US20080201101A1 - Auto-Referenced System and Apparatus for Three-Dimensional Scanning - Google Patents
Auto-Referenced System and Apparatus for Three-Dimensional Scanning Download PDFInfo
- Publication number
- US20080201101A1 US20080201101A1 US11/817,300 US81730006A US2008201101A1 US 20080201101 A1 US20080201101 A1 US 20080201101A1 US 81730006 A US81730006 A US 81730006A US 2008201101 A1 US2008201101 A1 US 2008201101A1
- Authority
- US
- United States
- Prior art keywords
- positioning features
- coordinate system
- positioning
- sensing device
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009466 transformation Effects 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 230000001131 transforming effect Effects 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 4
- 230000001955 cumulated effect Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 2
- 238000000844 transformation Methods 0.000 abstract description 2
- 230000008901 benefit Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000004441 surface measurement Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229940011235 tritop Drugs 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/245—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2513—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
Definitions
- the present invention generally relates to the field of three-dimensional scanning of an object's surface geometry, and, more particularly, to a portable three-dimensional scanning apparatus for hand-held operations.
- Three-dimensional scanning and digitization of the surface geometry of objects is now commonly used in many industries and services and their applications are numerous.
- a few examples of such applications are: inspection and measurement of shape conformity in industrial production systems, digitization of clay models for industrial design and styling applications, reverse engineering of existing parts with complex geometry, interactive visualization of objects in multimedia applications, three-dimensional documentation of artwork and artefacts, human body scanning for better orthesis adaptation or biometry.
- the shape of an object is scanned and digitized using a ranging sensor that measures the distance between the sensor and a set of points on the surface. From these measurements, three dimensional coordinates of points on the target surface are obtained in the sensor reference frame. From a given viewpoint, the ranging sensor can only acquire distance measurements on the visible portion of the surface. To digitize the whole object, the sensor must therefore be moved to a plurality of viewpoints in order to acquire sets of range measurements that cover the entire surface.
- a model of the object's surface geometry can be built from the whole set of range measurements provided in a global common coordinate system.
- a light projector facilitates the detection of reflected points anywhere on the object's surface so as to provide a dense set of measured surface points.
- the light source is a laser source projecting a spot, a light plane or many other possible patterns of projection such as a crosshair.
- This type of projector with coherent light offers good depth of field characteristics but is subject to speckle noise. It is also possible to project non coherent light patterns (e.g. white light) to avoid speckle when a loss in the depth of field is less critical.
- To scan an object means to collect points on its surface.
- the points can be further structured in the form of curves (profiles) or range images.
- To scan the whole surface of an object one must displace the sensor.
- the sensor is usually a single assembly comprising the light detector and the projector.
- the light detector and the projector can be a rigid set or it is also common that the light projector be a scanning mechanism within the sensor device.
- the sensor can be moved around the object using a mechanical system or hand-held for more versatility. Portable hand-held systems are especially useful for rapid scanning and for objects that must be scanned on site.
- the main challenge is to continuously estimate the position and orientation (6 degrees of freedom) of the apparatus in a global coordinate system fixed relative to the object.
- This can be accomplished using a positioning device (see U.S. Pat. No. 6,508,403) that is coupled to the range scanner.
- a positioning device significantly increases the complexity and cost of the apparatus. It is also cumbersome in some cases or noisy enough to limit the quality of the integrated data.
- an alternative consists of using the 3D measurements collected on a rigid object in order to compute the relative position and orientation between the apparatus and the object. It is even possible to hold and displace the object in hand while scanning (see S. Rusinkiewicz, O. Hall-Holt and M. Levoy, “Real-Time 3D Model Acquisition”, in ACM Transactions on Graphics, vol. 21, no. 3, July 2002, pp. 438-446, F. Blais, M. Picard and G. Godin, “Accurate 3D Acquisition of Freely Moving Objects,” in proc. of the Second International Symposium on 3D Data Processing, Visualization and Transmission. Thessaloniki, Greece. Sep. 6-9, 2004. NRC 47141).
- a photogrammetric model of the set of retro-reflective targets is measured and built beforehand, using a digital camera. Then, the 3D sensor apparatus is displaced at a set of fixed positions to measure the surface geometry. The range images can be registered to the formerly constructed model of positioning features since the 3D sensor apparatus can detect the retro-reflective targets.
- a system for three-dimensional scanning comprising a hand-held sensing device including a set of at least one laser pattern projector, a set of at least two objectives and light detectors, said sensing device providing images from each light detector; and an image processor configured for obtaining at least one set of 2D surface points originating from the reflection of the said projected laser pattern on the object's surface and at least two sets of 2D positioning features originating from the observation of target positioning features; and a 3D surface point calculator for transforming the said sets of 2D surface points into a set of 3D surface points related to the sensor coordinate system; and a 3D positioning feature calculator for transforming the said sets of 2D positioning features into a set of calculated 3D positioning features related to the sensor coordinate system; and a positioning feature matcher for matching the sets of 3D positioning features and 2D positioning features to an accumulated representation of the already observed positioning features and calculating the spatial relationship between the current sensing device and the said accumulated representation of positioning features; and a 3D
- an apparatus embedding a hand-held sensing device including a set of at least one laser pattern projector, a set of at least two objectives and light detectors, wherein a subset of said light detectors comprise a light source for illuminating and facilitating the detection of retro-reflective target reference points in the scene, said apparatus being connected to a computer for providing at least one set of 2D surface points originating from the reflection of the projected pattern on the object's surface and at least one set of 2D positioning features originating from the observation of target positioning features.
- a method for obtaining 3D surface points in a global coordinate system using a hand-held device comprising the steps of obtaining at least one set of 2D surface points originating from the reflection of the laser projected pattern on the object's surface and at least two sets of 2D positioning features originating from the observation of target positioning features; and transforming the said sets of 2D surface points into a set of 3D surface points related to the sensor coordinate system; and transforming the said sets of 2D positioning features into a set of calculated 3D positioning features related to the sensor coordinate system; and matching the sets of 3D positioning features and 2D positioning features to an accumulated representation of the already observed positioning features and calculating the spatial relationship between the current sensing device and the said accumulated representation of positioning features; and transforming the sets of 3D positioning features into a set of calculated 3D positioning features related to the global coordinate system; and calculating, updating and accumulating a representation of the already observed 3D positioning features; and transforming the said set of 3D surface points into a global coordinate system
- a method for obtaining 3D surface points of an object in an object coordinate system using an hand-held device comprising providing a projection pattern on said object; securing a set of positioning features on said object such that said object and, accordingly, said object coordinate system can be moved in space while said positioning features stay still on said object; acquiring a pair of 2D images of said projection pattern on said object and of at least part of said set of positioning features, an acquiring position of said pair of 2D images being defined in a sensing device coordinate system; extracting, from said pair of 2D images, a pair of sets of 2D surface points originating from said projection pattern and a pair of sets of 2D positioning features originating from said at least part of said set of positioning features; calculating a set of 3D surface points in said sensing device coordinate system using said pair of sets of 2D surface points; calculating a set of 3D positioning features in said sensing device coordinate system using said pair of sets of 2D positioning features; computing transformation parameters for characterizing
- a system for acquiring a 3D surface points of an object in an object coordinate system comprising a sensing device having a pattern projector for providing a projection pattern on said object, a pair of cameras for acquiring a pair of 2D images of said projection pattern on said object and of at least part of a set of positioning features, and a sensing device coordinate system, said set of positioning features being secured on said object such that said object and, accordingly, said object coordinate system can be moved in space while said positioning features stay still on said object; an image processor for extracting, from said pair of 2D images, a pair of sets of 2D surface points originating from said projection pattern and a pair of sets of 2D positioning features originating from said at least part of said set of positioning features; a 3D surface point calculator for calculating a set of 3D surface points in said sensing device coordinate system using said pair of sets of 2D surface points; a 3D positioning features calculator for calculating a set of 3D positioning features in said sensing device coordinate
- an auto-referenced sensing device for scanning an object to provide 3D surface points thereof in an object coordinate system
- said sensing device comprising: a sensing device current coordinate system; a pattern projector for providing a projection pattern on said object; a pair of cameras for acquiring a pair of 2D images of said projection pattern and of at least part of a set of positioning features, said positioning features being located such that at least part of said positioning features are in said pair of 2D images at a given time, a spatial relationship between said pair of cameras being known, said pair of 2D images for providing calculated 3D surface points of said object and calculated 3D positioning features in said sensing device current coordinate system, said calculated 3D positioning features for characterizing a spatial transformation between said current sensing device coordinate system and said object coordinate system by matching corresponding features between said set of calculated 3D positioning features in said sensing device current coordinate system and in a set of reference 3D positioning features in said object coordinate system, transformed 3D surface points in said object coordinate system being calculated using said transformation.
- a system, apparatus and method for three-dimensional scanning and digitization of the surface geometry of objects are claimed.
- the system comprises a hand-held apparatus that is auto-referenced.
- the system is auto-referenced since it does not need any positioning device to provide the 6 degree of freedom transformations that are necessary to integrate 3D measurements in a global coordinate system while the apparatus is manipulated to scan the surface.
- the system continuously calculates its own position and orientation from observation while scanning the surface geometry of an object. To do so, the system exploits a triangulation principle and integrates an apparatus that captures both surface points originating from the reflection of a projected laser pattern on an object's surface and 2D positioning features originating from the observation of target positioning features.
- a significant advantage of the described system is its capability to implement a method that makes it possible to simultaneously build and match a 3D representation of the positioning features while accumulating the 3D surface points describing the surface geometry.
- FIG. 1 is a block diagram illustrating a system for three-dimensional surface scanning in accordance with the present invention.
- FIG. 2 depicts a configuration of an apparatus for three-dimensional surface scanning in accordance with the present invention.
- FIG. 3 illustrates a configuration of the apparatus depicted in FIG. 2 along with the object to be measured during acquisition, in accordance with the present invention.
- the 3D surface scanning system is generally shown at 10 .
- the system comprises a sensing device 12 described in more details thereafter in this description.
- the sensing device 12 collects and transmits a set of images 13 , namely a frame, of the observed scene to an image processor 14 . These images are collected from at least two viewpoints where each of these viewpoints has its own center of projection.
- the relevant information encompassed in the images results from the laser projection pattern reflected on the object's surface as well as positioning features that are used to calculate the relative position of the sensing device with respect to other frame captures. Since all images in a given frame, are captured simultaneously and contain both positioning and surface measurements, synchronisation of positioning and surface measurement is implicit.
- the positioning features are secured on the object such that the object can be moved in space while the positioning features stay still on the object and, accordingly, with respect to the object's coordinate system. It allows the object to be moved in space while its surface is being scanned by the sensing device.
- the image processor 14 extracts positioning features and surface points from each image. For each image, a set of 2D surface points 15 and a second set of observed 2D positioning features 21 are output. These points and features are identified in the images based on their intrinsic characteristics. Positioning features are either the trace of isolated laser points or circular retro-reflective targets. The pixels associated with these features are contrasting with respect to the background and may be isolated with simple image processing techniques before estimating their position using centro ⁇ d or ellipse fitting (see E. Trucco and A. Verri, “Introductory techniques for 3-D computer vision”, Prentice Hall, 1998, p. 101-108).
- Using circular targets allows one to extract surface normal orientation information from the equation of the fitted ellipse, therefore facilitating sensing device positioning.
- the sets of surface points are discriminated from the positioning features since the laser pattern projector produces contrasting curve sections in the images and thus presenting a different 2D shape.
- the image curve sections are isolated as single blobs and for each of these blobs, the curve segment is analyzed for extracting a set of points on the curve with sub-pixel precision. This is accomplished by convolving a differential operator across the curve section and interpolating the zero-crossing of its response.
- the sets of surface points 15 follow one path in the system to recover the whole scan of the surface geometry
- the sets of observed 2D positioning features 21 follow a second path and are used to recover the relative position of the sensing device with respect to the object's surface.
- these two types of sets are further processed for obtaining 3D information in the sensing device coordinate system.
- the sensing device Since the sensing device is calibrated, matched positioning features between camera viewpoints are used to estimate their 3D position using the 3D positioning features calculator 22 .
- the sets of observed 2D positioning features are matched using the epipolar constraint to obtain non ambiguous matches.
- the epipolar lines are calculated using the fundamental matrix that is calculated from the calibrated projection matrices of the cameras.
- triangulation is applied to calculate a single set of calculated 3D positioning features in the sensing device coordinate system 23 . This set of points will be fed to the positioning features matcher for providing the observation on the current state of the sensing device, and to the 3D positioning features transformer for an eventual update of the reference 3D positioning features in the object coordinate system.
- the 3D surface point calculator 16 takes as input the extracted sets of 2D surface points 15 . These points can be associated with a section of the laser projected pattern, for instance one of the two planes for the crosshair pattern. When the association is known, each of the 2D points can be transformed into a 3D point in the sensing device coordinate system by intersecting the corresponding cast ray and the equation of the laser plane. The equation of the ray is obtained from the projection matrix of the associated camera. The laser plane equation is obtained using a pre-calibration procedure (see P. Hébert, “A Self-Referenced Hand-Held Range Sensor”. in proc. of the 3rd International Conference on 3D Digital Imaging and Modeling (3DIM 2001), 28 May-1 Jun. 2001, Quebec City, Canada, pp.
- the 3D surface point calculator 16 thus outputs a set of calculated 3D surface points in the sensing device coordinate system 17 .
- This can be an unorganized set or preferably, the set is organized such that 3D points associated with connected segments in the images are grouped for estimating 3D curve tangent by differentiation. This information can be exploited by the surface reconstructor for improved quality of the recovered surface model 31 .
- the task of the positioning subsystem mainly implemented in the positioning features matcher 24 and in the reference positioning features builder 28 , is to provide transformation parameters 25 for each set of calculated 3D surface points 17 .
- These transformation parameters 25 make it possible to transform calculated 3D surface points 17 into a single, object coordinate system while preserving the structure; the transformation is rigid. This is accomplished by building and maintaining a set of reference 3D positioning features 29 in the object coordinate system.
- the positioning features can be a set of 3D points, a set of 3D points with associated surface normal or any other surface characteristic. In this preferred embodiment it is assumed that all positioning features are 3D points, represented as column vectors [x,y,z] T containing three components denoting the position of the points along the three coordinate axes.
- the set of reference 3D positioning features 29 is empty. As the sensing device 12 provides the first measurements and the system calculates sets of calculated 3D positioning features 23 , the features are copied into the set of reference 3D positioning features 29 using the identity transformation. This set thus becomes the reference set for all subsequent sets of reference 3D positioning features 29 and this first sensing device position defines the object coordinate system into which all 3D surface points are aligned.
- subsequent sets of calculated 3D positioning features 23 are first matched against the reference set 29 .
- the matching operation is divided into two tasks: i) finding corresponding features between the set of calculated 3D positioning features in the sensing device coordinate system 23 and the set of reference 3D features in the object coordinate system, and ii) computing the transformation parameters 25 of the optimal rigid 3D transformation that best aligns the two sets. Once the parameters have been computed, they are used to transform both calculated 3D positioning features 23 and calculated 3D surface points 17 thus aligning them into the object coordinate system.
- the input to the positioning features matcher 24 are the set of reference 3D positioning features 29 , R, the set of calculated 3D positioning features 23 , O, along with two sets of observed 2D positioning features 21 , P 1 and P 2 which were also used by the 3D positioning features calculator 22 , as explained above.
- Matching these sets is the problem of finding two subsets O m ⁇ O and R m ⁇ R, containing N features each, such that all pairs of points (o i ,r i ) with o i ⁇ O m and r i ⁇ R m , represent the same physical features. Finding these subsets is accomplished by finding the maximum number of segments of points ( o i o j ; r i r j ), such that
- ⁇ is a predefined threshold which is set to correspond to the accuracy of the sensing device. This constraint imposes that the difference in distance between a corresponding pair of points in the two sets be negligible.
- This matching operation is solved as a combinatorial optimization problem where each segment of points from the set O is progressively matched against each segment of points in the set R. Each matched segment is then expanded by forming an additional segment using the remaining points in each of the two sets. If two segments satisfy the constraint (1), a third segment is formed and so on as long as the constraint is satisfied. Otherwise the pair is discarded and the next one is examined. The solution is the largest set of segments satisfying (1).
- Other algorithms see M. Fischler and R. Bolles, (1981) “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the Assoc. for Computing Machinery, (June 1981), vol. 24, no. 6, pp. 381-395.
- the computational complexity of the above approach is acceptable for real-time operation.
- the number of reference 3D positioning features 29 can easily reach several hundreds. Since the computational complexity grows exponentially with the number of features, the computation of corresponding features becomes too slow for real-time applications. The problem is solved by noting that the number of positioning features that are visible from any particular viewpoint is small, being limited by the finite field of view of the sensing device.
- the above method is modified as follows. Prior to matching, a set of neighbouring features [N i ] is created for each reference feature. After the initial segment of points is matched, it is expanded by adding an additional segment using only points in the neighbourhood set [N i ] of the first matched feature. By doing so, the number of points used for matching remains low regardless of the size of the set of reference 3D positioning features 29 , thus preventing an exponential growth of the computational complexity.
- sensing device position and orientation can be used to improve matching speed.
- the displacement of the sensing device is small with respect to the size of the set of positioning features
- matching can be accomplished by finding the closest reference feature for each observed positioning feature.
- the same principle can be used in 2D, that is, by finding closest 2D positioning features.
- ⁇ i 1 N ⁇ ⁇ r i - Mo i + T ⁇ 2 , for ⁇ ⁇ all ⁇ ⁇ i ⁇ ⁇ 1 , ... ⁇ , N ⁇ . ( 2 )
- the transformation parameters consist of a 3 ⁇ 3 rotation matrix Mand a 3 ⁇ 1 translation vector T.
- Such a transformation can be found using dual quaternions as described in M. W. Walker, L. Shao and R. A. Volz, “Estimating 3-D location parameters using dual number quaternions”, CVGIP: Image Understanding, vol. 54, no. 3, November 1991, pp. 358-367.
- CVGIP Image Understanding, vol. 54, no. 3, November 1991, pp. 358-367.
- at least three common positioning features have to be found. Otherwise both positioning features and surface points are discarded for the current frame.
- An alternative method for computing the rigid transformation is to minimize the distance between observed 2D positioning features 21 and the projections of reference 3D positioning features 29 .
- the rigid transformation [M T] that is optimal in the least-squares sense is the transform that minimizes:
- ⁇ i 1 N ⁇ ⁇ ⁇ ⁇ ⁇ M - 1 ⁇ ( r i - T ) - p i ⁇ 2 , for ⁇ ⁇ all ⁇ ⁇ i , j ⁇ ⁇ 1 , ... ⁇ , N ⁇ , ( 3 )
- the 3D positioning features transformer 26 transforms the set of calculated 3D positioning features from the sensing device coordinate system 23 to the object coordinate system 27 .
- the transformed 3D positioning features are used to update the set of reference 3D positioning features 29 in two ways. First, if only a subset of observed features has been matched against the set of reference 3D positioning features 29 , the unmatched observed features represent newly observed features that are added to the reference set.
- the features that have been re-observed and matched can be either discarded (since they are already in the reference set) or used to improve, that is, filter the existing features. For example, all observations of the same feature can be summed together in order to compute the average feature position. By doing so, the variance of the measurement noise is reduced thus improving the accuracy of the positioning system.
- the processing steps for the surface points are simple once the positioning features matcher 24 makes the transformation parameters 25 available.
- the set of calculated 3D surface points in the sensing device coordinate system 17 provided by the 3D surface point calculator 16 are then transformed by the 3D surface point transformer 18 using the same transformation parameters 25 provided by the positioning features matcher 24 , which is the main link of information between the positioning subsystem and the integration of surface points in the object coordinate system.
- the resulting set of transformed 3D surface points in the object coordinate system 19 is thus naturally aligned in the same coordinate system with the set of reference 3D positioning features 29 .
- the final set of 3D surface points 19 can be visualized or preferably fed to a surface reconstructor 20 that estimates a continuous non-redundant and possibly filtered surface representation 31 that is displayed, on a user interface display 30 , optionally with the superimposed set of reference 3D positioning features 29 .
- FIG. 2 illustrates a front view of a sensing device 40 that is used in this preferred embodiment of the system.
- the device comprises two objectives and light detectors 46 that are typically progressive scan digital cameras.
- the two objectives and light detectors 46 have their centers of projection separated by a distance D 1 52 , namely the baseline, and compose a passive stereo pair of light detectors.
- the laser pattern projector 42 is preferably positioned at a distance D 3 56 from the baseline of the stereo pair to compose a compact triangular structure leading to two additional active sensors, themselves composed in the first case by the left camera and the laser pattern projector and, in the second case by the right camera and the laser pattern projector.
- the baseline D 2 54 is depicted in the figure.
- the sensing device further comprises light sources for positioning.
- Interference filters 48 are mounted in front of the objectives. These filters attenuate all wavelengths except for the laser wavelength that is matched to the LEDs' wavelength. This preferred triangular structure is particularly interesting when D 3 56 is such that the triangle is isosceles with two 45 degree angles and a 90 degree angle between the two laser planes of the crosshair 44 .
- the crosshair pattern is oriented such that each plane is aligned with both the center of projection of each camera as well as with the center of the light detectors.
- the relevant 3D information is then extracted from the deformed second plane of light in each of the two images.
- the whole sensing device is thus composed of two laser profilometers, one passive stereo pair and two modules for simultaneously capturing retro-reflective targets. This preferred configuration is compact.
- the baseline D 1 will be typically around 200 mm for submillimeter accuracy at a standoff distance of 300 to 400 mm between the sensing device and the object.
- distances D 2 automatically follow.
- this arrangement is particularly useful for simplifying the discrimination between the 2D positioning features and the projected laser pattern in the images, integrating a stereo pair and eventually one or more additional cameras for a better discrimination and accuracy, makes it possible to process images where a different laser pattern is projected. Grids and circular patterns are relevant examples.
- FIG. 3 illustrates a 3D view of the sensing device while observing an object to be measured 62 .
- the sensing device captures the image of the projected pattern 58 including a set of positioning features 60 .
- the positioning features could alternatively be provided by light sources, such as LEDs, disposed on the surface of the object to be scanned or elsewhere, or by any other means that provide targets to be detected by the sensing device. Additionally, the light sources provided on the sensing device could be omitted if the positioning features themselves provide the light to be detected by the cameras.
- pattern projector hereinabove described as comprising a laser light source could also use a LED source or any other appropriate light source.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
- The present invention generally relates to the field of three-dimensional scanning of an object's surface geometry, and, more particularly, to a portable three-dimensional scanning apparatus for hand-held operations.
- Three-dimensional scanning and digitization of the surface geometry of objects is now commonly used in many industries and services and their applications are numerous. A few examples of such applications are: inspection and measurement of shape conformity in industrial production systems, digitization of clay models for industrial design and styling applications, reverse engineering of existing parts with complex geometry, interactive visualization of objects in multimedia applications, three-dimensional documentation of artwork and artefacts, human body scanning for better orthesis adaptation or biometry.
- The shape of an object is scanned and digitized using a ranging sensor that measures the distance between the sensor and a set of points on the surface. From these measurements, three dimensional coordinates of points on the target surface are obtained in the sensor reference frame. From a given viewpoint, the ranging sensor can only acquire distance measurements on the visible portion of the surface. To digitize the whole object, the sensor must therefore be moved to a plurality of viewpoints in order to acquire sets of range measurements that cover the entire surface. A model of the object's surface geometry can be built from the whole set of range measurements provided in a global common coordinate system.
- Different principles have been developed for range sensors (see F. Blais, “A Review of 20 Years of Range Sensor Development”, in proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol. 5013, 2003, pp. 62-76). Among them, interferometry, time-of-flight and triangulation-based principles are well known principles that are each more or less appropriate depending on the requirements on accuracy, the standoff distance between the sensor and the object, and the required depth of field.
- We are especially interested in triangulation-based range sensors that are generally adequate for close range measurements, typically inferior to a few meters. Using this type of apparatus, one must collect two observations of a same feature point on the object from two different viewpoints separated by a baseline distance. From the baseline and two ray directions, the relative position of the observed point can be recovered. The intersection of both rays is solved for using the knowledge of one side length and two angles in the triangle. This is actually the principle of passive stereovision. One can replace a light detector with a light projector issuing a set of rays in known directions. In this case, it is possible to exploit the orientation of the projector and each detected ray reflected on the object's surface for solving a triangle. In both cases, it is possible to calculate the coordinates of each observed feature point relative to the basis of the triangle. Although specialized light detectors can be used, digital CCD or CMOS cameras are typically used.
- The usage of a light projector facilitates the detection of reflected points anywhere on the object's surface so as to provide a dense set of measured surface points. Typically, the light source is a laser source projecting a spot, a light plane or many other possible patterns of projection such as a crosshair. This type of projector with coherent light offers good depth of field characteristics but is subject to speckle noise. It is also possible to project non coherent light patterns (e.g. white light) to avoid speckle when a loss in the depth of field is less critical.
- To scan an object means to collect points on its surface. The points can be further structured in the form of curves (profiles) or range images. To scan the whole surface of an object, one must displace the sensor. Although it is possible to move the projector independently (see J. Y. Bouguet and P. Perona, “3D Photography Using Shadows in Dual-Space Geometry”, Int. Journal of Computer Vision, vol. 35, No. 2, November-December 1999, pp. 129-149.) the sensor is usually a single assembly comprising the light detector and the projector. The light detector and the projector can be a rigid set or it is also common that the light projector be a scanning mechanism within the sensor device. The sensor can be moved around the object using a mechanical system or hand-held for more versatility. Portable hand-held systems are especially useful for rapid scanning and for objects that must be scanned on site.
- Using a hand-held system, the main challenge is to continuously estimate the position and orientation (6 degrees of freedom) of the apparatus in a global coordinate system fixed relative to the object. This can be accomplished using a positioning device (see U.S. Pat. No. 6,508,403) that is coupled to the range scanner. Using a positioning device significantly increases the complexity and cost of the apparatus. It is also cumbersome in some cases or noisy enough to limit the quality of the integrated data.
- To avoid the usage of an external positioning device, an alternative consists of using the 3D measurements collected on a rigid object in order to compute the relative position and orientation between the apparatus and the object. It is even possible to hold and displace the object in hand while scanning (see S. Rusinkiewicz, O. Hall-Holt and M. Levoy, “Real-
Time 3D Model Acquisition”, in ACM Transactions on Graphics, vol. 21, no. 3, July 2002, pp. 438-446, F. Blais, M. Picard and G. Godin, “Accurate 3D Acquisition of Freely Moving Objects,” in proc. of the Second International Symposium on 3D Data Processing, Visualization and Transmission. Thessaloniki, Greece. Sep. 6-9, 2004. NRC 47141). This idea of integrating the computation of the position directly into the system while exploiting measurement is interesting but these systems depend completely on the geometry of the object and it is not possible to ensure that an accurate estimate of the pose be maintained. For instance, objects whose geometry variation is weak or objects with local symmetries with spherical, cylindrical or planar shapes, lead to non constant quality in positioning. - One can exploit principles of photogrammetry by using fixed points or features that can be re-observed from various viewpoints in the scene. These positioning features can be natural points in the scene but in many cases their density or quality is not sufficient and target positioning features are set in the scene. One may thus collect a set of images and model the 3D set of positioning features in a common global coordinate system. One can further combine this principle using a camera with a 3D surface scanner. The complementarity of photogrammetry and range sensing has been developed (see http://www.gom-online.de/En/Products/tritop.html, Mar. 8, 2006) where a white light projector is used with cameras enlighting retro-reflective targets. Using this type of system, a photogrammetric model of the set of retro-reflective targets is measured and built beforehand, using a digital camera. Then, the 3D sensor apparatus is displaced at a set of fixed positions to measure the surface geometry. The range images can be registered to the formerly constructed model of positioning features since the 3D sensor apparatus can detect the retro-reflective targets.
- An interesting idea is to integrate within a same system a hand-held scanner projecting a light pattern but also with the capability of self-positioning while simultaneously observing positioning features. Hebert (see P. Hébert, “A Self-Referenced Hand-Held Range Sensor”. in proc. of the 3rd International Conference on 3D Digital Imaging and Modeling (3DIM 2001), 28 May-1 Jun. 2001, Quebec City, Canada, pp. 5-12) proposed to project laser points on the object to be scanned with an external fixed projector to help position the hand-held sensor. Nevertheless, although the system is freely hand-held, it is limited since it does not build a model of the positioning feature points dynamically; there must exist a single viewpoint where all—three—positioning feature points are visible.
- It would thus be of great interest to simultaneously scan and model the object's surface while accumulating a second model of the positioning features in real-time using a single hand-held sensor. Furthermore, by fixing additional physical targets as positioning features on an object, it would be possible to hold the object in one hand while holding the scanner in the second hand without depending on the object's surface geometry for the quality of the calculated sensor positions.
- It is therefore an aim of the present invention to provide a 3D laser scanning system that can simultaneously measure the 3D surface geometry and measure a model of a set of positioning features for positioning.
- It is further an aim of the present invention to provide a compact apparatus embedding a hand-held sensing device for scanning the surface geometry of an object.
- It is still a further aim of the present invention to provide an improved method for 3-D scanning of objects.
- Therefore, in accordance with the present invention, there is provided a system for three-dimensional scanning, said system comprising a hand-held sensing device including a set of at least one laser pattern projector, a set of at least two objectives and light detectors, said sensing device providing images from each light detector; and an image processor configured for obtaining at least one set of 2D surface points originating from the reflection of the said projected laser pattern on the object's surface and at least two sets of 2D positioning features originating from the observation of target positioning features; and a 3D surface point calculator for transforming the said sets of 2D surface points into a set of 3D surface points related to the sensor coordinate system; and a 3D positioning feature calculator for transforming the said sets of 2D positioning features into a set of calculated 3D positioning features related to the sensor coordinate system; and a positioning feature matcher for matching the sets of 3D positioning features and 2D positioning features to an accumulated representation of the already observed positioning features and calculating the spatial relationship between the current sensing device and the said accumulated representation of positioning features; and a 3D positioning feature transformer for transforming the sets of 3D positioning features into a set of calculated 3D positioning features related to the global coordinate system; and a 3D reference positioning feature model builder for calculating, updating and accumulating a representation of the already observed 3D positioning features; and a 3D surface point transformer for transforming the said set of 3D surface points into a global coordinate system related to the 3D positioning feature representation.
- Also in accordance with the present invention, there is provided an apparatus embedding a hand-held sensing device including a set of at least one laser pattern projector, a set of at least two objectives and light detectors, wherein a subset of said light detectors comprise a light source for illuminating and facilitating the detection of retro-reflective target reference points in the scene, said apparatus being connected to a computer for providing at least one set of 2D surface points originating from the reflection of the projected pattern on the object's surface and at least one set of 2D positioning features originating from the observation of target positioning features.
- Further in accordance with the present invention, there is provided a method for obtaining 3D surface points in a global coordinate system using a hand-held device, comprising the steps of obtaining at least one set of 2D surface points originating from the reflection of the laser projected pattern on the object's surface and at least two sets of 2D positioning features originating from the observation of target positioning features; and transforming the said sets of 2D surface points into a set of 3D surface points related to the sensor coordinate system; and transforming the said sets of 2D positioning features into a set of calculated 3D positioning features related to the sensor coordinate system; and matching the sets of 3D positioning features and 2D positioning features to an accumulated representation of the already observed positioning features and calculating the spatial relationship between the current sensing device and the said accumulated representation of positioning features; and transforming the sets of 3D positioning features into a set of calculated 3D positioning features related to the global coordinate system; and calculating, updating and accumulating a representation of the already observed 3D positioning features; and transforming the said set of 3D surface points into a global coordinate system related to the 3D positioning feature representation.
- Further, in accordance with the present invention, there is provided a method for obtaining 3D surface points of an object in an object coordinate system using an hand-held device, said method comprising providing a projection pattern on said object; securing a set of positioning features on said object such that said object and, accordingly, said object coordinate system can be moved in space while said positioning features stay still on said object; acquiring a pair of 2D images of said projection pattern on said object and of at least part of said set of positioning features, an acquiring position of said pair of 2D images being defined in a sensing device coordinate system; extracting, from said pair of 2D images, a pair of sets of 2D surface points originating from said projection pattern and a pair of sets of 2D positioning features originating from said at least part of said set of positioning features; calculating a set of 3D surface points in said sensing device coordinate system using said pair of sets of 2D surface points; calculating a set of 3D positioning features in said sensing device coordinate system using said pair of sets of 2D positioning features; computing transformation parameters for characterizing a current spatial relationship between said sensing device coordinate system and said object coordinate system, by matching corresponding features between said set of calculated 3D positioning features in said sensing device coordinate system and a set of reference 3D positioning features in said object coordinate system, said reference 3D positioning features being cumulated from previous observations; transforming said set of calculated 3D surface points in said sensing device coordinate system into a set of transformed 3D surface points in said object coordinate system using said transformation parameters; transforming said set of calculated 3D positioning features in said sensing device coordinate system into a set of transformed 3D positioning features in said object coordinate system using said transformation parameters; and cumulating said set of transformed 3D positioning features to provide and augment said set of reference 3D positioning features.
- Also in accordance with the present invention, there is provided a system for acquiring a 3D surface points of an object in an object coordinate system, said system comprising a sensing device having a pattern projector for providing a projection pattern on said object, a pair of cameras for acquiring a pair of 2D images of said projection pattern on said object and of at least part of a set of positioning features, and a sensing device coordinate system, said set of positioning features being secured on said object such that said object and, accordingly, said object coordinate system can be moved in space while said positioning features stay still on said object; an image processor for extracting, from said pair of 2D images, a pair of sets of 2D surface points originating from said projection pattern and a pair of sets of 2D positioning features originating from said at least part of said set of positioning features; a 3D surface point calculator for calculating a set of 3D surface points in said sensing device coordinate system using said pair of sets of 2D surface points; a 3D positioning features calculator for calculating a set of 3D positioning features in said sensing device coordinate system using said pair of sets of 2D positioning features; a positioning features matcher for computing transformation parameters to characterize a current spatial transformation between said sensing device coordinate system and said object coordinate system, by matching corresponding features between said set of calculated 3D positioning features in said sensing device and a set of reference 3D positioning features in said object coordinate system, said set of reference 3D positioning features being obtained from previous observations; a 3D surface point transformer for transforming said set of calculated 3D surface points in said sensing device coordinate system into a set of transformed 3D surface points in said object coordinate system using said transformation parameters; a 3D positioning features transformer for transforming said set of calculated 3D positioning features in said sensing device coordinate system into a set of transformed 3D positioning features in said object coordinate system using said transformation parameters; and a reference positioning features builder for cumulating said set of transformed 3D positioning features to provide and augment said set of reference 3D positioning features.
- Also in accordance with the present invention, there is provided an auto-referenced sensing device for scanning an object to provide 3D surface points thereof in an object coordinate system, said sensing device comprising: a sensing device current coordinate system; a pattern projector for providing a projection pattern on said object; a pair of cameras for acquiring a pair of 2D images of said projection pattern and of at least part of a set of positioning features, said positioning features being located such that at least part of said positioning features are in said pair of 2D images at a given time, a spatial relationship between said pair of cameras being known, said pair of 2D images for providing calculated 3D surface points of said object and calculated 3D positioning features in said sensing device current coordinate system, said calculated 3D positioning features for characterizing a spatial transformation between said current sensing device coordinate system and said object coordinate system by matching corresponding features between said set of calculated 3D positioning features in said sensing device current coordinate system and in a set of
reference 3D positioning features in said object coordinate system, transformed 3D surface points in said object coordinate system being calculated using said transformation. - A system, apparatus and method for three-dimensional scanning and digitization of the surface geometry of objects are claimed. The system comprises a hand-held apparatus that is auto-referenced. The system is auto-referenced since it does not need any positioning device to provide the 6 degree of freedom transformations that are necessary to integrate 3D measurements in a global coordinate system while the apparatus is manipulated to scan the surface. The system continuously calculates its own position and orientation from observation while scanning the surface geometry of an object. To do so, the system exploits a triangulation principle and integrates an apparatus that captures both surface points originating from the reflection of a projected laser pattern on an object's surface and 2D positioning features originating from the observation of target positioning features. A significant advantage of the described system is its capability to implement a method that makes it possible to simultaneously build and match a 3D representation of the positioning features while accumulating the 3D surface points describing the surface geometry.
- Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, showing by way of illustration a preferred embodiment thereof, and in which:
-
FIG. 1 is a block diagram illustrating a system for three-dimensional surface scanning in accordance with the present invention. -
FIG. 2 depicts a configuration of an apparatus for three-dimensional surface scanning in accordance with the present invention. -
FIG. 3 illustrates a configuration of the apparatus depicted inFIG. 2 along with the object to be measured during acquisition, in accordance with the present invention. - Referring to
FIG. 1 , the 3D surface scanning system is generally shown at 10. - Sensing Device
- The system comprises a
sensing device 12 described in more details thereafter in this description. Thesensing device 12 collects and transmits a set ofimages 13, namely a frame, of the observed scene to animage processor 14. These images are collected from at least two viewpoints where each of these viewpoints has its own center of projection. The relevant information encompassed in the images results from the laser projection pattern reflected on the object's surface as well as positioning features that are used to calculate the relative position of the sensing device with respect to other frame captures. Since all images in a given frame, are captured simultaneously and contain both positioning and surface measurements, synchronisation of positioning and surface measurement is implicit. - The positioning features are secured on the object such that the object can be moved in space while the positioning features stay still on the object and, accordingly, with respect to the object's coordinate system. It allows the object to be moved in space while its surface is being scanned by the sensing device.
- Image Processor
- The
image processor 14 extracts positioning features and surface points from each image. For each image, a set of 2D surface points 15 and a second set of observed 2D positioning features 21 are output. These points and features are identified in the images based on their intrinsic characteristics. Positioning features are either the trace of isolated laser points or circular retro-reflective targets. The pixels associated with these features are contrasting with respect to the background and may be isolated with simple image processing techniques before estimating their position using centroïd or ellipse fitting (see E. Trucco and A. Verri, “Introductory techniques for 3-D computer vision”, Prentice Hall, 1998, p. 101-108). Using circular targets allows one to extract surface normal orientation information from the equation of the fitted ellipse, therefore facilitating sensing device positioning. The sets of surface points are discriminated from the positioning features since the laser pattern projector produces contrasting curve sections in the images and thus presenting a different 2D shape. The image curve sections are isolated as single blobs and for each of these blobs, the curve segment is analyzed for extracting a set of points on the curve with sub-pixel precision. This is accomplished by convolving a differential operator across the curve section and interpolating the zero-crossing of its response. - For a crosshair laser pattern, one can benefit from the architecture of the apparatus described thereafter. In this configuration with two cameras and a crosshair pattern projector, the cameras are aligned such that one among the two laser planes produces a single straight line in each camera at a constant position. This is the inactive laser plane for a given camera. These inactive laser planes are opposite for both cameras. This configuration, proposed by Hebert (see P. Hébert, “A Self-Referenced Hand-Held Range Sensor”. in proc. of the 3rd International Conference on 3D Digital Imaging and Modeling (3DIM 2001), 28 May-1 Jun. 2001, Quebec City, Canada, pp. 5-12) greatly simplifies the image processing task. It also simplifies the assignation of each set of 2D surface point to a laser plane of the crosshair.
- While the sets of surface points 15 follow one path in the system to recover the whole scan of the surface geometry, the sets of observed 2D positioning features 21 follow a second path and are used to recover the relative position of the sensing device with respect to the object's surface. However, these two types of sets are further processed for obtaining 3D information in the sensing device coordinate system.
- 3D Positioning Features Calculator
- Since the sensing device is calibrated, matched positioning features between camera viewpoints are used to estimate their 3D position using the 3D positioning features calculator 22. The sets of observed 2D positioning features are matched using the epipolar constraint to obtain non ambiguous matches. The epipolar lines are calculated using the fundamental matrix that is calculated from the calibrated projection matrices of the cameras. Then, from the known projection matrices of the cameras, triangulation is applied to calculate a single set of calculated 3D positioning features in the sensing device coordinate
system 23. This set of points will be fed to the positioning features matcher for providing the observation on the current state of the sensing device, and to the 3D positioning features transformer for an eventual update of thereference 3D positioning features in the object coordinate system. - 3D Surface Point Calculator
- The 3D
surface point calculator 16 takes as input the extracted sets of 2D surface points 15. These points can be associated with a section of the laser projected pattern, for instance one of the two planes for the crosshair pattern. When the association is known, each of the 2D points can be transformed into a 3D point in the sensing device coordinate system by intersecting the corresponding cast ray and the equation of the laser plane. The equation of the ray is obtained from the projection matrix of the associated camera. The laser plane equation is obtained using a pre-calibration procedure (see P. Hébert, “A Self-Referenced Hand-Held Range Sensor”. in proc. of the 3rd International Conference on 3D Digital Imaging and Modeling (3DIM 2001), 28 May-1 Jun. 2001, Quebec City, Canada, pp. 5-12) or exploiting a table look-up after calibrating the sensing device with an accurate translation stage for instance. Both approaches are adequate. In the first case, the procedure is simple and there is no need for sophisticated equipment but it requires a very good estimation of the cameras' intrinsic and extrinsic parameters. - It is also possible to avoid associating each 2D point to a specific structure of the laser pattern. This is particularly interesting for more complex or general patterns. In this case, it is still possible to calculate 3D surface points using the fundamental matrix and exploiting the epipolar constraint to match points. When this can be done without ambiguity, triangulation can be calculated in the same way it is applied by the 3D positioning features calculator 22.
- The 3D
surface point calculator 16 thus outputs a set of calculated 3D surface points in the sensing device coordinatesystem 17. This can be an unorganized set or preferably, the set is organized such that 3D points associated with connected segments in the images are grouped for estimating 3D curve tangent by differentiation. This information can be exploited by the surface reconstructor for improved quality of the recoveredsurface model 31. - Positioning Subsystem
- The task of the positioning subsystem, mainly implemented in the positioning features
matcher 24 and in the reference positioning featuresbuilder 28, is to providetransformation parameters 25 for each set of calculated 3D surface points 17. Thesetransformation parameters 25 make it possible to transform calculated 3D surface points 17 into a single, object coordinate system while preserving the structure; the transformation is rigid. This is accomplished by building and maintaining a set ofreference 3D positioning features 29 in the object coordinate system. The positioning features can be a set of 3D points, a set of 3D points with associated surface normal or any other surface characteristic. In this preferred embodiment it is assumed that all positioning features are 3D points, represented as column vectors [x,y,z]T containing three components denoting the position of the points along the three coordinate axes. - At the beginning of a scanning session, the set of
reference 3D positioning features 29 is empty. As thesensing device 12 provides the first measurements and the system calculates sets of calculated 3D positioning features 23, the features are copied into the set ofreference 3D positioning features 29 using the identity transformation. This set thus becomes the reference set for all subsequent sets ofreference 3D positioning features 29 and this first sensing device position defines the object coordinate system into which all 3D surface points are aligned. - After creation of the initial set of
reference 3D positioning features 29, subsequent sets of calculated 3D positioning features 23 are first matched against the reference set 29. The matching operation is divided into two tasks: i) finding corresponding features between the set of calculated 3D positioning features in the sensing device coordinatesystem 23 and the set ofreference 3D features in the object coordinate system, and ii) computing thetransformation parameters 25 of the optimal rigid 3D transformation that best aligns the two sets. Once the parameters have been computed, they are used to transform both calculated 3D positioning features 23 and calculated 3D surface points 17 thus aligning them into the object coordinate system. - The input to the positioning features
matcher 24 are the set ofreference 3D positioning features 29, R, the set of calculated 3D positioning features 23, O, along with two sets of observed 2D positioning features 21, P1 and P2 which were also used by the 3D positioning features calculator 22, as explained above. Matching these sets is the problem of finding two subsets Om ⊂ O and Rm ⊂ R, containing N features each, such that all pairs of points (oi,ri) with oi ∈ Om and ri ∈ Rm, represent the same physical features. Finding these subsets is accomplished by finding the maximum number of segments of points (oioj ;rirj ), such that -
|∥o i −o j ∥−∥r i −r j∥|≦ε for all i,j ∈ {1, . . . , N},i≠j, (1) - where ε is a predefined threshold which is set to correspond to the accuracy of the sensing device. This constraint imposes that the difference in distance between a corresponding pair of points in the two sets be negligible.
- This matching operation is solved as a combinatorial optimization problem where each segment of points from the set O is progressively matched against each segment of points in the set R. Each matched segment is then expanded by forming an additional segment using the remaining points in each of the two sets. If two segments satisfy the constraint (1), a third segment is formed and so on as long as the constraint is satisfied. Otherwise the pair is discarded and the next one is examined. The solution is the largest set of segments satisfying (1). Other algorithms (see M. Fischler and R. Bolles, (1981) “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography”, Communications of the Assoc. for Computing Machinery, (June 1981), vol. 24, no. 6, pp. 381-395.) can be used for the same purpose.
- As long as the number of elements in the set of
reference 3D positioning features 29 is relatively low (typically less than fifteen), the computational complexity of the above approach is acceptable for real-time operation. In practice however, the number ofreference 3D positioning features 29 can easily reach several hundreds. Since the computational complexity grows exponentially with the number of features, the computation of corresponding features becomes too slow for real-time applications. The problem is solved by noting that the number of positioning features that are visible from any particular viewpoint is small, being limited by the finite field of view of the sensing device. - This means that if the calculated 3D positioning features 23 can be matched against
reference 3D positioning features 29, then the matched features from the reference set are located in a small neighbourhood whose size is determined by the size of the set of calculated 3D positioning features 23. This also means that the number of points in this neighbourhood should be small as well (typically less than fifteen). To exploit this property for accelerating matching, the above method is modified as follows. Prior to matching, a set of neighbouring features [Ni] is created for each reference feature. After the initial segment of points is matched, it is expanded by adding an additional segment using only points in the neighbourhood set [Ni] of the first matched feature. By doing so, the number of points used for matching remains low regardless of the size of the set ofreference 3D positioning features 29, thus preventing an exponential growth of the computational complexity. - Alternatively, exploiting spatial correlation of sensing device position and orientation can be used to improve matching speed. By assuming that the displacement of the sensing device is small with respect to the size of the set of positioning features, matching can be accomplished by finding the closest reference feature for each observed positioning feature. The same principle can be used in 2D, that is, by finding closest 2D positioning features.
- Once matching is done, the two sets need to be aligned by computing the optimal transformation parameters [M T], in the least-squares sense, such that the following cost function is minimized:
-
- The transformation parameters consist of a 3×3 rotation matrix Mand a 3×1 translation vector T. Such a transformation can be found using dual quaternions as described in M. W. Walker, L. Shao and R. A. Volz, “Estimating 3-D location parameters using dual number quaternions”, CVGIP: Image Understanding, vol. 54, no. 3, November 1991, pp. 358-367. In order to compute this transformation, at least three common positioning features have to be found. Otherwise both positioning features and surface points are discarded for the current frame.
- An alternative method for computing the rigid transformation is to minimize the distance between observed 2D positioning features 21 and the projections of
reference 3D positioning features 29. Using the perspective projection transformation II, the rigid transformation [M T] that is optimal in the least-squares sense is the transform that minimizes: -
- where pi ∈ P1 or pi ∈ P2 are observed 2D features that correspond to the 3D observed feature oi ∈ Om. The rigid transformation [M T] can be found by minimizing the above cost function using an optimization algorithm such as the Levenberg-Marquardt method.
- 3D Positioning Features Transformer
- Once the rigid transformation is computed, the 3D positioning features
transformer 26 transforms the set of calculated 3D positioning features from the sensing device coordinatesystem 23 to the object coordinatesystem 27. The transformed 3D positioning features are used to update the set ofreference 3D positioning features 29 in two ways. First, if only a subset of observed features has been matched against the set ofreference 3D positioning features 29, the unmatched observed features represent newly observed features that are added to the reference set. The features that have been re-observed and matched can be either discarded (since they are already in the reference set) or used to improve, that is, filter the existing features. For example, all observations of the same feature can be summed together in order to compute the average feature position. By doing so, the variance of the measurement noise is reduced thus improving the accuracy of the positioning system. - 3D Surface Point Transformer
- The processing steps for the surface points are simple once the positioning features
matcher 24 makes thetransformation parameters 25 available. The set of calculated 3D surface points in the sensing device coordinatesystem 17 provided by the 3Dsurface point calculator 16 are then transformed by the 3Dsurface point transformer 18 using thesame transformation parameters 25 provided by the positioning featuresmatcher 24, which is the main link of information between the positioning subsystem and the integration of surface points in the object coordinate system. The resulting set of transformed 3D surface points in the object coordinatesystem 19 is thus naturally aligned in the same coordinate system with the set ofreference 3D positioning features 29. The final set of 3D surface points 19 can be visualized or preferably fed to asurface reconstructor 20 that estimates a continuous non-redundant and possibly filteredsurface representation 31 that is displayed, on auser interface display 30, optionally with the superimposed set ofreference 3D positioning features 29. - Having described the system, a closer view of the sensing device is now detailed.
FIG. 2 illustrates a front view of asensing device 40 that is used in this preferred embodiment of the system. The device comprises two objectives andlight detectors 46 that are typically progressive scan digital cameras. The two objectives andlight detectors 46 have their centers of projection separated by adistance D1 52, namely the baseline, and compose a passive stereo pair of light detectors. Thelaser pattern projector 42 is preferably positioned at adistance D3 56 from the baseline of the stereo pair to compose a compact triangular structure leading to two additional active sensors, themselves composed in the first case by the left camera and the laser pattern projector and, in the second case by the right camera and the laser pattern projector. For these two additional active stereo pairs, thebaseline D2 54 is depicted in the figure. - In
FIG. 2 , besides the laser pattern projector, the sensing device further comprises light sources for positioning. These are two sets ofLEDs 50 distributed around thelight detectors 46. These LEDs illuminate retro-reflective targets that are used as positioning features. The LEDs are preferably positioned as close as possible to the optical axes of the cameras in order to capture a stronger signal from the retro-reflective targets. Interference filters 48 are mounted in front of the objectives. These filters attenuate all wavelengths except for the laser wavelength that is matched to the LEDs' wavelength. This preferred triangular structure is particularly interesting whenD3 56 is such that the triangle is isosceles with two 45 degree angles and a 90 degree angle between the two laser planes of the crosshair 44. With this particular configuration, the crosshair pattern is oriented such that each plane is aligned with both the center of projection of each camera as well as with the center of the light detectors. This corresponds to the center epipolar line where the main advantage is that one laser plane (the inactive plane) will always be imaged as a straight line at the same position in the image, independently of the observed scene. The relevant 3D information is then extracted from the deformed second plane of light in each of the two images. The whole sensing device is thus composed of two laser profilometers, one passive stereo pair and two modules for simultaneously capturing retro-reflective targets. This preferred configuration is compact. - For a hand-held device, the baseline D1 will be typically around 200 mm for submillimeter accuracy at a standoff distance of 300 to 400 mm between the sensing device and the object. By scaling D1, distances D2 automatically follow. Although this arrangement is particularly useful for simplifying the discrimination between the 2D positioning features and the projected laser pattern in the images, integrating a stereo pair and eventually one or more additional cameras for a better discrimination and accuracy, makes it possible to process images where a different laser pattern is projected. Grids and circular patterns are relevant examples. Another possibility is to increase or decrease D3 for more or less accuracy while losing the advantage of simplified image processing. While a linear configuration (i.e. D3=0) would not provide all the advantages of the above described configuration, it is still one option.
-
FIG. 3 illustrates a 3D view of the sensing device while observing an object to be measured 62. One can see the formerly described compact triangular architecture comprising two cameras withobjectives 46 and a crosshairlaser pattern projector 42. The sensing device captures the image of the projectedpattern 58 including a set of positioning features 60. - While illustrated in the block diagrams as groups of discrete components communicating with each other via distinct data signal connections, it will be understood by those skilled in the art that the preferred embodiments are provided by a combination of hardware and software components, with some components being implemented by a given function or operation of a hardware or software system, and many of the data paths illustrated being implemented by data communication within a computer application or operating system. The structure illustrated is thus provided for efficiency of teaching the present preferred embodiment.
- One skilled in the art should understand that the positioning features, described herein as retro-reflective targets, could alternatively be provided by light sources, such as LEDs, disposed on the surface of the object to be scanned or elsewhere, or by any other means that provide targets to be detected by the sensing device. Additionally, the light sources provided on the sensing device could be omitted if the positioning features themselves provide the light to be detected by the cameras.
- It should be understood that the pattern projector hereinabove described as comprising a laser light source could also use a LED source or any other appropriate light source.
- It will be understood that numerous modifications thereto will appear to those skilled in the art. Accordingly, the above description and accompanying drawings should be taken as illustrative of the invention and not in a limiting sense. It will further be understood that it is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features herein before set forth, and as follows in the scope of the appended claims.
Claims (50)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/817,300 US7912673B2 (en) | 2005-03-11 | 2006-03-13 | Auto-referenced system and apparatus for three-dimensional scanning |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66047105P | 2005-03-11 | 2005-03-11 | |
US11/817,300 US7912673B2 (en) | 2005-03-11 | 2006-03-13 | Auto-referenced system and apparatus for three-dimensional scanning |
PCT/CA2006/000370 WO2006094409A1 (en) | 2005-03-11 | 2006-03-13 | Auto-referenced system and apparatus for three-dimensional scanning |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2006/000370 A-371-Of-International WO2006094409A1 (en) | 2005-03-11 | 2006-03-13 | Auto-referenced system and apparatus for three-dimensional scanning |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/629,279 Continuation-In-Part US8082120B2 (en) | 2005-03-11 | 2009-12-02 | Hand-held self-referenced apparatus for three-dimensional scanning |
US12/959,532 Continuation US8032327B2 (en) | 2005-03-11 | 2010-12-03 | Auto-referenced sensing method for three-dimensional scanning |
US12/959,517 Continuation US8140295B2 (en) | 2005-03-11 | 2010-12-03 | Auto-referenced sensing device for three-dimensional scanning |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080201101A1 true US20080201101A1 (en) | 2008-08-21 |
US7912673B2 US7912673B2 (en) | 2011-03-22 |
Family
ID=36952924
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/817,300 Active 2027-05-05 US7912673B2 (en) | 2005-03-11 | 2006-03-13 | Auto-referenced system and apparatus for three-dimensional scanning |
US12/959,517 Active US8140295B2 (en) | 2005-03-11 | 2010-12-03 | Auto-referenced sensing device for three-dimensional scanning |
US12/959,532 Active US8032327B2 (en) | 2005-03-11 | 2010-12-03 | Auto-referenced sensing method for three-dimensional scanning |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/959,517 Active US8140295B2 (en) | 2005-03-11 | 2010-12-03 | Auto-referenced sensing device for three-dimensional scanning |
US12/959,532 Active US8032327B2 (en) | 2005-03-11 | 2010-12-03 | Auto-referenced sensing method for three-dimensional scanning |
Country Status (8)
Country | Link |
---|---|
US (3) | US7912673B2 (en) |
EP (3) | EP1877726B1 (en) |
JP (1) | JP4871352B2 (en) |
CN (1) | CN101189487B (en) |
AT (1) | ATE518113T1 (en) |
AU (1) | AU2006222458B2 (en) |
CA (2) | CA2600926C (en) |
WO (1) | WO2006094409A1 (en) |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090080766A1 (en) * | 2007-09-10 | 2009-03-26 | Herbert Daxauer | Method and apparatus for the Three-Dimensional Digitization of objects |
US20100007719A1 (en) * | 2008-06-07 | 2010-01-14 | Alexander Frey | Method and apparatus for 3D digitization of an object |
US20100134598A1 (en) * | 2005-03-11 | 2010-06-03 | St-Pierre Eric | Hand-held self-referenced apparatus for three-dimensional scanning |
US20100245851A1 (en) * | 2009-03-31 | 2010-09-30 | Micrometric Vision Technologies | Method and apparatus for high-speed unconstrained three-dimensional digitalization |
US7912673B2 (en) | 2005-03-11 | 2011-03-22 | Creaform Inc. | Auto-referenced system and apparatus for three-dimensional scanning |
US20110116706A1 (en) * | 2009-11-19 | 2011-05-19 | Samsung Electronics Co., Ltd. | Method, computer-readable medium and apparatus estimating disparity of three view images |
US20110134225A1 (en) * | 2008-08-06 | 2011-06-09 | Saint-Pierre Eric | System for adaptive three-dimensional scanning of surface characteristics |
US20110317009A1 (en) * | 2010-06-23 | 2011-12-29 | MindTree Limited | Capturing Events Of Interest By Spatio-temporal Video Analysis |
WO2012030357A1 (en) | 2010-09-03 | 2012-03-08 | Arges Imaging, Inc. | Three-dimensional imaging system |
USD667010S1 (en) * | 2011-09-06 | 2012-09-11 | Firth David G | Handheld scanner |
US20130271573A1 (en) * | 2011-09-30 | 2013-10-17 | Steinbichler Optotechnik Gmbh | Method and apparatus for determining the 3d coordinates of an object |
US20140085429A1 (en) * | 2011-06-07 | 2014-03-27 | Patrick Hébert | Sensor positioning for 3d scanning |
US20140100452A1 (en) * | 2011-06-27 | 2014-04-10 | Koninklijke Philips Electronics N.V. | Ultrasound-image-guide system and volume-motion-base calibration method |
WO2013040121A3 (en) * | 2011-09-13 | 2014-05-22 | Osi Optoelectronics | Improved laser rangefinder sensor |
US9031314B2 (en) | 2010-05-03 | 2015-05-12 | Northern Digital Inc. | Establishing coordinate systems for measurement |
US9219907B2 (en) | 2007-01-22 | 2015-12-22 | California Institute Of Technology | Method and apparatus for quantitative 3-D imaging |
US9247235B2 (en) | 2008-08-27 | 2016-01-26 | California Institute Of Technology | Method and device for high-resolution imaging which obtains camera pose using defocusing |
DE102014113389A1 (en) * | 2014-09-17 | 2016-03-17 | Pilz Gmbh & Co. Kg | Method and device for identifying structural elements of a projected structural pattern in camera images |
JP2016509199A (en) * | 2012-12-14 | 2016-03-24 | ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド | Apparatus and method for three-dimensional surface measurement |
US20160134860A1 (en) * | 2014-11-12 | 2016-05-12 | Dejan Jovanovic | Multiple template improved 3d modeling of imaged objects using camera position and pose to obtain accuracy |
US20160338803A1 (en) * | 2015-01-18 | 2016-11-24 | Dentlytec G.P.L.Ltd | System, device, and method for dental intraoral scanning |
US20160377410A1 (en) * | 2011-04-15 | 2016-12-29 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US9596452B2 (en) | 2009-08-11 | 2017-03-14 | California Institute Of Technology | Defocusing feature matching system to measure camera pose with interchangeable lens cameras |
DE102009032771B4 (en) * | 2009-07-10 | 2017-06-29 | Gom Gmbh | Measuring device and method for the three-dimensional optical measurement of objects |
US9736463B2 (en) | 2007-04-23 | 2017-08-15 | California Institute Of Technology | Single-lens, single-sensor 3-D imaging device with a central aperture for obtaining camera position |
US9760994B1 (en) * | 2011-06-29 | 2017-09-12 | Matterport, Inc. | Building a three-dimensional composite scene |
US9769463B2 (en) | 2014-09-10 | 2017-09-19 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment and a method of control |
US9816809B2 (en) | 2012-07-04 | 2017-11-14 | Creaform Inc. | 3-D scanning and positioning system |
US9879975B2 (en) | 2014-09-10 | 2018-01-30 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device |
US9886759B2 (en) * | 2013-10-21 | 2018-02-06 | National Taiwan University Of Science And Technology | Method and system for three-dimensional data acquisition |
US9885559B2 (en) | 2010-04-21 | 2018-02-06 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US9915521B2 (en) | 2014-09-10 | 2018-03-13 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device |
US9967545B2 (en) | 2011-04-15 | 2018-05-08 | Faro Technologies, Inc. | System and method of acquiring three-dimensional coordinates using multiple coordinate measurment devices |
CN108269450A (en) * | 2018-02-02 | 2018-07-10 | 上海九洲信息技术有限公司 | The method and system of substation inspection training are realized based on virtual reality technology |
US10068344B2 (en) | 2014-03-05 | 2018-09-04 | Smart Picture Technologies Inc. | Method and system for 3D capture based on structure from motion with simplified pose detection |
US10070116B2 (en) | 2014-09-10 | 2018-09-04 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment |
US10083522B2 (en) | 2015-06-19 | 2018-09-25 | Smart Picture Technologies, Inc. | Image based measurement system |
US10267619B2 (en) | 2011-04-15 | 2019-04-23 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
DE102014019669B4 (en) | 2014-12-30 | 2019-05-02 | Faro Technologies, Inc. | 16Method for optically sensing and measuring an environment with a 3D measuring device and autocalibrating under predetermined conditions |
US10304254B2 (en) | 2017-08-08 | 2019-05-28 | Smart Picture Technologies, Inc. | Method for measuring and modeling spaces using markerless augmented reality |
US10302413B2 (en) | 2011-04-15 | 2019-05-28 | Faro Technologies, Inc. | Six degree-of-freedom laser tracker that cooperates with a remote sensor |
US10356394B2 (en) | 2015-06-26 | 2019-07-16 | Electronics And Telecommunications Research Institute | Apparatus and method for measuring position of stereo camera |
US10401142B2 (en) | 2012-07-18 | 2019-09-03 | Creaform Inc. | 3-D scanning and positioning interface |
RU2702963C2 (en) * | 2018-03-05 | 2019-10-14 | Максим Валерьевич Шептунов | Method of optimizing efficiency of production lines for digitization of museum items and archival-library materials and collections |
WO2019227212A1 (en) * | 2018-05-30 | 2019-12-05 | Vi3D Labs Inc. | Three-dimensional surface scanning |
EP3663709A1 (en) * | 2018-12-04 | 2020-06-10 | Carl Zeiss Optotechnik GmbH | Method for 3d capturing of an object to be measured |
US20200225030A1 (en) * | 2017-07-06 | 2020-07-16 | Hangzhou Scantech Company Limited | Handheld large-scale three-dimensional measurement scanner system simultaneously having photogrammetric and three-dimensional scanning functions |
US10799998B2 (en) | 2016-10-17 | 2020-10-13 | Virtek Vision International Ulc | Laser projector with flash alignment |
US10907955B2 (en) | 2015-08-19 | 2021-02-02 | Faro Technologies, Inc. | Three-dimensional imager |
US10966614B2 (en) | 2015-01-18 | 2021-04-06 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
CN113436273A (en) * | 2021-06-28 | 2021-09-24 | 南京冲浪智行科技有限公司 | 3D scene calibration method, calibration device and calibration application thereof |
US11138757B2 (en) | 2019-05-10 | 2021-10-05 | Smart Picture Technologies, Inc. | Methods and systems for measuring and modeling spaces using markerless photo-based augmented reality process |
CN113532329A (en) * | 2020-03-16 | 2021-10-22 | 天目爱视(北京)科技有限公司 | Calibration method using projection light spot as calibration point |
US11173011B2 (en) | 2015-05-01 | 2021-11-16 | Dentlytec G.P.L. Ltd. | System, device and methods for dental digital impressions |
EP3910287A1 (en) * | 2020-05-14 | 2021-11-17 | Fill Gesellschaft m.b.H. | Method and device for measuring a physical object |
US11185697B2 (en) | 2016-08-08 | 2021-11-30 | Deep Brain Stimulation Technologies Pty. Ltd. | Systems and methods for monitoring neural activity |
CN113959439A (en) * | 2021-10-21 | 2022-01-21 | 重庆邮电大学 | Indoor high-precision visible light positioning method and system under sparse light source |
US11298070B2 (en) | 2017-05-22 | 2022-04-12 | Deep Brain Stimulation Technologies Pty Ltd | Systems and methods for monitoring neural activity |
US11310423B2 (en) * | 2019-12-16 | 2022-04-19 | Industrial Technology Research Institute | Image capturing method and image capturing apparatus |
US11308632B2 (en) * | 2020-04-23 | 2022-04-19 | Nanjing University Of Aeronautics And Astronautics | Code point-driven three-dimensional point cloud deformation method |
US11350077B2 (en) | 2018-07-03 | 2022-05-31 | Faro Technologies, Inc. | Handheld three dimensional scanner with an autoaperture |
US11406264B2 (en) | 2016-01-25 | 2022-08-09 | California Institute Of Technology | Non-invasive measurement of intraocular pressure |
US11468673B2 (en) * | 2018-08-24 | 2022-10-11 | Snap Inc. | Augmented reality system using structured light |
US11568614B1 (en) | 2021-08-02 | 2023-01-31 | Bank Of America Corporation | Adaptive augmented reality system for dynamic processing of spatial component parameters based on detecting accommodation factors in real time |
WO2023096873A1 (en) * | 2021-11-28 | 2023-06-01 | Summer Robotics, Inc. | Association of concurrent tracks across multiple views |
US11690604B2 (en) | 2016-09-10 | 2023-07-04 | Ark Surgical Ltd. | Laparoscopic workspace device |
US11690701B2 (en) | 2017-07-26 | 2023-07-04 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
US11785200B1 (en) | 2022-03-14 | 2023-10-10 | Summer Robotics, Inc. | Stage studio for immersive 3-D video capture |
US11808857B2 (en) | 2021-08-27 | 2023-11-07 | Summer Robotics, Inc. | Multi-sensor superresolution scanning and capture system |
US11813132B2 (en) | 2017-07-04 | 2023-11-14 | Dentlytec G.P.L. Ltd. | Dental device with probe |
US11887340B2 (en) | 2021-07-29 | 2024-01-30 | Summer Robotics, Inc. | Dynamic calibration of 3D acquisition systems |
US11974055B1 (en) | 2022-10-17 | 2024-04-30 | Summer Robotics, Inc. | Perceiving scene features using event sensors and image sensors |
US12111180B2 (en) | 2021-07-01 | 2024-10-08 | Summer Robotics, Inc. | Calibration of sensor position offsets based on rotation and translation vectors for matched trajectories |
US12148185B2 (en) | 2021-07-15 | 2024-11-19 | Summer Robotics, Inc. | Automatic parameter adjustment for scanning event cameras |
US12259231B2 (en) | 2015-01-18 | 2025-03-25 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
US12276730B2 (en) | 2022-11-08 | 2025-04-15 | Summer Robotics, Inc. | Virtual fences in air, water, and space |
US12285188B2 (en) | 2016-09-10 | 2025-04-29 | Ark Surgical Ltd. | Laparoscopic workspace device |
Families Citing this family (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006049695A1 (en) | 2006-10-16 | 2008-04-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device and method for contactless detection of a three-dimensional contour |
DE102007022361A1 (en) * | 2007-05-04 | 2008-11-06 | Friedrich-Schiller-Universität Jena | Device and method for the contactless detection of spatial coordinates of a surface |
US8605983B2 (en) * | 2007-08-17 | 2013-12-10 | Renishaw Plc | Non-contact probe |
US20090067706A1 (en) | 2007-09-12 | 2009-03-12 | Artec Ventures | System and Method for Multiframe Surface Measurement of the Shape of Objects |
CA2606267A1 (en) * | 2007-10-11 | 2009-04-11 | Hydro-Quebec | System and method for three-dimensional mapping of a structural surface |
JP5234255B2 (en) * | 2008-05-13 | 2013-07-10 | 株式会社Ihi | Laser radar and laser radar installation direction adjustment method |
CN103501416B (en) | 2008-05-20 | 2017-04-12 | 派力肯成像公司 | Imaging system |
US8866920B2 (en) | 2008-05-20 | 2014-10-21 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
US11792538B2 (en) | 2008-05-20 | 2023-10-17 | Adeia Imaging Llc | Capturing and processing of images including occlusions focused on an image sensor by a lens stack array |
DE102008027994B3 (en) * | 2008-06-12 | 2010-04-01 | Dürr Systems GmbH | Applicator for applying a sealant to a flanged seam |
MY148204A (en) * | 2008-07-21 | 2013-03-15 | Vitrox Corp Bhd | A method and means for measuring positions of contact elements of an electronic components |
US8179448B2 (en) * | 2008-08-26 | 2012-05-15 | National Taiwan University | Auto depth field capturing system and method thereof |
DE102008039838B4 (en) | 2008-08-27 | 2011-09-22 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for scanning the three-dimensional surface of an object by means of a light beam scanner |
KR101078651B1 (en) * | 2008-09-04 | 2011-11-01 | 삼성중공업 주식회사 | System and method for measuring a curved surface |
FR2936608B1 (en) * | 2008-09-26 | 2010-09-24 | Thales Sa | OPTICAL SCANNING DETECTION SYSTEM FOR POSITIONING AND / OR OBJECT ORIENTATION |
KR101052514B1 (en) * | 2008-10-09 | 2011-07-29 | 삼성중공업 주식회사 | Non-contact measuring device |
FR2949152A1 (en) | 2009-08-17 | 2011-02-18 | Eads Europ Aeronautic Defence | DEFORMATION GAUGE AND SPATIAL LOCATION SYSTEM OF SUCH GAUGES |
GB0915904D0 (en) | 2009-09-11 | 2009-10-14 | Renishaw Plc | Non-contact object inspection |
FR2950138B1 (en) * | 2009-09-15 | 2011-11-18 | Noomeo | QUICK-RELEASE THREE-DIMENSIONAL SCANNING METHOD |
FR2950157A1 (en) | 2009-09-15 | 2011-03-18 | Noomeo | METHOD FOR THREE-DIMENSIONAL SCANNING OF A SURFACE COMPRISING THE APPROACH OF A COMBINED PATTERN |
FR2950140B1 (en) | 2009-09-15 | 2011-10-21 | Noomeo | THREE-DIMENSIONAL SCANNING METHOD COMPRISING DOUBLE MATCHING |
EP2502115A4 (en) | 2009-11-20 | 2013-11-06 | Pelican Imaging Corp | CAPTURE AND IMAGE PROCESSING USING A MONOLITHIC CAMERAS NETWORK EQUIPPED WITH HETEROGENEOUS IMAGERS |
SG172487A1 (en) * | 2009-12-07 | 2011-07-28 | Sony Corp | A three-dimensional imaging apparatus and a method of generating a three-dimensional image of an object |
WO2011138741A1 (en) * | 2010-05-04 | 2011-11-10 | Creaform Inc. | Object inspection with referenced volumetric analysis sensor |
US20120012748A1 (en) | 2010-05-12 | 2012-01-19 | Pelican Imaging Corporation | Architectures for imager arrays and array cameras |
DE102010047444B4 (en) * | 2010-10-04 | 2014-04-03 | Audi Ag | Method for visualizing dimensional deviations between an actual and a target geometry of a component |
US8878950B2 (en) | 2010-12-14 | 2014-11-04 | Pelican Imaging Corporation | Systems and methods for synthesizing high resolution images using super-resolution processes |
US8452081B2 (en) * | 2011-01-11 | 2013-05-28 | Eastman Kodak Company | Forming 3D models using multiple images |
US8447099B2 (en) * | 2011-01-11 | 2013-05-21 | Eastman Kodak Company | Forming 3D models using two images |
JP2014519741A (en) | 2011-05-11 | 2014-08-14 | ペリカン イメージング コーポレイション | System and method for transmitting and receiving array camera image data |
US20130265459A1 (en) | 2011-06-28 | 2013-10-10 | Pelican Imaging Corporation | Optical arrangements for use with an array camera |
EP2726930A4 (en) | 2011-06-28 | 2015-03-04 | Pelican Imaging Corp | Optical arrangements for use with an array camera |
US20130070060A1 (en) | 2011-09-19 | 2013-03-21 | Pelican Imaging Corporation | Systems and methods for determining depth from multiple views of a scene that include aliasing using hypothesized fusion |
CN102374860B (en) * | 2011-09-23 | 2014-10-01 | 奇瑞汽车股份有限公司 | Three-dimensional visual positioning method and system |
IN2014CN02708A (en) | 2011-09-28 | 2015-08-07 | Pelican Imaging Corp | |
US9123144B2 (en) * | 2011-11-11 | 2015-09-01 | Microsoft Technology Licensing, Llc | Computing 3D shape parameters for face animation |
CN104080401B (en) * | 2011-11-17 | 2016-08-24 | 泰克梅德3D公司 | Generate the method and system of human object dummy model |
WO2013076605A1 (en) | 2011-11-23 | 2013-05-30 | Creaform Inc. | Method and system for alignment of a pattern on a spatial coded slide image |
JP5899951B2 (en) * | 2012-01-18 | 2016-04-06 | セイコーエプソン株式会社 | Robot apparatus and position and orientation detection method |
WO2013126578A1 (en) | 2012-02-21 | 2013-08-29 | Pelican Imaging Corporation | Systems and methods for the manipulation of captured light field image data |
GB201205563D0 (en) * | 2012-03-29 | 2012-05-09 | Sec Dep For Business Innovation & Skills The | Coordinate measurement system and method |
US9210392B2 (en) | 2012-05-01 | 2015-12-08 | Pelican Imaging Coporation | Camera modules patterned with pi filter groups |
GB2502149B (en) * | 2012-05-18 | 2017-01-18 | Acergy France SAS | Improvements relating to pipe measurement |
CN102749048B (en) * | 2012-06-25 | 2015-05-20 | 长安大学 | Method for assessing road surface three-dimensional structure |
WO2014005123A1 (en) | 2012-06-28 | 2014-01-03 | Pelican Imaging Corporation | Systems and methods for detecting defective camera arrays, optic arrays, and sensors |
US20140002674A1 (en) | 2012-06-30 | 2014-01-02 | Pelican Imaging Corporation | Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors |
US9062962B2 (en) * | 2012-07-05 | 2015-06-23 | Flextronics Ap, Llc | Laser measurement system and method in a CNC machine |
US8818486B2 (en) * | 2012-07-12 | 2014-08-26 | Biosense Webster (Israel) Ltd. | Position and orientation algorithm for a single axis sensor |
CN103575234B (en) * | 2012-07-20 | 2016-08-24 | 德律科技股份有限公司 | 3D image measuring device |
KR102111181B1 (en) | 2012-08-21 | 2020-05-15 | 포토내이션 리미티드 | Systems and methods for parallax detection and correction in images captured using array cameras |
EP2888698A4 (en) | 2012-08-23 | 2016-06-29 | Pelican Imaging Corp | Feature based high resolution motion estimation from low resolution images captured using an array source |
US9214013B2 (en) | 2012-09-14 | 2015-12-15 | Pelican Imaging Corporation | Systems and methods for correcting user identified artifacts in light field images |
EP4307659A1 (en) | 2012-09-28 | 2024-01-17 | Adeia Imaging LLC | Generating images from light fields utilizing virtual viewpoints |
US9143711B2 (en) | 2012-11-13 | 2015-09-22 | Pelican Imaging Corporation | Systems and methods for array camera focal plane control |
DE102012112321B4 (en) | 2012-12-14 | 2015-03-05 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
DE102012112322B4 (en) | 2012-12-14 | 2015-11-05 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment |
DE202012104890U1 (en) | 2012-12-14 | 2013-03-05 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US20150379701A1 (en) * | 2013-02-04 | 2015-12-31 | Dnv Gl Se | Inspection camera unit, method for inspecting interiors, and sensor unit |
KR101436097B1 (en) * | 2013-02-13 | 2014-09-01 | 한국과학기술원 | Non-Contacting Method for Measuring 6-DOF Motion Based on Laser Sensor |
WO2014130849A1 (en) | 2013-02-21 | 2014-08-28 | Pelican Imaging Corporation | Generating compressed light field representation data |
WO2014133974A1 (en) | 2013-02-24 | 2014-09-04 | Pelican Imaging Corporation | Thin form computational and modular array cameras |
US9638883B1 (en) | 2013-03-04 | 2017-05-02 | Fotonation Cayman Limited | Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process |
US9917998B2 (en) | 2013-03-08 | 2018-03-13 | Fotonation Cayman Limited | Systems and methods for measuring scene information while capturing images using array cameras |
US8866912B2 (en) | 2013-03-10 | 2014-10-21 | Pelican Imaging Corporation | System and methods for calibration of an array camera using a single captured image |
WO2014164909A1 (en) | 2013-03-13 | 2014-10-09 | Pelican Imaging Corporation | Array camera architecture implementing quantum film sensors |
US9519972B2 (en) | 2013-03-13 | 2016-12-13 | Kip Peli P1 Lp | Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies |
US9124831B2 (en) | 2013-03-13 | 2015-09-01 | Pelican Imaging Corporation | System and methods for calibration of an array camera |
US9106784B2 (en) | 2013-03-13 | 2015-08-11 | Pelican Imaging Corporation | Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing |
US9578259B2 (en) | 2013-03-14 | 2017-02-21 | Fotonation Cayman Limited | Systems and methods for reducing motion blur in images or video in ultra low light with array cameras |
US9100586B2 (en) | 2013-03-14 | 2015-08-04 | Pelican Imaging Corporation | Systems and methods for photometric normalization in array cameras |
US9497429B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Extended color processing on pelican array cameras |
US10122993B2 (en) | 2013-03-15 | 2018-11-06 | Fotonation Limited | Autofocus system for a conventional camera that uses depth information from an array camera |
US9633442B2 (en) | 2013-03-15 | 2017-04-25 | Fotonation Cayman Limited | Array cameras including an array camera module augmented with a separate camera |
US9445003B1 (en) | 2013-03-15 | 2016-09-13 | Pelican Imaging Corporation | Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information |
US9497370B2 (en) | 2013-03-15 | 2016-11-15 | Pelican Imaging Corporation | Array camera architecture implementing quantum dot color filters |
WO2014145856A1 (en) | 2013-03-15 | 2014-09-18 | Pelican Imaging Corporation | Systems and methods for stereo imaging with camera arrays |
CA2819956C (en) | 2013-07-02 | 2022-07-12 | Guy Martin | High accuracy camera modelling and calibration method |
CN104424630A (en) * | 2013-08-20 | 2015-03-18 | 华为技术有限公司 | Three-dimension reconstruction method and device, and mobile terminal |
US20150070468A1 (en) * | 2013-09-10 | 2015-03-12 | Faro Technologies, Inc. | Use of a three-dimensional imager's point cloud data to set the scale for photogrammetry |
US9898856B2 (en) | 2013-09-27 | 2018-02-20 | Fotonation Cayman Limited | Systems and methods for depth-assisted perspective distortion correction |
US9264592B2 (en) | 2013-11-07 | 2016-02-16 | Pelican Imaging Corporation | Array camera modules incorporating independently aligned lens stacks |
WO2015074078A1 (en) | 2013-11-18 | 2015-05-21 | Pelican Imaging Corporation | Estimating depth from projected texture using camera arrays |
US9426361B2 (en) | 2013-11-26 | 2016-08-23 | Pelican Imaging Corporation | Array camera configurations incorporating multiple constituent array cameras |
WO2015118467A1 (en) | 2014-02-05 | 2015-08-13 | Creaform Inc. | Structured light matching of a set of curves from two cameras |
US10643343B2 (en) * | 2014-02-05 | 2020-05-05 | Creaform Inc. | Structured light matching of a set of curves from three cameras |
EP3113666A4 (en) * | 2014-03-02 | 2017-12-27 | V.T.M. (Virtual Tape Measure) Technologies Ltd. | Endoscopic measurement system and method |
US10089740B2 (en) | 2014-03-07 | 2018-10-02 | Fotonation Limited | System and methods for depth regularization and semiautomatic interactive matting using RGB-D images |
US9247117B2 (en) | 2014-04-07 | 2016-01-26 | Pelican Imaging Corporation | Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array |
CN103916601A (en) * | 2014-04-10 | 2014-07-09 | 深圳先进技术研究院 | Three-dimensional scanning device based on mobile device and three-dimensional reconstruction method of three-dimensional scanning device |
US9521319B2 (en) | 2014-06-18 | 2016-12-13 | Pelican Imaging Corporation | Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor |
TWI509566B (en) * | 2014-07-24 | 2015-11-21 | Etron Technology Inc | Attachable three-dimensional scan module |
JP2017531976A (en) | 2014-09-29 | 2017-10-26 | フォトネイション ケイマン リミテッド | System and method for dynamically calibrating an array camera |
CN104374374B (en) * | 2014-11-11 | 2017-07-07 | 浙江工业大学 | 3D environment dubbing system and 3D panoramas display method for drafting based on active panoramic vision |
US9710960B2 (en) * | 2014-12-04 | 2017-07-18 | Vangogh Imaging, Inc. | Closed-form 3D model generation of non-rigid complex objects from incomplete and noisy scans |
CN104501740B (en) * | 2014-12-18 | 2017-05-10 | 杭州鼎热科技有限公司 | Handheld laser three-dimension scanning method and handheld laser three-dimension scanning equipment based on mark point trajectory tracking |
US9942474B2 (en) | 2015-04-17 | 2018-04-10 | Fotonation Cayman Limited | Systems and methods for performing high speed video capture and depth estimation using array cameras |
US9964402B2 (en) | 2015-04-24 | 2018-05-08 | Faro Technologies, Inc. | Two-camera triangulation scanner with detachable coupling mechanism |
CN105066912B (en) * | 2015-07-15 | 2017-07-04 | 西南石油大学 | The step-length scaling method of rock beam surface scan data in acid etch physical simulation experiment |
KR101700729B1 (en) * | 2015-08-28 | 2017-02-14 | 티클로버(주) | An apparatus and a system for restoring three dimensional form by a single frame |
US10757394B1 (en) | 2015-11-09 | 2020-08-25 | Cognex Corporation | System and method for calibrating a plurality of 3D sensors with respect to a motion conveyance |
US10812778B1 (en) | 2015-11-09 | 2020-10-20 | Cognex Corporation | System and method for calibrating one or more 3D sensors mounted on a moving manipulator |
US11562502B2 (en) | 2015-11-09 | 2023-01-24 | Cognex Corporation | System and method for calibrating a plurality of 3D sensors with respect to a motion conveyance |
US9727775B2 (en) * | 2015-12-01 | 2017-08-08 | Intel Corporation | Method and system of curved object recognition using image matching for image processing |
CN105574812B (en) * | 2015-12-14 | 2018-09-25 | 深圳先进技术研究院 | Multi-angle three-dimensional data method for registering and device |
US10445898B2 (en) * | 2016-02-05 | 2019-10-15 | Sony Corporation | System and method for camera calibration by use of rotatable three-dimensional calibration object |
US10107913B2 (en) | 2016-02-08 | 2018-10-23 | Servo-Robot, Inc. | Range finder device for monitoring robot processing tool position |
DE102016002398B4 (en) | 2016-02-26 | 2019-04-25 | Gerd Häusler | Optical 3D sensor for fast and dense shape detection |
US10317199B2 (en) | 2016-04-08 | 2019-06-11 | Shining 3D Tech Co., Ltd. | Three-dimensional measuring system and measuring method with multiple measuring modes |
EP3293481B1 (en) | 2016-04-08 | 2021-06-02 | Shining 3D Tech Co., Ltd. | Multi-measurement-mode three-dimensional measurement system and measurement method |
US10697756B2 (en) * | 2016-09-15 | 2020-06-30 | Delavan Inc. | 3D scanning systems |
US10380762B2 (en) | 2016-10-07 | 2019-08-13 | Vangogh Imaging, Inc. | Real-time remote collaboration and virtual presence using simultaneous localization and mapping to construct a 3D model and update a scene based on sparse data |
CN106767399B (en) * | 2016-11-11 | 2018-11-09 | 大连理工大学 | The non-contact measurement method of logistics goods volume based on binocular stereo vision and dot laser ranging |
US10552981B2 (en) | 2017-01-16 | 2020-02-04 | Shapetrace Inc. | Depth camera 3D pose estimation using 3D CAD models |
FR3063172A1 (en) | 2017-02-21 | 2018-08-24 | Yann Viellard | DEVICE AND METHOD FOR CONTACTLESS 3D SCANNING OF AN OBJECT. |
CN106802138B (en) * | 2017-02-24 | 2019-09-24 | 先临三维科技股份有限公司 | A kind of 3 D scanning system and its scan method |
RU2706806C2 (en) * | 2017-05-22 | 2019-11-21 | Яков Борисович Ландо | Method for non-contact measurement of three-dimensional objects using a shadow from a thin rod or thread |
US10482618B2 (en) | 2017-08-21 | 2019-11-19 | Fotonation Limited | Systems and methods for hybrid depth regularization |
US10839585B2 (en) | 2018-01-05 | 2020-11-17 | Vangogh Imaging, Inc. | 4D hologram: real-time remote avatar creation and animation control |
US11080540B2 (en) | 2018-03-20 | 2021-08-03 | Vangogh Imaging, Inc. | 3D vision processing using an IP block |
US10810783B2 (en) | 2018-04-03 | 2020-10-20 | Vangogh Imaging, Inc. | Dynamic real-time texture alignment for 3D models |
US11170224B2 (en) | 2018-05-25 | 2021-11-09 | Vangogh Imaging, Inc. | Keyframe-based object scanning and tracking |
DE102019105015A1 (en) * | 2019-02-27 | 2020-08-27 | Peri Gmbh | Construction of formwork and scaffolding using mobile devices |
CN109798841B (en) * | 2019-03-05 | 2023-09-22 | 盎锐(上海)信息科技有限公司 | Calibration system and method for camera and projector |
US20200292297A1 (en) | 2019-03-15 | 2020-09-17 | Faro Technologies, Inc. | Three-dimensional measurement device |
US11170552B2 (en) | 2019-05-06 | 2021-11-09 | Vangogh Imaging, Inc. | Remote visualization of three-dimensional (3D) animation with synchronized voice in real-time |
US11232633B2 (en) | 2019-05-06 | 2022-01-25 | Vangogh Imaging, Inc. | 3D object capture and object reconstruction using edge cloud computing resources |
DE112020004391B4 (en) | 2019-09-17 | 2024-08-14 | Intrinsic Innovation Llc | Systems and methods for surface modeling using polarization features |
US11293751B2 (en) | 2019-09-24 | 2022-04-05 | Honda Motor Co., Ltd. | Profile inspection system for verifying relative position of vehicle component objects and manufacturing cell including same |
CA3157194C (en) | 2019-10-07 | 2023-08-29 | Boston Polarimetrics, Inc. | Systems and methods for augmentation of sensor systems and imaging systems with polarization |
WO2021108002A1 (en) | 2019-11-30 | 2021-06-03 | Boston Polarimetrics, Inc. | Systems and methods for transparent object segmentation using polarization cues |
US11335063B2 (en) | 2020-01-03 | 2022-05-17 | Vangogh Imaging, Inc. | Multiple maps for 3D object scanning and reconstruction |
WO2021154386A1 (en) | 2020-01-29 | 2021-08-05 | Boston Polarimetrics, Inc. | Systems and methods for characterizing object pose detection and measurement systems |
JP7542070B2 (en) | 2020-01-30 | 2024-08-29 | イントリンジック イノベーション エルエルシー | Systems and methods for synthesizing data for training statistical models across different imaging modalities, including polarization images - Patents.com |
CN220089438U (en) | 2020-02-26 | 2023-11-28 | 盖特-格林公司 | intraoral adapter |
USD962437S1 (en) | 2020-05-14 | 2022-08-30 | Get-Grin Inc. | Dental scope |
WO2021243088A1 (en) | 2020-05-27 | 2021-12-02 | Boston Polarimetrics, Inc. | Multi-aperture polarization optical systems using beam splitters |
US11908162B2 (en) * | 2020-12-23 | 2024-02-20 | Faro Technologies, Inc. | Line scanner having target-tracking and geometry-tracking modes |
US20220316869A1 (en) * | 2020-12-23 | 2022-10-06 | Faro Technologies, Inc. | Line scanner having integrated processing capability |
US12069227B2 (en) | 2021-03-10 | 2024-08-20 | Intrinsic Innovation Llc | Multi-modal and multi-spectral stereo camera arrays |
US12020455B2 (en) | 2021-03-10 | 2024-06-25 | Intrinsic Innovation Llc | Systems and methods for high dynamic range image reconstruction |
US11954886B2 (en) | 2021-04-15 | 2024-04-09 | Intrinsic Innovation Llc | Systems and methods for six-degree of freedom pose estimation of deformable objects |
US11290658B1 (en) | 2021-04-15 | 2022-03-29 | Boston Polarimetrics, Inc. | Systems and methods for camera exposure control |
US12067746B2 (en) | 2021-05-07 | 2024-08-20 | Intrinsic Innovation Llc | Systems and methods for using computer vision to pick up small objects |
CN112991467B (en) * | 2021-05-08 | 2021-07-20 | 光量信息科技(宁波)有限公司 | Camera-based laser projection identification automatic guiding positioning and real-time correction method |
US12175741B2 (en) | 2021-06-22 | 2024-12-24 | Intrinsic Innovation Llc | Systems and methods for a vision guided end effector |
US12172310B2 (en) | 2021-06-29 | 2024-12-24 | Intrinsic Innovation Llc | Systems and methods for picking objects using 3-D geometry and segmentation |
US11689813B2 (en) | 2021-07-01 | 2023-06-27 | Intrinsic Innovation Llc | Systems and methods for high dynamic range imaging using crossed polarizers |
KR102696176B1 (en) * | 2022-01-28 | 2024-08-19 | 하드콘 주식회사 | Method and apparatus for merging machine coordinate system and camera coordinate system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645348A (en) * | 1983-09-01 | 1987-02-24 | Perceptron, Inc. | Sensor-illumination system for use in three-dimensional measurement of objects and assemblies of objects |
US5410141A (en) * | 1989-06-07 | 1995-04-25 | Norand | Hand-held data capture system with interchangable modules |
US5661667A (en) * | 1994-03-14 | 1997-08-26 | Virtek Vision Corp. | 3D imaging using a laser projector |
US6101455A (en) * | 1998-05-14 | 2000-08-08 | Davis; Michael S. | Automatic calibration of cameras and structured light sources |
US6246468B1 (en) * | 1996-04-24 | 2001-06-12 | Cyra Technologies | Integrated system for quickly and accurately imaging and modeling three-dimensional objects |
US20020041282A1 (en) * | 2000-08-08 | 2002-04-11 | Ricoh Company, Ltd. | Shape measurement system |
US7306339B2 (en) * | 2005-02-01 | 2007-12-11 | Laser Projection Technologies, Inc. | Laser projection with object feature detection |
US7487063B2 (en) * | 2003-06-13 | 2009-02-03 | UNIVERSITé LAVAL | Three-dimensional modeling from arbitrary three-dimensional curves |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2623367B2 (en) * | 1990-11-05 | 1997-06-25 | 株式会社ユニスン | Calibration method of three-dimensional shape measuring device |
JPH0712534A (en) | 1993-04-26 | 1995-01-17 | Koyo Seiko Co Ltd | Apparatus for measuring three-dimensional shape |
DE19502459A1 (en) * | 1995-01-28 | 1996-08-01 | Wolf Henning | Three dimensional optical measurement of surface of objects |
DE19634254B4 (en) | 1995-09-04 | 2009-06-10 | Volkswagen Ag | Optical-numerical method for determining the entire surface of a three-dimensional object |
DE19536294C2 (en) * | 1995-09-29 | 2003-12-18 | Daimler Chrysler Ag | Method for geometric navigation of 3D optical sensors for the three-dimensional measurement of objects |
US6285959B1 (en) * | 1996-02-06 | 2001-09-04 | Perceptron, Inc. | Method and apparatus for calibrating a non-contact gauging sensor with respect to an external coordinate system |
JP3912867B2 (en) * | 1997-09-29 | 2007-05-09 | シーケーディ株式会社 | Foot type measuring device |
JP3415070B2 (en) * | 1998-05-25 | 2003-06-09 | 松下電器産業株式会社 | Range finder device |
DE19925462C1 (en) | 1999-06-02 | 2001-02-15 | Daimler Chrysler Ag | Method and system for measuring and testing a 3D body during its manufacture has a measuring system with an optical 3D sensor, a data processor and a testing system storing 3D theoretical data records of a 3D body's surface. |
US6542249B1 (en) | 1999-07-20 | 2003-04-01 | The University Of Western Ontario | Three-dimensional measurement method and apparatus |
JP4315545B2 (en) | 1999-10-19 | 2009-08-19 | Hoya株式会社 | 3D image detection system and 3D image detection apparatus |
AU2001240138A1 (en) * | 2000-03-10 | 2001-09-24 | Perceptron, Inc. | A non-contact measurement device |
US6508403B2 (en) | 2001-05-04 | 2003-01-21 | Institut National D'optique | Portable apparatus for 3-dimensional scanning |
EP2275775B1 (en) * | 2002-01-16 | 2015-09-23 | Faro Technologies, Inc. | Laser-based coordinate measuring device and laser-based method for measuring coordinates |
CN1587903A (en) * | 2004-08-19 | 2005-03-02 | 上海交通大学 | Method for detecting emergy wheel surface topography using laser scan triangular method |
AU2006222458B2 (en) | 2005-03-11 | 2011-06-02 | Creaform Inc. | Auto-referenced system and apparatus for three-dimensional scanning |
-
2006
- 2006-03-13 AU AU2006222458A patent/AU2006222458B2/en active Active
- 2006-03-13 JP JP2008500022A patent/JP4871352B2/en active Active
- 2006-03-13 US US11/817,300 patent/US7912673B2/en active Active
- 2006-03-13 EP EP06705322A patent/EP1877726B1/en active Active
- 2006-03-13 CN CN2006800140693A patent/CN101189487B/en not_active Ceased
- 2006-03-13 AT AT06705322T patent/ATE518113T1/en not_active IP Right Cessation
- 2006-03-13 WO PCT/CA2006/000370 patent/WO2006094409A1/en active Application Filing
- 2006-03-13 EP EP10168327.4A patent/EP2230482B1/en active Active
- 2006-03-13 EP EP10187914A patent/EP2278271B1/en active Active
- 2006-03-13 CA CA002600926A patent/CA2600926C/en active Active
- 2006-03-13 CA CA2656163A patent/CA2656163C/en active Active
-
2010
- 2010-12-03 US US12/959,517 patent/US8140295B2/en active Active
- 2010-12-03 US US12/959,532 patent/US8032327B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4645348A (en) * | 1983-09-01 | 1987-02-24 | Perceptron, Inc. | Sensor-illumination system for use in three-dimensional measurement of objects and assemblies of objects |
US5410141A (en) * | 1989-06-07 | 1995-04-25 | Norand | Hand-held data capture system with interchangable modules |
US5661667A (en) * | 1994-03-14 | 1997-08-26 | Virtek Vision Corp. | 3D imaging using a laser projector |
US6246468B1 (en) * | 1996-04-24 | 2001-06-12 | Cyra Technologies | Integrated system for quickly and accurately imaging and modeling three-dimensional objects |
US6101455A (en) * | 1998-05-14 | 2000-08-08 | Davis; Michael S. | Automatic calibration of cameras and structured light sources |
US20020041282A1 (en) * | 2000-08-08 | 2002-04-11 | Ricoh Company, Ltd. | Shape measurement system |
US7487063B2 (en) * | 2003-06-13 | 2009-02-03 | UNIVERSITé LAVAL | Three-dimensional modeling from arbitrary three-dimensional curves |
US7306339B2 (en) * | 2005-02-01 | 2007-12-11 | Laser Projection Technologies, Inc. | Laser projection with object feature detection |
Cited By (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8082120B2 (en) | 2005-03-11 | 2011-12-20 | Creaform Inc. | Hand-held self-referenced apparatus for three-dimensional scanning |
US8032327B2 (en) | 2005-03-11 | 2011-10-04 | Creaform Inc. | Auto-referenced sensing method for three-dimensional scanning |
US20100134598A1 (en) * | 2005-03-11 | 2010-06-03 | St-Pierre Eric | Hand-held self-referenced apparatus for three-dimensional scanning |
US7912673B2 (en) | 2005-03-11 | 2011-03-22 | Creaform Inc. | Auto-referenced system and apparatus for three-dimensional scanning |
US20110074930A1 (en) * | 2005-03-11 | 2011-03-31 | Hebert Patrick | Auto-referenced sensing method for three-dimensional scanning |
US20110074929A1 (en) * | 2005-03-11 | 2011-03-31 | Hebert Patrick | Auto-referenced sensing device for three-dimensional scanning |
US8140295B2 (en) | 2005-03-11 | 2012-03-20 | Creaform Inc. | Auto-referenced sensing device for three-dimensional scanning |
US9219907B2 (en) | 2007-01-22 | 2015-12-22 | California Institute Of Technology | Method and apparatus for quantitative 3-D imaging |
US9736463B2 (en) | 2007-04-23 | 2017-08-15 | California Institute Of Technology | Single-lens, single-sensor 3-D imaging device with a central aperture for obtaining camera position |
US20090080766A1 (en) * | 2007-09-10 | 2009-03-26 | Herbert Daxauer | Method and apparatus for the Three-Dimensional Digitization of objects |
US8345954B2 (en) * | 2007-09-10 | 2013-01-01 | Steinbichler Optotechnik Gmbh | Method and apparatus for the three-dimensional digitization of objects |
US8330803B2 (en) * | 2008-06-07 | 2012-12-11 | Steinbichler Optotechnik Gmbh | Method and apparatus for 3D digitization of an object |
US20100007719A1 (en) * | 2008-06-07 | 2010-01-14 | Alexander Frey | Method and apparatus for 3D digitization of an object |
US20110134225A1 (en) * | 2008-08-06 | 2011-06-09 | Saint-Pierre Eric | System for adaptive three-dimensional scanning of surface characteristics |
US8284240B2 (en) | 2008-08-06 | 2012-10-09 | Creaform Inc. | System for adaptive three-dimensional scanning of surface characteristics |
US9247235B2 (en) | 2008-08-27 | 2016-01-26 | California Institute Of Technology | Method and device for high-resolution imaging which obtains camera pose using defocusing |
US8339616B2 (en) | 2009-03-31 | 2012-12-25 | Micrometric Vision Technologies | Method and apparatus for high-speed unconstrained three-dimensional digitalization |
US20100245851A1 (en) * | 2009-03-31 | 2010-09-30 | Micrometric Vision Technologies | Method and apparatus for high-speed unconstrained three-dimensional digitalization |
DE102009032771B4 (en) * | 2009-07-10 | 2017-06-29 | Gom Gmbh | Measuring device and method for the three-dimensional optical measurement of objects |
US9596452B2 (en) | 2009-08-11 | 2017-03-14 | California Institute Of Technology | Defocusing feature matching system to measure camera pose with interchangeable lens cameras |
US20110116706A1 (en) * | 2009-11-19 | 2011-05-19 | Samsung Electronics Co., Ltd. | Method, computer-readable medium and apparatus estimating disparity of three view images |
US8989480B2 (en) * | 2009-11-19 | 2015-03-24 | Samsung Electronics Co., Ltd. | Method, computer-readable medium and apparatus estimating disparity of three view images |
US10480929B2 (en) | 2010-04-21 | 2019-11-19 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US10209059B2 (en) | 2010-04-21 | 2019-02-19 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US9885771B2 (en) | 2010-04-21 | 2018-02-06 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US9885559B2 (en) | 2010-04-21 | 2018-02-06 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US9031314B2 (en) | 2010-05-03 | 2015-05-12 | Northern Digital Inc. | Establishing coordinate systems for measurement |
US8730396B2 (en) * | 2010-06-23 | 2014-05-20 | MindTree Limited | Capturing events of interest by spatio-temporal video analysis |
US20110317009A1 (en) * | 2010-06-23 | 2011-12-29 | MindTree Limited | Capturing Events Of Interest By Spatio-temporal Video Analysis |
EP3091508A2 (en) | 2010-09-03 | 2016-11-09 | California Institute of Technology | Three-dimensional imaging system |
US10182223B2 (en) | 2010-09-03 | 2019-01-15 | California Institute Of Technology | Three-dimensional imaging system |
WO2012030357A1 (en) | 2010-09-03 | 2012-03-08 | Arges Imaging, Inc. | Three-dimensional imaging system |
US10742957B2 (en) | 2010-09-03 | 2020-08-11 | California Institute Of Technology | Three-dimensional imaging system |
US10302413B2 (en) | 2011-04-15 | 2019-05-28 | Faro Technologies, Inc. | Six degree-of-freedom laser tracker that cooperates with a remote sensor |
US10267619B2 (en) | 2011-04-15 | 2019-04-23 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US20160377410A1 (en) * | 2011-04-15 | 2016-12-29 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US10578423B2 (en) | 2011-04-15 | 2020-03-03 | Faro Technologies, Inc. | Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns |
US9967545B2 (en) | 2011-04-15 | 2018-05-08 | Faro Technologies, Inc. | System and method of acquiring three-dimensional coordinates using multiple coordinate measurment devices |
US10119805B2 (en) * | 2011-04-15 | 2018-11-06 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US20140085429A1 (en) * | 2011-06-07 | 2014-03-27 | Patrick Hébert | Sensor positioning for 3d scanning |
US9325974B2 (en) * | 2011-06-07 | 2016-04-26 | Creaform Inc. | Sensor positioning for 3D scanning |
US20140100452A1 (en) * | 2011-06-27 | 2014-04-10 | Koninklijke Philips Electronics N.V. | Ultrasound-image-guide system and volume-motion-base calibration method |
US9760994B1 (en) * | 2011-06-29 | 2017-09-12 | Matterport, Inc. | Building a three-dimensional composite scene |
US10102639B2 (en) | 2011-06-29 | 2018-10-16 | Matterport, Inc. | Building a three-dimensional composite scene |
USD667010S1 (en) * | 2011-09-06 | 2012-09-11 | Firth David G | Handheld scanner |
GB2508564A (en) * | 2011-09-13 | 2014-06-04 | Osi Optoelectronics Inc | Improved laser rangefinder sensor |
WO2013040121A3 (en) * | 2011-09-13 | 2014-05-22 | Osi Optoelectronics | Improved laser rangefinder sensor |
EP2756484B1 (en) | 2011-09-13 | 2017-11-08 | OSI Optoelectronics | Improved laser rangefinder sensor |
US20130271573A1 (en) * | 2011-09-30 | 2013-10-17 | Steinbichler Optotechnik Gmbh | Method and apparatus for determining the 3d coordinates of an object |
US10200670B2 (en) * | 2011-09-30 | 2019-02-05 | Carl Zeiss Optotechnik GmbH | Method and apparatus for determining the 3D coordinates of an object |
US9816809B2 (en) | 2012-07-04 | 2017-11-14 | Creaform Inc. | 3-D scanning and positioning system |
US10928183B2 (en) | 2012-07-18 | 2021-02-23 | Creaform Inc. | 3-D scanning and positioning interface |
US10401142B2 (en) | 2012-07-18 | 2019-09-03 | Creaform Inc. | 3-D scanning and positioning interface |
JP2016509199A (en) * | 2012-12-14 | 2016-03-24 | ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド | Apparatus and method for three-dimensional surface measurement |
US9886759B2 (en) * | 2013-10-21 | 2018-02-06 | National Taiwan University Of Science And Technology | Method and system for three-dimensional data acquisition |
US10068344B2 (en) | 2014-03-05 | 2018-09-04 | Smart Picture Technologies Inc. | Method and system for 3D capture based on structure from motion with simplified pose detection |
US10499040B2 (en) | 2014-09-10 | 2019-12-03 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment and a method of control |
US10088296B2 (en) | 2014-09-10 | 2018-10-02 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device |
US10070116B2 (en) | 2014-09-10 | 2018-09-04 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment |
US10401143B2 (en) | 2014-09-10 | 2019-09-03 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device |
US9769463B2 (en) | 2014-09-10 | 2017-09-19 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment and a method of control |
US9879975B2 (en) | 2014-09-10 | 2018-01-30 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device |
US9915521B2 (en) | 2014-09-10 | 2018-03-13 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device |
US10068348B2 (en) | 2014-09-17 | 2018-09-04 | Pilz Gmbh & Co. Kg | Method and apparatus for indentifying structural elements of a projected structural pattern in camera images |
CN107077729A (en) * | 2014-09-17 | 2017-08-18 | 皮尔茨公司 | For the method and apparatus for the structural element for recognizing the projection structure pattern in camera image |
DE102014113389A1 (en) * | 2014-09-17 | 2016-03-17 | Pilz Gmbh & Co. Kg | Method and device for identifying structural elements of a projected structural pattern in camera images |
US20160134860A1 (en) * | 2014-11-12 | 2016-05-12 | Dejan Jovanovic | Multiple template improved 3d modeling of imaged objects using camera position and pose to obtain accuracy |
DE102014019669B4 (en) | 2014-12-30 | 2019-05-02 | Faro Technologies, Inc. | 16Method for optically sensing and measuring an environment with a 3D measuring device and autocalibrating under predetermined conditions |
US12259231B2 (en) | 2015-01-18 | 2025-03-25 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
US10136970B2 (en) * | 2015-01-18 | 2018-11-27 | Dentlytec G.P.L.Ltd | System, device, and method for dental intraoral scanning |
US12025430B2 (en) | 2015-01-18 | 2024-07-02 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
US10966614B2 (en) | 2015-01-18 | 2021-04-06 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
US20160338803A1 (en) * | 2015-01-18 | 2016-11-24 | Dentlytec G.P.L.Ltd | System, device, and method for dental intraoral scanning |
US11173011B2 (en) | 2015-05-01 | 2021-11-16 | Dentlytec G.P.L. Ltd. | System, device and methods for dental digital impressions |
US10083522B2 (en) | 2015-06-19 | 2018-09-25 | Smart Picture Technologies, Inc. | Image based measurement system |
US10356394B2 (en) | 2015-06-26 | 2019-07-16 | Electronics And Telecommunications Research Institute | Apparatus and method for measuring position of stereo camera |
US20190313082A1 (en) * | 2015-06-26 | 2019-10-10 | Electronics And Telecommunications Research Institute | Apparatus and method for measuring position of stereo camera |
US10907955B2 (en) | 2015-08-19 | 2021-02-02 | Faro Technologies, Inc. | Three-dimensional imager |
US11406264B2 (en) | 2016-01-25 | 2022-08-09 | California Institute Of Technology | Non-invasive measurement of intraocular pressure |
US11278726B2 (en) | 2016-08-08 | 2022-03-22 | Deep Brain Stimulation Technologies Pty Ltd | Systems and methods for monitoring neural activity |
US11185697B2 (en) | 2016-08-08 | 2021-11-30 | Deep Brain Stimulation Technologies Pty. Ltd. | Systems and methods for monitoring neural activity |
US11890478B2 (en) | 2016-08-08 | 2024-02-06 | Deep Brain Stimulation Technologies Pty Ltd | Systems and methods for monitoring neural activity |
US11690604B2 (en) | 2016-09-10 | 2023-07-04 | Ark Surgical Ltd. | Laparoscopic workspace device |
US12285188B2 (en) | 2016-09-10 | 2025-04-29 | Ark Surgical Ltd. | Laparoscopic workspace device |
US10799998B2 (en) | 2016-10-17 | 2020-10-13 | Virtek Vision International Ulc | Laser projector with flash alignment |
US11298070B2 (en) | 2017-05-22 | 2022-04-12 | Deep Brain Stimulation Technologies Pty Ltd | Systems and methods for monitoring neural activity |
US11813132B2 (en) | 2017-07-04 | 2023-11-14 | Dentlytec G.P.L. Ltd. | Dental device with probe |
US10914576B2 (en) * | 2017-07-06 | 2021-02-09 | Scantech (Hangzhou) Co., Ltd. | Handheld large-scale three-dimensional measurement scanner system simultaneously having photogrammetric and three-dimensional scanning functions |
US20200225030A1 (en) * | 2017-07-06 | 2020-07-16 | Hangzhou Scantech Company Limited | Handheld large-scale three-dimensional measurement scanner system simultaneously having photogrammetric and three-dimensional scanning functions |
US11690701B2 (en) | 2017-07-26 | 2023-07-04 | Dentlytec G.P.L. Ltd. | Intraoral scanner |
US11164387B2 (en) | 2017-08-08 | 2021-11-02 | Smart Picture Technologies, Inc. | Method for measuring and modeling spaces using markerless augmented reality |
US11682177B2 (en) | 2017-08-08 | 2023-06-20 | Smart Picture Technologies, Inc. | Method for measuring and modeling spaces using markerless augmented reality |
US10679424B2 (en) | 2017-08-08 | 2020-06-09 | Smart Picture Technologies, Inc. | Method for measuring and modeling spaces using markerless augmented reality |
US10304254B2 (en) | 2017-08-08 | 2019-05-28 | Smart Picture Technologies, Inc. | Method for measuring and modeling spaces using markerless augmented reality |
CN108269450A (en) * | 2018-02-02 | 2018-07-10 | 上海九洲信息技术有限公司 | The method and system of substation inspection training are realized based on virtual reality technology |
RU2702963C2 (en) * | 2018-03-05 | 2019-10-14 | Максим Валерьевич Шептунов | Method of optimizing efficiency of production lines for digitization of museum items and archival-library materials and collections |
US11994588B2 (en) | 2018-05-30 | 2024-05-28 | Vi3D Labs Inc. | Three-dimensional surface scanning |
WO2019227212A1 (en) * | 2018-05-30 | 2019-12-05 | Vi3D Labs Inc. | Three-dimensional surface scanning |
US11350077B2 (en) | 2018-07-03 | 2022-05-31 | Faro Technologies, Inc. | Handheld three dimensional scanner with an autoaperture |
US11468673B2 (en) * | 2018-08-24 | 2022-10-11 | Snap Inc. | Augmented reality system using structured light |
EP3663709A1 (en) * | 2018-12-04 | 2020-06-10 | Carl Zeiss Optotechnik GmbH | Method for 3d capturing of an object to be measured |
US11138757B2 (en) | 2019-05-10 | 2021-10-05 | Smart Picture Technologies, Inc. | Methods and systems for measuring and modeling spaces using markerless photo-based augmented reality process |
US11527009B2 (en) | 2019-05-10 | 2022-12-13 | Smart Picture Technologies, Inc. | Methods and systems for measuring and modeling spaces using markerless photo-based augmented reality process |
US11310423B2 (en) * | 2019-12-16 | 2022-04-19 | Industrial Technology Research Institute | Image capturing method and image capturing apparatus |
CN113532329A (en) * | 2020-03-16 | 2021-10-22 | 天目爱视(北京)科技有限公司 | Calibration method using projection light spot as calibration point |
US11308632B2 (en) * | 2020-04-23 | 2022-04-19 | Nanjing University Of Aeronautics And Astronautics | Code point-driven three-dimensional point cloud deformation method |
EP3910287A1 (en) * | 2020-05-14 | 2021-11-17 | Fill Gesellschaft m.b.H. | Method and device for measuring a physical object |
WO2021228998A1 (en) * | 2020-05-14 | 2021-11-18 | Fill Gesellschaft M.B.H. | Method and device for measuring a physical object |
AT525624A5 (en) * | 2020-05-14 | 2023-04-15 | Fill Gmbh | Method and device for measuring a physical object |
CN113436273A (en) * | 2021-06-28 | 2021-09-24 | 南京冲浪智行科技有限公司 | 3D scene calibration method, calibration device and calibration application thereof |
US12111180B2 (en) | 2021-07-01 | 2024-10-08 | Summer Robotics, Inc. | Calibration of sensor position offsets based on rotation and translation vectors for matched trajectories |
US12148185B2 (en) | 2021-07-15 | 2024-11-19 | Summer Robotics, Inc. | Automatic parameter adjustment for scanning event cameras |
US11887340B2 (en) | 2021-07-29 | 2024-01-30 | Summer Robotics, Inc. | Dynamic calibration of 3D acquisition systems |
US11568614B1 (en) | 2021-08-02 | 2023-01-31 | Bank Of America Corporation | Adaptive augmented reality system for dynamic processing of spatial component parameters based on detecting accommodation factors in real time |
US11808857B2 (en) | 2021-08-27 | 2023-11-07 | Summer Robotics, Inc. | Multi-sensor superresolution scanning and capture system |
CN113959439A (en) * | 2021-10-21 | 2022-01-21 | 重庆邮电大学 | Indoor high-precision visible light positioning method and system under sparse light source |
WO2023096873A1 (en) * | 2021-11-28 | 2023-06-01 | Summer Robotics, Inc. | Association of concurrent tracks across multiple views |
US11785200B1 (en) | 2022-03-14 | 2023-10-10 | Summer Robotics, Inc. | Stage studio for immersive 3-D video capture |
US11974055B1 (en) | 2022-10-17 | 2024-04-30 | Summer Robotics, Inc. | Perceiving scene features using event sensors and image sensors |
US12262127B2 (en) | 2022-10-17 | 2025-03-25 | Summer Robotics, Inc. | Perceiving scene features using event sensors and image sensors |
US12276730B2 (en) | 2022-11-08 | 2025-04-15 | Summer Robotics, Inc. | Virtual fences in air, water, and space |
Also Published As
Publication number | Publication date |
---|---|
CN101189487B (en) | 2010-08-11 |
EP2278271A2 (en) | 2011-01-26 |
CA2600926C (en) | 2009-06-09 |
EP2230482A1 (en) | 2010-09-22 |
EP1877726B1 (en) | 2011-07-27 |
US20110074929A1 (en) | 2011-03-31 |
CA2656163A1 (en) | 2006-09-14 |
US8032327B2 (en) | 2011-10-04 |
US20110074930A1 (en) | 2011-03-31 |
AU2006222458A1 (en) | 2006-09-14 |
EP2278271A3 (en) | 2011-03-02 |
US7912673B2 (en) | 2011-03-22 |
CA2656163C (en) | 2011-07-19 |
CA2600926A1 (en) | 2006-09-14 |
EP2278271B1 (en) | 2012-05-23 |
EP1877726A4 (en) | 2008-08-06 |
ATE518113T1 (en) | 2011-08-15 |
JP4871352B2 (en) | 2012-02-08 |
JP2008533451A (en) | 2008-08-21 |
US8140295B2 (en) | 2012-03-20 |
WO2006094409B1 (en) | 2006-10-26 |
WO2006094409A1 (en) | 2006-09-14 |
CN101189487A (en) | 2008-05-28 |
AU2006222458B2 (en) | 2011-06-02 |
EP1877726A1 (en) | 2008-01-16 |
EP2230482B1 (en) | 2013-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7912673B2 (en) | Auto-referenced system and apparatus for three-dimensional scanning | |
US8284240B2 (en) | System for adaptive three-dimensional scanning of surface characteristics | |
US8082120B2 (en) | Hand-held self-referenced apparatus for three-dimensional scanning | |
CA2686904C (en) | Hand-held self-referenced apparatus for three-dimensional scanning | |
US7724379B2 (en) | 3-Dimensional shape measuring method and device thereof | |
Tajima et al. | 3-D data acquisition by rainbow range finder | |
KR101706093B1 (en) | System for extracting 3-dimensional coordinate and method thereof | |
Ahmed et al. | Pothole 3D reconstruction with a novel imaging system and structure from motion techniques | |
Barone et al. | Structured light stereo catadioptric scanner based on a spherical mirror | |
Bergström et al. | Automatic in-line inspection of shape based on photogrammetry | |
Bayram et al. | Open source library-based 3D face point cloud generation | |
CN118031854A (en) | Automatic rock structural surface roughness extraction method based on Bin-sfm photogrammetry technology | |
Fantin et al. | Measurement and stitching of regular cloud of points | |
Wong et al. | Three-dimensional gauging with stereo computer vision | |
Domey et al. | 3-D Sensing for Robot Vision | |
Rodella et al. | 3D shape recovery and registration based on the projection of non-coherent structured light | |
Papadaki | Automated measurement of complex engineering surfaces using multi station photogrammetry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CREAFORM INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEBERT, PATRICK;SAINT-PIERRE, ERIC;TUBIC, DRAGAN;REEL/FRAME:020607/0571 Effective date: 20050429 |
|
AS | Assignment |
Owner name: CREAFORM INC., CANADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 020607 FRAME 0571;ASSIGNORS:HEBERT, PATRICK;SAINT-PIERRE, ERIC;TUBIC, DRAGAN;REEL/FRAME:020618/0522 Effective date: 20050429 Owner name: CREAFORM INC., CANADA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 020607 FRAME 0571. ASSIGNOR(S) HEREBY CONFIRMS THE ADDRESS OF THE ASSIGNEE SHOULD READ "5825, RUE ST-GEORGES, LEVIS (QUEBEC), CANADA G6V 4L2";ASSIGNORS:HEBERT, PATRICK;SAINT-PIERRE, ERIC;TUBIC, DRAGAN;REEL/FRAME:020618/0522 Effective date: 20050429 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REFU | Refund |
Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CREAFORM INC., CANADA Free format text: CHANGE OF ADDESS OF ASSIGNEE;ASSIGNOR:CREAFORM INC.;REEL/FRAME:045794/0928 Effective date: 20180219 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |