US20080107744A1 - Injectable hollow tissue filler - Google Patents
Injectable hollow tissue filler Download PDFInfo
- Publication number
- US20080107744A1 US20080107744A1 US11/935,210 US93521007A US2008107744A1 US 20080107744 A1 US20080107744 A1 US 20080107744A1 US 93521007 A US93521007 A US 93521007A US 2008107744 A1 US2008107744 A1 US 2008107744A1
- Authority
- US
- United States
- Prior art keywords
- poly
- copolymer
- hollow particles
- tissue implant
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000945 filler Substances 0.000 title abstract description 87
- 239000000203 mixture Substances 0.000 claims abstract description 65
- 239000012530 fluid Substances 0.000 claims abstract description 18
- 239000002245 particle Substances 0.000 claims description 200
- -1 poly(dioxanone) Polymers 0.000 claims description 63
- 239000011800 void material Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 33
- 229920001577 copolymer Polymers 0.000 claims description 30
- 239000007943 implant Substances 0.000 claims description 27
- 229920000642 polymer Polymers 0.000 claims description 27
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 24
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 16
- 108010035532 Collagen Proteins 0.000 claims description 15
- 102000008186 Collagen Human genes 0.000 claims description 15
- 229920001436 collagen Polymers 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 11
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 11
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 11
- 229920001296 polysiloxane Polymers 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229920002125 Sokalan® Polymers 0.000 claims description 10
- 229920002472 Starch Polymers 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 10
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 10
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 10
- 239000008107 starch Substances 0.000 claims description 10
- 235000019698 starch Nutrition 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 9
- 239000000017 hydrogel Substances 0.000 claims description 9
- 239000000499 gel Substances 0.000 claims description 8
- 150000004676 glycans Chemical class 0.000 claims description 8
- 229920001983 poloxamer Polymers 0.000 claims description 8
- 229920001282 polysaccharide Polymers 0.000 claims description 8
- 239000005017 polysaccharide Substances 0.000 claims description 8
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 7
- 229920002674 hyaluronan Polymers 0.000 claims description 7
- 229960003160 hyaluronic acid Drugs 0.000 claims description 7
- 239000004615 ingredient Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 7
- 239000000375 suspending agent Substances 0.000 claims description 7
- 239000002562 thickening agent Substances 0.000 claims description 7
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 230000000975 bioactive effect Effects 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 6
- 235000010980 cellulose Nutrition 0.000 claims description 6
- 229920002401 polyacrylamide Polymers 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 claims description 6
- 239000004626 polylactic acid Substances 0.000 claims description 6
- 229920001451 polypropylene glycol Polymers 0.000 claims description 6
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 6
- 239000011118 polyvinyl acetate Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 229940068984 polyvinyl alcohol Drugs 0.000 claims description 6
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- 108010010803 Gelatin Proteins 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- 229920000159 gelatin Polymers 0.000 claims description 5
- 235000019322 gelatine Nutrition 0.000 claims description 5
- 235000011852 gelatine desserts Nutrition 0.000 claims description 5
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 239000003755 preservative agent Substances 0.000 claims description 5
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- 229920000896 Ethulose Polymers 0.000 claims description 4
- 239000001856 Ethyl cellulose Substances 0.000 claims description 4
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 4
- 229920002774 Maltodextrin Polymers 0.000 claims description 4
- 239000005913 Maltodextrin Substances 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 229920000954 Polyglycolide Polymers 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 230000003444 anaesthetic effect Effects 0.000 claims description 4
- 229960001631 carbomer Drugs 0.000 claims description 4
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 4
- 229920001249 ethyl cellulose Polymers 0.000 claims description 4
- 229960003943 hypromellose Drugs 0.000 claims description 4
- 229940035034 maltodextrin Drugs 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229920000609 methyl cellulose Polymers 0.000 claims description 4
- 239000001923 methylcellulose Substances 0.000 claims description 4
- 229960002900 methylcellulose Drugs 0.000 claims description 4
- 239000003921 oil Substances 0.000 claims description 4
- 235000010987 pectin Nutrition 0.000 claims description 4
- 239000001814 pectin Substances 0.000 claims description 4
- 229920001277 pectin Polymers 0.000 claims description 4
- 229920001308 poly(aminoacid) Polymers 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 229920001281 polyalkylene Polymers 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920006260 polyaryletherketone Polymers 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 4
- 230000002335 preservative effect Effects 0.000 claims description 4
- 229940047670 sodium acrylate Drugs 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 230000008719 thickening Effects 0.000 claims description 4
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 229940105329 carboxymethylcellulose Drugs 0.000 claims description 3
- 239000008121 dextrose Substances 0.000 claims description 3
- 239000002953 phosphate buffered saline Substances 0.000 claims description 3
- 239000004633 polyglycolic acid Substances 0.000 claims description 3
- 229950008885 polyglycolic acid Drugs 0.000 claims description 3
- 229920000193 polymethacrylate Polymers 0.000 claims description 3
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 claims description 3
- FTLYMKDSHNWQKD-UHFFFAOYSA-N (2,4,5-trichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=C(Cl)C=C1Cl FTLYMKDSHNWQKD-UHFFFAOYSA-N 0.000 claims description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 2
- SCRCZNMJAVGGEI-UHFFFAOYSA-N 1,4-dioxane-2,5-dione;oxepan-2-one Chemical compound O=C1COC(=O)CO1.O=C1CCCCCO1 SCRCZNMJAVGGEI-UHFFFAOYSA-N 0.000 claims description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 2
- CFWRDBDJAOHXSH-SECBINFHSA-N 2-azaniumylethyl [(2r)-2,3-diacetyloxypropyl] phosphate Chemical compound CC(=O)OC[C@@H](OC(C)=O)COP(O)(=O)OCCN CFWRDBDJAOHXSH-SECBINFHSA-N 0.000 claims description 2
- 229920001817 Agar Polymers 0.000 claims description 2
- 229920000936 Agarose Polymers 0.000 claims description 2
- 108010088751 Albumins Proteins 0.000 claims description 2
- 102000009027 Albumins Human genes 0.000 claims description 2
- 241000416162 Astragalus gummifer Species 0.000 claims description 2
- 108010027529 Bio-glue Proteins 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 claims description 2
- 229920002101 Chitin Polymers 0.000 claims description 2
- 229920001661 Chitosan Polymers 0.000 claims description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- 229920002307 Dextran Polymers 0.000 claims description 2
- 229920001353 Dextrin Polymers 0.000 claims description 2
- 239000004375 Dextrin Substances 0.000 claims description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 2
- 102000009123 Fibrin Human genes 0.000 claims description 2
- 108010073385 Fibrin Proteins 0.000 claims description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 claims description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 claims description 2
- 229920002148 Gellan gum Polymers 0.000 claims description 2
- 229920001503 Glucan Polymers 0.000 claims description 2
- 229920002907 Guar gum Polymers 0.000 claims description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 2
- 240000007472 Leucaena leucocephala Species 0.000 claims description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 claims description 2
- 229930195725 Mannitol Natural products 0.000 claims description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 claims description 2
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 2
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 claims description 2
- 229920001311 Poly(hydroxyethyl acrylate) Polymers 0.000 claims description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 2
- 239000004962 Polyamide-imide Substances 0.000 claims description 2
- 229920002732 Polyanhydride Polymers 0.000 claims description 2
- 229920000805 Polyaspartic acid Polymers 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 229920002873 Polyethylenimine Polymers 0.000 claims description 2
- 108010020346 Polyglutamic Acid Proteins 0.000 claims description 2
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 108010039918 Polylysine Proteins 0.000 claims description 2
- 229920001710 Polyorthoester Polymers 0.000 claims description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229920002359 Tetronic® Polymers 0.000 claims description 2
- 229920001615 Tragacanth Polymers 0.000 claims description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 2
- ZUAAPNNKRHMPKG-UHFFFAOYSA-N acetic acid;butanedioic acid;methanol;propane-1,2-diol Chemical compound OC.CC(O)=O.CC(O)CO.OC(=O)CCC(O)=O ZUAAPNNKRHMPKG-UHFFFAOYSA-N 0.000 claims description 2
- 239000008272 agar Substances 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 229920013820 alkyl cellulose Polymers 0.000 claims description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 229960000892 attapulgite Drugs 0.000 claims description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 claims description 2
- 229920001400 block copolymer Polymers 0.000 claims description 2
- 235000010410 calcium alginate Nutrition 0.000 claims description 2
- 239000000648 calcium alginate Substances 0.000 claims description 2
- 229960002681 calcium alginate Drugs 0.000 claims description 2
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 claims description 2
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 claims description 2
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 claims description 2
- 235000010418 carrageenan Nutrition 0.000 claims description 2
- 229920001525 carrageenan Polymers 0.000 claims description 2
- 239000000679 carrageenan Substances 0.000 claims description 2
- 229940113118 carrageenan Drugs 0.000 claims description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 claims description 2
- 229940075614 colloidal silicon dioxide Drugs 0.000 claims description 2
- 239000002872 contrast media Substances 0.000 claims description 2
- 229920001531 copovidone Polymers 0.000 claims description 2
- 235000019425 dextrin Nutrition 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 claims description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 2
- 150000002009 diols Chemical class 0.000 claims description 2
- 229920001971 elastomer Polymers 0.000 claims description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- 229950003499 fibrin Drugs 0.000 claims description 2
- 239000008273 gelatin Substances 0.000 claims description 2
- 229940014259 gelatin Drugs 0.000 claims description 2
- 235000010492 gellan gum Nutrition 0.000 claims description 2
- 239000000216 gellan gum Substances 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 229960001031 glucose Drugs 0.000 claims description 2
- 235000001727 glucose Nutrition 0.000 claims description 2
- 235000010417 guar gum Nutrition 0.000 claims description 2
- 239000000665 guar gum Substances 0.000 claims description 2
- 229960002154 guar gum Drugs 0.000 claims description 2
- 150000002400 hexanoic acid esters Chemical class 0.000 claims description 2
- 229920001519 homopolymer Polymers 0.000 claims description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 2
- 229940071826 hydroxyethyl cellulose Drugs 0.000 claims description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 2
- XQZXYNRDCRIARQ-LURJTMIESA-N iopamidol Chemical compound C[C@H](O)C(=O)NC1=C(I)C(C(=O)NC(CO)CO)=C(I)C(C(=O)NC(CO)CO)=C1I XQZXYNRDCRIARQ-LURJTMIESA-N 0.000 claims description 2
- 229960004647 iopamidol Drugs 0.000 claims description 2
- IUNJANQVIJDFTQ-UHFFFAOYSA-N iopentol Chemical compound COCC(O)CN(C(C)=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I IUNJANQVIJDFTQ-UHFFFAOYSA-N 0.000 claims description 2
- 229960000824 iopentol Drugs 0.000 claims description 2
- 150000003903 lactic acid esters Chemical class 0.000 claims description 2
- 235000010445 lecithin Nutrition 0.000 claims description 2
- 239000000787 lecithin Substances 0.000 claims description 2
- 229940067606 lecithin Drugs 0.000 claims description 2
- 239000001630 malic acid Substances 0.000 claims description 2
- 235000011090 malic acid Nutrition 0.000 claims description 2
- 239000000594 mannitol Substances 0.000 claims description 2
- 235000010355 mannitol Nutrition 0.000 claims description 2
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 claims description 2
- 229920001542 oligosaccharide Polymers 0.000 claims description 2
- 150000002482 oligosaccharides Chemical class 0.000 claims description 2
- 150000003891 oxalate salts Chemical class 0.000 claims description 2
- 229910052625 palygorskite Inorganic materials 0.000 claims description 2
- 229960000292 pectin Drugs 0.000 claims description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 claims description 2
- 229950010732 poliglecaprone Drugs 0.000 claims description 2
- 229960000502 poloxamer Drugs 0.000 claims description 2
- 229920000724 poly(L-arginine) polymer Polymers 0.000 claims description 2
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 claims description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 2
- 229920000117 poly(dioxanone) Polymers 0.000 claims description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 2
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 2
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 claims description 2
- 229920000141 poly(maleic anhydride) Polymers 0.000 claims description 2
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 2
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 2
- 229920002312 polyamide-imide Polymers 0.000 claims description 2
- 108010011110 polyarginine Proteins 0.000 claims description 2
- 108010064470 polyaspartate Proteins 0.000 claims description 2
- 229920001610 polycaprolactone Polymers 0.000 claims description 2
- 239000004632 polycaprolactone Substances 0.000 claims description 2
- 239000000622 polydioxanone Substances 0.000 claims description 2
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims description 2
- 229920002530 polyetherether ketone Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920002643 polyglutamic acid Polymers 0.000 claims description 2
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920001855 polyketal Polymers 0.000 claims description 2
- 229920000656 polylysine Polymers 0.000 claims description 2
- 229920000098 polyolefin Polymers 0.000 claims description 2
- 229920006324 polyoxymethylene Polymers 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- 229920000136 polysorbate Polymers 0.000 claims description 2
- 229950008882 polysorbate Drugs 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920000131 polyvinylidene Polymers 0.000 claims description 2
- 229920002717 polyvinylpyridine Polymers 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 229940069328 povidone Drugs 0.000 claims description 2
- 239000000770 propane-1,2-diol alginate Substances 0.000 claims description 2
- 239000005060 rubber Substances 0.000 claims description 2
- 229940085605 saccharin sodium Drugs 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 235000010413 sodium alginate Nutrition 0.000 claims description 2
- 239000000661 sodium alginate Substances 0.000 claims description 2
- 229940005550 sodium alginate Drugs 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 229940071117 starch glycolate Drugs 0.000 claims description 2
- 150000003890 succinate salts Chemical class 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 229960004793 sucrose Drugs 0.000 claims description 2
- 239000006188 syrup Substances 0.000 claims description 2
- 235000020357 syrup Nutrition 0.000 claims description 2
- 235000010487 tragacanth Nutrition 0.000 claims description 2
- 239000000196 tragacanth Substances 0.000 claims description 2
- 229940116362 tragacanth Drugs 0.000 claims description 2
- 229920001285 xanthan gum Polymers 0.000 claims description 2
- 235000010493 xanthan gum Nutrition 0.000 claims description 2
- 239000000230 xanthan gum Substances 0.000 claims description 2
- 229940082509 xanthan gum Drugs 0.000 claims description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims 4
- 229920005615 natural polymer Polymers 0.000 claims 2
- 229920001059 synthetic polymer Polymers 0.000 claims 2
- 150000001298 alcohols Chemical class 0.000 claims 1
- 239000007924 injection Substances 0.000 abstract description 47
- 238000002347 injection Methods 0.000 abstract description 47
- 210000001519 tissue Anatomy 0.000 abstract description 31
- 238000001556 precipitation Methods 0.000 abstract description 24
- 210000005070 sphincter Anatomy 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 6
- 230000002496 gastric effect Effects 0.000 abstract description 6
- 206010047370 Vesicoureteric reflux Diseases 0.000 abstract description 5
- 230000006378 damage Effects 0.000 abstract description 5
- 238000010992 reflux Methods 0.000 abstract description 5
- 201000008618 vesicoureteral reflux Diseases 0.000 abstract description 5
- 208000031355 vesicoureteral reflux 1 Diseases 0.000 abstract description 5
- 206010046543 Urinary incontinence Diseases 0.000 abstract description 4
- 208000027418 Wounds and injury Diseases 0.000 abstract description 4
- 208000014674 injury Diseases 0.000 abstract description 4
- 210000002700 urine Anatomy 0.000 abstract description 4
- 230000037303 wrinkles Effects 0.000 abstract description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 3
- 230000008439 repair process Effects 0.000 abstract description 3
- 210000003708 urethra Anatomy 0.000 abstract description 3
- 230000032683 aging Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 230000002950 deficient Effects 0.000 abstract description 2
- 201000010099 disease Diseases 0.000 abstract description 2
- 210000003205 muscle Anatomy 0.000 abstract description 2
- 230000004580 weight loss Effects 0.000 abstract description 2
- 208000016261 weight loss Diseases 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 33
- 239000011257 shell material Substances 0.000 description 20
- 230000003416 augmentation Effects 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 11
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 230000005012 migration Effects 0.000 description 8
- 238000013508 migration Methods 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000011324 bead Substances 0.000 description 7
- 231100000241 scar Toxicity 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 230000002500 effect on skin Effects 0.000 description 5
- 239000004005 microsphere Substances 0.000 description 5
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004604 Blowing Agent Substances 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- 210000004872 soft tissue Anatomy 0.000 description 4
- 208000014001 urinary system disease Diseases 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 3
- 206010033799 Paralysis Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000000560 biocompatible material Substances 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000002316 cosmetic surgery Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000001096 hypoplastic effect Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000002278 reconstructive surgery Methods 0.000 description 3
- 238000010254 subcutaneous injection Methods 0.000 description 3
- 239000007929 subcutaneous injection Substances 0.000 description 3
- 210000001260 vocal cord Anatomy 0.000 description 3
- 206010002953 Aphonia Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 206010013952 Dysphonia Diseases 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 239000003193 general anesthetic agent Substances 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 239000013029 homogenous suspension Substances 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 108010008457 Artecoll Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000035484 Cellulite Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 229920001605 Dextranomer Polymers 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 208000034347 Faecal incontinence Diseases 0.000 description 1
- 206010018691 Granuloma Diseases 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 206010024604 Lipoatrophy Diseases 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010054107 Nodule Diseases 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000036232 cellulite Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960002864 dextranomer Drugs 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- OLBCVFGFOZPWHH-UHFFFAOYSA-N propofol Chemical compound CC(C)C1=CC=CC(C(C)C)=C1O OLBCVFGFOZPWHH-UHFFFAOYSA-N 0.000 description 1
- 229960004134 propofol Drugs 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0031—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
- A61F2/0036—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0031—Rectum, anus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0034—Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/10—Hair or skin implants
- A61F2/105—Skin implants, e.g. artificial skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
Definitions
- the present invention is about a new injectable hollow particulate filler used to the repair of defect or injury, to the augmentation of soft tissue, to the augmentation of a hypoplastic breast, to the augmentation of scar tissue, to the treatment of urological disorders, to the treatment of incompetent anal sphincters, to the treatment of paralysis of the vocal cords, to the treatment of vesicoureteral reflux, and to the treatment of gastric fluid reflux by endoscopical or subcutaneous injection of biocompatible hollow particular implants into the submucosal or dermal tissue.
- the present invention addresses those aspects of designing an ideal composition for tissues that need to be repaired.
- the injectable composition of this invention is also suitable for the treatment of many tissue conditions such as augmentation and strengthening of tissue in patients.
- tissue fillers can be used to correct aphonia or dysphonia caused by paralysis of the vocal cords, to correct defect or injury, to the augmentation of hypoplastic breast, to the augmentation of scar tissue, to the treatment of urological disorders (e.g. urinary incontinence), to the treatment of incompetent anal sphincters, to the treatment of vesicoureteral reflux, and to the treatment of gastric fluid reflux by endoscopic or subcutaneous injection of biocompatible hollow particular implants into the submucosal or dermal tissue. Since the invention is closely related to the treatment of soft tissue augmentation, it will be described in details by reference hereto.
- Needle injection is the preferred method to deliver fillers with minimum side effect in the target location for many physicians.
- the advantage for using needle is obvious. It is easy to use with a high precision and leaves no scar on the skin. With this technique, the injected filler particles have to be relatively small to pass through the needle.
- a variety of biological soft tissue fillers are available for clinicians today by using several techniques. They are human and bovine collagen, hyaluronic acid, autologous fat, autologous and donor tissues. However, their effect is temporary because the body eventually breaks down the filler. Results last from several months to about a year. Patients have to be treated frequently to maintain the good results.
- RadiesseTM is composed of calcium hydroxylapatite (HA) microspheres, which are suspended in polysaccharide carrier. It has been used in the body for multiple applications including cheek and chin implants.
- the other semi-permanent filler is Sculptra®, which is made of synthetic polylactic acid (PLA) contained in microspheres. It is approved for restoring volume to the face of HIV patients suffering from facial lipoatrophy. The clinical results from these synthetic implants may last up to two years. However, both patients and clinicians are searching for permanent implants for lasting results.
- tissue fillers Many permanent solid or semi-solid types of fillers have been tested or disclosed in the literatures as injectable tissue fillers. They are polytetrafluoroethylene paste, polymethylmethacrylate beads, dextranomer beads, hydrogel beads, metallic particles with carbon coating, carbon particles, silicone particles, ceramic particles, glass beads, etc. They are usually very fine solid particles with a specific gravity higher than water. To avoid clumping and injection difficulty, the particles have to be suspended in a high viscosity carrier and injected subcutaneously through a small needle for both soft and hard tissue augmentation. However, limited success has been reported in some of these approaches. The clinical results were mostly disappointing due to acute or chronic adverse tissue reactions, clumping of particles, injection difficulty, and filler migration to other locations.
- filler particles have to be relatively small to pass through the small bore needle. Fine fragments can be generated in the injection procedure if the fillers are not strong enough to endure the high shear force in the injection. Small and fine particles tend to migrate through the circulatory system and/or be engulfed by the macrophages and move to other undesired sites. For example, undesirable migration and serious granulomatous reactions were reported for polytetrafluoroethylene (PTFE) particles (about 1-100 microns in diameters) suspended in glycerine. It is preferred to have filler particles as larger as possible to avoid the adverse side effects. However, large particles tend to clump and form aggregation in the syringe and inhibit injection.
- PTFE polytetrafluoroethylene
- Polymethylmethacrylate bead (PMMA, Artecoll®) is another solid filler for facial wrinkles and lines correction.
- the PMMA is formulated into solid microspheres around 32-40 microns in diameter and are suspended in 3.5% collagen solution. After the collagen within the mixture degrades within 2 to 5 months, the solid microspheres are encapsulated by body's own collagen in about 2 to 4 months. This structure adds tissue augmentation without migration of the microspheres. However, the solid beads are relatively heavy. Palpable masses, particles precipitation, clumping and injection difficulty were reported by practitioners. Palpable masses are suspected to be caused by clumping of filler when the carrier is resorbed by the body.
- Deformable hydrogel disks address the issue of stiff and palpable masses from solid fillers such as PMMA beads. Hydrogel disks three times larger than the inside diameter of the injection needle were disclosed in U.S. Pat. No. 5,007,940. The outside diameters of the disks are from about 0.005 to 0.2 inch with a lubricious surface. They are flexible and folded when they are forced to pass through the needle, but return to the original disk shape without any damage. They are also lighter in weight and reduce some of the particles precipitation and clumping issues. However, hydrogel is lubricious and known not to adhere to the surrounding tissue, migration of this material to other organs (such as brain tissue) is still a concern.
- the particles are carried by fluids of high viscosities, such as collagen, starch, hydrogel, polysaccharides, and oil to reduce the tendency of clumping and precipitation.
- high viscosities fluids increase injection difficulty and the chance for adverse incidences.
- Another approach to minimize issue of clumping and precipitation is to reduce the size of the filler particles. With this approach, the average particles size has to be in a delicate balance between too small (the risk of being engulfed by macrophages and lead to migration) and too big (injection difficulty).
- the third approach to this clumping problem is to reduce the filler concentration in the composition. However, patients have to be treated multiple times to achieve satisfactory result.
- the present invention provides a new composition for treating tissue contour deficiencies, skin defect, urological disorders, gastric fluid reflux disorders, etc., by injecting endoscopically or subcutaneously a biocompatible fluid composition containing a plurality of hollow particulate fillers which are characterized as being stable, biocompatible and non-precipitating.
- the hollow particulate fillers with a lower “effective density” resolve the precipitation and clumping issue by matching the density of the hollow particles with the carrier.
- Each of the hollow particulate filler has a least one void inside the particle. If multiple voids exist in one particle, the voids can be either connected or disconnected with each other. The size of the void can be tailored to enable particle with effective density comparable to that of carrier.
- the material used for the particle is biocompatible and is either biodegradable or nonbiodegradable.
- the hollow particulate filler is injectable endoscopically or subcutaneously through small bore needles with a biocompatible fluid carrier.
- the hollow particulate filler is free of sharp corner or edge. It can be spherical, elliptic, oval, etc. with a smooth non-porous outer surface to avoid inflammation or other adverse body reaction.
- the average cross sectional dimension ranges from about 20 ⁇ m to about 500 ⁇ m, preferably, from about 30 ⁇ m to about 200 ⁇ m.
- the particulate filler is able to secure itself into the injection position through the large particle size which can not be engulfed by the macrophages in the body. Aggregation and injection difficulty can be minimized by the lower density and the smooth non-tacky particulate surface. After the injection, pluralities of hollow particles in the composition occupy a predetermined volume when the carrier is slowly removed from the body.
- the hollow particles have a lower effective density comparable to carrier and are evenly distributed in the body without clumping. Because this homogenous suspension of hollow particles is not affected by the change in viscosity during the resorption of carrier in the body, the hollow particles remain evenly distributed in the body without causing palpable masses at the injection sites.
- the hollow particulate filler of the present invention is biocompatible.
- the biocompatible materials can be polymer, metal, metal oxide, carbon, ceramic, glass, etc.
- the configuration of the void in the particle is random and can be spherical, elliptic, oval, etc. Multiple voids in each particle are also possible.
- the void in the particles can be an empty space or filled with air, gas, water, or liquid, etc.
- the void can be filled with a bioagent.
- the bioagent is released into the body fluid after it is injected into the body.
- the particulate fillers comprise radiopaque agent, contrast agent, or mixtures thereof, providing assistance to the operation procedure and detection.
- the carrier mixed with hollow particles can possess a low viscosity without causing precipitation.
- the biologically compatible carrier cause minimal tissue reaction and is removable or metabolized in the body. Due to this relatively lower viscosity, a larger volume of hollow particles can be used in the composition without injection difficulty or clumping.
- the hollow particulate fillers are typically present in a concentration from about 10%-80% of total volume of the composition, more typically from about 20% to about 60%. The amount of hollow fillers in the composition varies according to the size of the injection needle and the location of treatment.
- FIG. 1 shows a hollow particulate filler in accordance to the present invention.
- FIG. 2 shows a cross sectional view of the hollow particle illustrated in FIG. 1 in accordance to the present invention.
- FIG. 3 shows a cross sectional view of a hollow particle in accordance to the present invention.
- the hollow particle has multiple shells with a hollow core.
- FIG. 4 shows a cross sectional view of a hollow particle in accordance to the present invention.
- the hollow particle has multiple voids inside the particle.
- FIG. 5 shows a cross sectional view of a hollow particle in accordance to the present invention.
- the hollow particle has multiple voids inside. Each void is surrounded by a shell.
- FIG. 6 shows a cross sectional view of a hollow particle in accordance to the present invention.
- the hollow particle has multiple voids with a foam or sponge like configuration.
- tissue fillers can be used to correct aphonia or dysphonia caused by paralysis of the vocal cords, to correct defect or injury, to the augmentation of hypoplastic breast, to the augmentation of scar tissue, to the treatment of urological disorders (e.g. urinary incontinence), to the treatment of incompetent anal sphincters, to the treatment of vesicoureteral reflux, and to the treatment of gastric fluid reflux by endoscopical or subcutaneous injection of biocompatible hollow particulate fillers into the submucosal or dermal tissue. Since the invention is closely related to the augmentation of soft tissue for the treatment of lost skin volume, it will be described in details hereto.
- N W ⁇ ( U+F )
- N 4 ⁇ R 3 ⁇ g/ 3 ⁇ (4 ⁇ R 3 ⁇ g/ 3+6 ⁇ av )
- N 4 ⁇ R 3 ( ⁇ ) g/ 3 ⁇ 6 ⁇ av
- the velocity of the particle would be zero, and the particle will remain in the rest position without precipitation.
- the velocity won't be zero and is proportional to the difference in density between the particle and the carrier as shown in Equation 1.
- a reduced density difference can reduce the velocity of the particle and postpone the precipitation.
- the direction of the particle movement will depend on the densities of particle and carrier. For particle with a higher density than the carrier, it will move downwards and precipitate eventually. On the other hand, the particle will float to the top if it has a lower density than the carrier.
- the velocity is reversely proportional to the viscosity. Carrier with a higher viscosity, ⁇ , will reduce the particle velocity and slow down the movement. However, the movement can't be stopped as long as there is a density difference, and the particle will precipitate eventually.
- the resulting fluids have densities usually less than 1 g/cm 3 .
- the solid PMMA particle in ArtecollTM has a density of 1.2 g/cm 3
- density of the 3.5% collagen carrier is 1.04 g/cm 3 .
- the downward velocity of the particle is positive and needs to be slowed down by the higher viscosity of the suspension agent.
- a small bore needle is preferred by the practitioners for less pain and scar on the patient to be treated, the higher viscosity cause injection difficulty during the procedures.
- the solid PMMA particle still will precipitate eventually even with a thick carrier.
- the goal of this invention is to present a new filler material to resolve the precipitation and clumping issue.
- hollow particle with a lower “effective density” is used as filler.
- the intention is to use void to reduce the effective density of particle to avoid precipitation due to the density difference between the filler and the carrier.
- An example of the hollow particle is illustrated in FIGS. 1 and 2 . Its outer diameter is R and inner diameter is r.
- the void inside the particle is either an empty space or filled with air or gas. The density of the gas is insignificant and ignored in this calculation for simplification.
- the effective density of the particle is preferred to be comparable to the density of the carrier to avoid precipitation.
- the radius of the void required to “lighten” the particle can be calculated as following:
- Equation 2 indicates that the effective density of the particle, ⁇ , can be reduced by a void inside the particle, and precipitation can be avoided even with a high shell material density, ⁇ ′.
- the portion of the hollow space, P, in the particle required to reduce the effective density can be calculated as
- the radius of the void is 7.66 microns and 13% of the particle's total volume is void
- the hollow particle's effective density will be comparable to that of the carrier which is 1.04 g/cm 3 .
- the hollow PMMA particle can be suspended in the 3.5% collagen carrier without precipitation.
- a saline solution density ⁇ 1 g/cm 3
- the radius and size of the void inside the particle to avoid precipitation can be calculated as the following:
- a larger void (8.25 microns in radius, 17% of the particle's total volume) in the particle will be needed to reduce its effective density to match the density of carrier.
- the benefits for the low density carrier are a lower viscosity fluid without injection difficulty, and potentially a higher load of filler particles in the composition.
- Another embodiment of this invention comprises hollow particulate fillers with voids partially or totally filled with a liquid.
- the voids in the hollow particle can be an empty space by vacuum in the fabrication of the particles.
- a liquid with a lower density than the shell material can lower the effective density of the particle to avoid precipitation.
- Suitable liquids for this invention are any physiologically compatible liquids such as water, PBS and saline.
- the liquid or gas in the void can be introduced during the synthesis or fabrication process of the hollow particle.
- the gas or liquid can be introduced into the particle by high pressure, centrifuge, diffusion, etc. With those techniques, it will be convenient to control the amount of gas or liquid in the void in order to adjust the effective density of the hollow particle.
- a hollow particle with a large void can be made, and its effective density can be fine-tuned by introducing appropriate amount of low density gas or liquid into the void.
- Hollow particles have been used as pigment, drug delivery carrier, protecting agent, adhesive, and texturing agent for cosmetics, etc.
- the hollow particulate filler of the present invention is biocompatible and capable of homogenously suspending in water or other low viscosity carrier.
- Many biocompatible materials can be used in this invention. They can be polymer, metal, metal oxide, carbon, ceramic, glass, etc.
- the configuration of the hollow particle is random and can be spherical, elliptic, oval, etc. Its outer surface should be smooth without pore or sharp corner to avoid inflammation or other adverse body reaction.
- the configuration of the void in the particle is random and can be spherical, elliptic, oval, etc. Multiple voids in each particle are also possible.
- the voids can be isolated or interconnected to form porous mesh, foam, or sponge. These various void configurations can be controlled by the materials, agents, surfactant, and processing parameters introduced during the fabrication of the hollow particulate filler.
- the shell thickness is controlled by the length of polymerization during the fabrication process and provides hollow particles with various strength and “effective density”. Longer polymerization time can produce polymer with longer chains and thus, shell thickness. As a consequence, the void is smaller with a higher “effective density”.
- hollow particles There are many methods to produce hollow particles. They are solvent evaporation, emulsion polymerization, interfacial polymerization, phase separation, heat expansion, and density separation, etc.
- a polymer shell was formed over a soluble substrate of silica, mica, alumina, etc. as disclosed in US 2004/0219360A1.
- the surface of the substrate has hydroxyl groups and is able to initiate living radical polymerization.
- the substrate particles are suspended in a solvent with monomers. After the polymerization is initiated by the each substrate surface and an appropriate shell thickness is achieved, the substrate is then dissolved in an etching agent to form a hollow particle. A relatively uniform shell thickness can be achieved with this method.
- the size of the void is controlled by size of the substrate and the amount of crosslinking agent used in the polymerization.
- An alternative method to make hollow particles was also disclosed in the same patent application.
- the silica substrate is assembled with polymeric nanospheres in a solution.
- the assembled composite is subsequently heated to a temperature above Tg of the nanospheres allowing the polymer to flow over the substrate and resulting a uniform shell.
- the substrate can be removed with the etching agent as described before.
- Japanese Patent JP2003181274A2 describes a method for manufacturing hollow polymer particles with emulsion. Oil droplets containing monomers and an organic solvent form a shell layer after polymerization. Then the particles are made hollow by removing the organic solvent.
- 4,594,363 disclosed an emulsion polymerized carboxylated core polymer with a polymer shell. The expansion of the carboxylated polymer core with a base produces voids in the particles.
- U.S. Pat. No. 4,972,000 disclosed a method to form hollow particles by the difference in density between the monomer and its polymer during the polymerization.
- Canadian patent 888,129 disclosed the use of blowing agent in the polymer particles to form voids in the particles.
- EP0462388A3 describes a method to manufacture hollow particles having an average particle diameter of 0.1-30 microns and a shell thickness of 0.01-4 microns. The volume ratio of the internal void to the total volume in the hollow particles is 40-80%.
