US20080015427A1 - System and network for remote medical procedures - Google Patents
System and network for remote medical procedures Download PDFInfo
- Publication number
- US20080015427A1 US20080015427A1 US11/480,326 US48032606A US2008015427A1 US 20080015427 A1 US20080015427 A1 US 20080015427A1 US 48032606 A US48032606 A US 48032606A US 2008015427 A1 US2008015427 A1 US 2008015427A1
- Authority
- US
- United States
- Prior art keywords
- local
- site
- remote
- display
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/7465—Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
Definitions
- the present invention relates to the medical procedures which utilize navigation of medical devices within a subject body, and more specifically to remotely performing medical procedures utilizing navigation of medical devices in a subject's body.
- Navigation systems have recently been commercially developed for actuation of medical devices to be steered within a patient's anatomy, from a remote location nearby the patient.
- An example is the Niobe magnetic navigation system developed and sold by Stereotaxis, Inc.
- Such a system typically allows for control of the navigation of a minimally interventional device with the help of a Graphical User Interface and user input devices such as a mouse, keyboard, joystick or other form of interface input device.
- the present invention relates to a system and network for remotely performing various medical procedures.
- the system comprises equipment for performing medical procedures using minimally interventional devices that are navigated through a subject's body.
- a network and system are provided for enabling remote actuation of a minimally interventional medical device that is to be guided within a subject body's anatomy, for the purpose of performing various medical procedures.
- the system comprises a navigation system for controlling the orientation of a medical device
- a system and network for enabling remote monitoring of a medical procedure being performed in a patient's body.
- the system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, and one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be monitored from the one or more remote operator stations.
- the remote operator station may be a visitor operator station, a passive operator station, an active operator station, or another full operator station.
- a system for enabling an operator to remotely perform a medical procedure in a patient's body at a remote location.
- the system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be controlled at least partially by an operator at the one or more remote operator stations.
- a system and network of operator stations may be provided that provides for both educational training, hands on training through remotely performing procedures in a limited capacity, and full control of a medical procedure from a remote location that may be a great distance from the patient and medical facility where the procedure is being conducted.
- embodiments of a system for navigating an elongate flexible medical device in an operating region in a subject's body at a local procedure site, under the control of a user at a remote site.
- the system comprises a local navigation system for selectively orienting the distal end of the elongate medical device in the operating region, the navigation system including a controller responsive to control signals provided from a computer.
- the system includes a local device advancer for advancing and retracting the device in the operating region, the device advancer including a controller responsive to control signals provided from a computer.
- At least one local medical imaging system is included for displaying an image of the operating region on a local display, and at least one video imaging system is included for providing video images of the local procedure site on a local display.
- the system further comprises at least one subject physiology monitoring system for displaying information about the subject's physiology on a local display.
- the system utilizes a local computer for providing instructions from a local user to the navigation system controller and the advancer controller, and a remote computer for providing instructions from a remote user to the navigation system controller and the advancer controller.
- a display is provided at the remote site, and a video linking system provides a combined video display on the display at the remote site.
- the combined video display includes the display of the local display of the at least one local medical imaging system, the local display of the at least one local video imaging system, and the local display of the at least one subject physiology monitoring system.
- the system further includes an audio linking system for providing two way audio communication between the local procedure site and the remote site.
- the system includes a data linking system for providing data communication between a computer at the remote site and the navigation system controller and the advancer system controller.
- various embodiments are provided of a method for navigating an elongate medical device in an operating region in a subject's body at a local procedure site, by a user at a remote site.
- the method comprises displaying on a display at the remote site a combined video image of one or more images being displayed at the local procedure site.
- the combined video image may include the local display of at least one local medical imaging system which displays an image of the operating region on a local display, the local display of at least one video imaging system that provides video images of the local procedure site on a local display; and the local display of at least one subject physiology monitoring system that displays information about the subject's physiology on a local display.
- FIG. 1 is an illustration of one embodiment of a system and network for enabling control of minimally interventional medical devices from a remote location to perform various medical procedures;
- FIG. 2 is an illustration of one embodiment of a system having one or more remote operator stations in communication with a local router;
- FIG. 3 is an illustration of one embodiment of a system having one or more visitor operator stations in communication with a full operator station;
- FIG. 4 is an illustration of one embodiment of a system having one or more passive operator stations in communication with a full operator station;
- FIG. 5 is an illustration of one embodiment of a system having one or more active operator stations in communication with a full operator station;
- FIG. 6 is an illustration of one embodiment of a system having one or more other full operator stations in communication with a full operator station;
- FIG. 7 is an illustration of a private local network in communication with one or more full operator stations.
- FIG. 8 is an illustration of one embodiment of a system having a satellite communication link for enabling remotely performing a medical procedure at distant locations.
- FIG. 9 is a functional diagram of one embodiment of a system for remotely controlling a medical procedure performed on a subject at a local treatment site according to the principles of the present invention.
- the network and system for remotely performing minimally invasive procedures comprises a navigation system for controlling the orientation of a medical device such as a catheter within a patient's body.
- Navigation systems have been commercially developed recently for actuation of medical devices to be steered within a patient's anatomy, from a remote location nearby the patient.
- An example is the Niobe magnetic navigation system developed and sold by Stereotaxis, Inc.
- Such a system typically allows for control of the navigation of a minimally interventional device that is inserted within a patient, with the help of a Graphical User Interface and user input devices such as a mouse, keyboard, or joystick that may be located in a control area near the patient.
- one embodiment of an integrated network system provides for remotely performing minimally invasive medical procedures on a subject body, remotely delivering or performing treatment of a subject body, and remotely providing instruction for learning the procedures being performed by utilizing a satellite-based telecommunication network and/or a fiber-optic communication network.
- Expert surgeons can perform medical procedures at a full surgical station with a Stereotaxis Navigation system, which other surgeons in remote locations may monitor or even participate in from a passive station under the supervision of the expert surgeon.
- an expert surgeon may supervise or even perform a medical procedure being conducted at a full surgical station from a remote passive station, while other surgeons at the full surgical station can watch or assist the expert during the procedure.
- Passive stations may also be used to rehearse a medical procedure at a remote passive or active station, by using pre-operative images of the subject's body presented on the display console. The surgeon can become familiar with the procedure to be performed, and even practice the procedure in a virtual surgery. In this manner, a surgeon may reliably perform a medical procedure on a patient using a minimally interventional device, such as an electrophysiology catheter, from a remote location using the network and system of the present invention.
- a minimally interventional device such as an electrophysiology catheter
- Various embodiments of the present invention provide for networking one or more Medical Device Navigational Control Systems used in the fields of cardiac mapping and ablation for SVT and VT and in the CRT applications, to provide for remotely performing electrophysiology mapping of a heart, remotely delivering or performing treatment of a subject body, and remotely providing instruction for learning the procedures.
- one or more features may be provided, including remotely viewing procedures for training purposes, remotely performing procedures with limited passive control of a System, remotely performing procedures with active control of a system, and Full Control systems that allow either passive or active performing of procedures from a remote location.
- the system provides for performing remote procedures using Stereotaxis navigation equipment and an integrated network utilizing fiber-optic and satellite communication, for learning and remotely conducting EP procedures including ablation of supraventricular and ventricular tachyarrhythmias and for deliver LV stimulation in the CRT setting.
- Stereotaxis navigation equipment and an integrated network utilizing fiber-optic and satellite communication
- EP procedures including ablation of supraventricular and ventricular tachyarrhythmias and for deliver LV stimulation in the CRT setting.
- different kinds of operator stations for remote procedures may be provided as detailed below.
- Visitor Station A visitor station will be equipped with a Navigation system console screen and a selection monitor to connect with other active, passive or full stations to enable remote learning about remotely performed medical procedures. In this way, regional teaching centers could be developed in which to organize teaching sessions. Similarly, during cardiology international congresses, a Visitor Station could be useful for directly showing EP procedures and doing dedicated courses for educating people.
- a passive station will be equipped with a Navigation console compatible with a Stereotaxis Navigation system, i.e. fully equipped for conducting remote medical procedures from different sites, as part of a shared EP lab, for example. This passive station could be used both for performing medical procedures and for learning procedures on an animal model of cardiac disease.
- a passive station is connected to at least one Active Station, and is preferably connected to numerous active stations.
- Passive Stations may be utilized for advanced remote learning on animal models and for remotely performing medical procedures on patients at Full Surgical Stations.
- Passive Stations can further include a safety algorithm to ensure patient safety.
- the algorithm may provide predefined zones in which ablation is excluded (i.e. PVs, His bundle, RBBB, etc) depending on the type of remote procedure.
- the algorithm may also predefine RF automatic controls, where RF energy is applied for no more than 30-60 sec depending on the type of procedure.
- the algorithm may further provide automatic Impedance monitoring, automatic signal abatement monitoring, and a one-touch safety key.
- An active station will be equipped with a Navigation console screen and CardioDrive for remote procedures from that site. Many Active Stations could be connected to the same shared Passive Station. In this way, regional centers with a Full Surgical Station with a Stereotaxis Navigation system can be set up and remotely used from many different local Active Stations.
- a full working station with Navigation console screen, Cardiodrive and Stereotaxis Navigation system for incoming and outcoming remote procedures can be installed in few high-trained centers.
- the Full Stations enable incoming operator-assisted remote procedures from other Passive Stations, or outcoming procedures towards other Active Stations requiring consulting and supervision, and intensive learning towards many Visitor Stations.
- a system comprising a local router that may be connected to one or more remote visitor, passive, active or full operator stations as shown in FIG. 2 .
- the local router may be a double ring (active and idle ring) network in communication with servers at remote locations that have joined or connected to the local router.
- the local router is capable of acquiring the address of the remote operator location, and determining the operator type.
- FIG. 3 shows a local router that is in communication with a plurality of remote Visitor operator stations, from which students or physicians may monitor or learn about a procedure being performed at a Full operator station via the system and network.
- FIG. 3 shows a local router that is in communication with a plurality of remote Visitor operator stations, from which students or physicians may monitor or learn about a procedure being performed at a Full operator station via the system and network.
- FIG. 3 shows a local router that is in communication with a plurality of remote Visitor operator stations, from which students or physicians may monitor or learn about a procedure being performed at a Full operator station via the system and
- FIG. 4 shows a local router that is in communication with a plurality of remote Passive operator stations, from which physicians may watch or participate in a limited manner in a procedure being performed at a Full operator station.
- FIG. 5 shows a local router that is in communication with a plurality of Active operator stations and a Full operator station. From the Full operator station, a physician possessing expertise with such navigation systems can monitor several procedures being performed remotely at several Active operator stations. If an expert physician at the Full operator station determines that a certain remote procedure needs his assistance, the expert physician may use interface means at the Full operator station to control the navigation system at a remote Active operator station, and override the physician at the remote Active operator station. Thus, each patient at each remote Active operator station can receive the benefit of an expert physician supervising the medical procedure being performed.
- FIG. 6 shows a local router that is in communication with a plurality of Full operator stations and a central Full operator station. Such a network could also be implemented as a private network through a private local router and a plurality of Full operator stations as
- the system further comprises a communication link that provides for communicating between the various surgical stations within the network.
- the communication link may be a physical communication means such as a fiber-optic communication channel, or alternatively may be a wireless communication means utilizing satellite communication for enabling surgeons to perform procedures from half way around the globe.
- optical fibers For enabling communication from the different sites in which to install different kind of workstations the best technologies to be used are optical fibers on a local basis and satellite connection on an international and intercontinental basis.
- a server On a local basis, a server should be installed in each site and a router directly interconnected with each local server. In this way a private and secure network can be set up to enable connections between sites.
- the communication links between sites optimally comprise fiber optic connection means.
- the system achieves the greatest broadcast due to a reduced wavelength, signal frequency 1000 times more than satellite connections (speed*1000), and the highest C*P product (c, capacity of the system; p, repetition pass).
- Fiber optic communication provides up to 800 Gb/sec/km as compared to 10 and 1 Gb/sec/km for radio-based and coaxial wire-based connections,. Fiber-optic connections also provide the lowest attenuation of signal (0.4 dB/km), and allow for direct connections at great distances with a limited number of intermediate signal regenerators and immunity from electromagnetic interferences and safety from fulguration.
- a system for enabling remote monitoring of a medical procedure being performed in a patient's body.
- the system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, and one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be monitored from the one or more remote operator stations.
- the remote operator station may be a visitor operator station, from which a medical procedure may be monitored by a student or physician for providing education or training.
- the remote operator station may be a passive operator station, from which an operator may remotely participate in a limited capacity in a medical procedure being performed at a remote location.
- the remote operator station may be an active operator station, from which the operator may actively control the medical procedure that is to be performed at a remote location.
- the remote operator station may also be another full operator station.
- the network of remote operator stations are in communication with the at least one full operator station via a communication link and a local router.
- the communication link is preferably a fiber-optic communication means, but may alternatively be a wireless satellite communication link for enabling remote monitoring of a medical procedure that is being performed at a location that is at least part way around the earth.
- an active stations system for enabling an operator to remotely perform a medical procedure in a patient's body at a remote location.
- the system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be controlled at least partially by an operator at the one or more remote operator stations.
- the one or more remote operator stations may be passive operator stations, from which an operator may remotely participate in a limited capacity in a medical procedure being performed at a remote location.
- the one or more remote operator stations may be active operator stations, from which an operator may actively control the medical procedure that is to be performed at a remote location.
- the remote operator station may also be another full operator station. Accordingly, a system and network of operator stations may be provided that provide for educational training, hands on training through remotely performing procedures in a limited capacity, and full control of a medical procedure from a remote location that may be a great distance from the patient and medical facility where the procedure is being conducted.
- the system 100 comprises a computer-assisted navigational system 140 for directing and manipulating the distal tip of the medical device by remote actuation use computer assisted navigational systems.
- Computer-assisted navigational systems improve the control of such medical devices that contact tissues during surgical procedures, making these procedures more precise, repeatable and less dependent on the device manipulation skills of the physician.
- Computer-assisted navigational systems may also include an imaging system for providing imaging of the medical device and blood vessels and tissues.
- the system may also be configured to cooperate with a localization system. It is desirable to provide remote access to such a system from a potentially distant geographical location, among others in cases where a (distant) expert physician's knowledge and skills are useful in treating a patient's critical needs.
- the system 100 provides for controlling a flexible medical device 120 in an operating region 130 in a subject's body 134 at a local procedure site 110 , under the control of a user at a remote site 210 . It should be noted that other remote systems may provide for control of different types of medical and surgical procedures.
- the system comprises a local navigation system 140 for selectively orienting the distal end 124 of the elongate medical device 120 in the operating region 130 .
- the navigation system 140 includes a controller 144 responsive to control signals provided from a local computer 150 .
- the system further includes a local device advancer (not shown) for advancing and retracting the device 120 in the operating region, which device advancer includes a controller (not shown) responsive to control signals provided from a local computer 150 .
- the navigation system 140 may be a magnetic navigation system that applies a magnetic field to orient a magnetically responsive element 126 associated with the distal end 124 of the elongate medical device 120 .
- the navigation system 140 may alternatively be a robotic system or an electrostrictive system that orients the distal end 124 of the elongate medical device 120 .
- the system further includes at least one local medical imaging system 170 for displaying an image of the operating region on a local display 172 .
- the at least one medical imaging system 170 is preferably an X-ray or Fluoroscopic Imaging system, but may alternatively be a Magnetic Resonance imaging system or an ultrasound imaging system.
- a localization system 180 is included for determining the position of the medical device's distal end 124 in the localization system's own frame of reference, which is translatable to the local displayed image 172 of the local medical imaging system 170 .
- the localization system's coordinate frame of reference is registered to the frame of reference of the imaging and navigation systems, such that localized medical device data is readily available for controlling navigation of the medical device 120 with the navigational system 140 .
- the system further includes at least one subject physiology monitoring system 184 , for monitoring the physiology of a subject patient and displaying information on local display 188 of the physiology monitoring system.
- a physiology monitoring system may be capable of measuring and displaying electrical activity of a tissue within the subject, or may be a system for monitoring the ElectroCardioGram (ECG) signal of the subject.
- ECG ElectroCardioGram
- the system 100 further comprises at least one video imaging system 190 at the local procedure site 110 , which is configured to display the image obtained from at least one camera.
- the video imaging system 190 may include a camera 188 for making a video image of the subject during the procedure.
- the camera 188 may be a mobile camera for making a video image of the procedure site, which may further be responsive to directions from a user at the remote site 200 .
- the system 100 further includes a local computer 150 for providing instructions from a local user to the navigation system controller 140 and the advancer controller 160 .
- the system further includes at least one video imaging system 190 for providing video images of the local procedure site on a local display 198 .
- the system also includes a remote site 210 having a remote computer 220 that allows a remote user to have access and input to the navigation system controller 144 and the advancer controller at the procedure site 110 .
- a display device 232 is also included at the remote site 210 .
- the system 100 comprises at least three communication links between the local procedural site 110 and the remote site 210 , which enable a user or physician at the remote site 210 to perform a medical procedure on a subject at the local procedural site 110 .
- the communication links include a video linking system 230 , an audio linking system 234 and a data linking system 238 .
- the video linking system enables communication to the remote site of a video signal that provides a display of one or more of the images displayed by the various systems at the local procedure cite 110 .
- the audio linking system 234 enables two-way communication between a user/physician at the remote cite and a user/physician at the local procedure cite, which two-way communication allows for coordinating the remotely performed procedure.
- the data linking system 238 provides for transmission of data signals from a remote computer 220 at the remote location 210 to the controller of the navigational system 140 at the local procedure cite 110 , which data signals allow a user at the remote location 110 to control the navigation system to guide the medical device 120 within the subject 134 at the local procedure cite 110 .
- Each of these communication links and their operation will be described in further detail below.
- the system 100 comprises a video linking system 230 for providing a one-way communication of a combined video display signal on the display device 232 at the remote site 210 .
- the combined video display combines at least two of the images being displayed at the local display 172 of the at least one local medical imaging system 170 , and the images being displayed at the local display 198 of the at least one local video imaging system 190 .
- the combined video display signal may further include the images being displayed on the local display 188 of the at least one subject physiology monitoring system 184 .
- the video signal is typical of that used for a CRT-type monitor, such that the video signal contains much less signal information than the actual image data being processed for display by the imaging system 170 , localization system 180 , and physiological monitoring system 184 .
- the video signal provides the same resolution as that being displayed at the local procedure cite. Accordingly, the video linking system provides for improved communication of displayed images, by transmitting video image data rather than the data used to generate the images. Moreover, the video linking system combines two or more of the images being displayed by the various display devices at the local procedure cite into one video signal, which allows for these images to be displayed on a single video display at the remote location, which reduces the need for duplicative display equipment.
- the system 100 also comprises an audio linking system 234 for providing two-way audio communication between the local procedure site 110 and the remote site 210 .
- This permits two-way audio communication, such as a telephone link, between a user/physician at the remote cite and a user/physician at the local procedure cite, which allows for coordinating the remotely performed procedure.
- the system 100 further comprises a data linking system 238 for providing data communication between a computer 220 at the remote site 210 and the navigation system controller 144 and the advancer system controller.
- the data linking system allows a remote physician at a remote site 210 to provide inputs to the navigation system controller 144 for guiding the medical device's distal end 124 through the subject's body 134 .
- the computer 150 at the local procedure cite may be configured to give priority to commands from a user at the local site entered on the computer 150 at the local site 1 10 , or to the controller 144 of the navigation system 140 , such that the user at the local site 110 has priority control to implement the control signals sent by the remote user via the remote computer 220 .
- the physician at the remote location 210 could send a command to ablate a path of tissue on a subject 134 beginning at a certain point in the subject's electrocardiograph rhythm and ending after completing a given ablation path, and the local physician could implement the command from the local site 110 . This would ensure that the transmission delay caused by significant distances separating the remote and local cites does not cause unwanted movements or ablation of the subject, and provides an added level of safety.
- various embodiments of a method may be provided for navigating an elongate medical device in an operating region in a subject's body at a local procedure site, by a user at a remote site.
- a method is provided that comprises displaying on a display at the remote site a combined video image of one or more images being displayed at the local procedure site.
- the combined video image may include the local display of at least one local medical imaging system 170 which displays an image of the operating region on a local display 170 , the local display of at least one video imaging system 190 that provides video images of the local procedure site on a local display 198 ; and the local display of at least one subject physiology monitoring system 184 that displays information about the subject's physiology on a local display.
- the first embodiment of a method includes providing two way audio communication between the remote site and the local site for communication between the user at the remote site and the local site.
- the method further includes communicating commands from the user at the remote site entered on a computer at the remote site to a controller for controlling a navigation system at the local site 110 for operating the navigation system to selectively orient the distal end of the elongate medical device in the operating region, and communicating commands from the user at the remote site entered on a computer at the remote site to a controller for controlling a local device advancer for advancing and retracting the elongate medical device in the operating region.
- the method also communicates commands from a user at the local site entered on a computer at the local site to the navigation system having a controller responsive to control signals provided from a computer.
- the method may further comprise prioritizing commands from a user at the local site entered on a computer at the local site over commands from a remote user entered on a remote computer, to provide for control of the navigation system and the advancer system.
- the user at the local site accordingly has priority control to implement command or control signals sent by the remote user via the remote computer 220 .
- the physician at the remote location could send a command to ablate a path of tissue on a subject beginning at a certain point in the subject's electrocardiograph rhythm and ending after completing a given path, and the local physician could implement the command. This would ensure that the transmission delay caused by significant distances separating the remote and local cites does not cause unwanted movements or ablation of the subject, and provides an added level of safety.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
- The present invention relates to the medical procedures which utilize navigation of medical devices within a subject body, and more specifically to remotely performing medical procedures utilizing navigation of medical devices in a subject's body.
- Navigation systems have recently been commercially developed for actuation of medical devices to be steered within a patient's anatomy, from a remote location nearby the patient. An example is the Niobe magnetic navigation system developed and sold by Stereotaxis, Inc. Such a system typically allows for control of the navigation of a minimally interventional device with the help of a Graphical User Interface and user input devices such as a mouse, keyboard, joystick or other form of interface input device.
- Variability in the complexity of medical procedures, the level of physician skill and training, and proximity to available facilities all contribute to the difficulty of obtaining expert medical treatment or surgical procedures. Computer technology and enhancements in communications such as fiber-optic wireless transmission means have allowed for worldwide transfer of data as well as accessibility to information. While many businesses have capitalized on such technology and have potential access to consumers anywhere in the world through computers, expert interventional surgical medical services are one exception in this regard.
- The present invention relates to a system and network for remotely performing various medical procedures. Preferably, the system comprises equipment for performing medical procedures using minimally interventional devices that are navigated through a subject's body. In one embodiment in accordance with the present invention, a network and system are provided for enabling remote actuation of a minimally interventional medical device that is to be guided within a subject body's anatomy, for the purpose of performing various medical procedures. The system comprises a navigation system for controlling the orientation of a medical device
- In accordance with one aspect of the present invention, a system and network is provided for enabling remote monitoring of a medical procedure being performed in a patient's body. The system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, and one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be monitored from the one or more remote operator stations. The remote operator station may be a visitor operator station, a passive operator station, an active operator station, or another full operator station.
- In another aspect of the present invention, a system is provided for enabling an operator to remotely perform a medical procedure in a patient's body at a remote location. The system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be controlled at least partially by an operator at the one or more remote operator stations. Accordingly, a system and network of operator stations may be provided that provides for both educational training, hands on training through remotely performing procedures in a limited capacity, and full control of a medical procedure from a remote location that may be a great distance from the patient and medical facility where the procedure is being conducted.
- In another aspect of the present disclosure, embodiments of a system are provided for navigating an elongate flexible medical device in an operating region in a subject's body at a local procedure site, under the control of a user at a remote site. In one embodiment, the system comprises a local navigation system for selectively orienting the distal end of the elongate medical device in the operating region, the navigation system including a controller responsive to control signals provided from a computer. The system includes a local device advancer for advancing and retracting the device in the operating region, the device advancer including a controller responsive to control signals provided from a computer. At least one local medical imaging system is included for displaying an image of the operating region on a local display, and at least one video imaging system is included for providing video images of the local procedure site on a local display. The system further comprises at least one subject physiology monitoring system for displaying information about the subject's physiology on a local display. The system utilizes a local computer for providing instructions from a local user to the navigation system controller and the advancer controller, and a remote computer for providing instructions from a remote user to the navigation system controller and the advancer controller. A display is provided at the remote site, and a video linking system provides a combined video display on the display at the remote site. The combined video display includes the display of the local display of the at least one local medical imaging system, the local display of the at least one local video imaging system, and the local display of the at least one subject physiology monitoring system. The system further includes an audio linking system for providing two way audio communication between the local procedure site and the remote site. The system includes a data linking system for providing data communication between a computer at the remote site and the navigation system controller and the advancer system controller.
- In another aspect of the present disclosure, various embodiments are provided of a method for navigating an elongate medical device in an operating region in a subject's body at a local procedure site, by a user at a remote site. In one embodiment of a method, the method comprises displaying on a display at the remote site a combined video image of one or more images being displayed at the local procedure site. The combined video image may include the local display of at least one local medical imaging system which displays an image of the operating region on a local display, the local display of at least one video imaging system that provides video images of the local procedure site on a local display; and the local display of at least one subject physiology monitoring system that displays information about the subject's physiology on a local display.
- Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
- The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
-
FIG. 1 is an illustration of one embodiment of a system and network for enabling control of minimally interventional medical devices from a remote location to perform various medical procedures; -
FIG. 2 is an illustration of one embodiment of a system having one or more remote operator stations in communication with a local router; -
FIG. 3 is an illustration of one embodiment of a system having one or more visitor operator stations in communication with a full operator station; -
FIG. 4 is an illustration of one embodiment of a system having one or more passive operator stations in communication with a full operator station; -
FIG. 5 is an illustration of one embodiment of a system having one or more active operator stations in communication with a full operator station; -
FIG. 6 is an illustration of one embodiment of a system having one or more other full operator stations in communication with a full operator station; -
FIG. 7 is an illustration of a private local network in communication with one or more full operator stations; and -
FIG. 8 is an illustration of one embodiment of a system having a satellite communication link for enabling remotely performing a medical procedure at distant locations. -
FIG. 9 is a functional diagram of one embodiment of a system for remotely controlling a medical procedure performed on a subject at a local treatment site according to the principles of the present invention. - The following description of the various embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
- The network and system for remotely performing minimally invasive procedures comprises a navigation system for controlling the orientation of a medical device such as a catheter within a patient's body. Navigation systems have been commercially developed recently for actuation of medical devices to be steered within a patient's anatomy, from a remote location nearby the patient. An example is the Niobe magnetic navigation system developed and sold by Stereotaxis, Inc. Such a system typically allows for control of the navigation of a minimally interventional device that is inserted within a patient, with the help of a Graphical User Interface and user input devices such as a mouse, keyboard, or joystick that may be located in a control area near the patient.
- The concept of remotely mapping cardiac substrates and remotely delivering therapies to the diseased heart has been recently developed with the advent of Stereotaxis Navigational Systems. Physicians possessing expertise in such navigation systems have performed electrophysiology (EP) mapping of heart tissue, and ablation of supraventricular and ventricular tachyarrhythmias. Moreover, given the special nature of the learning curve of procedures using such medical device navigation systems, there is also the utility of remote learning of EP procedures. In one aspect of the present invention, one embodiment of an integrated network system provides for remotely performing minimally invasive medical procedures on a subject body, remotely delivering or performing treatment of a subject body, and remotely providing instruction for learning the procedures being performed by utilizing a satellite-based telecommunication network and/or a fiber-optic communication network. Expert surgeons can perform medical procedures at a full surgical station with a Stereotaxis Navigation system, which other surgeons in remote locations may monitor or even participate in from a passive station under the supervision of the expert surgeon. Alternatively, an expert surgeon may supervise or even perform a medical procedure being conducted at a full surgical station from a remote passive station, while other surgeons at the full surgical station can watch or assist the expert during the procedure. Passive stations may also be used to rehearse a medical procedure at a remote passive or active station, by using pre-operative images of the subject's body presented on the display console. The surgeon can become familiar with the procedure to be performed, and even practice the procedure in a virtual surgery. In this manner, a surgeon may reliably perform a medical procedure on a patient using a minimally interventional device, such as an electrophysiology catheter, from a remote location using the network and system of the present invention.
- Various embodiments of the present invention provide for networking one or more Medical Device Navigational Control Systems used in the fields of cardiac mapping and ablation for SVT and VT and in the CRT applications, to provide for remotely performing electrophysiology mapping of a heart, remotely delivering or performing treatment of a subject body, and remotely providing instruction for learning the procedures. In various embodiments of an integrated network of Medical Device Navigational Control systems, one or more features may be provided, including remotely viewing procedures for training purposes, remotely performing procedures with limited passive control of a System, remotely performing procedures with active control of a system, and Full Control systems that allow either passive or active performing of procedures from a remote location. The system provides for performing remote procedures using Stereotaxis navigation equipment and an integrated network utilizing fiber-optic and satellite communication, for learning and remotely conducting EP procedures including ablation of supraventricular and ventricular tachyarrhythmias and for deliver LV stimulation in the CRT setting. Within the system and network, different kinds of operator stations for remote procedures may be provided as detailed below.
- Visitor Station. A visitor station will be equipped with a Navigation system console screen and a selection monitor to connect with other active, passive or full stations to enable remote learning about remotely performed medical procedures. In this way, regional teaching centers could be developed in which to organize teaching sessions. Similarly, during cardiology international congresses, a Visitor Station could be useful for directly showing EP procedures and doing dedicated courses for educating people.
- Passive Station. A passive station will be equipped with a Navigation console compatible with a Stereotaxis Navigation system, i.e. fully equipped for conducting remote medical procedures from different sites, as part of a shared EP lab, for example. This passive station could be used both for performing medical procedures and for learning procedures on an animal model of cardiac disease. A passive station is connected to at least one Active Station, and is preferably connected to numerous active stations. Thus, Passive Stations may be utilized for advanced remote learning on animal models and for remotely performing medical procedures on patients at Full Surgical Stations. Moreover, Passive Stations can further include a safety algorithm to ensure patient safety. For example, the algorithm may provide predefined zones in which ablation is excluded (i.e. PVs, His bundle, RBBB, etc) depending on the type of remote procedure. The algorithm may also predefine RF automatic controls, where RF energy is applied for no more than 30-60 sec depending on the type of procedure. The algorithm may further provide automatic Impedance monitoring, automatic signal abatement monitoring, and a one-touch safety key.
- Active Station. An active station will be equipped with a Navigation console screen and CardioDrive for remote procedures from that site. Many Active Stations could be connected to the same shared Passive Station. In this way, regional centers with a Full Surgical Station with a Stereotaxis Navigation system can be set up and remotely used from many different local Active Stations.
- Full Surgical Station. A full working station with Navigation console screen, Cardiodrive and Stereotaxis Navigation system for incoming and outcoming remote procedures can be installed in few high-trained centers. The Full Stations enable incoming operator-assisted remote procedures from other Passive Stations, or outcoming procedures towards other Active Stations requiring consulting and supervision, and intensive learning towards many Visitor Stations.
- In one embodiment, a system is provided that comprises a local router that may be connected to one or more remote visitor, passive, active or full operator stations as shown in
FIG. 2 . The local router may be a double ring (active and idle ring) network in communication with servers at remote locations that have joined or connected to the local router. The local router is capable of acquiring the address of the remote operator location, and determining the operator type. For example,FIG. 3 shows a local router that is in communication with a plurality of remote Visitor operator stations, from which students or physicians may monitor or learn about a procedure being performed at a Full operator station via the system and network. Likewise,FIG. 4 shows a local router that is in communication with a plurality of remote Passive operator stations, from which physicians may watch or participate in a limited manner in a procedure being performed at a Full operator station.FIG. 5 shows a local router that is in communication with a plurality of Active operator stations and a Full operator station. From the Full operator station, a physician possessing expertise with such navigation systems can monitor several procedures being performed remotely at several Active operator stations. If an expert physician at the Full operator station determines that a certain remote procedure needs his assistance, the expert physician may use interface means at the Full operator station to control the navigation system at a remote Active operator station, and override the physician at the remote Active operator station. Thus, each patient at each remote Active operator station can receive the benefit of an expert physician supervising the medical procedure being performed.FIG. 6 shows a local router that is in communication with a plurality of Full operator stations and a central Full operator station. Such a network could also be implemented as a private network through a private local router and a plurality of Full operator stations as shown inFIG. 7 . - The system further comprises a communication link that provides for communicating between the various surgical stations within the network. The communication link may be a physical communication means such as a fiber-optic communication channel, or alternatively may be a wireless communication means utilizing satellite communication for enabling surgeons to perform procedures from half way around the globe.
- For enabling communication from the different sites in which to install different kind of workstations the best technologies to be used are optical fibers on a local basis and satellite connection on an international and intercontinental basis. On a local basis, a server should be installed in each site and a router directly interconnected with each local server. In this way a private and secure network can be set up to enable connections between sites. The communication links between sites optimally comprise fiber optic connection means. Among advantages of using optical fibers, the system achieves the greatest broadcast due to a reduced wavelength, signal frequency 1000 times more than satellite connections (speed*1000), and the highest C*P product (c, capacity of the system; p, repetition pass). Fiber optic communication provides up to 800 Gb/sec/km as compared to 10 and 1 Gb/sec/km for radio-based and coaxial wire-based connections,. Fiber-optic connections also provide the lowest attenuation of signal (0.4 dB/km), and allow for direct connections at great distances with a limited number of intermediate signal regenerators and immunity from electromagnetic interferences and safety from fulguration.
- In some embodiments, a system is provided for enabling remote monitoring of a medical procedure being performed in a patient's body. The system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, and one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be monitored from the one or more remote operator stations. The remote operator station may be a visitor operator station, from which a medical procedure may be monitored by a student or physician for providing education or training. The remote operator station may be a passive operator station, from which an operator may remotely participate in a limited capacity in a medical procedure being performed at a remote location. The remote operator station may be an active operator station, from which the operator may actively control the medical procedure that is to be performed at a remote location. The remote operator station may also be another full operator station. The network of remote operator stations are in communication with the at least one full operator station via a communication link and a local router. The communication link is preferably a fiber-optic communication means, but may alternatively be a wireless satellite communication link for enabling remote monitoring of a medical procedure that is being performed at a location that is at least part way around the earth.
- In another aspect of the present invention, an active stations system is provided for enabling an operator to remotely perform a medical procedure in a patient's body at a remote location. The system comprises at least one full operator station having a navigation control system for controlling the orientation of a minimally interventional medical device that is to be guided within a subject body's anatomy, one or more remote operator stations in communication with the at least one full operator station, wherein the medical procedure may be controlled at least partially by an operator at the one or more remote operator stations. The one or more remote operator stations may be passive operator stations, from which an operator may remotely participate in a limited capacity in a medical procedure being performed at a remote location. The one or more remote operator stations may be active operator stations, from which an operator may actively control the medical procedure that is to be performed at a remote location. The remote operator station may also be another full operator station. Accordingly, a system and network of operator stations may be provided that provide for educational training, hands on training through remotely performing procedures in a limited capacity, and full control of a medical procedure from a remote location that may be a great distance from the patient and medical facility where the procedure is being conducted.
- One example of a system for enabling an Active operator station for remotely performing surgical procedures on a patient who is geographically distanced from the performing physician is shown in
FIG. 9 . The system 100 comprises a computer-assistednavigational system 140 for directing and manipulating the distal tip of the medical device by remote actuation use computer assisted navigational systems. Computer-assisted navigational systems improve the control of such medical devices that contact tissues during surgical procedures, making these procedures more precise, repeatable and less dependent on the device manipulation skills of the physician. Computer-assisted navigational systems may also include an imaging system for providing imaging of the medical device and blood vessels and tissues. The system may also be configured to cooperate with a localization system. It is desirable to provide remote access to such a system from a potentially distant geographical location, among others in cases where a (distant) expert physician's knowledge and skills are useful in treating a patient's critical needs. - The system 100 provides for controlling a flexible
medical device 120 in anoperating region 130 in a subject'sbody 134 at alocal procedure site 110, under the control of a user at aremote site 210. It should be noted that other remote systems may provide for control of different types of medical and surgical procedures. The system comprises alocal navigation system 140 for selectively orienting thedistal end 124 of the elongatemedical device 120 in theoperating region 130. Thenavigation system 140 includes acontroller 144 responsive to control signals provided from alocal computer 150. The system further includes a local device advancer (not shown) for advancing and retracting thedevice 120 in the operating region, which device advancer includes a controller (not shown) responsive to control signals provided from alocal computer 150. Thenavigation system 140 may be a magnetic navigation system that applies a magnetic field to orient a magnetically responsive element 126 associated with thedistal end 124 of the elongatemedical device 120. Thenavigation system 140 may alternatively be a robotic system or an electrostrictive system that orients thedistal end 124 of the elongatemedical device 120. - The system further includes at least one local
medical imaging system 170 for displaying an image of the operating region on a local display 172. The at least onemedical imaging system 170 is preferably an X-ray or Fluoroscopic Imaging system, but may alternatively be a Magnetic Resonance imaging system or an ultrasound imaging system. Alocalization system 180 is included for determining the position of the medical device'sdistal end 124 in the localization system's own frame of reference, which is translatable to the local displayed image 172 of the localmedical imaging system 170. The localization system's coordinate frame of reference is registered to the frame of reference of the imaging and navigation systems, such that localized medical device data is readily available for controlling navigation of themedical device 120 with thenavigational system 140. The system further includes at least one subjectphysiology monitoring system 184, for monitoring the physiology of a subject patient and displaying information onlocal display 188 of the physiology monitoring system. Such a physiology monitoring system may be capable of measuring and displaying electrical activity of a tissue within the subject, or may be a system for monitoring the ElectroCardioGram (ECG) signal of the subject. - The system 100 further comprises at least one
video imaging system 190 at thelocal procedure site 110, which is configured to display the image obtained from at least one camera. Thevideo imaging system 190 may include acamera 188 for making a video image of the subject during the procedure. Alternatively, thecamera 188 may be a mobile camera for making a video image of the procedure site, which may further be responsive to directions from a user at the remote site 200. - The system 100 further includes a
local computer 150 for providing instructions from a local user to thenavigation system controller 140 and the advancer controller 160. The system further includes at least onevideo imaging system 190 for providing video images of the local procedure site on alocal display 198. The system also includes aremote site 210 having aremote computer 220 that allows a remote user to have access and input to thenavigation system controller 144 and the advancer controller at theprocedure site 110. Adisplay device 232 is also included at theremote site 210. - The system 100 comprises at least three communication links between the local
procedural site 110 and theremote site 210, which enable a user or physician at theremote site 210 to perform a medical procedure on a subject at the localprocedural site 110. The communication links include avideo linking system 230, anaudio linking system 234 and adata linking system 238. The video linking system enables communication to the remote site of a video signal that provides a display of one or more of the images displayed by the various systems at the local procedure cite 110. Theaudio linking system 234 enables two-way communication between a user/physician at the remote cite and a user/physician at the local procedure cite, which two-way communication allows for coordinating the remotely performed procedure. Finally, thedata linking system 238 provides for transmission of data signals from aremote computer 220 at theremote location 210 to the controller of thenavigational system 140 at the local procedure cite 110, which data signals allow a user at theremote location 110 to control the navigation system to guide themedical device 120 within the subject 134 at the local procedure cite 110. Each of these communication links and their operation will be described in further detail below. - The system 100 comprises a
video linking system 230 for providing a one-way communication of a combined video display signal on thedisplay device 232 at theremote site 210. The combined video display combines at least two of the images being displayed at the local display 172 of the at least one localmedical imaging system 170, and the images being displayed at thelocal display 198 of the at least one localvideo imaging system 190. The combined video display signal may further include the images being displayed on thelocal display 188 of the at least one subjectphysiology monitoring system 184. The video signal is typical of that used for a CRT-type monitor, such that the video signal contains much less signal information than the actual image data being processed for display by theimaging system 170,localization system 180, andphysiological monitoring system 184. The video signal provides the same resolution as that being displayed at the local procedure cite. Accordingly, the video linking system provides for improved communication of displayed images, by transmitting video image data rather than the data used to generate the images. Moreover, the video linking system combines two or more of the images being displayed by the various display devices at the local procedure cite into one video signal, which allows for these images to be displayed on a single video display at the remote location, which reduces the need for duplicative display equipment. - The system 100 also comprises an
audio linking system 234 for providing two-way audio communication between thelocal procedure site 110 and theremote site 210. This permits two-way audio communication, such as a telephone link, between a user/physician at the remote cite and a user/physician at the local procedure cite, which allows for coordinating the remotely performed procedure. - The system 100 further comprises a
data linking system 238 for providing data communication between acomputer 220 at theremote site 210 and thenavigation system controller 144 and the advancer system controller. The data linking system allows a remote physician at aremote site 210 to provide inputs to thenavigation system controller 144 for guiding the medical device'sdistal end 124 through the subject'sbody 134. - It should be noted that the
computer 150 at the local procedure cite, or the controller of thenavigation system 140, may be configured to give priority to commands from a user at the local site entered on thecomputer 150 at the local site 1 10, or to thecontroller 144 of thenavigation system 140, such that the user at thelocal site 110 has priority control to implement the control signals sent by the remote user via theremote computer 220. In this manner, the physician at theremote location 210 could send a command to ablate a path of tissue on a subject 134 beginning at a certain point in the subject's electrocardiograph rhythm and ending after completing a given ablation path, and the local physician could implement the command from thelocal site 110. This would ensure that the transmission delay caused by significant distances separating the remote and local cites does not cause unwanted movements or ablation of the subject, and provides an added level of safety. - In another aspect of the present disclosure, various embodiments of a method may be provided for navigating an elongate medical device in an operating region in a subject's body at a local procedure site, by a user at a remote site. In one embodiment, a method is provided that comprises displaying on a display at the remote site a combined video image of one or more images being displayed at the local procedure site. The combined video image may include the local display of at least one local
medical imaging system 170 which displays an image of the operating region on alocal display 170, the local display of at least onevideo imaging system 190 that provides video images of the local procedure site on alocal display 198; and the local display of at least one subjectphysiology monitoring system 184 that displays information about the subject's physiology on a local display. - The first embodiment of a method includes providing two way audio communication between the remote site and the local site for communication between the user at the remote site and the local site. The method further includes communicating commands from the user at the remote site entered on a computer at the remote site to a controller for controlling a navigation system at the
local site 110 for operating the navigation system to selectively orient the distal end of the elongate medical device in the operating region, and communicating commands from the user at the remote site entered on a computer at the remote site to a controller for controlling a local device advancer for advancing and retracting the elongate medical device in the operating region. The method also communicates commands from a user at the local site entered on a computer at the local site to the navigation system having a controller responsive to control signals provided from a computer. - The method may further comprise prioritizing commands from a user at the local site entered on a computer at the local site over commands from a remote user entered on a remote computer, to provide for control of the navigation system and the advancer system. The user at the local site accordingly has priority control to implement command or control signals sent by the remote user via the
remote computer 220. In this manner, the physician at the remote location could send a command to ablate a path of tissue on a subject beginning at a certain point in the subject's electrocardiograph rhythm and ending after completing a given path, and the local physician could implement the command. This would ensure that the transmission delay caused by significant distances separating the remote and local cites does not cause unwanted movements or ablation of the subject, and provides an added level of safety. - The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/480,326 US20080015427A1 (en) | 2006-06-30 | 2006-06-30 | System and network for remote medical procedures |
PCT/US2007/072667 WO2008005935A2 (en) | 2006-06-30 | 2007-07-02 | System and network for remote medical procedures |
EP07799252A EP2040785A4 (en) | 2006-06-30 | 2007-07-02 | System and network for remote medical procedures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/480,326 US20080015427A1 (en) | 2006-06-30 | 2006-06-30 | System and network for remote medical procedures |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080015427A1 true US20080015427A1 (en) | 2008-01-17 |
Family
ID=38895416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/480,326 Abandoned US20080015427A1 (en) | 2006-06-30 | 2006-06-30 | System and network for remote medical procedures |
Country Status (3)
Country | Link |
---|---|
US (1) | US20080015427A1 (en) |
EP (1) | EP2040785A4 (en) |
WO (1) | WO2008005935A2 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US20080015670A1 (en) * | 2006-01-17 | 2008-01-17 | Carlo Pappone | Methods and devices for cardiac ablation |
US20080097200A1 (en) * | 2006-10-20 | 2008-04-24 | Blume Walter M | Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images |
US20080132910A1 (en) * | 2006-11-07 | 2008-06-05 | Carlo Pappone | Control for a Remote Navigation System |
US20080200913A1 (en) * | 2007-02-07 | 2008-08-21 | Viswanathan Raju R | Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias |
US20080208912A1 (en) * | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US20080287909A1 (en) * | 2007-05-17 | 2008-11-20 | Viswanathan Raju R | Method and apparatus for intra-chamber needle injection treatment |
US20080294232A1 (en) * | 2007-05-22 | 2008-11-27 | Viswanathan Raju R | Magnetic cell delivery |
US20090012821A1 (en) * | 2007-07-06 | 2009-01-08 | Guy Besson | Management of live remote medical display |
US20090062646A1 (en) * | 2005-07-07 | 2009-03-05 | Creighton Iv Francis M | Operation of a remote medical navigation system using ultrasound image |
US20090082722A1 (en) * | 2007-08-21 | 2009-03-26 | Munger Gareth T | Remote navigation advancer devices and methods of use |
US20090105579A1 (en) * | 2007-10-19 | 2009-04-23 | Garibaldi Jeffrey M | Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data |
US20090131927A1 (en) * | 2007-11-20 | 2009-05-21 | Nathan Kastelein | Method and apparatus for remote detection of rf ablation |
US20090131798A1 (en) * | 2007-11-19 | 2009-05-21 | Minar Christopher D | Method and apparatus for intravascular imaging and occlusion crossing |
US20090177032A1 (en) * | 1999-04-14 | 2009-07-09 | Garibaldi Jeffrey M | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US20090177037A1 (en) * | 2007-06-27 | 2009-07-09 | Viswanathan Raju R | Remote control of medical devices using real time location data |
US20100063385A1 (en) * | 1998-08-07 | 2010-03-11 | Garibaldi Jeffrey M | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US20100069733A1 (en) * | 2008-09-05 | 2010-03-18 | Nathan Kastelein | Electrophysiology catheter with electrode loop |
US20100097315A1 (en) * | 2006-09-06 | 2010-04-22 | Garibaldi Jeffrey M | Global input device for multiple computer-controlled medical systems |
US20100168549A1 (en) * | 2006-01-06 | 2010-07-01 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20100163061A1 (en) * | 2000-04-11 | 2010-07-01 | Creighton Francis M | Magnets with varying magnetization direction and method of making such magnets |
US7772950B2 (en) | 2005-08-10 | 2010-08-10 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
US20100222669A1 (en) * | 2006-08-23 | 2010-09-02 | William Flickinger | Medical device guide |
US20100298845A1 (en) * | 2009-05-25 | 2010-11-25 | Kidd Brian L | Remote manipulator device |
US20110022029A1 (en) * | 2004-12-20 | 2011-01-27 | Viswanathan Raju R | Contact over-torque with three-dimensional anatomical data |
US20110033100A1 (en) * | 2005-02-07 | 2011-02-10 | Viswanathan Raju R | Registration of three-dimensional image data to 2d-image-derived data |
US20110046618A1 (en) * | 2009-08-04 | 2011-02-24 | Minar Christopher D | Methods and systems for treating occluded blood vessels and other body cannula |
US20110130718A1 (en) * | 2009-05-25 | 2011-06-02 | Kidd Brian L | Remote Manipulator Device |
US8196590B2 (en) | 2003-05-02 | 2012-06-12 | Stereotaxis, Inc. | Variable magnetic moment MR navigation |
US8231618B2 (en) | 2007-11-05 | 2012-07-31 | Stereotaxis, Inc. | Magnetically guided energy delivery apparatus |
US20120281970A1 (en) * | 2011-05-03 | 2012-11-08 | Garibaldi Jeffrey M | Medical video production and distribution system |
US8308628B2 (en) | 2009-11-02 | 2012-11-13 | Pulse Therapeutics, Inc. | Magnetic-based systems for treating occluded vessels |
US20170079585A1 (en) * | 2015-09-22 | 2017-03-23 | Medtronic, Inc. | System and method for interacting with an implantable medical device |
US9883878B2 (en) | 2012-05-15 | 2018-02-06 | Pulse Therapeutics, Inc. | Magnetic-based systems and methods for manipulation of magnetic particles |
US10307600B2 (en) | 2015-09-22 | 2019-06-04 | Medtronic, Inc. | System and method for interacting with an implantable medical device |
CN112582057A (en) * | 2019-09-27 | 2021-03-30 | 西门子医疗有限公司 | Advanced medical imaging in a distributed setting |
US11918315B2 (en) | 2018-05-03 | 2024-03-05 | Pulse Therapeutics, Inc. | Determination of structure and traversal of occlusions using magnetic particles |
US11998287B1 (en) | 2019-03-18 | 2024-06-04 | Dopl Technologies Inc. | Platform for facilitating remote robotic medical procedures |
US12171443B1 (en) | 2021-03-09 | 2024-12-24 | Pulse Therapeutics, Inc. | Magnetically controlled flow generation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114376735A (en) * | 2022-01-11 | 2022-04-22 | 苏州康多机器人有限公司 | Intraoperative remote operation terminal interaction system and method for endoscopic surgical robot |
Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5654864A (en) * | 1994-07-25 | 1997-08-05 | University Of Virginia Patent Foundation | Control method for magnetic stereotaxis system |
US5931818A (en) * | 1997-08-29 | 1999-08-03 | Stereotaxis, Inc. | Method of and apparatus for intraparenchymal positioning of medical devices |
US6014580A (en) * | 1997-11-12 | 2000-01-11 | Stereotaxis, Inc. | Device and method for specifying magnetic field for surgical applications |
US6128174A (en) * | 1997-08-29 | 2000-10-03 | Stereotaxis, Inc. | Method and apparatus for rapidly changing a magnetic field produced by electromagnets |
US6148823A (en) * | 1999-03-17 | 2000-11-21 | Stereotaxis, Inc. | Method of and system for controlling magnetic elements in the body using a gapped toroid magnet |
US6152933A (en) * | 1997-11-12 | 2000-11-28 | Stereotaxis, Inc. | Intracranial bolt and method of placing and using an intracranial bolt to position a medical device |
US6157853A (en) * | 1997-11-12 | 2000-12-05 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6212419B1 (en) * | 1997-11-12 | 2001-04-03 | Walter M. Blume | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6241671B1 (en) * | 1998-11-03 | 2001-06-05 | Stereotaxis, Inc. | Open field system for magnetic surgery |
US6292678B1 (en) * | 1999-05-13 | 2001-09-18 | Stereotaxis, Inc. | Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor |
US6296604B1 (en) * | 1999-03-17 | 2001-10-02 | Stereotaxis, Inc. | Methods of and compositions for treating vascular defects |
US6298257B1 (en) * | 1999-09-22 | 2001-10-02 | Sterotaxis, Inc. | Cardiac methods and system |
US6315709B1 (en) * | 1998-08-07 | 2001-11-13 | Stereotaxis, Inc. | Magnetic vascular defect treatment system |
US6325756B1 (en) * | 1997-03-27 | 2001-12-04 | Medtronic, Inc. | Concepts to implement medconnect |
US6330467B1 (en) * | 1999-02-04 | 2001-12-11 | Stereotaxis, Inc. | Efficient magnet system for magnetically-assisted surgery |
US20020019644A1 (en) * | 1999-07-12 | 2002-02-14 | Hastings Roger N. | Magnetically guided atherectomy |
US6352363B1 (en) * | 2001-01-16 | 2002-03-05 | Stereotaxis, Inc. | Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source |
US6375606B1 (en) * | 1999-03-17 | 2002-04-23 | Stereotaxis, Inc. | Methods of and apparatus for treating vascular defects |
US6385472B1 (en) * | 1999-09-10 | 2002-05-07 | Stereotaxis, Inc. | Magnetically navigable telescoping catheter and method of navigating telescoping catheter |
US6401723B1 (en) * | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
US6428551B1 (en) * | 1999-03-30 | 2002-08-06 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US6459924B1 (en) * | 1997-11-12 | 2002-10-01 | Stereotaxis, Inc. | Articulated magnetic guidance systems and devices and methods for using same for magnetically-assisted surgery |
US20020177789A1 (en) * | 2001-05-06 | 2002-11-28 | Ferry Steven J. | System and methods for advancing a catheter |
US6505062B1 (en) * | 1998-02-09 | 2003-01-07 | Stereotaxis, Inc. | Method for locating magnetic implant by source field |
US6522909B1 (en) * | 1998-08-07 | 2003-02-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US6524303B1 (en) * | 2000-09-08 | 2003-02-25 | Stereotaxis, Inc. | Variable stiffness magnetic catheter |
US6527782B2 (en) * | 2000-06-07 | 2003-03-04 | Sterotaxis, Inc. | Guide for medical devices |
US6537196B1 (en) * | 2000-10-24 | 2003-03-25 | Stereotaxis, Inc. | Magnet assembly with variable field directions and methods of magnetically navigating medical objects |
US6562019B1 (en) * | 1999-09-20 | 2003-05-13 | Stereotaxis, Inc. | Method of utilizing a magnetically guided myocardial treatment system |
US6662034B2 (en) * | 2000-11-15 | 2003-12-09 | Stereotaxis, Inc. | Magnetically guidable electrophysiology catheter |
US6677752B1 (en) * | 2000-11-20 | 2004-01-13 | Stereotaxis, Inc. | Close-in shielding system for magnetic medical treatment instruments |
US20040019447A1 (en) * | 2002-07-16 | 2004-01-29 | Yehoshua Shachar | Apparatus and method for catheter guidance control and imaging |
US20040024288A1 (en) * | 1999-02-18 | 2004-02-05 | Olympus Optical Co., Ltd. | Remote surgery support system |
US6702804B1 (en) * | 1999-10-04 | 2004-03-09 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US20040068173A1 (en) * | 2002-08-06 | 2004-04-08 | Viswanathan Raju R. | Remote control of medical devices using a virtual device interface |
US6733511B2 (en) * | 1998-10-02 | 2004-05-11 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US20040096511A1 (en) * | 2002-07-03 | 2004-05-20 | Jonathan Harburn | Magnetically guidable carriers and methods for the targeted magnetic delivery of substances in the body |
US20040133130A1 (en) * | 2003-01-06 | 2004-07-08 | Ferry Steven J. | Magnetically navigable medical guidewire |
US20040157082A1 (en) * | 2002-07-22 | 2004-08-12 | Ritter Rogers C. | Coated magnetically responsive particles, and embolic materials using coated magnetically responsive particles |
US20040158972A1 (en) * | 2002-11-07 | 2004-08-19 | Creighton Francis M. | Method of making a compound magnet |
US20040186376A1 (en) * | 2002-09-30 | 2004-09-23 | Hogg Bevil J. | Method and apparatus for improved surgical navigation employing electronic identification with automatically actuated flexible medical devices |
US6817364B2 (en) * | 2000-07-24 | 2004-11-16 | Stereotaxis, Inc. | Magnetically navigated pacing leads, and methods for delivering medical devices |
US20040230094A1 (en) * | 2002-11-20 | 2004-11-18 | Olympus Corporation | Remote operation support system and method |
US20040249262A1 (en) * | 2003-03-13 | 2004-12-09 | Werp Peter R. | Magnetic navigation system |
US20040249263A1 (en) * | 2003-03-13 | 2004-12-09 | Creighton Francis M. | Magnetic navigation system and magnet system therefor |
US20050020911A1 (en) * | 2002-04-10 | 2005-01-27 | Viswanathan Raju R. | Efficient closed loop feedback navigation |
US20050043611A1 (en) * | 2003-05-02 | 2005-02-24 | Sabo Michael E. | Variable magnetic moment MR navigation |
US20050065435A1 (en) * | 2003-07-22 | 2005-03-24 | John Rauch | User interface for remote control of medical devices |
US20050085720A1 (en) * | 2003-10-17 | 2005-04-21 | Jascob Bradley A. | Method and apparatus for surgical navigation |
US20050096589A1 (en) * | 2003-10-20 | 2005-05-05 | Yehoshua Shachar | System and method for radar-assisted catheter guidance and control |
US20050113628A1 (en) * | 2002-01-23 | 2005-05-26 | Creighton Francis M.Iv | Rotating and pivoting magnet for magnetic navigation |
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US20050119687A1 (en) * | 2003-09-08 | 2005-06-02 | Dacey Ralph G.Jr. | Methods of, and materials for, treating vascular defects with magnetically controllable hydrogels |
US6902528B1 (en) * | 1999-04-14 | 2005-06-07 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US20050182315A1 (en) * | 2003-11-07 | 2005-08-18 | Ritter Rogers C. | Magnetic resonance imaging and magnetic navigation systems and methods |
US20050256398A1 (en) * | 2004-05-12 | 2005-11-17 | Hastings Roger N | Systems and methods for interventional medicine |
US6968846B2 (en) * | 2002-03-07 | 2005-11-29 | Stereotaxis, Inc. | Method and apparatus for refinably accurate localization of devices and instruments in scattering environments |
US20060009735A1 (en) * | 2004-06-29 | 2006-01-12 | Viswanathan Raju R | Navigation of remotely actuable medical device using control variable and length |
US20060025679A1 (en) * | 2004-06-04 | 2006-02-02 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060036163A1 (en) * | 2004-07-19 | 2006-02-16 | Viswanathan Raju R | Method of, and apparatus for, controlling medical navigation systems |
US20060041245A1 (en) * | 2001-05-06 | 2006-02-23 | Ferry Steven J | Systems and methods for medical device a dvancement and rotation |
US7008418B2 (en) * | 2002-05-09 | 2006-03-07 | Stereotaxis, Inc. | Magnetically assisted pulmonary vein isolation |
US20060058646A1 (en) * | 2004-08-26 | 2006-03-16 | Raju Viswanathan | Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system |
US7020512B2 (en) * | 2002-01-14 | 2006-03-28 | Stereotaxis, Inc. | Method of localizing medical devices |
US7019610B2 (en) * | 2002-01-23 | 2006-03-28 | Stereotaxis, Inc. | Magnetic navigation system |
US20060074297A1 (en) * | 2004-08-24 | 2006-04-06 | Viswanathan Raju R | Methods and apparatus for steering medical devices in body lumens |
US20060079812A1 (en) * | 2004-09-07 | 2006-04-13 | Viswanathan Raju R | Magnetic guidewire for lesion crossing |
US20060079745A1 (en) * | 2004-10-07 | 2006-04-13 | Viswanathan Raju R | Surgical navigation with overlay on anatomical images |
US20060084867A1 (en) * | 2003-10-17 | 2006-04-20 | Tremblay Brian M | Method and apparatus for surgical navigation |
US20060093193A1 (en) * | 2004-10-29 | 2006-05-04 | Viswanathan Raju R | Image-based medical device localization |
US20060094956A1 (en) * | 2004-10-29 | 2006-05-04 | Viswanathan Raju R | Restricted navigation controller for, and methods of controlling, a remote navigation system |
US20060100505A1 (en) * | 2004-10-26 | 2006-05-11 | Viswanathan Raju R | Surgical navigation using a three-dimensional user interface |
US7066924B1 (en) * | 1997-11-12 | 2006-06-27 | Stereotaxis, Inc. | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip |
US20060144408A1 (en) * | 2004-07-23 | 2006-07-06 | Ferry Steven J | Micro-catheter device and method of using same |
US20060144407A1 (en) * | 2004-07-20 | 2006-07-06 | Anthony Aliberto | Magnetic navigation manipulation apparatus |
US7161453B2 (en) * | 2002-01-23 | 2007-01-09 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US20070159457A1 (en) * | 2006-04-27 | 2007-07-12 | Thomas Arthur | Multiple-input selectable systems integrated display and control functions unit for electrophysiology and the like |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6468265B1 (en) * | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US20030060808A1 (en) * | 2000-10-04 | 2003-03-27 | Wilk Peter J. | Telemedical method and system |
EP1442720A1 (en) * | 2003-01-31 | 2004-08-04 | Tre Esse Progettazione Biomedica S.r.l | Apparatus for the maneuvering of flexible catheters in the human cardiovascular system |
-
2006
- 2006-06-30 US US11/480,326 patent/US20080015427A1/en not_active Abandoned
-
2007
- 2007-07-02 WO PCT/US2007/072667 patent/WO2008005935A2/en active Application Filing
- 2007-07-02 EP EP07799252A patent/EP2040785A4/en not_active Withdrawn
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5654864A (en) * | 1994-07-25 | 1997-08-05 | University Of Virginia Patent Foundation | Control method for magnetic stereotaxis system |
US6325756B1 (en) * | 1997-03-27 | 2001-12-04 | Medtronic, Inc. | Concepts to implement medconnect |
US5931818A (en) * | 1997-08-29 | 1999-08-03 | Stereotaxis, Inc. | Method of and apparatus for intraparenchymal positioning of medical devices |
US6015414A (en) * | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6128174A (en) * | 1997-08-29 | 2000-10-03 | Stereotaxis, Inc. | Method and apparatus for rapidly changing a magnetic field produced by electromagnets |
US6212419B1 (en) * | 1997-11-12 | 2001-04-03 | Walter M. Blume | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6152933A (en) * | 1997-11-12 | 2000-11-28 | Stereotaxis, Inc. | Intracranial bolt and method of placing and using an intracranial bolt to position a medical device |
US6157853A (en) * | 1997-11-12 | 2000-12-05 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6507751B2 (en) * | 1997-11-12 | 2003-01-14 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6459924B1 (en) * | 1997-11-12 | 2002-10-01 | Stereotaxis, Inc. | Articulated magnetic guidance systems and devices and methods for using same for magnetically-assisted surgery |
US6304768B1 (en) * | 1997-11-12 | 2001-10-16 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US7066924B1 (en) * | 1997-11-12 | 2006-06-27 | Stereotaxis, Inc. | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip |
US6014580A (en) * | 1997-11-12 | 2000-01-11 | Stereotaxis, Inc. | Device and method for specifying magnetic field for surgical applications |
US7010338B2 (en) * | 1998-02-09 | 2006-03-07 | Stereotaxis, Inc. | Device for locating magnetic implant by source field |
US6505062B1 (en) * | 1998-02-09 | 2003-01-07 | Stereotaxis, Inc. | Method for locating magnetic implant by source field |
US6522909B1 (en) * | 1998-08-07 | 2003-02-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US6315709B1 (en) * | 1998-08-07 | 2001-11-13 | Stereotaxis, Inc. | Magnetic vascular defect treatment system |
US6733511B2 (en) * | 1998-10-02 | 2004-05-11 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US20010038683A1 (en) * | 1998-11-03 | 2001-11-08 | Ritter Rogers C. | Open field system for magnetic surgery |
US6241671B1 (en) * | 1998-11-03 | 2001-06-05 | Stereotaxis, Inc. | Open field system for magnetic surgery |
US6630879B1 (en) * | 1999-02-04 | 2003-10-07 | Stereotaxis, Inc. | Efficient magnet system for magnetically-assisted surgery |
US6330467B1 (en) * | 1999-02-04 | 2001-12-11 | Stereotaxis, Inc. | Efficient magnet system for magnetically-assisted surgery |
US20040064153A1 (en) * | 1999-02-04 | 2004-04-01 | Creighton Francis M. | Efficient magnet system for magnetically-assisted surgery |
US6955671B2 (en) * | 1999-02-18 | 2005-10-18 | Olympus Corporation | Remote surgery support system |
US20040024288A1 (en) * | 1999-02-18 | 2004-02-05 | Olympus Optical Co., Ltd. | Remote surgery support system |
US6364823B1 (en) * | 1999-03-17 | 2002-04-02 | Stereotaxis, Inc. | Methods of and compositions for treating vascular defects |
US6375606B1 (en) * | 1999-03-17 | 2002-04-23 | Stereotaxis, Inc. | Methods of and apparatus for treating vascular defects |
US6296604B1 (en) * | 1999-03-17 | 2001-10-02 | Stereotaxis, Inc. | Methods of and compositions for treating vascular defects |
US6148823A (en) * | 1999-03-17 | 2000-11-21 | Stereotaxis, Inc. | Method of and system for controlling magnetic elements in the body using a gapped toroid magnet |
US6428551B1 (en) * | 1999-03-30 | 2002-08-06 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US6902528B1 (en) * | 1999-04-14 | 2005-06-07 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US6542766B2 (en) * | 1999-05-13 | 2003-04-01 | Andrew F. Hall | Medical devices adapted for magnetic navigation with magnetic fields and gradients |
US6292678B1 (en) * | 1999-05-13 | 2001-09-18 | Stereotaxis, Inc. | Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor |
US6911026B1 (en) * | 1999-07-12 | 2005-06-28 | Stereotaxis, Inc. | Magnetically guided atherectomy |
US20020019644A1 (en) * | 1999-07-12 | 2002-02-14 | Hastings Roger N. | Magnetically guided atherectomy |
US6385472B1 (en) * | 1999-09-10 | 2002-05-07 | Stereotaxis, Inc. | Magnetically navigable telescoping catheter and method of navigating telescoping catheter |
US6562019B1 (en) * | 1999-09-20 | 2003-05-13 | Stereotaxis, Inc. | Method of utilizing a magnetically guided myocardial treatment system |
US20040006301A1 (en) * | 1999-09-20 | 2004-01-08 | Sell Jonathan C. | Magnetically guided myocardial treatment system |
US6298257B1 (en) * | 1999-09-22 | 2001-10-02 | Sterotaxis, Inc. | Cardiac methods and system |
US7137976B2 (en) * | 1999-10-04 | 2006-11-21 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US20040199074A1 (en) * | 1999-10-04 | 2004-10-07 | Ritter Rogers C. | Method for safely and efficiently navigating magnetic devices in the body |
US6702804B1 (en) * | 1999-10-04 | 2004-03-09 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US6755816B2 (en) * | 1999-10-04 | 2004-06-29 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US6401723B1 (en) * | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
US6527782B2 (en) * | 2000-06-07 | 2003-03-04 | Sterotaxis, Inc. | Guide for medical devices |
US6817364B2 (en) * | 2000-07-24 | 2004-11-16 | Stereotaxis, Inc. | Magnetically navigated pacing leads, and methods for delivering medical devices |
US6524303B1 (en) * | 2000-09-08 | 2003-02-25 | Stereotaxis, Inc. | Variable stiffness magnetic catheter |
US6537196B1 (en) * | 2000-10-24 | 2003-03-25 | Stereotaxis, Inc. | Magnet assembly with variable field directions and methods of magnetically navigating medical objects |
US6662034B2 (en) * | 2000-11-15 | 2003-12-09 | Stereotaxis, Inc. | Magnetically guidable electrophysiology catheter |
US6677752B1 (en) * | 2000-11-20 | 2004-01-13 | Stereotaxis, Inc. | Close-in shielding system for magnetic medical treatment instruments |
US6352363B1 (en) * | 2001-01-16 | 2002-03-05 | Stereotaxis, Inc. | Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source |
US20020177789A1 (en) * | 2001-05-06 | 2002-11-28 | Ferry Steven J. | System and methods for advancing a catheter |
US20060041245A1 (en) * | 2001-05-06 | 2006-02-23 | Ferry Steven J | Systems and methods for medical device a dvancement and rotation |
US7020512B2 (en) * | 2002-01-14 | 2006-03-28 | Stereotaxis, Inc. | Method of localizing medical devices |
US20050113628A1 (en) * | 2002-01-23 | 2005-05-26 | Creighton Francis M.Iv | Rotating and pivoting magnet for magnetic navigation |
US7161453B2 (en) * | 2002-01-23 | 2007-01-09 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US7019610B2 (en) * | 2002-01-23 | 2006-03-28 | Stereotaxis, Inc. | Magnetic navigation system |
US6968846B2 (en) * | 2002-03-07 | 2005-11-29 | Stereotaxis, Inc. | Method and apparatus for refinably accurate localization of devices and instruments in scattering environments |
US20050020911A1 (en) * | 2002-04-10 | 2005-01-27 | Viswanathan Raju R. | Efficient closed loop feedback navigation |
US7008418B2 (en) * | 2002-05-09 | 2006-03-07 | Stereotaxis, Inc. | Magnetically assisted pulmonary vein isolation |
US20040096511A1 (en) * | 2002-07-03 | 2004-05-20 | Jonathan Harburn | Magnetically guidable carriers and methods for the targeted magnetic delivery of substances in the body |
US20060116633A1 (en) * | 2002-07-16 | 2006-06-01 | Yehoshua Shachar | System and method for a magnetic catheter tip |
US20060114088A1 (en) * | 2002-07-16 | 2006-06-01 | Yehoshua Shachar | Apparatus and method for generating a magnetic field |
US20040019447A1 (en) * | 2002-07-16 | 2004-01-29 | Yehoshua Shachar | Apparatus and method for catheter guidance control and imaging |
US20040157082A1 (en) * | 2002-07-22 | 2004-08-12 | Ritter Rogers C. | Coated magnetically responsive particles, and embolic materials using coated magnetically responsive particles |
US20040068173A1 (en) * | 2002-08-06 | 2004-04-08 | Viswanathan Raju R. | Remote control of medical devices using a virtual device interface |
US20040186376A1 (en) * | 2002-09-30 | 2004-09-23 | Hogg Bevil J. | Method and apparatus for improved surgical navigation employing electronic identification with automatically actuated flexible medical devices |
US20040158972A1 (en) * | 2002-11-07 | 2004-08-19 | Creighton Francis M. | Method of making a compound magnet |
US20040230094A1 (en) * | 2002-11-20 | 2004-11-18 | Olympus Corporation | Remote operation support system and method |
US20040133130A1 (en) * | 2003-01-06 | 2004-07-08 | Ferry Steven J. | Magnetically navigable medical guidewire |
US20040249262A1 (en) * | 2003-03-13 | 2004-12-09 | Werp Peter R. | Magnetic navigation system |
US20040249263A1 (en) * | 2003-03-13 | 2004-12-09 | Creighton Francis M. | Magnetic navigation system and magnet system therefor |
US20050043611A1 (en) * | 2003-05-02 | 2005-02-24 | Sabo Michael E. | Variable magnetic moment MR navigation |
US20050065435A1 (en) * | 2003-07-22 | 2005-03-24 | John Rauch | User interface for remote control of medical devices |
US20050119687A1 (en) * | 2003-09-08 | 2005-06-02 | Dacey Ralph G.Jr. | Methods of, and materials for, treating vascular defects with magnetically controllable hydrogels |
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US20050085720A1 (en) * | 2003-10-17 | 2005-04-21 | Jascob Bradley A. | Method and apparatus for surgical navigation |
US20060084867A1 (en) * | 2003-10-17 | 2006-04-20 | Tremblay Brian M | Method and apparatus for surgical navigation |
US20050096589A1 (en) * | 2003-10-20 | 2005-05-05 | Yehoshua Shachar | System and method for radar-assisted catheter guidance and control |
US20050182315A1 (en) * | 2003-11-07 | 2005-08-18 | Ritter Rogers C. | Magnetic resonance imaging and magnetic navigation systems and methods |
US20050256398A1 (en) * | 2004-05-12 | 2005-11-17 | Hastings Roger N | Systems and methods for interventional medicine |
US20060041181A1 (en) * | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060041180A1 (en) * | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060041179A1 (en) * | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060025679A1 (en) * | 2004-06-04 | 2006-02-02 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060041178A1 (en) * | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060036125A1 (en) * | 2004-06-04 | 2006-02-16 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060009735A1 (en) * | 2004-06-29 | 2006-01-12 | Viswanathan Raju R | Navigation of remotely actuable medical device using control variable and length |
US20060036163A1 (en) * | 2004-07-19 | 2006-02-16 | Viswanathan Raju R | Method of, and apparatus for, controlling medical navigation systems |
US20060144407A1 (en) * | 2004-07-20 | 2006-07-06 | Anthony Aliberto | Magnetic navigation manipulation apparatus |
US20060144408A1 (en) * | 2004-07-23 | 2006-07-06 | Ferry Steven J | Micro-catheter device and method of using same |
US20060074297A1 (en) * | 2004-08-24 | 2006-04-06 | Viswanathan Raju R | Methods and apparatus for steering medical devices in body lumens |
US20060058646A1 (en) * | 2004-08-26 | 2006-03-16 | Raju Viswanathan | Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system |
US20060079812A1 (en) * | 2004-09-07 | 2006-04-13 | Viswanathan Raju R | Magnetic guidewire for lesion crossing |
US20060079745A1 (en) * | 2004-10-07 | 2006-04-13 | Viswanathan Raju R | Surgical navigation with overlay on anatomical images |
US20060100505A1 (en) * | 2004-10-26 | 2006-05-11 | Viswanathan Raju R | Surgical navigation using a three-dimensional user interface |
US20060094956A1 (en) * | 2004-10-29 | 2006-05-04 | Viswanathan Raju R | Restricted navigation controller for, and methods of controlling, a remote navigation system |
US20060093193A1 (en) * | 2004-10-29 | 2006-05-04 | Viswanathan Raju R | Image-based medical device localization |
US20070159457A1 (en) * | 2006-04-27 | 2007-07-12 | Thomas Arthur | Multiple-input selectable systems integrated display and control functions unit for electrophysiology and the like |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100063385A1 (en) * | 1998-08-07 | 2010-03-11 | Garibaldi Jeffrey M | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US20090177032A1 (en) * | 1999-04-14 | 2009-07-09 | Garibaldi Jeffrey M | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US20100163061A1 (en) * | 2000-04-11 | 2010-07-01 | Creighton Francis M | Magnets with varying magnetization direction and method of making such magnets |
US8196590B2 (en) | 2003-05-02 | 2012-06-12 | Stereotaxis, Inc. | Variable magnetic moment MR navigation |
US20050113812A1 (en) * | 2003-09-16 | 2005-05-26 | Viswanathan Raju R. | User interface for remote control of medical devices |
US8369934B2 (en) | 2004-12-20 | 2013-02-05 | Stereotaxis, Inc. | Contact over-torque with three-dimensional anatomical data |
US20110022029A1 (en) * | 2004-12-20 | 2011-01-27 | Viswanathan Raju R | Contact over-torque with three-dimensional anatomical data |
US7961926B2 (en) | 2005-02-07 | 2011-06-14 | Stereotaxis, Inc. | Registration of three-dimensional image data to 2D-image-derived data |
US20110033100A1 (en) * | 2005-02-07 | 2011-02-10 | Viswanathan Raju R | Registration of three-dimensional image data to 2d-image-derived data |
US20090062646A1 (en) * | 2005-07-07 | 2009-03-05 | Creighton Iv Francis M | Operation of a remote medical navigation system using ultrasound image |
US9314222B2 (en) | 2005-07-07 | 2016-04-19 | Stereotaxis, Inc. | Operation of a remote medical navigation system using ultrasound image |
US7772950B2 (en) | 2005-08-10 | 2010-08-10 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
US20100168549A1 (en) * | 2006-01-06 | 2010-07-01 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US20080015670A1 (en) * | 2006-01-17 | 2008-01-17 | Carlo Pappone | Methods and devices for cardiac ablation |
US20100222669A1 (en) * | 2006-08-23 | 2010-09-02 | William Flickinger | Medical device guide |
US20100097315A1 (en) * | 2006-09-06 | 2010-04-22 | Garibaldi Jeffrey M | Global input device for multiple computer-controlled medical systems |
US8135185B2 (en) | 2006-10-20 | 2012-03-13 | Stereotaxis, Inc. | Location and display of occluded portions of vessels on 3-D angiographic images |
US20080097200A1 (en) * | 2006-10-20 | 2008-04-24 | Blume Walter M | Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images |
US20080132910A1 (en) * | 2006-11-07 | 2008-06-05 | Carlo Pappone | Control for a Remote Navigation System |
US20080200913A1 (en) * | 2007-02-07 | 2008-08-21 | Viswanathan Raju R | Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias |
US20080208912A1 (en) * | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US20080287909A1 (en) * | 2007-05-17 | 2008-11-20 | Viswanathan Raju R | Method and apparatus for intra-chamber needle injection treatment |
US20080294232A1 (en) * | 2007-05-22 | 2008-11-27 | Viswanathan Raju R | Magnetic cell delivery |
US8024024B2 (en) | 2007-06-27 | 2011-09-20 | Stereotaxis, Inc. | Remote control of medical devices using real time location data |
US20090177037A1 (en) * | 2007-06-27 | 2009-07-09 | Viswanathan Raju R | Remote control of medical devices using real time location data |
US20090012821A1 (en) * | 2007-07-06 | 2009-01-08 | Guy Besson | Management of live remote medical display |
US9111016B2 (en) | 2007-07-06 | 2015-08-18 | Stereotaxis, Inc. | Management of live remote medical display |
US20090082722A1 (en) * | 2007-08-21 | 2009-03-26 | Munger Gareth T | Remote navigation advancer devices and methods of use |
US20090105579A1 (en) * | 2007-10-19 | 2009-04-23 | Garibaldi Jeffrey M | Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data |
US8231618B2 (en) | 2007-11-05 | 2012-07-31 | Stereotaxis, Inc. | Magnetically guided energy delivery apparatus |
US20090131798A1 (en) * | 2007-11-19 | 2009-05-21 | Minar Christopher D | Method and apparatus for intravascular imaging and occlusion crossing |
US20090131927A1 (en) * | 2007-11-20 | 2009-05-21 | Nathan Kastelein | Method and apparatus for remote detection of rf ablation |
US20100069733A1 (en) * | 2008-09-05 | 2010-03-18 | Nathan Kastelein | Electrophysiology catheter with electrode loop |
US20110130718A1 (en) * | 2009-05-25 | 2011-06-02 | Kidd Brian L | Remote Manipulator Device |
US20100298845A1 (en) * | 2009-05-25 | 2010-11-25 | Kidd Brian L | Remote manipulator device |
US10537713B2 (en) | 2009-05-25 | 2020-01-21 | Stereotaxis, Inc. | Remote manipulator device |
US20110046618A1 (en) * | 2009-08-04 | 2011-02-24 | Minar Christopher D | Methods and systems for treating occluded blood vessels and other body cannula |
US10813997B2 (en) | 2009-11-02 | 2020-10-27 | Pulse Therapeutics, Inc. | Devices for controlling magnetic nanoparticles to treat fluid obstructions |
US10159734B2 (en) | 2009-11-02 | 2018-12-25 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US11612655B2 (en) | 2009-11-02 | 2023-03-28 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US8715150B2 (en) | 2009-11-02 | 2014-05-06 | Pulse Therapeutics, Inc. | Devices for controlling magnetic nanoparticles to treat fluid obstructions |
US8926491B2 (en) | 2009-11-02 | 2015-01-06 | Pulse Therapeutics, Inc. | Controlling magnetic nanoparticles to increase vascular flow |
US8313422B2 (en) | 2009-11-02 | 2012-11-20 | Pulse Therapeutics, Inc. | Magnetic-based methods for treating vessel obstructions |
US8308628B2 (en) | 2009-11-02 | 2012-11-13 | Pulse Therapeutics, Inc. | Magnetic-based systems for treating occluded vessels |
US9339664B2 (en) | 2009-11-02 | 2016-05-17 | Pulse Therapetics, Inc. | Control of magnetic rotors to treat therapeutic targets |
US9345498B2 (en) | 2009-11-02 | 2016-05-24 | Pulse Therapeutics, Inc. | Methods of controlling magnetic nanoparticles to improve vascular flow |
US11000589B2 (en) | 2009-11-02 | 2021-05-11 | Pulse Therapeutics, Inc. | Magnetic particle control and visualization |
US8529428B2 (en) | 2009-11-02 | 2013-09-10 | Pulse Therapeutics, Inc. | Methods of controlling magnetic nanoparticles to improve vascular flow |
US10029008B2 (en) | 2009-11-02 | 2018-07-24 | Pulse Therapeutics, Inc. | Therapeutic magnetic control systems and contrast agents |
WO2012071408A1 (en) * | 2010-11-25 | 2012-05-31 | Stereotaxis Inc. | Remote manipulator device |
CN103442660A (en) * | 2010-11-25 | 2013-12-11 | 斯蒂雷奥泰克西斯股份有限公司 | Remote manipulator device |
US20120281970A1 (en) * | 2011-05-03 | 2012-11-08 | Garibaldi Jeffrey M | Medical video production and distribution system |
US9883878B2 (en) | 2012-05-15 | 2018-02-06 | Pulse Therapeutics, Inc. | Magnetic-based systems and methods for manipulation of magnetic particles |
US10646241B2 (en) | 2012-05-15 | 2020-05-12 | Pulse Therapeutics, Inc. | Detection of fluidic current generated by rotating magnetic particles |
US11883202B2 (en) * | 2015-09-22 | 2024-01-30 | Medtronic, Inc. | System and method for interacting with an implantable medical device |
US20170079585A1 (en) * | 2015-09-22 | 2017-03-23 | Medtronic, Inc. | System and method for interacting with an implantable medical device |
US10307600B2 (en) | 2015-09-22 | 2019-06-04 | Medtronic, Inc. | System and method for interacting with an implantable medical device |
CN108025176A (en) * | 2015-09-22 | 2018-05-11 | 美敦力公司 | Systems and methods for interacting with implantable medical devices |
US11918315B2 (en) | 2018-05-03 | 2024-03-05 | Pulse Therapeutics, Inc. | Determination of structure and traversal of occlusions using magnetic particles |
US11998287B1 (en) | 2019-03-18 | 2024-06-04 | Dopl Technologies Inc. | Platform for facilitating remote robotic medical procedures |
CN112582057A (en) * | 2019-09-27 | 2021-03-30 | 西门子医疗有限公司 | Advanced medical imaging in a distributed setting |
US12171443B1 (en) | 2021-03-09 | 2024-12-24 | Pulse Therapeutics, Inc. | Magnetically controlled flow generation |
Also Published As
Publication number | Publication date |
---|---|
EP2040785A2 (en) | 2009-04-01 |
WO2008005935A2 (en) | 2008-01-10 |
WO2008005935A3 (en) | 2008-03-20 |
EP2040785A4 (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080015427A1 (en) | System and network for remote medical procedures | |
US20070060916A1 (en) | System and network for remote medical procedures | |
US11944344B2 (en) | Guidance system, method and devices thereof | |
JP7094727B2 (en) | Automatic tracking and adjustment of viewing angle during catheter ablation treatment | |
EP2666143B1 (en) | Telerobotic system with a dual application screen presentation | |
Di Biase et al. | Remote magnetic navigation: human experience in pulmonary vein ablation | |
Green et al. | Telepresence surgery | |
US8828023B2 (en) | Medical workstation | |
US8527094B2 (en) | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures | |
Sekhar et al. | Commentary: virtual reality and robotics in neurosurgery | |
CN109431606A (en) | A kind of blood vessel intervention operation robot combined system and its application method | |
KR20230027240A (en) | Control Scheme Calibration for Medical Instruments | |
US12164684B2 (en) | Gaze-initiated communications | |
Cadeddu et al. | Robotic surgery in urology | |
KR20230074229A (en) | Haptic feedback to align robotic arms | |
Soldozy et al. | Transsphenoidal surgery using robotics to approach the sella turcica: Integrative use of artificial intelligence, realistic motion tracking and telesurgery | |
Sikander et al. | Recent advancements in telemedicine: surgical, diagnostic and consultation devices | |
Kaur | How Medical Robots are going to Affect Our Lives: Pushing frontiers with the first lady of emerging technologies | |
WO2022064369A1 (en) | Haptic feedback for aligning robotic arms | |
CN219370483U (en) | Simulation device and simulation system for vascular intervention operation | |
US20200352554A1 (en) | Robotic system | |
Cuschieri | Shape of things to come: expectations and realism | |
Rovetta et al. | Telerobotics surgery in a transatlantic experiment: application in laparoscopy | |
KR20230061461A (en) | Robot collision boundary determination | |
Rovetta et al. | The first experiment in the world of robotic telesurgery for laparoscopy carried out by means of satellites networks and optical fibres networks on 7th July 1993 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STEREOTAXIS, INC., MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASTELEIN, NATHAN;GREEN, RICHARD;REEL/FRAME:018559/0510;SIGNING DATES FROM 20061006 TO 20061011 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:STEREOTAXIS, INC.;REEL/FRAME:027332/0178 Effective date: 20111130 |
|
AS | Assignment |
Owner name: COWEN HEALTHCARE ROYALTY PARTNERS II, L.P., AS LENDER, CONNECTICUT Free format text: SECURITY AGREEMENT;ASSIGNOR:STEREOTAXIS, INC.;REEL/FRAME:027346/0001 Effective date: 20111205 Owner name: COWEN HEALTHCARE ROYALTY PARTNERS II, L.P., AS LEN Free format text: SECURITY AGREEMENT;ASSIGNOR:STEREOTAXIS, INC.;REEL/FRAME:027346/0001 Effective date: 20111205 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: COWEN HEALTHCARE ROYALTY PARTNERS II, L.P., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STEREOTAXIS, INC.;REEL/FRAME:043733/0376 Effective date: 20170828 Owner name: COWEN HEALTHCARE ROYALTY PARTNERS II, L.P., CONNEC Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STEREOTAXIS, INC.;REEL/FRAME:043733/0376 Effective date: 20170828 |
|
AS | Assignment |
Owner name: STEREOTAXIS, INC., MISSOURI Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REVERSAL OF ASSIGNOR AND ASSIGNEE PREVIOUSLY RECORDED ON REEL 043733 FRAME 0376. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST;ASSIGNOR:COWEN HEALTHCARE ROYALTY PARTNERS II, L.P.;REEL/FRAME:044269/0282 Effective date: 20170828 |