US20090132093A1 - Tactile Conforming Apparatus and Method for a Device - Google Patents
Tactile Conforming Apparatus and Method for a Device Download PDFInfo
- Publication number
- US20090132093A1 US20090132093A1 US12/194,372 US19437208A US2009132093A1 US 20090132093 A1 US20090132093 A1 US 20090132093A1 US 19437208 A US19437208 A US 19437208A US 2009132093 A1 US2009132093 A1 US 2009132093A1
- Authority
- US
- United States
- Prior art keywords
- portions
- skin texture
- texture surface
- controllable
- controllable skin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 31
- 230000036548 skin texture Effects 0.000 claims abstract description 125
- 230000004044 response Effects 0.000 claims abstract description 45
- 239000012530 fluid Substances 0.000 claims description 53
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 35
- 229920000642 polymer Polymers 0.000 claims description 6
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 4
- 238000010295 mobile communication Methods 0.000 claims 5
- 239000000758 substrate Substances 0.000 description 16
- 230000008859 change Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/23—Construction or mounting of dials or of equivalent devices; Means for facilitating the use thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1615—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
- G06F1/1616—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1662—Details related to the integrated keyboard
- G06F1/1666—Arrangements for reducing the size of the integrated keyboard for transport, e.g. foldable keyboards, keyboards with collapsible keys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/84—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/84—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback
- H01H13/85—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback characterised by tactile feedback features
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/04—Supports for telephone transmitters or receivers
- H04M1/05—Supports for telephone transmitters or receivers specially adapted for use on head, throat or breast
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2211/00—Spacers
- H01H2211/002—Fluid or inflatable keyboards
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2215/00—Tactile feedback
- H01H2215/046—Inflatable bubble or cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2215/00—Tactile feedback
- H01H2215/05—Tactile feedback electromechanical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2217/00—Facilitation of operation; Human engineering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2217/00—Facilitation of operation; Human engineering
- H01H2217/018—Indication of switch sites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2217/00—Facilitation of operation; Human engineering
- H01H2217/042—Higher keytops
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2221/00—Actuators
- H01H2221/032—Actuators adjustable
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2221/00—Actuators
- H01H2221/068—Actuators having a not operable condition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2223/00—Casings
- H01H2223/046—Casings convertible
- H01H2223/052—Casings convertible reductible in size, e.g. for transportation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2223/00—Casings
- H01H2223/062—Inflatable
Definitions
- the disclosure relates generally to portable electronic devices and more particularly to portable electronic devices that employ variable skin texture surfaces.
- Portable electronic devices such as laptops, wireless handheld devices such as cell phones, digital music players, palm computing devices, or any other suitable devices are increasingly becoming widespread. Improved usability of such devices can increase sales for sellers as consumer demand can be driven by differing device usability characteristics and device features.
- Providing differing device usability such as by changing the tactile configuration and/or visual appearance of a surface of a portable electronic device by altering the emission reflection of light to change the overall color or graphics that appear and disappear are known.
- Surfaces of electronic devices, including portable electronic devices may include, for example, exterior surfaces of the device, activation keys such as keys in a keypad or navigation keys, tactile navigation interfaces, or any other suitable surface.
- haptics such as in the form of electro-active polymers that change 3D shape, also referred to as texture, based on the application of a voltage to portions of the electro-active polymer. Differing textures and shapes can thereby be produced to give the device a different visual appearance and/or tactile configuration.
- a portable device includes such electro-active polymers as a type of outer skin, turning power on to the device can cause the electro-active polymer to be activated so that a 3D texture is present and can be felt by a user of the device.
- piezoelectric actuators as a type of haptic sensor on handheld devices.
- a control slider is configured as a bending piezo-actuator. Also it has been proposed to provide handheld devices with menus, such as piezo-actuated haptic icons, that have different tactile feedback for a user so that the user can, for example, turn a phone to a “silent” mode from an active mode by feeling the proper control key and receiving feedback of actuation of the key once it is activated. It is desirable to provide differing methods and apparatus for actuating skin texture surfaces of a device and differing user experiences.
- Some portable electronic devices include an earpiece having an acoustical port to provide sound to a user.
- the user holds the earpiece against the user's ear in order to hear the sound.
- this method works, actual and perceived audio quality can be degraded due to gaps between various points of the user's ear and the earpiece. Accordingly, it is desirable to provide, among other things, an improved acoustical coupling between the earpiece and the user's ear thereby improving actual and perceived audio quality.
- FIG. 1 is a perspective view of an example of a wireless handheld device that employs a controllable skin texture surface in accordance with one embodiment of the invention
- FIG. 2 is a block diagram illustrating one example of an apparatus that includes control logic that controls a controllable skin texture surface in accordance with one embodiment of the invention
- FIG. 3 is an assembly view of a portion of an apparatus in accordance with one embodiment of the invention.
- FIG. 4 is a perspective view illustrating one example of a portion of a mechanical actuation structure that may be part of a controllable skin texture surface in accordance with one embodiment of the invention
- FIG. 5 is a perspective and side view of the structure shown in FIG. 4 and a portion of a flexible skin structure in accordance with one embodiment of the invention
- FIG. 6 is a cross-sectional view illustrating another example of a controllable skin texture surface that employs a mechanical actuation structure in accordance with one embodiment of the invention
- FIG. 7 is a cross-section view as shown in FIG. 6 with texture actuation in accordance with one disclosed example
- FIG. 8 is a top view of one example of a shape memory alloy actuation structure that may be employed as part of a controllable skin texture surface according to one example of the invention.
- FIGS. 9 and 10 a are cross-sectional views illustrating the operation of the structure shown in FIG. 8 ;
- FIG. 10 b is a diagram illustrating one example of a bi-stable shape memory alloy actuation scheme according to one example of the invention.
- FIG. 11 is a top view illustrating a portion of a portable electronic device that employs an embodiment of a controllable skin texture surface
- FIGS. 12 and 13 are cross sectional views of portions of FIG. 11 illustrating a deactuated and actuated skin texture structure in accordance with one embodiment
- FIG. 14 is a top view illustrating a portion of a portable electronic device that employs an embodiment of a controllable skin texture surface
- FIG. 15 is a perspective view of a portable electronic device with a controllable skin texture surface in accordance with one embodiment
- FIG. 16 is a perspective view illustrating one example of a flexible skin structure and corresponding portion of a hydraulic actuation structure in accordance with one example set forth in disclosure
- FIG. 17 is a block diagram illustrating the portion of a portable electronic device in accordance with one example.
- FIGS. 18 a and 18 b illustrate a cross sectional view of an embodiment employing a flexible sliding plate in accordance with one embodiment of the invention
- FIGS. 19 and 20 illustrate cross sectional views of another example of a gas expandable actuation structure and flexible skin structure in accordance with one example
- FIGS. 21 and 22 illustrate a perspective view of a portable electronic device with a deactuated and actuated controllable skin texture surface
- FIGS. 23-25 illustrate a perspective view of a portable electronic device illustrating different portions of a controllable skin texture being actuated and deactuated in accordance with one example disclosed below;
- FIG. 26 is a perspective view of an example of a wireless handheld device and a remote device that each employ a tactile conforming structure
- FIG. 27 is a functional block diagram of the tactile conforming structure
- FIG. 28 is a cross-sectional view of one example of the tactile conforming structure when control logic is not controlling the structure to conform to a user surface;
- FIG. 29 is a cross-sectional view of one example of the tactile conforming structure when control logic is controlling the structure to conform to the user surface;
- FIG. 30 is a flowchart depicting exemplary steps that can be taken by the tactile conforming structure to conform to the user surface.
- FIG. 31 is a flowchart depicting additional exemplary steps that can be taken by the tactile conforming structure to conform to the user surface.
- a device in one example, includes a controllable skin texture surface, a sensor, and control logic.
- the sensor senses a plurality of points of interest of a user surface such as an ear surface or other suitable user surface. Exemplary points of interest include highpoints of the user surface, lowpoints of the user surface and/or any other suitable points of interest.
- the control logic controls a plurality of portions of the controllable skin texture surface to protrude at locations with respect to the plurality of points of interest in response to the sensor sensing the plurality of points of interest.
- the control logic periodically adjusts the plurality of portions protruding from the controllable skin texture surface in response to movement between the user surface and the controllable skin texture surface.
- a related method is also disclosed.
- the device includes an earpiece that includes an acoustic port, the controllable skin texture surface, the sensor, and the control logic.
- the controllable skin texture surface substantially circumscribes the acoustic port.
- controllable skin texture surface conforms to the user surface such as a user's ear creating an improved acoustical coupling, which improves actual and perceived audio quality delivered to the user.
- controllable skin texture surface can conform to other suitable user surfaces such as, for example, a user's face to improve comfort and usability of the device.
- FIG. 1 illustrates one example of a portable electronic device 100 , shown in this example to be a handheld wireless device, that includes a wireless telephone subsystem for communication via one or more suitable wireless networks, and other conventional circuitry along with a display 102 for displaying information to a user and an acoustic port area 103 for delivering sound to the user.
- the portable electronic device 100 also includes a controllable skin texture surface 104 that in this example, covers a portion of a housing (e.g., base housing) of the device 100 that forms part of a user interface portion, namely a user keypad.
- a housing e.g., base housing
- the controllable skin texture surface 104 also includes other controllable surfaces 106 and 108 that are for aesthetic purposes and are controlled to change the tactile configuration of a non-user interface portion of the portable electronic device, such as another area of the outer portion of the device.
- the portable electronic device 100 is a flip phone having a foldable housing portion 110 that pivots about a pivot mechanism 112 as known in the art.
- the foldable housing portion 110 may also include a keypad and controllable skin texture surface as desired.
- the controllable skin texture surface 104 is controlled to change the tactile configuration of a portion of the skin texture surface to, in this example, raise respective portions of the skin texture to provide a tactilely detectable keypad and other tactile and/or aesthetic features.
- controllable skin texture surface 104 may be flat when, for example, the phone is in a standby mode, but the controllable skin texture surface 104 is controlled to activate portions thereof to provide raised keys for a keypad when an incoming wireless call is detected and is controlled to become flat (deactivated) when a call ends.
- Other input information is also used to control the actuation/deactuation of the controllable skin texture as described below.
- FIG. 2 illustrates in block diagram form the portable electronic device of FIG. 1 or any other suitable portable electronic device such as a laptop computer, portable Internet appliance, portable digital media player, or any other suitable portable electronic device.
- control logic 200 changes a tactile configuration of a portion of the controllable skin texture surface 104 (and/or 106 and 108 ) by producing control information 204 (e.g., digital or analog signals) in response to at least any one of a received wireless signal, a battery level change condition such as a low battery condition, based on an incoming call or message, based on information from a proximity sensor, sound sensor, light sensor or other environmental sensor generally designated as 202 , or data representing a user of the device, such as the input via a microphone and a voice recognition module that recognizes the user's voice, or a password or passcode entered by a user indicating a particular user, or data representing completion of a user authentication sequence such as the entry of a password and PIN or any other suitable authentication process as desired.
- control information 204 e
- control data based on a pressure sensor, humidity sensor, shock sensor or vibration sensor.
- State changes may also be used to control the texture such as, but not limited to, radio signal strength, device orientation, device configuration (e.g., flip open, phone mode vs. audio playback mode vs. camera mode), a grip of a user or data representing a change of state of a program executing on a device, including the state of a program executing on another device connected via a wired or wireless connection such as a server or another portable device.
- Other incoming data representing other incoming signals may include, for example, changing or controlling the texture based on an incoming SMS, email or instant message, a proximity to a radio source such as an RFID reader, a BluetoothTM enabled device, a WIFI access point, or response from an outgoing signal such as a tag associated with an RFID.
- a radio source such as an RFID reader, a BluetoothTM enabled device, a WIFI access point, or response from an outgoing signal such as a tag associated with an RFID.
- Other data that may be suitable for triggering or controlling the activation of the texture may include data representing the completion of a financial transaction, completion of a user initiated action such as sending a message, downloading a file or answering or ending a call, based on a timeout period, based on the location of the device relative to some other device or an absolute location such as a GPS location, status of another user such as the online presence of another instant message user, availability of a data source such as a broadcast TV program or information in a program guide, based on game conditions such as a game that is being played on the device or another networked device, based on for example, other modes of data being output by the device such as the beat of music, patterns on a screen, actions in a game, lighting of a keypad, haptic output, or other suitable data.
- control logic 200 may raise portions of the controllable skin texture surface 104 to represent keys, in response to sensor output information 206 such as the sensor 202 detecting the presence of a user, based on a sound level detected in the room, or output based on the amount of light in a room.
- the sensor 202 outputs the sensor output information 206 and the control logic 200 may activate the controllable skin texture surface 104 to provide a raised keypad feature so that the user can feel the keypad surface in a dark room since there is not much light to see the keypad.
- light source(s) such as LEDs located underneath the controllable skin texture surface may also be illuminated under control of the control logic in response to the light sensor detecting a low light level in the vicinity of the device.
- a sound sensor may also be used, for example, to control which portions of the controllable skin texture surface are used depending upon, for example, the amount of noise in a room.
- control logic 200 may control the controllable skin texture surface 104 , 106 or 108 to provide a pulsating action, or any other suitable tactile configuration as desired based on the sensor output information.
- the device of FIG. 1 may have controllable skin texture surface 104 configured about the exterior of the device so that when the skin texture surface is activated (e.g., raised) in certain portions, the device appears to be pulsating, like a heartbeat, or may provide a sequential raising and lowering of certain portions of the skin texture to provide a user desired movement, such as an animated pattern.
- the control logic 200 may be implemented in any suitable manner including a processor executing software module that is stored in a storage medium such as RAM, ROM or any other suitable storage medium which stores executable instructions that when executed, cause one or more processors to operate as described herein.
- a storage medium such as RAM, ROM or any other suitable storage medium which stores executable instructions that when executed, cause one or more processors to operate as described herein.
- the control logic as described herein may be implemented as discrete logic including, but not limited to, state machines, application specific integrated circuits, or any suitable combination of hardware, software or firmware.
- controllable skin texture surface 104 , 106 , and 108 may include a mechanical actuation structure that is coupled to a flexible skin structure that moves in response to moving of the mechanical actuation structure, a hydraulic actuation structure that is coupled to a flexible skin structure that moves in response to movement of fluid in the hydraulic actuation structure, and expandable gas actuation structure that is coupled to a flexible skin structure that moves in response to movement of gas in the expandable gas actuation structure and a shape memory alloy actuation structure that is coupled to a flexible skin structure that moves in response to movement of a metal alloy in the shape memory alloy actuation structure, or any suitable combination thereof.
- FIGS. 3-7 illustrate various examples of a mechanical actuation structure that is used to move a flexible skin structure in response to the moving of the mechanical actuation structure.
- a portable electronic device 300 which may be any suitable portable electronic device as desired. The particulars of the device depend on the desired application.
- the portable electronic device 300 includes a housing 302 with a recessed area 304 that receives one or more movable ramp structures 306 or 308 .
- Ramp structure 306 as shown here includes a single plate that has a plurality of ramp portions 310 that are raised with respect to the plate. The plate slidably moves in the recessed area 304 and is allowed to slide back and forth in the recessed area.
- the controllable skin texture surface includes a flexible skin structure 320 that, in this example, includes molded texture elements that may be any suitable shape and size, shown in this example as texture pockets generally shown as 322 in the configuration of a keypad.
- the texture pockets 322 are molded as pockets in an under portion of the flexible skin structure 320 and are raised up by corresponding ramps 310 on the ramp structure 306 when the ramp structure is moved. Hence, the texture pockets 322 are raised under control of the actuator 312 .
- the flexible skin structure covers the ramps and may be affixed to the housing or other structure as desired. It will be recognized that one ramp may be used to move multiple texture elements and that the ramps may also be any suitable configuration (including shape or size).
- the flexible skin structure 320 may be made out of any suitable flexible material including, but not limited to polyurethane, rubber, or silicone. It may be suitably attached to an outer portion of the housing of the device 300 via an adhesive or any other suitable mechanism.
- the flexible skin structure 320 as shown has a portion that covers the movable ramp structure 306 . When the movable ramp structure 306 pushes up the molded pockets 322 , it changes the tactile configuration of the controllable skin texture surface so a user will feel the locations below the ramps on the flexible skin structure 320 .
- touch sensors 324 there may be touch sensors 324 , shown as capacitive sensors positioned on the ramp structure 306 at locations between the ramps if desired, or on top of the ramps if desired which when touched by a user, generate a signal that is interpreted by the control logic of the device 300 to be an activation of a key, in this particular example. It will be recognized that touch sensors 324 may be any suitable sensor and may be located at any suitable location within the device as desired.
- the texture pockets 322 may be, for example, thinned out sections that are molded into a rear surface of the flexible skin structure 320 . However, any suitable configuration may be used.
- the flexible skin structure 320 includes a layer of flexible material that have a plurality of defined changeable skin texture elements 322 , each having a portion configured to engage with the movable ramp structure 306 .
- the capacitive sensor serves as a type touch sensor 324 .
- FIG. 4 illustrates an alternative embodiment to the single plate shown in FIG. 3 .
- a multiple segment movable ramp structure 308 includes a plurality of ramps 402 , 404 , 406 and a cam structure 408 that mechanically engages with, for example, edges of the plurality of ramps to move at least one of the plurality of ramps in response to, in one example, mechanical movement of a portion of the device.
- a motor may be controlled to actuate the movement of the plurality of ramps 402 , 404 , 406 directly or indirectly through rotating the cam 408 .
- a motor may be coupled to rotate the cam 408 based on an electrical control signal from control logic.
- the ramp structure 308 includes a plurality of individual sliding ramp elements 402 , 404 and 406 each including a plurality of ramps 310 .
- the cam structure 408 which is shown to move in a rotational manner, may also be structured to move in a non-rotational manner, such as a sliding manner if desired, or any other suitable manner.
- the cam structure includes ramp control elements 410 that, in this example, protrude from the cam structure to engage an edge of each of the respective individual sliding ramp elements 402 , 404 and 406 .
- the ramp control elements 410 are positioned to cause movement of the plurality of sliding ramp elements in response to movement of the cam structure 408 .
- Actuation of the plurality of sliding ramp elements 402 - 406 may be done in response to the information set forth above such as based on a received wireless signal, battery level change condition, such as a recharge condition (actuate skin), low battery level (deactuate skin), an incoming call, or based on any other suitable condition.
- battery level change condition such as a recharge condition (actuate skin), low battery level (deactuate skin), an incoming call, or based on any other suitable condition.
- a series of individual sliding panels are located beneath a flexible skin structure 320 and are actuated in this example by a cam structure.
- the pattern of ramp control elements 410 determine in what sequence the sliding panels are actuated.
- the cam structure can be driven by a motor or integrated into the device such that a hinge of a clam shell type device that may be found, for example, on a mobile handset may actuate the cam directly so that opening of the clam shell causes the raising of the portions of the flexible skin texture to represent a keypad.
- the mechanical actuation structure described may move any portion of the flexible skin structure 320 to provide, for example, raised portions that are not associated with a user interface and may be moved to provide any desired tactile configuration.
- FIG. 5 shows a cross sectional view of a controllable skin texture surface 500 similar to that shown in FIG. 4 but in this example, the flexible skin structure 320 may also include tabs 502 that are integrally formed with the texture pockets 322 to assist in raising the center of the texture pockets 322 , if desired.
- the flexible skin structure 320 is also considered to include a plate structure 504 that includes openings 506 corresponding to each desired texture element. The openings 506 receive the tabs 502 configured to engage with the movable ramp structure 308 . As shown, as the movable ramp structure 308 is moved, it raises or lowers portions of the flexible skin structure 320 in response to movement of the cam structure 408 .
- the individual sliding elements 402 and 406 have been moved to raise portions of the flexible skin structure 320 whereas individual sliding element 404 has not been moved and therefore the flexible skin structure is flat at the appropriate locations.
- the movable housing portion may be mechanically coupled to the cam structure 408 such that mechanical movement of the housing portion causes movement of the cam structure.
- the cam structure may be electronically controlled independent of any movable housing portion as desired.
- a motor may be coupled to engage with the cam structure and move the cam structure in response to an electronic control signal to move one or more of the plurality of ramps to a desired location.
- the sliding movable ramp structure 308 , 404 - 406 with wedge shaped features moves horizontally to force tabs (e.g., pins) molded into the back of the flexible skin structure upwardly and thereby causes portions of the flexible skin structure corresponding to the texture pockets to be raised and thereby create a desired texture pattern.
- a touch sensor such as a capacitive sensor, may also be used to detect the touch of a user's finger against the flexible skin structure. The sensing may be used as an input to actuate the texture mechanism or to execute another function that would correspond to the press of a button.
- mechanical switches such as dome-type switches known in the art could be placed underneath portions of the movable ramp structure to allow a user to press and thereby actuate one or more of the switches.
- FIGS. 6 and 7 illustrate another example of a mechanical actuation structure that uses a movable ramp structure and flexible skin structure.
- the tabs 502 FIG. 5
- a wedge shaped element 600 includes an anchored portion 602 and a movable wedge section 604 that pivots with respect to the anchored portion 602 .
- Each wedge shaped element 600 that includes the anchored portion 602 and movable wedge section 604 may be secured in the device in a fixed location below the flexible skin structure 320 and above a sliding ramp or movable ramp structure 606 .
- the pivotable wedge shaped elements 604 are moved by ramp sections 608 of the movable ramp structure 606 such that they come in contact with desired portions of the flexible skin structure 320 .
- this structure may provide reduced friction and wear between sliding elements and tabs molded into the flexible skin structure.
- any desired flexible skin structure and ramp structure may be employed. Movement of the ramp structure causes movement of the wedge shaped elements and movement of the flexible skin structure to provide a change in tactile configuration.
- the substrate anchored portion 602 serves as a substrate for the flexible skin structure 320 and is interposed between the flexible skin structure 320 and the movable ramp structure 606 .
- a touch sensor 324 is supported by the substrate and located between at least two movable portions (e.g., 322 ) of the flexible skin structure. It will be recognized that the touch sensors 324 may be suitably located at any location depending upon the desired functionality of the portable electronic device.
- FIGS. 8 , 9 and 10 illustrate an example of a shape memory alloy actuation structure 800 and a corresponding flexible skin structure 320 that moves in response to movement of a metal alloy 812 in the shape memory alloy actuation structure 800 in accordance with one embodiment.
- FIG. 8 is a top view illustrating a plurality of pivoting elements 802 - 808 that are pivotally connected with a base 810 .
- the plurality of pivoting elements 802 - 808 pivot along pivot points generally indicated at 814 caused by, in this example, the lengthening and shortening of a shape memory alloy 812 such as nitinol wire, or any other suitable shape memory alloy.
- a single segment of shape memory alloy 812 may be connected to the pivoting elements 802 - 808 and to the base portion as diagrammatically illustrated as connection points 816 . It will be recognized, however, that any suitable connection location or connection technique may be used to affix one or more shape memory alloy segments to one or more pivoting elements. It will also be recognized that the shape of the pivoting elements and their length and material may vary depending upon the particular application. One example for illustration purposes only, and not limitation, may include using polypropylene or nylon. Also the hinged area or pivot location 814 may be thinned if desired.
- a voltage or current source 820 is selectively applied by opening and closing switch 822 by suitable control logic 200 .
- a separate segment of shape memory alloy may be used independently for each pivot element 802 - 808 so that each pivot element may be controlled independently by the control logic.
- the discussion will assume that a single shape memory alloy element is used to move all the pivoting elements 802 - 808 at the same time. In any embodiment, when current is passed through the shape memory alloy, it shortens, causing the pivotal elements 802 - 808 to push up against the flexible skin.
- the base 810 may be suitably mounted horizontally, for example, underneath the flexible skin structure and positioned so that the pivoting elements 802 - 808 suitably align with desired portions of the flexible skin structure to move (e.g., raise and lower) portions of the flexible skin structure.
- different or separate wires may be attached to different pivoting elements in order to provide selectively as to which texture elements are actuated.
- the controllable skin texture surface includes a skin texture actuation structure that includes a plurality of pivoting elements 802 - 808 having a shape memory alloy (whether single or multiple elements thereof) coupled to the skin texture to effect movement of the pivoting elements against the flexible skin structure which moves in response to movement of the plurality of pivoting elements.
- the movement of the pivoting elements change a tactile configuration of a portion of the controllable skin texture surface that is contacted by the pivoting elements.
- the control logic 200 activates, for example, switch 822 or a plurality of other switches to provide suitable current to control movement of the pivoting elements by applying current to the shape memory alloy element 812 .
- a voltage source or current source may be provided for each individual pivoting element and may be selectively switched in/out to control the movement of each pivoting element as desired. Any other suitable configuration may be also be employed.
- the flexible skin over the hinged elements will generally act to provide a restorative force that returns the elements to a planar state when the current through the SMA is turned off.
- FIGS. 9 and 10 show a cross section of one pivoting element of FIG. 8 and further includes the illustration of the flexible skin structure 320 and further shows a pivoting element 808 in both an activated state ( FIG. 10 ) where the flexible skin structure is raised, and an inactive state where the flexible skin structure 320 is flat ( FIG. 9 ).
- the flexible skin structure 320 has pockets corresponding to desired texture features that are molded into the reverse surface or under surface thereof and bonded to a portion of the housing or other substructure within the device as noted above.
- a series of pivoting elements 802 - 808 underneath the flexible skin structure are connected, in one example, via a single length of shape memory alloy such that in a neutral position, the pivoting elements lie flat.
- a second series of pivoting elements 1002 may be introduced beneath the first series of pivotal elements 806 , 808 to act as locks.
- the first series of hinged elements 806 , 808 are actuated, the second series of pivoting elements 1002 are positioned so as to fall in to gaps 1000 created by the motion of the first set of pivoting elements thereby locking them into the raised position or to simply position underneath the first pivotal elements. It will be recognized that any other location may also be used or that any other suitable technique may be employed.
- an end of a biasing element 1006 such as a spring is fixedly attached to a portion of the housing or any other suitable structure and another end is caused to contact a portion of the pivotal second set of elements 1002 .
- the pivotal second set of elements may be made of any suitable structure such as plastic that suitably bends about a pivot point shown as 1008 .
- a portion of the pivoting elements 1002 are also fixedly attached to a structure of the device to prevent movement of an end thereof.
- the shape memory alloy element 1004 associated with each locking element 1002 also has a portion connected to the element 1002 as well as a fixed structure. The locking element swings as shown, in this example in plane of the FIG.
- the locking feature moves in the plane of the surface to lock the hinged elements. This as opposed to, for example, moving out of the plane in an opposite direction of the hinged element, which may also be done if desired.
- the thickness of the overall implementation may be less if the locking element is caused to move in plane to the figure as shown.
- the hinged elements 808 rise out of the plane when actuated by an SMA element or actuator (not shown) and is blocked by the locking element moving in plane of the figure as shown.
- pivoting elements serves as a type of pivot lock structure made of a shape memory alloy, the same type for example, as noted above.
- the pivot lock structure is coupled to the control logic 200 and is controlled to be positioned to lock the pivoting elements in a desired position.
- the pivot lock structure may be alternately positioned to passively lock the pivoting elements in a desired position, and then controlled to release them when desired.
- control logic controls the second shape memory alloy to deactuate the hinge lock structure to unlock the plurality of hinged elements in response to a passive actuation of the hinge lock structure.
- a method for actuating a controllable skin texture surface includes, for example, controlling the first shape memory alloy to actuate the plurality of pivoting elements.
- the pivot lock structure will naturally act to lock the plurality of pivoting elements in a first position.
- the method includes deactivating the first shape memory alloy in response to the pivot lock structure being actuated. This allows the current to the first pivoting element to be removed and it is locked in place.
- the method may also include then unlocking the hinged elements by, for example, by actuating the first shape memory alloy and then controlling the second shape memory alloy to unlock the hinge lock structure by applying current to the shape memory alloy actuator that moves the lock structure to unlock the pivoting elements from their raised position.
- FIG. 11 illustrates a portion of a portable electronic device that employs an embodiment of a controllable skin texture surface, and in this example, the portion of the electronic device is shown to be a keypad.
- the controllable skin texture surface includes a skin texture surface actuation structure that includes a hydraulic actuation structure that causes a change in tactile configuration of a flexible skin structure in response to movement of fluid underneath the flexible skin structure.
- FIGS. 12 and 13 are cross sectional views of a portion of FIG. 11 and will be described together with FIG. 11 .
- a flexible skin structure 1100 similar to that described above with respect, for example, to FIG. 3 and elsewhere, includes fluid chambers or pockets 1102 corresponding to desired texture features that are molded into a reverse surface of the flexible skin structure.
- the wall thickness of the pockets may be thinner than other portions of the flexible skin texture to allow less resistance to fluid expansion.
- the flexible skin structure 1100 is bonded, for example, to a surface of the housing of the portable electronic device to form suitable seals around the various fluid chambers 1102 .
- a supporting substrate 1104 which may be the housing of the device or a separate substrate within the device, includes fluid channels 1106 formed therein that are positioned to be in fluid communication with the fluid chambers 1102 . It will be recognized that any suitable structure of first channels 1106 may be used including separate channels that allow the activation of any suitable texture location, depending upon the desired application.
- the flexible skin structure 1100 when fluid is removed from the channels 1106 , the flexible skin structure 1100 is flat or in an unactuated state, and when an appropriate amount of fluid is moved into the various chambers, the flexible skin structure is actuated at appropriate locations to provide a three dimensional pattern on an outer surface of the portable electronic device.
- the channels 1106 are fluidly connected with one or more manifolds 1108 that may be molded into a surface of the housing or substrate 1104 or be a separate structure if desired. Separate positive displacement pumps (not shown) or one pump may be fluidly coupled to an inlet 1110 in each of the manifolds.
- the manifolds 1108 as described are in fluid communication with one or more fluid reservoirs via one or more pumps.
- Control logic 200 sends the appropriate control information to cause the positive displacement pumps to transfer fluid from an internal reservoir (not shown) in the device through the manifold and into the channels and hence the chambers molded into the rear surface of the flexible skin structure 1100 .
- the hydraulic actuation structure includes in this example, the substrate 1104 that includes one or more fluid channels 1106 and the flexible skin structure 1100 is suitably affixed to the substrate either directly or through any suitable intermediate structures.
- the flexible skin structure 1100 includes a plurality of fluid pockets also shown as 1102 corresponding to texture features. The fluid pockets 1102 are in fluid communication with the fluid channels 1106 to allow fluid to be added to or removed from the chamber to actuate or deactuate the respective texture feature.
- fluid pumps may be controlled via control logic.
- the pumps may be activated via mechanical movement of a movable portion of the housing, such as a movement of a clam shell such that, for example, the rotational movement of a housing portion causes the fluid to be pumped into the fluid chambers.
- the pump is controlled to reverse fluid flow when the flip portion is closed.
- there may be a fluid pump operative to move fluid into the fluid passages (and out of the passages) and a movable housing portion that is coupled with the fluid pump such that mechanical movement of the housing portion causes the fluid pump to pump fluid in at least one fluid passage.
- the movement of the movable housing portion in another direction may serve to remove fluid from the one or more respective chambers and return it to an internal reservoir.
- FIG. 14 illustrates another embodiment of a hydraulic actuation structure and flexible skin structure that in this example, shows fluid channels 1400 with additional fluid channels 1402 connected with specific chambers that are molded into a rear surface of the flexible skin structure 1100 .
- the flexible skin structure includes multiple features wherein movement of each of the features is controlled independently.
- the fluid channels 1400 are in fluid communication with the manifold 1404 whereas other chambers 1401 are in fluid communication with manifold 1406 .
- suitable pump inlets 1408 and 1410 are shown that are in fluid communication with pumps (not shown).
- light sources 1412 and 1414 are positioned in proximity to the respective manifold 1404 and 1406 to serve as a light source (such as one or more colored LEDs) and a clear fluid may be used to act as a light guide to direct the light from the internal light sources to, for example, translucent flexible portions of the flexible skin structure.
- a clear fluid may be used to act as a light guide to direct the light from the internal light sources to, for example, translucent flexible portions of the flexible skin structure.
- the fluid itself may be colored so as to make the raised texture elements visually distinct by the change in color due to the color fluid contained therein. Any other suitable combination may also be employed if desired.
- the light sources may be suitably controlled to turn on and off as desired based on an incoming call, user programmed sequence, be activated by a ring tone, or may be controlled in any other suitable manner by the control logic.
- FIG. 15 illustrates one example of the portable electronic device 1500 with the appearance of a 3D pattern with five tactile surfaces being actuated. Unactuated portions 1502 are shown to be flat in this particular example.
- FIG. 16 illustrates an alternative embodiment wherein the flexible skin structure 1600 includes molded pocket patterns 1602 in an under portion thereof to receive fluid.
- a rigid substrate 1604 includes the suitably positioned fluid channels 1606 that are in fluid communication with one or more manifolds 1608 and also include a pump inlet.
- the manifold 1608 is attached to a rear side of the right substrate 1604 and is in fluid communication with channels 1606 through openings 1610 .
- Each of the microchannels include, for example, openings 1610 to allow fluid to pass from the manifold into the channel 1606 as described above.
- One or more pumps may also be used as noted above to raise and lower the pattern 1602 by passing fluid in or out of the channel 1606 .
- the outer skin of the cell phone may be activated to give a three dimensional texture that may be suitably activated and deactivated as desired.
- the channels 1606 may be positioned with sufficiently fine spacing that they provide any suitable texture pattern to be actuated.
- the skin texture may have one or more cover layers to protect the skin texture from damage from ultraviolet radiation, physical scratches, or any other potential hazards.
- FIG. 17 is a block diagram illustrating one example of the structure 1700 for controlling the hydraulic controllable skin texture surface examples noted above.
- the device may include one or more fluid pumps 1702 which provide fluid 1704 to and from the controllable skin texture surface.
- Control logic in one example, shown as 200 provides suitable control information 1708 in the form of analog or digital signals, for example, to control the one or more fluid pumps 1702 to provide the fluid 1704 in a controlled manner to actuate and deactuate one or more portions of a flexible skin to provide a three dimensional tactile configuration as desired.
- a pressurized gas could be employed instead of a fluid.
- FIGS. 18 a and 18 b illustrate another embodiment wherein, instead of a sliding ramp structure (for example as shown in FIGS. 6 and 7 ), a plurality of hinged elements 1830 that have an anchored portion 1832 attached to the flexible skin structure 320 through a suitable adhesive or through any other suitable attachment mechanism. Each of the hinged elements 1830 also have a movable section 1834 .
- the flexible skin structure 320 includes pins 1836 which are, for example, longer than those shown in FIG. 6 .
- the device further includes a substrate 1840 such as, for example, a printed circuit board which has attached thereto, dome switches 1842 as known in the art.
- the dome switches 1842 are positioned to align under the pins.
- a flexible sliding member 1846 is interposed between the substrate 1840 and the anchored portion 1832 underneath the flexible skin surface 320 .
- the flexible sliding member 1846 may be made from, for example, nylon or polypropylene sheet, or other suitably flexible material that allows motion of the movable section of the hinged element 1834 to be transferred to the dome switch 1842 .
- Holes 1850 in the flexible sliding member 1846 allow the movable sections of hinged elements 1834 to rotate downward toward the substrate 1840 , as shown in FIG. 18 a .
- the end of the movable section of the hinged element 1834 may be designed so as to come in contact with the substrate 1840 such that pressing the flexible surface 320 will not actuate the dome switch 1842 .
- the flexible sliding member 1846 is moved, as described above based on any suitable structure to activate and in this case, raise portions of the flexible skin structure 320 .
- the material is compressible, when a user presses on a top surface of the flexible skin structure 320 , the pin causes the moving portion 1834 to press down upon the flexible material of the flexible sliding member 1846 and depress the dome switch 1842 .
- a user may activate the dome switch only when the flexible skin texture is actuated.
- the geometry of the movable section of the hinged element 1834 may also be designed such that the dome switch may be actuated by pressing the flexible skin 320 whether the skin is in either the actuated or unactuated state ( FIGS. 18 b and 18 a , respectively).
- this embodiment may allow the flexible sliding member 1846 to be stamped rather than, for example, molded and also uses conventional dome switches in combination thereby providing a potentially lower cost structure.
- the hinged elements 1830 may be made of any suitable material such as nylon, polypropylene sheet or any other suitable material as desired.
- the flexible sliding member may be configured as a sliding member that slides along rails formed in a housing or other structure or may be configured in any other suitable manner as desired.
- FIGS. 19-20 illustrate another example of a controllable skin texture surface structure that employs an expandable gas actuation structure to raise and lower desired portions of a flexible skin structure to provide a controllable tactile surface of a portable electronic device.
- a skin texture surface actuation structure includes an expandable gas actuation structure that includes a gas therein 1802 such as air, or a material such as Freon or alcohol that changes from liquid to gas at a specified temperature and pressure, and a flexible skin structure 1804 such as the type described above.
- the expandable gas actuation structure includes a gas chamber 1800 that is thermally coupled to a heating element 1808 such as an electrical resistor, or any other suitable structure, that may be turned on and off by control logic as desired to heat the gas 1802 within the chamber 1800 and cause the gas to expand.
- a heating element 1808 such as an electrical resistor, or any other suitable structure, that may be turned on and off by control logic as desired to heat the gas 1802 within the chamber 1800 and cause the gas to expand.
- the expansion of the gas 1802 causes the gas to expand and fill the chamber 1800 of the flexible skin structure 1804 .
- the heating element 1808 is turned off, the gas cools and the chamber 1800 collapses to put the flexible skin structure in an unactuated state.
- the flexible skin structure 1804 includes pockets corresponding to desired texture features wherein the pockets or chambers are molded into the reverse surface or an undersurface of the flexible skin structure 1804 .
- the flexible skin structure 1804 is attached to a substrate 1814 as described above, which may be part of the housing of the device or any other structure. It is bonded so as to provide a sealed environment so that the gas 1802 in the chamber 1800 cannot escape the chamber 1800 .
- an electric current is sent through the heating element 1808 , the increased temperature causes the trapped gas in the pockets to expand thereby raising the pocket or outer surface over the chamber 1810 .
- the flexible skin structure includes expandable portions (e.g., pockets) that define a plurality of gas chambers. Each of the gas chambers includes a controllable heating element that may be activated together or individually.
- the substrate 1814 includes a heating element(s) 1808 corresponding to each respective texture element.
- all of the examples described herein may include one or more touch sensors 202 which may be used in any suitable manner.
- FIG. 19 shows a deactivated state of the flexible skin texture
- FIG. 20 shows an activated state of the flexible skin structure 1804 .
- FIGS. 21 and 22 diagrammatically illustrate one example of a controllable skin texture surface 2102 with a particular pattern 2102 that may be activated and nonactivated using one or more of the above described actuation structures based on any suitable condition.
- the tactile configuration or pattern 2102 may simply be located on an outer surface of the portable electronic device 2106 and need not be part of a user interface but instead provides a unique visual experience and tactile experience for a user.
- FIGS. 23-25 illustrate yet another example of controlling of a controllable skin texture surface 2300 (here shown as multiple hearts) of the types described above wherein a different portion 2302 - 2306 is activated at different points in time by control logic to give a visual appearance or tactile feel of a moving object.
- a “heart” in the pattern is activated at different times.
- animation of texture such as variations in surface texture over time, may be used to animate a character or feature.
- the device 100 includes a tactile conforming structure 2600 that has a controllable skin texture surface 2602 .
- the tactile conforming structure 2600 is an earpiece and the controllable skin texture surface 2602 substantially circumscribes the acoustic port 103 .
- the controllable skin texture surface 2602 is operative to conform to a user surface such as a user's ear thereby improving actual and perceived audio quality.
- the device 100 can communicate with a remote device 2604 such as a wireless headset or other suitable remote device via a wireless link 2606 .
- the remote device 2604 includes the tactile conforming structure 2600 that is operative to conform to the user's ear.
- the tactile conforming structure 2600 is operatively coupled to a housing portion 2605 of the remote device 2604 .
- the remote device 2604 can also include a microphone 2608 for the user to speak into and an ear hook 2610 to hold the remote device 2604 on the user's ear.
- the tactile conforming structure 2600 conforms to a user's ear in this example, other uses are contemplated.
- the tactile conforming structure 2600 can conform to other suitable user surfaces such as, for example, a user's face to improve comfort and usability of the device 100 , 2604 .
- the tactile conforming structure 2600 can be employed in a face mask, such as those used for respiration, to conform to a user's face creating an improved seal.
- face mask such as those used for respiration
- FIG. 27 illustrates a functional block diagram of the tactile conforming structure 2600 .
- the tactile conforming structure 2600 includes control logic 200 that is operatively coupled to a sensor 2700 and the controllable skin texture surface 2602 .
- the sensor 2700 includes one or more sensors such as capacitance sensors, resistive sensors, pressure sensors, and/or any other suitable sensors.
- the sensor 2700 is operative to sense a plurality of points of interest of a user surface such as a user's ear, face, and/or any other suitable user surface.
- the points of interest can be highpoints of the user surface, lowpoints of the user surface, and/or any other points of interest.
- control logic 200 controls a plurality of portions of the controllable skin texture surface 2602 to protrude at locations with respect to the points of interest. In this manner, the tactile conforming structure 2600 conforms to the user surface, which improves comfort and usability of the device 100 , 2604 .
- FIGS. 28-29 illustrate examples of the control logic 200 controlling the tactile conforming structure 2600 .
- the control logic 200 controls the tactile conforming structure 2600 to conform to the user surface when the device 100 , 2604 is in use such as, for example, during a phone call when the device is a mobile phone.
- the control logic 200 controls the tactile conforming structure to conform to the user surface when the device 100 , 2604 is powered on.
- the control logic 200 controls protruding portions of the tactile conforming structure 2600 to retract when the device 100 , 2604 is not in use and/or powered on.
- FIG. 28 is a cross-sectional view of one example of the tactile conforming structure 2600 when the control logic 200 is not controlling the tactile conforming structure 2600 .
- the tactile conforming structure 2600 includes the controllable skin texture surface 2602 and the sensor 2700 , which substantially circumscribe the acoustic port 103 . As shown, the controllable skin texture surface 2602 overlays the sensor 2700 . In addition, the sensor 2700 is operatively coupled to the housing portion 110 , 2605 .
- the control logic 200 is not controlling the tactile conforming structure 2600 to conform to a user surface 2800 such as a user's ear. Accordingly, multiple gaps 2802 exist between the controllable skin texture surface 2602 and the user surface 2800 . When the user surface 2800 is an ear, the gaps 2802 effectively degrade actual and perceived audio quality of sound delivered to the ear 2800 , which is undesirable.
- the sensor 2700 senses points of interest of the user surface 2800 such as highpoints 2804 , lowpoints 2806 and/or any other suitable points of interest.
- the control logic 200 controls a plurality of portions 2900 of the controllable skin texture surface 2602 to protrude as shown in FIG. 29 .
- the protruding portions 2900 of the controllable skin texture surface 2602 reduce the size of the gaps 2802 , which improves actual and perceived audio quality delivered to a user's ear.
- the senor 2700 senses portions of the user surface 2800 , such as the highpoints 2804 , that make contact with the tactile conforming structure 2600 .
- the control logic 200 controls non-contacting portions 2900 , such as portions that are adjacent to the highpoints 2804 , to protrude until the non-contacting portions 2900 make contact with the user surface 2800 or until the non-contacting portions 2900 protrude to a maximum level.
- the sensor 2700 senses proximity of the points of interest 2804 , 2806 .
- the control logic 200 determines distances between the tactile conforming structure 2600 and the user surface 2800 based on the sensed proximity.
- the control logic 200 controls the portions 2900 of the controllable skin texture surface 2602 to protrude based on the determined distances.
- the senor 2700 senses pressure on the points of interest 2804 , 2806 .
- the control logic 200 controls the portions 2900 of the controllable skin texture surface 2602 to protrude until the pressure on the highpoints 2804 are approximately equal to the pressure on the lowpoints 2806 or until the portions 2900 have protruded to a maximum level.
- the control logic 200 periodically adjusts the protruding portions 2900 of the controllable skin texture surface 2602 in response to movement between the user surface 2800 and the controllable skin texture surface 2602 .
- the tactile conforming structure 2600 is periodically readjusted to conform to the user surface 2800 due to movement between the user surface 2800 and the controllable skin texture surface 2602 .
- step 3002 exemplary steps that can be taken by the tactile conforming structure 2600 are generally identified at 3000 .
- the process begins in step 3002 when the device 100 , 2604 is in use and/or powered on.
- the sensor 2700 senses the points of interest 2804 , 2806 of the user surface 2800 .
- the control logic 200 controls the portions 2900 of the controllable skin texture surface 2602 to protrude at locations with respect to the points of interest 2804 , 2806 in response to the sensor 2700 sensing the points of interest 2804 , 2086 .
- the control logic 200 controls adjacent portions of the controllable skin texture surface 2602 to protrude.
- the control logic 200 controls coincident portions of the controllable skin texture surface 2602 to protrude.
- the process ends in step 3008 .
- step 3100 additional exemplary steps that can be taken by the tactile conforming structure 2600 are generally identified at 3100 .
- the process starts in step 3102 when the device 100 , 2604 is powered on.
- step 3104 the control logic 200 determines whether the device 100 , 2604 is in use.
- the device 100 , 2604 can be in use during a phone call, for example, or when a user has the remote device 2604 placed on the ear and powered on. If the device 100 , 2604 is not in use, the control logic 200 determines whether the portions 2900 of the controllable skin texture surface 2602 are protruding in step 3106 . If the portions 2900 are not protruding, the process ends in step 3108 . However, if the portions 2900 are protruding, control logic 200 retracts the portions 2900 of the controllable skin texture surface 2602 in step 3110 and the process ends in step 3108 .
- control logic 200 determines that the device 100 , 2604 is in use in step 3104 , the sensor 2700 senses the points of interest 2804 , 2806 of the user surface 2800 in step 3112 . In step 3114 , the control logic 200 controls the portions 2900 of the controllable skin texture surface 2602 to protrude in response to the sensor 2700 sensing the points of interest 2804 , 2806 .
- the control logic 200 periodically adjusts the portions 2900 protruding from the controllable skin texture surface 2602 in response to movement between the skin texture surface 2602 and the user surface 2800 . More specifically, the sensor 2700 senses the points of interest 2804 , 2806 in step 3116 . In response thereto, the control logic 200 determines whether the points of interest 2804 , 2806 have changed since the last iteration in step 3118 . If the points of interest 2804 , 2806 have not changed, the process returns to step 3116 . However, if the points of interest 2804 , 2806 have changed, the control logic 200 adjusts the protruding portions 2900 of the controllable skin texture surface 2602 in step 3120 .
- step 3122 the control logic 200 determines whether the device 100 , 2604 is still in use. If the device 100 , 2604 is still in use, the process returns to step 3116 . However, if the device 100 , 2604 is not still in use, the process returns to step 3106 and the process ultimately ends in step 3108 .
- a portable electronic device includes a tactile conforming structure that conforms to a user surface such as a user's ear creating an improved acoustical coupling, which improves actual and perceived audio quality delivered to the user.
- the tactile conforming structure can conform to other suitable user surfaces such as, for example, a user's face to improve comfort and usability of the device.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Telephone Set Structure (AREA)
- Prostheses (AREA)
Abstract
Description
- The present patent application claims priority from and the benefit of U.S. Provisional Patent Application No. 60/957,033, filed Aug. 21, 2007, and entitled Tactile Conforming Apparatus and Method for a Device, which prior application is hereby incorporated herein by reference. This application is also related to co-pending applications entitled Method and Apparatus for Controlling a Skin Texture Surface on a Device, filed on Apr. 4, 2007, having application Ser. No. 11/696,466, inventor Michael E. Caine, owned by instant Assignee and is incorporated herein in its entirety by reference; Method and Apparatus for Controlling a Skin Texture Surface on a Device Using a Shape Memory Alloy, filed on Apr. 4, 2007, having application Ser. No. 11/696,481, inventor Michael E. Caine, owned by instant Assignee and is incorporated herein in its entirety by reference; Method and Apparatus for Controlling a Skin Texture Surface on a Device Using Hydraulic Control, filed on Apr. 4, 2007, having application Ser. No. 11/696,496, inventor Michael E. Caine, owned by instant Assignee and is incorporated herein in its entirety by reference; and Method and Apparatus for Controlling a Skin Texture Surface on a Device Using a Gas, filed on Apr. 4, 2007, having application Ser. No. 11/696,503, inventor Michael E. Caine, owned by instant Assignee and is incorporated herein in its entirety by reference.
- The disclosure relates generally to portable electronic devices and more particularly to portable electronic devices that employ variable skin texture surfaces.
- Portable electronic devices, such as laptops, wireless handheld devices such as cell phones, digital music players, palm computing devices, or any other suitable devices are increasingly becoming widespread. Improved usability of such devices can increase sales for sellers as consumer demand can be driven by differing device usability characteristics and device features.
- Providing differing device usability such as by changing the tactile configuration and/or visual appearance of a surface of a portable electronic device by altering the emission reflection of light to change the overall color or graphics that appear and disappear are known. Surfaces of electronic devices, including portable electronic devices may include, for example, exterior surfaces of the device, activation keys such as keys in a keypad or navigation keys, tactile navigation interfaces, or any other suitable surface.
- Also, as one example to enhance the tactile configuration and/or visual appearance of a device, it has been proposed to employ haptics such as in the form of electro-active polymers that change 3D shape, also referred to as texture, based on the application of a voltage to portions of the electro-active polymer. Differing textures and shapes can thereby be produced to give the device a different visual appearance and/or tactile configuration. For example, if a portable device includes such electro-active polymers as a type of outer skin, turning power on to the device can cause the electro-active polymer to be activated so that a 3D texture is present and can be felt by a user of the device. It has also been proposed to use piezoelectric actuators as a type of haptic sensor on handheld devices. In one example, a control slider is configured as a bending piezo-actuator. Also it has been proposed to provide handheld devices with menus, such as piezo-actuated haptic icons, that have different tactile feedback for a user so that the user can, for example, turn a phone to a “silent” mode from an active mode by feeling the proper control key and receiving feedback of actuation of the key once it is activated. It is desirable to provide differing methods and apparatus for actuating skin texture surfaces of a device and differing user experiences.
- Some portable electronic devices include an earpiece having an acoustical port to provide sound to a user. In these devices, the user holds the earpiece against the user's ear in order to hear the sound. Although this method works, actual and perceived audio quality can be degraded due to gaps between various points of the user's ear and the earpiece. Accordingly, it is desirable to provide, among other things, an improved acoustical coupling between the earpiece and the user's ear thereby improving actual and perceived audio quality.
