011-06-13 | 2015-07-21 | Biomet Manufacturing, Llc | Drill guides for confirming alignment of patient-specific alignment guides |
US8764760B2 (en) | 2011-07-01 | 2014-07-01 | Biomet Manufacturing, Llc | Patient-specific bone-cutting guidance instruments and methods |
US20130001121A1 (en) | 2011-07-01 | 2013-01-03 | Biomet Manufacturing Corp. | Backup kit for a patient-specific arthroplasty kit assembly |
US8597365B2 (en) | 2011-08-04 | 2013-12-03 | Biomet Manufacturing, Llc | Patient-specific pelvic implants for acetabular reconstruction |
US9358123B2 (en) | 2011-08-09 | 2016-06-07 | Neuropro Spinal Jaxx, Inc. | Bone fusion device, apparatus and method |
US10420654B2 (en) | 2011-08-09 | 2019-09-24 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
US10292830B2 (en) | 2011-08-09 | 2019-05-21 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
WO2013028839A1 (en) * | 2011-08-23 | 2013-02-28 | George Frey | System and method for identification of medical device |
US9295497B2 (en) | 2011-08-31 | 2016-03-29 | Biomet Manufacturing, Llc | Patient-specific sacroiliac and pedicle guides |
US9066734B2 (en) | 2011-08-31 | 2015-06-30 | Biomet Manufacturing, Llc | Patient-specific sacroiliac guides and associated methods |
US9386993B2 (en) | 2011-09-29 | 2016-07-12 | Biomet Manufacturing, Llc | Patient-specific femoroacetabular impingement instruments and methods |
US10743794B2 (en) | 2011-10-04 | 2020-08-18 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
US8556074B2 (en) | 2011-10-25 | 2013-10-15 | Warsaw Orthopedic, Inc | Encapsulated data carrier tag for track and trace purposes |
US9451973B2 (en) | 2011-10-27 | 2016-09-27 | Biomet Manufacturing, Llc | Patient specific glenoid guide |
US9554910B2 (en) | 2011-10-27 | 2017-01-31 | Biomet Manufacturing, Llc | Patient-specific glenoid guide and implants |
US9301812B2 (en) | 2011-10-27 | 2016-04-05 | Biomet Manufacturing, Llc | Methods for patient-specific shoulder arthroplasty |
KR20130046337A (en) | 2011-10-27 | 2013-05-07 | 삼성전자주식회사 | Multi-view device and contol method thereof, display apparatus and contol method thereof, and display system |
ES2635542T3 (en) | 2011-10-27 | 2017-10-04 | Biomet Manufacturing, Llc | Glenoid guides specific to the patient |
WO2013066946A1 (en) | 2011-11-01 | 2013-05-10 | Ellipse Technologies, Inc. | Adjustable magnetic devices and methods of using same |
US9317920B2 (en) | 2011-11-30 | 2016-04-19 | Rush University Medical Center | System and methods for identification of implanted medical devices and/or detection of retained surgical foreign objects from medical images |
US9626612B2 (en) * | 2011-12-21 | 2017-04-18 | Avery Dennison Retail Information Services, Llc | Radio frequency identification sensor assembly |
US9636509B2 (en) | 2012-01-27 | 2017-05-02 | Medtronic, Inc. | Retrieval of information from an implantable medical device |
US9237950B2 (en) | 2012-02-02 | 2016-01-19 | Biomet Manufacturing, Llc | Implant with patient-specific porous structure |
US9381011B2 (en) | 2012-03-29 | 2016-07-05 | Depuy (Ireland) | Orthopedic surgical instrument for knee surgery |
US10070973B2 (en) | 2012-03-31 | 2018-09-11 | Depuy Ireland Unlimited Company | Orthopaedic sensor module and system for determining joint forces of a patient's knee joint |
US9532883B2 (en) | 2012-04-13 | 2017-01-03 | Neuropro Technologies, Inc. | Bone fusion device |
US8976022B2 (en) | 2012-04-13 | 2015-03-10 | Khalid Hamad Motleb ALNAFISAH | Mobile tracking identification system, method, and computer program product |
US10159583B2 (en) | 2012-04-13 | 2018-12-25 | Neuropro Technologies, Inc. | Bone fusion device |
US20130338714A1 (en) | 2012-06-15 | 2013-12-19 | Arvin Chang | Magnetic implants with improved anatomical compatibility |
EP3479796B1 (en) * | 2012-09-17 | 2020-12-23 | JAMM Technologies, Inc. | Breast implants with integrated transponders |
US9044281B2 (en) | 2012-10-18 | 2015-06-02 | Ellipse Technologies, Inc. | Intramedullary implants for replacing lost bone |
IN2015DN03762A (en) | 2012-10-29 | 2015-10-02 | Ellipse Technologies Inc | |
US20150297306A1 (en) * | 2012-11-29 | 2015-10-22 | Pulmone Advanced Medical Devices, Ltd. | Managing a detachable component of a medical device |
US9204977B2 (en) | 2012-12-11 | 2015-12-08 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US9060788B2 (en) | 2012-12-11 | 2015-06-23 | Biomet Manufacturing, Llc | Patient-specific acetabular guide for anterior approach |
US11464960B2 (en) | 2013-01-23 | 2022-10-11 | C. R. Bard, Inc. | Low-profile single and dual vascular access device |
CN104936571B (en) | 2013-01-23 | 2018-01-30 | C·R·巴德股份有限公司 | Low profile entry port |
US11420033B2 (en) | 2013-01-23 | 2022-08-23 | C. R. Bard, Inc. | Low-profile single and dual vascular access device |
US9179938B2 (en) | 2013-03-08 | 2015-11-10 | Ellipse Technologies, Inc. | Distraction devices and method of assembling the same |
US9839438B2 (en) | 2013-03-11 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid guide with a reusable guide holder |
US9579107B2 (en) | 2013-03-12 | 2017-02-28 | Biomet Manufacturing, Llc | Multi-point fit for patient specific guide |
US9826981B2 (en) | 2013-03-13 | 2017-11-28 | Biomet Manufacturing, Llc | Tangential fit of patient-specific guides |
US9498233B2 (en) | 2013-03-13 | 2016-11-22 | Biomet Manufacturing, Llc. | Universal acetabular guide and associated hardware |
US8983620B2 (en) | 2013-03-15 | 2015-03-17 | Medtronic, Inc. | Systems, apparatus and methods facilitating longevity extension for implantable medical devices |
US9517145B2 (en) | 2013-03-15 | 2016-12-13 | Biomet Manufacturing, Llc | Guide alignment system and method |
MX366061B (en) | 2013-03-15 | 2019-06-26 | Neuropro Tech Inc | Bodiless bone fusion device, apparatus and method. |
PT2967879T (en) | 2013-03-15 | 2022-04-06 | Canary Medical Inc | Devices, systems and methods for monitoring hip replacements |
US20140273824A1 (en) * | 2013-03-15 | 2014-09-18 | Medtronic, Inc. | Systems, apparatus and methods facilitating secure pairing of an implantable device with a remote device using near field communication |
EP2800021B1 (en) * | 2013-04-30 | 2019-09-04 | General Electric Company | Method of imaging an implant placed into a human body, adapted implant, and adapted imaging system |
US9067073B2 (en) | 2013-05-06 | 2015-06-30 | Cardiac Pacemakers, Inc. | Method and apparatus for storing up-to-date information on an implantable medical device |
KR20220044862A (en) | 2013-06-23 | 2022-04-11 | 카나리 메디칼 아이엔씨. | Devices, systems and methods for monitoring knee replacements |
US10226242B2 (en) | 2013-07-31 | 2019-03-12 | Nuvasive Specialized Orthopedics, Inc. | Noninvasively adjustable suture anchors |
US9801734B1 (en) | 2013-08-09 | 2017-10-31 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US9700234B2 (en) | 2013-09-30 | 2017-07-11 | University of Pittsburgh—of the Commonwealth System of Higher Education | System and method for storing information relating to a medical implant device |
US10751094B2 (en) | 2013-10-10 | 2020-08-25 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
US20150112349A1 (en) | 2013-10-21 | 2015-04-23 | Biomet Manufacturing, Llc | Ligament Guide Registration |
US9872732B2 (en) | 2013-10-24 | 2018-01-23 | Covidien Lp | Surgical sponge distribution systems and methods |
US20150223278A1 (en) * | 2014-02-03 | 2015-08-06 | Mary Reaston | System and Method for Establishing a Wireless Connection |
US9424503B2 (en) | 2014-08-11 | 2016-08-23 | Brian Kieser | Structurally encoded component and method of manufacturing structurally encoded component |
US20150223921A1 (en) | 2014-02-11 | 2015-08-13 | Brian Kieser | Structurally encoded implantable devices |
EP2926730B1 (en) | 2014-03-31 | 2018-09-05 | Covidien LP | Method and device for detection of transponder tagged objects, for example during surgery |
WO2015152975A1 (en) | 2014-03-31 | 2015-10-08 | Rf Surgical Systems, Inc. | Hand-held spherical antenna system to detect transponder tagged objects, for example during surgery |
US10282488B2 (en) | 2014-04-25 | 2019-05-07 | Biomet Manufacturing, Llc | HTO guide with optional guided ACL/PCL tunnels |
EP3137000B1 (en) | 2014-04-28 | 2023-08-23 | NuVasive Specialized Orthopedics, Inc. | System for informational magnetic feedback in adjustable implants |
US9408616B2 (en) | 2014-05-12 | 2016-08-09 | Biomet Manufacturing, Llc | Humeral cut guide |
US20150333972A1 (en) * | 2014-05-13 | 2015-11-19 | Saint Louis University | System and method for managing hospital video and data |
US9561040B2 (en) | 2014-06-03 | 2017-02-07 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
US9839436B2 (en) | 2014-06-03 | 2017-12-12 | Biomet Manufacturing, Llc | Patient-specific glenoid depth control |
USD867594S1 (en) | 2015-06-19 | 2019-11-19 | Edwards Lifesciences Corporation | Prosthetic heart valve |
CA2914094C (en) | 2014-06-20 | 2021-01-05 | Edwards Lifesciences Corporation | Surgical heart valves identifiable post-implant |
SG10201902350XA (en) | 2014-09-17 | 2019-04-29 | Canary Medical Inc | Devices, systems and methods for using and monitoring medical devices |
US9833245B2 (en) | 2014-09-29 | 2017-12-05 | Biomet Sports Medicine, Llc | Tibial tubercule osteotomy |
US9826994B2 (en) | 2014-09-29 | 2017-11-28 | Biomet Manufacturing, Llc | Adjustable glenoid pin insertion guide |
CN111658107A (en) | 2014-10-23 | 2020-09-15 | 诺威适骨科专科公司 | System for bone growth |
WO2016105524A1 (en) | 2014-12-26 | 2016-06-30 | Ellipse Technologies, Inc. | Systems and methods for distraction |
AU2016200173B2 (en) * | 2015-01-21 | 2019-10-31 | Covidien Lp | Wirelessly detectable objects for use in medical procedures and methods of making same |
EP3247304B1 (en) | 2015-01-21 | 2024-07-24 | Covidien LP | Detectable sponges for use in medical procedures and methods of making and accounting for same |
US10660726B2 (en) | 2015-01-21 | 2020-05-26 | Covidien Lp | Sterilizable wirelessly detectable objects for use in medical procedures and methods of making same |
WO2016134326A2 (en) | 2015-02-19 | 2016-08-25 | Nuvasive, Inc. | Systems and methods for vertebral adjustment |
USD775331S1 (en) | 2015-03-02 | 2016-12-27 | Covidien Lp | Hand-held antenna system |
US9690963B2 (en) | 2015-03-02 | 2017-06-27 | Covidien Lp | Hand-held dual spherical antenna system |
US9820868B2 (en) | 2015-03-30 | 2017-11-21 | Biomet Manufacturing, Llc | Method and apparatus for a pin apparatus |
US10193209B2 (en) | 2015-04-06 | 2019-01-29 | Covidien Lp | Mat based antenna and heater system, for use during medical procedures |
US10568647B2 (en) | 2015-06-25 | 2020-02-25 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
US10226262B2 (en) | 2015-06-25 | 2019-03-12 | Biomet Manufacturing, Llc | Patient-specific humeral guide designs |
KR20180067632A (en) | 2015-10-16 | 2018-06-20 | 누베이시브 스페셜라이즈드 오소페딕스, 인크. | An adjustable device for treating arthritis of the knee |
AU2016368167B2 (en) | 2015-12-10 | 2021-04-22 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
ES2805657T3 (en) | 2016-01-28 | 2021-02-15 | Nuvasive Specialized Orthopedics Inc | Systems for bone transport |
WO2017139548A1 (en) | 2016-02-10 | 2017-08-17 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for controlling multiple surgical variables |
US11191479B2 (en) * | 2016-03-23 | 2021-12-07 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
KR102594123B1 (en) | 2016-03-23 | 2023-10-26 | 카나리 메디칼 아이엔씨. | Implantable reporting processor for an alert implant |
KR20220157512A (en) | 2016-07-15 | 2022-11-29 | 마코 서지컬 코포레이션 | Systems for a robotic-assisted revision procedure |
FR3054125B1 (en) * | 2016-07-20 | 2018-11-23 | Centre National De La Recherche Scientifique | PROTHETIC IMPLANT AND METHOD FOR MANUFACTURING SUCH IMPLANT |
EP3493732A4 (en) | 2016-08-03 | 2020-04-29 | Geissler Companies, LLC | Passive sensors and related structures for implantable biomedical devices |
US10111760B2 (en) | 2017-01-18 | 2018-10-30 | Neuropro Technologies, Inc. | Bone fusion system, device and method including a measuring mechanism |
US10213321B2 (en) | 2017-01-18 | 2019-02-26 | Neuropro Technologies, Inc. | Bone fusion system, device and method including delivery apparatus |
US10729560B2 (en) | 2017-01-18 | 2020-08-04 | Neuropro Technologies, Inc. | Bone fusion system, device and method including an insertion instrument |
US10973657B2 (en) | 2017-01-18 | 2021-04-13 | Neuropro Technologies, Inc. | Bone fusion surgical system and method |
US10722310B2 (en) | 2017-03-13 | 2020-07-28 | Zimmer Biomet CMF and Thoracic, LLC | Virtual surgery planning system and method |
USD870264S1 (en) | 2017-09-06 | 2019-12-17 | C. R. Bard, Inc. | Implantable apheresis port |
CN107715307A (en) * | 2017-09-26 | 2018-02-23 | 李铭 | A kind of tumor-localizing device |
US20200254283A1 (en) | 2019-02-07 | 2020-08-13 | Nuvasive Specialized Orthopedics, Inc. | Medical devices for ultrasonic therapy |
US11589901B2 (en) | 2019-02-08 | 2023-02-28 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device |
US20210366610A1 (en) | 2019-06-06 | 2021-11-25 | Canary Medical Inc. | Intelligent joint prosthesis |
AU2020287174A1 (en) | 2019-06-06 | 2022-02-03 | Canary Medical Inc. | Intelligent joint prosthesis |
TWI756776B (en) * | 2020-08-07 | 2022-03-01 | 香港商智慧生醫材料有限公司 | Intelligent medical gauze |
WO2022055678A1 (en) | 2020-09-08 | 2022-03-17 | Nuvasive Specialized Orthopedics, Inc. | Remote control module for adjustable implants |
US11806054B2 (en) | 2021-02-23 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US11737787B1 (en) | 2021-05-27 | 2023-08-29 | Nuvasive, Inc. | Bone elongating devices and methods of use |
EP4104895A1 (en) | 2021-06-14 | 2022-12-21 | Instituto Politécnico De Leiria | Intelligent biomimetic biodevice and use thereof |
WO2023014564A1 (en) | 2021-08-03 | 2023-02-09 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5423334A (en) * | 1993-02-01 | 1995-06-13 | C. R. Bard, Inc. | Implantable medical device characterization system |
US6111520A (en) * | 1997-04-18 | 2000-08-29 | Georgia Tech Research Corp. | System and method for the wireless sensing of physical properties |
US6327501B1 (en) * | 1999-11-02 | 2001-12-04 | Pacesetter, Inc. | System and method for determining safety alert conditions for implantable medical devices |
US6385593B2 (en) * | 1999-10-29 | 2002-05-07 | Medtronic, Inc. | Apparatus and method for automated invoicing of medical device systems |
US6442432B2 (en) * | 1999-12-21 | 2002-08-27 | Medtronic, Inc. | Instrumentation and software for remote monitoring and programming of implantable medical devices (IMDs) |
US20020158120A1 (en) * | 2001-04-27 | 2002-10-31 | Zierolf Joseph A. | Process and assembly for identifying and tracking assets |
US20030155413A1 (en) * | 2001-07-18 | 2003-08-21 | Rozsa Kovesdi | System and method for authoring and providing information relevant to a physical world |
US6766200B2 (en) * | 2001-11-01 | 2004-07-20 | Pacesetter, Inc. | Magnetic coupling antennas for implantable medical devices |
US20050022581A1 (en) * | 2003-06-10 | 2005-02-03 | Smiths Detection-Pasadena, Inc. | Sensor arrangement |
US20050258242A1 (en) * | 2004-05-20 | 2005-11-24 | Cardiac Pacemakers, Inc. | System and method of managing information for an implantable medical device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5855609A (en) * | 1992-08-24 | 1999-01-05 | Lipomatrix, Incorporated (Bvi) | Medical information transponder implant and tracking system |
US6327593B1 (en) * | 1998-12-23 | 2001-12-04 | Unisys Corporation | Automated system and method for capturing and managing user knowledge within a search system |
US7024248B2 (en) * | 2000-10-16 | 2006-04-04 | Remon Medical Technologies Ltd | Systems and methods for communicating with implantable devices |
-
2004
- 2004-05-07 US US10/840,384 patent/US7333013B2/en not_active Expired - Fee Related
-
2007
- 2007-10-03 US US11/905,744 patent/US7932825B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5423334A (en) * | 1993-02-01 | 1995-06-13 | C. R. Bard, Inc. | Implantable medical device characterization system |
US6111520A (en) * | 1997-04-18 | 2000-08-29 | Georgia Tech Research Corp. | System and method for the wireless sensing of physical properties |
US6385593B2 (en) * | 1999-10-29 | 2002-05-07 | Medtronic, Inc. | Apparatus and method for automated invoicing of medical device systems |
US6327501B1 (en) * | 1999-11-02 | 2001-12-04 | Pacesetter, Inc. | System and method for determining safety alert conditions for implantable medical devices |
US6442432B2 (en) * | 1999-12-21 | 2002-08-27 | Medtronic, Inc. | Instrumentation and software for remote monitoring and programming of implantable medical devices (IMDs) |
US20020158120A1 (en) * | 2001-04-27 | 2002-10-31 | Zierolf Joseph A. | Process and assembly for identifying and tracking assets |
US20030155413A1 (en) * | 2001-07-18 | 2003-08-21 | Rozsa Kovesdi | System and method for authoring and providing information relevant to a physical world |
US6766200B2 (en) * | 2001-11-01 | 2004-07-20 | Pacesetter, Inc. | Magnetic coupling antennas for implantable medical devices |
US20050022581A1 (en) * | 2003-06-10 | 2005-02-03 | Smiths Detection-Pasadena, Inc. | Sensor arrangement |
US20050258242A1 (en) * | 2004-05-20 | 2005-11-24 | Cardiac Pacemakers, Inc. | System and method of managing information for an implantable medical device |
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10750952B2 (en) | 2002-12-31 | 2020-08-25 | Abbott Diabetes Care Inc. | Continuous glucose monitoring system and methods of use |
US20050165317A1 (en) * | 2003-11-04 | 2005-07-28 | Turner Nicholas M. | Medical devices |
US20100217136A1 (en) * | 2003-11-04 | 2010-08-26 | L & P 100 Limited | Medical devices |
US20110196618A1 (en) * | 2004-01-15 | 2011-08-11 | Icon Interventional Systems, Inc. | Method for verifying position on an angioplasty balloon |
US7945409B2 (en) * | 2004-01-15 | 2011-05-17 | Icon Interventional Systems, Inc. | Method for verifying position on an angioplasty balloon |
US20050159802A1 (en) * | 2004-01-15 | 2005-07-21 | Icon Interventional Systems, Inc., An Ohio Corporation | Method for verifying position on an angioplasty balloon |
US8388553B2 (en) | 2004-11-04 | 2013-03-05 | Smith & Nephew, Inc. | Cycle and load measurement device |
EP2581887B1 (en) | 2005-02-08 | 2018-04-04 | Abbott Diabetes Care Inc. | Glucose monitoring system |
US20060212096A1 (en) * | 2005-03-21 | 2006-09-21 | Greatbatch-Sierra, Inc. | Rfid detection and identification system for implantable medical devices |
US7916013B2 (en) * | 2005-03-21 | 2011-03-29 | Greatbatch Ltd. | RFID detection and identification system for implantable medical devices |
US20060235488A1 (en) * | 2005-04-18 | 2006-10-19 | Sdgi Holdings, Inc. | Systems and methods for RFID-based medical implant identification |
US7474223B2 (en) * | 2005-04-18 | 2009-01-06 | Warsaw Orthopedic, Inc. | Method and apparatus for implant identification |
US20060232408A1 (en) * | 2005-04-18 | 2006-10-19 | Sdgi Holdings, Inc. | Method and apparatus for implant identification |
US20070006887A1 (en) * | 2005-07-08 | 2007-01-11 | Med-Track Partners Llc | Tracking system for prosthetic and implantable devices |
US20070018810A1 (en) * | 2005-07-20 | 2007-01-25 | Smythe Alan H | Radio frequency identification and tagging for implantable medical devices and medical device systems |
US7429920B2 (en) * | 2005-07-20 | 2008-09-30 | Cardiac Pacemakers, Inc. | Radio frequency identification and tagging for implantable medical devices and medical device systems |
US8486070B2 (en) | 2005-08-23 | 2013-07-16 | Smith & Nephew, Inc. | Telemetric orthopaedic implant |
US8721643B2 (en) | 2005-08-23 | 2014-05-13 | Smith & Nephew, Inc. | Telemetric orthopaedic implant |
US20070159337A1 (en) * | 2006-01-12 | 2007-07-12 | Sdgi Holdings, Inc. | Modular RFID tag |
ES2328759A1 (en) * | 2006-01-25 | 2009-11-17 | Createch Medical, S.L. | System of transfer of information for elaboration of prótesis on dental, maxillofacial and articular implants. (Machine-translation by Google Translate, not legally binding) |
WO2007090026A1 (en) * | 2006-01-30 | 2007-08-09 | Warsaw Orthopedic, Inc. | Surgical instrument tray rfid tag |
US9849216B2 (en) | 2006-03-03 | 2017-12-26 | Smith & Nephew, Inc. | Systems and methods for delivering a medicament |
US20100094195A1 (en) * | 2006-03-03 | 2010-04-15 | Smith & Nephew, Inc. | Systems and methods for delivering a medicament |
DE102006016043A1 (en) * | 2006-04-05 | 2007-10-18 | Siemens Ag | Safety system for detection of possible danger of patient, has processing unit verifying personal data for possible danger of persons based on operational data of technical device, and outputting warning signals during detection of danger |
US20140379376A1 (en) * | 2006-04-07 | 2014-12-25 | DePuy Synthes Products, LLC | System and method for transmitting orthopaedic implant data |
US10172551B2 (en) * | 2006-04-07 | 2019-01-08 | DePuy Synthes Products, Inc. | System and method for transmitting orthopaedic implant data |
US20080276684A1 (en) * | 2006-06-08 | 2008-11-13 | Gunter Goldbach | Calibrated medical instrument comprising an environmental sensor |
EP1867955A1 (en) * | 2006-06-08 | 2007-12-19 | BrainLAB AG | Calibrated medical instrument with environment sensor |
WO2008008426A2 (en) * | 2006-07-13 | 2008-01-17 | Abbott Cardiovascular Systems Inc. | Radio frequency identification monitoring of stents |
US10145811B2 (en) | 2006-07-13 | 2018-12-04 | Abbott Cardiovascular Systems Inc. | Radio frequency identification monitoring of stents |
US7757543B2 (en) | 2006-07-13 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Radio frequency identification monitoring of stents |
WO2008008426A3 (en) * | 2006-07-13 | 2008-02-28 | Abbott Cardiovascular Systems | Radio frequency identification monitoring of stents |
US9188558B2 (en) | 2006-07-13 | 2015-11-17 | Advanced Cardiovascular Systems, Inc. | Radio frequency identification monitoring of stents |
US20090015413A1 (en) * | 2006-07-21 | 2009-01-15 | Texas Instruments Incorporated | Wirelessly transmitting biological parameters |
US7706896B2 (en) * | 2006-09-29 | 2010-04-27 | Nellcor Puritan Bennett Llc | User interface and identification in a medical device system and method |
US8160726B2 (en) | 2006-09-29 | 2012-04-17 | Nellcor Puritan Bennett Llc | User interface and identification in a medical device system and method |
US7889070B2 (en) * | 2006-10-17 | 2011-02-15 | At&T Intellectual Property I, L.P. | Methods, systems, devices and computer program products for transmitting medical information from mobile personal medical devices |
US20110099033A1 (en) * | 2006-10-17 | 2011-04-28 | At&T Intellectual Property I, Lp | Methods, systems, devices and computer program products for transmitting medical information from mobile personal medical devices |
US20080088436A1 (en) * | 2006-10-17 | 2008-04-17 | Bellsouth Intellectual Property Corporation | Methods, Systems, Devices and Computer Program Products for Transmitting Medical Information from Mobile Personal Medical Devices |
US8742921B2 (en) | 2006-10-17 | 2014-06-03 | At&T Intellectual Property I, Lp | Methods, systems, devices and computer program products for transmitting medical information from mobile personal medical devices |
US10617823B2 (en) | 2007-02-15 | 2020-04-14 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US20080204236A1 (en) * | 2007-02-22 | 2008-08-28 | Oded Shlomo Kraft-Oz | Embedded medical data system and method |
US9445720B2 (en) | 2007-02-23 | 2016-09-20 | Smith & Nephew, Inc. | Processing sensed accelerometer data for determination of bone healing |
US11696684B2 (en) | 2007-05-08 | 2023-07-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10952611B2 (en) | 2007-05-08 | 2021-03-23 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US10653317B2 (en) | 2007-05-08 | 2020-05-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US20100161003A1 (en) * | 2007-05-28 | 2010-06-24 | Patrik Malmberg | Implantable medical device |
US20080308518A1 (en) * | 2007-06-14 | 2008-12-18 | Drug Plastics & Glass Company, Inc. | Container having an automatic identification device for identifying the contents therein |
US20080314900A1 (en) * | 2007-06-14 | 2008-12-25 | Drug Plastics & Glass Company, Inc. | Enclosure having an automatic identification device |
US11276492B2 (en) | 2007-06-21 | 2022-03-15 | Abbott Diabetes Care Inc. | Health management devices and methods |
US11264133B2 (en) | 2007-06-21 | 2022-03-01 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8570187B2 (en) | 2007-09-06 | 2013-10-29 | Smith & Nephew, Inc. | System and method for communicating with a telemetric implant |
US20130226068A1 (en) * | 2007-10-31 | 2013-08-29 | Codman & Shurtleff, Inc. | Wireless shunts with storage |
US10265509B2 (en) * | 2007-10-31 | 2019-04-23 | Integra LifeSciences Switzerland Sarl | Wireless shunts with storage |
US20090155744A1 (en) * | 2007-12-13 | 2009-06-18 | Global Implant Solutions, Llc | Dental Implant Identification System |
US20090184825A1 (en) * | 2008-01-23 | 2009-07-23 | General Electric Company | RFID Transponder Used for Instrument Identification in an Electromagnetic Tracking System |
US9035773B2 (en) * | 2008-03-27 | 2015-05-19 | Advanced Electronic Tracking | Environment monitoring and recording tag with remote sensing capability |
US20100170352A1 (en) * | 2008-03-27 | 2010-07-08 | Michael Petersen | Environment monitoring and recording tag with remote sensing capability |
US20090266736A1 (en) * | 2008-04-25 | 2009-10-29 | Drug Plastics & Glass Company, Inc. | Container having an identification device molded therein and method of making same |
US20110098523A1 (en) * | 2008-04-30 | 2011-04-28 | Neue Magnetodyn Gmbh | Apparatus for Stimulating a Healing Process in the Region of an Implant |
WO2009132733A1 (en) * | 2008-04-30 | 2009-11-05 | Neue Magnetodyn Gmbh | Apparatus for stimulating a healing process in the region of an implant |
EP2116208A1 (en) * | 2008-05-06 | 2009-11-11 | Sferic Stellite | Invasive surgical instrument equipped with a transponder |
US11096726B2 (en) | 2008-10-15 | 2021-08-24 | Smith & Nephew, Inc. | Composite internal fixators |
US10357292B2 (en) | 2008-10-15 | 2019-07-23 | Smith & Nephew, Inc. | Composite internal fixators |
US9492210B2 (en) | 2008-10-15 | 2016-11-15 | Smith & Nephew, Inc. | Composite internal fixators |
US8299899B2 (en) * | 2008-11-19 | 2012-10-30 | Greatbatch Ltd. | AIMD external programmer incorporating a multifunction RFID reader having a limited transmit time and a time-out period |
US8581694B2 (en) | 2008-11-19 | 2013-11-12 | Greatbatch Ltd. | RFID interrogator configured for protection against electromagnetic interference of a remote device having an RFID tag |
US20100328049A1 (en) * | 2008-11-19 | 2010-12-30 | Greatbatch Ltd. | Aimd external programmer incorporating a multifunction rfid reader having a limited transmit time and a time-out period |
US8410899B2 (en) | 2008-11-19 | 2013-04-02 | Greatbatch Ltd. | Automobile keyless entry system having an RFID interrogator |
US8830037B2 (en) * | 2008-12-31 | 2014-09-09 | The Regents Of The University Of California | In vivo RFID chip |
US20100171596A1 (en) * | 2008-12-31 | 2010-07-08 | Burke Peter J | In vivo rfid chip |
US8126736B2 (en) | 2009-01-23 | 2012-02-28 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US8685093B2 (en) | 2009-01-23 | 2014-04-01 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US11006871B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11213229B2 (en) | 2009-02-03 | 2022-01-04 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11006870B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11166656B2 (en) | 2009-02-03 | 2021-11-09 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11006872B2 (en) | 2009-02-03 | 2021-05-18 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US11202591B2 (en) | 2009-02-03 | 2021-12-21 | Abbott Diabetes Care Inc. | Analyte sensor and apparatus for insertion of the sensor |
US9408575B2 (en) * | 2009-04-29 | 2016-08-09 | Bio-Signal Group Corp. | EEG kit |
US20120143020A1 (en) * | 2009-04-29 | 2012-06-07 | Bio-Signal Group Corp. | Eeg kit |
US11872370B2 (en) | 2009-05-29 | 2024-01-16 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
US11793936B2 (en) | 2009-05-29 | 2023-10-24 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
USD1010133S1 (en) | 2009-08-31 | 2024-01-02 | Abbott Diabetes Care Inc. | Analyte sensor assembly |
US10492685B2 (en) | 2009-08-31 | 2019-12-03 | Abbott Diabetes Care Inc. | Medical devices and methods |
USRE45030E1 (en) | 2009-09-24 | 2014-07-22 | Greatbatch Ltd. | Hermetically sealed RFID microelectronic chip connected to a biocompatible RFID antenna |
US8152854B2 (en) | 2009-09-30 | 2012-04-10 | Imbriglia Joseph E | Resurfacing implant for the wrist and method of implantation thereof |
US8777947B2 (en) | 2010-03-19 | 2014-07-15 | Smith & Nephew, Inc. | Telescoping IM nail and actuating mechanism |
US9408644B2 (en) | 2010-03-19 | 2016-08-09 | Smith & Nephew, Inc. | Telescoping IM nail and actuating mechanism |
US20110230883A1 (en) * | 2010-03-19 | 2011-09-22 | Smith & Nephew, Inc. | Telescoping im nail and actuating mechanism |
US12123654B2 (en) | 2010-05-04 | 2024-10-22 | Fractal Heatsink Technologies LLC | System and method for maintaining efficiency of a fractal heat sink |
US9918742B2 (en) | 2011-05-16 | 2018-03-20 | Smith & Nephew, Inc. | Measuring skeletal distraction |
US11211155B2 (en) * | 2011-10-11 | 2021-12-28 | Solomon Systems, Inc. | System and method for providing identification and medical information from a subject |
US10188307B2 (en) | 2012-02-23 | 2019-01-29 | Bio-Signal Group Corp. | Shielded multi-channel EEG headset systems and methods |
US10206792B2 (en) | 2012-03-31 | 2019-02-19 | Depuy Ireland Unlimited Company | Orthopaedic surgical system for determining joint forces of a patients knee joint |
US11096801B2 (en) | 2012-03-31 | 2021-08-24 | Depuy Ireland Unlimited Company | Orthopaedic surgical system for determining joint forces of a patient's knee joint |
US11051955B2 (en) | 2012-03-31 | 2021-07-06 | DePuy Synthes Products, Inc. | System and method for validating an orthopaedic surgical plan |
US10098761B2 (en) | 2012-03-31 | 2018-10-16 | DePuy Synthes Products, Inc. | System and method for validating an orthopaedic surgical plan |
JP2013212375A (en) * | 2012-03-31 | 2013-10-17 | Depuy Synthes Products Llc | System and method for verifying orthopedic surgery plan |
US20140019076A1 (en) * | 2012-07-16 | 2014-01-16 | Cardiac Innovation, Llc. | Medical device identifier |
US9649165B2 (en) * | 2012-07-16 | 2017-05-16 | Cardiac Innovation, Llc | Medical device identifier |
US10130278B2 (en) | 2012-10-15 | 2018-11-20 | Jordan Neuroscience, Inc. | Wireless EEG unit |
FR3017227A1 (en) * | 2014-02-04 | 2015-08-07 | Stephane Naudi | IMPLANT DATA MANAGEMENT DEVICE, SYSTEM COMPRISING SAID DEVICE AND USE THEREOF. |
WO2015117809A1 (en) * | 2014-02-04 | 2015-08-13 | Naudi Stéphane | Implant data management device, system including said device and use of said system |
US20170161434A1 (en) * | 2014-02-04 | 2017-06-08 | Stéphane NAUDI | Implant data management device, system comprising this device and use of this system |
US11701180B2 (en) * | 2015-11-02 | 2023-07-18 | Medivation Ag | Surgical instrument system |
US11051712B2 (en) * | 2016-02-09 | 2021-07-06 | Verily Life Sciences Llc | Systems and methods for determining the location and orientation of implanted devices |
US10248525B2 (en) | 2016-10-11 | 2019-04-02 | Bayer Oy | Intelligent medical implant and monitoring system |
US12268496B2 (en) | 2017-01-23 | 2025-04-08 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
DE102017118847A1 (en) * | 2017-04-26 | 2018-10-31 | Smartem Gmbh | Documentation system for medical devices and devices of rescue technology |
US12251201B2 (en) | 2019-08-16 | 2025-03-18 | Poltorak Technologies Llc | Device and method for medical diagnostics |
DE102020121954A1 (en) | 2020-08-21 | 2022-02-24 | Universität Rostock | Arrangement for determining the condition of tissues surrounding implants, the ingrowth behavior and the loosening condition of implants |
US12239463B2 (en) | 2020-08-31 | 2025-03-04 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
US11626206B1 (en) * | 2021-12-31 | 2023-04-11 | Scott Robert Hansen | Method of unlocking an operation of a device |
US11475993B1 (en) * | 2021-12-31 | 2022-10-18 | Scott Robert Hansen | Method of unlocking an operation of a Class III medical device |
US12274548B2 (en) | 2022-09-02 | 2025-04-15 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
Also Published As
Publication number | Publication date |
---|---|
US20080048855A1 (en) | 2008-02-28 |
US7932825B2 (en) | 2011-04-26 |
US7333013B2 (en) | 2008-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7932825B2 (en) | Medical implant device with RFID tag and method of identification of device | |
US20060244597A1 (en) | Surgical instrument tray RFID tag | |
Want | Enabling ubiquitous sensing with RFID | |
US6297727B1 (en) | Transponder identification and record assembly | |
US7256699B2 (en) | Button-type RFID tag | |
US7474223B2 (en) | Method and apparatus for implant identification | |
US7362228B2 (en) | Smart instrument tray RFID reader | |
AU2002331894B2 (en) | Methods and apparatuses for assuring quality and safety of drug administration and medical products and kits | |
US10140482B2 (en) | RFID scheme in harsh environments | |
US6366206B1 (en) | Method and apparatus for attaching tags to medical and non-medical devices | |
US7218232B2 (en) | Orthopaedic components with data storage element | |
AU2008200356B2 (en) | Smart supplies, components and capital equipment | |
US8896423B2 (en) | Physiological sensor system with automatic authentication and validation by means of a Radio Frequency Identification protocol with an integrated RFID interrogator system | |
JP5886516B2 (en) | Medical product tracking method and system | |
US20070125392A1 (en) | Systems and methods of accounting for surgical instruments and disposables | |
EP3307136B1 (en) | Marker, system and method to detect and identify medical devices within a biological subject | |
US7777631B2 (en) | Body chip | |
US20070132555A1 (en) | Ultra low frequency tag and system | |
US20170354477A1 (en) | Scannable optical identifier for use with implantable medical devices | |
CN112331323A (en) | Tracing system and tracing method for realizing full life cycle of medical surgical instrument | |
US20230402170A1 (en) | Surgical gown tracking system and method of using the same | |
WO2006088806A2 (en) | Ultra low frequency tag and system | |
EP3824841A1 (en) | Method for identifying and tracking medical instruments | |
Catarinucci et al. | A novel and low-cost multisensor-integrated RFID tag for biomedical applications | |
Cavitt et al. | Manufacturing Feasibility Evaluation of RFID Chips Embedded in Artificial Organs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DATA TRACE PUBLISHING COMPANY, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:METZGER, MICHAEL B.;REEL/FRAME:019684/0280 Effective date: 20070803 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200219 |