- Japanese patent application JP2002105104A2 describes a process to produce hollow polymeric particles.
- a mixture of monomer and cross-linking monomer are mixed with an oily substance through a microporous membrane into an immiscible liquid and producing an emulsion comprising both dispersed and continuous phases. After the polymerization, the monomer forms the solid polymer shell having an inner core with oily substance.
- the hollow particles are further produced by removing the oily substance in the solid polymer particles.
- U.S. Pat. No. 4,133,854 disclosed a method to product glass, metal or plastic hollow spheres. A blowing agent was mixed with particles and exposed to high temperature to decompose the agent and expand the particles.
- U.S. Pat. No. 4,968,562 described a two-step water-in-oil-in-water emulsification polymerization process to prepare hollow polymeric particle. A majority of particles have multiple interior voids.
- U.S. Pat. No. 4,257,799 disclosed a method to produce glass hollow particles having an outside diameter from about 100 microns to about 500 microns.
- U.S. Pat. No. 3,030,215 described method to produce alkali metal silicate based glass hollow particles with an outside diameter from about 5 microns to about 5000 microns.
- poly(methylmethacrylate) particles are sold by Sensient Technology under the name “Covabead”.
- Terpolymer particles of vinylidene chloride, acrylonitrile and methyl methacrylate are sold by Nobel, Sweden, under the name “Expancel”.
- Soda-lime borosilicate glass hollow particles are sold by 3M Corp. under the code “D32/4500” and “B46/4000”. It is preferred to use one of those commercially available hollow particles in this invention.
- a preferred embodiment of this new composition according to this invention comprises a plurality of injectable hollow particulate fillers suspended in a biocompatible carrier.
- Each hollow particle has a shell of biocompatible material and a hollow interior.
- Each hollow particle 10 described here has a smooth surface 12 without sharp corner and edge as shown in FIG. 1 .
- the void in the particle has an average volume from about 0.1% to about 74% of the total particulate volume as shown in the cross sectional view of particle 10 in FIG. 2 .
- the wall thickness 11 of particle 10 is from about 0.1% to about 98% of the particulate cross sectional dimension.
- the shape of the void 13 is random. It can be spherical, oval, etc.
- FIG. 6 illustrates the cross section of hollow particle 40 having foam or sponge-like voids 41 inside the particle 40 .
- the voids 41 are either interconnected or separated from each other depending on the fabrication processes. The types of void described here are controlled by the amount of blowing agent, material, surfactant, and the processing method in making the hollow particle.
- the hollow particle with a density comparable to carrier will also avoid clumping and palpable masses at the injection sites.
- the size of the hollow particle provides fixation at the injection location and prevents the undesirable migration to other parts of the patients' body. It is obvious that large particles, especially those larger than 20 microns, are less likely to be engulfed by microphage or other elements in the body.
- the preferred average diameters of the hollow particles range from about 20 microns to about 500 microns, more preferably between about 30 and 200 microns. However, clumping of the particles may occur before the carrier is totally resorbed and cause palpable mass.
- the hollow particles have effective density comparable to the carrier and suspend evenly in the carrier. As indicated in Equation 1, the suspension of hollow particle is not affected by change in viscosity during the resorption of carrier in the body. The hollow particles remain at the injection site without clumping or forming palpable masses.
- the carrier mixed with hollow particles can possess a low viscosity without causing precipitation. Due to this relatively lower viscosity, a larger volume of particles can be used in the composition without injection difficulty or clumping.
- the ability to incorporate a larger volume of particles in the composition is advantageous because the undesirable “over-correction” or multiple injections can be minimized.
- the “over-correction” means that the physicians need to “guess” and inject more solution in the patients to compensate for the loss in carrier volume later on. This uncertainty can be minimized with a higher percentage of fillers in the composition.
- the hollow particulate filler is typically present in a concentration of from about 10-80% of total volume of the composition, more typically from about 20% to about 60%. The amount of hollow filler changes according to size of the injection needle, and the type and location of treatment.
- the critical requirement for the hollow particle is that the material used should be biocompatible with a minimum inflammatory reaction.
- the material can be degradable or non-degradable by the body fluids or the action of tissue enzymes.
- the suitable non-degradable materials are silicone, polysiloxane rubber, polydimethylsiloxane, polyurethane, polytetrafluoroethylene (PTFE), glass, ceramic, metal, carbon, calcium hydroxyapatite, polymethylmethacrylate, polymethacrylate, acrylic polymer, polybutylmethacrylate, polyethylene imine, polyethylene terephthalate (PET), polyesters, polybutester, polyacrylonitrile, polyaryletherketone, PEEK, polyethylene, polypropylene, ethylene propylene copolymer, polyolefins, fluorinated ethylene propylene copolymer, polyethylene vinyl acetate, sodium acrylate polymer, polycarbonates, polyamides, polyamideimides, polyimides, poly
- PMMA is the preferred material used for non-degradable hollow particle because its ability to stimulate tissue growth surrounding the PMMA particle. If more than one material is used, PMMA should be used as part of, or the whole, outer shell which is in contact with body fluid.
- biodegrabale materials can be used in the hollow particle. They are polyglactin, poliglecaprone, lactomer, polycaprolactone, poly(dioxanone), poly(glycolide-co-trimethylene carbonate), polytrimethylene carbonate, poly(glycolide-co-trimethylene carbonate-co-dioxanone), polyhydroxyalkanoate, polyhydroxybutyrates, polyhydroxyvalerates, polyalkylene oxalates, polyalkylene succinates, poly methyl vinyl ether, poly maleic anhydride, chitin, chitosan, poly( ⁇ -decaloactone), poly malic acid, poly amino acids, polyphosphazenes, polyphosphoesters, polyamides, poly iminocarbonates, polycarbonates, polyorthocarbonates, polyethylene carbonate, polydioxanone, polyketals, proteinaceous polymers, polyesters, polyester amides, polysaccharides, starch, poly
- surface erosion materials are also suitable for this application. They are hydrophobic, but the chemical bonds of the polymers are highly susceptible to hydrolysis. As a result, water penetrates slower than the conversion rate of the polymers into soluble materials. Surface erosion results in the thinning of the material over time while maintaining its bulk integrity.
- This type of polymer is known as surface erosion or bioerosion material.
- the examples this type of material are polyanhydrides, methyl vinyl ether maleic anhydride copolymer, and polyorthoesters. Those skilled in the art will recognize the various biodegradable materials that may be used to fabricate hollow particles.
- biocompatible carriers can be used to suspend the hollow particles to avoid clumping before and after injection.
- Many physiological solutions such as saline, water, PBS solution can be used as carrier.
- it can be formulated by mixing with a thickening agent or a suspension agent to modify the viscosity to provide the composition with comparable density with the hollow particle for the homogenous particulate suspension.
- suitable carrier will depend on the particle size, the amount of fillers, the size of injection needle and the nature of the fillers.
- the suitable thickening or suspension agent includes all the biocompatible agent known in the art to act as thickening or suspension agent.
- Some typical thickening or suspension agents are Acacia, Carbomer copolymer and homopolymer, Carbomer interpolymer, hydrogel, polysaccharide, macrocyclic polycsaccharide, oligosaccharide, starch, acetyl starch, cellulose, cellulose derivatives, methylcellulose, carboxymethylcellulose sodium, carboxymethylcellulose (CMC), ethyl (hydroxyethyl) cellulose (EHEC), ethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), ethylcellulose, alkyl cellulose, alkoxy cellulose, hydroxy ethyl cellulose, copovidone, povidone, gelatin, glucose, Guar gum, hypromellose, hypromellose acetate succinate, maltodextrin, syrup, agar, alamic acid, aluminum monostearate, attapulgite, gellan gum, hypromellose, maltodext
- Poloxamers, Pluronics, CMC, HPMC, gelatins, collagen, hyaluronic acid, and acetyl starch are preferred because they are readily and economically available and are easy to work with.
- the patient's own plasma can also be used as a carrier. It may be derived from blood withdrawn from the patient, centrifuged to remove cells (or not) and mixed with appropriate amount of fillers to form an injectable composition.
- the thickening agent is typically present in a concentration of from about 0.0-40% of the total weight in the carrier, more typically from about 0.1% to about 20%.
- a radiopaque agent can be introduced in the hollow particle for enhanced visibility under fluoroscopy.
- the radiopaque agent can be barium sulfate, silver, gold, tantalum, etc. If barium sulfate is used, sufficient amount of barium sulfate powder can be blended with the material used for the shell during the fabrication of the hollow particle. As a result, all of the barium sulfate is attached to the fillers without free particles of barium sulfate in the composition. It is also feasible to place radiopaque agent inside the void.
- a bioactive ingredient can be embedded in the hollow particle to promote cell proliferation, connective tissue response, and the interaction between the filler particle and the cells to enhance the bonding between the filler and surrounding tissue.
- the bioactive ingredient can be growth factors, hormones, cytokines, bactericidal agents, antimicrobial agents, antiviral agents, cell adhesion promoter, Vitamin C, drug or other pharmacologically active compounds.
- the bioactive ingredient can be introduced into the void during the fabrication of the hollow particle or by diffusion after the particle is made. It becomes part of the filler particle and released through the shell or when the particle degrades in body fluids.
- bioactive ingredient can be blended with the shell material during the fabrication and released by diffusing out of the filler particle.
- the bioactive ingredient in this invention has the advantage of being part of the hollow particle with stronger fixation to endure the injection force and only be released when it is in the body.
- the disclosed composition in this invention normally contains a major amount of water (preferably purified water, physiological saline, or the like) in addition to the fillers and thickener.
- the compositions can also be lyophilized for longer shelf life. Minor amounts of other ingredients such as anesthetic agent and preservative may also be present depending upon the route of administration and the preparation desired.
- the compositions can also be isotonic (i.e., it can have the same osmotic pressure as body fluids).
- An aspect of the present invention encompasses an anesthetic to decrease the pain or discomfort associated with injection of the composition.
- anesthetics include but are not limited to lidocaine, xylocaln, novocain, benzocain, prilocaln, ripivacain, propofol, benzyl alcohol, and chlorobutanol.
- the anesthetic will be used with aqueous base and thus will be mixed with the composition prior to administration.
- a suitable concentration of the anesthetic will be from 0.01% to 6% based on the total weight and the agent selected.
- isotonicity of this invention may be accomplished using sodium chloride, or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol or other inorganic or organic solutes.
- a pharmaceutically acceptable preservative can be employed to increase the shelf-life of the compositions.
- Benzyl alcohol may be suitable, although a variety of preservatives including, for example, parabens, thimerosal, chlorobutanol, or benzalkonium chloride may also be employed.
- a suitable concentration of the preservative will be from 0.02% to 2% based on the total weight and the agent selected.
- the injectable hollow particulate fillers/carrier composition disclosed herein can be in a ready for use pre-filled sterile syringe with both filler and the biocompatible carrier. Or, it can be provided in a vial in the form of sterilized dry fillers. In this embodiment, the end user could add carrier, water or other pharmaceutically acceptable carrier and/or additional additives for preparation of suspension prior to injection. Alternatively it can be in a two pre-filled syringes, wherein one syringe contains dry and sterilized fillers and the other syringe contains a pharmaceutically acceptable carrier solution.
- the dry fillers and the carrier are ready to be mixed for injection by pushing the composition back and forth in the syringes or mixed in a separate container until a homogenous suspension is reached.
- the compound disclosed herein may be optionally be sterilized by Gamma or E-beam irradiation, filtering, heating or exposure to ethylene oxide gas.
- the fillers/carrier composition Once the fillers/carrier composition has been prepared by any one of the existing processes, it can be applied by subcutaneous or endoscopical injection into the patient to be treated.
- the injection of the present invention can be carried out by using syringe with needle of from 18 gauge to 30 gauge. The size of the needle will be determined by the filler composition, the depth of the injection site, the injection volume, etc.
- the composition is then injected through the needle into patient's body.
- the hollow particulate fillers can't be digested or eliminated by macrophage or other elements of immune system.
- a preferred method for the augmentation of dermal tissue is to inject the composition subcutaneously into layer of the skin at the treatment site.
- the present invention also provides method of treating GERD by administering the injectable hollow particulate fillers/carrier composition through a needle to the sphincter wall near esophagus endoscopically or laparoscopically.
- the narrower esophageal sphincter allows easier muscle contraction and prevents the regurgitation of the gastric fluid into the esophagus.
- Continence is restored by injecting the present invention into the urethra tissue near the urethra sphincter to reduce the ureters lumen and increase resistance to urine outflow from the bladder.
- the present invention can be treated by injection of the present invention into patients' ureteral tissue.
- This invention can also be used to repair fecal incontinence or defective anal sphincter muscles by administering an effective amount of injectable hollow fillers into the defect or anal sinuses.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Urology & Nephrology (AREA)
- Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Biomedical Technology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Reproductive Health (AREA)
- Gynecology & Obstetrics (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Dispersion Chemistry (AREA)
- Neurosurgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
The present invention comprises a plurality of injectable hollow particulate fillers suspended in a biocompatible fluid carrier to significantly improve the clumping resistance and injectability of the composition. The hollow particulate fillers have a lower effective density and are able to suspend in the carrier without precipitation. The loss of skin volume as a result of aging, diseases, weight loss, and injury can lead to uneven skin surface (e.g. wrinkle, etc.). The uneven skin can be repaired by injecting appropriate amount of hollow fillers underneath the skin. Some cases of urinary incontinence occur when the resistance to urine flow has decreased excessively. Continence is restored by injecting the present invention to the urethra tissue to increase resistance to urine outflow. Similarly, the present invention allows for the control of gastric fluid reflux by submucosal injections of the fillers to the esophageal-gastric and gastric-pyloric junction. For patients with vesicoureteral reflux, it can be treated by injection of the present invention into patients' ureteral tissue. This invention can also be used to repair defective or inadequately functioning muscles of the anal sphincter by administering an effective amount of injectable hollow fillers into the defect or anal sinuses.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/864,446, which was filed Nov. 6, 2006, the disclosure of which is incorporated herein by this reference.
- The present invention is about a new injectable hollow particulate filler used to the repair of defect or injury, to the augmentation of soft tissue, to the augmentation of a hypoplastic breast, to the augmentation of scar tissue, to the treatment of urological disorders, to the treatment of incompetent anal sphincters, to the treatment of paralysis of the vocal cords, to the treatment of vesicoureteral reflux, and to the treatment of gastric fluid reflux by endoscopical or subcutaneous injection of biocompatible hollow particular implants into the submucosal or dermal tissue.
- The present invention addresses those aspects of designing an ideal composition for tissues that need to be repaired. The injectable composition of this invention is also suitable for the treatment of many tissue conditions such as augmentation and strengthening of tissue in patients. Other than the plastic surgery or reconstructive surgery, tissue fillers can be used to correct aphonia or dysphonia caused by paralysis of the vocal cords, to correct defect or injury, to the augmentation of hypoplastic breast, to the augmentation of scar tissue, to the treatment of urological disorders (e.g. urinary incontinence), to the treatment of incompetent anal sphincters, to the treatment of vesicoureteral reflux, and to the treatment of gastric fluid reflux by endoscopic or subcutaneous injection of biocompatible hollow particular implants into the submucosal or dermal tissue. Since the invention is closely related to the treatment of soft tissue augmentation, it will be described in details by reference hereto.
- Many factors contribute to the loss of skin volume as the underlying collagen, hyaluronic acid, and elastin fibers begin to deteriorate. They can be part of aging process, diseases such as acne or cancer, weight loss, and excess exposure to sun light. This loss in skin volume creates uneven skin surface such as wrinkles, laugh lines, folds and furrows on the face.
- There are several techniques to restore smoothness to the skin's surface. In the practice of plastic or reconstructive surgery, the most common non-invasive method is to build up a depressed area within the skin with a filler substance. It is injected with a fine needle below skin surface where it corrects the line or wrinkle by filling up the skin depression without leaving scar. Fillers can also be placed into the lips to create a fuller look or in the hollows of the cheeks to restore a natural appearance.
- Needle injection is the preferred method to deliver fillers with minimum side effect in the target location for many physicians. The advantage for using needle is obvious. It is easy to use with a high precision and leaves no scar on the skin. With this technique, the injected filler particles have to be relatively small to pass through the needle.
- A variety of biological soft tissue fillers are available for clinicians today by using several techniques. They are human and bovine collagen, hyaluronic acid, autologous fat, autologous and donor tissues. However, their effect is temporary because the body eventually breaks down the filler. Results last from several months to about a year. Patients have to be treated frequently to maintain the good results.
- Several semi-permanent fillers are available in the market. Radiesse™ is composed of calcium hydroxylapatite (HA) microspheres, which are suspended in polysaccharide carrier. It has been used in the body for multiple applications including cheek and chin implants. The other semi-permanent filler is Sculptra®, which is made of synthetic polylactic acid (PLA) contained in microspheres. It is approved for restoring volume to the face of HIV patients suffering from facial lipoatrophy. The clinical results from these synthetic implants may last up to two years. However, both patients and clinicians are searching for permanent implants for lasting results.
- For permanent injectable implant, there are liquid and solid fillers available on the market. Polyacrylamide gel and silicone gel are injectable liquid fillers. Polyacrylamide gel remains pliable and soft after it is injected in the body. However, some bacterial infections within the gel have been reported in the literature. Silicone gel, although chemically well tolerated, becomes encapsulated as a foreign body by a chronic inflammatory reaction. The fibrous tissue surrounding the silicone is avascular and a potential site of infection. A number of late infections, granulomas, and palpable masses have been reported following silicone implantation. In addition, the low molecular weight silicone in the gel can slowly migrate into patients' system and cause problem such as nodules, cellulites, and ulcers in other organs. As a result, bacterial infection and migration are major concerns for liquid permanent fillers.
- Many permanent solid or semi-solid types of fillers have been tested or disclosed in the literatures as injectable tissue fillers. They are polytetrafluoroethylene paste, polymethylmethacrylate beads, dextranomer beads, hydrogel beads, metallic particles with carbon coating, carbon particles, silicone particles, ceramic particles, glass beads, etc. They are usually very fine solid particles with a specific gravity higher than water. To avoid clumping and injection difficulty, the particles have to be suspended in a high viscosity carrier and injected subcutaneously through a small needle for both soft and hard tissue augmentation. However, limited success has been reported in some of these approaches. The clinical results were mostly disappointing due to acute or chronic adverse tissue reactions, clumping of particles, injection difficulty, and filler migration to other locations.
- With the commonly practiced injection technique, filler particles have to be relatively small to pass through the small bore needle. Fine fragments can be generated in the injection procedure if the fillers are not strong enough to endure the high shear force in the injection. Small and fine particles tend to migrate through the circulatory system and/or be engulfed by the macrophages and move to other undesired sites. For example, undesirable migration and serious granulomatous reactions were reported for polytetrafluoroethylene (PTFE) particles (about 1-100 microns in diameters) suspended in glycerine. It is preferred to have filler particles as larger as possible to avoid the adverse side effects. However, large particles tend to clump and form aggregation in the syringe and inhibit injection.
- Polymethylmethacrylate bead (PMMA, Artecoll®) is another solid filler for facial wrinkles and lines correction. The PMMA is formulated into solid microspheres around 32-40 microns in diameter and are suspended in 3.5% collagen solution. After the collagen within the mixture degrades within 2 to 5 months, the solid microspheres are encapsulated by body's own collagen in about 2 to 4 months. This structure adds tissue augmentation without migration of the microspheres. However, the solid beads are relatively heavy. Palpable masses, particles precipitation, clumping and injection difficulty were reported by practitioners. Palpable masses are suspected to be caused by clumping of filler when the carrier is resorbed by the body.
- Deformable hydrogel disks address the issue of stiff and palpable masses from solid fillers such as PMMA beads. Hydrogel disks three times larger than the inside diameter of the injection needle were disclosed in U.S. Pat. No. 5,007,940. The outside diameters of the disks are from about 0.005 to 0.2 inch with a lubricious surface. They are flexible and folded when they are forced to pass through the needle, but return to the original disk shape without any damage. They are also lighter in weight and reduce some of the particles precipitation and clumping issues. However, hydrogel is lubricious and known not to adhere to the surrounding tissue, migration of this material to other organs (such as brain tissue) is still a concern.
- There are many efforts in trying to resolve the issue of filler clumping and precipitation. The particles are carried by fluids of high viscosities, such as collagen, starch, hydrogel, polysaccharides, and oil to reduce the tendency of clumping and precipitation. However, the high viscosities fluids increase injection difficulty and the chance for adverse incidences. Another approach to minimize issue of clumping and precipitation is to reduce the size of the filler particles. With this approach, the average particles size has to be in a delicate balance between too small (the risk of being engulfed by macrophages and lead to migration) and too big (injection difficulty). The third approach to this clumping problem is to reduce the filler concentration in the composition. However, patients have to be treated multiple times to achieve satisfactory result. Thus, there remains a very important need for a treatment that will provide stable and injectable biocompatible filler. It is desirable to have fillers that have relatively smooth surface and are small enough to be injected through a small bore needle to avoid scar and pain during the procedures. The particles should be large enough so that they won't cause complications such as migration or removal by phagocytes. It will be ideal if the injected fillers are homogenously distributed in the carrier before the injection so that there is no clumping or injection difficult. It is also important for the fillers to remain evenly distributed after the injection to avoid palpable mass after the carrier is resorbed in the body. It is an object of the present invention to provide a novel solution for tissue filler of the human or animal body, giving a long shelf life and minimum side effect.
- The present invention provides a new composition for treating tissue contour deficiencies, skin defect, urological disorders, gastric fluid reflux disorders, etc., by injecting endoscopically or subcutaneously a biocompatible fluid composition containing a plurality of hollow particulate fillers which are characterized as being stable, biocompatible and non-precipitating. The hollow particulate fillers with a lower “effective density” resolve the precipitation and clumping issue by matching the density of the hollow particles with the carrier. Each of the hollow particulate filler has a least one void inside the particle. If multiple voids exist in one particle, the voids can be either connected or disconnected with each other. The size of the void can be tailored to enable particle with effective density comparable to that of carrier. The material used for the particle is biocompatible and is either biodegradable or nonbiodegradable. The hollow particulate filler is injectable endoscopically or subcutaneously through small bore needles with a biocompatible fluid carrier.
- The hollow particulate filler is free of sharp corner or edge. It can be spherical, elliptic, oval, etc. with a smooth non-porous outer surface to avoid inflammation or other adverse body reaction. The average cross sectional dimension ranges from about 20 μm to about 500 μm, preferably, from about 30 μm to about 200 μm. The particulate filler is able to secure itself into the injection position through the large particle size which can not be engulfed by the macrophages in the body. Aggregation and injection difficulty can be minimized by the lower density and the smooth non-tacky particulate surface. After the injection, pluralities of hollow particles in the composition occupy a predetermined volume when the carrier is slowly removed from the body. According to the present invention, the hollow particles have a lower effective density comparable to carrier and are evenly distributed in the body without clumping. Because this homogenous suspension of hollow particles is not affected by the change in viscosity during the resorption of carrier in the body, the hollow particles remain evenly distributed in the body without causing palpable masses at the injection sites.
- The hollow particulate filler of the present invention is biocompatible. The biocompatible materials can be polymer, metal, metal oxide, carbon, ceramic, glass, etc. The configuration of the void in the particle is random and can be spherical, elliptic, oval, etc. Multiple voids in each particle are also possible. The void in the particles can be an empty space or filled with air, gas, water, or liquid, etc. Alternatively, the void can be filled with a bioagent. The bioagent is released into the body fluid after it is injected into the body. In another preferred embodiment of the present invention, the particulate fillers comprise radiopaque agent, contrast agent, or mixtures thereof, providing assistance to the operation procedure and detection.
- According to the present invention, the carrier mixed with hollow particles can possess a low viscosity without causing precipitation. The biologically compatible carrier cause minimal tissue reaction and is removable or metabolized in the body. Due to this relatively lower viscosity, a larger volume of hollow particles can be used in the composition without injection difficulty or clumping. The hollow particulate fillers are typically present in a concentration from about 10%-80% of total volume of the composition, more typically from about 20% to about 60%. The amount of hollow fillers in the composition varies according to the size of the injection needle and the location of treatment.
- The following terms have these meanings as used herein:
-
- 1. The term “void” means an empty space completely within the walls of a particle.
- 2. The term “hollow” means at least one void in a particle.
- 3. The term “effective density” means the weight of the particle divided by the total volume of the particle including the hollow space within the walls of the particle.
-
FIG. 1 shows a hollow particulate filler in accordance to the present invention. -
FIG. 2 shows a cross sectional view of the hollow particle illustrated inFIG. 1 in accordance to the present invention. -
FIG. 3 shows a cross sectional view of a hollow particle in accordance to the present invention. The hollow particle has multiple shells with a hollow core. -
FIG. 4 shows a cross sectional view of a hollow particle in accordance to the present invention. The hollow particle has multiple voids inside the particle. -
FIG. 5 shows a cross sectional view of a hollow particle in accordance to the present invention. The hollow particle has multiple voids inside. Each void is surrounded by a shell. -
FIG. 6 shows a cross sectional view of a hollow particle in accordance to the present invention. The hollow particle has multiple voids with a foam or sponge like configuration. - The present invention addresses those aspects of designing an ideal filler composition for tissues that need to be repaired, augmented or strengthened. Other than the treatment of lost skin volume by plastic or reconstructive surgery, tissue fillers can be used to correct aphonia or dysphonia caused by paralysis of the vocal cords, to correct defect or injury, to the augmentation of hypoplastic breast, to the augmentation of scar tissue, to the treatment of urological disorders (e.g. urinary incontinence), to the treatment of incompetent anal sphincters, to the treatment of vesicoureteral reflux, and to the treatment of gastric fluid reflux by endoscopical or subcutaneous injection of biocompatible hollow particulate fillers into the submucosal or dermal tissue. Since the invention is closely related to the augmentation of soft tissue for the treatment of lost skin volume, it will be described in details hereto.
- It is typical for injectable particulate fillers to be suspended in a fluid carrier to assist the injection. However, the major issue for this approach is filler clumping and precipitation either before or after injection procedure. The clumping before injection will cause injection difficulty. On the other hand, the clumping after injection may cause palpable masses at the injection sites. There are many efforts in trying to resolve the issue of filler clumping and precipitation without satisfactory result. Thus, there remains a very important need for a treatment that will provide stable and injectable biocompatible filler. It is an object of the present invention to provide a novel solution for tissue filler of the human or animal body, giving a long shelf life without clumping or precipitation.
- A simple mathematical equation can be used to explain the phenomena of particle precipitation (or clumping) in the carrier. For a spherical particle of radius R and effective density ρ in a fluid carrier of density σ, there are three forces acting on the particle:
- 1. The gravity force W acting downwards on the particle is given by
-
W=4πR 3 ρg/3 - 2. The buoyant force U acting upwards is given by
-
U=4πR 3 σg/3 - 3. The dragging force F acting upwards (or downwards depending on the moving direction. It is assumed upward here.) by the fluid carrier is given by
-
F=6πηav - Where η is viscosity, g is gravity, a is acceleration, v is velocity of the particle. The net downward force, N, is
-
N=W−(U+F) -
N=4πR 3 ρg/3−(4πR 3 σg/3+6πηav) -
N=4πR 3(ρ−σ)g/3−6πηav - The net downward force is responsible for the acceleration of the particle. As the velocity of the particle increases, the dragging force will also increase. At some point, the downward and upward forces acting on the particle are balanced and the net force is zero (N=0).
-
6πηav=4πR 3(π−σ)g/3 -
v=2R 3(ρ−σ)g/9ηa (1) - If the density of particle is the same as that of carrier (ρ=σ), the velocity of the particle, v, would be zero, and the particle will remain in the rest position without precipitation. However, if the density of particle is not the same as that of carrier, the velocity won't be zero and is proportional to the difference in density between the particle and the carrier as shown in
Equation 1. A reduced density difference can reduce the velocity of the particle and postpone the precipitation. The direction of the particle movement will depend on the densities of particle and carrier. For particle with a higher density than the carrier, it will move downwards and precipitate eventually. On the other hand, the particle will float to the top if it has a lower density than the carrier. As also indicated inEquation 1, the velocity is reversely proportional to the viscosity. Carrier with a higher viscosity, η, will reduce the particle velocity and slow down the movement. However, the movement can't be stopped as long as there is a density difference, and the particle will precipitate eventually. - Currently, all the injectable fillers on the market (polytetrafluoroethylene, carbon, calcium hydroxyapatite, polymethylmethacrylate, poly lactic acid) have densities higher than 1.2 g/cm3 (1.2 g/cm3 for PMMA, 1.2 g/cm3 for PTFE, 1.25 g/cm3 for PLA, 3.1 g/cm3 for HA, 1.5 g/cm3 for PGA). Physiologically acceptable fluids such as water, saline (˜1 g/cm3 for both) are common carriers used with those fillers. They are usually mixed with suspension agents such as collagen, methylcellulose (MC), carboxymethylcellulose (CMC) for increased viscosity. The resulting fluids have densities usually less than 1 g/cm3. For example, the solid PMMA particle in Artecoll™ has a density of 1.2 g/cm3, and density of the 3.5% collagen carrier is 1.04 g/cm3. As a result, the downward velocity of the particle is positive and needs to be slowed down by the higher viscosity of the suspension agent. However, a small bore needle is preferred by the practitioners for less pain and scar on the patient to be treated, the higher viscosity cause injection difficulty during the procedures. As what discussed above, the solid PMMA particle still will precipitate eventually even with a thick carrier.
- The goal of this invention is to present a new filler material to resolve the precipitation and clumping issue. In this invention, instead of solid particle currently used in the market, hollow particle with a lower “effective density” is used as filler. The intention is to use void to reduce the effective density of particle to avoid precipitation due to the density difference between the filler and the carrier. An example of the hollow particle is illustrated in
FIGS. 1 and 2 . Its outer diameter is R and inner diameter is r. The void inside the particle is either an empty space or filled with air or gas. The density of the gas is insignificant and ignored in this calculation for simplification. As what was described above, the effective density of the particle is preferred to be comparable to the density of the carrier to avoid precipitation. Then, the radius of the void required to “lighten” the particle can be calculated as following: -
σ=ρ -
σ=ρ=ρ′(4πR 3/3−4πr 3/3)/(4πR 3/3) -
σ=ρ=ρ′(R 3 −r 3)/R 3 -
r=R(1−σ/ρ′)1/3 (2) - Where ρ is the effective density of the particle, p′ is the density of the shell material, σ is density of the carrier. Equation 2 indicates that the effective density of the particle, ρ, can be reduced by a void inside the particle, and precipitation can be avoided even with a high shell material density, ρ′. Similarly, the portion of the hollow space, P, in the particle required to reduce the effective density can be calculated as
-
P=Sv/Sp=(4πr 3/3)/(4πR 3/3) -
P=(r/R)3 -
P=(1−σ/ρ′) - Where Sv is the volume of void, Sp is the total volume of particle. To simplify the equation, the density of the gas in the void is small enough and ignored in this calculation. Again, the hollow PMMA particle illustrated in
FIGS. 1 and 2 is used as an example. PMMA has a density of 1.2 g/cm3, and that of the 3.5% collagen carrier is 1.04 g/cm3. Assuming the outer radius of hollow PMMA particle is 15 microns, the radius and the size of the void inside the particle to avoid precipitation can be calculated as the following: -
r=15(1−1.04/1.2)1/3 -
r=7.66 microns -
P=(1−1.04/1.2) -
P=0.13=13% - When the radius of the void is 7.66 microns and 13% of the particle's total volume is void, the hollow particle's effective density will be comparable to that of the carrier which is 1.04 g/cm3. As a result, the hollow PMMA particle can be suspended in the 3.5% collagen carrier without precipitation. Furthermore, if a saline solution (density ˜1 g/cm3) is used as the carrier for hollow PMMA particle, the radius and size of the void inside the particle to avoid precipitation can be calculated as the following:
-
r=15(1−1/1.2)1/3 -
r=8.25 microns -
P=(1−1/1.2) -
P=0.17=17% - With a low density carrier, a larger void (8.25 microns in radius, 17% of the particle's total volume) in the particle will be needed to reduce its effective density to match the density of carrier. The benefits for the low density carrier are a lower viscosity fluid without injection difficulty, and potentially a higher load of filler particles in the composition.
- Another embodiment of this invention comprises hollow particulate fillers with voids partially or totally filled with a liquid. The voids in the hollow particle can be an empty space by vacuum in the fabrication of the particles. Alternatively, a liquid with a lower density than the shell material can lower the effective density of the particle to avoid precipitation. Suitable liquids for this invention are any physiologically compatible liquids such as water, PBS and saline. The liquid or gas in the void can be introduced during the synthesis or fabrication process of the hollow particle. Alternatively, the gas or liquid can be introduced into the particle by high pressure, centrifuge, diffusion, etc. With those techniques, it will be convenient to control the amount of gas or liquid in the void in order to adjust the effective density of the hollow particle. According to this invention, a hollow particle with a large void can be made, and its effective density can be fine-tuned by introducing appropriate amount of low density gas or liquid into the void.
- Hollow particles have been used as pigment, drug delivery carrier, protecting agent, adhesive, and texturing agent for cosmetics, etc. The hollow particulate filler of the present invention is biocompatible and capable of homogenously suspending in water or other low viscosity carrier. Many biocompatible materials can be used in this invention. They can be polymer, metal, metal oxide, carbon, ceramic, glass, etc. The configuration of the hollow particle is random and can be spherical, elliptic, oval, etc. Its outer surface should be smooth without pore or sharp corner to avoid inflammation or other adverse body reaction. The configuration of the void in the particle is random and can be spherical, elliptic, oval, etc. Multiple voids in each particle are also possible. The voids can be isolated or interconnected to form porous mesh, foam, or sponge. These various void configurations can be controlled by the materials, agents, surfactant, and processing parameters introduced during the fabrication of the hollow particulate filler. For polymeric hollow particle, the shell thickness is controlled by the length of polymerization during the fabrication process and provides hollow particles with various strength and “effective density”. Longer polymerization time can produce polymer with longer chains and thus, shell thickness. As a consequence, the void is smaller with a higher “effective density”.
- There are many methods to produce hollow particles. They are solvent evaporation, emulsion polymerization, interfacial polymerization, phase separation, heat expansion, and density separation, etc. For polymeric hollow particle, a polymer shell was formed over a soluble substrate of silica, mica, alumina, etc. as disclosed in US 2004/0219360A1. The surface of the substrate has hydroxyl groups and is able to initiate living radical polymerization. The substrate particles are suspended in a solvent with monomers. After the polymerization is initiated by the each substrate surface and an appropriate shell thickness is achieved, the substrate is then dissolved in an etching agent to form a hollow particle. A relatively uniform shell thickness can be achieved with this method. The size of the void is controlled by size of the substrate and the amount of crosslinking agent used in the polymerization. An alternative method to make hollow particles was also disclosed in the same patent application. The silica substrate is assembled with polymeric nanospheres in a solution. The assembled composite is subsequently heated to a temperature above Tg of the nanospheres allowing the polymer to flow over the substrate and resulting a uniform shell. The substrate can be removed with the etching agent as described before. Japanese Patent JP2003181274A2 describes a method for manufacturing hollow polymer particles with emulsion. Oil droplets containing monomers and an organic solvent form a shell layer after polymerization. Then the particles are made hollow by removing the organic solvent. U.S. Pat. No. 4,594,363 disclosed an emulsion polymerized carboxylated core polymer with a polymer shell. The expansion of the carboxylated polymer core with a base produces voids in the particles. U.S. Pat. No. 4,972,000 disclosed a method to form hollow particles by the difference in density between the monomer and its polymer during the polymerization. Canadian patent 888,129 disclosed the use of blowing agent in the polymer particles to form voids in the particles. EP0462388A3 describes a method to manufacture hollow particles having an average particle diameter of 0.1-30 microns and a shell thickness of 0.01-4 microns. The volume ratio of the internal void to the total volume in the hollow particles is 40-80%. Japanese patent application JP2002105104A2 describes a process to produce hollow polymeric particles. A mixture of monomer and cross-linking monomer are mixed with an oily substance through a microporous membrane into an immiscible liquid and producing an emulsion comprising both dispersed and continuous phases. After the polymerization, the monomer forms the solid polymer shell having an inner core with oily substance. The hollow particles are further produced by removing the oily substance in the solid polymer particles. U.S. Pat. No. 4,133,854 disclosed a method to product glass, metal or plastic hollow spheres. A blowing agent was mixed with particles and exposed to high temperature to decompose the agent and expand the particles. U.S. Pat. No. 4,782,097 disclosed a method to create polymer or carbon hollow particles by a blowing agent which decomposes at high temperature. U.S. Pat. No. 4,968,562 described a two-step water-in-oil-in-water emulsification polymerization process to prepare hollow polymeric particle. A majority of particles have multiple interior voids. U.S. Pat. No. 4,257,799 disclosed a method to produce glass hollow particles having an outside diameter from about 100 microns to about 500 microns. U.S. Pat. No. 3,030,215 described method to produce alkali metal silicate based glass hollow particles with an outside diameter from about 5 microns to about 5000 microns. U.S. Pat. No. 6,136,891 described a method to produce hollow particles with oxides of aluminum, silicon, zirconium and/or transition metal. The disclosures of each of those patents are incorporated herein by reference in their entirety. Suitable procedures described in those disclosures may be employed or modified to prepare hollow particle within the scope of this invention.
- Many hollow particles with various materials and sizes are commercially available. For example, poly(methylmethacrylate) particles are sold by Sensient Technology under the name “Covabead”. Terpolymer particles of vinylidene chloride, acrylonitrile and methyl methacrylate are sold by Nobel, Sweden, under the name “Expancel”. Soda-lime borosilicate glass hollow particles are sold by 3M Corp. under the code “D32/4500” and “B46/4000”. It is preferred to use one of those commercially available hollow particles in this invention.
- A preferred embodiment of this new composition according to this invention comprises a plurality of injectable hollow particulate fillers suspended in a biocompatible carrier. Each hollow particle has a shell of biocompatible material and a hollow interior. Each
hollow particle 10 described here has asmooth surface 12 without sharp corner and edge as shown inFIG. 1 . The void in the particle has an average volume from about 0.1% to about 74% of the total particulate volume as shown in the cross sectional view ofparticle 10 inFIG. 2 . The wall thickness 11 ofparticle 10 is from about 0.1% to about 98% of the particulate cross sectional dimension. The shape of the void 13 is random. It can be spherical, oval, etc. Alternatively, there can be more than one layer of shell in thewall 51, 52 of theparticle 50 as shown inFIG. 3 . Each layer can be made by either the same material or a different material. The spherical void 53 is near the core of theparticle 50. Alternatively, there are multiple voids 21-23 in eachparticle 20 as shown in the cross-sectional view illustrated inFIG. 4 . Depending on the fabrication process, there could be asecond wall 31 surrounding each void 32 as shown in the cross section ofparticle 30 as illustrated inFIG. 5 . The material used for thesecond wall 31 can be the same material used in themain wall 33 or a different material.FIG. 6 illustrates the cross section ofhollow particle 40 having foam or sponge-like voids 41 inside theparticle 40. Thevoids 41 are either interconnected or separated from each other depending on the fabrication processes. The types of void described here are controlled by the amount of blowing agent, material, surfactant, and the processing method in making the hollow particle. - According to the present invention, the hollow particle with a density comparable to carrier will also avoid clumping and palpable masses at the injection sites. After the carrier is injected and resorbed in the body, the size of the hollow particle provides fixation at the injection location and prevents the undesirable migration to other parts of the patients' body. It is obvious that large particles, especially those larger than 20 microns, are less likely to be engulfed by microphage or other elements in the body. The preferred average diameters of the hollow particles range from about 20 microns to about 500 microns, more preferably between about 30 and 200 microns. However, clumping of the particles may occur before the carrier is totally resorbed and cause palpable mass. It is suspected that the body temperature reduces the carrier viscosity and thus accelerates the precipitation of the particles. According to this invention, the hollow particles have effective density comparable to the carrier and suspend evenly in the carrier. As indicated in
Equation 1, the suspension of hollow particle is not affected by change in viscosity during the resorption of carrier in the body. The hollow particles remain at the injection site without clumping or forming palpable masses. - According to the present invention, the carrier mixed with hollow particles can possess a low viscosity without causing precipitation. Due to this relatively lower viscosity, a larger volume of particles can be used in the composition without injection difficulty or clumping. The ability to incorporate a larger volume of particles in the composition is advantageous because the undesirable “over-correction” or multiple injections can be minimized. The “over-correction” means that the physicians need to “guess” and inject more solution in the patients to compensate for the loss in carrier volume later on. This uncertainty can be minimized with a higher percentage of fillers in the composition. The hollow particulate filler is typically present in a concentration of from about 10-80% of total volume of the composition, more typically from about 20% to about 60%. The amount of hollow filler changes according to size of the injection needle, and the type and location of treatment.
- The critical requirement for the hollow particle is that the material used should be biocompatible with a minimum inflammatory reaction. The material can be degradable or non-degradable by the body fluids or the action of tissue enzymes. The suitable non-degradable materials are silicone, polysiloxane rubber, polydimethylsiloxane, polyurethane, polytetrafluoroethylene (PTFE), glass, ceramic, metal, carbon, calcium hydroxyapatite, polymethylmethacrylate, polymethacrylate, acrylic polymer, polybutylmethacrylate, polyethylene imine, polyethylene terephthalate (PET), polyesters, polybutester, polyacrylonitrile, polyaryletherketone, PEEK, polyethylene, polypropylene, ethylene propylene copolymer, polyolefins, fluorinated ethylene propylene copolymer, polyethylene vinyl acetate, sodium acrylate polymer, polycarbonates, polyamides, polyamideimides, polyimides, polyaryletherketones, polytetramethylene oxide, polysulfones, polyphenylenesulfides, polyhydroxy ethyl acrylate, polyhydroxy ethyl methacrylate, polyacrylamide, polyacrylamide copolymer, sodium acrylate and vinyl alcohol copolymer, polyvinyl alcohol, polyacrylic acid, polymethylacrylic acid, polyacetals, polyvinyl acetate and acrylic acid ester copolymer, polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol, polyvinyl acetate, polyvinyl acetate and methyl maleate copolymer, polyarylethemitriles and aromatic polyhydroxyethers, Hypan, poly(2-hydroxyethyl methacrylate)(polyHEMA), polystyrene, isobutylene-maleic anhydride copolymer, polyethylene oxide, polyvinylidene or copolymer or mixtures thereof. Those skilled in the art will recognize the various biostable materials that may be used to fabricate the particles. The preferred materials are PMMA, PTFE, PET, polymethacrylate, and silicone. According to this invention, PMMA is the preferred material used for non-degradable hollow particle because its ability to stimulate tissue growth surrounding the PMMA particle. If more than one material is used, PMMA should be used as part of, or the whole, outer shell which is in contact with body fluid.
- A variety of biodegrabale materials can be used in the hollow particle. They are polyglactin, poliglecaprone, lactomer, polycaprolactone, poly(dioxanone), poly(glycolide-co-trimethylene carbonate), polytrimethylene carbonate, poly(glycolide-co-trimethylene carbonate-co-dioxanone), polyhydroxyalkanoate, polyhydroxybutyrates, polyhydroxyvalerates, polyalkylene oxalates, polyalkylene succinates, poly methyl vinyl ether, poly maleic anhydride, chitin, chitosan, poly(ε-decaloactone), poly malic acid, poly amino acids, polyphosphazenes, polyphosphoesters, polyamides, poly iminocarbonates, polycarbonates, polyorthocarbonates, polyethylene carbonate, polydioxanone, polyketals, proteinaceous polymers, polyesters, polyester amides, polysaccharides, starch, poly lactic acid, poly glycolic acid, or combination or copolymer thereof. Other than the materials described above, certain types of surface erosion materials are also suitable for this application. They are hydrophobic, but the chemical bonds of the polymers are highly susceptible to hydrolysis. As a result, water penetrates slower than the conversion rate of the polymers into soluble materials. Surface erosion results in the thinning of the material over time while maintaining its bulk integrity. This type of polymer is known as surface erosion or bioerosion material. The examples this type of material are polyanhydrides, methyl vinyl ether maleic anhydride copolymer, and polyorthoesters. Those skilled in the art will recognize the various biodegradable materials that may be used to fabricate hollow particles.
- According to this invention, a variety of biocompatible carriers can be used to suspend the hollow particles to avoid clumping before and after injection. Many physiological solutions such as saline, water, PBS solution can be used as carrier. Alternatively, it can be formulated by mixing with a thickening agent or a suspension agent to modify the viscosity to provide the composition with comparable density with the hollow particle for the homogenous particulate suspension. The choice of suitable carrier will depend on the particle size, the amount of fillers, the size of injection needle and the nature of the fillers. The suitable thickening or suspension agent includes all the biocompatible agent known in the art to act as thickening or suspension agent. Some typical thickening or suspension agents are Acacia, Carbomer copolymer and homopolymer, Carbomer interpolymer, hydrogel, polysaccharide, macrocyclic polycsaccharide, oligosaccharide, starch, acetyl starch, cellulose, cellulose derivatives, methylcellulose, carboxymethylcellulose sodium, carboxymethylcellulose (CMC), ethyl (hydroxyethyl) cellulose (EHEC), ethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), ethylcellulose, alkyl cellulose, alkoxy cellulose, hydroxy ethyl cellulose, copovidone, povidone, gelatin, glucose, Guar gum, hypromellose, hypromellose acetate succinate, maltodextrin, syrup, agar, alamic acid, aluminum monostearate, attapulgite, gellan gum, hypromellose, maltodextrin, pectin, propylene glycol alginate, sodium alginate, calcium alginate, colloidal silicon dioxide, tragacanth, xanthan gum, lecithin, tridobenzene derivatives, iohexyl, iopamidol, iopentol, sucrose, carrageenan, agarose, mannitol, saccharin sodium, sorbitol, cephalin, acetylenic diol, Carbowax, polyorgano sulfonic acid, alkoxylated surfactants, alkylphenol ethoxylates, ethoxylated fatty acids, alcohol ethoxylates, alcohol alkoxylates, polyethylene oxide, poly(propylene oxide), poly(ethylene glycol), poly(propylene glycol), poly vinyl alcohol (PVA) polymer or copolymer, polyacrylamine, poly(vinylcarboxylic acid), polymethacrylic acid, polyacrylic acid polymer or copolymer, poly amino acids, albumin, collagen, fibrin, bioglue, cellulosics, Carbopol, Poloxamer, Pluronic, Tetronics, PEO-PPO-PEO triblocks copolymer, Tetrafunctional block copolymer of PEO-PPO condensed with ethylenadiamine, polyHEMA polymer or copolymer, Hypan polymer or copolymer, starch glycolate polymer or copolymer salt, polyoxyalkylene ether, polyvinyl pyridine, polylysine, polyarginine, poly aspartic acid and poly glutamic acid, polytetramethylene oxide, poly(hydroxy ethyl acrylate), poly(hydroxy ethyl methacrylate), methoxylated pectin gels, cellulose acetate phthalate, organic oils, B-glucan, polysorbate, lactic acid ester, caproic acid ester, hyaluronic acid, dextrin, dextran, dextrose, and mixture of the above. Poloxamers, Pluronics, CMC, HPMC, gelatins, collagen, hyaluronic acid, and acetyl starch are preferred because they are readily and economically available and are easy to work with. The patient's own plasma can also be used as a carrier. It may be derived from blood withdrawn from the patient, centrifuged to remove cells (or not) and mixed with appropriate amount of fillers to form an injectable composition. The thickening agent is typically present in a concentration of from about 0.0-40% of the total weight in the carrier, more typically from about 0.1% to about 20%.
- Alternatively, a radiopaque agent can be introduced in the hollow particle for enhanced visibility under fluoroscopy. The radiopaque agent can be barium sulfate, silver, gold, tantalum, etc. If barium sulfate is used, sufficient amount of barium sulfate powder can be blended with the material used for the shell during the fabrication of the hollow particle. As a result, all of the barium sulfate is attached to the fillers without free particles of barium sulfate in the composition. It is also feasible to place radiopaque agent inside the void.
- Alternatively, a bioactive ingredient can be embedded in the hollow particle to promote cell proliferation, connective tissue response, and the interaction between the filler particle and the cells to enhance the bonding between the filler and surrounding tissue. The bioactive ingredient can be growth factors, hormones, cytokines, bactericidal agents, antimicrobial agents, antiviral agents, cell adhesion promoter, Vitamin C, drug or other pharmacologically active compounds. The bioactive ingredient can be introduced into the void during the fabrication of the hollow particle or by diffusion after the particle is made. It becomes part of the filler particle and released through the shell or when the particle degrades in body fluids. Alternatively, bioactive ingredient can be blended with the shell material during the fabrication and released by diffusing out of the filler particle. Compared with the fragile coating on the particulate surface in other methods, the bioactive ingredient in this invention has the advantage of being part of the hollow particle with stronger fixation to endure the injection force and only be released when it is in the body.
- The disclosed composition in this invention normally contains a major amount of water (preferably purified water, physiological saline, or the like) in addition to the fillers and thickener. The compositions can also be lyophilized for longer shelf life. Minor amounts of other ingredients such as anesthetic agent and preservative may also be present depending upon the route of administration and the preparation desired. The compositions can also be isotonic (i.e., it can have the same osmotic pressure as body fluids).
- An aspect of the present invention encompasses an anesthetic to decrease the pain or discomfort associated with injection of the composition. Example of anesthetics include but are not limited to lidocaine, xylocaln, novocain, benzocain, prilocaln, ripivacain, propofol, benzyl alcohol, and chlorobutanol. Typically the anesthetic will be used with aqueous base and thus will be mixed with the composition prior to administration. A suitable concentration of the anesthetic will be from 0.01% to 6% based on the total weight and the agent selected.
- Alternatively, isotonicity of this invention may be accomplished using sodium chloride, or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol or other inorganic or organic solutes. A pharmaceutically acceptable preservative can be employed to increase the shelf-life of the compositions. Benzyl alcohol may be suitable, although a variety of preservatives including, for example, parabens, thimerosal, chlorobutanol, or benzalkonium chloride may also be employed. A suitable concentration of the preservative will be from 0.02% to 2% based on the total weight and the agent selected.
- According to the present invention, the injectable hollow particulate fillers/carrier composition disclosed herein can be in a ready for use pre-filled sterile syringe with both filler and the biocompatible carrier. Or, it can be provided in a vial in the form of sterilized dry fillers. In this embodiment, the end user could add carrier, water or other pharmaceutically acceptable carrier and/or additional additives for preparation of suspension prior to injection. Alternatively it can be in a two pre-filled syringes, wherein one syringe contains dry and sterilized fillers and the other syringe contains a pharmaceutically acceptable carrier solution. The dry fillers and the carrier are ready to be mixed for injection by pushing the composition back and forth in the syringes or mixed in a separate container until a homogenous suspension is reached. The compound disclosed herein may be optionally be sterilized by Gamma or E-beam irradiation, filtering, heating or exposure to ethylene oxide gas. Once the fillers/carrier composition has been prepared by any one of the existing processes, it can be applied by subcutaneous or endoscopical injection into the patient to be treated. For the augmentation of the dermal tissue, the injection of the present invention can be carried out by using syringe with needle of from 18 gauge to 30 gauge. The size of the needle will be determined by the filler composition, the depth of the injection site, the injection volume, etc. The composition is then injected through the needle into patient's body. The hollow particulate fillers can't be digested or eliminated by macrophage or other elements of immune system.
- According to the present invention, a preferred method for the augmentation of dermal tissue is to inject the composition subcutaneously into layer of the skin at the treatment site. The present invention also provides method of treating GERD by administering the injectable hollow particulate fillers/carrier composition through a needle to the sphincter wall near esophagus endoscopically or laparoscopically. The narrower esophageal sphincter allows easier muscle contraction and prevents the regurgitation of the gastric fluid into the esophagus. Some cases of urinary incontinence occur when the resistance to urine flow has decreased excessively. Continence is restored by injecting the present invention into the urethra tissue near the urethra sphincter to reduce the ureters lumen and increase resistance to urine outflow from the bladder. For patients with vesicoureteral reflux, it can be treated by injection of the present invention into patients' ureteral tissue. This invention can also be used to repair fecal incontinence or defective anal sphincter muscles by administering an effective amount of injectable hollow fillers into the defect or anal sinuses.
- Various modifications of the invention described herein will be apparent to those skilled in the art. Such modifications are also intended to fall within the scope of this invention.
Claims (21)
1. A biocompatible injectable tissue implant composition comprising hollow particles suspended in a biocompatible carrier, said hollow particles having smooth, non-tacky and non-porous outer surfaces, wherein the voids of the said hollow particles comprise from about 0.1% to about 74% of the total particulate volume, said hollow particles having an average cross sectional dimension from about 20 to about 500 microns.
2. The injectable tissue implant composition of claim 1 , wherein said hollow particles is selected from the group consisting of natural polymer, synthetic polymer, metal, metal oxide, glass, carbon, ceramic, degradable material, non-degradable material, or combination thereof.
3. The injectable tissue implant composition of claim 1 , wherein said hollow particles comprise polymethylmethacrylate or its copolymer in the outer shell.
4. The injectable tissue implant composition of claim 1 , wherein the effective density of said hollow particles is sufficient low allowing even suspension in the said carrier.
5. The injectable tissue implant composition of claim 1 , wherein said void is an empty space or comprises a gas or a liquid.
6. The injectable tissue implant composition of claim 1 , wherein said void is an empty space or comprises water.
7. The injectable tissue implant composition of claim 2 , wherein said degradable material is selected from the group consisting of polyglactin, poliglecaprone, lactomer, polycaprolactone, poly(dioxanone), poly(glycolide-co-trimethylene carbonate), polytrimethylene carbonate, poly(glycolide-co-trimethylene carbonate-co-dioxanone), polyhydroxyalkanoate, polyhydroxybutyrates, polyhydroxyvalerates, polyalkylene oxalates, polyalkylene succinates, poly methyl vinyl ether, poly maleic anhydride, chitin, chitosan, poly(ε-decaloactone), poly malic acid, poly amino acids, polyphosphazenes, polyphosphoesters, polyamides, poly iminocarbonates, polycarbonates, polyorthocarbonates, polyethylene carbonate, polydioxanone, polyketals, proteinaceous polymers, polyesters, polyester amides, polysaccharides, starch, poly lactic acid, poly glycolic acid, polyanhydrides, methyl vinyl ether maleic anhydride copolymer, polyorthoesters, or combination or copolymer thereof.
8. The injectable tissue implant composition of claim 2 , wherein said degradable material is selected from the group consisting of poly lactic acid, poly glycolic acid, or combination or copolymer thereof.
9. The injectable tissue implant composition of claim 2 , wherein said non-degradable material is selected from the group consisting of silicone, polysiloxane rubber, polydimethylsiloxane, polyurethane, polytetrafluoroethylene (PTFE), glass, ceramic, metal, carbon, polymethylmethacrylate, polymethacrylate, acrylic polymer, polybutylmethacrylate, polyethylene imine, polyethylene terephthalate (PET), polyesters, polybutester, polyacrylonitrile, polyaryletherketone, PEEK, polyethylene, polypropylene, ethylene propylene copolymer, polyolefins, fluorinated ethylene propylene copolymer, polyethylene vinyl acetate, sodium acrylate polymer, polycarbonates, polyamides, polyamideimides, polyimides, polyaryletherketones, polytetramethylene oxide, polysulfones, polyphenylenesulfides, polyhydroxy ethyl acrylate, polyhydroxy ethyl methacrylate, polyacrylamide, polyacrylamide copolymer, sodium acrylate and vinyl alcohol copolymer, polyvinyl alcohol, polyacrylic acid, polyacetals, polyvinyl acetate and acrylic acid ester copolymer, polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol, polyvinyl acetate, polyvinyl acetate and methyl maleate copolymer, polyarylethernitriles and aromatic polyhydroxyethers, Hypan, poly(2-hydroxyethyl methacrylate)(polyHEMA), polystyrene, polymethylacrylic acid, isobutylene-maleic anhydride copolymer, polyethylene oxide, polyvinylidene, or copolymer or mixtures thereof.
10. The injectable tissue implant composition of claim 1 , wherein said carrier is selected from the group consisting of saline, water, PBS solution, alcohols, or other physiological solutions.
11. The injectable tissue implant composition of claim 10 , wherein said carrier further comprising a thickening or suspending agent selected from the group consisting of Acacia, Carbomer copolymer and homopolymer, Carbomer interpolymer, hydrogel, polysaccharide, macrocyclic polycsaccharide, oligosaccharide, starch, acetyl starch, cellulose, cellulose derivatives, methylcellulose, carboxymethylcellulose sodium, carboxymethylcellulose (CMC), ethyl (hydroxyethyl) cellulose (EHEC), ethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), ethylcellulose, alkyl cellulose, alkoxy cellulose, hydroxy ethyl cellulose, copovidone, povidone, gelatin, glucose, Guar gum, hypromellose, hypromellose acetate succinate, maltodextrin, syrup, agar, alamic acid, aluminum monostearate, attapulgite, gellan gum, hypromellose, maltodextrin, pectin, propylene glycol alginate, sodium alginate, calcium alginate, colloidal silicon dioxide, tragacanth, xanthan gum, lecithin, tridobenzene derivatives, iohexyl, iopamidol, iopentol, sucrose, carrageenan, agarose, mannitol, saccharin sodium, sorbitol, cephalin, acetylenic diol, Carbowax, polyorgano sulfonic acid, alkoxylated surfactants, alkylphenol ethoxylates, ethoxylated fatty acids, alcohol ethoxylates, alcohol alkoxylates, polyethylene oxide, poly(propylene oxide), poly(ethylene glycol), poly(propylene glycol), poly vinyl alcohol (PVA) polymer or copolymer, polyacrylamine, poly(vinylcarboxylic acid), polymethacrylic acid, polyacrylic acid polymer or copolymer, poly amino acids, albumin, collagen, fibrin, bioglue, cellulosics, Carbopol, Poloxamer, Pluronic, Tetronics, PEO-PPO-PEO triblocks copolymer, Tetrafunctional block copolymer of PEO-PPO condensed with ethylenadiamine, polyHEMA polymer or copolymer, Hypan polymer or copolymer, starch glycolate polymer or copolymer salt, polyoxyalkylene ether, polyvinyl pyridine, polylysine, polyarginine, poly aspartic acid and poly glutamic acid, polytetramethylene oxide, poly(hydroxy ethyl acrylate), poly(hydroxy ethyl methacrylate), methoxylated pectin gels, cellulose acetate phthalate, organic oils, B-glucan, polysorbate, lactic acid ester, caproic acid ester, hyaluronic acid, dextrin, dextran, dextrose, or mixtures thereof.
12. The injectable tissue implant composition of claim 1 , wherein said composition contains hollow particles in an amount from about 10% to approximately 80% of the total composition weight.
13. The injectable tissue implant composition of claim 1 , wherein said hollow particles further comprising radiopaque agent, contrast agent, bioactive ingredient, pharmaceutics, or mixture thereof.
14. The injectable tissue implant composition of claim 1 further comprising anesthetic, preservative, or mixture thereof.
15. A biocompatible injectable tissue implant composition comprising hollow particles suspended in a biocompatible carrier, said hollow particles having a void comprising a volume from about 0.1% to about 74% of the total particulate volume, said void being an empty space or comprising a liquid, said hollow particles having smooth non-tacky and non-porous outer surfaces, said hollow particles having an average cross sectional dimension from about 20 to about 500 microns.
16. The injectable tissue implant composition of claim 15 , wherein said hollow particles is selected from the group consisting of natural polymer, synthetic polymer, metal, metal oxide, glass, carbon, ceramic, degradable material, non-degradable material, or combination thereof.
17. The injectable tissue implant composition of claim 15 , wherein said hollow particles comprise polymethylmethacrylate or its copolymer in the outer shell.
18. The injectable tissue implant composition of claim 15 , wherein said liquid is water or other physiological solutions.
19. The injectable tissue implant composition of claim 15 , wherein said carrier is selected from the group consisting of water, alcohol, saline, Pluronics, CMC, HPMC, gelatins, starch, hydrogel, polysaccharide, collagen, hyaluronic acid, or mixtures thereof.
20. A biocompatible injectable tissue implant composition comprising hollow particles suspended in a biocompatible carrier, said hollow particles comprising polymethylmethacrylate or its copolymer in the outer shell, said hollow particles having a void comprising a volume from about 0.1% to about 74% of the total particulate volume, said void being an empty space or comprising water or other physiological fluid, said hollow particles having smooth non-tacky and non-porous outer surfaces, said hollow particles having an average cross sectional dimension from about 20 to about 500 microns,
21. The injectable tissue implant composition of claim 20 , wherein said carrier is selected from the group consisting of water, alcohol, saline, Pluronics, CMC, HPMC, gelatins, starch, hydrogel, polysaccharide, collagen, hyaluronic acid, or mixtures thereof.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/935,210 US20080107744A1 (en) | 2006-11-06 | 2007-11-05 | Injectable hollow tissue filler |
US12/905,079 US20110091564A1 (en) | 2006-11-06 | 2010-10-15 | Injectable hollow tissue filler |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86444606P | 2006-11-06 | 2006-11-06 | |
US11/935,210 US20080107744A1 (en) | 2006-11-06 | 2007-11-05 | Injectable hollow tissue filler |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/905,079 Continuation US20110091564A1 (en) | 2006-11-06 | 2010-10-15 | Injectable hollow tissue filler |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080107744A1 true US20080107744A1 (en) | 2008-05-08 |
Family
ID=39359997
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/935,210 Abandoned US20080107744A1 (en) | 2006-11-06 | 2007-11-05 | Injectable hollow tissue filler |
US12/905,079 Abandoned US20110091564A1 (en) | 2006-11-06 | 2010-10-15 | Injectable hollow tissue filler |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/905,079 Abandoned US20110091564A1 (en) | 2006-11-06 | 2010-10-15 | Injectable hollow tissue filler |
Country Status (1)
Country | Link |
---|---|
US (2) | US20080107744A1 (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090035251A1 (en) * | 2007-08-02 | 2009-02-05 | Wortzman Mitchell S | Method of applying an injectable filler |
US20090204101A1 (en) * | 2007-08-20 | 2009-08-13 | Wortzman Mitchell S | Method of applying an injectable filler |
US20090274764A1 (en) * | 2008-04-30 | 2009-11-05 | Do Hiep Q | Hollow Foam Beads for Treatment of Glioblastoma |
EP2177237A1 (en) * | 2008-10-20 | 2010-04-21 | Hoc Age CTA | Core fillings for prostheses |
US20100136070A1 (en) * | 2008-12-03 | 2010-06-03 | Jakk Group, Inc. | Methods, devices, and compositions for dermal filling |
WO2010078538A2 (en) | 2009-01-03 | 2010-07-08 | Russell Anderson | Enhanced carriers for the delivery of microparticles to bodily tissues and fluids |
US20100222882A1 (en) * | 2009-02-27 | 2010-09-02 | Badylak Stephen F | Joint bioscaffolds |
US20100311673A1 (en) * | 2006-09-29 | 2010-12-09 | Bryce Alden Harrison | Sulfanyl-tetrahydropyran-based compounds and methods of their use |
US20100323960A1 (en) * | 2007-02-21 | 2010-12-23 | Cutanea Life Sciences, Inc. | Methods of Use of Biomaterial and Injectable Implant Containing Biomaterial |
CN101933906A (en) * | 2010-08-20 | 2011-01-05 | 淮阴工学院 | A preparation method of small particle size, high mechanical strength sustained-release drug-loaded composite microspheres |
US20110024939A1 (en) * | 2009-07-28 | 2011-02-03 | Nilton Pereira Alves | Thermoplastic polyacrylonitrile production process |
US20110313073A1 (en) * | 2010-04-27 | 2011-12-22 | Allergan, Inc. | Foam-like materials and methods for producing same |
WO2013012724A1 (en) * | 2011-07-15 | 2013-01-24 | The Board Of Regents, The University Of Texas System | Apparatus for generating therapeutic shockwaves and applications of same |
US8486467B1 (en) * | 2007-09-20 | 2013-07-16 | Albert G. Prescott | Dermal filler and method of using same |
CN103458826A (en) * | 2011-02-28 | 2013-12-18 | 艾迪恩特医学公司 | Absorbable vascular filter |
CN103667144A (en) * | 2013-12-11 | 2014-03-26 | 山东华亚环保科技有限公司 | Domestic sewage treatment microbial inoculant |
EP2758087A4 (en) * | 2011-10-21 | 2015-09-09 | Nitta Casings Inc | COLLAGEN-POLYSACCHARIDE-BASED MATERIALS IMITATING BLOOD VESSELS, FABRICS AND BONES FOR MEDICAL, PHARMACEUTICAL AND ORTHOPEDIC APPLICATIONS AND METHODS OF PRODUCING THE SAME |
US20150273107A1 (en) * | 2014-03-26 | 2015-10-01 | DePuy Synthes Products, Inc. | Acrylic Bone Cement Having a Delayed Release Polymerization Inhibitor such as an Anti-Oxidant For Increased Working Time |
US20150297520A1 (en) * | 2012-08-20 | 2015-10-22 | Sumitomo Dainippon Pharma Co., Ltd. | Medicament-containing hollow particle |
US9333245B2 (en) | 2012-03-12 | 2016-05-10 | The Regents Of The University Of California | Methods and compositions for treating wounds and reducing the risk of incisional hernias |
CN105694061A (en) * | 2016-03-03 | 2016-06-22 | 山东理工大学 | Method for preparing polyving akohol-polycaprolactone-poly trimethylene carbonate-poly(p-dioxanone) ternary graft copolymer |
US20170007738A1 (en) * | 2011-11-09 | 2017-01-12 | Trustees Of Tufts College | Injectable silk fibroin foams and uses thereof |
US20170035678A1 (en) * | 2014-04-17 | 2017-02-09 | Merz Pharma Gmbh & Co. Kgaa | Composition for improving the appearance of ageing skin |
US9757535B2 (en) | 2014-07-16 | 2017-09-12 | Fractyl Laboratories, Inc. | Systems, devices and methods for performing medical procedures in the intestine |
CN107376032A (en) * | 2017-08-16 | 2017-11-24 | 复旦大学 | A kind of vesicoureteric reflux injection treatment filler and preparation method thereof |
CN107802617A (en) * | 2017-12-12 | 2018-03-16 | 天津北洋百川生物技术有限公司 | A kind of β polymalic acids/hydroxypropyl methylcellulose microcapsules and its preparation method and application |
US10029031B2 (en) * | 2015-10-28 | 2018-07-24 | Warsaw Orthopedic, Inc. | Bone void filler having sustained therapeutic agent release |
WO2018219987A1 (en) * | 2017-05-30 | 2018-12-06 | Aqpha Ip B.V. | Resorbable biodegradable medical and cosmetic composition comprising poly(1,3-trimethylene carbonate) |
US10232143B2 (en) | 2013-11-22 | 2019-03-19 | Fractyl Laboratories, Inc. | Systems, devices and methods for the creation of a therapeutic restriction in the gastrointestinal tract |
CN109793943A (en) * | 2018-01-12 | 2019-05-24 | 北京幸福益生高新技术有限公司 | A kind of formula and preparation method of scar reparation |
US10299857B2 (en) | 2013-06-04 | 2019-05-28 | Fractyl Laboratories, Inc. | Methods, systems and devices for reducing the luminal surface area of the gastrointestinal tract |
US10349998B2 (en) | 2012-02-27 | 2019-07-16 | Fractyl Laboratories, Inc. | Heat ablation systems, devices and methods for the treatment of tissue |
US10383718B2 (en) | 2011-02-28 | 2019-08-20 | Adient Medical, Inc. | Absorbable vascular filter |
US10531942B2 (en) | 2011-02-28 | 2020-01-14 | Adient Medical, Inc. | Absorbable vascular filter |
CN110960682A (en) * | 2019-12-13 | 2020-04-07 | 厦门大学 | Method for enhancing drug load in molten state for long time after high pressure of pH-regulated gel |
US10765474B2 (en) | 2012-02-27 | 2020-09-08 | Fractyl Laboratories, Inc. | Injectate delivery devices, systems and methods |
US10835767B2 (en) | 2013-03-08 | 2020-11-17 | Board Of Regents, The University Of Texas System | Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments |
US10869718B2 (en) | 2014-07-16 | 2020-12-22 | Fractyl Laboratories, Inc. | Methods and systems for treating diabetes and related diseases and disorders |
US10959774B2 (en) | 2014-03-24 | 2021-03-30 | Fractyl Laboratories, Inc. | Injectate delivery devices, systems and methods |
US10973561B2 (en) | 2012-08-09 | 2021-04-13 | Fractyl Laboratories, Inc. | Ablation systems, devices and methods for the treatment of tissue |
US10980590B2 (en) | 2011-01-19 | 2021-04-20 | Fractyl Laboratories, Inc. | Devices and methods for the treatment of tissue |
CN112920425A (en) * | 2021-01-22 | 2021-06-08 | 华东数字医学工程研究院 | Medical hydrogel composition, medical hydrogel and preparation method thereof |
US20210244858A1 (en) * | 2018-10-03 | 2021-08-12 | Prollenium Medical Technologies, Inc. | Soft tissue filler composition with hyaluronic acid and benzyl alcohol |
CN113499451A (en) * | 2015-04-20 | 2021-10-15 | 加利福尼亚大学董事会 | Encapsulated gas or partial vacuum CT contrast material |
US11185367B2 (en) | 2014-07-16 | 2021-11-30 | Fractyl Health, Inc. | Methods and systems for treating diabetes and related diseases and disorders |
US11229575B2 (en) | 2015-05-12 | 2022-01-25 | Soliton, Inc. | Methods of treating cellulite and subcutaneous adipose tissue |
US11246639B2 (en) | 2012-10-05 | 2022-02-15 | Fractyl Health, Inc. | Methods, systems and devices for performing multiple treatments on a patient |
CN114848892A (en) * | 2022-03-29 | 2022-08-05 | 和携科技有限公司 | Temperature-sensitive hydrogel, preparation method and application thereof |
US11439457B2 (en) | 2012-07-30 | 2022-09-13 | Fractyl Health, Inc. | Electrical energy ablation systems, devices and methods for the treatment of tissue |
CN115279427A (en) * | 2020-03-17 | 2022-11-01 | 微仙美国有限公司 | Liquid embolus |
CN115353713A (en) * | 2022-09-07 | 2022-11-18 | 吉林省中研高分子材料股份有限公司 | Composite material for electronic cigarette and preparation method thereof |
US11794040B2 (en) | 2010-01-19 | 2023-10-24 | The Board Of Regents Of The University Of Texas System | Apparatuses and systems for generating high-frequency shockwaves, and methods of use |
US11813477B2 (en) | 2017-02-19 | 2023-11-14 | Soliton, Inc. | Selective laser induced optical breakdown in biological medium |
US11857212B2 (en) | 2016-07-21 | 2024-01-02 | Soliton, Inc. | Rapid pulse electrohydraulic (EH) shockwave generator apparatus with improved electrode lifetime |
US11986235B2 (en) | 2013-09-12 | 2024-05-21 | Fractyl Health, Inc. | Systems, methods and devices for treatment of target tissue |
US12097162B2 (en) | 2019-04-03 | 2024-09-24 | Soliton, Inc. | Systems, devices, and methods of treating tissue and cellulite by non-invasive acoustic subcision |
US12138487B2 (en) | 2016-03-23 | 2024-11-12 | Soliton, Inc. | Pulsed acoustic wave dermal clearing system and method |
US20240399028A1 (en) * | 2023-06-02 | 2024-12-05 | 33 Medical, Inc. | Compositions for treatment of discogenic pain, and processes for making and using the same |
US12303185B2 (en) | 2022-08-02 | 2025-05-20 | Fractyl Health, Inc. | Electrical energy ablation systems, devices and methods for the treatment of tissue |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3359074A4 (en) | 2015-10-07 | 2019-09-18 | Mayo Foundation for Medical Education and Research | ELECTROPORATION FOR THE TREATMENT OF OBESITY OR DIABETES |
CN107441553B (en) * | 2017-08-09 | 2020-05-22 | 北京华信佳音医疗科技发展有限责任公司 | Preparation method of beauty implant |
CN109773948A (en) * | 2019-03-29 | 2019-05-21 | 深圳市宏通新材料有限公司 | Salt mould inner core material and manufacturing method of ceramic for ceramic injection forming |
CN114786605A (en) | 2019-10-21 | 2022-07-22 | 英杜基奈克斯公司 | Devices, systems, and methods for duodenal pulsed electric field therapy |
KR102547183B1 (en) * | 2020-10-19 | 2023-06-26 | 주식회사 메피온 | Dermal filler and method for manufacturing the dermal filler |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133854A (en) * | 1977-06-16 | 1979-01-09 | The United States Of America As Represented By The United States Department Of Energy | Method for producing small hollow spheres |
US4257799A (en) * | 1979-07-26 | 1981-03-24 | The United States Of America As Represented By The United States Department Of Energy | Method for producing small hollow spheres |
US4594363A (en) * | 1985-01-11 | 1986-06-10 | Rohm And Haas Company | Production of core-sheath polymer particles containing voids, resulting product and use |
US4782097A (en) * | 1986-10-01 | 1988-11-01 | Alcan International Limited | Process for the preparation of hollow microspheres |
US4968562A (en) * | 1990-02-27 | 1990-11-06 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
US4972000A (en) * | 1988-02-29 | 1990-11-20 | Japan Synthetic Rubber Co., Ltd. | Hollow polymer particles, process for production thereof, and use thereof as pigment |
US4988567A (en) * | 1990-02-27 | 1991-01-29 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
US5007940A (en) * | 1989-06-09 | 1991-04-16 | American Medical Systems, Inc. | Injectable polymeric bodies |
US5258028A (en) * | 1988-12-12 | 1993-11-02 | Ersek Robert A | Textured micro implants |
US5336263A (en) * | 1992-04-06 | 1994-08-09 | Robert A. Ersek | Treatment of urological and gastric fluid reflux disorders by injection of mmicro particles |
US5344452A (en) * | 1988-12-08 | 1994-09-06 | Martin Lemperle | Alloplastic implant |
US5451406A (en) * | 1994-07-14 | 1995-09-19 | Advanced Uroscience, Inc. | Tissue injectable composition and method of use |
US5534348A (en) * | 1993-09-08 | 1996-07-09 | Pq Corporation | Hollow borosilicate microspheres and method of making |
US5770416A (en) * | 1989-05-26 | 1998-06-23 | Upfront Chromatography A/S | Permeable hollow particles having an outer shell of mechanically rigid porous material |
US5792478A (en) * | 1996-07-08 | 1998-08-11 | Advanced Uro Science | Tissue injectable composition and method of use |
US5834526A (en) * | 1997-07-11 | 1998-11-10 | Wu; Huey S. | Expandable hollow particles |
US5922025A (en) * | 1992-02-11 | 1999-07-13 | Bristol-Myers Squibb Company | Soft tissue augmentation material |
US6004308A (en) * | 1996-04-19 | 1999-12-21 | Mcneil-Ppc, Inc. | Adhesive attachment system with a non-tacky surface for sanitary napkins |
US6136891A (en) * | 1996-03-06 | 2000-10-24 | Rhodia Chimie | Composite particles including an organic polymer and an oxide and/or hydroxide |
US6277392B1 (en) * | 1999-09-16 | 2001-08-21 | Carbon Medical Technologies, Inc. | Tissue injectable composition |
US20020037837A1 (en) * | 1997-07-15 | 2002-03-28 | Shigeyuki Takada | Process for producing sustained-release preparation |
US6423332B1 (en) * | 2000-05-26 | 2002-07-23 | Ethicon, Inc. | Method and composition for deforming soft tissues |
US6616946B1 (en) * | 1999-11-15 | 2003-09-09 | Biocure, Inc. | Triblock copolymer hollow particles for agent delivery by permeability change |
US6660301B1 (en) * | 1998-03-06 | 2003-12-09 | Biosphere Medical, Inc. | Injectable microspheres for dermal augmentation and tissue bulking |
US6716251B1 (en) * | 1997-06-13 | 2004-04-06 | Aventis Pharmaceuticals Holdings, Inc. | Implant for subcutaneous or intradermal injection |
US6720007B2 (en) * | 2000-10-25 | 2004-04-13 | Tufts University | Polymeric microspheres |
US6790456B2 (en) * | 2000-03-20 | 2004-09-14 | Biosphere Medical, Inc. | Injectable and swellable microspheres for dermal augmentation |
US20060199009A1 (en) * | 2005-03-02 | 2006-09-07 | Anderson Steven M | Particles |
US20070292676A1 (en) * | 2003-07-31 | 2007-12-20 | Oleg Naigertsik | Microcapsules Loaded with Active Ingredients and a Method for Their Preparation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972363A (en) * | 1997-04-11 | 1999-10-26 | Rohm And Haas Company | Use of an encapsulated bioactive composition |
CA2571899A1 (en) * | 2004-07-01 | 2006-08-03 | Yale University | Targeted and high density drug loaded polymeric materials |
-
2007
- 2007-11-05 US US11/935,210 patent/US20080107744A1/en not_active Abandoned
-
2010
- 2010-10-15 US US12/905,079 patent/US20110091564A1/en not_active Abandoned
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133854A (en) * | 1977-06-16 | 1979-01-09 | The United States Of America As Represented By The United States Department Of Energy | Method for producing small hollow spheres |
US4257799A (en) * | 1979-07-26 | 1981-03-24 | The United States Of America As Represented By The United States Department Of Energy | Method for producing small hollow spheres |
US4594363A (en) * | 1985-01-11 | 1986-06-10 | Rohm And Haas Company | Production of core-sheath polymer particles containing voids, resulting product and use |
US4782097A (en) * | 1986-10-01 | 1988-11-01 | Alcan International Limited | Process for the preparation of hollow microspheres |
US4972000A (en) * | 1988-02-29 | 1990-11-20 | Japan Synthetic Rubber Co., Ltd. | Hollow polymer particles, process for production thereof, and use thereof as pigment |
US5344452A (en) * | 1988-12-08 | 1994-09-06 | Martin Lemperle | Alloplastic implant |
US5571182A (en) * | 1988-12-12 | 1996-11-05 | Ersek; Robert A. | Textured micro implants |
US5258028A (en) * | 1988-12-12 | 1993-11-02 | Ersek Robert A | Textured micro implants |
US5770416A (en) * | 1989-05-26 | 1998-06-23 | Upfront Chromatography A/S | Permeable hollow particles having an outer shell of mechanically rigid porous material |
US5007940A (en) * | 1989-06-09 | 1991-04-16 | American Medical Systems, Inc. | Injectable polymeric bodies |
US4988567A (en) * | 1990-02-27 | 1991-01-29 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
US4968562A (en) * | 1990-02-27 | 1990-11-06 | Minnesota Mining And Manufacturing Company | Hollow acid-free acrylate polymeric microspheres having multiple small voids |
US5922025A (en) * | 1992-02-11 | 1999-07-13 | Bristol-Myers Squibb Company | Soft tissue augmentation material |
US5336263A (en) * | 1992-04-06 | 1994-08-09 | Robert A. Ersek | Treatment of urological and gastric fluid reflux disorders by injection of mmicro particles |
US5534348A (en) * | 1993-09-08 | 1996-07-09 | Pq Corporation | Hollow borosilicate microspheres and method of making |
US5451406A (en) * | 1994-07-14 | 1995-09-19 | Advanced Uroscience, Inc. | Tissue injectable composition and method of use |
US6136891A (en) * | 1996-03-06 | 2000-10-24 | Rhodia Chimie | Composite particles including an organic polymer and an oxide and/or hydroxide |
US6004308A (en) * | 1996-04-19 | 1999-12-21 | Mcneil-Ppc, Inc. | Adhesive attachment system with a non-tacky surface for sanitary napkins |
US5792478A (en) * | 1996-07-08 | 1998-08-11 | Advanced Uro Science | Tissue injectable composition and method of use |
US6716251B1 (en) * | 1997-06-13 | 2004-04-06 | Aventis Pharmaceuticals Holdings, Inc. | Implant for subcutaneous or intradermal injection |
US5834526A (en) * | 1997-07-11 | 1998-11-10 | Wu; Huey S. | Expandable hollow particles |
US20020037837A1 (en) * | 1997-07-15 | 2002-03-28 | Shigeyuki Takada | Process for producing sustained-release preparation |
US6660301B1 (en) * | 1998-03-06 | 2003-12-09 | Biosphere Medical, Inc. | Injectable microspheres for dermal augmentation and tissue bulking |
US6277392B1 (en) * | 1999-09-16 | 2001-08-21 | Carbon Medical Technologies, Inc. | Tissue injectable composition |
US6616946B1 (en) * | 1999-11-15 | 2003-09-09 | Biocure, Inc. | Triblock copolymer hollow particles for agent delivery by permeability change |
US6790456B2 (en) * | 2000-03-20 | 2004-09-14 | Biosphere Medical, Inc. | Injectable and swellable microspheres for dermal augmentation |
US6423332B1 (en) * | 2000-05-26 | 2002-07-23 | Ethicon, Inc. | Method and composition for deforming soft tissues |
US6720007B2 (en) * | 2000-10-25 | 2004-04-13 | Tufts University | Polymeric microspheres |
US20040219360A1 (en) * | 2000-10-25 | 2004-11-04 | Walt David R | Polymeric microspheres |
US20070292676A1 (en) * | 2003-07-31 | 2007-12-20 | Oleg Naigertsik | Microcapsules Loaded with Active Ingredients and a Method for Their Preparation |
US20060199009A1 (en) * | 2005-03-02 | 2006-09-07 | Anderson Steven M | Particles |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100311673A1 (en) * | 2006-09-29 | 2010-12-09 | Bryce Alden Harrison | Sulfanyl-tetrahydropyran-based compounds and methods of their use |
US8450296B2 (en) * | 2007-02-21 | 2013-05-28 | Cutanea Life Sciences, Inc. | Methods of use of biomaterial and injectable implant containing biomaterial |
US8445463B2 (en) * | 2007-02-21 | 2013-05-21 | Cutanea Life Sciences, Inc. | Methods of use of biomaterial and injectable implant containing biomaterial |
US9029350B2 (en) | 2007-02-21 | 2015-05-12 | Cutanea Life Sciences, Inc. | Methods of use of biomaterial and injectable implant containing biomaterial |
US20100323958A1 (en) * | 2007-02-21 | 2010-12-23 | Cutanea Life Sciences, Inc. | Methods of Use of Biomaterial and Injectable Implant Containing Biomaterial |
US20100323960A1 (en) * | 2007-02-21 | 2010-12-23 | Cutanea Life Sciences, Inc. | Methods of Use of Biomaterial and Injectable Implant Containing Biomaterial |
US8778909B2 (en) | 2007-08-02 | 2014-07-15 | Medicis Pharmaceutical Corporation | Method of applying an injectable filler |
US20090035251A1 (en) * | 2007-08-02 | 2009-02-05 | Wortzman Mitchell S | Method of applying an injectable filler |
US8455459B2 (en) | 2007-08-02 | 2013-06-04 | Medicis Pharmaceutical Corporation | Method of applying an injectable filler |
US20090204101A1 (en) * | 2007-08-20 | 2009-08-13 | Wortzman Mitchell S | Method of applying an injectable filler |
US8486467B1 (en) * | 2007-09-20 | 2013-07-16 | Albert G. Prescott | Dermal filler and method of using same |
US20090274764A1 (en) * | 2008-04-30 | 2009-11-05 | Do Hiep Q | Hollow Foam Beads for Treatment of Glioblastoma |
EP2177237A1 (en) * | 2008-10-20 | 2010-04-21 | Hoc Age CTA | Core fillings for prostheses |
WO2010065784A3 (en) * | 2008-12-03 | 2010-08-12 | Jakk Group, Inc. | Methods, devices, and compositions for dermal filling |
US20100136070A1 (en) * | 2008-12-03 | 2010-06-03 | Jakk Group, Inc. | Methods, devices, and compositions for dermal filling |
WO2010078538A2 (en) | 2009-01-03 | 2010-07-08 | Russell Anderson | Enhanced carriers for the delivery of microparticles to bodily tissues and fluids |
EP2384189A4 (en) * | 2009-01-03 | 2014-04-02 | Russell Anderson | Enhanced carriers for the delivery of microparticles to bodily tissues and fluids |
US9277999B2 (en) * | 2009-02-27 | 2016-03-08 | University of Pittsburgh—of the Commonwealth System of Higher Education | Joint bioscaffolds |
US20100222882A1 (en) * | 2009-02-27 | 2010-09-02 | Badylak Stephen F | Joint bioscaffolds |
US9314340B2 (en) | 2009-02-27 | 2016-04-19 | University of Pittsburgh—of the Commonwealth System of Higher Education | Joint bioscaffolds |
US9848987B2 (en) | 2009-02-27 | 2017-12-26 | University of Pittsburgh — Of the Commonwealth System of Higher Education | Joint bioscaffolds |
US20110024939A1 (en) * | 2009-07-28 | 2011-02-03 | Nilton Pereira Alves | Thermoplastic polyacrylonitrile production process |
US11794040B2 (en) | 2010-01-19 | 2023-10-24 | The Board Of Regents Of The University Of Texas System | Apparatuses and systems for generating high-frequency shockwaves, and methods of use |
US8679570B2 (en) * | 2010-04-27 | 2014-03-25 | Allergan, Inc. | Foam-like materials and methods for producing same |
US20110313073A1 (en) * | 2010-04-27 | 2011-12-22 | Allergan, Inc. | Foam-like materials and methods for producing same |
CN101933906A (en) * | 2010-08-20 | 2011-01-05 | 淮阴工学院 | A preparation method of small particle size, high mechanical strength sustained-release drug-loaded composite microspheres |
US10980590B2 (en) | 2011-01-19 | 2021-04-20 | Fractyl Laboratories, Inc. | Devices and methods for the treatment of tissue |
US10987149B2 (en) | 2011-01-19 | 2021-04-27 | Fractyl Laboratories, Inc. | Devices and methods for the treatment of tissue |
US10531942B2 (en) | 2011-02-28 | 2020-01-14 | Adient Medical, Inc. | Absorbable vascular filter |
US10383718B2 (en) | 2011-02-28 | 2019-08-20 | Adient Medical, Inc. | Absorbable vascular filter |
CN103458826A (en) * | 2011-02-28 | 2013-12-18 | 艾迪恩特医学公司 | Absorbable vascular filter |
EP3964262A1 (en) * | 2011-07-15 | 2022-03-09 | The Board Of Regents, The University Of Texas System | Apparatus for generating therapeutic shockwaves and applications of same |
EP2731568A4 (en) * | 2011-07-15 | 2015-03-25 | Univ Texas | APPARATUS FOR PRODUCING THERAPEUTIC SHOCK WAVES AND THEIR APPLICATION |
CN103781454A (en) * | 2011-07-15 | 2014-05-07 | 得克萨斯大学体系董事会 | Apparatus for generating therapeutic shockwaves and applications of same |
WO2013012724A1 (en) * | 2011-07-15 | 2013-01-24 | The Board Of Regents, The University Of Texas System | Apparatus for generating therapeutic shockwaves and applications of same |
US11865371B2 (en) | 2011-07-15 | 2024-01-09 | The Board of Regents of the University of Texas Syster | Apparatus for generating therapeutic shockwaves and applications of same |
EP2758087A4 (en) * | 2011-10-21 | 2015-09-09 | Nitta Casings Inc | COLLAGEN-POLYSACCHARIDE-BASED MATERIALS IMITATING BLOOD VESSELS, FABRICS AND BONES FOR MEDICAL, PHARMACEUTICAL AND ORTHOPEDIC APPLICATIONS AND METHODS OF PRODUCING THE SAME |
EP3417886A1 (en) * | 2011-10-21 | 2018-12-26 | Nitta Casings Inc. | Collagen-polysaccharide materials mimicking blood vessels, tissues and bones |
US20170007738A1 (en) * | 2011-11-09 | 2017-01-12 | Trustees Of Tufts College | Injectable silk fibroin foams and uses thereof |
US11701450B2 (en) * | 2011-11-09 | 2023-07-18 | Trustees Of Tufts College | Injectable silk fibroin foams and uses thereof |
US12201342B2 (en) | 2012-02-27 | 2025-01-21 | Fractyl Health, Inc. | Heat ablation systems, devices and methods for the treatment of tissue |
US10349998B2 (en) | 2012-02-27 | 2019-07-16 | Fractyl Laboratories, Inc. | Heat ablation systems, devices and methods for the treatment of tissue |
US10765474B2 (en) | 2012-02-27 | 2020-09-08 | Fractyl Laboratories, Inc. | Injectate delivery devices, systems and methods |
US11419659B2 (en) | 2012-02-27 | 2022-08-23 | Fractyl Health, Inc. | Heat ablation systems, devices and methods for the treatment of tissue |
US9333245B2 (en) | 2012-03-12 | 2016-05-10 | The Regents Of The University Of California | Methods and compositions for treating wounds and reducing the risk of incisional hernias |
US12178502B2 (en) | 2012-04-19 | 2024-12-31 | Fractyl Health, Inc. | Tissue expansion devices, systems and methods |
US11439457B2 (en) | 2012-07-30 | 2022-09-13 | Fractyl Health, Inc. | Electrical energy ablation systems, devices and methods for the treatment of tissue |
US10973561B2 (en) | 2012-08-09 | 2021-04-13 | Fractyl Laboratories, Inc. | Ablation systems, devices and methods for the treatment of tissue |
US12089887B2 (en) | 2012-08-09 | 2024-09-17 | Fractyl Health, Inc. | Ablation systems, devices and methods for the treatment of tissue |
US20150297520A1 (en) * | 2012-08-20 | 2015-10-22 | Sumitomo Dainippon Pharma Co., Ltd. | Medicament-containing hollow particle |
US11246639B2 (en) | 2012-10-05 | 2022-02-15 | Fractyl Health, Inc. | Methods, systems and devices for performing multiple treatments on a patient |
US10835767B2 (en) | 2013-03-08 | 2020-11-17 | Board Of Regents, The University Of Texas System | Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments |
US10857393B2 (en) | 2013-03-08 | 2020-12-08 | Soliton, Inc. | Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments |
US10299857B2 (en) | 2013-06-04 | 2019-05-28 | Fractyl Laboratories, Inc. | Methods, systems and devices for reducing the luminal surface area of the gastrointestinal tract |
US12102380B2 (en) | 2013-06-04 | 2024-10-01 | Fractyl Health, Inc. | Methods, systems and devices for reducing the luminal surface area of the gastrointestinal tract |
US11311333B2 (en) | 2013-06-04 | 2022-04-26 | Fractyl Health, Inc. | Methods, systems and devices for reducing the luminal surface area of the gastrointestinal tract |
US11986235B2 (en) | 2013-09-12 | 2024-05-21 | Fractyl Health, Inc. | Systems, methods and devices for treatment of target tissue |
US10864352B2 (en) | 2013-11-22 | 2020-12-15 | Fractyl Laboratories, Inc. | Systems, devices and methods for the creation of a therapeutic restriction in the gastrointestinal tract |
US10232143B2 (en) | 2013-11-22 | 2019-03-19 | Fractyl Laboratories, Inc. | Systems, devices and methods for the creation of a therapeutic restriction in the gastrointestinal tract |
US11826521B2 (en) | 2013-11-22 | 2023-11-28 | Fractyl Health, Inc. | Systems, devices and methods for the creation of a therapeutic restriction in the gastrointestinal tract |
CN103667144A (en) * | 2013-12-11 | 2014-03-26 | 山东华亚环保科技有限公司 | Domestic sewage treatment microbial inoculant |
US11166761B2 (en) | 2014-03-24 | 2021-11-09 | Fractyl Health, Inc. | Injectate delivery devices, systems and methods |
US10959774B2 (en) | 2014-03-24 | 2021-03-30 | Fractyl Laboratories, Inc. | Injectate delivery devices, systems and methods |
US9707314B2 (en) * | 2014-03-26 | 2017-07-18 | DePuy Synthes Products, Inc. | Acrylic bone cement having a delayed release polymerization inhibitor such as an anti-oxidant for increased working time |
US20150273107A1 (en) * | 2014-03-26 | 2015-10-01 | DePuy Synthes Products, Inc. | Acrylic Bone Cement Having a Delayed Release Polymerization Inhibitor such as an Anti-Oxidant For Increased Working Time |
US20170035678A1 (en) * | 2014-04-17 | 2017-02-09 | Merz Pharma Gmbh & Co. Kgaa | Composition for improving the appearance of ageing skin |
US10610663B2 (en) | 2014-07-16 | 2020-04-07 | Fractyl Laboratories, Inc. | Systems, devices and methods for performing medical procedures in the intestine |
US12127785B2 (en) | 2014-07-16 | 2024-10-29 | Fractyl Health, Inc. | Methods and systems for treating diabetes and related diseases and disorders |
US11103674B2 (en) | 2014-07-16 | 2021-08-31 | Fractyl Health, Inc. | Systems, devices and methods for performing medical procedures in the intestine |
US11565078B2 (en) | 2014-07-16 | 2023-01-31 | Fractyl Health Inc. | Systems, devices and methods for performing medical procedures in the intestine |
US9844641B2 (en) | 2014-07-16 | 2017-12-19 | Fractyl Laboratories, Inc. | Systems, devices and methods for performing medical procedures in the intestine |
US11185367B2 (en) | 2014-07-16 | 2021-11-30 | Fractyl Health, Inc. | Methods and systems for treating diabetes and related diseases and disorders |
US9757535B2 (en) | 2014-07-16 | 2017-09-12 | Fractyl Laboratories, Inc. | Systems, devices and methods for performing medical procedures in the intestine |
US10869718B2 (en) | 2014-07-16 | 2020-12-22 | Fractyl Laboratories, Inc. | Methods and systems for treating diabetes and related diseases and disorders |
US11878128B2 (en) | 2014-07-16 | 2024-01-23 | Fractyl Health, Inc. | Systems, devices and methods for performing medical procedures in the intestine |
EP3960159A1 (en) * | 2015-04-20 | 2022-03-02 | The Regents of the University of California | Encapsulated gas or partial vacuum ct contrast material |
US12178626B2 (en) | 2015-04-20 | 2024-12-31 | The Regents Of The University Of California | Encapsulated gas or partial vacuum CT contrast material |
JP2022003054A (en) * | 2015-04-20 | 2022-01-11 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California | Encapsulated gas or partial vacuum CT contrast material |
CN113499451A (en) * | 2015-04-20 | 2021-10-15 | 加利福尼亚大学董事会 | Encapsulated gas or partial vacuum CT contrast material |
US11229575B2 (en) | 2015-05-12 | 2022-01-25 | Soliton, Inc. | Methods of treating cellulite and subcutaneous adipose tissue |
US10029031B2 (en) * | 2015-10-28 | 2018-07-24 | Warsaw Orthopedic, Inc. | Bone void filler having sustained therapeutic agent release |
CN105694061A (en) * | 2016-03-03 | 2016-06-22 | 山东理工大学 | Method for preparing polyving akohol-polycaprolactone-poly trimethylene carbonate-poly(p-dioxanone) ternary graft copolymer |
US12138487B2 (en) | 2016-03-23 | 2024-11-12 | Soliton, Inc. | Pulsed acoustic wave dermal clearing system and method |
US11857212B2 (en) | 2016-07-21 | 2024-01-02 | Soliton, Inc. | Rapid pulse electrohydraulic (EH) shockwave generator apparatus with improved electrode lifetime |
US11813477B2 (en) | 2017-02-19 | 2023-11-14 | Soliton, Inc. | Selective laser induced optical breakdown in biological medium |
TWI727174B (en) * | 2017-05-30 | 2021-05-11 | 荷蘭商阿克法Ip有限公司 | A novel resorbing biodegradable medical and cosmetic composition |
KR20230048262A (en) * | 2017-05-30 | 2023-04-11 | 에이큐파 아이피 비.브이. | A novel resorbing biodegradable medical and cosmetic composition |
JP7235392B2 (en) | 2017-05-30 | 2023-03-08 | アクファー アイピー ビー.ヴィー. | Resorbable, biodegradable medical and cosmetic compositions containing poly(1,3-trimethylene carbonate) |
AU2018277198B2 (en) * | 2017-05-30 | 2023-08-31 | Aqpha Ip B.V | Resorbable biodegradable medical and cosmetic composition comprising poly(1,3-trimethylene carbonate) |
EP3409301A3 (en) * | 2017-05-30 | 2019-02-13 | Aqpha Ip B.V. | Resorbing biodegradable medical and cosmetic composition |
CN110997021A (en) * | 2017-05-30 | 2020-04-10 | 爱可法Ip有限公司 | Resorbable biodegradable pharmaceutical and cosmetic compositions comprising poly (1, 3-trimethylene carbonate) |
WO2018219987A1 (en) * | 2017-05-30 | 2018-12-06 | Aqpha Ip B.V. | Resorbable biodegradable medical and cosmetic composition comprising poly(1,3-trimethylene carbonate) |
US11331411B2 (en) | 2017-05-30 | 2022-05-17 | Aqpha Ip B.V. | Resorbable biodegradable medical and cosmetic composition comprising poly(1,3-trimethylene carbonate) |
JP2020521803A (en) * | 2017-05-30 | 2020-07-27 | アクファー アイピー ビー.ヴィー.Aqpha Ip B.V. | Resorbable biodegradable medical and cosmetic compositions containing poly(1,3-trimethylene carbonate) |
KR102776357B1 (en) * | 2017-05-30 | 2025-03-10 | 에이큐파 아이피 비.브이. | A novel resorbing biodegradable medical and cosmetic composition |
CN107376032A (en) * | 2017-08-16 | 2017-11-24 | 复旦大学 | A kind of vesicoureteric reflux injection treatment filler and preparation method thereof |
CN107802617A (en) * | 2017-12-12 | 2018-03-16 | 天津北洋百川生物技术有限公司 | A kind of β polymalic acids/hydroxypropyl methylcellulose microcapsules and its preparation method and application |
CN109793943A (en) * | 2018-01-12 | 2019-05-24 | 北京幸福益生高新技术有限公司 | A kind of formula and preparation method of scar reparation |
US20210244858A1 (en) * | 2018-10-03 | 2021-08-12 | Prollenium Medical Technologies, Inc. | Soft tissue filler composition with hyaluronic acid and benzyl alcohol |
US12097162B2 (en) | 2019-04-03 | 2024-09-24 | Soliton, Inc. | Systems, devices, and methods of treating tissue and cellulite by non-invasive acoustic subcision |
CN110960682A (en) * | 2019-12-13 | 2020-04-07 | 厦门大学 | Method for enhancing drug load in molten state for long time after high pressure of pH-regulated gel |
CN115279427A (en) * | 2020-03-17 | 2022-11-01 | 微仙美国有限公司 | Liquid embolus |
CN112920425A (en) * | 2021-01-22 | 2021-06-08 | 华东数字医学工程研究院 | Medical hydrogel composition, medical hydrogel and preparation method thereof |
CN114848892A (en) * | 2022-03-29 | 2022-08-05 | 和携科技有限公司 | Temperature-sensitive hydrogel, preparation method and application thereof |
US12303185B2 (en) | 2022-08-02 | 2025-05-20 | Fractyl Health, Inc. | Electrical energy ablation systems, devices and methods for the treatment of tissue |
CN115353713A (en) * | 2022-09-07 | 2022-11-18 | 吉林省中研高分子材料股份有限公司 | Composite material for electronic cigarette and preparation method thereof |
US20240399028A1 (en) * | 2023-06-02 | 2024-12-05 | 33 Medical, Inc. | Compositions for treatment of discogenic pain, and processes for making and using the same |
Also Published As
Publication number | Publication date |
---|---|
US20110091564A1 (en) | 2011-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080107744A1 (en) | Injectable hollow tissue filler | |
US10722445B2 (en) | Biphasic compositions for tissue augmentation | |
JP4490095B2 (en) | Biodegradable injectable implants and related methods of manufacture and use | |
JP3004724B2 (en) | Treatment of reflux obstruction by microparticle injection | |
US5571182A (en) | Textured micro implants | |
US8163714B2 (en) | Injectable crosslinked and uncrosslinked alginates and the use thereof in medicine and in cosmetic surgery | |
EP1404294B1 (en) | Biodegradable polymer composition | |
EP1511522B1 (en) | Bulking agents | |
AU2010325158B2 (en) | Granules of porous biocompatible materials | |
EP2170287B1 (en) | Microparticles comprising pcl and uses thereof | |
US20070218124A1 (en) | Polymerizable emulsions for tissue engineering | |
EP2384189B1 (en) | Enhanced carriers for the delivery of microparticles to bodily tissues and fluids | |
JP2003527172A (en) | Composition for tissue expansion and coating | |
CN102164619A (en) | Composition and method for treating tissue defects | |
CN101495102A (en) | Soft Tissue Fillers | |
AU2011210316A1 (en) | Polymer gel formulation | |
US20240033283A1 (en) | Functionalized and crosslinked polymers | |
CN116672498A (en) | A kind of composite material for injection and its application | |
RI et al. | PLGA microspheres in hyaluronic acid gel as a potential bulking agent for urologic and dermatologic injection therapies | |
WO2002017816A1 (en) | Methods and compositions for tissue augmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |