US20090067672A1 - Embedding Hidden Auxiliary Code Signals in Media - Google Patents
Embedding Hidden Auxiliary Code Signals in Media Download PDFInfo
- Publication number
- US20090067672A1 US20090067672A1 US12/207,339 US20733908A US2009067672A1 US 20090067672 A1 US20090067672 A1 US 20090067672A1 US 20733908 A US20733908 A US 20733908A US 2009067672 A1 US2009067672 A1 US 2009067672A1
- Authority
- US
- United States
- Prior art keywords
- signal
- original
- symbols
- image
- identification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 78
- 238000001514 detection method Methods 0.000 claims description 8
- 238000012790 confirmation Methods 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 33
- 230000008569 process Effects 0.000 description 24
- 239000002131 composite material Substances 0.000 description 23
- 238000003860 storage Methods 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000007667 floating Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000005236 sound signal Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000013139 quantization Methods 0.000 description 3
- 238000000844 transformation Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000012952 Resampling Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000052343 Dares Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/913—Television signal processing therefor for scrambling ; for copy protection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/30—Payment architectures, schemes or protocols characterised by the use of specific devices or networks
- G06Q20/34—Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
- G06Q20/341—Active cards, i.e. cards including their own processing means, e.g. including an IC or chip
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/40—Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
- G06Q20/401—Transaction verification
- G06Q20/4014—Identity check for transactions
- G06Q20/40145—Biometric identity checks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0021—Image watermarking
- G06T1/005—Robust watermarking, e.g. average attack or collusion attack resistant
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0021—Image watermarking
- G06T1/005—Robust watermarking, e.g. average attack or collusion attack resistant
- G06T1/0057—Compression invariant watermarking
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/20—Individual registration on entry or exit involving the use of a pass
- G07C9/22—Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder
- G07C9/25—Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition
- G07C9/253—Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition visually
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/003—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
- G07D7/0032—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements using holograms
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/004—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using digital security elements, e.g. information coded on a magnetic thread or strip
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F17/00—Coin-freed apparatus for hiring articles; Coin-freed facilities or services
- G07F17/16—Coin-freed apparatus for hiring articles; Coin-freed facilities or services for devices exhibiting advertisements, announcements, pictures or the like
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F17/00—Coin-freed apparatus for hiring articles; Coin-freed facilities or services
- G07F17/26—Coin-freed apparatus for hiring articles; Coin-freed facilities or services for printing, stamping, franking, typing or teleprinting apparatus
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/086—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means by passive credit-cards adapted therefor, e.g. constructive particularities to avoid counterfeiting, e.g. by inclusion of a physical or chemical security-layer
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/10—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means together with a coded signal, e.g. in the form of personal identification information, like personal identification number [PIN] or biometric data
- G07F7/1008—Active credit-cards provided with means to personalise their use, e.g. with PIN-introduction/comparison system
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/10—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means together with a coded signal, e.g. in the form of personal identification information, like personal identification number [PIN] or biometric data
- G07F7/1016—Devices or methods for securing the PIN and other transaction-data, e.g. by encryption
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/12—Card verification
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/018—Audio watermarking, i.e. embedding inaudible data in the audio signal
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/00094—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised record carriers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/00094—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised record carriers
- G11B20/00115—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised record carriers wherein the record carrier stores a unique medium identifier
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/00166—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised contents recorded on or reproduced from a record carrier, e.g. music or software
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/00166—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised contents recorded on or reproduced from a record carrier, e.g. music or software
- G11B20/00181—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which result in a restriction to authorised contents recorded on or reproduced from a record carrier, e.g. music or software using a content identifier, e.g. an international standard recording code [ISRC] or a digital object identifier [DOI]
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/0021—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving encryption or decryption of contents recorded on or reproduced from a record carrier
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/00884—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a watermark, i.e. a barely perceptible transformation of the original data which can nevertheless be recognised by an algorithm
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/00086—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
- G11B20/00884—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a watermark, i.e. a barely perceptible transformation of the original data which can nevertheless be recognised by an algorithm
- G11B20/00891—Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a watermark, i.e. a barely perceptible transformation of the original data which can nevertheless be recognised by an algorithm embedded in audio data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/66—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
- H04B1/665—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using psychoacoustic properties of the ear, e.g. masking effect
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00005—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to image data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00026—Methods therefor
- H04N1/00037—Detecting, i.e. determining the occurrence of a predetermined state
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00002—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
- H04N1/00071—Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
- H04N1/00074—Indicating or reporting
- H04N1/00079—Indicating or reporting remotely
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00838—Preventing unauthorised reproduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/00838—Preventing unauthorised reproduction
- H04N1/0084—Determining the necessity for prevention
- H04N1/00843—Determining the necessity for prevention based on recognising a copy prohibited original, e.g. a banknote
- H04N1/00846—Determining the necessity for prevention based on recognising a copy prohibited original, e.g. a banknote based on detection of a dedicated indication, e.g. marks or the like
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
- H04N1/32149—Methods relating to embedding, encoding, decoding, detection or retrieval operations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
- H04N1/32149—Methods relating to embedding, encoding, decoding, detection or retrieval operations
- H04N1/32203—Spatial or amplitude domain methods
- H04N1/32208—Spatial or amplitude domain methods involving changing the magnitude of selected pixels, e.g. overlay of information or super-imposition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
- H04N1/32149—Methods relating to embedding, encoding, decoding, detection or retrieval operations
- H04N1/32203—Spatial or amplitude domain methods
- H04N1/32251—Spatial or amplitude domain methods in multilevel data, e.g. greyscale or continuous tone data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
- H04N1/32149—Methods relating to embedding, encoding, decoding, detection or retrieval operations
- H04N1/32288—Multiple embedding, e.g. cocktail embedding, or redundant embedding, e.g. repeating the additional information at a plurality of locations in the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2201/00—General purpose image data processing
- G06T2201/005—Image watermarking
- G06T2201/0052—Embedding of the watermark in the frequency domain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2201/00—General purpose image data processing
- G06T2201/005—Image watermarking
- G06T2201/0065—Extraction of an embedded watermark; Reliable detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2201/00—General purpose image data processing
- G06T2201/005—Image watermarking
- G06T2201/0081—Image watermarking whereby both original and watermarked images are required at decoder, e.g. destination-based, non-blind, non-oblivious
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/913—Television signal processing therefor for scrambling ; for copy protection
- H04N2005/91307—Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal
- H04N2005/91321—Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal the copy protection signal being a copy protection control signal, e.g. a record inhibit signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/913—Television signal processing therefor for scrambling ; for copy protection
- H04N2005/91307—Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal
- H04N2005/91335—Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal the copy protection signal being a watermark
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3204—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium
- H04N2201/3205—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium of identification information, e.g. name or ID code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3204—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium
- H04N2201/3207—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to a user, sender, addressee, machine or electronic recording medium of an address
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3225—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
- H04N2201/3226—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of identification information or the like, e.g. ID code, index, title, part of an image, reduced-size image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3225—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document
- H04N2201/3233—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of data relating to an image, a page or a document of authentication information, e.g. digital signature, watermark
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3269—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of machine readable codes or marks, e.g. bar codes or glyphs
- H04N2201/327—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title of machine readable codes or marks, e.g. bar codes or glyphs which are undetectable to the naked eye, e.g. embedded codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/3271—Printing or stamping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N2201/3201—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N2201/328—Processing of the additional information
Definitions
- the invention relates to the embedding of robust identification codes in electronic, optical and physical media, and the subsequent, objective discernment of such codes for identification and other purposes even after intervening distortion or corruption of the media.
- the invention is illustrated with reference to a few exemplary applications, including electronic imagery, emulsion film, and paper currency, but is not so limited.
- Another class of techniques relies on modification of source audio or video signals to include a subliminal identification signal, which can be sensed by electronic means. Examples of such systems are found in U.S. Pat. No. 4,972,471 and European patent publication EP 441,702, as well as in Komatsu et al, “Authentication System Using Concealed Image in Telematics,” Memoirs of the School of Science & Engineering, Waseda University, No. 52, p. 45-60 (1988) ( Komatsu uses the term “digital watermark” for this technique). An elementary introduction to these methods is found in the article “Digital Signatures,” Byte Magazine, November, 1993, p. 309. These techniques have the common characteristic that deterministic signals with well defined patterns and sequences within the source material convey the identification information.
- What is needed is a reliable and efficient method for performing a positive identification between a copy of an original signal and the original.
- This method should not only be able to perform positive identification, it should also be able to relate version identification of sold copies in order to better pinpoint the point of sale.
- the method should not compromise the innate quality of material which is being sold, as does the placement of localized logos on images.
- the method should be robust so that an identification can be made even after multiple copies have been made and/or compression and decompression of the signal has taken place.
- the identification method should be largely uneraseable or “uncrackable.”
- the method should be capable of working even on fractional pieces of the original signal, such as a 10 second “riff” of an audio signal or the “clipped and pasted” sub-section of an original image.
- a computer system is provided with associated means for manipulating either digital audio signals or digital images.
- means for creating a high fidelity digital copy of the material is included in the illustrative embodiment.
- This physical system will be referred to as the “Eye-D” workstation or system which serves as a concise trade name.
- the Eye-D system embeds an imperceptible global signal either directly onto the digital original or onto the “digitized copy” of the original if it was in a non-digital form to begin with.
- the new copy with the embedded signal becomes the material which is sold while the original is secured in a safe place.
- the new copy will be nearly identical to the original except under the finest of scrutiny; thus, its commercial value will not be compromised.
- the present disclosure details a method for positively identifying any suspect signal against the original.
- One embodiment uses identification signals which are global (holographic) and which mimic natural noise sources. This approach allows the maximization of identification signal energy as opposed to merely having it present ‘somewhere in the original material.’ This allows it to be much more robust in the face of thousands of real world degradation processes and material transformations such as cutting and cropping of imagery.
- FIG. 1 is a simple and classic depiction of a one dimensional digital signal which is discretized in both axes.
- FIG. 2 is a general overview, with detailed description of steps, of the process of embedding an “imperceptible” identification signal onto another signal.
- FIG. 3 is a step-wise description of how a suspected copy of an original is identified, provided that original and its copies are using the Eye-D identification system methodology.
- FIG. 4 is a schematic view of an apparatus for pre-exposing film with identification information in accordance with another embodiment of the present invention.
- the words “signal” and “image” are used interchangeably to refer to both one, two, and even beyond two dimensions of digital signal. Examples will routinely switch back and forth between a one dimensional audio-type digital signal and a two dimensional image-type digital signal.
- FIG. 1 shows a classic representation of a one dimensional digital signal.
- the x-axis defines the index numbers of sequence of digital “samples,” and the y-axis is the instantaneous value of the signal at that sample, being constrained to exist only at a finite number of levels defined as the “binary depth” of a digital sample.
- the example depicted in FIG. 1 has the value of 2 to the fourth power, or “4 bits,” giving 16 allowed states of the sample value.
- decibel scale is used as a measure of signal and noise in a given recording medium.
- signal-to-noise ratio is generally used, as it will be in this disclosure. As an example, this disclosure refers to signal to noise ratios in terms of signal power and noise power, thus 20 dB represents a 10 times increase in signal amplitude.
- the presently preferred embodiment of the invention embeds an N-bit value onto an entire signal through the addition of a very low amplitude encodation signal which has the look and characteristics of pure noise.
- N is usually at least 8 and is capped on the higher end by ultimate signal-to-noise considerations and “bit error” in retrieving and decoding the N-bit value.
- the amplitude or power of this added signal is determined by the aesthetic and informational considerations of each and every application using the Eye-D method. For instance, non-professional video can stand to have a higher embedded signal level without becoming noticeable to the average human eye, while very high precision audio may only be able to accept a relatively small signal level lest the human ear perceive an objectionable increase in “hiss.” These statements are generalities and each application has its own set of criteria in choosing the signal level of the embedded identification signal. The higher the level of embedded signal, the more corrupted a copy can be and still be identified. On the other hand, the higher the level of embedded signal, the more objectionable the perceived noise might be, potentially impacting the value of the distributed material.
- the original signal refers to either the original digital signal or the high quality digitized copy of a non-digital original.
- the N-bit identification word refers to a unique identification binary value, typically having N range anywhere from 8 to 128, which is the identification code ultimately placed onto the original signal via the disclosed transformation process.
- each N-bit identification word begins with the sequence of values ‘0101,’ which is used to determine an optimization of the signal-to-noise ratio in the identification procedure of a suspect signal (see definition below).
- the m'th bit value of the N-bit identification word is either a zero or one corresponding to the value of the m'th place, reading left to right, of the N-bit word.
- the m'th individual embedded code signal refers to a signal which has dimensions and extent precisely equal to the original signal (e.g. both are a 512 by 512 digital image), and which is (in the illustrated embodiment) an independent pseudo-random sequence of digital values. “Pseudo” pays homage to the difficulty in philosophically defining pure randomness, and also indicates that there are various acceptable ways of generating the “random” signal. There will be exactly N individual embedded code signals associated with any given original signal.
- the acceptable perceived noise level refers to an application-specific determination of how much “extra noise,” i.e. amplitude of the composite embedded code signal described next, can be added to the original signal and still have an acceptable signal to sell or otherwise distribute.
- This disclosure uses a 1 Db increase in noise as a typical value which might be acceptable, but this is quite arbitrary.
- the composite embedded code signal refers to the signal which has dimensions and extent precisely equal to the original signal, (e.g. both are a 512 by 512 digital image), and which contains the addition and appropriate attenuation of the N individual embedded code signals.
- the individual embedded signals are generated on an arbitrary scale, whereas the amplitude of the composite signal must not exceed the pre-set acceptable perceived noise level, hence the need for “attenuation” of the N added individual code signals.
- the distributable signal refers to the nearly similar copy of the original signal, consisting of the original signal plus the composite embedded code signal. This is the signal which is distributed to the outside community, having only slightly higher but acceptable “noise properties” than the original.
- a suspect signal refers to a signal which has the general appearance of the original and distributed signal and whose potential identification match to the original is being questioned.
- the suspect signal is then applied to the decoding process of Eye-D to see if it matches the N-bit identification word.
- the detailed methodology of the preferred embodiment begins by stating that the N-bit identification word is encoded onto the original signal by having each of the m bit values multiply their corresponding individual embedded code signals, the resultant being accumulated in the composite signal, the fully summed composite signal then being attenuated down to the acceptable perceived noise amplitude, and the resultant composite signal added to the original to become the distributable signal.
- the original signal, the N-bit identification word, and all N individual embedded code signals are then stored away in a secured place.
- a suspect signal is then found.
- This signal may have undergone multiple copies, compressions and decompressions, resamplings onto different spaced digital signals, transfers from digital to analog back to digital media, or any combination of these items.
- the identification process should function to some objective degree of statistical confidence.
- the extent of corruption of the suspect signal and the original acceptable perceived noise level are two key parameters in determining an expected confidence level of identification.
- the identification process on the suspected signal begins by resampling and aligning the suspected signal onto the digital format and extent of the original signal. Thus, if an image has been reduced by a factor of two, it needs to be digitally enlarged by that same factor. Likewise, if a piece of music has been “cut out,” but may still have the same sampling rate as the original, it is necessary to register this cut-out piece to the original, typically done by performing a local digital cross-correlation of the two signals (a common digital operation), finding at what delay value the correlation peaks, then using this found delay value to register the cut piece to a segment of the original.
- the signal levels of the suspect signal must be matched in an rms sense to the signal level of the original. This can be done via a search on the parameters of offset, amplification, and gamma being optimized by using the minimum of the mean squared error between the two signals as a function of the three parameters. We can call the suspect signal normalized and registered at this point, or just normalized for convenience.
- the newly matched pair then has the original signal subtracted from the normalized suspect signal to produce a difference signal.
- the difference signal is then cross-correlated with each of the N individual embedded code signals and the peak cross-correlation value recorded.
- the first four bit code (‘0101’) is used as a calibrator both on the mean values of the zero value and the one value, and on further registration of the two signals if a finer signal to noise ratio is desired (i.e., the optimal separation of the 0101 signal will indicate an optimal registration of the two signals and will also indicate the probable existence of the N-bit identification signal being present.)
- the resulting peak cross-correlation values will form a noisy series of floating point numbers which can be transformed into 0's and 1's by their proximity to the mean values of 0 and 1 found by the 0101 calibration sequence. If the suspect signal has indeed been derived from the original, the identification number resulting from the above process will match the N-bit identification word of the original, bearing in mind either predicted or unknown “bit error” statistics. Signal-to-noise considerations will determine if there will be some kind of “bit error” in the identification process, leading to a form of X% probability of identification where X might be desired to be 99.9% or whatever.
- n and m are simple indexing values on rows and columns of the image ranging from 0 to 3999.
- Sqrt is the square root.
- V is the DN of a given indexed pixel on the original digital image.
- the ⁇ > brackets around the RMS noise merely indicates that this is an expected average value, where it is clear that each and every pixel will have a random error individually.
- the next step in our process is to choose N of our N-bit identification word.
- N the number of bits required now are at 4 bits for the 0101 calibration sequence, 16 for the main identification, 8 for the version, and we now throw in another 4 as a further error checking value on the first 28 bits, giving 32 bits as N.
- the final 4 bits can use one of many industry standard error checking methods to choose its four values.
- V dist;n,m V orig;n,m +V comp;n,m *X * sqrt(4 +V orig;n,m
- dist refers to the candidate distributable image, i.e. we are visually iterating to find what X and Y will give us an acceptable image
- orig refers to the pixel value of the original image
- comp refers to the pixel value of the composite image.
- the n's and m's still index rows and columns of the image and indicate that this operation is done on all 4000 by 4000 pixels.
- the symbol V is the DN of a given pixel and a given image.
- FIG. 3 summarizes the details.
- the first step is to take an issue of the magazine, cut out the page with the image on it, then carefully but not too carefully cut out the two figures from the background image using ordinary scissors. If possible, we will cut out only one connected piece rather than the two figures separately.
- the next step is to subtract the original digital image from the newly normalized suspect image only within the standard mask region. This new image is called the difference image.
- ‘Local’ refers to the idea that one need only start correlating over an offset region of +/ ⁇ 1 pixels of offset between the nominal registration points of the two images found during the search procedures above.
- the peak correlation should be very close to the nominal registration point of 0,0 offset, and we can add the 3 by 3 correlation values together to give one grand correlation value for each of the 32 individual bits of our 32-bit identification word.
- the ultimate benefits of the process are that obtaining an identification number is fully independent of the manners and methods of preparing the difference image. That is to say, the manners of preparing the difference image, such as cutting, registering, scaling, etcetera, cannot increase the odds of finding an identification number when none exists; it only helps the signal-to-noise ratio of the identification process when a true identification number is present. Methods of preparing images for identification can be different from each other even, providing the possibility for multiple independent methodologies for making a match.
- the foregoing disclosure made use of the 0 and 1 formalism of binary technology to accomplish its ends. Specifically, the 0's and 1's of the N-bit identification word directly multiplied their corresponding individual embedded code signal to form the composite embedded code signal (step 8 , FIG. 2 ). This approach certainly has its conceptual simplicity, but the multiplication of an embedded code signal by 0 along with the storage of that embedded code contains a kind of inefficiency.
- step 8 of FIG. 2 rather than only ‘adding’ the individual embedded code signals which correspond to a ‘1’ in the N-bit identification word, we will also ‘subtract’ the individual embedded code signals which correspond to a ‘0’ in the N-bit identification word.
- FIG. 2 can be correspondingly lower.
- the foregoing disclosure contemplates the use of generally random noise-like signals as the individual embedded code signals. This is perhaps the simplest form of signal to generate. However, there is a form of informational optimization which can be applied to the set of the individual embedded signals which the applicant describes under the rubric ‘perceptual orthogonality.’ This term is loosely based on the mathematical concept of the orthogonality of vectors, with the current additional requirement that this orthogonality should maximize the signal energy of the identification information while maintaining it below some perceptibility threshold. Put another way, the embedded code signals need not necessarily be random in nature.
- serial number as it is called here is generally synonymous with the N-bit identification word, only now we are using a more common industrial terminology.
- step 11 the disclosure calls for the storage of the “original [image]” along with code images. Then in FIG. 3 , step 9 , it directs that the original be subtracted from the suspect image, thereby leaving the possible identification codes plus whatever noise and corruption has accumulated. Therefore, the previous disclosure made the tacit assumption that there exists an original without the composite embedded signals.
- FIG. 4 has a schematic outlining one potential post-hoc mechanism for pre-exposing film.
- Post-hoc refers to applying a process after the full common manufacturing process of film has already taken place. Eventually, economies of scale may dictate placing this pre-exposing process directly into the chain of manufacturing film. Depicted in FIG. 4 is what is commonly known as a film writing system.
- the computer, 106 displays the composite signal produced in step 8 , FIG. 2 , on its phosphor screen. A given frame of film is then exposed by imaging this phosphor screen, where the exposure level is generally very faint, i.e. generally imperceptible.
- the marketplace will set its own demands on how faint this should be, that is, the level of added ‘graininess’ as practitioners would put it.
- Each frame of film is sequentially exposed, where in general the composite image displayed on the CRT 102 is changed for each and every frame, thereby giving each frame of film a different serial number.
- the transfer lens 104 highlights the focal conjugate planes of a film frame and the CRT face.
- a succinct definition of the problem is in order at this point. Given a suspect picture (signal), find the embedded identification code IF a code exists at al. The problem reduces to one of finding the amplitude of each and every individual embedded code signal within the suspect picture, not only within the context of noise and corruption as was previously explained, but now also within the context of the coupling between a captured image and the codes. ‘Coupling’ here refers to the idea that the captured image “randomly biases” the cross-correlation.
- the identification process now estimates the signal amplitude of each and every individual embedded code signal (as opposed to taking the cross-correlation result of step 12 , FIG. 3 ). If our identification signal exists in the suspect picture, the amplitudes thus found will split into a polarity with positive amplitudes being assigned a ‘1’ and negative amplitudes being assigned a ‘0’. Our unique identification code manifests itself. If, on the other hand, no such identification code exists or it is someone else's code, then a random gaussian-like distribution of amplitudes is found with a random hash of values.
- the new image is applied to the fast fourier transform routine and a scale factor is eventually found which minimizes the integrated high frequency content of the new image.
- This general type of search operation with its minimization of a particular quantity is exceedingly common.
- the scale factor thus found is the “amplitude” being sought within the steps of the present invention.
- refinements which are contemplated but not yet implemented are where the coupling of the higher derivatives of the acquired image and the embedded codes are estimated and removed from the calculated scale factor. In other words, certain bias effects from the coupling mentioned earlier are present and should be eventually accounted for and removed both through theoretical and empirical experimentation.
- the details of implementing the creation of the amplitude map have a variety of choices.
- the preferred embodiment at this time is to perform the same procedure which is used to determine the signal amplitude as described above, only now we step and repeat the multiplication of any given area of the signal/image with a gaussian weight function centered about the area we are investigating.
- One such approach to economizing is to have a given set of individual embedded code signals be common to a batch of source materials. For example, one thousand images can all utilize the same basic set of individual embedded code signals. The storage requirements of these codes then become a small fraction of the overall storage requirements of the source material.
- some applications can utilize a universal set of individual embedded code signals, i.e., codes which remain the same for all instances of distributed material. This type of requirement would be seen by systems which wish to hide the N-bit identification word itself, yet have standardized equipment be able to read that word. This can be used in systems which make go/no go decisions at point-of-read locations.
- the potential drawback to this set-up is that the universal codes are more prone to be sleuthed or stolen; therefore they will not be as secure as the apparatus and methodology of the previously disclosed arrangement. Perhaps this is just the difference between ‘high security’ and ‘air-tight security,’ a distinction carrying little weight with the bulk of potential applications.
- signal in the title of the disclosure is often used narrowly to refer to digital data information, audio signals, images, etc.
- the micro-topology of a piece of common paper becomes a ‘signal’ (e.g. it height as a function of x-y coordinates).
- the reflective properties of a flat piece of plastic (as a function of space also) becomes a signal.
- photographic emulsions, audio signals, and digitized information are not the only types of signals capable of utilizing the principles of the invention.
- a machine very much resembling a braille printing machine can be designed so as to imprint unique ‘noise-like’ indentations as outlined in the disclosure. These indentations can be applied with a pressure which is much smaller than is typically applied in creating braille, to the point where the patterns are not noticed by a normal user of the paper. But by following the steps of the present disclosure and applying them via the mechanism of micro-indentations, a unique identification code can be placed onto any given sheet of paper, be it intended for everyday stationary purposes, or be it for important documents, legal tender, or other secured material.
- the reading of the identification material in such an embodiment generally proceeds by merely reading the document optically at a variety of angles. This would become an inexpensive method for deducing the micro-topology of the paper surface. Certainly other forms of reading the topology of the paper are possible as well.
- Appendix A contains the source code of an implementation and verification of the Eye-D system on an 8-bit black and white imaging system.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Accounting & Taxation (AREA)
- General Business, Economics & Management (AREA)
- Computer Networks & Wireless Communication (AREA)
- Strategic Management (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computational Linguistics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Finance (AREA)
- Editing Of Facsimile Originals (AREA)
- Image Processing (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Communication Control (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Facsimile Image Signal Circuits (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Television Signal Processing For Recording (AREA)
- Television Systems (AREA)
Abstract
Description
- This application is a continuation of application Ser. No. 11/360,002, filed Feb. 21, 2006 (now U.S. Pat. No. 7,424,132) which is a continuation of application Ser. No. 10/405,951, filed Apr. 1, 2003 (now U.S. Pat. No. 7,003,132) which is a continuation of application Ser. No. 09/626,984, filed Jul. 27, 2000 (now U.S. Pat. No. 6,542,620), which is a continuation of application Ser. No. 08/967,693, filed Nov. 12, 1997 (now U.S. Pat. No. 6,122,392), which is a continuation of application Ser. No. 08/614,521, filed Mar. 15, 1996 (now U.S. Pat. No. 5,745,604), which is a continuation of application Ser. No. 08/215,289, filed Mar. 17, 1994 (abandoned), which is a continuation-in-part of application Ser. No. 08/154,866, filed Nov. 18, 1993 (abandoned).
- A microfiche appendix, comprising one microfiche, with a total of 21 printed pages of computer program listings, forms part of the specification of U.S. Pat. No. 6,542,620. The above patents and patent applications, including the microfiche appendix, are hereby incorporated by reference.
- The invention relates to the embedding of robust identification codes in electronic, optical and physical media, and the subsequent, objective discernment of such codes for identification and other purposes even after intervening distortion or corruption of the media.
- The invention is illustrated with reference to a few exemplary applications, including electronic imagery, emulsion film, and paper currency, but is not so limited.
- “I would never put it in the power of any printer or publisher to suppress or alter a work of mine, by making him master of the copy”
-
- Thomas Paine, Rights of Man, 1792.
- “The printer dares not go beyond his licensed copy”
-
- Milton, Aeropagetica, 1644.
- Since time immemorial, unauthorized use and outright piracy of audio and visual source material has caused lost revenues to the owners of such material, and has been a source of confusion and corruption of original work.
- With the advent of digitizing data audio signals and images, the technology of copying materials and redistributing them in an unauthorized manner has reached new heights of sophistication, and more importantly, omnipresence. Lacking objective means for comparing an alleged copy of material with the original, owners and possible litigation proceedings are left with a subjective opinion of whether the alleged copy is stolen, or has been used in an unauthorized manner. Furthermore, there is no simple means of tracing a path to an original purchaser of the material, something which can be valuable in tracing where a possible “leak” of the material first occurred.
- A variety of methods for protecting commercial material have been attempted. One is to scramble signals via an encoding method prior to distribution, and descramble prior to use. This technique, however, requires that both the original and later descrambled signals never leave closed and controlled networks, lest they be intercepted and recorded. Furthermore, this arrangement is of little use in the broad field of mass marketing audio and visual material, where even a few dollars extra cost causes a major reduction in market, and where the signal must eventually be descrambled to be perceived and thus can be easily recorded.
- Another class of techniques relies on modification of source audio or video signals to include a subliminal identification signal, which can be sensed by electronic means. Examples of such systems are found in U.S. Pat. No. 4,972,471 and European patent publication EP 441,702, as well as in Komatsu et al, “Authentication System Using Concealed Image in Telematics,” Memoirs of the School of Science & Engineering, Waseda University, No. 52, p. 45-60 (1988) (Komatsu uses the term “digital watermark” for this technique). An elementary introduction to these methods is found in the article “Digital Signatures,” Byte Magazine, November, 1993, p. 309. These techniques have the common characteristic that deterministic signals with well defined patterns and sequences within the source material convey the identification information. For certain applications this is not a drawback. But in general, this is a highly inefficient form of embedding identification information for a variety of reasons: (a) the whole of the source material is not used; (b) deterministic patterns have a higher likelihood of being discovered and removed by a would-be infringer; and (c) the signals are not generally ‘holographic’ in that identifications may be difficult to make given only sections of the whole. (‘Holographic’ is used herein to refer to the property that the identification information is distributed globally throughout the coded signal, and can be fully discerned from an examination of even a fraction of the coded signal. Coding of this type is sometimes termed “distributed” herein.)
- What is needed is a reliable and efficient method for performing a positive identification between a copy of an original signal and the original. This method should not only be able to perform positive identification, it should also be able to relate version identification of sold copies in order to better pinpoint the point of sale. The method should not compromise the innate quality of material which is being sold, as does the placement of localized logos on images. The method should be robust so that an identification can be made even after multiple copies have been made and/or compression and decompression of the signal has taken place. The identification method should be largely uneraseable or “uncrackable.” The method should be capable of working even on fractional pieces of the original signal, such as a 10 second “riff” of an audio signal or the “clipped and pasted” sub-section of an original image.
- The existence of such a method would have profound consequences on audio and image piracy in that it could (a) cost effectively monitor for unauthorized uses of material and perform “quick checks”; (b) become a deterrent to unauthorized uses when the method is known to be in use and the consequences well publicized; and (c) provide unequivocal proof of identity, similar to fingerprint identification, in litigation, with potentially more reliability than that of fingerprinting.
- In accordance with an exemplary embodiment of the invention, a computer system is provided with associated means for manipulating either digital audio signals or digital images. In cases where original material is in “non-digital” form, such as on audio tape or on a photograph, means for creating a high fidelity digital copy of the material is included in the illustrative embodiment. This physical system will be referred to as the “Eye-D” workstation or system which serves as a concise trade name. The Eye-D system embeds an imperceptible global signal either directly onto the digital original or onto the “digitized copy” of the original if it was in a non-digital form to begin with. The new copy with the embedded signal becomes the material which is sold while the original is secured in a safe place. The new copy will be nearly identical to the original except under the finest of scrutiny; thus, its commercial value will not be compromised. After the new copy has been sold and distributed and potentially distorted by multiple copies, the present disclosure details a method for positively identifying any suspect signal against the original.
- One embodiment uses identification signals which are global (holographic) and which mimic natural noise sources. This approach allows the maximization of identification signal energy as opposed to merely having it present ‘somewhere in the original material.’ This allows it to be much more robust in the face of thousands of real world degradation processes and material transformations such as cutting and cropping of imagery.
- The foregoing and additional features and advantages will be more readily apparent from the following detailed description thereof, which proceeds with reference to the accompanying drawings.
-
FIG. 1 is a simple and classic depiction of a one dimensional digital signal which is discretized in both axes. -
FIG. 2 is a general overview, with detailed description of steps, of the process of embedding an “imperceptible” identification signal onto another signal. -
FIG. 3 is a step-wise description of how a suspected copy of an original is identified, provided that original and its copies are using the Eye-D identification system methodology. -
FIG. 4 is a schematic view of an apparatus for pre-exposing film with identification information in accordance with another embodiment of the present invention. - In the following discussion of an illustrative embodiment, the words “signal” and “image” are used interchangeably to refer to both one, two, and even beyond two dimensions of digital signal. Examples will routinely switch back and forth between a one dimensional audio-type digital signal and a two dimensional image-type digital signal.
- In order to fully describe the details of an illustrative embodiment of the invention, it is necessary first to describe the basic properties of a digital signal.
FIG. 1 shows a classic representation of a one dimensional digital signal. The x-axis defines the index numbers of sequence of digital “samples,” and the y-axis is the instantaneous value of the signal at that sample, being constrained to exist only at a finite number of levels defined as the “binary depth” of a digital sample. The example depicted inFIG. 1 has the value of 2 to the fourth power, or “4 bits,” giving 16 allowed states of the sample value. - For audio information such as sound waves, it is commonly accepted that the digitization process discretizes a continuous phenomena both in the time domain and in the signal level domain. As such, the process of digitization itself introduces a fundamental error source in that it cannot record detail smaller than the discretization interval in either domain. The industry has referred to this, among other ways, as “aliasing” in the time domain, and “quantization noise” in the signal level domain. Thus, there will always be a basic error floor of a digital signal. Pure quantization noise, measured in a root mean square sense, is theoretically known to have the value of one over the square root of twelve, or about 0.29 DN, where DN stands for ‘Digital Number’ or the finest unit increment of the signal level. For example, a perfect 12-bit digitizer will have 4096 allowed DN with an innate root mean square noise floor of ˜0.29 DN.
- All known physical measurement processes add additional noise to the transformation of a continuous signal into the digital form. The quantization noise typically adds in quadrature (square root of the mean squares) to the “analog noise” of the measurement process, as it is sometimes referred to.
- With almost all commercial and technical processes, the use of the decibel scale is used as a measure of signal and noise in a given recording medium. The expression “signal-to-noise ratio” is generally used, as it will be in this disclosure. As an example, this disclosure refers to signal to noise ratios in terms of signal power and noise power, thus 20 dB represents a 10 times increase in signal amplitude.
- In summary, the presently preferred embodiment of the invention embeds an N-bit value onto an entire signal through the addition of a very low amplitude encodation signal which has the look and characteristics of pure noise. N is usually at least 8 and is capped on the higher end by ultimate signal-to-noise considerations and “bit error” in retrieving and decoding the N-bit value. As a practical matter, N is chosen based on application specific considerations, such as the number of unique different “signatures” that are desired. To illustrate, if N=128, then the number of unique digital signatures is in excess of 10̂̂38 (2̂̂128). This number is believed to be more than adequate to both identify the material with sufficient statistical certainty and to index exact sale and distribution information.
- The amplitude or power of this added signal is determined by the aesthetic and informational considerations of each and every application using the Eye-D method. For instance, non-professional video can stand to have a higher embedded signal level without becoming noticeable to the average human eye, while very high precision audio may only be able to accept a relatively small signal level lest the human ear perceive an objectionable increase in “hiss.” These statements are generalities and each application has its own set of criteria in choosing the signal level of the embedded identification signal. The higher the level of embedded signal, the more corrupted a copy can be and still be identified. On the other hand, the higher the level of embedded signal, the more objectionable the perceived noise might be, potentially impacting the value of the distributed material.
- A definition of terms is now in order:
- The original signal refers to either the original digital signal or the high quality digitized copy of a non-digital original.
- The N-bit identification word refers to a unique identification binary value, typically having N range anywhere from 8 to 128, which is the identification code ultimately placed onto the original signal via the disclosed transformation process. In the preferred embodiment, each N-bit identification word begins with the sequence of values ‘0101,’ which is used to determine an optimization of the signal-to-noise ratio in the identification procedure of a suspect signal (see definition below).
- The m'th bit value of the N-bit identification word is either a zero or one corresponding to the value of the m'th place, reading left to right, of the N-bit word. E.g., the first (m=1) bit value of the N=8 identification word 01110100 is the value ‘0;’ the second bit value of this identification word is ‘1’, etc.
- The m'th individual embedded code signal refers to a signal which has dimensions and extent precisely equal to the original signal (e.g. both are a 512 by 512 digital image), and which is (in the illustrated embodiment) an independent pseudo-random sequence of digital values. “Pseudo” pays homage to the difficulty in philosophically defining pure randomness, and also indicates that there are various acceptable ways of generating the “random” signal. There will be exactly N individual embedded code signals associated with any given original signal.
- The acceptable perceived noise level refers to an application-specific determination of how much “extra noise,” i.e. amplitude of the composite embedded code signal described next, can be added to the original signal and still have an acceptable signal to sell or otherwise distribute. This disclosure uses a 1 Db increase in noise as a typical value which might be acceptable, but this is quite arbitrary.
- The composite embedded code signal refers to the signal which has dimensions and extent precisely equal to the original signal, (e.g. both are a 512 by 512 digital image), and which contains the addition and appropriate attenuation of the N individual embedded code signals. The individual embedded signals are generated on an arbitrary scale, whereas the amplitude of the composite signal must not exceed the pre-set acceptable perceived noise level, hence the need for “attenuation” of the N added individual code signals.
- The distributable signal refers to the nearly similar copy of the original signal, consisting of the original signal plus the composite embedded code signal. This is the signal which is distributed to the outside community, having only slightly higher but acceptable “noise properties” than the original.
- A suspect signal refers to a signal which has the general appearance of the original and distributed signal and whose potential identification match to the original is being questioned. The suspect signal is then applied to the decoding process of Eye-D to see if it matches the N-bit identification word.
- The detailed methodology of the preferred embodiment begins by stating that the N-bit identification word is encoded onto the original signal by having each of the m bit values multiply their corresponding individual embedded code signals, the resultant being accumulated in the composite signal, the fully summed composite signal then being attenuated down to the acceptable perceived noise amplitude, and the resultant composite signal added to the original to become the distributable signal.
- The original signal, the N-bit identification word, and all N individual embedded code signals are then stored away in a secured place. A suspect signal is then found. This signal may have undergone multiple copies, compressions and decompressions, resamplings onto different spaced digital signals, transfers from digital to analog back to digital media, or any combination of these items. IF the signal still appears similar to the original, i.e. its innate quality is not thoroughly destroyed by all of these transformations and noise additions, then depending on the signal to noise properties of the embedded signal, the identification process should function to some objective degree of statistical confidence. The extent of corruption of the suspect signal and the original acceptable perceived noise level are two key parameters in determining an expected confidence level of identification.
- The identification process on the suspected signal begins by resampling and aligning the suspected signal onto the digital format and extent of the original signal. Thus, if an image has been reduced by a factor of two, it needs to be digitally enlarged by that same factor. Likewise, if a piece of music has been “cut out,” but may still have the same sampling rate as the original, it is necessary to register this cut-out piece to the original, typically done by performing a local digital cross-correlation of the two signals (a common digital operation), finding at what delay value the correlation peaks, then using this found delay value to register the cut piece to a segment of the original.
- Once the suspect signal has been sample-spacing matched and registered to the original, the signal levels of the suspect signal must be matched in an rms sense to the signal level of the original. This can be done via a search on the parameters of offset, amplification, and gamma being optimized by using the minimum of the mean squared error between the two signals as a function of the three parameters. We can call the suspect signal normalized and registered at this point, or just normalized for convenience.
- The newly matched pair then has the original signal subtracted from the normalized suspect signal to produce a difference signal. The difference signal is then cross-correlated with each of the N individual embedded code signals and the peak cross-correlation value recorded. The first four bit code (‘0101’) is used as a calibrator both on the mean values of the zero value and the one value, and on further registration of the two signals if a finer signal to noise ratio is desired (i.e., the optimal separation of the 0101 signal will indicate an optimal registration of the two signals and will also indicate the probable existence of the N-bit identification signal being present.)
- The resulting peak cross-correlation values will form a noisy series of floating point numbers which can be transformed into 0's and 1's by their proximity to the mean values of 0 and 1 found by the 0101 calibration sequence. If the suspect signal has indeed been derived from the original, the identification number resulting from the above process will match the N-bit identification word of the original, bearing in mind either predicted or unknown “bit error” statistics. Signal-to-noise considerations will determine if there will be some kind of “bit error” in the identification process, leading to a form of X% probability of identification where X might be desired to be 99.9% or whatever. If the suspect copy is indeed not a copy of the original, an essentially random sequence of 0's and 1's will be produced, as well as an apparent lack of separation of the resultant values. This is to say, if the resultant values are plotted on a histogram, the existence of the N-bit identification signal will exhibit strong bi-level characteristics, whereas the non-existence of the code, or the existence of a different code of a different original, will exhibit a type of random gaussian-like distribution. This histogram separation alone should be sufficient for an identification, but it is even stronger proof of identification when an exact binary sequence can be objectively reproduced.
- Imagine that we have taken a valuable picture of two heads of state at a cocktail party, pictures which are sure to earn some reasonable fee in the commercial market. We desire to sell this picture and ensure that it is not used in an unauthorized or uncompensated manner. This and the following steps are summarized in
FIG. 2 . - Assume the picture is transformed into a positive color print. We first scan this into a digitized form via a normal high quality black and white scanner with a typical photometric spectral response curve. (It is possible to get better ultimate signal to noise ratios by scanning in each of the three primary colors of the color image, but this nuance is not central to describing the core process.)
- Let us assume that the scanned image now becomes a 4000 by 4000 pixel monochrome digital image with a grey scale accuracy defined by 12-bit grey values or 4096 allowed levels. We will call this the “original digital image” realizing that this is the same as our “original signal” in the above definitions.
- During the scanning process we have arbitrarily set absolute black to correspond to digital value ‘30’. We estimate that there is a basic 2 Digital Number root mean square noise existing on the original digital image, plus a theoretical noise (known in the industry as “shot noise”) of the square root of the brightness value of any given pixel. In formula, we have:
-
<RMS Noisen,m>=sqrt(4+(V n,m−30)) (1) - Here, n and m are simple indexing values on rows and columns of the image ranging from 0 to 3999. Sqrt is the square root. V is the DN of a given indexed pixel on the original digital image. The <> brackets around the RMS noise merely indicates that this is an expected average value, where it is clear that each and every pixel will have a random error individually. Thus, for a pixel value having 1200 as a digital number or “brightness value”, we find that its expected rms noise value is sqrt(1204)=34.70, which is quite close to 34.64, the square root of 1200.
- We furthermore realize that the square root of the innate brightness value of a pixel is not precisely what the eye perceives as a minimum objectionable noise, thus we come up with the formula:
-
<RMS Addable Noisen,m >=X*sqrt(4+(V n,m−30)̂Y) (2) - Where X and Y have been added as empirical parameters which we will adjust, and “addable” noise refers to our acceptable perceived noise level from the definitions above. We now intend to experiment with what exact value of X and Y we can choose, but we will do so at the same time that we are performing the next steps in the Eye-D process.
- The next step in our process is to choose N of our N-bit identification word. We decide that a 16 bit main identification value with its 65536 possible values will be sufficiently large to identify the image as ours, and that we will be directly selling no more than 128 copies of the image which we wish to track, giving 7 bits plus an eighth bit for an odd/even adding of the first 7 bits (i.e. an error checking bit on the first seven). The total bits required now are at 4 bits for the 0101 calibration sequence, 16 for the main identification, 8 for the version, and we now throw in another 4 as a further error checking value on the first 28 bits, giving 32 bits as N. The final 4 bits can use one of many industry standard error checking methods to choose its four values.
- We now randomly determine the 16 bit main identification number, finding for example, 1101 0001 1001 1110; our first versions of the original sold will have all 0's as the version identifier, and the error checking bits will fall out where they may. We now have our unique 32 bit identification word which we will embed on the original digital image.
- To do this, we generate 32 independent random 4000 by 4000 encoding images for each bit of our 32 bit identification word. The manner of generating these random images is revealing. There are numerous ways to generate these. By far the simplest is to turn up the gain on the same scanner that was used to scan in the original photograph, only this time placing a pure black image as the input, then scanning this 32 times. The only drawback to this technique is that it does require a large amount of memory and that “fixed pattern” noise will be part of each independent “noise image.” But, the fixed pattern noise can be removed via normal “dark frame” subtraction techniques. Assume that we set the absolute black average value at digital number ‘100,’ and that rather than finding a 2 DN rms noise as we did in the normal gain setting, we now find an rms noise of 10 DN about each and every pixel's mean value.
- We next apply a very mid-spatial-frequency bandpass filter (spatial convolution) to each and every independent random image, essentially removing the very high and the very low spatial frequencies from them. We remove the very low frequencies because simple real-world error sources like geometrical warping, splotches on scanners, mis-registrations, and the like will exhibit themselves most at lower frequencies also, and so we want to concentrate our identification signal at higher spatial frequencies in order to avoid these types of corruptions. Likewise, we remove the higher frequencies because multiple generation copies of a given image, as well as compression-decompression transformations, tend to wipe out higher frequencies anyway, so there is no point in placing too much identification signal into these frequencies if they will be the ones most prone to being attenuated. Therefore, our new filtered independent noise images will be dominated by mid-spatial frequencies. On a practical note, since we are using 12-bit values on our scanner and we have removed the DC value effectively and our new rms noise will be slightly less than 10 digital numbers, it is useful to boil this down to a 6-bit value ranging from −32 through 0 to 31 as the resultant random image.
- Next we add all of the random images together which have a ‘1’ in their corresponding bit value of the 32-bit identification word, accumulating the result in a 16-bit signed integer image. This is the unattenuated and un-scaled version of the composite embedded signal.
- Next we experiment visually with adding the composite embedded signal to the original digital image, through varying the X and Y parameters of
equation 2. In formula, we visually iterate to both maximize X and to find the appropriate Y in the following: - where dist refers to the candidate distributable image, i.e. we are visually iterating to find what X and Y will give us an acceptable image; orig refers to the pixel value of the original image; and comp refers to the pixel value of the composite image. The n's and m's still index rows and columns of the image and indicate that this operation is done on all 4000 by 4000 pixels. The symbol V is the DN of a given pixel and a given image.
- As an arbitrary assumption, now, we assume that our visual experimentation has found that the value of X=0.025 and Y=0.6 are acceptable values when comparing the original image with the candidate distributable image. This is to say, the distributable image with the “extra noise” is acceptably close to the original in an aesthetic sense. Note that since our individual random images had a random rms noise value around 10 DN, and that adding approximately 16 of these images together will increase the composite noise to around 40 DN, the X multiplication value of 0.025 will bring the added rms noise back to around 1 DN, or half the amplitude of our innate noise on the original. This is roughly a 1 dB gain in noise at the dark pixel values and correspondingly more at the brighter values modified by the Y value of 0.6.
- So with these two values of X and Y, we now have constructed our first versions of a distributable copy of the original. Other versions will merely create a new composite signal and possibly change the X slightly if deemed necessary. We now lock up the original digital image along with the 32-bit identification word for each version, and the 32 independent random 4-bit images, waiting for our first case of a suspected piracy of our original. Storage wise, this is about 14 Megabytes for the original image and 32*0.5 bytes*16 million=˜256 Megabytes for the random individual encoded images. This is quite acceptable for a single valuable image. Some storage economy can be gained by simple lossless compression.
- We sell our image and several months later find our two heads of state in the exact poses we sold them in, seemingly cut and lifted out of our image and placed into another stylized background scene. This new “suspect” image is being printed in 100,000 copies of a given magazine issue, let us say. We now go about determining if a portion of our original image has indeed been used in what is clearly an unauthorized manner.
FIG. 3 summarizes the details. - The first step is to take an issue of the magazine, cut out the page with the image on it, then carefully but not too carefully cut out the two figures from the background image using ordinary scissors. If possible, we will cut out only one connected piece rather than the two figures separately. We paste this onto a black background and scan this into a digital form. Next we electronically flag or mask out the black background, which is easy to do by visual inspection.
- We now procure the original digital image from our secured place along with the 32-bit identification word and the 32 individual embedded images. We place the original digital image onto our computer screen using standard image manipulation software, and we roughly cut along the same borders as our masked area of the suspect image, masking this image at the same time in roughly the same manner. The word ‘roughly’ is used since an exact cutting is not needed, it merely aids the identification statistics to get it reasonably close.
- Next we rescale the masked suspect image to roughly match the size of our masked original digital image, that is, we digitally scale up or down the suspect image and roughly overlay it on the original image. Once we have performed this rough registration, we then throw the two images into an automated scaling and registration program. The program performs a search on the three parameters of x position, y position, and spatial scale, with the figure of merit being the mean squared error between the two images given any given scale variable and x and y offset. This is a fairly standard image processing methodology. Typically this would be done using generally smooth interpolation techniques and done to sub-pixel accuracy. The search method can be one of many, where the simplex method is a typical one.
- Once the optimal scaling and x-y position variables are found, next comes another search on optimizing the black level, brightness gain, and gamma of the two images. Again, the figure of merit to be used is mean squared error, and again the simplex or other search methodologies can be used to optimize the three variables. After these three variables are optimized, we apply their corrections to the suspect image and align it to exactly the pixel spacing and masking of the original digital image and its mask. We can now call this the standard mask.
- The next step is to subtract the original digital image from the newly normalized suspect image only within the standard mask region. This new image is called the difference image.
- Then we step through all 32 individual random embedded images, doing a local cross-correlation between the masked difference image and the masked individual embedded image. ‘Local’ refers to the idea that one need only start correlating over an offset region of +/−1 pixels of offset between the nominal registration points of the two images found during the search procedures above. The peak correlation should be very close to the nominal registration point of 0,0 offset, and we can add the 3 by 3 correlation values together to give one grand correlation value for each of the 32 individual bits of our 32-bit identification word.
- After doing this for all 32 bit places and their corresponding random images, we have a quasi-floating point sequence of 32 values. The first four values represent our calibration signal of 0101. We now take the mean of the first and third floating point value and call this floating point value ‘0,’ and we take the mean of the second and the fourth value and call this floating point value ‘1.’ We then step through all remaining 28 bit values and assign either a ‘0’ or a ‘1’ based simply on which mean value they are closer to. Stated simply, if the suspect image is indeed a copy of our original, the embedded 32-bit resulting code should match that of our records, and if it is not a copy, we should get general randomness. The third and the fourth possibilities of 3) Is a copy but doesn't match identification number and 4) isn't a copy but does match are, in the case of 3), possible if the signal to noise ratio of the process has plummeted, i.e. the ‘suspect image’ is truly a very poor copy of the original, and in the case of 4) is basically one chance in four billion since we were using a 32-bit identification number. If we are truly worried about 4), we can just have a second independent lab perform their own tests on a different issue of the same magazine. Finally, checking the error-check bits against what the values give is one final and possibly overkill check on the whole process. In situations where signal to noise is a possible problem, these error checking bits might be eliminated without too much harm.
- Assuming that a positive identification is made, we must now decide what to do about it.
- Now that a full description of the preferred embodiment has been described via a detailed example, it is appropriate to point out the rationale of some of the process steps and their benefits.
- The ultimate benefits of the process are that obtaining an identification number is fully independent of the manners and methods of preparing the difference image. That is to say, the manners of preparing the difference image, such as cutting, registering, scaling, etcetera, cannot increase the odds of finding an identification number when none exists; it only helps the signal-to-noise ratio of the identification process when a true identification number is present. Methods of preparing images for identification can be different from each other even, providing the possibility for multiple independent methodologies for making a match.
- The ability to obtain a match even on sub-sets of the original signal or image is a key point in today's information-rich world. Cutting and pasting both images and sound clips is becoming more common, thus Eye-D provides a method whereby identification can still be performed even when original material has been thus corrupted. Finally, the signal to noise ratio of matching should begin to become difficult only when the copy material itself has been significantly altered either by noise or by significant distortion; both of these also will affect that copy's commercial value, so that trying to thwart the system can only be done at the expense of a huge decrease in commercial value.
- The fullest expression of the Eye-D system will come when it becomes an industry standard and numerous independent groups set up with their own means or ‘in-house’ brand of applying embedded identification numbers and in their decipherment. Numerous independent group identification will further enhance the ultimate objectivity of the method, thereby enhancing its appeal as an industry standard.
- The foregoing disclosure made use of the 0 and 1 formalism of binary technology to accomplish its ends. Specifically, the 0's and 1's of the N-bit identification word directly multiplied their corresponding individual embedded code signal to form the composite embedded code signal (
step 8,FIG. 2 ). This approach certainly has its conceptual simplicity, but the multiplication of an embedded code signal by 0 along with the storage of that embedded code contains a kind of inefficiency. - It is preferred to maintain the formalism of the 0 and 1 nature of the N-bit identification word, but to have the 0's of the word induce a subtraction of their corresponding embedded code signal. Thus, in
step 8 ofFIG. 2 , rather than only ‘adding’ the individual embedded code signals which correspond to a ‘1’ in the N-bit identification word, we will also ‘subtract’ the individual embedded code signals which correspond to a ‘0’ in the N-bit identification word. - At first glance this seems to add more apparent noise to the final composite signal. But it also increases the energy-wise separation of the 0's from the 1's, and thus the ‘gain’ which is applied in
step 10,FIG. 2 can be correspondingly lower. - We can refer to this improvement as the use of true polarity. The main advantage of this improvement can largely be summarized as ‘informational efficiency.’
- The foregoing disclosure contemplates the use of generally random noise-like signals as the individual embedded code signals. This is perhaps the simplest form of signal to generate. However, there is a form of informational optimization which can be applied to the set of the individual embedded signals which the applicant describes under the rubric ‘perceptual orthogonality.’ This term is loosely based on the mathematical concept of the orthogonality of vectors, with the current additional requirement that this orthogonality should maximize the signal energy of the identification information while maintaining it below some perceptibility threshold. Put another way, the embedded code signals need not necessarily be random in nature.
- The foregoing portions of this disclosure outlined techniques that are applicable to photographic materials. The following section explores the details of this area further and discloses certain improvements which lend themselves to a broad range of applications.
- The first area to be discussed involves the pre-application or pre-exposing of a serial number onto traditional photographic products, such as negative film, print paper, transparencies, etc. In general, this is a way to embed a priori unique serial numbers (and by implication, ownership and tracking information) into photographic material. The serial numbers themselves would be a permanent part of the normally exposed picture, as opposed to being relegated to the margins or stamped on the back of a printed photograph, which all require separate locations and separate methods of copying. The ‘serial number’ as it is called here is generally synonymous with the N-bit identification word, only now we are using a more common industrial terminology.
- In
FIG. 2 ,step 11, the disclosure calls for the storage of the “original [image]” along with code images. Then inFIG. 3 ,step 9, it directs that the original be subtracted from the suspect image, thereby leaving the possible identification codes plus whatever noise and corruption has accumulated. Therefore, the previous disclosure made the tacit assumption that there exists an original without the composite embedded signals. - Now in the case of selling print paper and other duplication film products, this will still be the case, i.e., an “original” without the embedded codes will indeed exist and the basic methodology of the invention can be employed. The original film serves perfectly well as an ‘unencoded original.’
- However, in the case where pre-exposed negative film is used, the composite embedded signal pre-exists on the original film and thus there will never be an “original” separate from the pre-embedded signal. It is this latter case, therefore, which will be examined a bit more closely along with various remedies on how to use the basic principles of the invention (the former cases adhering to the previously outlined methods).
- The clearest point of departure for the case of pre-numbered negative film, i.e. negative film which has had each and every frame pre-exposed with a very faint and unique composite embedded signal, comes at
step 9 ofFIG. 3 as previously noted. There are certainly other differences as well, but they are mostly logistical in nature such as how and when to embed the signals on the film, how to store the code numbers and serial number, etc. Obviously the pre-exposing of film would involve a major change to the general mass production process of creating and packaging film. -
FIG. 4 has a schematic outlining one potential post-hoc mechanism for pre-exposing film. ‘Post-hoc’ refers to applying a process after the full common manufacturing process of film has already taken place. Eventually, economies of scale may dictate placing this pre-exposing process directly into the chain of manufacturing film. Depicted inFIG. 4 is what is commonly known as a film writing system. The computer, 106, displays the composite signal produced instep 8,FIG. 2 , on its phosphor screen. A given frame of film is then exposed by imaging this phosphor screen, where the exposure level is generally very faint, i.e. generally imperceptible. Clearly, the marketplace will set its own demands on how faint this should be, that is, the level of added ‘graininess’ as practitioners would put it. Each frame of film is sequentially exposed, where in general the composite image displayed on theCRT 102 is changed for each and every frame, thereby giving each frame of film a different serial number. Thetransfer lens 104 highlights the focal conjugate planes of a film frame and the CRT face. - Getting back to the applying the principles of the invention in the case of pre-exposed negative film . . . At
step 9,FIG. 3 , if we were to subtract the “original” with its embedded code, we would obviously be “erasing” the code as well since the code is an integral part of the original. Fortunately, remedies do exist and identifications can still be made. However, it will be a challenge to artisans who refine this invention to have the signal to noise ratio of the identification process in the pre-exposed negative case approach the signal to noise ratio of the case where the un-encoded original exists. - A succinct definition of the problem is in order at this point. Given a suspect picture (signal), find the embedded identification code IF a code exists at al. The problem reduces to one of finding the amplitude of each and every individual embedded code signal within the suspect picture, not only within the context of noise and corruption as was previously explained, but now also within the context of the coupling between a captured image and the codes. ‘Coupling’ here refers to the idea that the captured image “randomly biases” the cross-correlation.
- So, bearing in mind this additional item of signal coupling, the identification process now estimates the signal amplitude of each and every individual embedded code signal (as opposed to taking the cross-correlation result of
step 12,FIG. 3 ). If our identification signal exists in the suspect picture, the amplitudes thus found will split into a polarity with positive amplitudes being assigned a ‘1’ and negative amplitudes being assigned a ‘0’. Our unique identification code manifests itself. If, on the other hand, no such identification code exists or it is someone else's code, then a random gaussian-like distribution of amplitudes is found with a random hash of values. - It remains to provide a few more details on how the amplitudes of the individual embedded codes are found. Again, fortunately, this exact problem has been treated in other technological applications. Besides, throw this problem and a little food into a crowded room of mathematicians and statisticians and surely a half dozen optimized methodologies will pop out after some reasonable period of time. It is a rather cleanly defined problem.
- One specific example solution which is also the current preferred embodiment comes from the field of astronomical imaging. Here, it is a mature prior art to subtract out a “thermal noise frame” from a given CCD image of an object. Often, however, it is not precisely known what scaling factor to use in subtracting the thermal frame and a search for the correct scaling factor is performed. This is precisely the task of this step of the present invention.
- General practice merely performs a common search algorithm on the scaling factor, where a scaling factor is chosen and a new image is created according to:
-
NEW IMAGE=ACQUIRED IMAGE−SCALE*THERMAL IMAGE - The new image is applied to the fast fourier transform routine and a scale factor is eventually found which minimizes the integrated high frequency content of the new image. This general type of search operation with its minimization of a particular quantity is exceedingly common. The scale factor thus found is the “amplitude” being sought within the steps of the present invention. Refinements which are contemplated but not yet implemented are where the coupling of the higher derivatives of the acquired image and the embedded codes are estimated and removed from the calculated scale factor. In other words, certain bias effects from the coupling mentioned earlier are present and should be eventually accounted for and removed both through theoretical and empirical experimentation.
- Apart from the basic need of identifying a signal or image as a whole, there is also a rather ubiquitous need to detect possible alterations to a signal or image. The following section describes how the present invention, with certain modifications and improvements, can be used as a powerful tool in this area. The potential scenarios and applications of detecting alterations are innumerable.
- To first summarize, assume that we have a given signal or image which has been positively identified using the basic methods outlined in the foregoing disclosure. In other words, we know its N-bit identification word, its individual embedded code signals, and its composite embedded code. We can then fairly simply create a spatial map of the composite code's amplitude within our given signal or image. Furthermore, we can divide this amplitude map by the known composite code's spatial amplitude, giving a normalized map, i.e. a map which should fluctuate about some global mean value. By simple examination of this map, we can visually detect any areas which have been significantly altered wherein the value of the normalized amplitude dips below some statistically set threshold based purely on typical noise and corruption (error).
- The details of implementing the creation of the amplitude map have a variety of choices. The preferred embodiment at this time is to perform the same procedure which is used to determine the signal amplitude as described above, only now we step and repeat the multiplication of any given area of the signal/image with a gaussian weight function centered about the area we are investigating.
- The disclosure thus far has outline how each and every source signal has its own unique set of individual embedded code signals. This clearly entails the storage of a significant amount of additional code information above and beyond the original, and many applications may merit some form of economizing.
- One such approach to economizing is to have a given set of individual embedded code signals be common to a batch of source materials. For example, one thousand images can all utilize the same basic set of individual embedded code signals. The storage requirements of these codes then become a small fraction of the overall storage requirements of the source material.
- Furthermore, some applications can utilize a universal set of individual embedded code signals, i.e., codes which remain the same for all instances of distributed material. This type of requirement would be seen by systems which wish to hide the N-bit identification word itself, yet have standardized equipment be able to read that word. This can be used in systems which make go/no go decisions at point-of-read locations. The potential drawback to this set-up is that the universal codes are more prone to be sleuthed or stolen; therefore they will not be as secure as the apparatus and methodology of the previously disclosed arrangement. Perhaps this is just the difference between ‘high security’ and ‘air-tight security,’ a distinction carrying little weight with the bulk of potential applications.
- The term ‘signal’ in the title of the disclosure is often used narrowly to refer to digital data information, audio signals, images, etc. A broader interpretation of ‘signal,’ and the one more generally intended, includes any form of modulation of any material whatsoever. Thus, the micro-topology of a piece of common paper becomes a ‘signal’ (e.g. it height as a function of x-y coordinates). The reflective properties of a flat piece of plastic (as a function of space also) becomes a signal. The point is that photographic emulsions, audio signals, and digitized information are not the only types of signals capable of utilizing the principles of the invention.
- As a case in point, a machine very much resembling a braille printing machine can be designed so as to imprint unique ‘noise-like’ indentations as outlined in the disclosure. These indentations can be applied with a pressure which is much smaller than is typically applied in creating braille, to the point where the patterns are not noticed by a normal user of the paper. But by following the steps of the present disclosure and applying them via the mechanism of micro-indentations, a unique identification code can be placed onto any given sheet of paper, be it intended for everyday stationary purposes, or be it for important documents, legal tender, or other secured material.
- The reading of the identification material in such an embodiment generally proceeds by merely reading the document optically at a variety of angles. This would become an inexpensive method for deducing the micro-topology of the paper surface. Certainly other forms of reading the topology of the paper are possible as well.
- In the case of plastic encased material such as identification cards, e.g. driver's licenses, a similar braille-like impressions machine can be utilized to imprint unique identification codes. Subtle layers of photoreactive materials can also be embedded inside the plastic and ‘exposed.’
- It is clear that wherever a material exists which is capable of being modulated by ‘noise-like’ signals, that material is an appropriate carrier for unique identification codes and utilization of the principles of the invention. The trick becomes one of economically applying the identification information and maintaining the signal level below an acceptability threshold which each and every application will define for itself.
- Appendix A contains the source code of an implementation and verification of the Eye-D system on an 8-bit black and white imaging system.
- Having described and illustrated the principles of my invention with reference to an illustrative embodiment and several variations thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. Accordingly, I claim as my invention all such embodiments as come within the scope and spirit of the following claims and equivalents thereto.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/207,339 US7672477B2 (en) | 1993-11-18 | 2008-09-09 | Detecting hidden auxiliary code signals in media |
US12/560,186 US7974439B2 (en) | 1993-11-18 | 2009-09-15 | Embedding hidden auxiliary information in media |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15486693A | 1993-11-18 | 1993-11-18 | |
US21528994A | 1994-03-17 | 1994-03-17 | |
US08/614,521 US5745604A (en) | 1993-11-18 | 1996-03-15 | Identification/authentication system using robust, distributed coding |
US08/967,693 US6122392A (en) | 1993-11-18 | 1997-11-12 | Signal processing to hide plural-bit information in image, video, and audio data |
US09/626,984 US6542620B1 (en) | 1993-11-18 | 2000-07-27 | Signal processing to hide plural-bit information in image, video, and audio data |
US10/405,951 US7003132B2 (en) | 1993-11-18 | 2003-04-01 | Embedding hidden auxiliary code signals in media |
US11/360,002 US7424132B2 (en) | 1993-11-18 | 2006-02-21 | Embedding hidden auxiliary code signals in media |
US12/207,339 US7672477B2 (en) | 1993-11-18 | 2008-09-09 | Detecting hidden auxiliary code signals in media |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/360,002 Continuation US7424132B2 (en) | 1993-11-18 | 2006-02-21 | Embedding hidden auxiliary code signals in media |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/560,186 Continuation US7974439B2 (en) | 1993-11-18 | 2009-09-15 | Embedding hidden auxiliary information in media |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090067672A1 true US20090067672A1 (en) | 2009-03-12 |
US7672477B2 US7672477B2 (en) | 2010-03-02 |
Family
ID=26851836
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/327,426 Expired - Lifetime US5768426A (en) | 1993-11-18 | 1994-10-21 | Graphics processing system employing embedded code signals |
US08/614,521 Expired - Lifetime US5745604A (en) | 1993-11-18 | 1996-03-15 | Identification/authentication system using robust, distributed coding |
US08/967,693 Expired - Lifetime US6122392A (en) | 1993-11-18 | 1997-11-12 | Signal processing to hide plural-bit information in image, video, and audio data |
US09/626,984 Expired - Fee Related US6542620B1 (en) | 1993-11-18 | 2000-07-27 | Signal processing to hide plural-bit information in image, video, and audio data |
US10/405,951 Expired - Fee Related US7003132B2 (en) | 1993-11-18 | 2003-04-01 | Embedding hidden auxiliary code signals in media |
US11/360,002 Expired - Fee Related US7424132B2 (en) | 1993-11-18 | 2006-02-21 | Embedding hidden auxiliary code signals in media |
US12/207,339 Expired - Fee Related US7672477B2 (en) | 1993-11-18 | 2008-09-09 | Detecting hidden auxiliary code signals in media |
US12/560,186 Expired - Fee Related US7974439B2 (en) | 1993-11-18 | 2009-09-15 | Embedding hidden auxiliary information in media |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/327,426 Expired - Lifetime US5768426A (en) | 1993-11-18 | 1994-10-21 | Graphics processing system employing embedded code signals |
US08/614,521 Expired - Lifetime US5745604A (en) | 1993-11-18 | 1996-03-15 | Identification/authentication system using robust, distributed coding |
US08/967,693 Expired - Lifetime US6122392A (en) | 1993-11-18 | 1997-11-12 | Signal processing to hide plural-bit information in image, video, and audio data |
US09/626,984 Expired - Fee Related US6542620B1 (en) | 1993-11-18 | 2000-07-27 | Signal processing to hide plural-bit information in image, video, and audio data |
US10/405,951 Expired - Fee Related US7003132B2 (en) | 1993-11-18 | 2003-04-01 | Embedding hidden auxiliary code signals in media |
US11/360,002 Expired - Fee Related US7424132B2 (en) | 1993-11-18 | 2006-02-21 | Embedding hidden auxiliary code signals in media |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/560,186 Expired - Fee Related US7974439B2 (en) | 1993-11-18 | 2009-09-15 | Embedding hidden auxiliary information in media |
Country Status (6)
Country | Link |
---|---|
US (8) | US5768426A (en) |
JP (1) | JP5597860B2 (en) |
AT (1) | ATE485677T1 (en) |
DE (2) | DE69435317D1 (en) |
ES (1) | ES2302888T3 (en) |
HK (1) | HK1075736A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060062386A1 (en) * | 1993-11-18 | 2006-03-23 | Rhoads Geoffrey B | Steganographic encoding and decoding of auxiliary codes in media signals |
US20070201835A1 (en) * | 1993-11-18 | 2007-08-30 | Rhoads Geoffrey B | Audio Encoding to Convey Auxiliary Information, and Media Embodying Same |
US7711144B2 (en) | 2000-09-14 | 2010-05-04 | Digimarc Corporation | Watermarking employing the time-frequency domain |
US20100131767A1 (en) * | 1993-11-18 | 2010-05-27 | Rhoads Geoffrey B | Methods for Audio Watermarking and Decoding |
US7756290B2 (en) | 2000-01-13 | 2010-07-13 | Digimarc Corporation | Detecting embedded signals in media content using coincidence metrics |
Families Citing this family (421)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7242988B1 (en) | 1991-12-23 | 2007-07-10 | Linda Irene Hoffberg | Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore |
US6850252B1 (en) | 1999-10-05 | 2005-02-01 | Steven M. Hoffberg | Intelligent electronic appliance system and method |
US6418424B1 (en) | 1991-12-23 | 2002-07-09 | Steven M. Hoffberg | Ergonomic man-machine interface incorporating adaptive pattern recognition based control system |
US10361802B1 (en) | 1999-02-01 | 2019-07-23 | Blanding Hovenweep, Llc | Adaptive pattern recognition based control system and method |
US8352400B2 (en) | 1991-12-23 | 2013-01-08 | Hoffberg Steven M | Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore |
US6400996B1 (en) | 1999-02-01 | 2002-06-04 | Steven M. Hoffberg | Adaptive pattern recognition based control system and method |
US8505108B2 (en) | 1993-11-18 | 2013-08-06 | Digimarc Corporation | Authentication using a digital watermark |
US7720249B2 (en) * | 1993-11-18 | 2010-05-18 | Digimarc Corporation | Watermark embedder and reader |
US6408082B1 (en) | 1996-04-25 | 2002-06-18 | Digimarc Corporation | Watermark detection using a fourier mellin transform |
US6345104B1 (en) | 1994-03-17 | 2002-02-05 | Digimarc Corporation | Digital watermarks and methods for security documents |
US6424725B1 (en) | 1996-05-16 | 2002-07-23 | Digimarc Corporation | Determining transformations of media signals with embedded code signals |
US5841978A (en) | 1993-11-18 | 1998-11-24 | Digimarc Corporation | Network linking method using steganographically embedded data objects |
US7171016B1 (en) * | 1993-11-18 | 2007-01-30 | Digimarc Corporation | Method for monitoring internet dissemination of image, video and/or audio files |
US7676059B2 (en) | 1994-10-21 | 2010-03-09 | Digimarc Corporation | Video steganography or encoding |
US5822436A (en) * | 1996-04-25 | 1998-10-13 | Digimarc Corporation | Photographic products and methods employing embedded information |
US7044395B1 (en) | 1993-11-18 | 2006-05-16 | Digimarc Corporation | Embedding and reading imperceptible codes on objects |
US7113615B2 (en) | 1993-11-18 | 2006-09-26 | Digimarc Corporation | Watermark embedder and reader |
US6636615B1 (en) | 1998-01-20 | 2003-10-21 | Digimarc Corporation | Methods and systems using multiple watermarks |
US6449377B1 (en) | 1995-05-08 | 2002-09-10 | Digimarc Corporation | Methods and systems for watermark processing of line art images |
US6549638B2 (en) | 1998-11-03 | 2003-04-15 | Digimarc Corporation | Methods for evidencing illicit use of a computer system or device |
US6611607B1 (en) | 1993-11-18 | 2003-08-26 | Digimarc Corporation | Integrating digital watermarks in multimedia content |
US7113596B2 (en) * | 1993-11-18 | 2006-09-26 | Digimarc Corporation | Embedding information related to a subject of an identification document in the identification document |
US6122403A (en) | 1995-07-27 | 2000-09-19 | Digimarc Corporation | Computer system linked by using information in data objects |
US7313251B2 (en) * | 1993-11-18 | 2007-12-25 | Digimarc Corporation | Method and system for managing and controlling electronic media |
US6681028B2 (en) | 1995-07-27 | 2004-01-20 | Digimarc Corporation | Paper-based control of computer systems |
US6681029B1 (en) | 1993-11-18 | 2004-01-20 | Digimarc Corporation | Decoding steganographic messages embedded in media signals |
US6574350B1 (en) | 1995-05-08 | 2003-06-03 | Digimarc Corporation | Digital watermarking employing both frail and robust watermarks |
US6546112B1 (en) * | 1993-11-18 | 2003-04-08 | Digimarc Corporation | Security document with steganographically-encoded authentication data |
US5768426A (en) | 1993-11-18 | 1998-06-16 | Digimarc Corporation | Graphics processing system employing embedded code signals |
US6580819B1 (en) | 1993-11-18 | 2003-06-17 | Digimarc Corporation | Methods of producing security documents having digitally encoded data and documents employing same |
US6516079B1 (en) | 2000-02-14 | 2003-02-04 | Digimarc Corporation | Digital watermark screening and detecting strategies |
US20020136429A1 (en) * | 1994-03-17 | 2002-09-26 | John Stach | Data hiding through arrangement of objects |
US6985600B2 (en) | 1994-03-17 | 2006-01-10 | Digimarc Corporation | Printing media and methods employing digital watermarking |
US6522770B1 (en) | 1999-05-19 | 2003-02-18 | Digimarc Corporation | Management of documents and other objects using optical devices |
US7778437B2 (en) | 1994-03-17 | 2010-08-17 | Digimarc Corporation | Media and methods employing steganographic marking |
US7286684B2 (en) * | 1994-03-17 | 2007-10-23 | Digimarc Corporation | Secure document design carrying auxiliary machine readable information |
US6882738B2 (en) * | 1994-03-17 | 2005-04-19 | Digimarc Corporation | Methods and tangible objects employing textured machine readable data |
US8144368B2 (en) | 1998-01-20 | 2012-03-27 | Digimarc Coporation | Automated methods for distinguishing copies from original printed objects |
US7039214B2 (en) | 1999-11-05 | 2006-05-02 | Digimarc Corporation | Embedding watermark components during separate printing stages |
US6968057B2 (en) * | 1994-03-17 | 2005-11-22 | Digimarc Corporation | Emulsion products and imagery employing steganography |
US6869023B2 (en) | 2002-02-12 | 2005-03-22 | Digimarc Corporation | Linking documents through digital watermarking |
US6373965B1 (en) | 1994-06-24 | 2002-04-16 | Angstrom Technologies, Inc. | Apparatus and methods for authentication using partially fluorescent graphic images and OCR characters |
US5760838A (en) | 1994-09-30 | 1998-06-02 | Intel Corporation | Method and system for configuring a display |
US6778682B2 (en) | 1994-10-21 | 2004-08-17 | Digimarc Corporation | Redundantly embedding auxiliary data in source signals |
US7724919B2 (en) | 1994-10-21 | 2010-05-25 | Digimarc Corporation | Methods and systems for steganographic processing |
US6560349B1 (en) * | 1994-10-21 | 2003-05-06 | Digimarc Corporation | Audio monitoring using steganographic information |
US6879701B1 (en) | 1994-10-21 | 2005-04-12 | Digimarc Corporation | Tile-based digital watermarking techniques |
US8094949B1 (en) * | 1994-10-21 | 2012-01-10 | Digimarc Corporation | Music methods and systems |
US20050149450A1 (en) * | 1994-11-23 | 2005-07-07 | Contentguard Holdings, Inc. | System, method, and device for controlling distribution and use of digital works based on a usage rights grammar |
US6865551B1 (en) | 1994-11-23 | 2005-03-08 | Contentguard Holdings, Inc. | Removable content repositories |
US6963859B2 (en) * | 1994-11-23 | 2005-11-08 | Contentguard Holdings, Inc. | Content rendering repository |
US7117180B1 (en) | 1994-11-23 | 2006-10-03 | Contentguard Holdings, Inc. | System for controlling the use of digital works using removable content repositories |
JPH08263438A (en) | 1994-11-23 | 1996-10-11 | Xerox Corp | Distribution and use control system of digital work and access control method to digital work |
US6948070B1 (en) | 1995-02-13 | 2005-09-20 | Intertrust Technologies Corporation | Systems and methods for secure transaction management and electronic rights protection |
CN100501754C (en) | 1995-02-13 | 2009-06-17 | 英特特拉斯特技术公司 | Systems and methods for secure transaction management and electronic rights protection |
US7165174B1 (en) | 1995-02-13 | 2007-01-16 | Intertrust Technologies Corp. | Trusted infrastructure support systems, methods and techniques for secure electronic commerce transaction and rights management |
US7069451B1 (en) | 1995-02-13 | 2006-06-27 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
US5943422A (en) | 1996-08-12 | 1999-08-24 | Intertrust Technologies Corp. | Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels |
US7124302B2 (en) | 1995-02-13 | 2006-10-17 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
US7143290B1 (en) | 1995-02-13 | 2006-11-28 | Intertrust Technologies Corporation | Trusted and secure techniques, systems and methods for item delivery and execution |
US6658568B1 (en) | 1995-02-13 | 2003-12-02 | Intertrust Technologies Corporation | Trusted infrastructure support system, methods and techniques for secure electronic commerce transaction and rights management |
US6157721A (en) | 1996-08-12 | 2000-12-05 | Intertrust Technologies Corp. | Systems and methods using cryptography to protect secure computing environments |
US7095854B1 (en) | 1995-02-13 | 2006-08-22 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
US5892900A (en) | 1996-08-30 | 1999-04-06 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
US7133846B1 (en) | 1995-02-13 | 2006-11-07 | Intertrust Technologies Corp. | Digital certificate support system, methods and techniques for secure electronic commerce transaction and rights management |
US7133845B1 (en) | 1995-02-13 | 2006-11-07 | Intertrust Technologies Corp. | System and methods for secure transaction management and electronic rights protection |
US6728390B2 (en) | 1995-05-08 | 2004-04-27 | Digimarc Corporation | Methods and systems using multiple watermarks |
US7620200B2 (en) | 1995-05-08 | 2009-11-17 | Digimarc Corporation | Authentication of identification documents |
US6988202B1 (en) * | 1995-05-08 | 2006-01-17 | Digimarc Corporation | Pre-filteriing to increase watermark signal-to-noise ratio |
US6760463B2 (en) * | 1995-05-08 | 2004-07-06 | Digimarc Corporation | Watermarking methods and media |
US20090097695A9 (en) * | 1995-05-08 | 2009-04-16 | Rhoads Geoffrey B | Personal document authentication system using watermarking |
US20030133592A1 (en) * | 1996-05-07 | 2003-07-17 | Rhoads Geoffrey B. | Content objects with computer instructions steganographically encoded therein, and associated methods |
US6721440B2 (en) | 1995-05-08 | 2004-04-13 | Digimarc Corporation | Low visibility watermarks using an out-of-phase color |
US7555139B2 (en) | 1995-05-08 | 2009-06-30 | Digimarc Corporation | Secure documents with hidden signals, and related methods and systems |
US6590996B1 (en) | 2000-02-14 | 2003-07-08 | Digimarc Corporation | Color adaptive watermarking |
US7805500B2 (en) | 1995-05-08 | 2010-09-28 | Digimarc Corporation | Network linking methods and apparatus |
US6738495B2 (en) * | 1995-05-08 | 2004-05-18 | Digimarc Corporation | Watermarking enhanced to withstand anticipated corruptions |
US7224819B2 (en) * | 1995-05-08 | 2007-05-29 | Digimarc Corporation | Integrating digital watermarks in multimedia content |
US6829368B2 (en) | 2000-01-26 | 2004-12-07 | Digimarc Corporation | Establishing and interacting with on-line media collections using identifiers in media signals |
US6788800B1 (en) | 2000-07-25 | 2004-09-07 | Digimarc Corporation | Authenticating objects using embedded data |
US7711564B2 (en) * | 1995-07-27 | 2010-05-04 | Digimarc Corporation | Connected audio and other media objects |
US7006661B2 (en) | 1995-07-27 | 2006-02-28 | Digimarc Corp | Digital watermarking systems and methods |
US7003731B1 (en) * | 1995-07-27 | 2006-02-21 | Digimare Corporation | User control and activation of watermark enabled objects |
US9630443B2 (en) | 1995-07-27 | 2017-04-25 | Digimarc Corporation | Printer driver separately applying watermark and information |
US7562392B1 (en) | 1999-05-19 | 2009-07-14 | Digimarc Corporation | Methods of interacting with audio and ambient music |
US6577746B1 (en) | 1999-12-28 | 2003-06-10 | Digimarc Corporation | Watermark-based object linking and embedding |
US6965682B1 (en) | 1999-05-19 | 2005-11-15 | Digimarc Corp | Data transmission by watermark proxy |
US6859534B1 (en) * | 1995-11-29 | 2005-02-22 | Alfred Alasia | Digital anti-counterfeiting software method and apparatus |
US6750902B1 (en) | 1996-02-13 | 2004-06-15 | Fotonation Holdings Llc | Camera network communication device |
US20010011253A1 (en) * | 1998-08-04 | 2001-08-02 | Christopher D. Coley | Automated system for management of licensed software |
US20060265337A1 (en) * | 1996-02-26 | 2006-11-23 | Graphon Corporation | Automated system for management of licensed digital assets |
US8180844B1 (en) | 2000-03-18 | 2012-05-15 | Digimarc Corporation | System for linking from objects to remote resources |
US20030056103A1 (en) * | 2000-12-18 | 2003-03-20 | Levy Kenneth L. | Audio/video commerce application architectural framework |
US6381341B1 (en) * | 1996-05-16 | 2002-04-30 | Digimarc Corporation | Watermark encoding method exploiting biases inherent in original signal |
US7412072B2 (en) * | 1996-05-16 | 2008-08-12 | Digimarc Corporation | Variable message coding protocols for encoding auxiliary data in media signals |
US6229924B1 (en) | 1996-05-16 | 2001-05-08 | Digimarc Corporation | Method and apparatus for watermarking video images |
US7177429B2 (en) | 2000-12-07 | 2007-02-13 | Blue Spike, Inc. | System and methods for permitting open access to data objects and for securing data within the data objects |
US8131007B2 (en) * | 1996-08-30 | 2012-03-06 | Regents Of The University Of Minnesota | Watermarking using multiple watermarks and keys, including keys dependent on the host signal |
TW312770B (en) * | 1996-10-15 | 1997-08-11 | Japen Ibm Kk | The hiding and taking out method of data |
US5920861A (en) | 1997-02-25 | 1999-07-06 | Intertrust Technologies Corp. | Techniques for defining using and manipulating rights management data structures |
US7062500B1 (en) | 1997-02-25 | 2006-06-13 | Intertrust Technologies Corp. | Techniques for defining, using and manipulating rights management data structures |
US6233684B1 (en) * | 1997-02-28 | 2001-05-15 | Contenaguard Holdings, Inc. | System for controlling the distribution and use of rendered digital works through watermaking |
US6211919B1 (en) * | 1997-03-28 | 2001-04-03 | Tektronix, Inc. | Transparent embedment of data in a video signal |
US6192138B1 (en) * | 1997-05-08 | 2001-02-20 | Kabushiki Kaisha Toshiba | Apparatus and method for embedding/unembedding supplemental information |
US6001516A (en) * | 1997-06-12 | 1999-12-14 | Eastman Kodak Company | Copy restrictive color-negative photographic print media |
EP0901282B1 (en) | 1997-09-03 | 2006-06-28 | Hitachi, Ltd. | Method for recording and reproducing electronic watermark information |
JPH11112782A (en) * | 1997-09-30 | 1999-04-23 | Canon Inc | Picture processor, its method and computer readable storage medium |
US6112181A (en) | 1997-11-06 | 2000-08-29 | Intertrust Technologies Corporation | Systems and methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information |
US7092914B1 (en) | 1997-11-06 | 2006-08-15 | Intertrust Technologies Corporation | Methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information |
US7054463B2 (en) | 1998-01-20 | 2006-05-30 | Digimarc Corporation | Data encoding using frail watermarks |
US7233948B1 (en) | 1998-03-16 | 2007-06-19 | Intertrust Technologies Corp. | Methods and apparatus for persistent control and protection of content |
US6557103B1 (en) | 1998-04-13 | 2003-04-29 | The United States Of America As Represented By The Secretary Of The Army | Spread spectrum image steganography |
WO1999053428A1 (en) * | 1998-04-16 | 1999-10-21 | Digimarc Corporation | Digital watermarking and banknotes |
US7372976B2 (en) * | 1998-04-16 | 2008-05-13 | Digimarc Corporation | Content indexing and searching using content identifiers and associated metadata |
US7756892B2 (en) | 2000-05-02 | 2010-07-13 | Digimarc Corporation | Using embedded data with file sharing |
US6782115B2 (en) | 1998-04-16 | 2004-08-24 | Digimarc Corporation | Watermark holograms |
US7162052B2 (en) | 1998-04-16 | 2007-01-09 | Digimarc Corporation | Steganographically encoding specular surfaces |
US7602940B2 (en) | 1998-04-16 | 2009-10-13 | Digimarc Corporation | Steganographic data hiding using a device clock |
US6965873B1 (en) | 1998-04-16 | 2005-11-15 | Digimarc Corporation | Electronic commerce using optical input device |
US7689532B1 (en) | 2000-07-20 | 2010-03-30 | Digimarc Corporation | Using embedded data with file sharing |
US6608911B2 (en) | 2000-12-21 | 2003-08-19 | Digimarc Corporation | Digitally watermaking holograms for use with smart cards |
US6359998B1 (en) * | 1998-04-23 | 2002-03-19 | 3Com Corporation | Method and apparatus for wavelet-based digital watermarking |
US6792542B1 (en) * | 1998-05-12 | 2004-09-14 | Verance Corporation | Digital system for embedding a pseudo-randomly modulated auxiliary data sequence in digital samples |
CA2269651A1 (en) | 1998-05-12 | 1999-11-12 | Lucent Technologies, Inc. | Transform domain image watermarking method and system |
WO1999060748A1 (en) * | 1998-05-20 | 1999-11-25 | Recording Industry Association Of America | Data disc modulation for minimizing pirating |
US6684199B1 (en) | 1998-05-20 | 2004-01-27 | Recording Industry Association Of America | Method for minimizing pirating and/or unauthorized copying and/or unauthorized access of/to data on/from data media including compact discs and digital versatile discs, and system and data media for same |
US6269374B1 (en) * | 1998-05-26 | 2001-07-31 | International Business Machines Corporation | Method and apparatus for updating checksums of data structures |
US7046258B1 (en) * | 1998-05-28 | 2006-05-16 | Canon Kabushiki Kaisha | Display and control of permitted data processing based on control information extracted from the data |
IL124895A0 (en) | 1998-06-14 | 1999-01-26 | Csafe Ltd | Methods and apparatus for preventing reuse of text images and software transmitted via networks |
US6298446B1 (en) | 1998-06-14 | 2001-10-02 | Alchemedia Ltd. | Method and system for copyright protection of digital images transmitted over networks |
US6103353A (en) * | 1998-07-08 | 2000-08-15 | Eastman Kodak Company | Copy restrictive documents |
US6965697B1 (en) * | 1998-07-15 | 2005-11-15 | Sony Corporation | Coding apparatus and method, decoding apparatus and method, data processing system, storage medium, and signal |
US7006555B1 (en) | 1998-07-16 | 2006-02-28 | Nielsen Media Research, Inc. | Spectral audio encoding |
US6978036B2 (en) * | 1998-07-31 | 2005-12-20 | Digimarc Corporation | Tamper-resistant authentication techniques for identification documents |
US7313253B2 (en) * | 1998-09-11 | 2007-12-25 | Digimarc Corporation | Methods and tangible objects employing machine readable data in photo-reactive materials |
US6266429B1 (en) * | 1998-09-23 | 2001-07-24 | Philips Electronics North America Corporation | Method for confirming the integrity of an image transmitted with a loss |
KR100341197B1 (en) * | 1998-09-29 | 2002-06-20 | 포만 제프리 엘 | System for embedding additional information in audio data |
US6463162B1 (en) * | 1998-09-30 | 2002-10-08 | Hewlett-Packard Company | Robust watermarking for digital objects |
US6209094B1 (en) * | 1998-10-14 | 2001-03-27 | Liquid Audio Inc. | Robust watermark method and apparatus for digital signals |
US6345100B1 (en) | 1998-10-14 | 2002-02-05 | Liquid Audio, Inc. | Robust watermark method and apparatus for digital signals |
US6330673B1 (en) | 1998-10-14 | 2001-12-11 | Liquid Audio, Inc. | Determination of a best offset to detect an embedded pattern |
US6496933B1 (en) | 1998-10-14 | 2002-12-17 | Canon Sales, Inc. | Document authentication using a mark that is separate from document information |
US6219634B1 (en) | 1998-10-14 | 2001-04-17 | Liquid Audio, Inc. | Efficient watermark method and apparatus for digital signals |
US6320965B1 (en) | 1998-10-14 | 2001-11-20 | Liquid Audio, Inc. | Secure watermark method and apparatus for digital signals |
US7068787B1 (en) | 1998-10-23 | 2006-06-27 | Contentguard Holdings, Inc. | System and method for protection of digital works |
US8290202B2 (en) | 1998-11-03 | 2012-10-16 | Digimarc Corporation | Methods utilizing steganography |
US7324133B2 (en) * | 1998-11-06 | 2008-01-29 | Fotomedia Technologies, Llc | Method and apparatus for controlled camera useability |
WO2000031675A2 (en) * | 1998-11-19 | 2000-06-02 | Digimarc Corporation | Printing and validation of self validating security documents |
US6606616B1 (en) | 1998-12-01 | 2003-08-12 | Lucent Technologies Inc. | Modified action rules |
US11109114B2 (en) | 2001-04-18 | 2021-08-31 | Grass Valley Canada | Advertisement management method, system, and computer program product |
US6332193B1 (en) | 1999-01-18 | 2001-12-18 | Sensar, Inc. | Method and apparatus for securely transmitting and authenticating biometric data over a network |
US20020056043A1 (en) * | 1999-01-18 | 2002-05-09 | Sensar, Inc. | Method and apparatus for securely transmitting and authenticating biometric data over a network |
US7904187B2 (en) | 1999-02-01 | 2011-03-08 | Hoffberg Steven M | Internet appliance system and method |
GB9903900D0 (en) * | 1999-02-19 | 1999-04-14 | Digital Gramaphone And Wireles | Data encoding/decoding device and apparatus using the same |
US6546113B1 (en) | 1999-03-02 | 2003-04-08 | Leitch Technology International Inc. | Method and apparatus for video watermarking |
US6963884B1 (en) * | 1999-03-10 | 2005-11-08 | Digimarc Corporation | Recoverable digital content degradation: method and apparatus |
US6868497B1 (en) * | 1999-03-10 | 2005-03-15 | Digimarc Corporation | Method and apparatus for automatic ID management |
US6556688B1 (en) | 1999-03-15 | 2003-04-29 | Seiko Epson Corporation | Watermarking with random zero-mean patches for printer tracking |
US6522766B1 (en) | 1999-03-15 | 2003-02-18 | Seiko Epson Corporation | Watermarking with random zero-mean patches for copyright protection |
WO2000056058A1 (en) | 1999-03-18 | 2000-09-21 | British Broadcasting Corporation | Watermarking |
US7664264B2 (en) | 1999-03-24 | 2010-02-16 | Blue Spike, Inc. | Utilizing data reduction in steganographic and cryptographic systems |
JP3607521B2 (en) | 1999-03-24 | 2005-01-05 | 株式会社東芝 | Digital watermark embedding device, digital watermark detection device, digital information distribution device, and storage medium |
JP2003524932A (en) * | 1999-04-06 | 2003-08-19 | クワン・ソフトウェア・エンジニアリング・インコーポレーテッド | System and method for digitally marking files with removable marks |
US6859533B1 (en) | 1999-04-06 | 2005-02-22 | Contentguard Holdings, Inc. | System and method for transferring the right to decode messages in a symmetric encoding scheme |
US6434701B1 (en) | 1999-04-06 | 2002-08-13 | Kwan Software Engineering, Inc. | System and method for digitally marking a file |
US7356688B1 (en) | 1999-04-06 | 2008-04-08 | Contentguard Holdings, Inc. | System and method for document distribution |
US6792535B1 (en) | 1999-04-06 | 2004-09-14 | Kwan Software Engineering, Inc. | System and method for digitally marking a file with a removable mark |
US7286665B1 (en) | 1999-04-06 | 2007-10-23 | Contentguard Holdings, Inc. | System and method for transferring the right to decode messages |
US6937726B1 (en) | 1999-04-06 | 2005-08-30 | Contentguard Holdings, Inc. | System and method for protecting data files by periodically refreshing a decryption key |
US6823455B1 (en) * | 1999-04-08 | 2004-11-23 | Intel Corporation | Method for robust watermarking of content |
US7185201B2 (en) | 1999-05-19 | 2007-02-27 | Digimarc Corporation | Content identifiers triggering corresponding responses |
US7206820B1 (en) | 2000-03-18 | 2007-04-17 | Digimarc Corporation | System for linking from object to remote resource |
US7302574B2 (en) | 1999-05-19 | 2007-11-27 | Digimarc Corporation | Content identifiers triggering corresponding responses through collaborative processing |
US7164413B2 (en) * | 1999-05-19 | 2007-01-16 | Digimarc Corporation | Enhanced input peripheral |
US8447067B2 (en) | 1999-05-19 | 2013-05-21 | Digimarc Corporation | Location-based arrangements employing mobile devices |
US8095796B2 (en) | 1999-05-19 | 2012-01-10 | Digimarc Corporation | Content identifiers |
US20010034705A1 (en) * | 1999-05-19 | 2001-10-25 | Rhoads Geoffrey B. | Payment-based systems for internet music |
US6952774B1 (en) * | 1999-05-22 | 2005-10-04 | Microsoft Corporation | Audio watermarking with dual watermarks |
US6785815B1 (en) * | 1999-06-08 | 2004-08-31 | Intertrust Technologies Corp. | Methods and systems for encoding and protecting data using digital signature and watermarking techniques |
US8103542B1 (en) | 1999-06-29 | 2012-01-24 | Digimarc Corporation | Digitally marked objects and promotional methods |
US7020285B1 (en) * | 1999-07-13 | 2006-03-28 | Microsoft Corporation | Stealthy audio watermarking |
US7543148B1 (en) * | 1999-07-13 | 2009-06-02 | Microsoft Corporation | Audio watermarking with covert channel and permutations |
US7243236B1 (en) * | 1999-07-29 | 2007-07-10 | Intertrust Technologies Corp. | Systems and methods for using cryptography to protect secure and insecure computing environments |
US6516078B1 (en) | 1999-07-29 | 2003-02-04 | Hewlett-Packard Company | Multi-level detection and deterrence of counterfeiting of documents with reduced false detection |
US7430670B1 (en) | 1999-07-29 | 2008-09-30 | Intertrust Technologies Corp. | Software self-defense systems and methods |
US6731784B2 (en) * | 1999-08-25 | 2004-05-04 | Hewlett-Packard Development Company, L.P. | Detection and deterrence of counterfeiting of documents with a seal having characteristic color, size, shape and radial density profile |
US7934097B1 (en) * | 1999-09-28 | 2011-04-26 | Baytsp.Com, Inc. | Method, apparatus, and system for managing, reviewing, comparing and detecting data on a wide area network |
US6885748B1 (en) | 1999-10-23 | 2005-04-26 | Contentguard Holdings, Inc. | System and method for protection of digital works |
US6608919B1 (en) | 1999-11-10 | 2003-08-19 | Digimarc Corporation | Method and apparatus for encoding paper with information |
EP1236183A2 (en) * | 1999-12-10 | 2002-09-04 | Durand Technology Limited | Improvements in or relating to applications of fractal and/or chaotic techniques |
US6810131B2 (en) * | 2000-01-05 | 2004-10-26 | Canon Kabushiki Kaisha | Information processing method and apparatus |
US6915481B1 (en) | 2000-01-11 | 2005-07-05 | Cognicity, Inc. | Transactional watermarking |
US6625297B1 (en) | 2000-02-10 | 2003-09-23 | Digimarc Corporation | Self-orienting watermarks |
US8355525B2 (en) | 2000-02-14 | 2013-01-15 | Digimarc Corporation | Parallel processing of digital watermarking operations |
US7065559B1 (en) | 2000-02-17 | 2006-06-20 | Organon Wireless, Inc. | Media bridge method and apparatus |
EP1264437A2 (en) * | 2000-03-06 | 2002-12-11 | Thomas W. Meyer | Data embedding in digital telephone signals |
EP1134977A1 (en) * | 2000-03-06 | 2001-09-19 | Irdeto Access B.V. | Method and system for providing copies of scrambled content with unique watermarks, and system for descrambling scrambled content |
US7142691B2 (en) | 2000-03-18 | 2006-11-28 | Digimarc Corporation | Watermark embedding functions in rendering description files |
US6968564B1 (en) * | 2000-04-06 | 2005-11-22 | Nielsen Media Research, Inc. | Multi-band spectral audio encoding |
US6741758B2 (en) * | 2000-04-07 | 2004-05-25 | Canon Kabushiki Kaisha | Image processor and image processing method |
WO2001080169A1 (en) | 2000-04-17 | 2001-10-25 | Digimarc Corporation | Authentication of physical and electronic media objects using digital watermarks |
US6804377B2 (en) | 2000-04-19 | 2004-10-12 | Digimarc Corporation | Detecting information hidden out-of-phase in color channels |
US7027614B2 (en) | 2000-04-19 | 2006-04-11 | Digimarc Corporation | Hiding information to reduce or offset perceptible artifacts |
US6912295B2 (en) * | 2000-04-19 | 2005-06-28 | Digimarc Corporation | Enhancing embedding of out-of-phase signals |
US7305104B2 (en) * | 2000-04-21 | 2007-12-04 | Digimarc Corporation | Authentication of identification documents using digital watermarks |
US7111168B2 (en) | 2000-05-01 | 2006-09-19 | Digimarc Corporation | Digital watermarking systems |
US7346184B1 (en) | 2000-05-02 | 2008-03-18 | Digimarc Corporation | Processing methods combining multiple frames of image data |
US7228327B2 (en) * | 2000-05-08 | 2007-06-05 | Hoshiko Llc | Method and apparatus for delivering content via information retrieval devices |
US6775557B2 (en) * | 2000-05-08 | 2004-08-10 | Mary Y. Tsai | Telephone method and apparatus |
US20010053252A1 (en) * | 2000-06-13 | 2001-12-20 | Stuart Creque | Method of knowledge management and information retrieval utilizing natural characteristics of published documents as an index method to a digital content store |
EP1164543B1 (en) * | 2000-06-14 | 2017-08-09 | Panasonic Intellectual Property Corporation of America | Digital information embedding/extracting |
US6633654B2 (en) * | 2000-06-19 | 2003-10-14 | Digimarc Corporation | Perceptual modeling of media signals based on local contrast and directional edges |
US7111167B1 (en) | 2000-06-30 | 2006-09-19 | Intel Corporation | Digital watermarks with values derived from remote platforms |
US20020049967A1 (en) * | 2000-07-01 | 2002-04-25 | Haseltine Eric C. | Processes for exploiting electronic tokens to increase broadcasting revenue |
US6871278B1 (en) * | 2000-07-06 | 2005-03-22 | Lasercard Corporation | Secure transactions with passive storage media |
AU7182701A (en) | 2000-07-06 | 2002-01-21 | David Paul Felsher | Information record infrastructure, system and method |
MXPA03000418A (en) | 2000-07-13 | 2003-07-14 | Belo Company | System and method for associating historical information with sensory data and distribution thereof. |
US6879652B1 (en) | 2000-07-14 | 2005-04-12 | Nielsen Media Research, Inc. | Method for encoding an input signal |
US8224776B1 (en) | 2000-07-26 | 2012-07-17 | Kdl Scan Designs Llc | Method and system for hosting entity-specific photo-sharing websites for entity-specific digital cameras |
US6636259B1 (en) | 2000-07-26 | 2003-10-21 | Ipac Acquisition Subsidiary I, Llc | Automatically configuring a web-enabled digital camera to access the internet |
JP2004506379A (en) * | 2000-08-09 | 2004-02-26 | アヴウェイ.コム・インコーポレイテッド | Method and system for embedding information bits steganographically in a source signal |
US7073199B1 (en) | 2000-08-28 | 2006-07-04 | Contentguard Holdings, Inc. | Document distribution management method and apparatus using a standard rendering engine and a method and apparatus for controlling a standard rendering engine |
US7743259B2 (en) | 2000-08-28 | 2010-06-22 | Contentguard Holdings, Inc. | System and method for digital rights management using a standard rendering engine |
US20030196109A1 (en) | 2000-08-28 | 2003-10-16 | Contentguard Holdings, Inc. | Method and apparatus for content transaction aggregation |
US6931545B1 (en) * | 2000-08-28 | 2005-08-16 | Contentguard Holdings, Inc. | Systems and methods for integrity certification and verification of content consumption environments |
AU2001290822A1 (en) * | 2000-09-11 | 2002-03-26 | Digimarc Corporation | Authenticating and measuring quality of service of multimedia signals using digital watermark analyses |
US7246239B2 (en) * | 2001-01-24 | 2007-07-17 | Digimarc Corporation | Digital watermarks for checking authenticity of printed objects |
US6760464B2 (en) * | 2000-10-11 | 2004-07-06 | Digimarc Corporation | Halftone watermarking and related applications |
US7346776B2 (en) * | 2000-09-11 | 2008-03-18 | Digimarc Corporation | Authenticating media signals by adjusting frequency characteristics to reference values |
US7656930B2 (en) * | 2001-09-10 | 2010-02-02 | Digimarc Corporation | Assessing quality of service using digital watermark information |
US8205237B2 (en) | 2000-09-14 | 2012-06-19 | Cox Ingemar J | Identifying works, using a sub-linear time search, such as an approximate nearest neighbor search, for initiating a work-based action, such as an action on the internet |
ES2356598T3 (en) * | 2000-09-20 | 2011-04-11 | Alpvision Sa | PROCESS INTENDED TO PREVENT THE FALSIFICATION OR ALTERATION OF A PRINTED OR RECORDED SURFACE. |
US6961441B1 (en) | 2000-09-29 | 2005-11-01 | General Electric Company | Method and apparatus for steganographic embedding of meta-data |
US7287088B1 (en) | 2000-10-06 | 2007-10-23 | Fotomedia Technologies, Llc | Transmission bandwidth and memory requirements reduction in a portable image capture device by eliminating duplicate image transmissions |
US6512837B1 (en) | 2000-10-11 | 2003-01-28 | Digimarc Corporation | Watermarks carrying content dependent signal metrics for detecting and characterizing signal alteration |
AU2002225593A1 (en) | 2000-10-17 | 2002-04-29 | Digimarc Corporation | User control and activation of watermark enabled objects |
US7028188B1 (en) * | 2000-10-30 | 2006-04-11 | Hewlett-Packard Development Company, L.P. | Document authentication using the physical characteristics of underlying physical media |
US7343324B2 (en) * | 2000-11-03 | 2008-03-11 | Contentguard Holdings Inc. | Method, system, and computer readable medium for automatically publishing content |
EP1220152A3 (en) * | 2000-12-07 | 2004-11-24 | Sony United Kingdom Limited | Embedding data in material |
US7266704B2 (en) * | 2000-12-18 | 2007-09-04 | Digimarc Corporation | User-friendly rights management systems and methods |
US6965683B2 (en) | 2000-12-21 | 2005-11-15 | Digimarc Corporation | Routing networks for use with watermark systems |
US8103877B2 (en) | 2000-12-21 | 2012-01-24 | Digimarc Corporation | Content identification and electronic tickets, coupons and credits |
US6912294B2 (en) | 2000-12-29 | 2005-06-28 | Contentguard Holdings, Inc. | Multi-stage watermarking process and system |
US20030220880A1 (en) * | 2002-01-17 | 2003-11-27 | Contentguard Holdings, Inc. | Networked services licensing system and method |
US7206765B2 (en) * | 2001-01-17 | 2007-04-17 | Contentguard Holdings, Inc. | System and method for supplying and managing usage rights based on rules |
US6754642B2 (en) | 2001-05-31 | 2004-06-22 | Contentguard Holdings, Inc. | Method and apparatus for dynamically assigning usage rights to digital works |
CN100437508C (en) | 2001-01-17 | 2008-11-26 | 康坦夹德控股股份有限公司 | Method and apparatus for managing digital content usage rights |
US7028009B2 (en) * | 2001-01-17 | 2006-04-11 | Contentguardiholdings, Inc. | Method and apparatus for distributing enforceable property rights |
US7774279B2 (en) | 2001-05-31 | 2010-08-10 | Contentguard Holdings, Inc. | Rights offering and granting |
US8069116B2 (en) | 2001-01-17 | 2011-11-29 | Contentguard Holdings, Inc. | System and method for supplying and managing usage rights associated with an item repository |
US20030192060A1 (en) * | 2001-01-30 | 2003-10-09 | Levy Kenneth L. | Digital watermarking and television services |
US20020162118A1 (en) * | 2001-01-30 | 2002-10-31 | Levy Kenneth L. | Efficient interactive TV |
US7181017B1 (en) | 2001-03-23 | 2007-02-20 | David Felsher | System and method for secure three-party communications |
US20020146120A1 (en) * | 2001-04-05 | 2002-10-10 | Hugh Anglin | Inspecting print quality using digital watermarks |
KR100374665B1 (en) * | 2001-04-13 | 2003-03-04 | 주식회사 마크애니 | Method of inserting/detecting digital watermarks and apparatus for using thereof |
US7607016B2 (en) | 2001-04-20 | 2009-10-20 | Digimarc Corporation | Including a metric in a digital watermark for media authentication |
KR100378222B1 (en) * | 2001-04-21 | 2003-03-29 | 주식회사 마크애니 | Method of inserting/detecting digital watermarks and apparatus for using thereof |
US8457346B2 (en) * | 2001-04-24 | 2013-06-04 | Digimarc Corporation | Digital watermarking image signals on-chip |
US7502937B2 (en) * | 2001-04-30 | 2009-03-10 | Digimarc Corporation | Digital watermarking security systems |
US8543823B2 (en) | 2001-04-30 | 2013-09-24 | Digimarc Corporation | Digital watermarking for identification documents |
US7958359B2 (en) * | 2001-04-30 | 2011-06-07 | Digimarc Corporation | Access control systems |
JP2004537780A (en) * | 2001-05-15 | 2004-12-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Content analysis device |
US20030043852A1 (en) * | 2001-05-18 | 2003-03-06 | Bijan Tadayon | Method and apparatus for verifying data integrity based on data compression parameters |
US20020180997A1 (en) * | 2001-05-29 | 2002-12-05 | Imation Corp. | Embedding color profiles in raster image data using data hiding techniques |
US6973445B2 (en) * | 2001-05-31 | 2005-12-06 | Contentguard Holdings, Inc. | Demarcated digital content and method for creating and processing demarcated digital works |
US7725401B2 (en) | 2001-05-31 | 2010-05-25 | Contentguard Holdings, Inc. | Method and apparatus for establishing usage rights for digital content to be created in the future |
US8275709B2 (en) | 2001-05-31 | 2012-09-25 | Contentguard Holdings, Inc. | Digital rights management of content when content is a future live event |
US8001053B2 (en) | 2001-05-31 | 2011-08-16 | Contentguard Holdings, Inc. | System and method for rights offering and granting using shared state variables |
US8099364B2 (en) | 2001-05-31 | 2012-01-17 | Contentguard Holdings, Inc. | Digital rights management of content when content is a future live event |
US8275716B2 (en) | 2001-05-31 | 2012-09-25 | Contentguard Holdings, Inc. | Method and system for subscription digital rights management |
US6895503B2 (en) | 2001-05-31 | 2005-05-17 | Contentguard Holdings, Inc. | Method and apparatus for hierarchical assignment of rights to documents and documents having such rights |
US6876984B2 (en) | 2001-05-31 | 2005-04-05 | Contentguard Holdings, Inc. | Method and apparatus for establishing usage rights for digital content to be created in the future |
US7222104B2 (en) * | 2001-05-31 | 2007-05-22 | Contentguard Holdings, Inc. | Method and apparatus for transferring usage rights and digital work having transferrable usage rights |
US7152046B2 (en) * | 2001-05-31 | 2006-12-19 | Contentguard Holdings, Inc. | Method and apparatus for tracking status of resource in a system for managing use of the resources |
US6976009B2 (en) | 2001-05-31 | 2005-12-13 | Contentguard Holdings, Inc. | Method and apparatus for assigning consequential rights to documents and documents having such rights |
US7774280B2 (en) * | 2001-06-07 | 2010-08-10 | Contentguard Holdings, Inc. | System and method for managing transfer of rights using shared state variables |
AU2002305814B2 (en) | 2001-06-07 | 2004-06-10 | Contentguard Holdings, Inc. | Cryptographic trust zones in digital rights management |
AU2002345577A1 (en) | 2001-06-07 | 2002-12-23 | Contentguard Holdings, Inc. | Protected content distribution system |
US20050086697A1 (en) * | 2001-07-02 | 2005-04-21 | Haseltine Eric C. | Processes for exploiting electronic tokens to increase broadcasting revenue |
US7398395B2 (en) * | 2001-09-20 | 2008-07-08 | Koninklijke Philips Electronics N.V. | Using multiple watermarks to protect content material |
US20030069853A1 (en) * | 2001-10-04 | 2003-04-10 | Eastman Kodak Company | Method and system for managing, accessing and paying for the use of copyrighted electronic media |
US7177430B2 (en) * | 2001-10-31 | 2007-02-13 | Portalplayer, Inc. | Digital entroping for digital audio reproductions |
US8332890B2 (en) * | 2001-12-05 | 2012-12-11 | International Business Machines Corporation | Efficiently identifying television stations in a user friendly environment |
AUPR960601A0 (en) * | 2001-12-18 | 2002-01-24 | Canon Kabushiki Kaisha | Image protection |
AU2002366244A1 (en) | 2001-12-18 | 2003-06-30 | Digimarc Id System, Llc | Multiple image security features for identification documents and methods of making same |
AU2002318848B2 (en) * | 2001-12-18 | 2004-12-09 | Canon Kabushiki Kaisha | Image Protection |
EP1459246B1 (en) | 2001-12-24 | 2012-05-02 | L-1 Secure Credentialing, Inc. | Method for full color laser marking of id documents |
US7815124B2 (en) | 2002-04-09 | 2010-10-19 | L-1 Secure Credentialing, Inc. | Image processing techniques for printing identification cards and documents |
US7694887B2 (en) | 2001-12-24 | 2010-04-13 | L-1 Secure Credentialing, Inc. | Optically variable personalized indicia for identification documents |
WO2003056500A1 (en) | 2001-12-24 | 2003-07-10 | Digimarc Id Systems, Llc | Covert variable information on id documents and methods of making same |
US7728048B2 (en) | 2002-12-20 | 2010-06-01 | L-1 Secure Credentialing, Inc. | Increasing thermal conductivity of host polymer used with laser engraving methods and compositions |
US7207494B2 (en) | 2001-12-24 | 2007-04-24 | Digimarc Corporation | Laser etched security features for identification documents and methods of making same |
US20030131350A1 (en) | 2002-01-08 | 2003-07-10 | Peiffer John C. | Method and apparatus for identifying a digital audio signal |
US7321667B2 (en) * | 2002-01-18 | 2008-01-22 | Digimarc Corporation | Data hiding through arrangement of objects |
US7231061B2 (en) * | 2002-01-22 | 2007-06-12 | Digimarc Corporation | Adaptive prediction filtering for digital watermarking |
US7567721B2 (en) * | 2002-01-22 | 2009-07-28 | Digimarc Corporation | Digital watermarking of low bit rate video |
US7886151B2 (en) | 2002-01-22 | 2011-02-08 | Purdue Research Foundation | Temporal synchronization of video and audio signals |
US7152786B2 (en) * | 2002-02-12 | 2006-12-26 | Digimarc Corporation | Identification document including embedded data |
US7054461B2 (en) * | 2002-02-15 | 2006-05-30 | Pitney Bowes Inc. | Authenticating printed objects using digital watermarks associated with multidimensional quality metrics |
US7415440B1 (en) | 2002-02-22 | 2008-08-19 | Entriq, Inc. | Method and system to provide secure key selection using a secure device in a watercrypting environment |
US7287275B2 (en) | 2002-04-17 | 2007-10-23 | Moskowitz Scott A | Methods, systems and devices for packet watermarking and efficient provisioning of bandwidth |
US7824029B2 (en) | 2002-05-10 | 2010-11-02 | L-1 Secure Credentialing, Inc. | Identification card printer-assembler for over the counter card issuing |
ES2424480T3 (en) | 2002-05-14 | 2013-10-02 | Schreiner Group Gmbh & Co. Kg | Authentication patterns visible for printed document |
US6782116B1 (en) * | 2002-11-04 | 2004-08-24 | Mediasec Technologies, Gmbh | Apparatus and methods for improving detection of watermarks in content that has undergone a lossy transformation |
US7519819B2 (en) * | 2002-05-29 | 2009-04-14 | Digimarc Corporatino | Layered security in digital watermarking |
US7974495B2 (en) | 2002-06-10 | 2011-07-05 | Digimarc Corporation | Identification and protection of video |
US20040003394A1 (en) * | 2002-07-01 | 2004-01-01 | Arun Ramaswamy | System for automatically matching video with ratings information |
US20040091111A1 (en) * | 2002-07-16 | 2004-05-13 | Levy Kenneth L. | Digital watermarking and fingerprinting applications |
US7577841B2 (en) | 2002-08-15 | 2009-08-18 | Digimarc Corporation | Watermark placement in watermarking of time varying media signals |
US7398008B2 (en) * | 2002-09-19 | 2008-07-08 | Hewlett-Packard Development Company, L.P. | Copy protection for analog video signals from computing devices |
US7650624B2 (en) * | 2002-10-01 | 2010-01-19 | Koplar Interactive Systems International, L.L.C. | Method and apparatus for modulating a video signal with data |
MXPA05003984A (en) * | 2002-10-15 | 2005-06-22 | Digimarc Corp | Identification document and related methods. |
US7978874B2 (en) | 2002-10-21 | 2011-07-12 | Digimarc Corporation | Digital watermarking for workflow by tracking content or content identifiers with respect to time |
CA2503340A1 (en) | 2002-10-23 | 2004-05-06 | Arun Ramaswamy | Digital data insertion apparatus and methods for use with compressed audio/video data |
WO2004049242A2 (en) | 2002-11-26 | 2004-06-10 | Digimarc Id Systems | Systems and methods for managing and detecting fraud in image databases used with identification documents |
US7712673B2 (en) | 2002-12-18 | 2010-05-11 | L-L Secure Credentialing, Inc. | Identification document with three dimensional image of bearer |
US9818136B1 (en) | 2003-02-05 | 2017-11-14 | Steven M. Hoffberg | System and method for determining contingent relevance |
EP1609301B1 (en) * | 2003-04-02 | 2009-12-02 | Eastman Kodak Company | Ensuring accurate measurements for soft proofing system |
WO2004095348A2 (en) | 2003-04-16 | 2004-11-04 | Digimarc Corporation | Three dimensional data storage |
US7460684B2 (en) * | 2003-06-13 | 2008-12-02 | Nielsen Media Research, Inc. | Method and apparatus for embedding watermarks |
MXPA05014162A (en) * | 2003-06-20 | 2006-03-13 | Nielsen Media Res Inc | Signature-based program identification apparatus and methods for use with digital broadcast systems. |
US7206649B2 (en) * | 2003-07-15 | 2007-04-17 | Microsoft Corporation | Audio watermarking with dual watermarks |
AU2004303075B2 (en) * | 2003-08-05 | 2009-06-25 | Dsi-Iti, Llc | Three-way call detection using steganography |
US20050063562A1 (en) * | 2003-08-07 | 2005-03-24 | Brunk Hugh L. | Conveying fingerprint minutiae with digital watermarks |
US8301893B2 (en) | 2003-08-13 | 2012-10-30 | Digimarc Corporation | Detecting media areas likely of hosting watermarks |
US7116374B2 (en) * | 2003-08-26 | 2006-10-03 | Koplar Interactive Systems International, L.L.C. | Method and system for enhanced modulation of video signals |
WO2005031634A1 (en) * | 2003-08-29 | 2005-04-07 | Nielsen Media Research, Inc. | Methods and apparatus for embedding and recovering an image for use with video content |
US7818257B2 (en) * | 2004-07-16 | 2010-10-19 | Deluxe Laboratories, Inc. | Program encoding and counterfeit tracking system and method |
GB2407227B (en) * | 2003-09-08 | 2006-11-08 | Deluxe Lab Inc | Program encoding and counterfeit tracking system and method |
US7623661B2 (en) * | 2003-09-08 | 2009-11-24 | Deluxe Laboratories Inc. | Motion picture encoding and counterfeit tracking system and method |
AU2003272483A1 (en) * | 2003-09-12 | 2005-04-27 | Nielsen Media Research, Inc. | Digital video signature apparatus and methods for use with video program identification systems |
US8438395B2 (en) * | 2003-09-18 | 2013-05-07 | Digimarc Corporation | Digitally watermarking documents associated with vehicles |
US7075583B2 (en) * | 2003-10-20 | 2006-07-11 | Koplar Interactive Systems International, L.L.C. | Methods for improved modulation of video signals |
US8181884B2 (en) * | 2003-11-17 | 2012-05-22 | Digimarc Corporation | Machine-readable features for objects |
US7480393B2 (en) * | 2003-11-19 | 2009-01-20 | Digimarc Corporation | Optimized digital watermarking functions for streaming data |
US7269297B2 (en) * | 2003-11-25 | 2007-09-11 | Xerox Corporation | Illuminant-neutral gray component replacement in systems for spectral multiplexing of source images to provide a composite image, for rendering the composite image, and for spectral demultiplexing of the composite image |
US7414925B2 (en) * | 2003-11-27 | 2008-08-19 | International Business Machines Corporation | System and method for providing telephonic voice response information related to items marked on physical documents |
JP4025283B2 (en) * | 2003-12-05 | 2007-12-19 | 株式会社東芝 | Code embedding method, identification information restoring method and apparatus |
US7581171B2 (en) * | 2004-01-06 | 2009-08-25 | Microsoft Corporation | Positionally encoded document image analysis and labeling |
US7744002B2 (en) | 2004-03-11 | 2010-06-29 | L-1 Secure Credentialing, Inc. | Tamper evident adhesive and identification document including same |
CA2562137C (en) | 2004-04-07 | 2012-11-27 | Nielsen Media Research, Inc. | Data insertion apparatus and methods for use with compressed audio/video data |
US7463289B2 (en) * | 2004-05-07 | 2008-12-09 | Aptina Imaging Corporation | Digital camera producing image embedded with diagnostic characteristic |
US7653255B2 (en) | 2004-06-02 | 2010-01-26 | Adobe Systems Incorporated | Image region of interest encoding |
US7664175B1 (en) | 2004-06-16 | 2010-02-16 | Koplar Interactive Systems International, L.L.C. | Mark-based content modulation and detection |
MX2007000076A (en) | 2004-07-02 | 2007-03-28 | Nielsen Media Res Inc | Methods and apparatus for mixing compressed digital bit streams. |
MX2007002071A (en) * | 2004-08-18 | 2007-04-24 | Nielsen Media Res Inc | Methods and apparatus for generating signatures. |
US7639886B1 (en) | 2004-10-04 | 2009-12-29 | Adobe Systems Incorporated | Determining scalar quantizers for a signal based on a target distortion |
US20060206724A1 (en) * | 2005-02-16 | 2006-09-14 | David Schaufele | Biometric-based systems and methods for identity verification |
US20060224677A1 (en) * | 2005-04-01 | 2006-10-05 | Baytsp | Method and apparatus for detecting email fraud |
CN100452884C (en) * | 2005-07-14 | 2009-01-14 | 上海交通大学 | Method for detecting GIF infomration hidden |
US7438078B2 (en) * | 2005-08-05 | 2008-10-21 | Peter Woodruff | Sleeping bag and system |
US8442221B2 (en) | 2005-09-30 | 2013-05-14 | Konica Minolta Laboratory U.S.A., Inc. | Method and apparatus for image encryption and embedding and related applications |
US8874477B2 (en) | 2005-10-04 | 2014-10-28 | Steven Mark Hoffberg | Multifactorial optimization system and method |
GB2431837A (en) * | 2005-10-28 | 2007-05-02 | Sony Uk Ltd | Audio processing |
EP2001008A4 (en) * | 2006-03-27 | 2010-04-21 | Pioneer Corp | Method and device for displaying information code |
US8081304B2 (en) * | 2006-07-31 | 2011-12-20 | Visualant, Inc. | Method, apparatus, and article to facilitate evaluation of objects using electromagnetic energy |
WO2008016590A2 (en) | 2006-07-31 | 2008-02-07 | Visualant, Inc. | System and method of evaluating an object using electromagnetic energy |
US7996173B2 (en) * | 2006-07-31 | 2011-08-09 | Visualant, Inc. | Method, apparatus, and article to facilitate distributed evaluation of objects using electromagnetic energy |
US9280773B1 (en) | 2006-08-30 | 2016-03-08 | Qurio Holdings, Inc. | System and method for managing first party rights to content captured by third parties |
US9224145B1 (en) | 2006-08-30 | 2015-12-29 | Qurio Holdings, Inc. | Venue based digital rights using capture device with digital watermarking capability |
EP2958106B1 (en) | 2006-10-11 | 2018-07-18 | The Nielsen Company (US), LLC | Methods and apparatus for embedding codes in compressed audio data streams |
DE102006050120A1 (en) * | 2006-10-25 | 2008-04-30 | Man Roland Druckmaschinen Ag | Method for individual identification of print product for securing authenticity of print product by using printing machine, involves changing set point settings constantly for position control for controlled drive of plate |
IL179351A0 (en) * | 2006-11-16 | 2008-01-20 | Nds Ltd | System for embedding data |
US8805743B2 (en) * | 2006-12-27 | 2014-08-12 | International Business Machines Corporation | Tracking, distribution and management of apportionable licenses granted for distributed software products |
US10885543B1 (en) | 2006-12-29 | 2021-01-05 | The Nielsen Company (Us), Llc | Systems and methods to pre-scale media content to facilitate audience measurement |
WO2008096281A1 (en) | 2007-02-05 | 2008-08-14 | Nds Limited | System for embedding data |
US7394519B1 (en) | 2007-02-08 | 2008-07-01 | Deluxe Laboratories, Inc. | System and method for audio encoding and counterfeit tracking a motion picture |
US20080201158A1 (en) | 2007-02-15 | 2008-08-21 | Johnson Mark D | System and method for visitation management in a controlled-access environment |
US8542802B2 (en) | 2007-02-15 | 2013-09-24 | Global Tel*Link Corporation | System and method for three-way call detection |
JP2009027525A (en) * | 2007-07-20 | 2009-02-05 | Nec Corp | Optical transmission system and optical transmission method |
US8219494B1 (en) * | 2007-08-16 | 2012-07-10 | Corbis Corporation | End-to-end licensing of digital media assets |
CN101861710B (en) | 2007-10-05 | 2013-03-27 | 数字标记公司 | Content serialization by varying content properties, including varying master copy watermark properties |
US8798133B2 (en) * | 2007-11-29 | 2014-08-05 | Koplar Interactive Systems International L.L.C. | Dual channel encoding and detection |
US20100321493A1 (en) * | 2008-03-07 | 2010-12-23 | Thomson Licensing | Apparatus and method for remote monitoring |
WO2009127900A1 (en) * | 2008-04-14 | 2009-10-22 | Nds Limited | System and method for embedding data in video |
US8355180B2 (en) * | 2008-06-16 | 2013-01-15 | Wu Judy Wailing | Authenticable anti-copy document and method to produce an authenticable anti-copy document with a combined void pantograph and faux watermark security features |
US8275208B2 (en) * | 2008-07-02 | 2012-09-25 | Samsung Electronics Co., Ltd. | Method and apparatus for encoding and decoding image using image separation based on bit location |
US10943030B2 (en) * | 2008-12-15 | 2021-03-09 | Ibailbonding.Com | Securable independent electronic document |
US9225838B2 (en) | 2009-02-12 | 2015-12-29 | Value-Added Communications, Inc. | System and method for detecting three-way call circumvention attempts |
US8630726B2 (en) * | 2009-02-12 | 2014-01-14 | Value-Added Communications, Inc. | System and method for detecting three-way call circumvention attempts |
US8878041B2 (en) * | 2009-05-27 | 2014-11-04 | Microsoft Corporation | Detecting beat information using a diverse set of correlations |
US9749607B2 (en) | 2009-07-16 | 2017-08-29 | Digimarc Corporation | Coordinated illumination and image signal capture for enhanced signal detection |
US8824859B2 (en) | 2011-03-16 | 2014-09-02 | Cisco Technology Inc. | Adding watermarks to video content |
US20140135965A1 (en) * | 2011-05-02 | 2014-05-15 | Re-10 Ltd. | Apparatus, systems and methods for production, delivery and use of embedded content delivery |
US10474858B2 (en) | 2011-08-30 | 2019-11-12 | Digimarc Corporation | Methods of identifying barcoded items by evaluating multiple identification hypotheses, based on data from sensors including inventory sensors and ceiling-mounted cameras |
US8888207B2 (en) | 2012-02-10 | 2014-11-18 | Visualant, Inc. | Systems, methods and articles related to machine-readable indicia and symbols |
US9401153B2 (en) | 2012-10-15 | 2016-07-26 | Digimarc Corporation | Multi-mode audio recognition and auxiliary data encoding and decoding |
US9305559B2 (en) | 2012-10-15 | 2016-04-05 | Digimarc Corporation | Audio watermark encoding with reversing polarity and pairwise embedding |
US9368123B2 (en) | 2012-10-16 | 2016-06-14 | The Nielsen Company (Us), Llc | Methods and apparatus to perform audio watermark detection and extraction |
US9042554B2 (en) | 2012-11-30 | 2015-05-26 | The Nielsen Company (Us), Llc | Methods, apparatus, and articles of manufacture to encode auxilary data into text data and methods, apparatus, and articles of manufacture to obtain encoded data from text data |
US9087459B2 (en) | 2012-11-30 | 2015-07-21 | The Nielsen Company (Us), Llc | Methods, apparatus, and articles of manufacture to encode auxilary data into text data and methods, apparatus, and articles of manufacture to obtain encoded data from text data |
US9990478B2 (en) | 2012-11-30 | 2018-06-05 | The Nielsen Company (Us), Llc | Methods, apparatus, and articles of manufacture to encode auxiliary data into relational database keys and methods, apparatus, and articles of manufacture to obtain encoded data from relational database keys |
US9316581B2 (en) | 2013-02-04 | 2016-04-19 | Visualant, Inc. | Method, apparatus, and article to facilitate evaluation of substances using electromagnetic energy |
US9041920B2 (en) | 2013-02-21 | 2015-05-26 | Visualant, Inc. | Device for evaluation of fluids using electromagnetic energy |
US9664610B2 (en) | 2013-03-12 | 2017-05-30 | Visualant, Inc. | Systems for fluid analysis using electromagnetic energy that is reflected a number of times through a fluid contained within a reflective chamber |
US8918326B1 (en) * | 2013-12-05 | 2014-12-23 | The Telos Alliance | Feedback and simulation regarding detectability of a watermark message |
US10424038B2 (en) | 2015-03-20 | 2019-09-24 | Digimarc Corporation | Signal encoding outside of guard band region surrounding text characters, including varying encoding strength |
US9635378B2 (en) | 2015-03-20 | 2017-04-25 | Digimarc Corporation | Sparse modulation for robust signaling and synchronization |
US10652127B2 (en) | 2014-10-03 | 2020-05-12 | The Nielsen Company (Us), Llc | Fusing online media monitoring data with secondary online data feeds to generate ratings data for online media exposure |
US9716807B2 (en) * | 2014-10-13 | 2017-07-25 | Digimarc Corporation | Methods for estimating watermark signal strength, an embedding process using the same, and related arrangements |
US9747656B2 (en) | 2015-01-22 | 2017-08-29 | Digimarc Corporation | Differential modulation for robust signaling and synchronization |
US9805344B1 (en) * | 2015-01-23 | 2017-10-31 | Island Intellectual Property, Llc | Notification system and method |
US10783601B1 (en) | 2015-03-20 | 2020-09-22 | Digimarc Corporation | Digital watermarking and signal encoding with activable compositions |
WO2016153936A1 (en) | 2015-03-20 | 2016-09-29 | Digimarc Corporation | Digital watermarking and data hiding with narrow-band absorption materials |
FR3044794B1 (en) * | 2015-12-03 | 2018-11-30 | Digital Packaging | PROCESS FOR PRODUCING AND CUSTOMIZING CONSUMER CONSUMER ITEMS FOR ACCESS TO CUSTOMIZED CONTENT |
US10572961B2 (en) | 2016-03-15 | 2020-02-25 | Global Tel*Link Corporation | Detection and prevention of inmate to inmate message relay |
US9609121B1 (en) | 2016-04-07 | 2017-03-28 | Global Tel*Link Corporation | System and method for third party monitoring of voice and video calls |
US10027797B1 (en) | 2017-05-10 | 2018-07-17 | Global Tel*Link Corporation | Alarm control for inmate call monitoring |
US10225396B2 (en) | 2017-05-18 | 2019-03-05 | Global Tel*Link Corporation | Third party monitoring of a activity within a monitoring platform |
US10762520B2 (en) | 2017-05-31 | 2020-09-01 | Paypal, Inc. | Encryption of digital incentive tokens within images |
US10893306B2 (en) | 2017-05-31 | 2021-01-12 | Paypal, Inc. | Digital encryption of tokens within videos |
US10860786B2 (en) | 2017-06-01 | 2020-12-08 | Global Tel*Link Corporation | System and method for analyzing and investigating communication data from a controlled environment |
US9930088B1 (en) | 2017-06-22 | 2018-03-27 | Global Tel*Link Corporation | Utilizing VoIP codec negotiation during a controlled environment call |
US11062108B2 (en) | 2017-11-07 | 2021-07-13 | Digimarc Corporation | Generating and reading optical codes with variable density to adapt for visual quality and reliability |
US10896307B2 (en) | 2017-11-07 | 2021-01-19 | Digimarc Corporation | Generating and reading optical codes with variable density to adapt for visual quality and reliability |
US10872392B2 (en) | 2017-11-07 | 2020-12-22 | Digimarc Corporation | Generating artistic designs encoded with robust, machine-readable data |
GB2588438B (en) | 2019-10-24 | 2022-06-08 | Sony Interactive Entertainment Inc | Encoding and decoding apparatus |
CN112615975B (en) * | 2020-12-16 | 2022-07-22 | 合肥图溯信息技术有限公司 | Scanning method, storage medium, electronic device, and scanning device |
US11438314B2 (en) | 2021-02-10 | 2022-09-06 | Yahoo Assets Llc | Automatic privacy-aware machine learning method and apparatus |
CN114143490B (en) * | 2021-11-29 | 2024-09-06 | 云门(深圳)技术有限公司 | Method for previewing SDI video signal in webpage |
CN118606328B (en) * | 2024-08-08 | 2024-10-18 | 国网四川省电力公司 | Power data storage method, electronic device and storage medium |
Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3004104A (en) * | 1954-04-29 | 1961-10-10 | Muzak Corp | Identification of sound and like signals |
US3406344A (en) * | 1964-07-01 | 1968-10-15 | Bell Telephone Labor Inc | Transmission of low frequency signals by modulation of voice carrier |
US3492577A (en) * | 1966-10-07 | 1970-01-27 | Intern Telemeter Corp | Audience rating system |
US3838444A (en) * | 1972-10-30 | 1974-09-24 | Hazeltine Research Inc | System for transmitting auxiliary information in low energy density portion of color tv spectrum |
US3845391A (en) * | 1969-07-08 | 1974-10-29 | Audicom Corp | Communication including submerged identification signal |
US3984624A (en) * | 1974-07-25 | 1976-10-05 | Weston Instruments, Inc. | Video system for conveying digital and analog information |
US4025851A (en) * | 1975-11-28 | 1977-05-24 | A.C. Nielsen Company | Automatic monitor for programs broadcast |
US4225967A (en) * | 1978-01-09 | 1980-09-30 | Fujitsu Limited | Broadcast acknowledgement method and system |
US4230990A (en) * | 1979-03-16 | 1980-10-28 | Lert John G Jr | Broadcast program identification method and system |
US4245346A (en) * | 1962-02-07 | 1981-01-13 | Magnavox Government And Industrial Electronics Co. | Communication system |
US4313197A (en) * | 1980-04-09 | 1982-01-26 | Bell Telephone Laboratories, Incorporated | Spread spectrum arrangement for (de)multiplexing speech signals and nonspeech signals |
US4333113A (en) * | 1979-06-18 | 1982-06-01 | Quadrivium Techniques Avancees | Method and apparatus for monitoring the reproduction of recorded information |
US4495620A (en) * | 1982-08-05 | 1985-01-22 | At&T Bell Laboratories | Transmitting data on the phase of speech |
US4528588A (en) * | 1980-09-26 | 1985-07-09 | Loefberg Bo | Method and apparatus for marking the information content of an information carrying signal |
US4672605A (en) * | 1984-03-20 | 1987-06-09 | Applied Spectrum Technologies, Inc. | Data and voice communications system |
US4703476A (en) * | 1983-09-16 | 1987-10-27 | Audicom Corporation | Encoding of transmitted program material |
US4739398A (en) * | 1986-05-02 | 1988-04-19 | Control Data Corporation | Method, apparatus and system for recognizing broadcast segments |
US4750173A (en) * | 1985-05-21 | 1988-06-07 | Polygram International Holding B.V. | Method of transmitting audio information and additional information in digital form |
US4777529A (en) * | 1987-07-21 | 1988-10-11 | R. M. Schultz & Associates, Inc. | Auditory subliminal programming system |
US4807031A (en) * | 1987-10-20 | 1989-02-21 | Interactive Systems, Incorporated | Interactive video method and apparatus |
US4843562A (en) * | 1987-06-24 | 1989-06-27 | Broadcast Data Systems Limited Partnership | Broadcast information classification system and method |
US4876617A (en) * | 1986-05-06 | 1989-10-24 | Thorn Emi Plc | Signal identification |
US4939515A (en) * | 1988-09-30 | 1990-07-03 | General Electric Company | Digital signal encoding and decoding apparatus |
US4943973A (en) * | 1989-03-31 | 1990-07-24 | At&T Company | Spread-spectrum identification signal for communications system |
US4945412A (en) * | 1988-06-14 | 1990-07-31 | Kramer Robert A | Method of and system for identification and verification of broadcasting television and radio program segments |
US4963998A (en) * | 1988-04-20 | 1990-10-16 | Thorn Em Plc | Apparatus for marking a recorded signal |
US4969041A (en) * | 1988-09-23 | 1990-11-06 | Dubner Computer Systems, Inc. | Embedment of data in a video signal |
US4972471A (en) * | 1989-05-15 | 1990-11-20 | Gary Gross | Encoding system |
US5010405A (en) * | 1989-02-02 | 1991-04-23 | Massachusetts Institute Of Technology | Receiver-compatible enhanced definition television system |
US5019899A (en) * | 1988-11-01 | 1991-05-28 | Control Data Corporation | Electronic data encoding and recognition system |
US5079648A (en) * | 1988-04-20 | 1992-01-07 | Thorn Emi Plc | Marked recorded signals |
US5113437A (en) * | 1988-10-25 | 1992-05-12 | Thorn Emi Plc | Signal identification system |
US5146457A (en) * | 1988-09-16 | 1992-09-08 | U.S. Philips Corporation | Device for transmitting data words representing a digitalized analog signal and device for receiving the transmitted data words |
US5161210A (en) * | 1988-11-10 | 1992-11-03 | U.S. Philips Corporation | Coder for incorporating an auxiliary information signal in a digital audio signal, decoder for recovering such signals from the combined signal, and record carrier having such combined signal recorded thereon |
US5200822A (en) * | 1991-04-23 | 1993-04-06 | National Broadcasting Company, Inc. | Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs |
US5210820A (en) * | 1990-05-02 | 1993-05-11 | Broadcast Data Systems Limited Partnership | Signal recognition system and method |
US5243423A (en) * | 1991-12-20 | 1993-09-07 | A. C. Nielsen Company | Spread spectrum digital data transmission over TV video |
US5319453A (en) * | 1989-06-22 | 1994-06-07 | Airtrax | Method and apparatus for video signal encoding, decoding and monitoring |
US5319735A (en) * | 1991-12-17 | 1994-06-07 | Bolt Beranek And Newman Inc. | Embedded signalling |
US5355161A (en) * | 1993-07-28 | 1994-10-11 | Concord Media Systems | Identification system for broadcast program segments |
US5379345A (en) * | 1993-01-29 | 1995-01-03 | Radio Audit Systems, Inc. | Method and apparatus for the processing of encoded data in conjunction with an audio broadcast |
US5404377A (en) * | 1994-04-08 | 1995-04-04 | Moses; Donald W. | Simultaneous transmission of data and audio signals by means of perceptual coding |
US5404160A (en) * | 1993-06-24 | 1995-04-04 | Berkeley Varitronics Systems, Inc. | System and method for identifying a television program |
US5410541A (en) * | 1992-05-04 | 1995-04-25 | Ivon International, Inc. | System for simultaneous analog and digital communications over an analog channel |
US5436653A (en) * | 1992-04-30 | 1995-07-25 | The Arbitron Company | Method and system for recognition of broadcast segments |
US5450490A (en) * | 1994-03-31 | 1995-09-12 | The Arbitron Company | Apparatus and methods for including codes in audio signals and decoding |
US5530751A (en) * | 1994-06-30 | 1996-06-25 | Hewlett-Packard Company | Embedded hidden identification codes in digital objects |
US5574962A (en) * | 1991-09-30 | 1996-11-12 | The Arbitron Company | Method and apparatus for automatically identifying a program including a sound signal |
US5579124A (en) * | 1992-11-16 | 1996-11-26 | The Arbitron Company | Method and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto |
US5613004A (en) * | 1995-06-07 | 1997-03-18 | The Dice Company | Steganographic method and device |
US5629739A (en) * | 1995-03-06 | 1997-05-13 | A.C. Nielsen Company | Apparatus and method for injecting an ancillary signal into a low energy density portion of a color television frequency spectrum |
US5636292A (en) * | 1995-05-08 | 1997-06-03 | Digimarc Corporation | Steganography methods employing embedded calibration data |
US5646997A (en) * | 1994-12-14 | 1997-07-08 | Barton; James M. | Method and apparatus for embedding authentication information within digital data |
US5649054A (en) * | 1993-12-23 | 1997-07-15 | U.S. Philips Corporation | Method and apparatus for coding digital sound by subtracting adaptive dither and inserting buried channel bits and an apparatus for decoding such encoding digital sound |
US5652626A (en) * | 1993-09-03 | 1997-07-29 | Kabushiki Kaisha Toshiba | Image processing apparatus using pattern generating circuits to process a color image |
US5659726A (en) * | 1995-02-23 | 1997-08-19 | Sandford, Ii; Maxwell T. | Data embedding |
US5663766A (en) * | 1994-10-31 | 1997-09-02 | Lucent Technologies Inc. | Digital data encoding in video signals using data modulated carrier signals at non-peaks in video spectra |
US5671277A (en) * | 1992-06-30 | 1997-09-23 | Minolta Camera Kabushiki Kaisha | Image forming apparatus and copy management system |
US5712920A (en) * | 1992-12-05 | 1998-01-27 | Deutsche Thomson-Brandt Gmbh | Method for the compatible transmission and/or storage and decoding of an auxiliary signal |
US5721788A (en) * | 1992-07-31 | 1998-02-24 | Corbis Corporation | Method and system for digital image signatures |
US5737025A (en) * | 1995-02-28 | 1998-04-07 | Nielsen Media Research, Inc. | Co-channel transmission of program signals and ancillary signals |
US5768426A (en) * | 1993-11-18 | 1998-06-16 | Digimarc Corporation | Graphics processing system employing embedded code signals |
US5774452A (en) * | 1995-03-14 | 1998-06-30 | Aris Technologies, Inc. | Apparatus and method for encoding and decoding information in audio signals |
US5832119A (en) * | 1993-11-18 | 1998-11-03 | Digimarc Corporation | Methods for controlling systems using control signals embedded in empirical data |
US5857038A (en) * | 1993-06-29 | 1999-01-05 | Canon Kabushiki Kaisha | Image processing apparatus and method for synthesizing first and second image data |
US6026193A (en) * | 1993-11-18 | 2000-02-15 | Digimarc Corporation | Video steganography |
US6266430B1 (en) * | 1993-11-18 | 2001-07-24 | Digimarc Corporation | Audio or video steganography |
US6272176B1 (en) * | 1998-07-16 | 2001-08-07 | Nielsen Media Research, Inc. | Broadcast encoding system and method |
US6718047B2 (en) * | 1995-05-08 | 2004-04-06 | Digimarc Corporation | Watermark embedder and reader |
US6778682B2 (en) * | 1994-10-21 | 2004-08-17 | Digimarc Corporation | Redundantly embedding auxiliary data in source signals |
US6862355B2 (en) * | 2001-09-07 | 2005-03-01 | Arbitron Inc. | Message reconstruction from partial detection |
US6944298B1 (en) * | 1993-11-18 | 2005-09-13 | Digimare Corporation | Steganographic encoding and decoding of auxiliary codes in media signals |
US7006555B1 (en) * | 1998-07-16 | 2006-02-28 | Nielsen Media Research, Inc. | Spectral audio encoding |
US7113614B2 (en) * | 1993-11-18 | 2006-09-26 | Digimarc Corporation | Embedding auxiliary signals with multiple components into media signals |
US20090097702A1 (en) * | 1996-05-07 | 2009-04-16 | Rhoads Geoffrey B | Error Processing of Steganographic Message Signals |
US7606390B2 (en) * | 1995-05-08 | 2009-10-20 | Digimarc Corporation | Processing data representing video and audio and methods and apparatus related thereto |
Family Cites Families (430)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2630525A (en) | 1951-05-25 | 1953-03-03 | Musicast Inc | System for transmitting and receiving coded entertainment programs |
US2881244A (en) | 1951-08-30 | 1959-04-07 | Zenith Radio Corp | Subscriber television system with code reset bursts in audio channel |
DE1260295B (en) * | 1964-12-04 | 1968-02-01 | Agfa Gevaert Ag | Method and apparatus for making copies |
US3493674A (en) * | 1965-05-28 | 1970-02-03 | Rca Corp | Television message system for transmitting auxiliary information during the vertical blanking interval of each television field |
US3585290A (en) * | 1968-01-29 | 1971-06-15 | Rca Corp | Coding arrangements for multiplexed messages |
US4231113A (en) * | 1968-03-11 | 1980-10-28 | International Business Machines Corporation | Anti-jam communications system |
US3569619A (en) * | 1968-06-27 | 1971-03-09 | Luther G Simjian | Verification system using coded identifying and storage means |
JPS4812379B1 (en) | 1968-12-16 | 1973-04-20 | ||
US3583237A (en) | 1969-04-14 | 1971-06-08 | Ardac Inc | Paper document validation apparatus |
US3638188A (en) | 1969-10-17 | 1972-01-25 | Westinghouse Electric Corp | Classification method and apparatus for pattern recognition systems |
US3742463A (en) | 1970-03-02 | 1973-06-26 | Nielsen A C Co | Data storage and transmission system |
US3655162A (en) * | 1970-10-08 | 1972-04-11 | Symons Corp | Self-contained waler clamp assembly for concrete wall form |
US4944036A (en) * | 1970-12-28 | 1990-07-24 | Hyatt Gilbert P | Signature filter system |
US3703628A (en) * | 1971-03-29 | 1972-11-21 | Recognition Equipment Inc | System for document coding and identification |
US3971917A (en) * | 1971-08-27 | 1976-07-27 | Maddox James A | Labels and label readers |
SE365325B (en) * | 1971-11-04 | 1974-03-18 | Rothfjell R | |
US3919479A (en) | 1972-09-21 | 1975-11-11 | First National Bank Of Boston | Broadcast signal identification system |
JPS4953817A (en) * | 1972-09-25 | 1974-05-25 | ||
US3809806A (en) * | 1972-10-18 | 1974-05-07 | Columbia Broadcasting Syst Inc | Banding correction system for film recording apparatus |
US3969830A (en) | 1972-12-01 | 1976-07-20 | Grasham James A | Color encoding-decoding method |
US3805286A (en) | 1973-02-01 | 1974-04-16 | Storage Technology Corp | Tape velocity detector |
US3894190A (en) | 1973-02-28 | 1975-07-08 | Int Standard Electric Corp | System for transferring wide-band sound signals |
US3885217A (en) | 1973-07-11 | 1975-05-20 | Computer Specifics Corp | Data transmission system |
US3950782A (en) * | 1973-08-06 | 1976-04-13 | Lektromedia Ltd. | Data storage and retrieval systems for use with plural track storage medium |
GB1467240A (en) * | 1973-09-04 | 1977-03-16 | Gen Electric Co Ltd | Television systems |
US3984684A (en) | 1974-02-06 | 1976-10-05 | Douglas Fredwill Winnek | Three-dimensional radiography |
US3914877A (en) * | 1974-04-08 | 1975-10-28 | Marion E Hines | Image scrambling technique |
US3900890A (en) | 1974-05-06 | 1975-08-19 | Sperry Rand Corp | Speed tolerant recording and recovery system |
DE2454227C3 (en) | 1974-11-15 | 1979-05-03 | Blaupunkt-Werke Gmbh, 3200 Hildesheim | Television receiver for receiving and evaluating additional information in a television signal |
US3977785A (en) * | 1975-01-06 | 1976-08-31 | Xerox Corporation | Method and apparatus for inhibiting the operation of a copying machine |
US4086634A (en) | 1975-07-30 | 1978-04-25 | Cook Laboratories, Inc. | Method and apparatus for preparing recorded program material to prevent unauthorized duplication by magnetic tape recording |
US4184700A (en) * | 1975-11-17 | 1980-01-22 | Lgz Landis & Gyr Zug Ag | Documents embossed with optical markings representing genuineness information |
US4048619A (en) | 1976-09-07 | 1977-09-13 | Digital Data Inc. | Secure two channel sca broadcasting system |
CH607170A5 (en) | 1976-10-28 | 1978-11-30 | Sodeco Compteurs De Geneve | |
US4122501A (en) | 1976-12-13 | 1978-10-24 | Sperry Rand Corporation | System for recording and reading back data on a recording media |
NL7702019A (en) * | 1977-02-25 | 1978-08-29 | Philips Nv | RADIO BROADCASTING SYSTEM WITH TRANSMITTER CHARACTERIZATION. |
US4310180A (en) | 1977-05-18 | 1982-01-12 | Burroughs Corporation | Protected document and method of making same |
DE2757171C3 (en) * | 1977-12-22 | 1980-07-10 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | Method and arrangement for the transmission of two different pieces of information in a single transmission channel with a given bandwidth on a carrier wave |
US4262329A (en) * | 1978-03-27 | 1981-04-14 | Computation Planning, Inc. | Security system for data processing |
DE2901150C2 (en) | 1979-01-12 | 1981-02-19 | Gao Gesellschaft Fuer Automation Und Organisation Mbh, 8000 Muenchen | Identification card with authenticity features that can be checked in incident and transmitted light and the process for their production |
US4379947A (en) * | 1979-02-02 | 1983-04-12 | Teleprompter Corporation | System for transmitting data simultaneously with audio |
FR2448824A1 (en) | 1979-02-06 | 1980-09-05 | Telediffusion Fse | VIDEOTEX SYSTEM PROVIDED WITH INFORMATION ACCESS CONTROL MEANS |
FR2448825A1 (en) | 1979-02-06 | 1980-09-05 | Telediffusion Fse | SYSTEM FOR TRANSMITTING INFORMATION BETWEEN A TRANSMISSION CENTER AND RECEIVING STATIONS, WHICH IS PROVIDED WITH A MEANS OF CONTROLLING ACCESS TO THE INFORMATION TRANSMITTED |
US4237484A (en) | 1979-08-08 | 1980-12-02 | Bell Telephone Laboratories, Incorporated | Technique for transmitting digital data together with a video signal |
GB2063018B (en) | 1979-10-08 | 1984-03-28 | Gen Electric Co Ltd | Telecommunication systems |
US4351547A (en) | 1979-10-11 | 1982-09-28 | Burroughs Corporation | Security document and method for making same using an alternating dot pattern |
DE2943436A1 (en) | 1979-10-26 | 1981-05-07 | Wolfram Dr.-Ing. 5100 Aachen Szepanski | Security coding system for documents - has cover coding printed on document and optically scanned for comparison with normal text |
GB2067871A (en) | 1980-01-19 | 1981-07-30 | Marconi Co Ltd | Information Encoding Systems |
US4476468A (en) * | 1981-06-22 | 1984-10-09 | Light Signatures, Inc. | Secure transaction card and verification system |
CA1160749A (en) * | 1980-06-23 | 1984-01-17 | Robert N. Goldman | Non-counterfeitable document system |
US4389671A (en) * | 1980-09-29 | 1983-06-21 | Harris Corporation | Digitally-controlled analog encrypton |
US4395600A (en) * | 1980-11-26 | 1983-07-26 | Lundy Rene R | Auditory subliminal message system and method |
US4416001A (en) * | 1980-11-26 | 1983-11-15 | News Log International, Inc. | Method and apparatus for optically reading digital data inscribed in an arcuate pattern on a data carrier |
US4380027A (en) * | 1980-12-08 | 1983-04-12 | William Leventer | Data encoding for television |
US4367488A (en) * | 1980-12-08 | 1983-01-04 | Sterling Television Presentations Inc. Video Data Systems Division | Data encoding for television |
ATE13735T1 (en) | 1981-02-16 | 1985-06-15 | British Telecomm | METHOD AND DEVICE FOR TRANSMISSION OF DATA WITH DIGITAL CODED SPEECH. |
US4450351A (en) * | 1981-03-30 | 1984-05-22 | Bio/Optical Sensor Partners, Ltd. | Motion discontinuance detection system and method |
GB2104701B (en) | 1981-08-06 | 1985-06-05 | James Bertram King | Method and apparatus for preventing unauthorised recording of source material (eg, a gramophone recording) |
US4425661A (en) * | 1981-09-03 | 1984-01-10 | Applied Spectrum Technologies, Inc. | Data under voice communications system |
US4965825A (en) | 1981-11-03 | 1990-10-23 | The Personalized Mass Media Corporation | Signal processing apparatus and methods |
US4425642A (en) * | 1982-01-08 | 1984-01-10 | Applied Spectrum Technologies, Inc. | Simultaneous transmission of two information signals within a band-limited communications channel |
US4665431A (en) * | 1982-06-24 | 1987-05-12 | Cooper J Carl | Apparatus and method for receiving audio signals transmitted as part of a television video signal |
US4644422A (en) | 1982-07-22 | 1987-02-17 | Tvi Systems, Ltd. | Anti-copy system |
US4450531A (en) | 1982-09-10 | 1984-05-22 | Ensco, Inc. | Broadcast signal recognition system and method |
US5412731A (en) | 1982-11-08 | 1995-05-02 | Desper Products, Inc. | Automatic stereophonic manipulation system and apparatus for image enhancement |
US4639779A (en) * | 1983-03-21 | 1987-01-27 | Greenberg Burton L | Method and apparatus for the automatic identification and verification of television broadcast programs |
US4805020A (en) * | 1983-03-21 | 1989-02-14 | Greenberg Burton L | Television program transmission verification method and apparatus |
US4967273A (en) * | 1983-03-21 | 1990-10-30 | Vidcode, Inc. | Television program transmission verification method and apparatus |
US4547804A (en) * | 1983-03-21 | 1985-10-15 | Greenberg Burton L | Method and apparatus for the automatic identification and verification of commercial broadcast programs |
US4532508A (en) * | 1983-04-01 | 1985-07-30 | Siemens Corporate Research & Support, Inc. | Personal authentication system |
US4523311A (en) | 1983-04-11 | 1985-06-11 | At&T Bell Laboratories | Simultaneous transmission of speech and data over an analog channel |
US4512013A (en) | 1983-04-11 | 1985-04-16 | At&T Bell Laboratories | Simultaneous transmission of speech and data over an analog channel |
US4908873A (en) * | 1983-05-13 | 1990-03-13 | Philibert Alex C | Document reproduction security system |
US4553261A (en) * | 1983-05-31 | 1985-11-12 | Horst Froessl | Document and data handling and retrieval system |
SE463897B (en) * | 1983-07-01 | 1991-02-04 | Esselte Security Syst Ab | PROCEDURE PROVIDES TO SAY SIMPLE CODES |
US4637051A (en) * | 1983-07-18 | 1987-01-13 | Pitney Bowes Inc. | System having a character generator for printing encrypted messages |
US4660221A (en) * | 1983-07-18 | 1987-04-21 | Pitney Bowes Inc. | System for printing encrypted messages with bar-code representation |
US4675746A (en) * | 1983-07-22 | 1987-06-23 | Data Card Corporation | System for forming picture, alphanumeric and micrographic images on the surface of a plastic card |
US4523508A (en) * | 1983-11-02 | 1985-06-18 | General Electric Company | In-line annular piston fixed bolt regenerative liquid propellant gun |
CA1226914A (en) * | 1984-01-26 | 1987-09-15 | The University Of British Columbia | Modem for pseudo noise communication on a.c. lines |
JPS60171475A (en) | 1984-02-15 | 1985-09-04 | アイデンティフィケ−ション・デバイセス・インコ−ポレ−テッド | Discriminating system |
US4697209A (en) | 1984-04-26 | 1987-09-29 | A. C. Nielsen Company | Methods and apparatus for automatically identifying programs viewed or recorded |
US4593389A (en) | 1984-06-28 | 1986-06-03 | Henry Wurzburg | Simultaneous voice and asynchronous data telephone |
JPS61502720A (en) * | 1984-07-13 | 1986-11-20 | モトロ−ラ・インコ−ポレ−テツド | Cell voice and data wireless telephone system |
FR2567947B1 (en) * | 1984-07-23 | 1986-12-26 | Euratom | SURFACE TEXTURE READING ACCESS CONTROL SYSTEM |
US4663518A (en) * | 1984-09-04 | 1987-05-05 | Polaroid Corporation | Optical storage identification card and read/write system |
EP0319524B1 (en) | 1984-10-10 | 1994-06-01 | Mars Incorporated | Method and apparatus for currency validation |
CN85100700A (en) * | 1985-04-01 | 1987-01-31 | 陆伯祥 | Computing machine Moire fringe certificate and recognition system thereof |
US4647974A (en) * | 1985-04-12 | 1987-03-03 | Rca Corporation | Station signature system |
US4723149A (en) * | 1985-05-08 | 1988-02-02 | Kabushiki Kaisha Toshiba | Image forming apparatus having a function for checking to copy a secret document |
US4980782A (en) | 1985-06-03 | 1990-12-25 | Peter Ginkel | Software protection and identification system |
US4660859A (en) * | 1985-06-17 | 1987-04-28 | Materials Research, Inc. | Process for incorporating a novel nuclear signature on currency which permits easy authentication at a later date |
US4682794A (en) * | 1985-07-22 | 1987-07-28 | Photon Devices, Ltd. | Secure identification card and system |
US4677466A (en) | 1985-07-29 | 1987-06-30 | A. C. Nielsen Company | Broadcast program identification method and apparatus |
JPH063597B2 (en) * | 1985-08-20 | 1994-01-12 | 俊明 渡辺 | Word processor |
NL8502567A (en) * | 1985-09-19 | 1987-04-16 | Bekaert Sa Nv | METHOD AND APPARATUS FOR VERIFYING ARTICLES FOR OBJECTS AND OBJECTS SUITABLE FOR THE USE OF THIS METHOD |
US5258998A (en) | 1985-10-07 | 1993-11-02 | Canon Kabushiki Kaisha | Data communication apparatus permitting confidential communication |
ATE84751T1 (en) * | 1985-10-15 | 1993-02-15 | Gao Ges Automation Org | MEDIA WITH AN OPTICAL MARK OF AUTHENTICATION, METHODS OF MAKING AND VERIFYING THE MEDIA. |
US4712103A (en) * | 1985-12-03 | 1987-12-08 | Motohiro Gotanda | Door lock control system |
JPH0743825B2 (en) * | 1985-12-04 | 1995-05-15 | ソニー株式会社 | Dubbing method |
ZA871104B (en) | 1986-02-24 | 1987-11-25 | Moore Business Forms Inc | Document bearing characteristic ink-printed indicia juxtaposed with corresponding characteristic synthetic watermarkk and method for producing same |
IL78541A (en) * | 1986-04-18 | 1989-09-28 | Rotlex Optics Ltd | Method and apparatus for encryption of optical images |
US4718106A (en) * | 1986-05-12 | 1988-01-05 | Weinblatt Lee S | Survey of radio audience |
US4678322A (en) | 1986-05-30 | 1987-07-07 | Xerox Corporation | Method and apparatus for the prevention of unauthorized copying of documents |
US4791449A (en) | 1986-05-30 | 1988-12-13 | Xerox Corporation | System for prevention of unauthorized copying |
US4780397A (en) | 1986-08-18 | 1988-10-25 | Hosokawa Printing Co., Ltd. | Process for preparing film positive sheets for forging-by-copying-proof prints and prints therefrom |
GB2196167B (en) | 1986-10-01 | 1991-01-02 | Emi Plc Thorn | Apparatus for marking a recorded signal |
US4739377A (en) * | 1986-10-10 | 1988-04-19 | Eastman Kodak Company | Confidential document reproduction method and apparatus |
IT1213530B (en) | 1986-11-05 | 1989-12-20 | Audemars R S A | IDENTIFICATION SYSTEM. |
US4864618A (en) * | 1986-11-26 | 1989-09-05 | Wright Technologies, L.P. | Automated transaction system with modular printhead having print authentication feature |
FR2609228B1 (en) * | 1986-12-24 | 1989-12-01 | France Etat | METHOD OF DIGITAL BROADCASTING IN TELEVISION CHANNELS |
US4939615A (en) * | 1987-01-20 | 1990-07-03 | Pass & Seymour, Inc. | Latching and release system for ground fault receptacle |
US4866771A (en) * | 1987-01-20 | 1989-09-12 | The Analytic Sciences Corporation | Signaling system |
US4972475A (en) * | 1987-02-10 | 1990-11-20 | Veritec Inc. | Authenticating pseudo-random code and apparatus |
US4903301A (en) * | 1987-02-27 | 1990-02-20 | Hitachi, Ltd. | Method and system for transmitting variable rate speech signal |
GB2204984B (en) | 1987-04-29 | 1992-01-02 | John Henry Jenkins | Secure distance production method for objects covered by intellectual property rights |
JPS63275233A (en) * | 1987-05-06 | 1988-11-11 | Victor Co Of Japan Ltd | Spread spectrum communication system |
GB2204975B (en) * | 1987-05-19 | 1990-11-21 | Gen Electric Co Plc | Authenticator |
US4885757A (en) | 1987-06-01 | 1989-12-05 | Texas Instruments Incorporated | Digital adaptive receiver employing maximum-likelihood sequence estimation with neural networks |
DE3883641T2 (en) | 1987-06-30 | 1993-12-16 | Toshiba Kawasaki Kk | Recording control device. |
EP0298691B1 (en) * | 1987-07-08 | 1994-10-05 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for protection of signal copy |
US4855827A (en) * | 1987-07-21 | 1989-08-08 | Worlds Of Wonder, Inc. | Method of providing identification, other digital data and multiple audio tracks in video systems |
CA1318977C (en) | 1987-07-22 | 1993-06-08 | Kazuhito Hori | Image recognition system |
US5040059A (en) | 1987-08-03 | 1991-08-13 | Vexcel Corporation | Method and apparatus of image mensuration with selectively visible and invisible reseau grid marks |
DE3827172A1 (en) | 1987-08-13 | 1989-03-16 | Peter Elsner | MESSAGE IDENTIFICATION DEVICE |
JPH01102539A (en) * | 1987-10-16 | 1989-04-20 | Fuji Photo Film Co Ltd | Frame number discriminating method for photographic film |
US4811408A (en) * | 1987-11-13 | 1989-03-07 | Light Signatures, Inc. | Image dissecting document verification system |
CH672687A5 (en) | 1987-11-20 | 1989-12-15 | Lipatec Ets | |
DE3888169T2 (en) * | 1987-12-07 | 1994-06-09 | British Broadcasting Corp | DATA TRANSFER IN ACTIVE IMAGE PERIOD. |
US4811357A (en) * | 1988-01-04 | 1989-03-07 | Paradyne Corporation | Secondary channel for digital modems using spread spectrum subliminal induced modulation |
US5394274A (en) | 1988-01-22 | 1995-02-28 | Kahn; Leonard R. | Anti-copy system utilizing audible and inaudible protection signals |
US4885632A (en) * | 1988-02-29 | 1989-12-05 | Agb Television Research | System and methods for monitoring TV viewing system including a VCR and/or a cable converter |
DE3806414C2 (en) | 1988-02-29 | 1996-05-23 | Thomson Brandt Gmbh | Procedure for copy protection in recorders |
DE3806411C2 (en) | 1988-02-29 | 1996-05-30 | Thomson Brandt Gmbh | Method of transmitting a sound signal and an additional signal |
GB8806452D0 (en) | 1988-03-18 | 1988-04-20 | Imperial College | Digital data security system |
US4879747A (en) * | 1988-03-21 | 1989-11-07 | Leighton Frank T | Method and system for personal identification |
US4901004A (en) * | 1988-12-09 | 1990-02-13 | King Fred N | Apparatus and method for mapping the connectivity of communications systems with multiple communications paths |
US4874936A (en) * | 1988-04-08 | 1989-10-17 | United Parcel Service Of America, Inc. | Hexagonal, information encoding article, process and system |
NL8801076A (en) | 1988-04-26 | 1989-11-16 | Philips Nv | DEVICE FOR RECORDING A DIGITAL INFORMATION SIGNAL. |
US5321470A (en) | 1988-05-13 | 1994-06-14 | Canon Kabushiki Kaisha | Apparatus with anti-forgery provision |
US4920503A (en) * | 1988-05-27 | 1990-04-24 | Pc Connection, Inc. | Computer remote control through a video signal |
US4931871A (en) | 1988-06-14 | 1990-06-05 | Kramer Robert A | Method of and system for identification and verification of broadcasted program segments |
US5213337A (en) | 1988-07-06 | 1993-05-25 | Robert Sherman | System for communication using a broadcast audio signal |
GB2220824A (en) * | 1988-07-13 | 1990-01-17 | Philips Electronic Associated | Transmission system for sending two signals simultaneously on the same communications channel |
US5144660A (en) * | 1988-08-31 | 1992-09-01 | Rose Anthony M | Securing a computer against undesired write operations to or read operations from a mass storage device |
JPH069348B2 (en) * | 1988-09-16 | 1994-02-02 | 日本ビクター株式会社 | Spread spectrum communication system |
US4949381A (en) | 1988-09-19 | 1990-08-14 | Pitney Bowes Inc. | Electronic indicia in bit-mapped form |
WO1990003706A1 (en) | 1988-09-30 | 1990-04-05 | Right Hemisphere Pty. Limited | Television programme distribution system |
US4914700A (en) | 1988-10-06 | 1990-04-03 | Alasia Alfred Victor | Method and apparatus for scrambling and unscrambling bar code symbols |
US4908836A (en) * | 1988-10-11 | 1990-03-13 | Unisys Corporation | Method and apparatus for decoding multiple bit sequences that are transmitted simultaneously in a single channel |
JPH02114287A (en) | 1988-10-25 | 1990-04-26 | Canon Inc | Picture forming device |
JP2793658B2 (en) * | 1988-12-28 | 1998-09-03 | 沖電気工業株式会社 | Automatic screening device |
US5034982A (en) * | 1989-01-03 | 1991-07-23 | Dittler Brothers, Inc. | Lenticular security screen production method |
US5193853A (en) | 1989-01-18 | 1993-03-16 | Wicker Ralph C | Nonreplicable document and method for making same |
US5018767A (en) | 1989-01-18 | 1991-05-28 | Schmeiser, Morelle & Watts | Counterfeit protected document |
EP0665477B1 (en) | 1989-02-10 | 1999-10-13 | Canon Kabushiki Kaisha | Apparatus for image reading or processing |
US5245329A (en) | 1989-02-27 | 1993-09-14 | Security People Inc. | Access control system with mechanical keys which store data |
US5196860A (en) | 1989-03-31 | 1993-03-23 | Videojet Systems International, Inc. | Ink jet droplet frequency drive control system |
NL8900934A (en) | 1989-04-14 | 1990-11-01 | Philips Nv | DEVICE FOR RECORDING AN AUDIO SIGNAL. |
US4972476A (en) * | 1989-05-11 | 1990-11-20 | Nathans Robert L | Counterfeit proof ID card having a scrambled facial image |
US5185736A (en) | 1989-05-12 | 1993-02-09 | Alcatel Na Network Systems Corp. | Synchronous optical transmission system |
US5134496A (en) | 1989-05-26 | 1992-07-28 | Technicolor Videocassette Of Michigan Inc. | Bilateral anti-copying device for video systems |
NL9000338A (en) | 1989-06-02 | 1991-01-02 | Koninkl Philips Electronics Nv | DIGITAL TRANSMISSION SYSTEM, TRANSMITTER AND RECEIVER FOR USE IN THE TRANSMISSION SYSTEM AND RECORD CARRIED OUT WITH THE TRANSMITTER IN THE FORM OF A RECORDING DEVICE. |
US5907443A (en) | 1990-05-30 | 1999-05-25 | Canon Kabushiki Kaisha | Recording and reproducing apparatus adapted to selectively control the number of copies made |
US5036513A (en) * | 1989-06-21 | 1991-07-30 | Academy Of Applied Science | Method of and apparatus for integrated voice (audio) communication simultaneously with "under voice" user-transparent digital data between telephone instruments |
IL91221A (en) | 1989-08-04 | 1995-03-30 | Ibm Israel | Method for the compression of binary text |
US5063446A (en) * | 1989-08-11 | 1991-11-05 | General Electric Company | Apparatus for transmitting auxiliary signal in a TV channel |
JP3273781B2 (en) | 1989-09-21 | 2002-04-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴイ | Record carrier, method and apparatus for obtaining record carrier, and information recording apparatus having copy protection means |
US5212551A (en) | 1989-10-16 | 1993-05-18 | Conanan Virgilio D | Method and apparatus for adaptively superimposing bursts of texts over audio signals and decoder thereof |
US5168146A (en) | 1989-11-09 | 1992-12-01 | Marshall John D | Bi-directional snap-action register display mechanism |
US5083310A (en) | 1989-11-14 | 1992-01-21 | Apple Computer, Inc. | Compression and expansion technique for digital audio data |
NL8902818A (en) | 1989-11-15 | 1991-06-03 | Nedap Nv | AUTOMATED CHECKOUT SYSTEM. |
JPH0727715B2 (en) | 1989-11-24 | 1995-03-29 | シャープ株式会社 | Digital audio interface signal repeater |
US4996530A (en) * | 1989-11-27 | 1991-02-26 | Hewlett-Packard Company | Statistically based continuous autocalibration method and apparatus |
US4993068A (en) * | 1989-11-27 | 1991-02-12 | Motorola, Inc. | Unforgeable personal identification system |
EP0433056B1 (en) | 1989-12-15 | 1996-08-21 | Kabushiki Kaisha Toshiba | System for recording an image having a facial image and ID information |
US5003590A (en) * | 1989-12-18 | 1991-03-26 | Eidak Corporation | Encoding an optical video disc to inhibit video tape recording |
US5337361C1 (en) | 1990-01-05 | 2001-05-15 | Symbol Technologies Inc | Record with encoded data |
FR2658022B1 (en) | 1990-02-07 | 1995-09-22 | Telediffusion Fse | METHOD AND SYSTEM FOR MARKING AND IDENTIFYING DIGITAL INFORMATION. |
US5253078A (en) | 1990-03-14 | 1993-10-12 | C-Cube Microsystems, Inc. | System for compression and decompression of video data using discrete cosine transform and coding techniques |
US5319724A (en) | 1990-04-19 | 1994-06-07 | Ricoh Corporation | Apparatus and method for compressing still images |
US5059126A (en) | 1990-05-09 | 1991-10-22 | Kimball Dan V | Sound association and learning system |
GB9011457D0 (en) | 1990-05-22 | 1990-07-11 | Amblehurst Ltd | Tamper indicating security tape |
EP0459046A1 (en) | 1990-05-31 | 1991-12-04 | International Business Machines Corporation | Computer software protection |
DE69132970T2 (en) | 1990-06-22 | 2002-09-12 | Canon Kk | Image processing device |
US5103459B1 (en) * | 1990-06-25 | 1999-07-06 | Qualcomm Inc | System and method for generating signal waveforms in a cdma cellular telephone system |
US5027401A (en) * | 1990-07-03 | 1991-06-25 | Soltesz John A | System for the secure storage and transmission of data |
US5128525A (en) * | 1990-07-31 | 1992-07-07 | Xerox Corporation | Convolution filtering for decoding self-clocking glyph shape codes |
US5091966A (en) * | 1990-07-31 | 1992-02-25 | Xerox Corporation | Adaptive scaling for decoding spatially periodic self-clocking glyph shape codes |
US5168147A (en) | 1990-07-31 | 1992-12-01 | Xerox Corporation | Binary image processing for decoding self-clocking glyph shape codes |
CA2044404C (en) | 1990-07-31 | 1998-06-23 | Dan S. Bloomberg | Self-clocking glyph shape codes |
US5148498A (en) | 1990-08-01 | 1992-09-15 | Aware, Inc. | Image coding apparatus and method utilizing separable transformations |
US5136647A (en) | 1990-08-02 | 1992-08-04 | Bell Communications Research, Inc. | Method for secure time-stamping of digital documents |
US5396559A (en) | 1990-08-24 | 1995-03-07 | Mcgrew; Stephen P. | Anticounterfeiting method and device utilizing holograms and pseudorandom dot patterns |
US5077608A (en) * | 1990-09-19 | 1991-12-31 | Dubner Computer Systems, Inc. | Video effects system able to intersect a 3-D image with a 2-D image |
US5077795A (en) * | 1990-09-28 | 1991-12-31 | Xerox Corporation | Security system for electronic printing systems |
US5305400A (en) | 1990-12-05 | 1994-04-19 | Deutsche Itt Industries Gmbh | Method of encoding and decoding the video data of an image sequence |
US5228056A (en) | 1990-12-14 | 1993-07-13 | Interdigital Technology Corporation | Synchronous spread-spectrum communications system and method |
NL192610C (en) | 1990-12-13 | 1997-11-04 | Enschede & Zonen Grafisch | Image carrier and method for printing an image on an image carrier. |
US5254196A (en) | 1990-12-20 | 1993-10-19 | Xerox Corporation | Security of negotiable instruments thru the application of color to xerographic images |
EP0493091A1 (en) | 1990-12-27 | 1992-07-01 | Xerox Corporation | Method and system for embedding machine readable digital data in grayscale images |
US5315098A (en) | 1990-12-27 | 1994-05-24 | Xerox Corporation | Methods and means for embedding machine readable digital data in halftone images |
JPH04245063A (en) | 1991-01-31 | 1992-09-01 | Sony Corp | Signal synthesization circuit and detection circuit for preventing reproduction |
JPH04248771A (en) | 1991-02-04 | 1992-09-04 | N T T Data Tsushin Kk | Information hiding method |
US5231663A (en) | 1991-03-18 | 1993-07-27 | Earl Joseph G | Image processing system |
CA2063785C (en) | 1991-03-25 | 1998-09-29 | Masahiro Funada | Image processing apparatus |
EP0776120B1 (en) | 1991-03-29 | 2002-09-04 | Canon Kabushiki Kaisha | Image processing apparatus |
DE69217403T2 (en) | 1991-03-29 | 1997-07-10 | Canon Kk | Image processing device |
AU657510B2 (en) | 1991-05-24 | 1995-03-16 | Apple Inc. | Improved image encoding/decoding method and apparatus |
US5408642A (en) | 1991-05-24 | 1995-04-18 | Symantec Corporation | Method for recovery of a computer program infected by a computer virus |
WO1992022060A1 (en) | 1991-05-29 | 1992-12-10 | Pacific Microsonics, Inc. | Improved signal encode/decode system |
US5617148A (en) | 1991-06-14 | 1997-04-01 | Wavephore, Inc. | Filter by-pass for transmitting an additional signal with a video signal |
JP3084796B2 (en) | 1991-06-14 | 2000-09-04 | ソニー株式会社 | Video signal processing device |
US5327237A (en) | 1991-06-14 | 1994-07-05 | Wavephore, Inc. | Transmitting data with video |
US5387941A (en) | 1991-06-14 | 1995-02-07 | Wavephore, Inc. | Data with video transmitter |
US5559559A (en) | 1991-06-14 | 1996-09-24 | Wavephore, Inc. | Transmitting a secondary signal with dynamic injection level control |
JPH0535878A (en) | 1991-07-26 | 1993-02-12 | Sony Corp | Neural network |
JP3114263B2 (en) | 1991-07-29 | 2000-12-04 | ソニー株式会社 | Video signal recording system |
US5278400A (en) | 1991-08-19 | 1994-01-11 | Xerox Corp | Multiple threshold encoding of machine readable code |
JPH0566795A (en) | 1991-09-06 | 1993-03-19 | Gijutsu Kenkyu Kumiai Iryo Fukushi Kiki Kenkyusho | Noise suppressing device and its adjustment device |
JP3280083B2 (en) | 1991-09-30 | 2002-04-30 | キヤノン株式会社 | Image processing apparatus and image processing method |
US5208630A (en) | 1991-11-04 | 1993-05-04 | Xerox Corporation | Process for the authentication of documents utilizing encapsulated toners |
US5390259A (en) | 1991-11-19 | 1995-02-14 | Xerox Corporation | Methods and apparatus for selecting semantically significant images in a document image without decoding image content |
FR2684214B1 (en) | 1991-11-22 | 1997-04-04 | Sepro Robotique | INDEXING CARD FOR GEOGRAPHIC INFORMATION SYSTEM AND SYSTEM INCLUDING APPLICATION. |
US5450122A (en) | 1991-11-22 | 1995-09-12 | A.C. Nielsen Company | In-station television program encoding and monitoring system and method |
JP2554219B2 (en) | 1991-11-26 | 1996-11-13 | 日本電信電話株式会社 | Digital signal superposition transmission method |
US5247364A (en) | 1991-11-29 | 1993-09-21 | Scientific-Atlanta, Inc. | Method and apparatus for tuning data channels in a subscription television system having in-band data transmissions |
US5321773A (en) | 1991-12-10 | 1994-06-14 | Xerox Corporation | Image recognition method using finite state networks |
US5157726A (en) | 1991-12-19 | 1992-10-20 | Xerox Corporation | Document copy authentication |
US5245165A (en) | 1991-12-27 | 1993-09-14 | Xerox Corporation | Self-clocking glyph code for encoding dual bit digital values robustly |
US5221833A (en) | 1991-12-27 | 1993-06-22 | Xerox Corporation | Methods and means for reducing bit error rates in reading self-clocking glyph codes |
JP3332435B2 (en) * | 1992-01-06 | 2002-10-07 | キヤノン株式会社 | Image processing apparatus and method |
US5457540A (en) | 1992-01-06 | 1995-10-10 | Canon Kabushiki Kaisha | Image processing method and apparatus in which identification information is added based on image density |
US5515451A (en) | 1992-01-08 | 1996-05-07 | Fuji Xerox Co., Ltd. | Image processing system for selectively reproducing documents |
JP2942837B2 (en) | 1992-01-31 | 1999-08-30 | 株式会社セガ・エンタープライゼス | Security check method, game device, and information storage medium used for them |
JP3367959B2 (en) * | 1992-01-31 | 2003-01-20 | キヤノン株式会社 | Image processing apparatus and method |
US5369261A (en) | 1992-02-12 | 1994-11-29 | Shamir; Harry | Multi-color information encoding system |
US5838458A (en) | 1992-02-25 | 1998-11-17 | Tsai; Irving | Method and apparatus for linking designated portions of a received document image with an electronic address |
US5495581A (en) | 1992-02-25 | 1996-02-27 | Tsai; Irving | Method and apparatus for linking a document with associated reference information using pattern matching |
KR100206261B1 (en) | 1992-02-28 | 1999-07-01 | 윤종용 | Video signal band compression device for a digital vtr |
US5285498A (en) | 1992-03-02 | 1994-02-08 | At&T Bell Laboratories | Method and apparatus for coding audio signals based on perceptual model |
JPH05242217A (en) | 1992-03-03 | 1993-09-21 | Kobe Nippon Denki Software Kk | System for embedding character in picture data |
US5446273A (en) | 1992-03-13 | 1995-08-29 | Leslie; William M. | Credit card security system |
US5295203A (en) | 1992-03-26 | 1994-03-15 | General Instrument Corporation | Method and apparatus for vector coding of video transform coefficients |
JPH05292331A (en) | 1992-03-30 | 1993-11-05 | Internatl Business Mach Corp <Ibm> | Method for decoding run length code, video controller, and data processing system |
FI90934C (en) | 1992-04-13 | 1994-04-11 | Salon Televisiotehdas Oy | A method for incorporating digital information into an audio signal prior to its channel encoding |
US5262860A (en) | 1992-04-23 | 1993-11-16 | International Business Machines Corporation | Method and system communication establishment utilizing captured and processed visually perceptible data within a broadcast video signal |
JP2659896B2 (en) | 1992-04-29 | 1997-09-30 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Structured document copy management method and structured document copy management device |
US5325167A (en) | 1992-05-11 | 1994-06-28 | Canon Research Center America, Inc. | Record document authentication by microscopic grain structure and method |
US5408542A (en) | 1992-05-12 | 1995-04-18 | Apple Computer, Inc. | Method and apparatus for real-time lossless compression and decompression of image data |
DE69314224T2 (en) | 1992-05-19 | 1998-01-29 | Thomson Multimedia Sa | Method and device for device control with data transmission in television lines |
JP3128328B2 (en) | 1992-05-26 | 2001-01-29 | キヤノン株式会社 | Recording device |
JPH06511611A (en) | 1992-05-29 | 1994-12-22 | エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) | How to mark a document |
JP2615401B2 (en) | 1992-06-04 | 1997-05-28 | 大蔵省印刷局長 | Anti-counterfeit latent image pattern forming body and method of manufacturing the same |
US5259025A (en) | 1992-06-12 | 1993-11-02 | Audio Digitalimaging, Inc. | Method of verifying fake-proof video identification data |
JPH0644755A (en) | 1992-07-24 | 1994-02-18 | Sony Corp | Method for transmitting video signal and recorder therefor |
JP3217137B2 (en) | 1992-07-28 | 2001-10-09 | 株式会社日立製作所 | Video signal recording device, playback device, and transmission device |
US5432542A (en) | 1992-08-31 | 1995-07-11 | Television Computer, Inc. | Television receiver location identification |
US5321749A (en) | 1992-09-21 | 1994-06-14 | Richard Virga | Encryption device |
JPH06125459A (en) | 1992-10-09 | 1994-05-06 | Ricoh Co Ltd | Copying machine with special original discriminating function |
US5390185A (en) | 1992-10-09 | 1995-02-14 | U.S. Philips Corporation | Transmission system for a combination of a main signal and an auxiliary signal |
CA2108823C (en) | 1992-10-23 | 1999-09-14 | Shinobu Arimoto | Image processing apparatus and method therefor |
JPH06152948A (en) | 1992-10-31 | 1994-05-31 | Minolta Camera Co Ltd | Image processor |
US5495282A (en) | 1992-11-03 | 1996-02-27 | The Arbitron Company | Monitoring system for TV, cable and VCR |
CA2106143C (en) | 1992-11-25 | 2004-02-24 | William L. Thomas | Universal broadcast code and multi-level encoded signal monitoring system |
US5390003A (en) | 1992-11-30 | 1995-02-14 | Minolta Camera Kabushiki Kaisha | Copying system for preventing copying of copy-prohibited images |
US5469222A (en) | 1992-12-23 | 1995-11-21 | Intel Corporation | Non-linear pixel interpolator function for video and graphic processing |
DE69331041T2 (en) | 1993-01-01 | 2002-06-06 | Canon Kk | Image processing device and method and image reading device |
US5630203A (en) * | 1993-01-12 | 1997-05-13 | Weinblatt; Lee S. | Technique for surveying a radio or a television audience |
EP0609008B1 (en) | 1993-01-19 | 2001-06-20 | Canon Kabushiki Kaisha | Image processing apparatus and method |
US5291243A (en) | 1993-02-05 | 1994-03-01 | Xerox Corporation | System for electronically printing plural-color tamper-resistant documents |
US5436970A (en) | 1993-02-18 | 1995-07-25 | Eastman Kodak Company | Method and apparatus for transaction card verification |
US5315448A (en) | 1993-03-18 | 1994-05-24 | Macrovision Corporation | Copy protection for hybrid digital video tape recording and unprotected source material |
JP3250333B2 (en) | 1993-04-02 | 2002-01-28 | ソニー株式会社 | Video signal processing method, video signal recording method, video signal reproduction method, video signal processing device, video signal recording device, and video signal reproduction device |
US5365586A (en) | 1993-04-09 | 1994-11-15 | Washington University | Method and apparatus for fingerprinting magnetic media |
US5408505A (en) | 1993-04-09 | 1995-04-18 | Washington University | Method and apparatus for process control, tension control, and testing of magnetic media |
US5375886A (en) | 1993-04-14 | 1994-12-27 | Hosokawa Printing Co., Ltd. | Counterfeit-proof paper for discouraging attempt at reproduction with copying device |
US5337362A (en) | 1993-04-15 | 1994-08-09 | Ricoh Corporation | Method and apparatus for placing data onto plain paper |
US5408258A (en) | 1993-04-21 | 1995-04-18 | The Arbitron Company | Method of automatically qualifying a signal reproduction device for installation of monitoring equipment |
EP0629972A3 (en) | 1993-04-23 | 1995-05-24 | Hewlett Packard Co | Method and apparatus for embedding identification codes in printed documents. |
US5351302A (en) | 1993-05-26 | 1994-09-27 | Leighton Frank T | Method for authenticating objects identified by images or other identifying information |
US5432870A (en) | 1993-06-30 | 1995-07-11 | Ricoh Corporation | Method and apparatus for compressing and decompressing images of documents |
US5428606A (en) | 1993-06-30 | 1995-06-27 | Moskowitz; Scott A. | Digital information commodities exchange |
US5483276A (en) | 1993-08-02 | 1996-01-09 | The Arbitron Company | Compliance incentives for audience monitoring/recording devices |
US5461426A (en) | 1993-08-20 | 1995-10-24 | Samsung Electronics Co., Ltd. | Apparatus for processing modified NTSC television signals, with digital signals buried therewithin |
US5412718A (en) | 1993-09-13 | 1995-05-02 | Institute Of Systems Science | Method for utilizing medium nonuniformities to minimize unauthorized duplication of digital information |
JPH07111070A (en) | 1993-10-08 | 1995-04-25 | Mitsubishi Nuclear Fuel Co Ltd | Video control system |
US5422963A (en) | 1993-10-15 | 1995-06-06 | At&T Corp. | Block transform coder for arbitrarily shaped image segments |
CA2129075C (en) | 1993-10-18 | 1999-04-20 | Joseph J. Daniele | Electronic copyright royalty accounting system using glyphs |
US5481294A (en) | 1993-10-27 | 1996-01-02 | A. C. Nielsen Company | Audience measurement system utilizing ancillary codes and passive signatures |
US5450489A (en) | 1993-10-29 | 1995-09-12 | Time Warner Entertainment Co., L.P. | System and method for authenticating software carriers |
JPH07212712A (en) | 1993-10-29 | 1995-08-11 | Eastman Kodak Co | Method and equipment for adding and deleting digital watermark in hierarchical picture memory and fetch system |
US5822436A (en) | 1996-04-25 | 1998-10-13 | Digimarc Corporation | Photographic products and methods employing embedded information |
US7113615B2 (en) | 1993-11-18 | 2006-09-26 | Digimarc Corporation | Watermark embedder and reader |
EP0987855A2 (en) | 1993-11-18 | 2000-03-22 | Digimarc Corporation | Method and apparatus for encoding audio with auxiliary digital data |
US5862260A (en) | 1993-11-18 | 1999-01-19 | Digimarc Corporation | Methods for surveying dissemination of proprietary empirical data |
US7676059B2 (en) | 1994-10-21 | 2010-03-09 | Digimarc Corporation | Video steganography or encoding |
US5710834A (en) | 1995-05-08 | 1998-01-20 | Digimarc Corporation | Method and apparatus responsive to a code signal conveyed through a graphic image |
US6611607B1 (en) * | 1993-11-18 | 2003-08-26 | Digimarc Corporation | Integrating digital watermarks in multimedia content |
US5841978A (en) * | 1993-11-18 | 1998-11-24 | Digimarc Corporation | Network linking method using steganographically embedded data objects |
US7720249B2 (en) | 1993-11-18 | 2010-05-18 | Digimarc Corporation | Watermark embedder and reader |
US6580819B1 (en) | 1993-11-18 | 2003-06-17 | Digimarc Corporation | Methods of producing security documents having digitally encoded data and documents employing same |
US6549638B2 (en) * | 1998-11-03 | 2003-04-15 | Digimarc Corporation | Methods for evidencing illicit use of a computer system or device |
US7116781B2 (en) | 1993-11-18 | 2006-10-03 | Digimarc Corporation | Counteracting geometric distortions in watermarking |
US6122403A (en) * | 1995-07-27 | 2000-09-19 | Digimarc Corporation | Computer system linked by using information in data objects |
US6574350B1 (en) | 1995-05-08 | 2003-06-03 | Digimarc Corporation | Digital watermarking employing both frail and robust watermarks |
US6345104B1 (en) | 1994-03-17 | 2002-02-05 | Digimarc Corporation | Digital watermarks and methods for security documents |
US20040057581A1 (en) * | 1993-11-18 | 2004-03-25 | Rhoads Geoffrey B. | Method and apparatus for transaction card security utilizing embedded image data |
US5841886A (en) | 1993-11-18 | 1998-11-24 | Digimarc Corporation | Security system for photographic identification |
US6757406B2 (en) | 1993-11-18 | 2004-06-29 | Digimarc Corporation | Steganographic image processing |
US7313251B2 (en) * | 1993-11-18 | 2007-12-25 | Digimarc Corporation | Method and system for managing and controlling electronic media |
US5748783A (en) | 1995-05-08 | 1998-05-05 | Digimarc Corporation | Method and apparatus for robust information coding |
US6546112B1 (en) * | 1993-11-18 | 2003-04-08 | Digimarc Corporation | Security document with steganographically-encoded authentication data |
US6449377B1 (en) * | 1995-05-08 | 2002-09-10 | Digimarc Corporation | Methods and systems for watermark processing of line art images |
US5499294A (en) | 1993-11-24 | 1996-03-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Digital camera with apparatus for authentication of images produced from an image file |
US5515081A (en) | 1993-11-30 | 1996-05-07 | Borland International, Inc. | System and methods for improved storage and processing of BITMAP images |
US5581658A (en) | 1993-12-14 | 1996-12-03 | Infobase Systems, Inc. | Adaptive system for broadcast program identification and reporting |
US6086706A (en) | 1993-12-20 | 2000-07-11 | Lucent Technologies Inc. | Document copying deterrent method |
US5428607A (en) | 1993-12-20 | 1995-06-27 | At&T Corp. | Intra-switch communications in narrow band ATM networks |
US5449895A (en) | 1993-12-22 | 1995-09-12 | Xerox Corporation | Explicit synchronization for self-clocking glyph codes |
US5449896A (en) | 1993-12-22 | 1995-09-12 | Xerox Corporation | Random access techniques for use with self-clocking glyph codes |
JPH07220035A (en) | 1993-12-22 | 1995-08-18 | Xerox Corp | Optically readable record |
GB9400971D0 (en) | 1994-01-19 | 1994-03-16 | Mor Limited | Method of and apparatus for manipulating digital data |
DE69521153T2 (en) | 1994-01-20 | 2002-05-02 | Omron Tateisi Electronics Co | Image processing device and method for detecting a reference pattern |
JP2631952B2 (en) * | 1994-03-08 | 1997-07-16 | 伊沢 道雄 | A map in which codeable information is arranged in an invisible state, and a method of coding the contents of the map |
US20020136429A1 (en) | 1994-03-17 | 2002-09-26 | John Stach | Data hiding through arrangement of objects |
US8144368B2 (en) | 1998-01-20 | 2012-03-27 | Digimarc Coporation | Automated methods for distinguishing copies from original printed objects |
US6993152B2 (en) * | 1994-03-17 | 2006-01-31 | Digimarc Corporation | Hiding geo-location data through arrangement of objects |
US7286684B2 (en) | 1994-03-17 | 2007-10-23 | Digimarc Corporation | Secure document design carrying auxiliary machine readable information |
US6882738B2 (en) | 1994-03-17 | 2005-04-19 | Digimarc Corporation | Methods and tangible objects employing textured machine readable data |
US6961442B2 (en) | 2001-03-09 | 2005-11-01 | Digimarc Corporation | Watermarking a carrier on which an image will be placed or projected |
US5872589A (en) | 1994-03-18 | 1999-02-16 | Interactive Return Service, Inc. | Interactive TV system for mass media distribution |
US6005960A (en) | 1994-04-14 | 1999-12-21 | Moore; Lewis J. | Anti-counterfeiting system |
US5488664A (en) | 1994-04-22 | 1996-01-30 | Yeda Research And Development Co., Ltd. | Method and apparatus for protecting visual information with printed cryptographic watermarks |
US5539471A (en) | 1994-05-03 | 1996-07-23 | Microsoft Corporation | System and method for inserting and recovering an add-on data signal for transmission with a video signal |
US5537223A (en) | 1994-06-02 | 1996-07-16 | Xerox Corporation | Rotating non-rotationally symmetrical halftone dots for encoding embedded data in a hyperacuity printer |
US5493677A (en) | 1994-06-08 | 1996-02-20 | Systems Research & Applications Corporation | Generation, archiving, and retrieval of digital images with evoked suggestion-set captions and natural language interface |
JP2996277B2 (en) | 1994-06-15 | 1999-12-27 | 富士ゼロックス株式会社 | Image forming device |
US5469506A (en) | 1994-06-27 | 1995-11-21 | Pitney Bowes Inc. | Apparatus for verifying an identification card and identifying a person by means of a biometric characteristic |
GB9413413D0 (en) | 1994-07-04 | 1994-08-24 | At & T Global Inf Solution | Apparatus and method for testing bank-notes |
JP3499294B2 (en) | 1994-07-20 | 2004-02-23 | 株式会社リコー | Document security management method and image processing apparatus |
US5526427A (en) | 1994-07-22 | 1996-06-11 | A.C. Nielsen Company | Universal broadcast code and multi-level encoded signal monitoring system |
HU211281B (en) | 1994-07-25 | 1996-11-28 | Lajos Pikler | Method for identificating objects on the basis of the forming and checking their surface roughness, further an object having surface suitable to said identification |
US5640193A (en) | 1994-08-15 | 1997-06-17 | Lucent Technologies Inc. | Multimedia service access by reading marks on an object |
US5544255A (en) | 1994-08-31 | 1996-08-06 | Peripheral Vision Limited | Method and system for the capture, storage, transport and authentication of handwritten signatures |
US5548646A (en) | 1994-09-15 | 1996-08-20 | Sun Microsystems, Inc. | System for signatureless transmission and reception of data packets between computer networks |
US5606609A (en) | 1994-09-19 | 1997-02-25 | Scientific-Atlanta | Electronic document verification system and method |
US5541662A (en) | 1994-09-30 | 1996-07-30 | Intel Corporation | Content programmer control of video and data display using associated data |
US6741991B2 (en) * | 1994-09-30 | 2004-05-25 | Mitsubishi Corporation | Data management system |
US5568570A (en) | 1994-09-30 | 1996-10-22 | Eastman Kodak Company | Method and apparatus for reducing quantization artifacts in a hierarchical image storage and retrieval system |
JP3224480B2 (en) | 1994-09-30 | 2001-10-29 | キヤノン株式会社 | Color image processing equipment |
US7724919B2 (en) | 1994-10-21 | 2010-05-25 | Digimarc Corporation | Methods and systems for steganographic processing |
US5614940A (en) | 1994-10-21 | 1997-03-25 | Intel Corporation | Method and apparatus for providing broadcast information with indexing |
US6535618B1 (en) | 1994-10-21 | 2003-03-18 | Digimarc Corporation | Image capture device with steganographic data embedding |
US5638443A (en) | 1994-11-23 | 1997-06-10 | Xerox Corporation | System for controlling the distribution and use of composite digital works |
US5629980A (en) | 1994-11-23 | 1997-05-13 | Xerox Corporation | System for controlling the distribution and use of digital works |
US5613012A (en) | 1994-11-28 | 1997-03-18 | Smarttouch, Llc. | Tokenless identification system for authorization of electronic transactions and electronic transmissions |
US6182218B1 (en) * | 1994-12-13 | 2001-01-30 | Mitsubishi Corporation | Digital content management system using electronic watermark |
US5572010A (en) | 1995-01-03 | 1996-11-05 | Xerox Corporation | Distributed type labeling for embedded data blocks |
US5611575A (en) | 1995-01-03 | 1997-03-18 | Xerox Corporation | Distributed state flags or other unordered information for embedded data blocks |
US5576532A (en) | 1995-01-03 | 1996-11-19 | Xerox Corporation | Interleaved and interlaced sync codes and address codes for self-clocking glyph codes |
US5671282A (en) | 1995-01-23 | 1997-09-23 | Ricoh Corporation | Method and apparatus for document verification and tracking |
US5530759A (en) | 1995-02-01 | 1996-06-25 | International Business Machines Corporation | Color correct digital watermarking of images |
CN100501754C (en) | 1995-02-13 | 2009-06-17 | 英特特拉斯特技术公司 | Systems and methods for secure transaction management and electronic rights protection |
US5892900A (en) * | 1996-08-30 | 1999-04-06 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
WO1996026494A1 (en) | 1995-02-23 | 1996-08-29 | The Regents Of The University Of California | Data embedding |
GB9504221D0 (en) | 1995-03-02 | 1995-04-19 | Mor Limited | Method of and apparatus for manipulating digital data works |
US5590197A (en) | 1995-04-04 | 1996-12-31 | V-One Corporation | Electronic payment system and method |
US7054462B2 (en) | 1995-05-08 | 2006-05-30 | Digimarc Corporation | Inferring object status based on detected watermark data |
US6728390B2 (en) * | 1995-05-08 | 2004-04-27 | Digimarc Corporation | Methods and systems using multiple watermarks |
US20030133592A1 (en) | 1996-05-07 | 2003-07-17 | Rhoads Geoffrey B. | Content objects with computer instructions steganographically encoded therein, and associated methods |
US7620200B2 (en) | 1995-05-08 | 2009-11-17 | Digimarc Corporation | Authentication of identification documents |
US6738495B2 (en) | 1995-05-08 | 2004-05-18 | Digimarc Corporation | Watermarking enhanced to withstand anticipated corruptions |
US7555139B2 (en) | 1995-05-08 | 2009-06-30 | Digimarc Corporation | Secure documents with hidden signals, and related methods and systems |
US20090097695A9 (en) | 1995-05-08 | 2009-04-16 | Rhoads Geoffrey B | Personal document authentication system using watermarking |
US5602920A (en) | 1995-05-31 | 1997-02-11 | Zenith Electronics Corporation | Combined DCAM and transport demultiplexer |
US5978773A (en) * | 1995-06-20 | 1999-11-02 | Neomedia Technologies, Inc. | System and method for using an ordinary article of commerce to access a remote computer |
US5666487A (en) | 1995-06-28 | 1997-09-09 | Bell Atlantic Network Services, Inc. | Network providing signals of different formats to a user by multplexing compressed broadband data with data of a different format into MPEG encoded data stream |
US7562392B1 (en) | 1999-05-19 | 2009-07-14 | Digimarc Corporation | Methods of interacting with audio and ambient music |
US6505160B1 (en) * | 1995-07-27 | 2003-01-07 | Digimarc Corporation | Connected audio and other media objects |
US5638446A (en) | 1995-08-28 | 1997-06-10 | Bell Communications Research, Inc. | Method for the secure distribution of electronic files in a distributed environment |
US5822360A (en) | 1995-09-06 | 1998-10-13 | Solana Technology Development Corporation | Method and apparatus for transporting auxiliary data in audio signals |
US5765152A (en) | 1995-10-13 | 1998-06-09 | Trustees Of Dartmouth College | System and method for managing copyrighted electronic media |
US5687191A (en) | 1995-12-06 | 1997-11-11 | Solana Technology Development Corporation | Post-compression hidden data transport |
US5719937A (en) | 1995-12-06 | 1998-02-17 | Solana Technology Develpment Corporation | Multi-media copy management system |
US5664018A (en) | 1996-03-12 | 1997-09-02 | Leighton; Frank Thomson | Watermarking process resilient to collusion attacks |
AU5666896A (en) | 1996-04-23 | 1997-11-12 | Bushinsky, Shay H. | Method and system for identifying documents generated by an unauthorized software copy |
US7412072B2 (en) | 1996-05-16 | 2008-08-12 | Digimarc Corporation | Variable message coding protocols for encoding auxiliary data in media signals |
US5809139A (en) | 1996-09-13 | 1998-09-15 | Vivo Software, Inc. | Watermarking method and apparatus for compressed digital video |
US20060028689A1 (en) * | 1996-11-12 | 2006-02-09 | Perry Burt W | Document management with embedded data |
EP0971345B1 (en) | 1996-12-19 | 2006-05-03 | Matsushita Electric Industrial Co., Ltd. | Optical disk and method for recording onto an optical disk |
US7054463B2 (en) * | 1998-01-20 | 2006-05-30 | Digimarc Corporation | Data encoding using frail watermarks |
US7756892B2 (en) | 2000-05-02 | 2010-07-13 | Digimarc Corporation | Using embedded data with file sharing |
US7372976B2 (en) * | 1998-04-16 | 2008-05-13 | Digimarc Corporation | Content indexing and searching using content identifiers and associated metadata |
US7602940B2 (en) | 1998-04-16 | 2009-10-13 | Digimarc Corporation | Steganographic data hiding using a device clock |
US6792542B1 (en) | 1998-05-12 | 2004-09-14 | Verance Corporation | Digital system for embedding a pseudo-randomly modulated auxiliary data sequence in digital samples |
US6529600B1 (en) * | 1998-06-25 | 2003-03-04 | Koninklijke Philips Electronics N.V. | Method and device for preventing piracy of video material from theater screens |
US6978036B2 (en) | 1998-07-31 | 2005-12-20 | Digimarc Corporation | Tamper-resistant authentication techniques for identification documents |
US7313253B2 (en) | 1998-09-11 | 2007-12-25 | Digimarc Corporation | Methods and tangible objects employing machine readable data in photo-reactive materials |
US8290202B2 (en) | 1998-11-03 | 2012-10-16 | Digimarc Corporation | Methods utilizing steganography |
WO2000031675A2 (en) * | 1998-11-19 | 2000-06-02 | Digimarc Corporation | Printing and validation of self validating security documents |
US6868497B1 (en) | 1999-03-10 | 2005-03-15 | Digimarc Corporation | Method and apparatus for automatic ID management |
US7302574B2 (en) | 1999-05-19 | 2007-11-27 | Digimarc Corporation | Content identifiers triggering corresponding responses through collaborative processing |
EP2352120B1 (en) * | 2000-01-13 | 2016-03-30 | Digimarc Corporation | Network-based access to auxiliary data based on steganographic information |
US7142691B2 (en) | 2000-03-18 | 2006-11-28 | Digimarc Corporation | Watermark embedding functions in rendering description files |
US7020303B2 (en) * | 2000-03-18 | 2006-03-28 | Digimarc Corporation | Feature-based watermarks and watermark detection strategies |
US6804377B2 (en) | 2000-04-19 | 2004-10-12 | Digimarc Corporation | Detecting information hidden out-of-phase in color channels |
US6950532B1 (en) | 2000-04-24 | 2005-09-27 | Cinea Inc. | Visual copyright protection |
AU2001290822A1 (en) | 2000-09-11 | 2002-03-26 | Digimarc Corporation | Authenticating and measuring quality of service of multimedia signals using digital watermark analyses |
US7246239B2 (en) | 2001-01-24 | 2007-07-17 | Digimarc Corporation | Digital watermarks for checking authenticity of printed objects |
US6760464B2 (en) * | 2000-10-11 | 2004-07-06 | Digimarc Corporation | Halftone watermarking and related applications |
US7656930B2 (en) * | 2001-09-10 | 2010-02-02 | Digimarc Corporation | Assessing quality of service using digital watermark information |
US7346776B2 (en) | 2000-09-11 | 2008-03-18 | Digimarc Corporation | Authenticating media signals by adjusting frequency characteristics to reference values |
US6694041B1 (en) * | 2000-10-11 | 2004-02-17 | Digimarc Corporation | Halftone watermarking and related applications |
AU2002214613A1 (en) | 2000-11-08 | 2002-05-21 | Digimarc Corporation | Content authentication and recovery using digital watermarks |
US7124114B1 (en) | 2000-11-09 | 2006-10-17 | Macrovision Corporation | Method and apparatus for determining digital A/V content distribution terms based on detected piracy levels |
US7254249B2 (en) | 2001-03-05 | 2007-08-07 | Digimarc Corporation | Embedding location data in video |
US7248715B2 (en) | 2001-04-06 | 2007-07-24 | Digimarc Corporation | Digitally watermarking physical media |
US7607016B2 (en) * | 2001-04-20 | 2009-10-20 | Digimarc Corporation | Including a metric in a digital watermark for media authentication |
US7340076B2 (en) * | 2001-05-10 | 2008-03-04 | Digimarc Corporation | Digital watermarks for unmanned vehicle navigation |
US7263202B2 (en) | 2001-07-05 | 2007-08-28 | Digimarc Corporation | Watermarking to control video recording |
WO2003023711A2 (en) * | 2001-09-06 | 2003-03-20 | Digimarc Corporation | Pattern recognition of objects in image streams |
US7027612B2 (en) * | 2001-10-05 | 2006-04-11 | Digimarc Corporation | Marking physical objects and related systems and methods |
US7392392B2 (en) | 2001-12-13 | 2008-06-24 | Digimarc Corporation | Forensic digital watermarking with variable orientation and protocols |
US7321667B2 (en) * | 2002-01-18 | 2008-01-22 | Digimarc Corporation | Data hiding through arrangement of objects |
US7020304B2 (en) * | 2002-01-22 | 2006-03-28 | Digimarc Corporation | Digital watermarking and fingerprinting including synchronization, layering, version control, and compressed embedding |
MXPA05003984A (en) * | 2002-10-15 | 2005-06-22 | Digimarc Corp | Identification document and related methods. |
JP2004180715A (en) | 2002-11-29 | 2004-07-02 | Toshiba Corp | X-ray computed tomography apparatus |
US7763179B2 (en) | 2003-03-21 | 2010-07-27 | Digimarc Corporation | Color laser engraving and digital watermarking |
US8301893B2 (en) | 2003-08-13 | 2012-10-30 | Digimarc Corporation | Detecting media areas likely of hosting watermarks |
-
1994
- 1994-10-21 US US08/327,426 patent/US5768426A/en not_active Expired - Lifetime
- 1994-11-16 DE DE69435317T patent/DE69435317D1/en not_active Expired - Lifetime
- 1994-11-16 ES ES03021209T patent/ES2302888T3/en not_active Expired - Lifetime
- 1994-11-16 AT AT04030490T patent/ATE485677T1/en not_active IP Right Cessation
- 1994-11-16 DE DE69435076T patent/DE69435076T2/en not_active Expired - Lifetime
-
1996
- 1996-03-15 US US08/614,521 patent/US5745604A/en not_active Expired - Lifetime
-
1997
- 1997-11-12 US US08/967,693 patent/US6122392A/en not_active Expired - Lifetime
-
2000
- 2000-07-27 US US09/626,984 patent/US6542620B1/en not_active Expired - Fee Related
-
2003
- 2003-04-01 US US10/405,951 patent/US7003132B2/en not_active Expired - Fee Related
-
2005
- 2005-10-06 HK HK05108893.6A patent/HK1075736A1/en not_active IP Right Cessation
-
2006
- 2006-02-21 US US11/360,002 patent/US7424132B2/en not_active Expired - Fee Related
-
2008
- 2008-09-09 US US12/207,339 patent/US7672477B2/en not_active Expired - Fee Related
-
2009
- 2009-09-15 US US12/560,186 patent/US7974439B2/en not_active Expired - Fee Related
-
2012
- 2012-09-06 JP JP2012196225A patent/JP5597860B2/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3004104A (en) * | 1954-04-29 | 1961-10-10 | Muzak Corp | Identification of sound and like signals |
US4245346A (en) * | 1962-02-07 | 1981-01-13 | Magnavox Government And Industrial Electronics Co. | Communication system |
US3406344A (en) * | 1964-07-01 | 1968-10-15 | Bell Telephone Labor Inc | Transmission of low frequency signals by modulation of voice carrier |
US3492577A (en) * | 1966-10-07 | 1970-01-27 | Intern Telemeter Corp | Audience rating system |
US3845391A (en) * | 1969-07-08 | 1974-10-29 | Audicom Corp | Communication including submerged identification signal |
US3838444A (en) * | 1972-10-30 | 1974-09-24 | Hazeltine Research Inc | System for transmitting auxiliary information in low energy density portion of color tv spectrum |
US3984624A (en) * | 1974-07-25 | 1976-10-05 | Weston Instruments, Inc. | Video system for conveying digital and analog information |
US4025851A (en) * | 1975-11-28 | 1977-05-24 | A.C. Nielsen Company | Automatic monitor for programs broadcast |
US4225967A (en) * | 1978-01-09 | 1980-09-30 | Fujitsu Limited | Broadcast acknowledgement method and system |
US4230990A (en) * | 1979-03-16 | 1980-10-28 | Lert John G Jr | Broadcast program identification method and system |
US4230990C1 (en) * | 1979-03-16 | 2002-04-09 | John G Lert Jr | Broadcast program identification method and system |
US4333113A (en) * | 1979-06-18 | 1982-06-01 | Quadrivium Techniques Avancees | Method and apparatus for monitoring the reproduction of recorded information |
US4313197A (en) * | 1980-04-09 | 1982-01-26 | Bell Telephone Laboratories, Incorporated | Spread spectrum arrangement for (de)multiplexing speech signals and nonspeech signals |
US4528588A (en) * | 1980-09-26 | 1985-07-09 | Loefberg Bo | Method and apparatus for marking the information content of an information carrying signal |
US4495620A (en) * | 1982-08-05 | 1985-01-22 | At&T Bell Laboratories | Transmitting data on the phase of speech |
US4703476A (en) * | 1983-09-16 | 1987-10-27 | Audicom Corporation | Encoding of transmitted program material |
US4672605A (en) * | 1984-03-20 | 1987-06-09 | Applied Spectrum Technologies, Inc. | Data and voice communications system |
US4750173A (en) * | 1985-05-21 | 1988-06-07 | Polygram International Holding B.V. | Method of transmitting audio information and additional information in digital form |
US4739398A (en) * | 1986-05-02 | 1988-04-19 | Control Data Corporation | Method, apparatus and system for recognizing broadcast segments |
US4876617A (en) * | 1986-05-06 | 1989-10-24 | Thorn Emi Plc | Signal identification |
US4843562A (en) * | 1987-06-24 | 1989-06-27 | Broadcast Data Systems Limited Partnership | Broadcast information classification system and method |
US4777529A (en) * | 1987-07-21 | 1988-10-11 | R. M. Schultz & Associates, Inc. | Auditory subliminal programming system |
US4807031A (en) * | 1987-10-20 | 1989-02-21 | Interactive Systems, Incorporated | Interactive video method and apparatus |
US5079648A (en) * | 1988-04-20 | 1992-01-07 | Thorn Emi Plc | Marked recorded signals |
US4963998A (en) * | 1988-04-20 | 1990-10-16 | Thorn Em Plc | Apparatus for marking a recorded signal |
US4945412A (en) * | 1988-06-14 | 1990-07-31 | Kramer Robert A | Method of and system for identification and verification of broadcasting television and radio program segments |
US5146457A (en) * | 1988-09-16 | 1992-09-08 | U.S. Philips Corporation | Device for transmitting data words representing a digitalized analog signal and device for receiving the transmitted data words |
US4969041A (en) * | 1988-09-23 | 1990-11-06 | Dubner Computer Systems, Inc. | Embedment of data in a video signal |
US4939515A (en) * | 1988-09-30 | 1990-07-03 | General Electric Company | Digital signal encoding and decoding apparatus |
US5113437A (en) * | 1988-10-25 | 1992-05-12 | Thorn Emi Plc | Signal identification system |
US5019899A (en) * | 1988-11-01 | 1991-05-28 | Control Data Corporation | Electronic data encoding and recognition system |
US5161210A (en) * | 1988-11-10 | 1992-11-03 | U.S. Philips Corporation | Coder for incorporating an auxiliary information signal in a digital audio signal, decoder for recovering such signals from the combined signal, and record carrier having such combined signal recorded thereon |
US5010405A (en) * | 1989-02-02 | 1991-04-23 | Massachusetts Institute Of Technology | Receiver-compatible enhanced definition television system |
US4943973A (en) * | 1989-03-31 | 1990-07-24 | At&T Company | Spread-spectrum identification signal for communications system |
US4972471A (en) * | 1989-05-15 | 1990-11-20 | Gary Gross | Encoding system |
US5319453A (en) * | 1989-06-22 | 1994-06-07 | Airtrax | Method and apparatus for video signal encoding, decoding and monitoring |
US5210820A (en) * | 1990-05-02 | 1993-05-11 | Broadcast Data Systems Limited Partnership | Signal recognition system and method |
US5200822A (en) * | 1991-04-23 | 1993-04-06 | National Broadcasting Company, Inc. | Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs |
US5574962A (en) * | 1991-09-30 | 1996-11-12 | The Arbitron Company | Method and apparatus for automatically identifying a program including a sound signal |
US5319735A (en) * | 1991-12-17 | 1994-06-07 | Bolt Beranek And Newman Inc. | Embedded signalling |
US5243423A (en) * | 1991-12-20 | 1993-09-07 | A. C. Nielsen Company | Spread spectrum digital data transmission over TV video |
US5436653A (en) * | 1992-04-30 | 1995-07-25 | The Arbitron Company | Method and system for recognition of broadcast segments |
US5410541A (en) * | 1992-05-04 | 1995-04-25 | Ivon International, Inc. | System for simultaneous analog and digital communications over an analog channel |
US5671277A (en) * | 1992-06-30 | 1997-09-23 | Minolta Camera Kabushiki Kaisha | Image forming apparatus and copy management system |
US5721788A (en) * | 1992-07-31 | 1998-02-24 | Corbis Corporation | Method and system for digital image signatures |
US5579124A (en) * | 1992-11-16 | 1996-11-26 | The Arbitron Company | Method and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto |
US5712920A (en) * | 1992-12-05 | 1998-01-27 | Deutsche Thomson-Brandt Gmbh | Method for the compatible transmission and/or storage and decoding of an auxiliary signal |
US5379345A (en) * | 1993-01-29 | 1995-01-03 | Radio Audit Systems, Inc. | Method and apparatus for the processing of encoded data in conjunction with an audio broadcast |
US5404160A (en) * | 1993-06-24 | 1995-04-04 | Berkeley Varitronics Systems, Inc. | System and method for identifying a television program |
US5857038A (en) * | 1993-06-29 | 1999-01-05 | Canon Kabushiki Kaisha | Image processing apparatus and method for synthesizing first and second image data |
US5355161A (en) * | 1993-07-28 | 1994-10-11 | Concord Media Systems | Identification system for broadcast program segments |
US5652626A (en) * | 1993-09-03 | 1997-07-29 | Kabushiki Kaisha Toshiba | Image processing apparatus using pattern generating circuits to process a color image |
US5832119C1 (en) * | 1993-11-18 | 2002-03-05 | Digimarc Corp | Methods for controlling systems using control signals embedded in empirical data |
US6404898B1 (en) * | 1993-11-18 | 2002-06-11 | Digimarc Corporation | Method and system for encoding image and audio content |
US7567686B2 (en) * | 1993-11-18 | 2009-07-28 | Digimarc Corporation | Hiding and detecting messages in media signals |
US7536555B2 (en) * | 1993-11-18 | 2009-05-19 | Digimarc Corporation | Methods for audio watermarking and decoding |
US20070201835A1 (en) * | 1993-11-18 | 2007-08-30 | Rhoads Geoffrey B | Audio Encoding to Convey Auxiliary Information, and Media Embodying Same |
US7181022B2 (en) * | 1993-11-18 | 2007-02-20 | Digimarc Corporation | Audio watermarking to convey auxiliary information, and media embodying same |
US7113614B2 (en) * | 1993-11-18 | 2006-09-26 | Digimarc Corporation | Embedding auxiliary signals with multiple components into media signals |
US20060109984A1 (en) * | 1993-11-18 | 2006-05-25 | Rhoads Geoffrey B | Methods for audio watermarking and decoding |
US20060062386A1 (en) * | 1993-11-18 | 2006-03-23 | Rhoads Geoffrey B | Steganographic encoding and decoding of auxiliary codes in media signals |
US6983051B1 (en) * | 1993-11-18 | 2006-01-03 | Digimarc Corporation | Methods for audio watermarking and decoding |
US5768426A (en) * | 1993-11-18 | 1998-06-16 | Digimarc Corporation | Graphics processing system employing embedded code signals |
US6944298B1 (en) * | 1993-11-18 | 2005-09-13 | Digimare Corporation | Steganographic encoding and decoding of auxiliary codes in media signals |
US5832119A (en) * | 1993-11-18 | 1998-11-03 | Digimarc Corporation | Methods for controlling systems using control signals embedded in empirical data |
US6675146B2 (en) * | 1993-11-18 | 2004-01-06 | Digimarc Corporation | Audio steganography |
US6026193A (en) * | 1993-11-18 | 2000-02-15 | Digimarc Corporation | Video steganography |
US6122392A (en) * | 1993-11-18 | 2000-09-19 | Digimarc Corporation | Signal processing to hide plural-bit information in image, video, and audio data |
US6266430B1 (en) * | 1993-11-18 | 2001-07-24 | Digimarc Corporation | Audio or video steganography |
US6542620B1 (en) * | 1993-11-18 | 2003-04-01 | Digimarc Corporation | Signal processing to hide plural-bit information in image, video, and audio data |
US6353672B1 (en) * | 1993-11-18 | 2002-03-05 | Digimarc Corporation | Steganography using dynamic codes |
US6542618B1 (en) * | 1993-11-18 | 2003-04-01 | Digimarc Corporation | Methods for watermark decoding |
US6363159B1 (en) * | 1993-11-18 | 2002-03-26 | Digimarc Corporation | Consumer audio appliance responsive to watermark data |
US6539095B1 (en) * | 1993-11-18 | 2003-03-25 | Geoffrey B. Rhoads | Audio watermarking to convey auxiliary control information, and media embodying same |
US6400827B1 (en) * | 1993-11-18 | 2002-06-04 | Digimarc Corporation | Methods for hiding in-band digital data in images and video |
US6449379B1 (en) * | 1993-11-18 | 2002-09-10 | Digimarc Corporation | Video steganography methods avoiding introduction of fixed pattern noise |
US5649054A (en) * | 1993-12-23 | 1997-07-15 | U.S. Philips Corporation | Method and apparatus for coding digital sound by subtracting adaptive dither and inserting buried channel bits and an apparatus for decoding such encoding digital sound |
US5764763A (en) * | 1994-03-31 | 1998-06-09 | Jensen; James M. | Apparatus and methods for including codes in audio signals and decoding |
US5450490A (en) * | 1994-03-31 | 1995-09-12 | The Arbitron Company | Apparatus and methods for including codes in audio signals and decoding |
US5404377A (en) * | 1994-04-08 | 1995-04-04 | Moses; Donald W. | Simultaneous transmission of data and audio signals by means of perceptual coding |
US5530751A (en) * | 1994-06-30 | 1996-06-25 | Hewlett-Packard Company | Embedded hidden identification codes in digital objects |
US6778682B2 (en) * | 1994-10-21 | 2004-08-17 | Digimarc Corporation | Redundantly embedding auxiliary data in source signals |
US5663766A (en) * | 1994-10-31 | 1997-09-02 | Lucent Technologies Inc. | Digital data encoding in video signals using data modulated carrier signals at non-peaks in video spectra |
US5646997A (en) * | 1994-12-14 | 1997-07-08 | Barton; James M. | Method and apparatus for embedding authentication information within digital data |
US5659726A (en) * | 1995-02-23 | 1997-08-19 | Sandford, Ii; Maxwell T. | Data embedding |
US5737025A (en) * | 1995-02-28 | 1998-04-07 | Nielsen Media Research, Inc. | Co-channel transmission of program signals and ancillary signals |
US5629739A (en) * | 1995-03-06 | 1997-05-13 | A.C. Nielsen Company | Apparatus and method for injecting an ancillary signal into a low energy density portion of a color television frequency spectrum |
US5774452A (en) * | 1995-03-14 | 1998-06-30 | Aris Technologies, Inc. | Apparatus and method for encoding and decoding information in audio signals |
US6718047B2 (en) * | 1995-05-08 | 2004-04-06 | Digimarc Corporation | Watermark embedder and reader |
US5636292A (en) * | 1995-05-08 | 1997-06-03 | Digimarc Corporation | Steganography methods employing embedded calibration data |
US5636292C1 (en) * | 1995-05-08 | 2002-06-18 | Digimarc Corp | Steganography methods employing embedded calibration data |
US7369678B2 (en) * | 1995-05-08 | 2008-05-06 | Digimarc Corporation | Digital watermark and steganographic decoding |
US7606390B2 (en) * | 1995-05-08 | 2009-10-20 | Digimarc Corporation | Processing data representing video and audio and methods and apparatus related thereto |
US5613004A (en) * | 1995-06-07 | 1997-03-18 | The Dice Company | Steganographic method and device |
US20090097702A1 (en) * | 1996-05-07 | 2009-04-16 | Rhoads Geoffrey B | Error Processing of Steganographic Message Signals |
US6272176B1 (en) * | 1998-07-16 | 2001-08-07 | Nielsen Media Research, Inc. | Broadcast encoding system and method |
US7006555B1 (en) * | 1998-07-16 | 2006-02-28 | Nielsen Media Research, Inc. | Spectral audio encoding |
US20090136085A1 (en) * | 2000-01-13 | 2009-05-28 | Rhoads Geoffrey B | Detecting Embedded Signals in Media Content Using Coincidence Metrics |
US6862355B2 (en) * | 2001-09-07 | 2005-03-01 | Arbitron Inc. | Message reconstruction from partial detection |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8055012B2 (en) | 1993-11-18 | 2011-11-08 | Digimarc Corporation | Hiding and detecting messages in media signals |
US20070201835A1 (en) * | 1993-11-18 | 2007-08-30 | Rhoads Geoffrey B | Audio Encoding to Convey Auxiliary Information, and Media Embodying Same |
US20080131083A1 (en) * | 1993-11-18 | 2008-06-05 | Rhoads Geoffrey B | Audio Encoding to Convey Auxiliary Information, and Media Embodying Same |
US20100131767A1 (en) * | 1993-11-18 | 2010-05-27 | Rhoads Geoffrey B | Methods for Audio Watermarking and Decoding |
US7987094B2 (en) | 1993-11-18 | 2011-07-26 | Digimarc Corporation | Audio encoding to convey auxiliary information, and decoding of same |
US8051294B2 (en) | 1993-11-18 | 2011-11-01 | Digimarc Corporation | Methods for audio watermarking and decoding |
US20060062386A1 (en) * | 1993-11-18 | 2006-03-23 | Rhoads Geoffrey B | Steganographic encoding and decoding of auxiliary codes in media signals |
US8204222B2 (en) | 1993-11-18 | 2012-06-19 | Digimarc Corporation | Steganographic encoding and decoding of auxiliary codes in media signals |
US8355514B2 (en) | 1993-11-18 | 2013-01-15 | Digimarc Corporation | Audio encoding to convey auxiliary information, and media embodying same |
US7756290B2 (en) | 2000-01-13 | 2010-07-13 | Digimarc Corporation | Detecting embedded signals in media content using coincidence metrics |
US8027510B2 (en) | 2000-01-13 | 2011-09-27 | Digimarc Corporation | Encoding and decoding media signals |
US7711144B2 (en) | 2000-09-14 | 2010-05-04 | Digimarc Corporation | Watermarking employing the time-frequency domain |
US8077912B2 (en) | 2000-09-14 | 2011-12-13 | Digimarc Corporation | Signal hiding employing feature modification |
Also Published As
Publication number | Publication date |
---|---|
US20050100188A1 (en) | 2005-05-12 |
US20100008537A1 (en) | 2010-01-14 |
ES2302888T3 (en) | 2008-08-01 |
DE69435076T2 (en) | 2009-03-26 |
US5768426A (en) | 1998-06-16 |
US7003132B2 (en) | 2006-02-21 |
US20070053548A1 (en) | 2007-03-08 |
US6542620B1 (en) | 2003-04-01 |
ATE485677T1 (en) | 2010-11-15 |
US7424132B2 (en) | 2008-09-09 |
US7974439B2 (en) | 2011-07-05 |
DE69435317D1 (en) | 2010-12-02 |
JP2013038795A (en) | 2013-02-21 |
US5745604A (en) | 1998-04-28 |
US7672477B2 (en) | 2010-03-02 |
HK1075736A1 (en) | 2005-12-23 |
JP5597860B2 (en) | 2014-10-01 |
US6122392A (en) | 2000-09-19 |
DE69435076D1 (en) | 2008-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7672477B2 (en) | Detecting hidden auxiliary code signals in media | |
US6757406B2 (en) | Steganographic image processing | |
US6744907B2 (en) | Image capture methods and devices employing steganographic processing | |
EP0959621B1 (en) | Video copy control with plural embedded signals | |
US8014563B2 (en) | Methods and systems for steganographic processing | |
US6778682B2 (en) | Redundantly embedding auxiliary data in source signals | |
US6408331B1 (en) | Computer linking methods using encoded graphics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DIGIMARC CORPORATION, OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RHOADS, GEOFFREY B.;REEL/FRAME:021884/0221 Effective date: 20081104 Owner name: DIGIMARC CORPORATION,OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RHOADS, GEOFFREY B.;REEL/FRAME:021884/0221 Effective date: 20081104 |
|
AS | Assignment |
Owner name: DIGIMARC CORPORATION (AN OREGON CORPORATION), OREGON Free format text: MERGER;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:024369/0582 Effective date: 20100430 Owner name: DIGIMARC CORPORATION (AN OREGON CORPORATION),OREGO Free format text: MERGER;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:024369/0582 Effective date: 20100430 Owner name: DIGIMARC CORPORATION (AN OREGON CORPORATION), OREG Free format text: MERGER;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:024369/0582 Effective date: 20100430 |
|
AS | Assignment |
Owner name: DMRC LLC, OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIGIMARC CORPORATION (A DELAWARE CORPORATION);REEL/FRAME:025217/0508 Effective date: 20080801 |
|
AS | Assignment |
Owner name: DIGIMARC CORPORATION, OREGON Free format text: MERGER;ASSIGNOR:DMRC CORPORATION;REEL/FRAME:025227/0832 Effective date: 20080903 Owner name: DMRC CORPORATION, OREGON Free format text: MERGER;ASSIGNOR:DMRC LLC;REEL/FRAME:025227/0808 Effective date: 20080801 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180302 |