- The present invention and the corresponding advantages and features provided thereby will be best understood and appreciated upon review of the following detailed description of the invention, taken in conjunction with the following drawings, where like numerals represent like elements, in which:
-
FIG. 1 is a perspective view of an example of a wireless handheld device that employs a controllable skin texture surface in accordance with one embodiment of the invention; -
FIG. 2 is a block diagram illustrating one example of an apparatus that includes control logic that controls a controllable skin texture surface in accordance with one embodiment of the invention; -
FIG. 3 is an assembly view of a portion of an apparatus in accordance with one embodiment of the invention; -
FIG. 4 is a perspective view illustrating one example of a portion of a mechanical actuation structure that may be part of a controllable skin texture surface in accordance with one embodiment of the invention; -
FIG. 5 is a perspective and side view of the structure shown inFIG. 4 and a portion of a flexible skin structure in accordance with one embodiment of the invention; -
FIG. 6 is a cross-sectional view illustrating another example of a controllable skin texture surface that employs a mechanical actuation structure in accordance with one embodiment of the invention; -
FIG. 7 is a cross-section view as shown inFIG. 6 with texture actuation in accordance with one disclosed example; -
FIG. 8 is a top view of one example of a shape memory alloy actuation structure that may be employed as part of a controllable skin texture surface according to one example of the invention; -
FIGS. 9 and 10 a are cross-sectional views illustrating the operation of the structure shown inFIG. 8 ; -
FIG. 10 b is a diagram illustrating one example of a bi-stable shape memory alloy actuation scheme according to one example of the invention; -
FIG. 11 is a top view illustrating a portion of a portable electronic device that employs an embodiment of a controllable skin texture surface; -
FIGS. 12 and 13 are cross sectional views of portions ofFIG. 11 illustrating a deactuated and actuated skin texture structure in accordance with one embodiment; -
FIG. 14 is a top view illustrating a portion of a portable electronic device that employs an embodiment of a controllable skin texture surface; -
FIG. 15 is a perspective view of a portable electronic device with a controllable skin texture surface in accordance with one embodiment; -
FIG. 16 is a perspective view illustrating one example of a flexible skin structure and corresponding portion of a hydraulic actuation structure in accordance with one example set forth in disclosure; -
FIG. 17 is a block diagram illustrating the portion of a portable electronic device in accordance with one example; -
FIGS. 18 a and 18 b illustrate a cross sectional view of an embodiment employing a flexible sliding plate in accordance with one embodiment of the invention; -
FIGS. 19 and 20 illustrate cross sectional views of another example of a gas expandable actuation structure and flexible skin structure in accordance with one example; -
FIGS. 21 and 22 illustrate a perspective view of a portable electronic device with a deactuated and actuated controllable skin texture surface; -
FIGS. 23-25 illustrate a perspective view of a portable electronic device illustrating different portions of a controllable skin texture being actuated and deactuated in accordance with one example disclosed below; -
FIG. 26 is a perspective view of an example of a wireless handheld device and a remote device that each employ a tactile conforming structure; -
FIG. 27 is a functional block diagram of the tactile conforming structure; -
FIG. 28 is a cross-sectional view of one example of the tactile conforming structure when control logic is not controlling the structure to conform to a user surface; -
FIG. 29 is a cross-sectional view of one example of the tactile conforming structure when control logic is controlling the structure to conform to the user surface; -
FIG. 30 is a flowchart depicting exemplary steps that can be taken by the tactile conforming structure to conform to the user surface; and -
FIG. 31 is a flowchart depicting additional exemplary steps that can be taken by the tactile conforming structure to conform to the user surface. - In one example, a device includes a controllable skin texture surface, a sensor, and control logic. The sensor senses a plurality of points of interest of a user surface such as an ear surface or other suitable user surface. Exemplary points of interest include highpoints of the user surface, lowpoints of the user surface and/or any other suitable points of interest. The control logic controls a plurality of portions of the controllable skin texture surface to protrude at locations with respect to the plurality of points of interest in response to the sensor sensing the plurality of points of interest. In one example, the control logic periodically adjusts the plurality of portions protruding from the controllable skin texture surface in response to movement between the user surface and the controllable skin texture surface. A related method is also disclosed.
- In one example, the device includes an earpiece that includes an acoustic port, the controllable skin texture surface, the sensor, and the control logic. The controllable skin texture surface substantially circumscribes the acoustic port.
- Among other advantages, the controllable skin texture surface conforms to the user surface such as a user's ear creating an improved acoustical coupling, which improves actual and perceived audio quality delivered to the user. Furthermore, the controllable skin texture surface can conform to other suitable user surfaces such as, for example, a user's face to improve comfort and usability of the device. Other advantages will be recognized by those of ordinary skill in the art.
-
FIG. 1 illustrates one example of a portableelectronic device 100, shown in this example to be a handheld wireless device, that includes a wireless telephone subsystem for communication via one or more suitable wireless networks, and other conventional circuitry along with adisplay 102 for displaying information to a user and anacoustic port area 103 for delivering sound to the user. The portableelectronic device 100 also includes a controllableskin texture surface 104 that in this example, covers a portion of a housing (e.g., base housing) of thedevice 100 that forms part of a user interface portion, namely a user keypad. The controllableskin texture surface 104 also includes othercontrollable surfaces electronic device 100 is a flip phone having afoldable housing portion 110 that pivots about apivot mechanism 112 as known in the art. Thefoldable housing portion 110 may also include a keypad and controllable skin texture surface as desired. The controllableskin texture surface 104 is controlled to change the tactile configuration of a portion of the skin texture surface to, in this example, raise respective portions of the skin texture to provide a tactilely detectable keypad and other tactile and/or aesthetic features. In one example, the controllableskin texture surface 104 may be flat when, for example, the phone is in a standby mode, but the controllableskin texture surface 104 is controlled to activate portions thereof to provide raised keys for a keypad when an incoming wireless call is detected and is controlled to become flat (deactivated) when a call ends. Other input information is also used to control the actuation/deactuation of the controllable skin texture as described below. -
FIG. 2 illustrates in block diagram form the portable electronic device ofFIG. 1 or any other suitable portable electronic device such as a laptop computer, portable Internet appliance, portable digital media player, or any other suitable portable electronic device. As shown,control logic 200 changes a tactile configuration of a portion of the controllable skin texture surface 104 (and/or 106 and 108) by producing control information 204 (e.g., digital or analog signals) in response to at least any one of a received wireless signal, a battery level change condition such as a low battery condition, based on an incoming call or message, based on information from a proximity sensor, sound sensor, light sensor or other environmental sensor generally designated as 202, or data representing a user of the device, such as the input via a microphone and a voice recognition module that recognizes the user's voice, or a password or passcode entered by a user indicating a particular user, or data representing completion of a user authentication sequence such as the entry of a password and PIN or any other suitable authentication process as desired. Other data may also be used such as control data based on a pressure sensor, humidity sensor, shock sensor or vibration sensor. State changes may also be used to control the texture such as, but not limited to, radio signal strength, device orientation, device configuration (e.g., flip open, phone mode vs. audio playback mode vs. camera mode), a grip of a user or data representing a change of state of a program executing on a device, including the state of a program executing on another device connected via a wired or wireless connection such as a server or another portable device. Other incoming data representing other incoming signals may include, for example, changing or controlling the texture based on an incoming SMS, email or instant message, a proximity to a radio source such as an RFID reader, a Bluetooth™ enabled device, a WIFI access point, or response from an outgoing signal such as a tag associated with an RFID. Other data that may be suitable for triggering or controlling the activation of the texture may include data representing the completion of a financial transaction, completion of a user initiated action such as sending a message, downloading a file or answering or ending a call, based on a timeout period, based on the location of the device relative to some other device or an absolute location such as a GPS location, status of another user such as the online presence of another instant message user, availability of a data source such as a broadcast TV program or information in a program guide, based on game conditions such as a game that is being played on the device or another networked device, based on for example, other modes of data being output by the device such as the beat of music, patterns on a screen, actions in a game, lighting of a keypad, haptic output, or other suitable data. By way of example, thecontrol logic 200 may raise portions of the controllableskin texture surface 104 to represent keys, in response tosensor output information 206 such as thesensor 202 detecting the presence of a user, based on a sound level detected in the room, or output based on the amount of light in a room. - For example, if the light level in a room decreases to a desired level as sensed by a light sensor, the
sensor 202 outputs thesensor output information 206 and thecontrol logic 200 may activate the controllableskin texture surface 104 to provide a raised keypad feature so that the user can feel the keypad surface in a dark room since there is not much light to see the keypad. In addition if desired, light source(s) such as LEDs located underneath the controllable skin texture surface may also be illuminated under control of the control logic in response to the light sensor detecting a low light level in the vicinity of the device. A sound sensor may also be used, for example, to control which portions of the controllable skin texture surface are used depending upon, for example, the amount of noise in a room. In addition, thecontrol logic 200 may control the controllableskin texture surface FIG. 1 may have controllableskin texture surface 104 configured about the exterior of the device so that when the skin texture surface is activated (e.g., raised) in certain portions, the device appears to be pulsating, like a heartbeat, or may provide a sequential raising and lowering of certain portions of the skin texture to provide a user desired movement, such as an animated pattern. - The
control logic 200 may be implemented in any suitable manner including a processor executing software module that is stored in a storage medium such as RAM, ROM or any other suitable storage medium which stores executable instructions that when executed, cause one or more processors to operate as described herein. Alternatively, the control logic as described herein, may be implemented as discrete logic including, but not limited to, state machines, application specific integrated circuits, or any suitable combination of hardware, software or firmware. - In one example, the controllable
skin texture surface -
FIGS. 3-7 illustrate various examples of a mechanical actuation structure that is used to move a flexible skin structure in response to the moving of the mechanical actuation structure. Referring toFIG. 3 , a portableelectronic device 300, is shown, which may be any suitable portable electronic device as desired. The particulars of the device depend on the desired application. In this example, the portableelectronic device 300 includes ahousing 302 with a recessedarea 304 that receives one or moremovable ramp structures Ramp structure 306 as shown here includes a single plate that has a plurality oframp portions 310 that are raised with respect to the plate. The plate slidably moves in the recessedarea 304 and is allowed to slide back and forth in the recessed area. As recognized, any suitable configuration may be used to provide the sliding operation. The plate is moved by anactuator 312 such as a cam or motor or any combination thereof or any other suitable structure. The controllable skin texture surface includes aflexible skin structure 320 that, in this example, includes molded texture elements that may be any suitable shape and size, shown in this example as texture pockets generally shown as 322 in the configuration of a keypad. The texture pockets 322 are molded as pockets in an under portion of theflexible skin structure 320 and are raised up by correspondingramps 310 on theramp structure 306 when the ramp structure is moved. Hence, the texture pockets 322 are raised under control of theactuator 312. The flexible skin structure covers the ramps and may be affixed to the housing or other structure as desired. It will be recognized that one ramp may be used to move multiple texture elements and that the ramps may also be any suitable configuration (including shape or size). - The
flexible skin structure 320 may be made out of any suitable flexible material including, but not limited to polyurethane, rubber, or silicone. It may be suitably attached to an outer portion of the housing of thedevice 300 via an adhesive or any other suitable mechanism. Theflexible skin structure 320 as shown has a portion that covers themovable ramp structure 306. When themovable ramp structure 306 pushes up the moldedpockets 322, it changes the tactile configuration of the controllable skin texture surface so a user will feel the locations below the ramps on theflexible skin structure 320. As shown, there may betouch sensors 324, shown as capacitive sensors positioned on theramp structure 306 at locations between the ramps if desired, or on top of the ramps if desired which when touched by a user, generate a signal that is interpreted by the control logic of thedevice 300 to be an activation of a key, in this particular example. It will be recognized thattouch sensors 324 may be any suitable sensor and may be located at any suitable location within the device as desired. The texture pockets 322 may be, for example, thinned out sections that are molded into a rear surface of theflexible skin structure 320. However, any suitable configuration may be used. In this example, theflexible skin structure 320 includes a layer of flexible material that have a plurality of defined changeableskin texture elements 322, each having a portion configured to engage with themovable ramp structure 306. The capacitive sensor serves as atype touch sensor 324. -
FIG. 4 illustrates an alternative embodiment to the single plate shown inFIG. 3 . In this example, a multiple segmentmovable ramp structure 308 includes a plurality oframps cam structure 408 that mechanically engages with, for example, edges of the plurality of ramps to move at least one of the plurality of ramps in response to, in one example, mechanical movement of a portion of the device. For example, if the device has a clam type housing design, movement of the clam housing causes rotation of therotating cam 408 through a suitable mechanical linkage. Alternatively, a motor may be controlled to actuate the movement of the plurality oframps cam 408. For example, a motor may be coupled to rotate thecam 408 based on an electrical control signal from control logic. - As shown, the
ramp structure 308 includes a plurality of individual slidingramp elements ramps 310. As also shown, thecam structure 408 which is shown to move in a rotational manner, may also be structured to move in a non-rotational manner, such as a sliding manner if desired, or any other suitable manner. The cam structure includesramp control elements 410 that, in this example, protrude from the cam structure to engage an edge of each of the respective individual slidingramp elements ramp control elements 410 are positioned to cause movement of the plurality of sliding ramp elements in response to movement of thecam structure 408. Actuation of the plurality of sliding ramp elements 402-406 may be done in response to the information set forth above such as based on a received wireless signal, battery level change condition, such as a recharge condition (actuate skin), low battery level (deactuate skin), an incoming call, or based on any other suitable condition. As such, a series of individual sliding panels are located beneath aflexible skin structure 320 and are actuated in this example by a cam structure. The pattern oframp control elements 410 determine in what sequence the sliding panels are actuated. As noted, the cam structure can be driven by a motor or integrated into the device such that a hinge of a clam shell type device that may be found, for example, on a mobile handset may actuate the cam directly so that opening of the clam shell causes the raising of the portions of the flexible skin texture to represent a keypad. It will also be recognized that the mechanical actuation structure described may move any portion of theflexible skin structure 320 to provide, for example, raised portions that are not associated with a user interface and may be moved to provide any desired tactile configuration. -
FIG. 5 shows a cross sectional view of a controllableskin texture surface 500 similar to that shown inFIG. 4 but in this example, theflexible skin structure 320 may also includetabs 502 that are integrally formed with the texture pockets 322 to assist in raising the center of the texture pockets 322, if desired. As also shown, theflexible skin structure 320 is also considered to include aplate structure 504 that includesopenings 506 corresponding to each desired texture element. Theopenings 506 receive thetabs 502 configured to engage with themovable ramp structure 308. As shown, as themovable ramp structure 308 is moved, it raises or lowers portions of theflexible skin structure 320 in response to movement of thecam structure 408. In this example, theindividual sliding elements flexible skin structure 320 whereas individual slidingelement 404 has not been moved and therefore the flexible skin structure is flat at the appropriate locations. As previously noted above, if the device includes a movable housing portion such as a clam shell configuration or any other suitable configuration, the movable housing portion may be mechanically coupled to thecam structure 408 such that mechanical movement of the housing portion causes movement of the cam structure. Alternatively, the cam structure may be electronically controlled independent of any movable housing portion as desired. For example, a motor may be coupled to engage with the cam structure and move the cam structure in response to an electronic control signal to move one or more of the plurality of ramps to a desired location. - As described, the sliding
movable ramp structure 308, 404-406 with wedge shaped features (e.g., ramps) moves horizontally to force tabs (e.g., pins) molded into the back of the flexible skin structure upwardly and thereby causes portions of the flexible skin structure corresponding to the texture pockets to be raised and thereby create a desired texture pattern. As noted above, a touch sensor, such as a capacitive sensor, may also be used to detect the touch of a user's finger against the flexible skin structure. The sensing may be used as an input to actuate the texture mechanism or to execute another function that would correspond to the press of a button. In addition, mechanical switches such as dome-type switches known in the art could be placed underneath portions of the movable ramp structure to allow a user to press and thereby actuate one or more of the switches. -
FIGS. 6 and 7 illustrate another example of a mechanical actuation structure that uses a movable ramp structure and flexible skin structure. In this example, the tabs 502 (FIG. 5 ) need not be utilized. Instead, a wedge shapedelement 600 includes an anchoredportion 602 and amovable wedge section 604 that pivots with respect to the anchoredportion 602. Each wedge shapedelement 600 that includes the anchoredportion 602 andmovable wedge section 604 may be secured in the device in a fixed location below theflexible skin structure 320 and above a sliding ramp ormovable ramp structure 606. As themovable ramp structure 606 is moved horizontally, the pivotable wedge shapedelements 604 are moved byramp sections 608 of themovable ramp structure 606 such that they come in contact with desired portions of theflexible skin structure 320. Among other advantages, this structure may provide reduced friction and wear between sliding elements and tabs molded into the flexible skin structure. Other advantages may be recognized by those of ordinary skill in the art. However, any desired flexible skin structure and ramp structure may be employed. Movement of the ramp structure causes movement of the wedge shaped elements and movement of the flexible skin structure to provide a change in tactile configuration. As also shown, the substrate anchoredportion 602 serves as a substrate for theflexible skin structure 320 and is interposed between theflexible skin structure 320 and themovable ramp structure 606. Atouch sensor 324 is supported by the substrate and located between at least two movable portions (e.g., 322) of the flexible skin structure. It will be recognized that thetouch sensors 324 may be suitably located at any location depending upon the desired functionality of the portable electronic device. -
FIGS. 8 , 9 and 10 illustrate an example of a shape memoryalloy actuation structure 800 and a correspondingflexible skin structure 320 that moves in response to movement of ametal alloy 812 in the shape memoryalloy actuation structure 800 in accordance with one embodiment.FIG. 8 is a top view illustrating a plurality of pivoting elements 802-808 that are pivotally connected with abase 810. The plurality of pivoting elements 802-808 pivot along pivot points generally indicated at 814 caused by, in this example, the lengthening and shortening of ashape memory alloy 812 such as nitinol wire, or any other suitable shape memory alloy. In one example, a single segment ofshape memory alloy 812 may be connected to the pivoting elements 802-808 and to the base portion as diagrammatically illustrated as connection points 816. It will be recognized, however, that any suitable connection location or connection technique may be used to affix one or more shape memory alloy segments to one or more pivoting elements. It will also be recognized that the shape of the pivoting elements and their length and material may vary depending upon the particular application. One example for illustration purposes only, and not limitation, may include using polypropylene or nylon. Also the hinged area orpivot location 814 may be thinned if desired. - As shown, a voltage or current source 820 is selectively applied by opening and
closing switch 822 bysuitable control logic 200. In addition to, or alternatively, a separate segment of shape memory alloy may be used independently for each pivot element 802-808 so that each pivot element may be controlled independently by the control logic. However, for purposes of explanation, the discussion will assume that a single shape memory alloy element is used to move all the pivoting elements 802-808 at the same time. In any embodiment, when current is passed through the shape memory alloy, it shortens, causing the pivotal elements 802-808 to push up against the flexible skin. As such, thebase 810 may be suitably mounted horizontally, for example, underneath the flexible skin structure and positioned so that the pivoting elements 802-808 suitably align with desired portions of the flexible skin structure to move (e.g., raise and lower) portions of the flexible skin structure. As noted, different or separate wires may be attached to different pivoting elements in order to provide selectively as to which texture elements are actuated. In this example, the controllable skin texture surface includes a skin texture actuation structure that includes a plurality of pivoting elements 802-808 having a shape memory alloy (whether single or multiple elements thereof) coupled to the skin texture to effect movement of the pivoting elements against the flexible skin structure which moves in response to movement of the plurality of pivoting elements. The movement of the pivoting elements change a tactile configuration of a portion of the controllable skin texture surface that is contacted by the pivoting elements. Thecontrol logic 200 activates, for example, switch 822 or a plurality of other switches to provide suitable current to control movement of the pivoting elements by applying current to the shapememory alloy element 812. If desired, a voltage source or current source may be provided for each individual pivoting element and may be selectively switched in/out to control the movement of each pivoting element as desired. Any other suitable configuration may be also be employed. Also, the flexible skin over the hinged elements will generally act to provide a restorative force that returns the elements to a planar state when the current through the SMA is turned off. -
FIGS. 9 and 10 show a cross section of one pivoting element ofFIG. 8 and further includes the illustration of theflexible skin structure 320 and further shows a pivotingelement 808 in both an activated state (FIG. 10 ) where the flexible skin structure is raised, and an inactive state where theflexible skin structure 320 is flat (FIG. 9 ). As such in this example, theflexible skin structure 320 has pockets corresponding to desired texture features that are molded into the reverse surface or under surface thereof and bonded to a portion of the housing or other substructure within the device as noted above. A series of pivoting elements 802-808 underneath the flexible skin structure are connected, in one example, via a single length of shape memory alloy such that in a neutral position, the pivoting elements lie flat. When an electric current is run through the shape memory alloy, its length shortens by, for example, approximately 5% or any other length depending upon the type of shape memory alloy, and causes the pivoting elements to rise up and push against the flexible skin structure causing the appearance of a bump. When the electrical current is no longer applied, the flexible skin structure and underlying pivoting element returns to the neutral position due to tension in the flexible skin. - In another embodiment shown in
FIG. 10 b, a second series of pivotingelements 1002, as part of a hinge lock structure, may be introduced beneath the first series ofpivotal elements elements elements 1002 are positioned so as to fall in togaps 1000 created by the motion of the first set of pivoting elements thereby locking them into the raised position or to simply position underneath the first pivotal elements. It will be recognized that any other location may also be used or that any other suitable technique may be employed. When the electric current applied to the corresponding shapememory alloy element 812 that moves the first set of hingedelements 808 is stopped, the locking action of the second set ofelements 1002 holds thefirst pivoting elements biasing element 1006 pulling theelements 1002 under theelements 808. By applying an electric current to a shapememory alloy element 1004 connected to the second set of pivotingelements 1002, the first set of pivotingelements biasing element 1006 such as a spring is fixedly attached to a portion of the housing or any other suitable structure and another end is caused to contact a portion of the pivotal second set ofelements 1002. The pivotal second set of elements may be made of any suitable structure such as plastic that suitably bends about a pivot point shown as 1008. As shown, a portion of thepivoting elements 1002 are also fixedly attached to a structure of the device to prevent movement of an end thereof. Similarly, the shapememory alloy element 1004 associated with each lockingelement 1002 also has a portion connected to theelement 1002 as well as a fixed structure. The locking element swings as shown, in this example in plane of theFIG. 10 b, for example, to block the hingedelement 808 from lowering down into the plane of the page as shown. As such, the locking feature moves in the plane of the surface to lock the hinged elements. This as opposed to, for example, moving out of the plane in an opposite direction of the hinged element, which may also be done if desired. The thickness of the overall implementation, however, may be less if the locking element is caused to move in plane to the figure as shown. In this example, the hingedelements 808 rise out of the plane when actuated by an SMA element or actuator (not shown) and is blocked by the locking element moving in plane of the figure as shown. It will be recognized that although asingle locking element 1002 is shown, that a suitable array of locking elements may be positioned for any respective pivoting hingedelement 808. In addition, it will be recognized that in this example, a configuration as shown that provides a passive lock and an active unlock condition. However, it will be recognized that by reversing the bias element and the shapememory alloy element control logic 200 and is controlled to be positioned to lock the pivoting elements in a desired position. The pivot lock structure may be alternately positioned to passively lock the pivoting elements in a desired position, and then controlled to release them when desired. As such the control logic controls the second shape memory alloy to deactuate the hinge lock structure to unlock the plurality of hinged elements in response to a passive actuation of the hinge lock structure. - A method for actuating a controllable skin texture surface includes, for example, controlling the first shape memory alloy to actuate the plurality of pivoting elements. In response to the actuation, the pivot lock structure will naturally act to lock the plurality of pivoting elements in a first position. The method includes deactivating the first shape memory alloy in response to the pivot lock structure being actuated. This allows the current to the first pivoting element to be removed and it is locked in place. The method may also include then unlocking the hinged elements by, for example, by actuating the first shape memory alloy and then controlling the second shape memory alloy to unlock the hinge lock structure by applying current to the shape memory alloy actuator that moves the lock structure to unlock the pivoting elements from their raised position.
-
FIG. 11 illustrates a portion of a portable electronic device that employs an embodiment of a controllable skin texture surface, and in this example, the portion of the electronic device is shown to be a keypad. In this example, the controllable skin texture surface includes a skin texture surface actuation structure that includes a hydraulic actuation structure that causes a change in tactile configuration of a flexible skin structure in response to movement of fluid underneath the flexible skin structure.FIGS. 12 and 13 are cross sectional views of a portion ofFIG. 11 and will be described together withFIG. 11 . Aflexible skin structure 1100 similar to that described above with respect, for example, toFIG. 3 and elsewhere, includes fluid chambers orpockets 1102 corresponding to desired texture features that are molded into a reverse surface of the flexible skin structure. As also shown above, the wall thickness of the pockets may be thinner than other portions of the flexible skin texture to allow less resistance to fluid expansion. Theflexible skin structure 1100 is bonded, for example, to a surface of the housing of the portable electronic device to form suitable seals around the variousfluid chambers 1102. A supportingsubstrate 1104 which may be the housing of the device or a separate substrate within the device, includesfluid channels 1106 formed therein that are positioned to be in fluid communication with thefluid chambers 1102. It will be recognized that any suitable structure offirst channels 1106 may be used including separate channels that allow the activation of any suitable texture location, depending upon the desired application. - As shown in
FIGS. 12 and 13 for example, when fluid is removed from thechannels 1106, theflexible skin structure 1100 is flat or in an unactuated state, and when an appropriate amount of fluid is moved into the various chambers, the flexible skin structure is actuated at appropriate locations to provide a three dimensional pattern on an outer surface of the portable electronic device. As shown, thechannels 1106 are fluidly connected with one ormore manifolds 1108 that may be molded into a surface of the housing orsubstrate 1104 or be a separate structure if desired. Separate positive displacement pumps (not shown) or one pump may be fluidly coupled to aninlet 1110 in each of the manifolds. Themanifolds 1108 as described are in fluid communication with one or more fluid reservoirs via one or more pumps.Control logic 200 sends the appropriate control information to cause the positive displacement pumps to transfer fluid from an internal reservoir (not shown) in the device through the manifold and into the channels and hence the chambers molded into the rear surface of theflexible skin structure 1100. The hydraulic actuation structure includes in this example, thesubstrate 1104 that includes one or morefluid channels 1106 and theflexible skin structure 1100 is suitably affixed to the substrate either directly or through any suitable intermediate structures. Theflexible skin structure 1100 includes a plurality of fluid pockets also shown as 1102 corresponding to texture features. The fluid pockets 1102 are in fluid communication with thefluid channels 1106 to allow fluid to be added to or removed from the chamber to actuate or deactuate the respective texture feature. - In one example, as noted above, fluid pumps may be controlled via control logic. In another embodiment, the pumps may be activated via mechanical movement of a movable portion of the housing, such as a movement of a clam shell such that, for example, the rotational movement of a housing portion causes the fluid to be pumped into the fluid chambers. In one example, the pump is controlled to reverse fluid flow when the flip portion is closed. As such, there may be a fluid pump operative to move fluid into the fluid passages (and out of the passages) and a movable housing portion that is coupled with the fluid pump such that mechanical movement of the housing portion causes the fluid pump to pump fluid in at least one fluid passage. The movement of the movable housing portion in another direction may serve to remove fluid from the one or more respective chambers and return it to an internal reservoir.
-
FIG. 14 illustrates another embodiment of a hydraulic actuation structure and flexible skin structure that in this example, showsfluid channels 1400 with additionalfluid channels 1402 connected with specific chambers that are molded into a rear surface of theflexible skin structure 1100. The flexible skin structure includes multiple features wherein movement of each of the features is controlled independently. Thefluid channels 1400 are in fluid communication with the manifold 1404 whereasother chambers 1401 are in fluid communication withmanifold 1406. As also shown,suitable pump inlets light sources respective manifold -
FIG. 15 illustrates one example of the portable electronic device 1500 with the appearance of a 3D pattern with five tactile surfaces being actuated.Unactuated portions 1502 are shown to be flat in this particular example. -
FIG. 16 illustrates an alternative embodiment wherein theflexible skin structure 1600 includes moldedpocket patterns 1602 in an under portion thereof to receive fluid. Arigid substrate 1604 includes the suitably positionedfluid channels 1606 that are in fluid communication with one ormore manifolds 1608 and also include a pump inlet. The manifold 1608 is attached to a rear side of theright substrate 1604 and is in fluid communication withchannels 1606 throughopenings 1610. Each of the microchannels include, for example,openings 1610 to allow fluid to pass from the manifold into thechannel 1606 as described above. One or more pumps may also be used as noted above to raise and lower thepattern 1602 by passing fluid in or out of thechannel 1606. As such, in this example, if thepattern 1602 is placed, for example, on the back of a cell phone or on the face of a cell phone, the outer skin of the cell phone may be activated to give a three dimensional texture that may be suitably activated and deactivated as desired. Thechannels 1606 may be positioned with sufficiently fine spacing that they provide any suitable texture pattern to be actuated. It will also be recognized that the skin texture may have one or more cover layers to protect the skin texture from damage from ultraviolet radiation, physical scratches, or any other potential hazards. -
FIG. 17 is a block diagram illustrating one example of thestructure 1700 for controlling the hydraulic controllable skin texture surface examples noted above. The device may include one or more fluid pumps 1702 which provide fluid 1704 to and from the controllable skin texture surface. Control logic, in one example, shown as 200 providessuitable control information 1708 in the form of analog or digital signals, for example, to control the one or more fluid pumps 1702 to provide the fluid 1704 in a controlled manner to actuate and deactuate one or more portions of a flexible skin to provide a three dimensional tactile configuration as desired. It will also be recognized that instead of a fluid, a pressurized gas could be employed. -
FIGS. 18 a and 18 b illustrate another embodiment wherein, instead of a sliding ramp structure (for example as shown inFIGS. 6 and 7 ), a plurality of hingedelements 1830 that have an anchoredportion 1832 attached to theflexible skin structure 320 through a suitable adhesive or through any other suitable attachment mechanism. Each of the hingedelements 1830 also have amovable section 1834. Theflexible skin structure 320 includespins 1836 which are, for example, longer than those shown inFIG. 6 . - The device further includes a
substrate 1840 such as, for example, a printed circuit board which has attached thereto,dome switches 1842 as known in the art. The dome switches 1842 are positioned to align under the pins. A flexible slidingmember 1846 is interposed between thesubstrate 1840 and the anchoredportion 1832 underneath theflexible skin surface 320. The flexible slidingmember 1846 may be made from, for example, nylon or polypropylene sheet, or other suitably flexible material that allows motion of the movable section of the hingedelement 1834 to be transferred to thedome switch 1842.Holes 1850 in the flexible slidingmember 1846 allow the movable sections of hingedelements 1834 to rotate downward toward thesubstrate 1840, as shown inFIG. 18 a. It can be seen that when the flexible slidingmember 1846 is in the position shown inFIG. 18 a, the end of the movable section of the hingedelement 1834 may be designed so as to come in contact with thesubstrate 1840 such that pressing theflexible surface 320 will not actuate thedome switch 1842. - As shown in
FIG. 18 b, the flexible slidingmember 1846 is moved, as described above based on any suitable structure to activate and in this case, raise portions of theflexible skin structure 320. However, since the material is compressible, when a user presses on a top surface of theflexible skin structure 320, the pin causes the movingportion 1834 to press down upon the flexible material of the flexible slidingmember 1846 and depress thedome switch 1842. As such, in this embodiment, a user may activate the dome switch only when the flexible skin texture is actuated. It will be recognized that the geometry of the movable section of the hingedelement 1834 may also be designed such that the dome switch may be actuated by pressing theflexible skin 320 whether the skin is in either the actuated or unactuated state (FIGS. 18 b and 18 a, respectively). Among other advantages, this embodiment may allow the flexible slidingmember 1846 to be stamped rather than, for example, molded and also uses conventional dome switches in combination thereby providing a potentially lower cost structure. The hingedelements 1830 may be made of any suitable material such as nylon, polypropylene sheet or any other suitable material as desired. As also noted above, the flexible sliding member may be configured as a sliding member that slides along rails formed in a housing or other structure or may be configured in any other suitable manner as desired. -
FIGS. 19-20 illustrate another example of a controllable skin texture surface structure that employs an expandable gas actuation structure to raise and lower desired portions of a flexible skin structure to provide a controllable tactile surface of a portable electronic device. As shown inFIG. 18 , a skin texture surface actuation structure includes an expandable gas actuation structure that includes a gas therein 1802 such as air, or a material such as Freon or alcohol that changes from liquid to gas at a specified temperature and pressure, and aflexible skin structure 1804 such as the type described above. The expandable gas actuation structure includes agas chamber 1800 that is thermally coupled to aheating element 1808 such as an electrical resistor, or any other suitable structure, that may be turned on and off by control logic as desired to heat thegas 1802 within thechamber 1800 and cause the gas to expand. The expansion of thegas 1802 causes the gas to expand and fill thechamber 1800 of theflexible skin structure 1804. When theheating element 1808 is turned off, the gas cools and thechamber 1800 collapses to put the flexible skin structure in an unactuated state. As such, theflexible skin structure 1804, as also described above, includes pockets corresponding to desired texture features wherein the pockets or chambers are molded into the reverse surface or an undersurface of theflexible skin structure 1804. Theflexible skin structure 1804 is attached to asubstrate 1814 as described above, which may be part of the housing of the device or any other structure. It is bonded so as to provide a sealed environment so that thegas 1802 in thechamber 1800 cannot escape thechamber 1800. When an electric current is sent through theheating element 1808, the increased temperature causes the trapped gas in the pockets to expand thereby raising the pocket or outer surface over the chamber 1810. The flexible skin structure includes expandable portions (e.g., pockets) that define a plurality of gas chambers. Each of the gas chambers includes a controllable heating element that may be activated together or individually. - The
substrate 1814 includes a heating element(s) 1808 corresponding to each respective texture element. In addition, as noted above, all of the examples described herein may include one ormore touch sensors 202 which may be used in any suitable manner.FIG. 19 shows a deactivated state of the flexible skin texture andFIG. 20 shows an activated state of theflexible skin structure 1804. -
FIGS. 21 and 22 diagrammatically illustrate one example of a controllableskin texture surface 2102 with aparticular pattern 2102 that may be activated and nonactivated using one or more of the above described actuation structures based on any suitable condition. In this example, the tactile configuration orpattern 2102 may simply be located on an outer surface of the portableelectronic device 2106 and need not be part of a user interface but instead provides a unique visual experience and tactile experience for a user. -
FIGS. 23-25 illustrate yet another example of controlling of a controllable skin texture surface 2300 (here shown as multiple hearts) of the types described above wherein a different portion 2302-2306 is activated at different points in time by control logic to give a visual appearance or tactile feel of a moving object. In this example, a “heart” in the pattern is activated at different times. Also, animation of texture, such as variations in surface texture over time, may be used to animate a character or feature. It will be recognized that the above description and examples are merely for illustrative purposes only and that any suitable configurations, designs or structures may be employed as desired. - Referring now to
FIG. 26 , in some embodiments thedevice 100 includes a tactile conformingstructure 2600 that has a controllableskin texture surface 2602. In this example, the tactile conformingstructure 2600 is an earpiece and the controllableskin texture surface 2602 substantially circumscribes theacoustic port 103. The controllableskin texture surface 2602 is operative to conform to a user surface such as a user's ear thereby improving actual and perceived audio quality. In other embodiments, thedevice 100 can communicate with aremote device 2604 such as a wireless headset or other suitable remote device via awireless link 2606. In this embodiment, theremote device 2604 includes the tactile conformingstructure 2600 that is operative to conform to the user's ear. The tactile conformingstructure 2600 is operatively coupled to ahousing portion 2605 of theremote device 2604. Theremote device 2604 can also include amicrophone 2608 for the user to speak into and anear hook 2610 to hold theremote device 2604 on the user's ear. - Although the tactile conforming
structure 2600 conforms to a user's ear in this example, other uses are contemplated. For example, the tactile conformingstructure 2600 can conform to other suitable user surfaces such as, for example, a user's face to improve comfort and usability of thedevice structure 2600 can be employed in a face mask, such as those used for respiration, to conform to a user's face creating an improved seal. Other uses will be recognized by those of ordinary skill in the art. -
FIG. 27 illustrates a functional block diagram of the tactile conformingstructure 2600. The tactile conformingstructure 2600 includescontrol logic 200 that is operatively coupled to asensor 2700 and the controllableskin texture surface 2602. Thesensor 2700 includes one or more sensors such as capacitance sensors, resistive sensors, pressure sensors, and/or any other suitable sensors. Thesensor 2700 is operative to sense a plurality of points of interest of a user surface such as a user's ear, face, and/or any other suitable user surface. The points of interest can be highpoints of the user surface, lowpoints of the user surface, and/or any other points of interest. In response to thesensor 2700 sensing the points of interest, thecontrol logic 200 controls a plurality of portions of the controllableskin texture surface 2602 to protrude at locations with respect to the points of interest. In this manner, the tactile conformingstructure 2600 conforms to the user surface, which improves comfort and usability of thedevice -
FIGS. 28-29 illustrate examples of thecontrol logic 200 controlling the tactile conformingstructure 2600. In some embodiments, thecontrol logic 200 controls the tactile conformingstructure 2600 to conform to the user surface when thedevice control logic 200 controls the tactile conforming structure to conform to the user surface when thedevice control logic 200 controls protruding portions of the tactile conformingstructure 2600 to retract when thedevice -
FIG. 28 is a cross-sectional view of one example of the tactile conformingstructure 2600 when thecontrol logic 200 is not controlling the tactile conformingstructure 2600. The tactile conformingstructure 2600 includes the controllableskin texture surface 2602 and thesensor 2700, which substantially circumscribe theacoustic port 103. As shown, the controllableskin texture surface 2602 overlays thesensor 2700. In addition, thesensor 2700 is operatively coupled to thehousing portion control logic 200 is not controlling the tactile conformingstructure 2600 to conform to auser surface 2800 such as a user's ear. Accordingly,multiple gaps 2802 exist between the controllableskin texture surface 2602 and theuser surface 2800. When theuser surface 2800 is an ear, thegaps 2802 effectively degrade actual and perceived audio quality of sound delivered to theear 2800, which is undesirable. - When the
device sensor 2700 senses points of interest of theuser surface 2800 such ashighpoints 2804,lowpoints 2806 and/or any other suitable points of interest. In response to thesensor 2700 sensing the points ofinterest control logic 200 controls a plurality ofportions 2900 of the controllableskin texture surface 2602 to protrude as shown inFIG. 29 . The protrudingportions 2900 of the controllableskin texture surface 2602 reduce the size of thegaps 2802, which improves actual and perceived audio quality delivered to a user's ear. - In some embodiments, the
sensor 2700 senses portions of theuser surface 2800, such as thehighpoints 2804, that make contact with the tactile conformingstructure 2600. In this embodiment, thecontrol logic 200 controlsnon-contacting portions 2900, such as portions that are adjacent to thehighpoints 2804, to protrude until thenon-contacting portions 2900 make contact with theuser surface 2800 or until thenon-contacting portions 2900 protrude to a maximum level. - In other embodiments, the
sensor 2700 senses proximity of the points ofinterest control logic 200 determines distances between the tactile conformingstructure 2600 and theuser surface 2800 based on the sensed proximity. Thecontrol logic 200 controls theportions 2900 of the controllableskin texture surface 2602 to protrude based on the determined distances. - In still other embodiments, the
sensor 2700 senses pressure on the points ofinterest control logic 200 controls theportions 2900 of the controllableskin texture surface 2602 to protrude until the pressure on thehighpoints 2804 are approximately equal to the pressure on thelowpoints 2806 or until theportions 2900 have protruded to a maximum level. - The
control logic 200 periodically adjusts the protrudingportions 2900 of the controllableskin texture surface 2602 in response to movement between theuser surface 2800 and the controllableskin texture surface 2602. In this manner, the tactile conformingstructure 2600 is periodically readjusted to conform to theuser surface 2800 due to movement between theuser surface 2800 and the controllableskin texture surface 2602. - Referring now to
FIG. 30 , exemplary steps that can be taken by the tactile conformingstructure 2600 are generally identified at 3000. The process begins instep 3002 when thedevice step 3004, thesensor 2700 senses the points ofinterest user surface 2800. Instep 3006, thecontrol logic 200 controls theportions 2900 of the controllableskin texture surface 2602 to protrude at locations with respect to the points ofinterest sensor 2700 sensing the points ofinterest 2804, 2086. For example, if thesensor 2700 senses thehighpoints 2804, thecontrol logic 200 controls adjacent portions of the controllableskin texture surface 2602 to protrude. However, if thesensor 2700 senses thelowpoints 2606, thecontrol logic 200 controls coincident portions of the controllableskin texture surface 2602 to protrude. The process ends instep 3008. - Referring now to
FIG. 31 , additional exemplary steps that can be taken by the tactile conformingstructure 2600 are generally identified at 3100. The process starts instep 3102 when thedevice step 3104, thecontrol logic 200 determines whether thedevice device remote device 2604 placed on the ear and powered on. If thedevice control logic 200 determines whether theportions 2900 of the controllableskin texture surface 2602 are protruding instep 3106. If theportions 2900 are not protruding, the process ends instep 3108. However, if theportions 2900 are protruding,control logic 200 retracts theportions 2900 of the controllableskin texture surface 2602 instep 3110 and the process ends instep 3108. - If the
control logic 200 determines that thedevice step 3104, thesensor 2700 senses the points ofinterest user surface 2800 instep 3112. Instep 3114, thecontrol logic 200 controls theportions 2900 of the controllableskin texture surface 2602 to protrude in response to thesensor 2700 sensing the points ofinterest - In steps 3116-3122, the
control logic 200 periodically adjusts theportions 2900 protruding from the controllableskin texture surface 2602 in response to movement between theskin texture surface 2602 and theuser surface 2800. More specifically, thesensor 2700 senses the points ofinterest step 3116. In response thereto, thecontrol logic 200 determines whether the points ofinterest step 3118. If the points ofinterest interest control logic 200 adjusts the protrudingportions 2900 of the controllableskin texture surface 2602 instep 3120. Instep 3122, thecontrol logic 200 determines whether thedevice device device step 3108. - Among other advantages, a portable electronic device includes a tactile conforming structure that conforms to a user surface such as a user's ear creating an improved acoustical coupling, which improves actual and perceived audio quality delivered to the user. Furthermore, the tactile conforming structure can conform to other suitable user surfaces such as, for example, a user's face to improve comfort and usability of the device. Other advantages will be recognized by those of ordinary skill in the art.
- The above detailed description of the invention, and the examples described therein, has been presented for the purposes of illustration and description. While the principles of the invention have been described above in connection with a specific device, it is to be clearly understood that this description is made only by way of example and not as a limitation on the scope of the invention.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/194,372 US20090132093A1 (en) | 2007-08-21 | 2008-08-19 | Tactile Conforming Apparatus and Method for a Device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95703307P | 2007-08-21 | 2007-08-21 | |
US12/194,372 US20090132093A1 (en) | 2007-08-21 | 2008-08-19 | Tactile Conforming Apparatus and Method for a Device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090132093A1 true US20090132093A1 (en) | 2009-05-21 |
Family
ID=40378986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/194,372 Abandoned US20090132093A1 (en) | 2007-08-21 | 2008-08-19 | Tactile Conforming Apparatus and Method for a Device |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090132093A1 (en) |
WO (1) | WO2009026405A2 (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080287167A1 (en) * | 2007-04-04 | 2008-11-20 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device |
US20090128376A1 (en) * | 2007-11-20 | 2009-05-21 | Motorola, Inc. | Method and Apparatus for Controlling a Keypad of a Device |
US20090237364A1 (en) * | 2008-03-21 | 2009-09-24 | Sprint Communications Company L.P. | Feedback-providing keypad for touchscreen devices |
US20100105362A1 (en) * | 2008-10-23 | 2010-04-29 | Yang Seung Wan | Mobile terminal and information processing method thereof |
US20100262504A1 (en) * | 2009-04-08 | 2010-10-14 | Toshiba Tec Kabushiki Kaisha | Pos terminal |
WO2011119593A1 (en) * | 2010-03-25 | 2011-09-29 | Panasonic Corporation Of North America | Physically reconfigurable input and output systems and methods |
US20120268893A1 (en) * | 2011-04-25 | 2012-10-25 | Tso-Kuo Yin | Cooling system for a portable electronic device |
US20130044215A1 (en) * | 2011-08-17 | 2013-02-21 | Apple Inc. | Bi-stable spring with flexible display |
US20130235512A1 (en) * | 2012-03-06 | 2013-09-12 | Hon Hai Precision Industry Co., Ltd. | Electronic device with retractable keyboard |
US20140181908A1 (en) * | 2012-12-21 | 2014-06-26 | Ebay Inc | Method and Apparatus for Using Sensors on a Portable Electronic Device to Verify Transactions |
WO2015035317A1 (en) * | 2013-09-06 | 2015-03-12 | Tactus Technology, Inc. | Dynamic tactile interface |
US20150077366A1 (en) * | 2010-01-05 | 2015-03-19 | Tactus Technology, Inc. | Dynamic tactile interface |
US20150111619A1 (en) * | 2011-04-28 | 2015-04-23 | Fujitsu Limited | Method and Apparatus for Informing a User Through Haptic Signals |
US20150109112A1 (en) * | 2012-09-21 | 2015-04-23 | Google Inc. | Occupant notification of visitor interaction with a doorbell at a smart-home |
US20150198940A1 (en) * | 2014-01-10 | 2015-07-16 | Lg Electronics Inc. | Electronic home appliance and control method thereof |
US9098141B2 (en) | 2008-01-04 | 2015-08-04 | Tactus Technology, Inc. | User interface system |
US20150234506A1 (en) * | 2014-02-14 | 2015-08-20 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Physical presence of a virtual button on a touch screen of an electronic device |
US9128525B2 (en) | 2008-01-04 | 2015-09-08 | Tactus Technology, Inc. | Dynamic tactile interface |
US9207795B2 (en) | 2008-01-04 | 2015-12-08 | Tactus Technology, Inc. | User interface system |
US9229571B2 (en) | 2008-01-04 | 2016-01-05 | Tactus Technology, Inc. | Method for adjusting the user interface of a device |
US9274612B2 (en) | 2008-01-04 | 2016-03-01 | Tactus Technology, Inc. | User interface system |
US9280224B2 (en) | 2012-09-24 | 2016-03-08 | Tactus Technology, Inc. | Dynamic tactile interface and methods |
US9298261B2 (en) | 2008-01-04 | 2016-03-29 | Tactus Technology, Inc. | Method for actuating a tactile interface layer |
US9335848B2 (en) | 2014-02-14 | 2016-05-10 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Apparatus for providing a three dimensional tactile display of an electronic device |
US20160139671A1 (en) * | 2013-01-15 | 2016-05-19 | Samsung Electronics Co., Ltd. | Method for providing haptic effect in electronic device, machine-readable storage medium, and electronic device |
US9367132B2 (en) | 2008-01-04 | 2016-06-14 | Tactus Technology, Inc. | User interface system |
US9372565B2 (en) | 2008-01-04 | 2016-06-21 | Tactus Technology, Inc. | Dynamic tactile interface |
US9372539B2 (en) | 2008-01-04 | 2016-06-21 | Tactus Technology, Inc. | Method for actuating a tactile interface layer |
US9405417B2 (en) | 2012-09-24 | 2016-08-02 | Tactus Technology, Inc. | Dynamic tactile interface and methods |
US9423875B2 (en) | 2008-01-04 | 2016-08-23 | Tactus Technology, Inc. | Dynamic tactile interface with exhibiting optical dispersion characteristics |
US9477308B2 (en) | 2008-01-04 | 2016-10-25 | Tactus Technology, Inc. | User interface system |
US9483126B2 (en) * | 2014-06-27 | 2016-11-01 | Intel Corporation | Smart variable torque display |
US9495055B2 (en) | 2008-01-04 | 2016-11-15 | Tactus Technology, Inc. | User interface and methods |
US9524025B2 (en) | 2008-01-04 | 2016-12-20 | Tactus Technology, Inc. | User interface system and method |
US9552065B2 (en) | 2008-01-04 | 2017-01-24 | Tactus Technology, Inc. | Dynamic tactile interface |
US9557813B2 (en) | 2013-06-28 | 2017-01-31 | Tactus Technology, Inc. | Method for reducing perceived optical distortion |
US9557915B2 (en) | 2008-01-04 | 2017-01-31 | Tactus Technology, Inc. | Dynamic tactile interface |
US9588684B2 (en) | 2009-01-05 | 2017-03-07 | Tactus Technology, Inc. | Tactile interface for a computing device |
US9588683B2 (en) | 2008-01-04 | 2017-03-07 | Tactus Technology, Inc. | Dynamic tactile interface |
US9600645B2 (en) | 2012-09-21 | 2017-03-21 | Google Inc. | Smart invitation handling at a smart-home |
US9612659B2 (en) | 2008-01-04 | 2017-04-04 | Tactus Technology, Inc. | User interface system |
US9619030B2 (en) | 2008-01-04 | 2017-04-11 | Tactus Technology, Inc. | User interface system and method |
US9640055B2 (en) | 2012-09-21 | 2017-05-02 | Google Inc. | Interacting with a detected visitor at an entryway to a smart-home |
US9652912B2 (en) | 2012-09-21 | 2017-05-16 | Google Inc. | Secure handling of unsupervised package drop off at a smart-home |
US9711036B2 (en) | 2012-09-21 | 2017-07-18 | Google Inc. | Leveraging neighborhood to handle potential visitor at a smart-home |
US9720501B2 (en) | 2008-01-04 | 2017-08-01 | Tactus Technology, Inc. | Dynamic tactile interface |
US9760172B2 (en) | 2008-01-04 | 2017-09-12 | Tactus Technology, Inc. | Dynamic tactile interface |
US9881474B2 (en) | 2012-09-21 | 2018-01-30 | Google Llc | Initially detecting a visitor at a smart-home |
US9928696B2 (en) * | 2015-12-30 | 2018-03-27 | Immersion Corporation | Externally-activated haptic devices and systems |
US9953514B2 (en) | 2012-09-21 | 2018-04-24 | Google Llc | Visitor feedback to visitor interaction with a doorbell at a smart-home |
US9960929B2 (en) | 2012-09-21 | 2018-05-01 | Google Llc | Environmental sensing with a doorbell at a smart-home |
US9959727B2 (en) | 2012-09-21 | 2018-05-01 | Google Llc | Handling visitor interaction at a smart-home in a do not disturb mode |
US9978238B2 (en) | 2012-09-21 | 2018-05-22 | Google Llc | Visitor options at an entryway to a smart-home |
US10031582B2 (en) | 2014-06-05 | 2018-07-24 | Immersion Corporation | Systems and methods for induced electrostatic haptic effects |
US10083633B2 (en) | 2014-11-10 | 2018-09-25 | International Business Machines Corporation | Generating a three-dimensional representation of a topography |
US20180348866A1 (en) * | 2017-06-02 | 2018-12-06 | International Business Machines Corporation | Tactile Display Using Microscale Electrostatic Accelerators |
US10510035B2 (en) | 2012-09-21 | 2019-12-17 | Google Llc | Limited access invitation handling at a smart-home |
CN110774990A (en) * | 2018-07-27 | 2020-02-11 | 大众汽车有限公司 | Operating device, motor vehicle with operating device and method for operating the operating device |
US10735216B2 (en) | 2012-09-21 | 2020-08-04 | Google Llc | Handling security services visitor at a smart-home |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8177440B2 (en) * | 2009-03-26 | 2012-05-15 | Sony Ericsson Mobile Communications Ab | Mobile electronic device |
US8314353B2 (en) * | 2009-10-05 | 2012-11-20 | Sony Ericsson Mobile Communications Ab | Keypad for a mobile device |
US8847890B2 (en) * | 2011-01-04 | 2014-09-30 | Synaptics Incorporated | Leveled touchsurface with planar translational responsiveness to vertical travel |
US8912458B2 (en) | 2011-01-04 | 2014-12-16 | Synaptics Incorporated | Touchsurface with level and planar translational travel responsiveness |
Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5222895A (en) * | 1990-03-13 | 1993-06-29 | Joerg Fricke | Tactile graphic computer screen and input tablet for blind persons using an electrorheological fluid |
US5685721A (en) * | 1995-11-06 | 1997-11-11 | American Research Corporation Of Virginia | Refreshable braille-cell display implemented with shape memory alloys |
US5727391A (en) * | 1995-10-16 | 1998-03-17 | Mcgill University | Deformable structural arrangement |
US5766013A (en) * | 1995-03-28 | 1998-06-16 | F.J. Tieman B.V. | Braille cell provided with an actuator comprising a mechanically responding, intrinsic conducting polymer |
US6107995A (en) * | 1998-07-16 | 2000-08-22 | International Business Machines Corporation | Inflatable keyboard |
US6109922A (en) * | 1993-08-04 | 2000-08-29 | Caretec Gmbh | Device for representing relief items |
US6169538B1 (en) * | 1998-08-13 | 2001-01-02 | Motorola, Inc. | Method and apparatus for implementing a graphical user interface keyboard and a text buffer on electronic devices |
US6292573B1 (en) * | 1999-09-30 | 2001-09-18 | Motorola, Inc. | Portable communication device with collapsible speaker enclosure |
US6317614B1 (en) * | 1997-06-06 | 2001-11-13 | Nec Corporation | Mobile communication terminal |
US6320496B1 (en) * | 1999-04-29 | 2001-11-20 | Fuji Xerox Co., Ltd | Systems and methods providing tactile guidance using sensory supplementation |
US6429846B2 (en) * | 1998-06-23 | 2002-08-06 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US20030048260A1 (en) * | 2001-08-17 | 2003-03-13 | Alec Matusis | System and method for selecting actions based on the identification of user's fingers |
US20030122779A1 (en) * | 2001-11-01 | 2003-07-03 | Martin Kenneth M. | Method and apparatus for providing tactile sensations |
US6608617B2 (en) * | 2000-05-09 | 2003-08-19 | Marc O. Hoffknecht | Lighting control interface |
US6678534B2 (en) * | 2000-02-25 | 2004-01-13 | Matsushita Electric Industrial Co., Ltd. | Mobile telephone with back light function |
US20040029082A1 (en) * | 2000-06-21 | 2004-02-12 | Raymond Fournier | Element with expansible relief |
US20040038186A1 (en) * | 2002-08-21 | 2004-02-26 | Martin Michael Joseph | Tactile feedback device |
US20040107080A1 (en) * | 2001-03-02 | 2004-06-03 | Nikolaj Deichmann | Method for modelling customised earpieces |
US6752551B1 (en) * | 2002-12-30 | 2004-06-22 | Lucent Technologies Inc. | Vertically expandable keyboard |
US6776619B1 (en) * | 1999-05-19 | 2004-08-17 | United States Of America | Refreshable braille reader |
US6781284B1 (en) * | 1997-02-07 | 2004-08-24 | Sri International | Electroactive polymer transducers and actuators |
US20050057528A1 (en) * | 2003-09-01 | 2005-03-17 | Martin Kleen | Screen having a touch-sensitive user interface for command input |
US20050062881A1 (en) * | 2002-12-30 | 2005-03-24 | Vincenzo Caci | Housing |
US6882086B2 (en) * | 2001-05-22 | 2005-04-19 | Sri International | Variable stiffness electroactive polymer systems |
US6881063B2 (en) * | 2003-02-24 | 2005-04-19 | Peichun Yang | Electroactive polymer actuator braille cell and braille display |
US6892081B1 (en) * | 2001-05-31 | 2005-05-10 | Nokia Corporation | Mobile terminal and method of operation using content sensitive menu keys in keypad locked mode |
US20050184959A1 (en) * | 2004-01-20 | 2005-08-25 | Ralf Kompe | Haptic key controlled data input |
US20050219223A1 (en) * | 2004-03-31 | 2005-10-06 | Kotzin Michael D | Method and apparatus for determining the context of a device |
US20050253643A1 (en) * | 2002-10-30 | 2005-11-17 | Sony Corporation | Input device and process for manufacturing the same, portable electronic apparatus comprising input device |
US6988247B2 (en) * | 2002-06-18 | 2006-01-17 | Koninklijke Philips Electronics N.V. | Graphic user interface having touch detectability |
US7002533B2 (en) * | 2001-08-17 | 2006-02-21 | Michel Sayag | Dual-stage high-contrast electronic image display |
US20060046031A1 (en) * | 2002-12-04 | 2006-03-02 | Koninklijke Philips Electronics N.V. | Graphic user interface having touch detectability |
US7009595B2 (en) * | 2002-01-03 | 2006-03-07 | United States Of America | Extended refreshable tactile graphic array for scanned tactile display |
US20060073821A1 (en) * | 2002-10-30 | 2006-04-06 | Olli Rantapuska | Method and device for simulating a communication on a terminal device |
US20060103634A1 (en) * | 2004-11-17 | 2006-05-18 | Samsung Electronics Co., Ltd. | Apparatus and method of providing fingertip haptics of visual information using electro-active polymer for image display device |
US7064472B2 (en) * | 1999-07-20 | 2006-06-20 | Sri International | Electroactive polymer devices for moving fluid |
US20060146009A1 (en) * | 2003-01-22 | 2006-07-06 | Hanno Syrbe | Image control |
US20060161870A1 (en) * | 2004-07-30 | 2006-07-20 | Apple Computer, Inc. | Proximity detector in handheld device |
US20060161871A1 (en) * | 2004-07-30 | 2006-07-20 | Apple Computer, Inc. | Proximity detector in handheld device |
US7102617B2 (en) * | 2002-12-30 | 2006-09-05 | Motorola, Inc. | Compact optical pointing apparatus and method |
US20060197750A1 (en) * | 2005-03-04 | 2006-09-07 | Apple Computer, Inc. | Hand held electronic device with multiple touch sensing devices |
US20060238510A1 (en) * | 2005-04-25 | 2006-10-26 | Georgios Panotopoulos | User interface incorporating emulated hard keys |
US7178725B2 (en) * | 2003-06-24 | 2007-02-20 | Nokia Corporation | Method for visualizing the input and display components of terminal equipment and corresponding terminal equipment |
US7202851B2 (en) * | 2001-05-04 | 2007-04-10 | Immersion Medical Inc. | Haptic interface for palpation simulation |
US7292227B2 (en) * | 2000-08-08 | 2007-11-06 | Ntt Docomo, Inc. | Electronic device, vibration generator, vibration-type reporting method, and report control method |
US7306463B2 (en) * | 2004-07-19 | 2007-12-11 | Brian Paul Hanley | Pseudo-cuneiform tactile display |
US7336266B2 (en) * | 2003-02-20 | 2008-02-26 | Immersion Corproation | Haptic pads for use with user-interface devices |
US7397413B2 (en) * | 2000-12-21 | 2008-07-08 | Nokia Corporation | Communication unit provided with intra-changeable elements |
US20080248836A1 (en) * | 2007-04-04 | 2008-10-09 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device using hydraulic control |
US20080248248A1 (en) * | 2007-04-04 | 2008-10-09 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device using a gas |
US20080287167A1 (en) * | 2007-04-04 | 2008-11-20 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device |
US20090015560A1 (en) * | 2007-07-13 | 2009-01-15 | Motorola, Inc. | Method and apparatus for controlling a display of a device |
US20090061949A1 (en) * | 2004-10-07 | 2009-03-05 | Chen Alexander C | System, method and mobile unit to sense objects or text and retrieve related information |
US20100069890A1 (en) * | 2006-12-14 | 2010-03-18 | Novo Nordisk A/S | User interface for medical system comprising diary function with time change feature |
US7769394B1 (en) * | 2006-10-06 | 2010-08-03 | Sprint Communications Company L.P. | System and method for location-based device control |
US7876199B2 (en) * | 2007-04-04 | 2011-01-25 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device using a shape memory alloy |
US7957765B1 (en) * | 2007-05-25 | 2011-06-07 | At&T Mobility Ii Llc | Mobile phone with integrated wireless camera |
US8027705B2 (en) * | 2005-07-29 | 2011-09-27 | Samsung Electronics Co., Ltd. | Method and apparatus for providing information during a call and a mobile device including the same |
US8044937B2 (en) * | 2006-10-20 | 2011-10-25 | Samsung Electronics Co., Ltd | Text input method and mobile terminal therefor |
US8115745B2 (en) * | 2008-06-19 | 2012-02-14 | Tactile Displays, Llc | Apparatus and method for interactive display with tactile feedback |
US8120584B2 (en) * | 2006-12-21 | 2012-02-21 | Cypress Semiconductor Corporation | Feedback mechanism for user detection of reference location on a sensing device |
US8692930B2 (en) * | 2007-08-20 | 2014-04-08 | Matthew Rolston Photographer, Inc. | Mobile device with operation for modifying visual perception |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2217962B1 (en) * | 2003-02-14 | 2006-02-16 | Universidad Politecnica De Valencia | CRYSTAL POROUS MATERIAL (ZEOLITA ITQ-24), ITS PREPARATION PROCEDURE AND ITS USE IN THE CATALITICAL CONVERSION OF ORGANIC COMPONENTS. |
KR20060009686A (en) * | 2004-07-26 | 2006-02-01 | 엘지이노텍 주식회사 | Semiconductor light emitting device and manufacturing method thereof |
-
2008
- 2008-08-19 US US12/194,372 patent/US20090132093A1/en not_active Abandoned
- 2008-08-21 WO PCT/US2008/073790 patent/WO2009026405A2/en active Application Filing
Patent Citations (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5222895A (en) * | 1990-03-13 | 1993-06-29 | Joerg Fricke | Tactile graphic computer screen and input tablet for blind persons using an electrorheological fluid |
US6109922A (en) * | 1993-08-04 | 2000-08-29 | Caretec Gmbh | Device for representing relief items |
US5766013A (en) * | 1995-03-28 | 1998-06-16 | F.J. Tieman B.V. | Braille cell provided with an actuator comprising a mechanically responding, intrinsic conducting polymer |
US5727391A (en) * | 1995-10-16 | 1998-03-17 | Mcgill University | Deformable structural arrangement |
US5685721A (en) * | 1995-11-06 | 1997-11-11 | American Research Corporation Of Virginia | Refreshable braille-cell display implemented with shape memory alloys |
US6781284B1 (en) * | 1997-02-07 | 2004-08-24 | Sri International | Electroactive polymer transducers and actuators |
US6317614B1 (en) * | 1997-06-06 | 2001-11-13 | Nec Corporation | Mobile communication terminal |
US20060192771A1 (en) * | 1998-06-23 | 2006-08-31 | Immersion Corporation | Haptic feedback touchpad |
US7148875B2 (en) * | 1998-06-23 | 2006-12-12 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US7944435B2 (en) * | 1998-06-23 | 2011-05-17 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US6429846B2 (en) * | 1998-06-23 | 2002-08-06 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US20070013677A1 (en) * | 1998-06-23 | 2007-01-18 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US7592999B2 (en) * | 1998-06-23 | 2009-09-22 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US6107995A (en) * | 1998-07-16 | 2000-08-22 | International Business Machines Corporation | Inflatable keyboard |
US6169538B1 (en) * | 1998-08-13 | 2001-01-02 | Motorola, Inc. | Method and apparatus for implementing a graphical user interface keyboard and a text buffer on electronic devices |
US6320496B1 (en) * | 1999-04-29 | 2001-11-20 | Fuji Xerox Co., Ltd | Systems and methods providing tactile guidance using sensory supplementation |
US6776619B1 (en) * | 1999-05-19 | 2004-08-17 | United States Of America | Refreshable braille reader |
US7064472B2 (en) * | 1999-07-20 | 2006-06-20 | Sri International | Electroactive polymer devices for moving fluid |
US6292573B1 (en) * | 1999-09-30 | 2001-09-18 | Motorola, Inc. | Portable communication device with collapsible speaker enclosure |
US6678534B2 (en) * | 2000-02-25 | 2004-01-13 | Matsushita Electric Industrial Co., Ltd. | Mobile telephone with back light function |
US6608617B2 (en) * | 2000-05-09 | 2003-08-19 | Marc O. Hoffknecht | Lighting control interface |
US20040029082A1 (en) * | 2000-06-21 | 2004-02-12 | Raymond Fournier | Element with expansible relief |
US7292227B2 (en) * | 2000-08-08 | 2007-11-06 | Ntt Docomo, Inc. | Electronic device, vibration generator, vibration-type reporting method, and report control method |
US7397413B2 (en) * | 2000-12-21 | 2008-07-08 | Nokia Corporation | Communication unit provided with intra-changeable elements |
US20040107080A1 (en) * | 2001-03-02 | 2004-06-03 | Nikolaj Deichmann | Method for modelling customised earpieces |
US7864164B2 (en) * | 2001-05-04 | 2011-01-04 | Immersion Medical, Inc. | Haptic interface for palpation simulation |
US7307619B2 (en) * | 2001-05-04 | 2007-12-11 | Immersion Medical, Inc. | Haptic interface for palpation simulation |
US7202851B2 (en) * | 2001-05-04 | 2007-04-10 | Immersion Medical Inc. | Haptic interface for palpation simulation |
US6882086B2 (en) * | 2001-05-22 | 2005-04-19 | Sri International | Variable stiffness electroactive polymer systems |
US6892081B1 (en) * | 2001-05-31 | 2005-05-10 | Nokia Corporation | Mobile terminal and method of operation using content sensitive menu keys in keypad locked mode |
US7509140B2 (en) * | 2001-05-31 | 2009-03-24 | Nokia Corporation | Apparatus and method for accepting input in non-active mode |
US7002533B2 (en) * | 2001-08-17 | 2006-02-21 | Michel Sayag | Dual-stage high-contrast electronic image display |
US20030048260A1 (en) * | 2001-08-17 | 2003-03-13 | Alec Matusis | System and method for selecting actions based on the identification of user's fingers |
US20030122779A1 (en) * | 2001-11-01 | 2003-07-03 | Martin Kenneth M. | Method and apparatus for providing tactile sensations |
US7009595B2 (en) * | 2002-01-03 | 2006-03-07 | United States Of America | Extended refreshable tactile graphic array for scanned tactile display |
US6988247B2 (en) * | 2002-06-18 | 2006-01-17 | Koninklijke Philips Electronics N.V. | Graphic user interface having touch detectability |
US20040038186A1 (en) * | 2002-08-21 | 2004-02-26 | Martin Michael Joseph | Tactile feedback device |
US20060073821A1 (en) * | 2002-10-30 | 2006-04-06 | Olli Rantapuska | Method and device for simulating a communication on a terminal device |
US20050253643A1 (en) * | 2002-10-30 | 2005-11-17 | Sony Corporation | Input device and process for manufacturing the same, portable electronic apparatus comprising input device |
US20060046031A1 (en) * | 2002-12-04 | 2006-03-02 | Koninklijke Philips Electronics N.V. | Graphic user interface having touch detectability |
US6752551B1 (en) * | 2002-12-30 | 2004-06-22 | Lucent Technologies Inc. | Vertically expandable keyboard |
US7102617B2 (en) * | 2002-12-30 | 2006-09-05 | Motorola, Inc. | Compact optical pointing apparatus and method |
US20050062881A1 (en) * | 2002-12-30 | 2005-03-24 | Vincenzo Caci | Housing |
US20060146009A1 (en) * | 2003-01-22 | 2006-07-06 | Hanno Syrbe | Image control |
US7336266B2 (en) * | 2003-02-20 | 2008-02-26 | Immersion Corproation | Haptic pads for use with user-interface devices |
US6881063B2 (en) * | 2003-02-24 | 2005-04-19 | Peichun Yang | Electroactive polymer actuator braille cell and braille display |
US7178725B2 (en) * | 2003-06-24 | 2007-02-20 | Nokia Corporation | Method for visualizing the input and display components of terminal equipment and corresponding terminal equipment |
US20050057528A1 (en) * | 2003-09-01 | 2005-03-17 | Martin Kleen | Screen having a touch-sensitive user interface for command input |
US20050184959A1 (en) * | 2004-01-20 | 2005-08-25 | Ralf Kompe | Haptic key controlled data input |
US20050219223A1 (en) * | 2004-03-31 | 2005-10-06 | Kotzin Michael D | Method and apparatus for determining the context of a device |
US7306463B2 (en) * | 2004-07-19 | 2007-12-11 | Brian Paul Hanley | Pseudo-cuneiform tactile display |
US20060161870A1 (en) * | 2004-07-30 | 2006-07-20 | Apple Computer, Inc. | Proximity detector in handheld device |
US20060161871A1 (en) * | 2004-07-30 | 2006-07-20 | Apple Computer, Inc. | Proximity detector in handheld device |
US20090061949A1 (en) * | 2004-10-07 | 2009-03-05 | Chen Alexander C | System, method and mobile unit to sense objects or text and retrieve related information |
US20060103634A1 (en) * | 2004-11-17 | 2006-05-18 | Samsung Electronics Co., Ltd. | Apparatus and method of providing fingertip haptics of visual information using electro-active polymer for image display device |
US20060197750A1 (en) * | 2005-03-04 | 2006-09-07 | Apple Computer, Inc. | Hand held electronic device with multiple touch sensing devices |
US7382357B2 (en) * | 2005-04-25 | 2008-06-03 | Avago Technologies Ecbu Ip Pte Ltd | User interface incorporating emulated hard keys |
US20060238510A1 (en) * | 2005-04-25 | 2006-10-26 | Georgios Panotopoulos | User interface incorporating emulated hard keys |
US8027705B2 (en) * | 2005-07-29 | 2011-09-27 | Samsung Electronics Co., Ltd. | Method and apparatus for providing information during a call and a mobile device including the same |
US7769394B1 (en) * | 2006-10-06 | 2010-08-03 | Sprint Communications Company L.P. | System and method for location-based device control |
US8044937B2 (en) * | 2006-10-20 | 2011-10-25 | Samsung Electronics Co., Ltd | Text input method and mobile terminal therefor |
US20100069890A1 (en) * | 2006-12-14 | 2010-03-18 | Novo Nordisk A/S | User interface for medical system comprising diary function with time change feature |
US8120584B2 (en) * | 2006-12-21 | 2012-02-21 | Cypress Semiconductor Corporation | Feedback mechanism for user detection of reference location on a sensing device |
US20080248836A1 (en) * | 2007-04-04 | 2008-10-09 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device using hydraulic control |
US7876199B2 (en) * | 2007-04-04 | 2011-01-25 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device using a shape memory alloy |
US20080287167A1 (en) * | 2007-04-04 | 2008-11-20 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device |
US20080248248A1 (en) * | 2007-04-04 | 2008-10-09 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device using a gas |
US7957765B1 (en) * | 2007-05-25 | 2011-06-07 | At&T Mobility Ii Llc | Mobile phone with integrated wireless camera |
US20090015560A1 (en) * | 2007-07-13 | 2009-01-15 | Motorola, Inc. | Method and apparatus for controlling a display of a device |
US8692930B2 (en) * | 2007-08-20 | 2014-04-08 | Matthew Rolston Photographer, Inc. | Mobile device with operation for modifying visual perception |
US8115745B2 (en) * | 2008-06-19 | 2012-02-14 | Tactile Displays, Llc | Apparatus and method for interactive display with tactile feedback |
Cited By (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8761846B2 (en) * | 2007-04-04 | 2014-06-24 | Motorola Mobility Llc | Method and apparatus for controlling a skin texture surface on a device |
US20080287167A1 (en) * | 2007-04-04 | 2008-11-20 | Motorola, Inc. | Method and apparatus for controlling a skin texture surface on a device |
US20090128376A1 (en) * | 2007-11-20 | 2009-05-21 | Motorola, Inc. | Method and Apparatus for Controlling a Keypad of a Device |
US8866641B2 (en) | 2007-11-20 | 2014-10-21 | Motorola Mobility Llc | Method and apparatus for controlling a keypad of a device |
US9760172B2 (en) | 2008-01-04 | 2017-09-12 | Tactus Technology, Inc. | Dynamic tactile interface |
US9298261B2 (en) | 2008-01-04 | 2016-03-29 | Tactus Technology, Inc. | Method for actuating a tactile interface layer |
US9430074B2 (en) | 2008-01-04 | 2016-08-30 | Tactus Technology, Inc. | Dynamic tactile interface |
US9372539B2 (en) | 2008-01-04 | 2016-06-21 | Tactus Technology, Inc. | Method for actuating a tactile interface layer |
US9372565B2 (en) | 2008-01-04 | 2016-06-21 | Tactus Technology, Inc. | Dynamic tactile interface |
US9367132B2 (en) | 2008-01-04 | 2016-06-14 | Tactus Technology, Inc. | User interface system |
US9098141B2 (en) | 2008-01-04 | 2015-08-04 | Tactus Technology, Inc. | User interface system |
US9720501B2 (en) | 2008-01-04 | 2017-08-01 | Tactus Technology, Inc. | Dynamic tactile interface |
US9495055B2 (en) | 2008-01-04 | 2016-11-15 | Tactus Technology, Inc. | User interface and methods |
US9477308B2 (en) | 2008-01-04 | 2016-10-25 | Tactus Technology, Inc. | User interface system |
US9423875B2 (en) | 2008-01-04 | 2016-08-23 | Tactus Technology, Inc. | Dynamic tactile interface with exhibiting optical dispersion characteristics |
US9207795B2 (en) | 2008-01-04 | 2015-12-08 | Tactus Technology, Inc. | User interface system |
US9626059B2 (en) | 2008-01-04 | 2017-04-18 | Tactus Technology, Inc. | User interface system |
US9619030B2 (en) | 2008-01-04 | 2017-04-11 | Tactus Technology, Inc. | User interface system and method |
US9524025B2 (en) | 2008-01-04 | 2016-12-20 | Tactus Technology, Inc. | User interface system and method |
US9274612B2 (en) | 2008-01-04 | 2016-03-01 | Tactus Technology, Inc. | User interface system |
US9612659B2 (en) | 2008-01-04 | 2017-04-04 | Tactus Technology, Inc. | User interface system |
US9588683B2 (en) | 2008-01-04 | 2017-03-07 | Tactus Technology, Inc. | Dynamic tactile interface |
US9448630B2 (en) | 2008-01-04 | 2016-09-20 | Tactus Technology, Inc. | Method for actuating a tactile interface layer |
US9552065B2 (en) | 2008-01-04 | 2017-01-24 | Tactus Technology, Inc. | Dynamic tactile interface |
US9128525B2 (en) | 2008-01-04 | 2015-09-08 | Tactus Technology, Inc. | Dynamic tactile interface |
US9229571B2 (en) | 2008-01-04 | 2016-01-05 | Tactus Technology, Inc. | Method for adjusting the user interface of a device |
US9557915B2 (en) | 2008-01-04 | 2017-01-31 | Tactus Technology, Inc. | Dynamic tactile interface |
US8786555B2 (en) * | 2008-03-21 | 2014-07-22 | Sprint Communications Company L.P. | Feedback-providing keypad for touchscreen devices |
US20090237364A1 (en) * | 2008-03-21 | 2009-09-24 | Sprint Communications Company L.P. | Feedback-providing keypad for touchscreen devices |
US20100105362A1 (en) * | 2008-10-23 | 2010-04-29 | Yang Seung Wan | Mobile terminal and information processing method thereof |
US8565741B2 (en) * | 2008-10-23 | 2013-10-22 | Lg Electronics Inc. | Mobile terminal and information processing method thereof |
US9588684B2 (en) | 2009-01-05 | 2017-03-07 | Tactus Technology, Inc. | Tactile interface for a computing device |
US20100262504A1 (en) * | 2009-04-08 | 2010-10-14 | Toshiba Tec Kabushiki Kaisha | Pos terminal |
US9298262B2 (en) | 2010-01-05 | 2016-03-29 | Tactus Technology, Inc. | Dynamic tactile interface |
US20150077366A1 (en) * | 2010-01-05 | 2015-03-19 | Tactus Technology, Inc. | Dynamic tactile interface |
US9239623B2 (en) * | 2010-01-05 | 2016-01-19 | Tactus Technology, Inc. | Dynamic tactile interface |
WO2011119593A1 (en) * | 2010-03-25 | 2011-09-29 | Panasonic Corporation Of North America | Physically reconfigurable input and output systems and methods |
US8232976B2 (en) | 2010-03-25 | 2012-07-31 | Panasonic Corporation Of North America | Physically reconfigurable input and output systems and methods |
US20110234502A1 (en) * | 2010-03-25 | 2011-09-29 | Yun Tiffany | Physically reconfigurable input and output systems and methods |
US20120268893A1 (en) * | 2011-04-25 | 2012-10-25 | Tso-Kuo Yin | Cooling system for a portable electronic device |
US20150111619A1 (en) * | 2011-04-28 | 2015-04-23 | Fujitsu Limited | Method and Apparatus for Informing a User Through Haptic Signals |
US9794398B2 (en) * | 2011-04-28 | 2017-10-17 | Fujitsu Limited | Method and apparatus for informing a user through haptic signals |
US9176530B2 (en) * | 2011-08-17 | 2015-11-03 | Apple Inc. | Bi-stable spring with flexible display |
US20160033994A1 (en) * | 2011-08-17 | 2016-02-04 | Apple Inc. | Bi-stable spring with flexible display |
US12079033B2 (en) | 2011-08-17 | 2024-09-03 | Apple Inc. | Bi-stable spring with flexible display |
US11275406B2 (en) * | 2011-08-17 | 2022-03-15 | Apple Inc. | Bi-stable spring with flexible display |
US20130044215A1 (en) * | 2011-08-17 | 2013-02-21 | Apple Inc. | Bi-stable spring with flexible display |
US20130235512A1 (en) * | 2012-03-06 | 2013-09-12 | Hon Hai Precision Industry Co., Ltd. | Electronic device with retractable keyboard |
US9626841B2 (en) * | 2012-09-21 | 2017-04-18 | Google Inc. | Occupant notification of visitor interaction with a doorbell at a smart-home |
US20150109112A1 (en) * | 2012-09-21 | 2015-04-23 | Google Inc. | Occupant notification of visitor interaction with a doorbell at a smart-home |
US10735216B2 (en) | 2012-09-21 | 2020-08-04 | Google Llc | Handling security services visitor at a smart-home |
US9978238B2 (en) | 2012-09-21 | 2018-05-22 | Google Llc | Visitor options at an entryway to a smart-home |
US9959727B2 (en) | 2012-09-21 | 2018-05-01 | Google Llc | Handling visitor interaction at a smart-home in a do not disturb mode |
US9960929B2 (en) | 2012-09-21 | 2018-05-01 | Google Llc | Environmental sensing with a doorbell at a smart-home |
US9600645B2 (en) | 2012-09-21 | 2017-03-21 | Google Inc. | Smart invitation handling at a smart-home |
US9711036B2 (en) | 2012-09-21 | 2017-07-18 | Google Inc. | Leveraging neighborhood to handle potential visitor at a smart-home |
US9953514B2 (en) | 2012-09-21 | 2018-04-24 | Google Llc | Visitor feedback to visitor interaction with a doorbell at a smart-home |
US9881474B2 (en) | 2012-09-21 | 2018-01-30 | Google Llc | Initially detecting a visitor at a smart-home |
US10510035B2 (en) | 2012-09-21 | 2019-12-17 | Google Llc | Limited access invitation handling at a smart-home |
US9640055B2 (en) | 2012-09-21 | 2017-05-02 | Google Inc. | Interacting with a detected visitor at an entryway to a smart-home |
US9652912B2 (en) | 2012-09-21 | 2017-05-16 | Google Inc. | Secure handling of unsupervised package drop off at a smart-home |
US9280224B2 (en) | 2012-09-24 | 2016-03-08 | Tactus Technology, Inc. | Dynamic tactile interface and methods |
US9405417B2 (en) | 2012-09-24 | 2016-08-02 | Tactus Technology, Inc. | Dynamic tactile interface and methods |
US20180253729A1 (en) * | 2012-12-21 | 2018-09-06 | Paypal, Inc. | Method and apparatus for using sensors on a portable electronic device to verify transactions |
US20140181908A1 (en) * | 2012-12-21 | 2014-06-26 | Ebay Inc | Method and Apparatus for Using Sensors on a Portable Electronic Device to Verify Transactions |
US8978111B2 (en) * | 2012-12-21 | 2015-03-10 | Ebay, Inc. | Method and apparatus for using sensors on a portable electronic device to verify transactions |
US9892412B2 (en) | 2012-12-21 | 2018-02-13 | Paypal, Inc. | Method and apparatus for using sensors on a portable electronic device to verify transactions |
US9349126B2 (en) | 2012-12-21 | 2016-05-24 | Paypal, Inc. | Method and apparatus for using sensors on a portable electronic device to verify transactions |
US10803462B2 (en) * | 2012-12-21 | 2020-10-13 | Paypal, Inc. | Method and apparatus for using sensors on a portable electronic device to verify transactions |
US20160139671A1 (en) * | 2013-01-15 | 2016-05-19 | Samsung Electronics Co., Ltd. | Method for providing haptic effect in electronic device, machine-readable storage medium, and electronic device |
US9557813B2 (en) | 2013-06-28 | 2017-01-31 | Tactus Technology, Inc. | Method for reducing perceived optical distortion |
WO2015035317A1 (en) * | 2013-09-06 | 2015-03-12 | Tactus Technology, Inc. | Dynamic tactile interface |
US20150198940A1 (en) * | 2014-01-10 | 2015-07-16 | Lg Electronics Inc. | Electronic home appliance and control method thereof |
US9176617B2 (en) * | 2014-02-14 | 2015-11-03 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Physical presence of a virtual button on a touch screen of an electronic device |
US9335848B2 (en) | 2014-02-14 | 2016-05-10 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Apparatus for providing a three dimensional tactile display of an electronic device |
US20150234506A1 (en) * | 2014-02-14 | 2015-08-20 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Physical presence of a virtual button on a touch screen of an electronic device |
US10031582B2 (en) | 2014-06-05 | 2018-07-24 | Immersion Corporation | Systems and methods for induced electrostatic haptic effects |
US9483126B2 (en) * | 2014-06-27 | 2016-11-01 | Intel Corporation | Smart variable torque display |
US10083633B2 (en) | 2014-11-10 | 2018-09-25 | International Business Machines Corporation | Generating a three-dimensional representation of a topography |
US10223938B2 (en) | 2014-11-10 | 2019-03-05 | International Business Machines Corporation | Generating a three-dimensional representation of a topography |
US10388119B2 (en) | 2015-12-30 | 2019-08-20 | Immersion Corporation | Externally-activated haptic devices and systems |
US9928696B2 (en) * | 2015-12-30 | 2018-03-27 | Immersion Corporation | Externally-activated haptic devices and systems |
US10627906B2 (en) * | 2017-06-02 | 2020-04-21 | International Business Machines Corporation | Tactile display using microscale electrostatic accelerators |
US11086401B2 (en) | 2017-06-02 | 2021-08-10 | International Business Machines Corporation | Tactile display using microscale electrostatic accelerators |
US20180348866A1 (en) * | 2017-06-02 | 2018-12-06 | International Business Machines Corporation | Tactile Display Using Microscale Electrostatic Accelerators |
CN110774990A (en) * | 2018-07-27 | 2020-02-11 | 大众汽车有限公司 | Operating device, motor vehicle with operating device and method for operating the operating device |
Also Published As
Publication number | Publication date |
---|---|
WO2009026405A3 (en) | 2009-04-30 |
WO2009026405A2 (en) | 2009-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090132093A1 (en) | Tactile Conforming Apparatus and Method for a Device | |
US8761846B2 (en) | Method and apparatus for controlling a skin texture surface on a device | |
US8866641B2 (en) | Method and apparatus for controlling a keypad of a device | |
US7876199B2 (en) | Method and apparatus for controlling a skin texture surface on a device using a shape memory alloy | |
US20080248836A1 (en) | Method and apparatus for controlling a skin texture surface on a device using hydraulic control | |
US20090015560A1 (en) | Method and apparatus for controlling a display of a device | |
US20080248248A1 (en) | Method and apparatus for controlling a skin texture surface on a device using a gas | |
JP6140769B2 (en) | Method and apparatus for providing a multi-point haptic feedback texture system | |
CN109036148B (en) | Flexible display panel and flexible display device | |
JP5576581B1 (en) | User interface expansion system | |
US10013092B2 (en) | Tactile touch sensor system and method | |
US20160252961A1 (en) | User interface system | |
US10762752B1 (en) | Tactile notifications for electronic devices | |
WO2009009327A1 (en) | Electronic device with physical alert | |
US9411439B2 (en) | Input device with a customizable contour | |
CN112445277B (en) | Electronic equipment | |
US20200285340A1 (en) | Tactile touch sensor system and method | |
JP5258382B2 (en) | Tactile sheet member, input device, and electronic device | |
TW201212079A (en) | Switch module | |
KR20240127819A (en) | Stretchable display tile device, operating method of stretchable display tile device and recording medium for performing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOTOROLA, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARNESON, THEODORE R.;GITZINGER, THOMAS E.;ROBINSON, WILLIAM N.;REEL/FRAME:022194/0599;SIGNING DATES FROM 20081218 TO 20090108 |
|
AS | Assignment |
Owner name: MOTOROLA MOBILITY, INC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:025673/0558 Effective date: 20100731 |
|
AS | Assignment |
Owner name: MOTOROLA MOBILITY LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA MOBILITY, INC.;REEL/FRAME:028829/0856 Effective date: 20120622 |
|
AS | Assignment |
Owner name: GOOGLE TECHNOLOGY HOLDINGS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA MOBILITY LLC;REEL/FRAME:034301/0001 Effective date: 20141028 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |