US20190123985A1 - Federated network and application data analytics platform - Google Patents
Federated network and application data analytics platform Download PDFInfo
- Publication number
- US20190123985A1 US20190123985A1 US15/793,424 US201715793424A US2019123985A1 US 20190123985 A1 US20190123985 A1 US 20190123985A1 US 201715793424 A US201715793424 A US 201715793424A US 2019123985 A1 US2019123985 A1 US 2019123985A1
- Authority
- US
- United States
- Prior art keywords
- network
- nodes
- cluster
- analytics
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012517 data analytics Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 73
- 238000003860 storage Methods 0.000 claims description 16
- 230000004931 aggregating effect Effects 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 description 74
- 230000000875 corresponding effect Effects 0.000 description 70
- 230000008569 process Effects 0.000 description 29
- 230000015654 memory Effects 0.000 description 26
- 238000004891 communication Methods 0.000 description 22
- 239000004744 fabric Substances 0.000 description 18
- 230000006870 function Effects 0.000 description 14
- 239000013598 vector Substances 0.000 description 14
- 238000013507 mapping Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 8
- 238000007726 management method Methods 0.000 description 7
- 230000006855 networking Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000036541 health Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000010979 ruby Substances 0.000 description 3
- 229910001750 ruby Inorganic materials 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000003058 natural language processing Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 240000005020 Acaciella glauca Species 0.000 description 1
- 241001522296 Erithacus rubecula Species 0.000 description 1
- 244000035744 Hura crepitans Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
- H04L43/062—Generation of reports related to network traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/06—Generation of reports
- H04L43/065—Generation of reports related to network devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0876—Aspects of the degree of configuration automation
- H04L41/0886—Fully automatic configuration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0893—Assignment of logical groups to network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0894—Policy-based network configuration management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/04—Processing captured monitoring data, e.g. for logfile generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
- H04L41/0813—Configuration setting characterised by the conditions triggering a change of settings
- H04L41/0816—Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0895—Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/12—Network monitoring probes
Definitions
- the present technology pertains to providing interoperability between clusters of nodes in separate networks as part of a federated network.
- sensors can be placed at various devices or elements in the network to collect flow data and network statistics from different locations.
- sensors can be deployed in a network to collect network traffic data related to nodes or clusters of nodes operating in the network.
- the collected data from the sensors can be analyzed to monitor and troubleshoot the network.
- the data collected by the sensors can provide valuable details about the status, security, or performance of the network, as well as any network elements.
- collected data and analytics generated from the collected data are only available on a per-network granularity level.
- different networks with sensors deployed within them to gather collected data lack interoperability. This leads to redundancies in controlling operation of these networks.
- a lack of interoperability between different networks with data collecting sensors makes it difficult to analyze operation of nodes and clusters of nodes across the different networks, otherwise referred to as visibility across the networks.
- FIG. 1 illustrates an example network traffic monitoring system
- FIG. 2 illustrates an example of a network environment
- FIG. 3 illustrates an example peer-to-peer architecture for providing interoperability between clusters of nodes in different networks
- FIG. 4 illustrates an example hierarchical architecture for providing interoperability between clusters of nodes in different networks
- FIG. 5 illustrates an example network node interoperability system
- FIG. 6 illustrates a flowchart for an example method of providing interoperability between clusters of nodes in different networks
- FIG. 7 illustrates an example network device in accordance with various embodiments.
- FIG. 8 illustrates an example computing device in accordance with various embodiments.
- references to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure.
- the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
- various features are described which can be exhibited by some embodiments and not by others.
- a method can include identifying a first cluster of nodes in a first network and a second cluster of nodes in a second network. Interoperability can be provided between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- the method can include generating first analytics for the first cluster of nodes using first network traffic data gathered based on first network traffic flowing through the first cluster of nodes using a first group of sensors implemented in the first network.
- the second cluster of nodes can access the first analytics for the first cluster of nodes as part of providing interoperability between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- a system can identify a first cluster of nodes in a first network. Interoperability can be provided by the system between the first cluster of nodes in the first network and a second cluster of nodes in a second network.
- the system can generate first analytics for the first cluster of nodes using first network traffic data gathered based on first network traffic flowing through the first cluster of nodes using a first group of sensors implemented in the first network.
- the second cluster of nodes can access the first analytics for the first cluster of nodes through an external application program interface as part of providing interoperability between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- a system can identify a first cluster of nodes in a first network of a tenant and a second cluster of nodes in a second network of the tenant. Interoperability can be provided by the system between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- the system can generate first analytics for the first cluster of nodes using first network traffic data gathered based on first network traffic flowing through the first cluster of nodes using a first group of sensors implemented in the first network.
- the second cluster of nodes can access the first analytics for the first cluster of nodes as part of providing interoperability between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- the disclosed technology addresses the need in the art for providing interoperability between nodes and clusters of nodes in separate networks for use in generating analytics and managing the nodes across the networks.
- the present technology involves system, methods, and computer-readable media for providing interoperability between nodes and clusters of nodes in separate networks, e.g. as part of a federated network, for use in generating analytics and managing the nodes.
- the present technology involves systems, methods, and computer-readable media for generating and providing access to analytics across clusters of nodes in separate networks in order to provide visibility across the separate network.
- the discussion begins with an introductory discussion of network traffic data collection and a description of an example network traffic monitoring system and an example network environment, as shown in FIGS. 1 and 2 .
- the disclosure will then include a discussion of systems and methods for providing interoperability between nodes and clusters of nodes in different networks, as illustrated in FIGS. 5 and 6 .
- a discussion of example network devices and computing devices, as illustrated in FIGS. 7 and 8 will then follow.
- the disclosure now turns to an introductory discussion of network sensor data collection based on network traffic flows and clustering of nodes in a network for purposes of collecting data based on network traffic flows.
- networks can be configured with sensors at multiple points, including on networking devices (e.g., switches, routers, gateways, firewalls, deep packet inspectors, traffic monitors, load balancers, etc.), physical servers, hypervisors or shared kernels, virtual partitions (e.g., VMs or containers), and other network elements. This can provide a more comprehensive view of the network.
- networking devices e.g., switches, routers, gateways, firewalls, deep packet inspectors, traffic monitors, load balancers, etc.
- physical servers e.g., hypervisors or shared kernels
- virtual partitions e.g., VMs or containers
- network traffic data can be associated with, or otherwise include, host and/or endpoint data (e.g., host/endpoint name, operating system, CPU usage, network usage, disk space, logged users, scheduled jobs, open files, information regarding files stored on a host/endpoint, etc.), process data (e.g., process name, ID, parent process ID, path, CPU utilization, memory utilization, etc.), user data (e.g., user name, ID, login time, etc.), and other collectible data to provide more insight into network activity.
- host and/or endpoint data e.g., host/endpoint name, operating system, CPU usage, network usage, disk space, logged users, scheduled jobs, open files, information regarding files stored on a host/endpoint, etc.
- process data e.g., process name, ID, parent process ID, path, CPU utilization, memory utilization, etc.
- user data e.g., user name, ID, login time, etc.
- Sensors implemented in a network at multiple points can be used to collect data for nodes grouped together into a cluster.
- Nodes can be clustered together, or otherwise a cluster of nodes can be identified using one or a combination of applicable network operation factors. For example, endpoints performing similar workloads, communicating with a similar set of endpoints or networking devices, having similar network and security limitations (i.e., policies), and sharing other attributes can be clustered together.
- a cluster can be determined based on early fusion in which feature vectors of each node comprise the union of individual feature vectors across multiple domains.
- a feature vector can include a packet header-based feature (e.g., destination network address for a flow, port, etc.) concatenated to an aggregate flow-based feature (e.g., the number of packets in the flow, the number of bytes in the flow, etc.).
- a cluster can then be defined as a set of nodes whose respective concatenated feature vectors are determined to exceed specified similarity thresholds (or fall below specified distance thresholds).
- a cluster can be defined based on late fusion in which each node can be represented as multiple feature vectors of different data types or domains.
- a cluster can be a set of nodes whose similarity (and/or distance measures) across different domains, satisfy specified similarity (and/or distance) conditions for each domain.
- a first node can be defined by a first network information-based feature vector and a first process-based feature vector while a second node can be defined by a second network information-based feature vector and a second process-based feature vector.
- the nodes can be determined to form a cluster if their corresponding network-based feature vectors are similar to a specified degree and their corresponding process-based feature vectors are only a specified distance apart.
- FIG. 1 is an illustration of a network traffic monitoring system 100 in accordance with an embodiment.
- the network traffic monitoring system 100 can include a configuration manager 102 , sensors 104 , a collector module 106 , a data mover module 108 , an analytics engine 110 , and a presentation module 112 .
- the analytics engine 110 is also shown in communication with out-of-band data sources 114 , third party data sources 116 , and a network controller 118 .
- the configuration manager 102 can be used to provision and maintain the sensors 104 , including installing sensor software or firmware in various nodes of a network, configuring the sensors 104 , updating the sensor software or firmware, among other sensor management tasks.
- the sensors 104 can be implemented as virtual partition images (e.g., virtual machine (VM) images or container images), and the configuration manager 102 can distribute the images to host machines.
- a virtual partition can be an instance of a VM, container, sandbox, or other isolated software environment.
- the software environment can include an operating system and application software.
- the virtual partition can appear to be, for example, one of many servers or one of many operating systems executed on a single physical server.
- the configuration manager 102 can instantiate a new virtual partition or migrate an existing partition to a different physical server.
- the configuration manager 102 can also be used to configure the new or migrated sensor.
- the configuration manager 102 can monitor the health of the sensors 104 .
- the configuration manager 102 can request for status updates and/or receive heartbeat messages, initiate performance tests, generate health checks, and perform other health monitoring tasks.
- the configuration manager 102 can also authenticate the sensors 104 .
- the sensors 104 can be assigned a unique identifier, such as by using a one-way hash function of a sensor's basic input/out system (BIOS) universally unique identifier (UUID) and a secret key stored by the configuration image manager 102 .
- the UUID can be a large number that can be difficult for a malicious sensor or other device or component to guess.
- the configuration manager 102 can keep the sensors 104 up to date by installing the latest versions of sensor software and/or applying patches. The configuration manager 102 can obtain these updates automatically from a local source or the Internet.
- the sensors 104 can reside on various nodes of a network, such as a virtual partition (e.g., VM or container) 120 ; a hypervisor or shared kernel managing one or more virtual partitions and/or physical servers 122 , an application-specific integrated circuit (ASIC) 124 of a switch, router, gateway, or other networking device, or a packet capture (pcap) 126 appliance (e.g., a standalone packet monitor, a device connected to a network devices monitoring port, a device connected in series along a main trunk of a datacenter, or similar device), or other element of a network.
- a virtual partition e.g., VM or container
- ASIC application-specific integrated circuit
- pcap packet capture
- the sensors 104 can monitor network traffic between nodes, and send network traffic data and corresponding data (e.g., host data, process data, user data, etc.) to the collectors 108 for storage.
- network traffic data and corresponding data e.g., host data, process data, user data, etc.
- the sensors 104 can sniff packets being sent over its hosts' physical or virtual network interface card (NIC), or individual processes can be configured to report network traffic and corresponding data to the sensors 104 .
- NIC physical or virtual network interface card
- Incorporating the sensors 104 on multiple nodes and within multiple partitions of some nodes of the network can provide for robust capture of network traffic and corresponding data from each hop of data transmission.
- each node of the network (e.g., VM, container, or other virtual partition 120 , hypervisor, shared kernel, or physical server 122 , ASIC 124 , pcap 126 , etc.) includes a respective sensor 104 .
- VM virtual partition
- hypervisor shared kernel
- physical server 122 e.g., a server 116 , a server 116 , a server 116 , a server 116 , etc.
- ASIC 124 e.g., pcap 126 , etc.
- each node of the network includes a respective sensor 104 .
- various software and hardware configurations can be used to implement the sensor network 104 .
- the network traffic data can include metadata relating to a packet, a collection of packets, a flow, a bidirectional flow, a group of flows, a session, or a network communication of another granularity. That is, the network traffic data can generally include any information describing communication on all layers of the Open Systems Interconnection (OSI) model.
- OSI Open Systems Interconnection
- the network traffic data can include source/destination MAC address, source/destination IP address, protocol, port number, etc.
- the network traffic data can also include summaries of network activity or other network statistics such as number of packets, number of bytes, number of flows, bandwidth usage, response time, latency, packet loss, jitter, and other network statistics.
- the sensors 104 can also determine additional data, included as part of gathered network traffic data, for each session, bidirectional flow, flow, packet, or other more granular or less granular network communication.
- the additional data can include host and/or endpoint information, virtual partition information, sensor information, process information, user information, tenant information, application information, network topology, application dependency mapping, cluster information, or other information corresponding to each flow.
- the sensors 104 can perform some preprocessing of the network traffic and corresponding data before sending the data to the collectors 108 .
- the sensors 104 can remove extraneous or duplicative data or they can create summaries of the data (e.g., latency, number of packets per flow, number of bytes per flow, number of flows, etc.).
- the sensors 104 can be configured to only capture certain types of network information and disregard the rest.
- the sensors 104 can be configured to capture only a representative sample of packets (e.g., every 1,000th packet or other suitable sample rate) and corresponding data.
- network traffic and corresponding data can be collected from multiple vantage points or multiple perspectives in the network to provide a more comprehensive view of network behavior.
- the capture of network traffic and corresponding data from multiple perspectives rather than just at a single sensor located in the data path or in communication with a component in the data path, allows the data to be correlated from the various data sources, which can be used as additional data points by the analytics engine 110 . Further, collecting network traffic and corresponding data from multiple points of view ensures more accurate data is captured.
- a conventional sensor network can be limited to sensors running on external-facing network devices (e.g., routers, switches, network appliances, etc.) such that east-west traffic, including VM-to-VM or container-to-container traffic on a same host, may not be monitored.
- east-west traffic including VM-to-VM or container-to-container traffic on a same host
- packets that are dropped before traversing a network device or packets containing errors cannot be accurately monitored by the conventional sensor network.
- the sensor network 104 of various embodiments substantially mitigates or eliminates these issues altogether by locating sensors at multiple points of potential failure.
- the network traffic monitoring system 100 can verify multiple instances of data for a flow (e.g., source endpoint flow data, network device flow data, and endpoint flow data) against one another.
- the network traffic monitoring system 100 can assess a degree of accuracy of flow data sets from multiple sensors and utilize a flow data set from a single sensor determined to be the most accurate and/or complete.
- the degree of accuracy can be based on factors such as network topology (e.g., a sensor closer to the source can be more likely to be more accurate than a sensor closer to the destination), a state of a sensor or a node hosting the sensor (e.g., a compromised sensor/node can have less accurate flow data than an uncompromised sensor/node), or flow data volume (e.g., a sensor capturing a greater number of packets for a flow can be more accurate than a sensor capturing a smaller number of packets).
- network topology e.g., a sensor closer to the source can be more likely to be more accurate than a sensor closer to the destination
- a state of a sensor or a node hosting the sensor e.g., a compromised sensor/node can have less accurate flow data than an
- the network traffic monitoring system 100 can assemble the most accurate flow data set and corresponding data from multiple sensors. For instance, a first sensor along a data path can capture data for a first packet of a flow but can be missing data for a second packet of the flow while the situation is reversed for a second sensor along the data path. The network traffic monitoring system 100 can assemble data for the flow from the first packet captured by the first sensor and the second packet captured by the second sensor.
- the sensors 104 can send network traffic and corresponding data to the collectors 106 .
- each sensor can be assigned to a primary collector and a secondary collector as part of a high availability scheme. If the primary collector fails or communications between the sensor and the primary collector are not otherwise possible, a sensor can send its network traffic and corresponding data to the secondary collector. In other embodiments, the sensors 104 are not assigned specific collectors but the network traffic monitoring system 100 can determine an optimal collector for receiving the network traffic and corresponding data through a discovery process.
- a sensor can change where it sends it network traffic and corresponding data if its environments changes, such as if a default collector fails or if the sensor is migrated to a new location and it would be optimal for the sensor to send its data to a different collector. For example, it can be preferable for the sensor to send its network traffic and corresponding data on a particular path and/or to a particular collector based on latency, shortest path, monetary cost (e.g., using private resources versus a public resources provided by a public cloud provider), error rate, or some combination of these factors.
- a sensor can send different types of network traffic and corresponding data to different collectors. For example, the sensor can send first network traffic and corresponding data related to one type of process to one collector and second network traffic and corresponding data related to another type of process to another collector.
- the collectors 106 can be any type of storage medium that can serve as a repository for the network traffic and corresponding data captured by the sensors 104 .
- data storage for the collectors 106 is located in an in-memory database, such as dashDB from IBM®, although it should be appreciated that the data storage for the collectors 106 can be any software and/or hardware capable of providing rapid random access speeds typically used for analytics software.
- the collectors 106 can utilize solid state drives, disk drives, magnetic tape drives, or a combination of the foregoing according to cost, responsiveness, and size requirements. Further, the collectors 106 can utilize various database structures such as a normalized relational database or a NoSQL database, among others.
- the collectors 106 can only serve as network storage for the network traffic monitoring system 100 .
- the network traffic monitoring system 100 can include a data mover module 108 for retrieving data from the collectors 106 and making the data available to network clients, such as the components of the analytics engine 110 .
- the data mover module 108 can serve as a gateway for presenting network-attached storage to the network clients.
- the collectors 106 can perform additional functions, such as organizing, summarizing, and preprocessing data. For example, the collectors 106 can tabulate how often packets of certain sizes or types are transmitted from different nodes of the network. The collectors 106 can also characterize the traffic flows going to and from various nodes.
- the collectors 106 can match packets based on sequence numbers, thus identifying traffic flows and connection links. As it can be inefficient to retain all data indefinitely in certain circumstances, in some embodiments, the collectors 106 can periodically replace detailed network traffic data with consolidated summaries. In this manner, the collectors 106 can retain a complete dataset describing one period (e.g., the past minute or other suitable period of time), with a smaller dataset of another period (e.g., the previous 2-10 minutes or other suitable period of time), and progressively consolidate network traffic and corresponding data of other periods of time (e.g., day, week, month, year, etc.).
- one period e.g., the past minute or other suitable period of time
- another period e.g., the previous 2-10 minutes or other suitable period of time
- progressively consolidate network traffic and corresponding data of other periods of time e.g., day, week, month, year, etc.
- network traffic and corresponding data for a set of flows identified as normal or routine can be winnowed at an earlier period of time while a more complete data set can be retained for a lengthier period of time for another set of flows identified as anomalous or as an attack.
- the analytics engine 110 can generate analytics using data collected by the sensors 104 .
- Analytics generated by the analytics engine 110 can include applicable analytics of nodes or a cluster of nodes operating in a network.
- analytics generated by the analytics engine 110 can include one or a combination of information related to flows of data through nodes, detected attacks on a network or nodes of a network, applications at nodes or distributed across the nodes, application dependency mappings for applications at nodes, policies implemented at nodes, and actual policies enforced at nodes.
- Computer networks can be exposed to a variety of different attacks that expose vulnerabilities of computer systems in order to compromise their security. Some network traffic can be associated with malicious programs or devices.
- the analytics engine 110 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation. The analytics engine 110 can then analyze network traffic and corresponding data to recognize when the network is under attack. In some embodiments, the network can operate within a trusted environment for a period of time so that the analytics engine 110 can establish a baseline of normal operation. Since malware is constantly evolving and changing, machine learning can be used to dynamically update models for identifying malicious traffic patterns.
- the analytics engine 110 can be used to identify observations which differ from other examples in a dataset. For example, if a training set of example data with known outlier labels exists, supervised anomaly detection techniques can be used. Supervised anomaly detection techniques utilize data sets that have been labeled as normal and abnormal and train a classifier. In a case in which it is unknown whether examples in the training data are outliers, unsupervised anomaly techniques can be used. Unsupervised anomaly detection techniques can be used to detect anomalies in an unlabeled test data set under the assumption that the majority of instances in the data set are normal by looking for instances that seem to fit to the remainder of the data set.
- the analytics engine 110 can include a data lake 130 , an application dependency mapping (ADM) module 140 , and elastic processing engines 150 .
- the data lake 130 is a large-scale storage repository that provides massive storage for various types of data, enormous processing power, and the ability to handle nearly limitless concurrent tasks or jobs.
- the data lake 130 is implemented using the Hadoop® Distributed File System (HDFSTM) from Apache® Software Foundation of Forest Hill, Md.
- HDFSTM is a highly scalable and distributed file system that can scale to thousands of cluster nodes, millions of files, and petabytes of data.
- HDFSTM is optimized for batch processing where data locations are exposed to allow computations to take place where the data resides.
- HDFSTM provides a single namespace for an entire cluster to allow for data coherency in a write-once, read-many access model. That is, clients can only append to existing files in the node.
- files are separated into blocks, which are typically 64 MB in size and are replicated in multiple data nodes. Clients access data directly from data nodes.
- the data mover 108 receives raw network traffic and corresponding data from the collectors 106 and distributes or pushes the data to the data lake 130 .
- the data lake 130 can also receive and store out-of-band data 114 , such as statuses on power levels, network availability, server performance, temperature conditions, cage door positions, and other data from internal sources, and third party data 116 , such as security reports (e.g., provided by Cisco® Systems, Inc. of San Jose, Calif., Arbor Networks® of Burlington, Mass., Symantec® Corp. of Sunnyvale, Calif., Sophos® Group plc of Abingdon, England, Microsoft® Corp. of Seattle, Wash., Verizon® Communications, Inc.
- security reports e.g., provided by Cisco® Systems, Inc. of San Jose, Calif., Arbor Networks® of Burlington, Mass., Symantec® Corp. of Sunnyvale, Calif., Sophos® Group plc of Abingdon, England, Microsoft® Corp. of Seattle, Wash., Verizon® Communications
- the data lake 130 can instead fetch or pull raw traffic and corresponding data from the collectors 106 and relevant data from the out-of-band data sources 114 and the third party data sources 116 .
- the functionality of the collectors 106 , the data mover 108 , the out-of-band data sources 114 , the third party data sources 116 , and the data lake 130 can be combined. Various combinations and configurations are possible as would be known to one of ordinary skill in the art.
- Each component of the data lake 130 can perform certain processing of the raw network traffic data and/or other data (e.g., host data, process data, user data, out-of-band data or third party data) to transform the raw data to a form useable by the elastic processing engines 150 .
- the data lake 130 can include repositories for flow attributes 132 , host and/or endpoint attributes 134 , process attributes 136 , and policy attributes 138 .
- the data lake 130 can also include repositories for VM or container attributes, application attributes, tenant attributes, network topology, application dependency maps, cluster attributes, etc.
- the flow attributes 132 relate to information about flows traversing the network.
- a flow is generally one or more packets sharing certain attributes that are sent within a network within a specified period of time.
- the flow attributes 132 can include packet header fields such as a source address (e.g., Internet Protocol (IP) address, Media Access Control (MAC) address, Domain Name System (DNS) name, or other network address), source port, destination address, destination port, protocol type, class of service, among other fields.
- IP Internet Protocol
- MAC Media Access Control
- DNS Domain Name System
- the source address can correspond to a first endpoint (e.g., network device, physical server, virtual partition, etc.) of the network
- the destination address can correspond to a second endpoint, a multicast group, or a broadcast domain.
- the flow attributes 132 can also include aggregate packet data such as flow start time, flow end time, number of packets for a flow, number of bytes for a flow, the union of TCP flags for a flow, among other flow data.
- the host and/or endpoint attributes 134 describe host and/or endpoint data for each flow, and can include host and/or endpoint name, network address, operating system, CPU usage, network usage, disk space, ports, logged users, scheduled jobs, open files, and information regarding files and/or directories stored on a host and/or endpoint (e.g., presence, absence, or modifications of log files, configuration files, device special files, or protected electronic information).
- the host and/or endpoints attributes 134 can also include the out-of-band data 114 regarding hosts such as power level, temperature, and physical location (e.g., room, row, rack, cage door position, etc.) or the third party data 116 such as whether a host and/or endpoint is on an IP watch list or otherwise associated with a security threat, Whois data, or geocoordinates.
- the out-of-band data 114 and the third party data 116 can be associated by process, user, flow, or other more granular or less granular network element or network communication.
- the process attributes 136 relate to process data corresponding to each flow, and can include process name (e.g., bash, httpd, netstat, etc.), ID, parent process ID, path (e.g., /usr2/username/bin/, /usr/local/bin, /usr/bin, etc.), CPU utilization, memory utilization, memory address, scheduling information, nice value, flags, priority, status, start time, terminal type, CPU time taken by the process, the command that started the process, and information regarding a process owner (e.g., user name, ID, user's real name, e-mail address, user's groups, terminal information, login time, expiration date of login, idle time, and information regarding files and/or directories of the user).
- process name e.g., bash, httpd, netstat, etc.
- ID e.g., bash, httpd, netstat, etc.
- path e.g., /usr2/username/bin/, /usr/local/
- the policy attributes 138 contain information relating to network policies. Policies establish whether a particular flow is allowed or denied by the network as well as a specific route by which a packet traverses the network. Policies can also be used to mark packets so that certain kinds of traffic receive differentiated service when used in combination with queuing techniques such as those based on priority, fairness, weighted fairness, token bucket, random early detection, round robin, among others.
- the policy attributes 138 can include policy statistics such as a number of times a policy was enforced or a number of times a policy was not enforced.
- the policy attributes 138 can also include associations with network traffic data. For example, flows found to be non-conformant can be linked or tagged with corresponding policies to assist in the investigation of non-conformance.
- the analytics engine 110 can include any number of engines 150 , including for example, a flow engine 152 for identifying flows (e.g., flow engine 152 ) or an attacks engine 154 for identify attacks to the network.
- the analytics engine can include a separate distributed denial of service (DDoS) attack engine 155 for specifically detecting DDoS attacks.
- a DDoS attack engine can be a component or a sub-engine of a general attacks engine.
- the attacks engine 154 and/or the DDoS engine 155 can use machine learning techniques to identify security threats to a network.
- the attacks engine 154 and/or the DDoS engine 155 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation.
- the attacks engine 154 and/or the DDoS engine 155 can then analyze network traffic data to recognize when the network is under attack.
- the network can operate within a trusted environment for a time to establish a baseline for normal network operation for the attacks engine 154 and/or the DDoS.
- the analytics engine 110 can further include a search engine 156 .
- the search engine 156 can be configured, for example to perform a structured search, an NLP (Natural Language Processing) search, or a visual search. Data can be provided to the engines from one or more processing components.
- NLP Natural Language Processing
- the analytics engine 110 can also include a policy engine 158 that manages network policy, including creating and/or importing policies, monitoring policy conformance and non-conformance, enforcing policy, simulating changes to policy or network elements affecting policy, among other policy-related tasks.
- a policy engine 158 that manages network policy, including creating and/or importing policies, monitoring policy conformance and non-conformance, enforcing policy, simulating changes to policy or network elements affecting policy, among other policy-related tasks.
- the ADM module 140 can determine dependencies of applications of the network. That is, particular patterns of traffic can correspond to an application, and the interconnectivity or dependencies of the application can be mapped to generate a graph for the application (i.e., an application dependency mapping).
- an application refers to a set of networking components that provides connectivity for a given set of workloads. For example, in a conventional three-tier architecture for a web application, first endpoints of the web tier, second endpoints of the application tier, and third endpoints of the data tier make up the web application.
- the ADM module 140 can receive input data from various repositories of the data lake 130 (e.g., the flow attributes 132 , the host and/or endpoint attributes 134 , the process attributes 136 , etc.). The ADM module 140 can analyze the input data to determine that there is first traffic flowing between external endpoints on port 80 of the first endpoints corresponding to Hypertext Transfer Protocol (HTTP) requests and responses. The input data can also indicate second traffic between first ports of the first endpoints and second ports of the second endpoints corresponding to application server requests and responses and third traffic flowing between third ports of the second endpoints and fourth ports of the third endpoints corresponding to database requests and responses.
- the ADM module 140 can define an ADM for the web application as a three-tier application including a first EPG comprising the first endpoints, a second EPG comprising the second endpoints, and a third EPG comprising the third endpoints.
- the presentation module 116 can include an application programming interface (API) or command line interface (CLI) 160 , a security information and event management (STEM) interface 162 , and a web front-end 164 .
- API application programming interface
- CLI command line interface
- STEM security information and event management
- the presentation module 116 can take the analytics data generated by analytics engine 110 and further summarize, filter, and organize the analytics data as well as create intuitive presentations for the analytics data.
- the API or CLI 160 can be implemented using Hadoop® Hive from Apache® for the back end, and Java® Database Connectivity (JDBC) from Oracle® Corporation of Redwood Shores, Calif., as an API layer.
- Hive is a data warehouse infrastructure that provides data summarization and ad hoc querying. Hive provides a mechanism to query data using a variation of structured query language (SQL) that is called HiveQL.
- SQL structured query language
- JDBC is an API for the programming language Java®, which defines how a client can access a database.
- the SIEM interface 162 can be implemented using Hadoop® Kafka for the back end, and software provided by Splunk®, Inc. of San Francisco, Calif. as the SIEM platform.
- Kafka is a distributed messaging system that is partitioned and replicated. Kafka uses the concept of topics. Topics are feeds of messages in specific ucategories.
- Kafka can take raw packet captures and telemetry information from the data mover 108 as input, and output messages to a SIEM platform, such as Splunk®.
- the Splunk® platform is utilized for searching, monitoring, and analyzing machine-generated data.
- the web front-end 164 can be implemented using software provided by MongoDB®, Inc. of New York, N.Y. and Hadoop® ElasticSearch from Apache® for the back-end, and Ruby on RailsTM as the web application framework.
- MongoDB® is a document-oriented NoSQL database based on documents in the form of JavaScript® Object Notation (JSON) with dynamic schemas.
- ElasticSearch is a scalable and real-time search and analytics engine that provides domain-specific language (DSL) full querying based on JSON.
- Ruby on RailsTM is model-view-controller (MVC) framework that provides default structures for a database, a web service, and web pages. Ruby on RailsTM relies on web standards such as JSON or extensible markup language (XML) for data transfer, and hypertext markup language (HTML), cascading style sheets, (CSS), and JavaScript® for display and user interfacing.
- JSON JavaScript® Object Notation
- ElasticSearch is a scalable and
- FIG. 1 illustrates an example configuration of the various components of a network traffic monitoring system
- the components of the network traffic monitoring system 100 or any system described herein can be configured in a number of different ways and can include any other type and number of components.
- the sensors 104 , the collectors 106 , the data mover 108 , and the data lake 130 can belong to one hardware and/or software module or multiple separate modules.
- Other modules can also be combined into fewer components and/or further divided into more components.
- FIG. 2 illustrates an example of a network environment 200 in accordance with an embodiment.
- a network traffic monitoring system such as the network traffic monitoring system 100 of FIG. 1
- the network environment 200 can include any number or type of resources, which can be accessed and utilized by clients or tenants. The illustrations and examples provided herein are for clarity and simplicity.
- the network environment 200 can include a network fabric 202 , a Layer 2 (L2) network 204 , a Layer 3 (L3) network 206 , and servers 208 a, 208 b, 208 c, 208 d, and 208 e (collectively, 208 ).
- the network fabric 202 can include spine switches 210 a, 210 b, 210 c, and 210 d (collectively, “ 210 ”) and leaf switches 212 a, 212 b, 212 c, 212 d, and 212 e (collectively, “ 212 ”).
- the spine switches 210 can connect to the leaf switches 212 in the network fabric 202 .
- the leaf switches 212 can include access ports (or non-fabric ports) and fabric ports.
- the fabric ports can provide uplinks to the spine switches 210 , while the access ports can provide connectivity to endpoints (e.g., the servers 208 ), internal networks (e.g., the L2 network 204 ), or external networks (e.g., the L3 network 206 ).
- endpoints e.g., the servers 208
- internal networks e.g., the L2 network 204
- external networks e.g., the L3 network 206
- the leaf switches 212 can reside at the edge of the network fabric 202 , and can thus represent the physical network edge.
- the leaf switches 212 d and 212 e operate as border leaf switches in communication with edge devices 214 located in the external network 206 .
- the border leaf switches 212 d and 212 e can be used to connect any type of external network device, service (e.g., firewall, deep packet inspector, traffic monitor, load balancer, etc.), or network (e.g., the L3 network 206 ) to the fabric 202 .
- the network fabric 202 is illustrated and described herein as an example leaf-spine architecture, one of ordinary skill in the art will readily recognize that various embodiments can be implemented based on any network topology, including any datacenter or cloud network fabric. Indeed, other architectures, designs, infrastructures, and variations are contemplated herein. For example, the principles disclosed herein are applicable to topologies including three-tier (including core, aggregation, and access levels), fat tree, mesh, bus, hub and spoke, etc.
- the leaf switches 212 can be top-of-rack switches configured according to a top-of-rack architecture.
- the leaf switches 212 can be aggregation switches in any particular topology, such as end-of-row or middle-of-row topologies.
- the leaf switches 212 can also be implemented using aggregation switches.
- the topology illustrated in FIG. 2 and described herein is readily scalable and can accommodate a large number of components, as well as more complicated arrangements and configurations.
- the network can include any number of fabrics 202 , which can be geographically dispersed or located in the same geographic area.
- network nodes can be used in any suitable network topology, which can include any number of servers, virtual machines or containers, switches, routers, appliances, controllers, gateways, or other nodes interconnected to form a large and complex network. Nodes can be coupled to other nodes or networks through one or more interfaces employing any suitable wired or wireless connection, which provides a viable pathway for electronic communications.
- Network communications in the network fabric 202 can flow through the leaf switches 212 .
- the leaf switches 212 can provide endpoints (e.g., the servers 208 ), internal networks (e.g., the L2 network 204 ), or external networks (e.g., the L3 network 206 ) access to the network fabric 202 , and can connect the leaf switches 212 to each other.
- the leaf switches 212 can connect endpoint groups (EPGs) to the network fabric 202 , internal networks (e.g., the L2 network 204 ), and/or any external networks (e.g., the L3 network 206 ).
- EPGs are groupings of applications, or application components, and tiers for implementing forwarding and policy logic.
- EPGs can allow for separation of network policy, security, and forwarding from addressing by using logical application boundaries.
- EPGs can be used in the network environment 200 for mapping applications in the network.
- EPGs can comprise a grouping of endpoints in the network indicating connectivity and policy for applications.
- the servers 208 can connect to the network fabric 202 via the leaf switches 212 .
- the servers 208 a and 208 b can connect directly to the leaf switches 212 a and 212 b, which can connect the servers 208 a and 208 b to the network fabric 202 and/or any of the other leaf switches.
- the servers 208 c and 208 d can connect to the leaf switches 212 b and 212 c via the L2 network 204 .
- the servers 208 c and 208 d and the L2 network 204 make up a local area network (LAN).
- LANs can connect nodes over dedicated private communications links located in the same general physical location, such as a building or campus.
- the WAN 206 can connect to the leaf switches 212 d or 212 e via the L3 network 206 .
- WANs can connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical light paths, synchronous optical networks (SONET), or synchronous digital hierarchy (SDH) links.
- LANs and WANs can include L2 and/or L3 networks and endpoints.
- the Internet is an example of a WAN that connects disparate networks throughout the world, providing global communication between nodes on various networks.
- the nodes typically communicate over the network by exchanging discrete frames or packets of data according to predefined protocols, such as the Transmission Control Protocol/Internet Protocol (TCP/IP).
- TCP/IP Transmission Control Protocol/Internet Protocol
- a protocol can refer to a set of rules defining how the nodes interact with each other.
- Computer networks can be further interconnected by an intermediate network node, such as a router, to extend the effective size of each network.
- the endpoints 208 can include any communication device or component, such as a computer, server, blade, hypervisor, virtual machine, container, process (e.g., running on a virtual machine), switch, router, gateway, host, device, external network, etc.
- the network environment 200 also includes a network controller running on the host 208 a.
- the network controller is implemented using the Application Policy Infrastructure Controller (APICTM) from Cisco®.
- APICTM Application Policy Infrastructure Controller
- Cisco® Cisco®
- the APICTM provides a centralized point of automation and management, policy programming, application deployment, and health monitoring for the fabric 202 .
- the APICTM is operated as a replicated synchronized clustered controller.
- SDN software-defined networking
- a physical server 208 can have instantiated thereon a hypervisor 216 for creating and running one or more virtual switches (not shown) and one or more virtual machines 218 , as shown for the host 208 b.
- physical servers can run a shared kernel for hosting containers.
- the physical server 208 can run other software for supporting other virtual partitioning approaches.
- Networks in accordance with various embodiments can include any number of physical servers hosting any number of virtual machines, containers, or other virtual partitions.
- Hosts can also comprise blade/physical servers without virtual machines, containers, or other virtual partitions, such as the servers 208 a, 208 c , 208 d, and 208 e.
- the network environment 200 can also integrate a network traffic monitoring system, such as the network traffic monitoring system 100 shown in FIG. 1 .
- the network traffic monitoring system of FIG. 2 includes sensors 220 a, 220 b, 220 c, and 220 d (collectively, “ 220 ”), collectors 222 , and an analytics engine, such as the analytics engine 110 of FIG. 1 , executing on the server 208 e.
- the analytics engine 208 e can receive and process network traffic data collected by the collectors 222 and detected by the sensors 220 placed on nodes located throughout the network environment 200 .
- the analytics engine 208 e is shown to be a standalone network appliance in FIG.
- the analytics engine 208 e can also be implemented as a virtual partition (e.g., VM or container) that can be distributed onto a host or cluster of hosts, software as a service (SaaS), or other suitable method of distribution.
- the sensors 220 run on the leaf switches 212 (e.g., the sensor 220 a ), the hosts 208 (e.g., the sensor 220 b ), the hypervisor 216 (e.g., the sensor 220 c ), and the VMs 218 (e.g., the sensor 220 d ).
- the sensors 220 can also run on the spine switches 210 , virtual switches, service appliances (e.g., firewall, deep packet inspector, traffic monitor, load balancer, etc.) and in between network elements.
- sensors 220 can be located at each (or nearly every) network component to capture granular packet statistics and data at each hop of data transmission.
- the sensors 220 may not be installed in all components or portions of the network (e.g., shared hosting environment in which customers have exclusive control of some virtual machines).
- a host can include multiple sensors 220 running on the host (e.g., the host sensor 220 b ) and various components of the host (e.g., the hypervisor sensor 220 c and the VM sensor 220 d ) so that all (or substantially all) packets traversing the network environment 200 can be monitored. For example, if one of the VMs 218 running on the host 208 b receives a first packet from the WAN 206 , the first packet can pass through the border leaf switch 212 d, the spine switch 210 b, the leaf switch 212 b, the host 208 b, the hypervisor 216 , and the VM.
- the first packet will likely be identified and reported to one of the collectors 222 .
- sensors installed along the data path such as at the VM 218 , the hypervisor 216 , the host 208 b, the leaf switch 212 b, and the host 208 d will likely result in capture of metadata from the second packet.
- the network traffic monitoring system 100 shown in FIG. 1 can be used to gather network traffic data and generate analytics for nodes and clusters of nodes on a per-network basis. Specifically, the network traffic monitoring system 100 can gather network traffic data and generate analytics for nodes within a single network, e.g. at a single datacenter.
- current network traffic monitoring systems are not implemented with systems or otherwise configured to provide cross-network visibility, as part of providing interoperability between nodes and clusters of nodes in different network.
- the systems and methods described herein can be implemented with or included as part of one or a plurality of network traffic monitoring systems 100 to provide visibility, e.g. as part of providing interoperability across nodes or clusters of nodes within different networks.
- a user can view aggregated data, including aggregated analytics and network traffic data, across a plurality of networks in order to analyze operation of nodes and clusters of nodes across different network.
- the user can use the aggregated data to manage nodes or clusters of nodes with respect to how nodes or clusters of nodes are operating in other networks.
- FIG. 3 depicts a diagram of an example peer-to-peer architecture 300 for providing interoperability between clusters of nodes in different networks.
- the peer-to-peer architecture 300 includes a first network 302 including a first network node cluster 304 , a second network 306 including a second network node cluster 308 , and a third network 310 including a third network node cluster 312 .
- Nodes in any one of the first network node cluster 304 , the second network node cluster 308 , and the third network node cluster 312 can be grouped together according to an applicable technique for clustering nodes in a network, such as the clustering techniques described herein.
- nodes in the first network node cluster 304 can be grouped together based on whether they are hosting the same application.
- the first network 302 , the second network 306 , and the third network 310 can be associated with one or a plurality of tenants.
- the first network 302 can be a first LAN of a tenant and the second network 306 can be a second LAN of the tenant.
- the first network 302 , the second network 306 , and the third network 310 can be implemented at different physical locations.
- the first network 302 and the second network 306 can be implemented at different datacenters, e.g. potentially of the same tenant.
- the first network 302 , the second network 306 , and the third network 310 can each include a network traffic monitoring system 100 corresponding to each network.
- the first network 302 can have or otherwise implement a first network traffic monitoring system 100
- the second network 306 can have or otherwise implement a second network traffic monitoring system 100
- the third network 310 can have or otherwise implement a third network traffic monitoring system 100 .
- each of the corresponding network traffic monitoring systems 100 can operate specifically within the network in which they are implemented.
- a first network traffic monitoring system implemented in the first network 302 can monitor network traffic solely within the first network 302
- a second network traffic monitoring system implemented in the second network 306 can monitor network traffic solely within the second network 306 .
- Each network traffic monitoring system 100 can include sensors implemented in each of the corresponding first network 302 , the second network 306 , and the third network 310 . Sensors included as part of the network traffic monitoring systems 100 can gather network traffic data for each of the corresponding network node clusters in the corresponding networks. For example, a network traffic monitoring system 100 implemented in the third network 310 can gather network traffic data for the third network node cluster 312 , e.g. based on a flow of the data through the third network node cluster 312 . Subsequently, using network traffic data gathered by sensors for the corresponding network node clusters, each corresponding network traffic monitoring system 100 can generate analytics for each of the corresponding network node clusters. For example, a network traffic monitoring system 100 implemented in the second network 306 can generate analytics for the second network node cluster 308 using network traffic data gathered by sensors implemented as part of the network traffic monitoring system 100 .
- each of the first network 302 , the second network 306 , and the third network 310 can directly communicate with each other. More specifically, the first network 302 , the second network 306 , and the third network 306 can communicate with each other directly, as part of a federated network.
- a federated network can include exchanging resources between different networks and using the exchanged resources during the course of operation of the different networks.
- the second network 306 can directly exchange data with the first network 302 and also directly exchange data with the third network 310 , as part of a federated network.
- the networks 302 , 306 , and 310 can communicate with each other in a peer-to-peer manner for purposes of providing interoperability between the corresponding networks 302 , 306 , and 310 .
- an applicable system for providing interoperability between clusters of nodes in different networks can be implemented at each of the first network 302 , the second network 306 , and the third network 310 .
- a system implemented at each of the first network 302 , the second network 306 , and the third network 310 can control the exchange of data between the corresponding networks 302 , 306 , and 310 in a peer-to-peer manner, as part of providing interoperability between the corresponding networks 302 , 306 , and 310 .
- the peer-to-peer architecture 300 can be used to allow clusters of nodes to directly share either or both collected network traffic data and analytics generated from the collected network traffic data.
- the second network 306 can directly send to both the first network 302 and the third network 310 , and corresponding node clusters 304 and 312 , analytics indicating applications and/or application dependencies discovered in the second network node cluster 308 .
- the third network 310 can directly push to both the first network 302 and the second network 306 , and corresponding node clusters 304 and 308 , policies implemented at the third network node cluster 312 .
- the peer-to-peer architecture 300 can be used to aggregate either or both gathered network traffic data and analytics generated from the gathered network traffic data. More specifically, the peer-to-peer architecture 300 can be used to transmit data from one network to another, where the data can subsequently be aggregated with other data. For example, the third network 310 can transmit flow data generated in the third network 310 to the second network 306 . Further in the example, at the second network 306 , the flow data can be aggregated with flow data generated in the second network 306 to create aggregated data across the second network 306 and the third network 310 . Data aggregated across networks using the peer-to-peer architecture 300 can subsequently be presented to a user/network administrator. This provides the user with visibility across networks and can allow a user to more efficiently manage nodes and clusters within nodes in the networks, e.g. reduces redundancies in monitoring and controlling the nodes.
- the peer-to-peer architecture 300 can be used to control operation of the first network 302 , the second network 306 , and the third network 310 and corresponding node clusters in a peer-to-peer manner.
- sensors implemented in the third network 310 e.g. as part of a network traffic monitoring system 100 implemented in the third network 310
- the peer-to-peer architecture 300 can be controlled or configured through either or both the first network 302 and the second network 306 .
- one of the network node clusters 304 , 308 , and 312 can be controlled based on, or otherwise using, the other clusters.
- policies can be created in the second network 306 from network traffic data collected for the second network node cluster 308 . The policies can subsequently be pushed to the third network 310 and used to control operation of the third network node cluster 312 .
- FIG. 4 depicts a diagram of an example hierarchical architecture 400 for providing interoperability between clusters of nodes in different networks.
- the hierarchical architecture 400 includes a first network 402 including a first network node cluster 404 , a second network 406 including a second network node cluster 408 , and a third network 410 including a third network node cluster 412 .
- Nodes in any one of the first network node cluster 404 , the second network node cluster 408 , and the third network node cluster 412 can be grouped together according to an applicable technique for clustering nodes in a network, such as the clustering techniques described herein.
- nodes in the first network node cluster 404 can be grouped together based on workloads on the nodes.
- the first network 402 , the second network 406 , and the third network 410 can be associated with one or a plurality of tenants.
- the first network 402 can be a first LAN of a tenant and the second network 406 and the third network 410 can be different LANs of the tenant.
- the first network 402 , the second network 406 , and the third network 410 can be implemented at different physical locations.
- the first network 402 and the second network 306 can be implemented at different datacenters, e.g. potentially of the same tenant.
- the first network 402 , the second network 406 , and the third network 410 can each include a network traffic monitoring system 100 corresponding to each network.
- the first network 402 can have or otherwise implement a first network traffic monitoring system 100
- the second network 406 can have or otherwise implement a second network traffic monitoring system 100
- the third network 410 can have or otherwise implement a third network traffic monitoring system 100 .
- each of the corresponding network traffic monitoring systems 100 can operate specifically within the network in which they are implemented.
- a first network traffic monitoring system implemented in the first network 402 can monitor network traffic solely within the first network 402
- a second network traffic monitoring system implemented in the second network 406 can monitor network traffic solely within the second network 406 .
- Each network traffic monitoring system 100 can include sensors implemented in each of the corresponding first network 402 , the second network 406 , and the third network 410 . Sensors included as part of the network traffic monitoring systems 100 can gather network traffic data for each of the corresponding network node clusters in the corresponding networks. For example, a network traffic monitoring system 100 implemented in the first network 410 can gather network traffic data for the first network node cluster 404 , e.g. based on a flow of the data through the first network node cluster 404 . Subsequently, using network traffic data gathered by sensors for the corresponding network node clusters, each corresponding network traffic monitoring system 100 can generate analytics for each of the corresponding network node clusters. For example, a network traffic monitoring system 100 implemented in the third network 410 can generate analytics for the third network node cluster 412 using network traffic data gathered by sensors implemented as part of the network traffic monitoring system 100 .
- the first network 402 serves as a root node by communicating directly with the second network 406 and third network 410 . More specifically, the first network 402 can communicate with both the second network 406 and the third network 410 , as part of a federated network. Further, in the hierarchical architecture 400 , the second network 406 and the third network 410 can refrain from or otherwise not be able to directly communicate with each other and instead have to communicate with each other through at least one intermediary. For example, the second network 406 can communicate with the third network 410 by sending data to the first network 402 , which can subsequently route the data to the third network 410 .
- the second network 406 and the third network 410 can communicate with the first network 402 in a hierarchical manner for purposes of providing interoperability between the corresponding networks 402 , 406 , and 410 .
- an applicable system for providing interoperability between clusters of nodes in different networks can be implemented at each of the first network 402 , the second network 406 , and the third network 410 .
- a system implemented at each of the first network 402 , the second network 406 , and the third network 410 can control the exchange of data between the corresponding networks 402 , 406 , and 410 in a hierarchical manner, as part of providing interoperability between the corresponding networks 402 , 406 , and 410 .
- the hierarchical architecture 400 can be used to allow clusters of nodes to share either or both collected network traffic data and analytics generated from the collected network traffic data.
- the second network 406 can send tags created in the second network node cluster 408 to the first network 402 and the first network node cluster 404 .
- the third network 410 can push to both the first network 402 and the second network 406 through the first network 402 , and corresponding node clusters 404 and 408 , traffic flow information for the third network node cluster 412 .
- the hierarchical architecture 400 can be used to aggregate either or both gathered network traffic data and analytics generated from the gathered network data. More specifically, the hierarchical architecture 400 can be used to transmit data from one network to another, where the data can subsequently be aggregated with other data.
- the third network 410 can transmit policies generated and/or implemented at the third network 410 to the first network 402 . Further in the example, at the first network 402 , the policies can be aggregated with policies generated and/or implemented at the first network 402 to create aggregated data across the first network 402 and the third network 410 . Data aggregated across networks using the hierarchical architecture 400 can subsequently be presented to a user/network administrator.
- the hierarchical architecture 400 can be used to control operation of the first network 402 , the second network 406 , and the third network 410 and corresponding node clusters in a hierarchical manner.
- sensors implemented in the second network 406 e.g. as part of a network traffic monitoring system 100 implemented in the second network 406
- the first network 402 can be controlled or configured through the first network 402 .
- either or both the second network node cluster 408 and the third network node cluster can be controlled based on, or otherwise using, the first network node cluster 404 .
- policies can be created in the second network 406 from network traffic data collected for the second network node cluster 408 .
- the policies can subsequently be pushed to the third network 410 by the first network node cluster 404 and used to control operation of the third network node cluster 412 .
- FIG. 5 illustrates an example network node interoperability system 500 .
- the network node interoperability system 500 functions to provide interoperability between nodes or clusters of nodes in different networks.
- the network node interoperability system 500 can be implemented at one or a plurality of networks and/or node clusters in the plurality of networks.
- the network node interoperability system 500 can be implemented at node clusters in different networks according to the peer-to-peer architecture 300 to achieve interoperability between the node clusters across the different networks.
- the network node interoperability system 500 can be implemented at a first node cluster in a first network that acts as a root node for other node clusters in other network.
- portions of the network node interoperability system 500 can be implemented remote from nodes and clusters of nodes in different network, e.g. in the cloud.
- the network node interoperability system 500 can be implemented as part of or integrated with the network traffic monitoring system 100 .
- the network node interoperability system 500 can use network traffic data gathered by sensors of the network traffic monitoring system 100 to provide interoperability between nodes or clusters of nodes in different networks.
- the network node interoperability system 500 can use analytics generated from network traffic data gathered by the network traffic monitoring system 100 to provide interoperability between nodes or clusters of nodes in different networks.
- the network node interoperability system 500 can be integrated with network traffic monitoring systems 100 in different networks.
- the network node interoperability system 500 can be integrated with a network traffic monitoring system 100 implemented in a first network and serve as a root node to another network node interoperability system 500 integrated with another network traffic monitoring system 100 implemented in a second network.
- the example network node interoperability system 500 shown in FIG. 5 includes an internetwork communicator 502 , a data aggregator 504 , a data tagger 506 , an inventory manager 508 , and an interoperability user interface 510 .
- the internetwork communicator 502 functions to send and receive data for purposes of providing interoperability between nodes and clusters of nodes in different networks.
- the internetwork communicator 502 can send and receive data through external APIs. More specifically, the internetwork communicator 502 , when implemented in a network, can use an external API to exchange data with another network node interoperability system 500 implemented in another network, for purposes of providing interoperability between nodes and clusters of nodes in the networks.
- the internetwork communicator 502 can send and receive, or otherwise provide access to, either or both network traffic data and analytics generated from the network traffic data.
- the internetwork communicator 502 can send tags/annotation tags used to tag gathered network traffic data or analytics, for purposes of providing user visibility into networks.
- the internetwork communicator 502 can receive application definitions from another network node cluster for use in discovering applications within a network node cluster in further providing user visibility into networks.
- the internetwork communicator 502 can receive sensor data of sensors included as part of a network traffic monitoring system 100 in another network, for use in managing the sensors across the networks.
- the internetwork communicator 502 can exchange data with other networks and/or nodes or clusters of nodes in the other networks.
- the internetwork communicator 502 can provide analytics indicating identified inventory, e.g. applications in a network, to another network.
- the internetwork communicator 502 can exchange data with other network node interoperability systems 500 implemented in or otherwise associated with other networks, as part of the internetwork communicator 502 exchanging data with other networks and/or nodes or clusters of nodes in other networks.
- the internetwork communicator 502 can send analytics generated for a local network to a cluster of nodes serving as a root node in another network.
- the internetwork communicator 502 can receive traffic flows generated for a cluster of nodes in another network from another network node interoperability system 500 implemented in the other network.
- the internetwork communicator 502 can send and receive policies. Policies sent and received by the internetwork communicator 502 can be used to manage nodes in a network associated with the internetwork communicator 502 or nodes in other networks. In managing nodes using policies received by or sent from the internetwork communicator 502 , datacenters can be managed. For example, the internetwork communicator 502 can receive policies deployed by a tenant to manage a datacenter as part of the tenant managing a plurality of datacenters. The internetwork communicator 502 can receive policies implemented in a node cluster of another network, which can subsequently be used to manage a node cluster in a network that the internetwork communicator 502 is deployed in or a network otherwise associated with the internetwork communicator 502 .
- the data aggregator 504 functions to aggregate data gathered or generated by one or a plurality of network traffic monitoring systems 100 .
- the data aggregator 504 can aggregate either or both network traffic data and analytics generated from network traffic data.
- the data aggregator 504 can aggregate policies generated at or otherwise implemented at one or a plurality of node clusters.
- the data aggregator 504 can aggregate network flows occurring in a plurality of node clusters.
- the data aggregator 504 can aggregate data across networks, as part of providing interoperability between the networks and nodes or clusters of nodes in the networks. In aggregating data across networks, the data aggregator 504 can aggregate data received by the internetwork communicator 502 as part of the peer-to-peer architecture 300 . For example, the data aggregator 504 can aggregate first analytics generated for a first cluster of nodes in a first network with second analytics generated for a second cluster of nodes in a second network, as part of providing interoperability between the nodes in the first and second networks. Further, in aggregating data across networks, the data aggregator 504 can aggregated data received by the internetwork communicator 502 as part of the hierarchical architecture 400 . For example the data aggregator 504 can aggregate first network traffic data for a node cluster in a first network that is received at a root node with second network traffic data for another node cluster in a second network that is received at the root node.
- Aggregated data created by the data aggregator 504 can be used to manage nodes and clusters of nodes across networks, in providing interoperability between the nodes and clusters of nodes.
- data aggregated by the data aggregator 504 can be used to manage nodes in networks of the same tenant, e.g. providing visibility of the nodes to the tenant across the networks as part of providing interoperability between the nodes.
- data aggregated by the data aggregator 504 can be used to manage nodes in networks of different tenants, e.g. providing visibility of the nodes across tenants as part of providing interoperability between the nodes.
- aggregated data created by the data aggregator 504 can be used to create policies across networks, as part of providing interoperability between nodes and clusters of nodes.
- network traffic data and analytics generated from the network traffic data can be used to generate a policy.
- the policy can then be pushed to one or a plurality of network nodes in the networks, for use in managing the one or the plurality of nodes in the networks.
- network traffic data aggregated across a plurality of datacenters of a tenant can be used to generate a policy for the tenant. Further in the example, the policy can be pushed to nodes in the datacenters for use in managing nodes within the datacenters.
- Aggregated data created by the data aggregator 504 can include sensor information aggregated across clusters of nodes in different networks.
- aggregated data created by the data aggregator 504 can include locations, e.g. logical locations, where sensors of the network traffic monitoring system 100 or systems reside in across networks.
- aggregated data created by the data aggregator 504 can include network resource usage information of nodes and clusters of nodes within different networks. For example, aggregated data can include an amount of bandwidth used by clusters of nodes in different networks to run the same application.
- aggregated data created by the data aggregator 504 can be used to manage loads on servers or assigned network resources in datacenters. Specifically, either or both network traffic data and analytics generated from the network traffic data can be used to determine an aggregated bandwidth usage across datacenters. Further, amounts of network resources assigned to datacenters can be controlled based on a lower load on the datacenters, as identified from the aggregated bandwidth usages. For example, if aggregated data indicates that a first datacenter is consuming more network resources than a second datacenter in hosting the same accounting application, then an amount of network resources provisioned to either or both datacenters can be adjusted based on the disparity in consumed network resources. Further in the example, a number of servers in the second datacenter assigned to host the application can be reduced based on the disparity in the consumed network resources.
- Aggregated data created by the data aggregator 504 can be used to determine how operation of clusters of nodes impact operation of other clusters of nodes in other networks, as part of providing interoperability between the nodes. More specifically, aggregated data created by the data aggregator 504 can be used to determine how changes in operation of clusters of nodes impacts operation of other clusters of nodes in other networks. For example, if a new policy is implemented in a datacenter, then aggregated data created by the data aggregator 504 can indicate or otherwise be analyzed to determine how implementation of the policy in the datacenter impacts operation of other datacenters.
- aggregated data created by the data aggregator 504 can be used to determine how changes in operation of clusters of nodes impacts operation of other clusters of nodes, without actually making the changes to the operation of clusters of nodes. For example, aggregated data created by the data aggregator 504 can be analyzed to determine how reducing an amount of assigned bandwidth to a cluster of nodes impacts operation of other nodes, without actually reducing the amount of bandwidth assigned to the cluster of nodes.
- the data tagger 506 can tag network traffic data.
- the data tagger 506 can tag network traffic flows included as part of network traffic data.
- Tags utilized by the data tagger 506 can be specific to one or a combination of an application, a tenant, and a policy.
- the data tagger 506 can tag network flows associated with running a specific application with a tag for the application.
- the data tagger 506 can tag network traffic data with a policy used in controlling operation of a cluster of network nodes associated with the network traffic data.
- Tags utilized by the data tagger 506 to tag network traffic data can be generated by the data tagger 506 .
- the data tagger 506 can generate tags based on one or a combination of an identification of a tenant, defined policies, application dependency mappings, and application definitions.
- the data tagger 506 can create a tag for defining network traffic data using a policy implemented at a network node cluster.
- Tags created by the data tagger 506 can be provided to another network or the network node interoperability system 500 implemented in the other network, as part of providing operability between networks and clusters of nodes in the networks.
- Tags created by the data tagger 506 and provided to other networks can subsequently be used to tag network traffic data in the other networks, potentially as part of providing interoperability between networks.
- the data tagger 506 can tag network traffic data using tags received from another network node cluster, e.g. a node cluster in another network, as part of providing interoperability between the networks. More specifically, the data tagger 506 can tag network traffic data using application definitions and defined policies for another tenant in another network. For example, the data tagger 506 can use definitions of newly discovered applications in another network to tag network traffic data collected for a network in which the data tagger 506 is implemented. In another example, the data tagger 506 can tag network traffic data generated in a network of a tenant using policies defined for a network of another tenant.
- the inventory manager 508 can manage inventories in one or a plurality of network node clusters within a network.
- the inventory manager can maintain inventory information for a network node cluster.
- Inventory information can include applications running in a network node clusters, nodes, e.g. endpoints, in a network node cluster, logical spaces associated with a network node cluster, virtual routing and forwarding instances (hereinafter referred to as “VRFs”) associated with network node clusters, groups within a tenant associated with a node cluster, and physical locations or datacenters associated with a network node cluster.
- VRFs virtual routing and forwarding instances
- the inventory manager 508 can discover applications and application dependency mappings, in a network node cluster.
- the inventory manager 508 can use application definitions to discover applications and subsequently track applications in a network node cluster. For example, using application definitions for an accounting application, the inventory manager 508 can discover the accounting application in a network node cluster, e.g. based on network traffic data collected for the cluster.
- the inventory manager 508 can use application definitions received and/or created by another network node cluster in another network to identify applications in a network node cluster, e.g. as part of providing interoperability between networks and node clusters within the networks.
- the inventory manager 508 can generate application definitions for use in discovering applications.
- the inventory manager 508 can generate application definitions based on previously discovered applications and network traffic data. For example, based on a signature in past network traffic data of a specific application, the inventory manager 508 can define application definitions for the specific application.
- Application definitions generated by the inventory manager 508 can be provided to network node interoperability systems in other networks for purposes of providing interoperability between the networks and node clusters in the networks.
- the interoperability user interface 510 is an interface through which data can be presented to a user in providing interoperability between nodes and clusters of nodes in different networks.
- the interoperability user interface 510 can be used to present either or both collected network traffic data and analytics generated from the network traffic data to a user.
- the interoperability user interface 510 can be used to present analytics for clusters of nodes to a user, as part of providing interoperability between the clusters of nodes.
- the interoperability user interface 510 can be implemented through or otherwise present data to a user through an external
- the interoperability user interface 510 can present to a user, e.g. in a single pane view, data aggregated across a plurality nodes and clusters of nodes in different networks by the data aggregator 504 .
- the interoperability user interface 510 can present traffic flows for clusters of network nodes in different datacenters or networks of a tenant. This provides a user with visibility across networks, as the user can view traffic flows or other aggregated data and analytics of clusters of nodes across datacenters, thereby allowing the user to more efficiently monitor and control the datacenters.
- the interoperability user interface 510 can present discovered applications or application dependency mappings across a plurality of networks and node clusters in the networks.
- the interoperability user interface 510 can present data based on maintained inventory information. More specifically, the interoperability user interface 510 can present inventory across datacenters of a tenant to a user to allow the user to more efficiently monitor and manage the datacenters. In presenting data based on maintained inventory information, the interoperability user interface 510 can present data based on groups in inventory information. For example the interoperability user interface 510 can present network traffic data and analytics for a group of a tenant across a plurality of networks. In another example, the interoperability user interface 510 can present network traffic data and analytics for VRFs across networks of a tenant.
- the interoperability user interface 510 can present aggregated sensor information for sensors across a plurality of networks. More specifically, the interoperability user interface 510 can present a single pane view of sensors included as part of the network traffic monitoring systems 100 across a plurality of networks. For example, the interoperability user interface 510 can present operation configurations of sensors in different networks of a tenant. Presenting senor information across networks provides a user with greater visibility and allows the user to more efficiently manage or control sensors.
- FIG. 6 illustrates a flowchart for an example method of providing interoperability between clusters of nodes in different networks.
- the method shown in FIG. 6 is provided by way of example, as there are a variety of ways to carry out the method. Additionally, while the example method is illustrated with a particular order of blocks, those of ordinary skill in the art will appreciate that FIG. 6 and the blocks shown therein can be executed in any order and can include fewer or more blocks than illustrated.
- FIG. 6 represents one or more steps, processes, methods or routines in the method.
- the blocks in FIG. 6 are described with reference to the network traffic monitoring system 100 shown in FIG. 1 and the network node interoperability system 500 shown in FIG. 5 .
- the network traffic monitoring system 100 identifies a first cluster of nodes in a first network and a second cluster of nodes in a second network.
- the network traffic monitoring system 100 can be two separate systems implemented separately in the corresponding first network and the second network.
- the cluster of nodes can be identified based on whether concatenated feature vectors of the nodes exceed specified similarity thresholds. Additionally, the cluster of nodes can be identified based on whether either or both corresponding network-based feature vectors of the nodes are similar to a specific degree and corresponding process-based feature vectors are only a specific distance apart.
- the network node interoperability system 500 provides interoperability between the first cluster of nodes and the second cluster of nodes, e.g. by facilitating data exchange between the networks and/or the first cluster of nodes and the second cluster of nodes.
- the network node interoperability system 500 can provide interoperability between the first cluster of nodes and the second cluster of nodes as part of a federated network. Additionally, the network node interoperability system 500 can provide interoperability between the first cluster of nodes and the second cluster of nodes using either a hierarchical architecture or a peer-to-peer architecture.
- the network node interoperability system 500 can be two separate systems implemented separately in the corresponding first and second networks. Additionally, in providing interoperability between the first cluster of nodes and the second cluster of nodes, the network node interoperability system 500 can be implemented at another cluster of nodes in another network, e.g. a root node.
- the network traffic monitoring system 100 generates analytics for the first cluster of nodes using first network traffic data gathered based on network traffic flowing through the first cluster of nodes.
- Network traffic data used to generate analytics for the first cluster of nodes can be gathered using sensors integrated as part of the network traffic monitoring system 100 in the first network.
- Analytics can include one or a combination of discovered inventory, discovered applications, tags, application dependency mappings, network resource usages, application definitions, and sensor information for the first cluster of nodes.
- the network node interoperability system 500 provides the second cluster of nodes access to the analytics for the first cluster of nodes as part of providing interoperability between the first cluster of nodes and the second cluster of nodes.
- the internetwork communicator 502 can receive the analytics from the network traffic monitoring system 100 that generated the analytics for the first cluster of nodes. Additionally, in providing the second cluster of nodes access to the analytics for the first cluster of nodes, the internetwork communicator 502 can send the analytics to the network node interoperability system 500 associated with or implemented in the second network, as part of providing interoperability between the first cluster of nodes and the second cluster of nodes.
- FIGS. 7 and 8 illustrate example network devices and computing devices, such as switches, routers, load balancers, client devices, and so forth.
- FIG. 7 illustrates an example network device 700 suitable for performing switching, routing, load balancing, and other networking operations.
- Network device 700 includes a central processing unit (CPU) 704 , interfaces 702 , and a bus 710 (e.g., a PCI bus).
- CPU 704 When acting under the control of appropriate software or firmware, the CPU 704 is responsible for executing packet management, error detection, and/or routing functions.
- the CPU 704 preferably accomplishes all these functions under the control of software including an operating system and any appropriate applications software.
- CPU 704 may include one or more processors 708 , such as a processor from the INTEL X86 family of microprocessors. In some cases, processor 708 can be specially designed hardware for controlling the operations of network device 700 .
- a memory 706 e.g., non-volatile RAM, ROM, etc.
- memory 706 also forms part of CPU 704 . However, there are many different ways in which memory could be coupled to the system.
- the interfaces 702 are typically provided as modular interface cards (sometimes referred to as “line cards”). Generally, they control the sending and receiving of data packets over the network and sometimes support other peripherals used with the network device 700 .
- the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like.
- various very high-speed interfaces may be provided such as fast token ring interfaces, wireless interfaces, Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces, WIFI interfaces, 3G/4G/5G cellular interfaces, CAN BUS, LoRA, and the like.
- these interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM.
- the independent processors may control such communications intensive tasks as packet switching, media control, signal processing, crypto processing, and management. By providing separate processors for the communications intensive tasks, these interfaces allow the master microprocessor 704 to efficiently perform routing computations, network diagnostics, security functions, etc.
- FIG. 7 is one specific network device of the present subject matter, it is by no means the only network device architecture on which the present subject matter can be implemented. For example, an architecture having a single processor that handles communications as well as routing computations, etc., is often used. Further, other types of interfaces and media could also be used with the network device 700 .
- the network device may employ one or more memories or memory modules (including memory 706 ) configured to store program instructions for the general-purpose network operations and mechanisms for roaming, route optimization and routing functions described herein.
- the program instructions may control the operation of an operating system and/or one or more applications, for example.
- the memory or memories may also be configured to store tables such as mobility binding, registration, and association tables, etc.
- Memory 706 could also hold various software containers and virtualized execution environments and data.
- the network device 700 can also include an application-specific integrated circuit (ASIC), which can be configured to perform routing and/or switching operations.
- ASIC application-specific integrated circuit
- the ASIC can communicate with other components in the network device 700 via the bus 710 , to exchange data and signals and coordinate various types of operations by the network device 700 , such as routing, switching, and/or data storage operations, for example.
- FIG. 8 illustrates a computing system architecture 800 wherein the components of the system are in electrical communication with each other using a connection 805 , such as a bus.
- exemplary system 800 includes a processing unit (CPU or processor) 810 and a system connection 805 that couples various system components including the system memory 815 , such as read only memory (ROM) 820 and random access memory (RAM) 825 , to the processor 810 .
- the system 800 can include a cache of high-speed memory connected directly with, in close proximity to, or integrated as part of the processor 810 .
- the system 800 can copy data from the memory 815 and/or the storage device 830 to the cache 812 for quick access by the processor 810 .
- the cache can provide a performance boost that avoids processor 810 delays while waiting for data.
- These and other modules can control or be configured to control the processor 810 to perform various actions.
- Other system memory 815 may be available for use as well.
- the memory 815 can include multiple different types of memory with different performance characteristics.
- the processor 810 can include any general purpose processor and a hardware or software service, such as service 1 832 , service 2 834 , and service 3 836 stored in storage device 830 , configured to control the processor 810 as well as a special-purpose processor where software instructions are incorporated into the actual processor design.
- the processor 810 may be a completely self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc.
- a multi-core processor may be symmetric or asymmetric.
- an input device 845 can represent any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth.
- An output device 835 can also be one or more of a number of output mechanisms known to those of skill in the art.
- multimodal systems can enable a user to provide multiple types of input to communicate with the system 800 .
- the communications interface 840 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed.
- Storage device 830 is a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 825 , read only memory (ROM) 820 , and hybrids thereof.
- RAMs random access memories
- ROM read only memory
- the storage device 830 can include services 832 , 834 , 836 for controlling the processor 810 .
- Other hardware or software modules are contemplated.
- the storage device 830 can be connected to the system connection 805 .
- a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as the processor 810 , connection 805 , output device 835 , and so forth, to carry out the function.
- the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.
- the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like.
- non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
- Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network.
- the computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.
- Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rackmount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.
- the instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.
- Claim language reciting “at least one of” refers to at least one of a set and indicates that one member of the set or multiple members of the set satisfy the claim. For example, claim language reciting “at least one of A and B” means A, B, or A and B.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Mining & Analysis (AREA)
- Automation & Control Theory (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
- The present technology pertains to providing interoperability between clusters of nodes in separate networks as part of a federated network.
- In a network environment, sensors can be placed at various devices or elements in the network to collect flow data and network statistics from different locations. In particular sensors can be deployed in a network to collect network traffic data related to nodes or clusters of nodes operating in the network. The collected data from the sensors can be analyzed to monitor and troubleshoot the network. The data collected by the sensors can provide valuable details about the status, security, or performance of the network, as well as any network elements. Currently, such collected data and analytics generated from the collected data are only available on a per-network granularity level. Specifically, different networks with sensors deployed within them to gather collected data lack interoperability. This leads to redundancies in controlling operation of these networks. Additionally, a lack of interoperability between different networks with data collecting sensors makes it difficult to analyze operation of nodes and clusters of nodes across the different networks, otherwise referred to as visibility across the networks.
- In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the principles briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only exemplary embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the principles herein are described and explained with additional specificity and detail through the use of the accompanying drawings in which:
-
FIG. 1 illustrates an example network traffic monitoring system; -
FIG. 2 illustrates an example of a network environment; -
FIG. 3 illustrates an example peer-to-peer architecture for providing interoperability between clusters of nodes in different networks; -
FIG. 4 illustrates an example hierarchical architecture for providing interoperability between clusters of nodes in different networks; -
FIG. 5 illustrates an example network node interoperability system; -
FIG. 6 illustrates a flowchart for an example method of providing interoperability between clusters of nodes in different networks; -
FIG. 7 illustrates an example network device in accordance with various embodiments; and -
FIG. 8 illustrates an example computing device in accordance with various embodiments. - Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without parting from the spirit and scope of the disclosure.
- Various embodiments of the disclosure are discussed in detail below. While specific implementations are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without parting from the spirit and scope of the disclosure. Thus, the following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be references to the same embodiment or any embodiment; and, such references mean at least one of the embodiments.
- Reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which can be exhibited by some embodiments and not by others.
- The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Alternative language and synonyms can be used for any one or more of the terms discussed herein, and no special significance should be placed upon whether or not a term is elaborated or discussed herein. In some cases, synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any example term. Likewise, the disclosure is not limited to various embodiments given in this specification.
- Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles can be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, technical and scientific terms used herein have the meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.
- Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the principles set forth herein.
- Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be learned by the practice of the principles set forth herein.
- A method can include identifying a first cluster of nodes in a first network and a second cluster of nodes in a second network. Interoperability can be provided between the first cluster of nodes in the first network and the second cluster of nodes in the second network. The method can include generating first analytics for the first cluster of nodes using first network traffic data gathered based on first network traffic flowing through the first cluster of nodes using a first group of sensors implemented in the first network. The second cluster of nodes can access the first analytics for the first cluster of nodes as part of providing interoperability between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- A system can identify a first cluster of nodes in a first network. Interoperability can be provided by the system between the first cluster of nodes in the first network and a second cluster of nodes in a second network. The system can generate first analytics for the first cluster of nodes using first network traffic data gathered based on first network traffic flowing through the first cluster of nodes using a first group of sensors implemented in the first network. The second cluster of nodes can access the first analytics for the first cluster of nodes through an external application program interface as part of providing interoperability between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- A system can identify a first cluster of nodes in a first network of a tenant and a second cluster of nodes in a second network of the tenant. Interoperability can be provided by the system between the first cluster of nodes in the first network and the second cluster of nodes in the second network. The system can generate first analytics for the first cluster of nodes using first network traffic data gathered based on first network traffic flowing through the first cluster of nodes using a first group of sensors implemented in the first network. The second cluster of nodes can access the first analytics for the first cluster of nodes as part of providing interoperability between the first cluster of nodes in the first network and the second cluster of nodes in the second network.
- The disclosed technology addresses the need in the art for providing interoperability between nodes and clusters of nodes in separate networks for use in generating analytics and managing the nodes across the networks. The present technology involves system, methods, and computer-readable media for providing interoperability between nodes and clusters of nodes in separate networks, e.g. as part of a federated network, for use in generating analytics and managing the nodes. In particular, the present technology involves systems, methods, and computer-readable media for generating and providing access to analytics across clusters of nodes in separate networks in order to provide visibility across the separate network. The present technology will be described in the following disclosure as follows. The discussion begins with an introductory discussion of network traffic data collection and a description of an example network traffic monitoring system and an example network environment, as shown in
FIGS. 1 and 2 . A discussion of example architectures for providing interoperability between nodes and clusters of nodes in different networks, as illustrated inFIGS. 3 and 4 , will then follow. The disclosure will then include a discussion of systems and methods for providing interoperability between nodes and clusters of nodes in different networks, as illustrated inFIGS. 5 and 6 . A discussion of example network devices and computing devices, as illustrated inFIGS. 7 and 8 , will then follow. The disclosure now turns to an introductory discussion of network sensor data collection based on network traffic flows and clustering of nodes in a network for purposes of collecting data based on network traffic flows. - Sensors implemented in networks are traditionally limited to collecting packet data at networking devices. In some embodiments, networks can be configured with sensors at multiple points, including on networking devices (e.g., switches, routers, gateways, firewalls, deep packet inspectors, traffic monitors, load balancers, etc.), physical servers, hypervisors or shared kernels, virtual partitions (e.g., VMs or containers), and other network elements. This can provide a more comprehensive view of the network. Further, network traffic data (e.g., flows) can be associated with, or otherwise include, host and/or endpoint data (e.g., host/endpoint name, operating system, CPU usage, network usage, disk space, logged users, scheduled jobs, open files, information regarding files stored on a host/endpoint, etc.), process data (e.g., process name, ID, parent process ID, path, CPU utilization, memory utilization, etc.), user data (e.g., user name, ID, login time, etc.), and other collectible data to provide more insight into network activity.
- Sensors implemented in a network at multiple points can be used to collect data for nodes grouped together into a cluster. Nodes can be clustered together, or otherwise a cluster of nodes can be identified using one or a combination of applicable network operation factors. For example, endpoints performing similar workloads, communicating with a similar set of endpoints or networking devices, having similar network and security limitations (i.e., policies), and sharing other attributes can be clustered together.
- In some embodiments, a cluster can be determined based on early fusion in which feature vectors of each node comprise the union of individual feature vectors across multiple domains. For example, a feature vector can include a packet header-based feature (e.g., destination network address for a flow, port, etc.) concatenated to an aggregate flow-based feature (e.g., the number of packets in the flow, the number of bytes in the flow, etc.). A cluster can then be defined as a set of nodes whose respective concatenated feature vectors are determined to exceed specified similarity thresholds (or fall below specified distance thresholds).
- In some embodiments, a cluster can be defined based on late fusion in which each node can be represented as multiple feature vectors of different data types or domains. In such systems, a cluster can be a set of nodes whose similarity (and/or distance measures) across different domains, satisfy specified similarity (and/or distance) conditions for each domain. For example, a first node can be defined by a first network information-based feature vector and a first process-based feature vector while a second node can be defined by a second network information-based feature vector and a second process-based feature vector. The nodes can be determined to form a cluster if their corresponding network-based feature vectors are similar to a specified degree and their corresponding process-based feature vectors are only a specified distance apart.
- Referring now to the drawings,
FIG. 1 is an illustration of a networktraffic monitoring system 100 in accordance with an embodiment. The networktraffic monitoring system 100 can include aconfiguration manager 102,sensors 104, acollector module 106, adata mover module 108, ananalytics engine 110, and apresentation module 112. InFIG. 1 , theanalytics engine 110 is also shown in communication with out-of-band data sources 114, thirdparty data sources 116, and anetwork controller 118. - The
configuration manager 102 can be used to provision and maintain thesensors 104, including installing sensor software or firmware in various nodes of a network, configuring thesensors 104, updating the sensor software or firmware, among other sensor management tasks. For example, thesensors 104 can be implemented as virtual partition images (e.g., virtual machine (VM) images or container images), and theconfiguration manager 102 can distribute the images to host machines. In general, a virtual partition can be an instance of a VM, container, sandbox, or other isolated software environment. The software environment can include an operating system and application software. For software running within a virtual partition, the virtual partition can appear to be, for example, one of many servers or one of many operating systems executed on a single physical server. Theconfiguration manager 102 can instantiate a new virtual partition or migrate an existing partition to a different physical server. Theconfiguration manager 102 can also be used to configure the new or migrated sensor. - The
configuration manager 102 can monitor the health of thesensors 104. For example, theconfiguration manager 102 can request for status updates and/or receive heartbeat messages, initiate performance tests, generate health checks, and perform other health monitoring tasks. In some embodiments, theconfiguration manager 102 can also authenticate thesensors 104. For instance, thesensors 104 can be assigned a unique identifier, such as by using a one-way hash function of a sensor's basic input/out system (BIOS) universally unique identifier (UUID) and a secret key stored by theconfiguration image manager 102. The UUID can be a large number that can be difficult for a malicious sensor or other device or component to guess. In some embodiments, theconfiguration manager 102 can keep thesensors 104 up to date by installing the latest versions of sensor software and/or applying patches. Theconfiguration manager 102 can obtain these updates automatically from a local source or the Internet. - The
sensors 104 can reside on various nodes of a network, such as a virtual partition (e.g., VM or container) 120; a hypervisor or shared kernel managing one or more virtual partitions and/orphysical servers 122, an application-specific integrated circuit (ASIC) 124 of a switch, router, gateway, or other networking device, or a packet capture (pcap) 126 appliance (e.g., a standalone packet monitor, a device connected to a network devices monitoring port, a device connected in series along a main trunk of a datacenter, or similar device), or other element of a network. Thesensors 104 can monitor network traffic between nodes, and send network traffic data and corresponding data (e.g., host data, process data, user data, etc.) to thecollectors 108 for storage. For example, thesensors 104 can sniff packets being sent over its hosts' physical or virtual network interface card (NIC), or individual processes can be configured to report network traffic and corresponding data to thesensors 104. Incorporating thesensors 104 on multiple nodes and within multiple partitions of some nodes of the network can provide for robust capture of network traffic and corresponding data from each hop of data transmission. In some embodiments, each node of the network (e.g., VM, container, or othervirtual partition 120, hypervisor, shared kernel, orphysical server 122,ASIC 124,pcap 126, etc.) includes arespective sensor 104. However, it should be understood that various software and hardware configurations can be used to implement thesensor network 104. - As the
sensors 104 capture communications and corresponding data, they can continuously send network traffic data to thecollectors 108. The network traffic data can include metadata relating to a packet, a collection of packets, a flow, a bidirectional flow, a group of flows, a session, or a network communication of another granularity. That is, the network traffic data can generally include any information describing communication on all layers of the Open Systems Interconnection (OSI) model. For example, the network traffic data can include source/destination MAC address, source/destination IP address, protocol, port number, etc. In some embodiments, the network traffic data can also include summaries of network activity or other network statistics such as number of packets, number of bytes, number of flows, bandwidth usage, response time, latency, packet loss, jitter, and other network statistics. - The
sensors 104 can also determine additional data, included as part of gathered network traffic data, for each session, bidirectional flow, flow, packet, or other more granular or less granular network communication. The additional data can include host and/or endpoint information, virtual partition information, sensor information, process information, user information, tenant information, application information, network topology, application dependency mapping, cluster information, or other information corresponding to each flow. - In some embodiments, the
sensors 104 can perform some preprocessing of the network traffic and corresponding data before sending the data to thecollectors 108. For example, thesensors 104 can remove extraneous or duplicative data or they can create summaries of the data (e.g., latency, number of packets per flow, number of bytes per flow, number of flows, etc.). In some embodiments, thesensors 104 can be configured to only capture certain types of network information and disregard the rest. In some embodiments, thesensors 104 can be configured to capture only a representative sample of packets (e.g., every 1,000th packet or other suitable sample rate) and corresponding data. - Since the
sensors 104 can be located throughout the network, network traffic and corresponding data can be collected from multiple vantage points or multiple perspectives in the network to provide a more comprehensive view of network behavior. The capture of network traffic and corresponding data from multiple perspectives rather than just at a single sensor located in the data path or in communication with a component in the data path, allows the data to be correlated from the various data sources, which can be used as additional data points by theanalytics engine 110. Further, collecting network traffic and corresponding data from multiple points of view ensures more accurate data is captured. For example, a conventional sensor network can be limited to sensors running on external-facing network devices (e.g., routers, switches, network appliances, etc.) such that east-west traffic, including VM-to-VM or container-to-container traffic on a same host, may not be monitored. In addition, packets that are dropped before traversing a network device or packets containing errors cannot be accurately monitored by the conventional sensor network. Thesensor network 104 of various embodiments substantially mitigates or eliminates these issues altogether by locating sensors at multiple points of potential failure. Moreover, the networktraffic monitoring system 100 can verify multiple instances of data for a flow (e.g., source endpoint flow data, network device flow data, and endpoint flow data) against one another. - In some embodiments, the network
traffic monitoring system 100 can assess a degree of accuracy of flow data sets from multiple sensors and utilize a flow data set from a single sensor determined to be the most accurate and/or complete. The degree of accuracy can be based on factors such as network topology (e.g., a sensor closer to the source can be more likely to be more accurate than a sensor closer to the destination), a state of a sensor or a node hosting the sensor (e.g., a compromised sensor/node can have less accurate flow data than an uncompromised sensor/node), or flow data volume (e.g., a sensor capturing a greater number of packets for a flow can be more accurate than a sensor capturing a smaller number of packets). - In some embodiments, the network
traffic monitoring system 100 can assemble the most accurate flow data set and corresponding data from multiple sensors. For instance, a first sensor along a data path can capture data for a first packet of a flow but can be missing data for a second packet of the flow while the situation is reversed for a second sensor along the data path. The networktraffic monitoring system 100 can assemble data for the flow from the first packet captured by the first sensor and the second packet captured by the second sensor. - As discussed, the
sensors 104 can send network traffic and corresponding data to thecollectors 106. In some embodiments, each sensor can be assigned to a primary collector and a secondary collector as part of a high availability scheme. If the primary collector fails or communications between the sensor and the primary collector are not otherwise possible, a sensor can send its network traffic and corresponding data to the secondary collector. In other embodiments, thesensors 104 are not assigned specific collectors but the networktraffic monitoring system 100 can determine an optimal collector for receiving the network traffic and corresponding data through a discovery process. In such embodiments, a sensor can change where it sends it network traffic and corresponding data if its environments changes, such as if a default collector fails or if the sensor is migrated to a new location and it would be optimal for the sensor to send its data to a different collector. For example, it can be preferable for the sensor to send its network traffic and corresponding data on a particular path and/or to a particular collector based on latency, shortest path, monetary cost (e.g., using private resources versus a public resources provided by a public cloud provider), error rate, or some combination of these factors. In other embodiments, a sensor can send different types of network traffic and corresponding data to different collectors. For example, the sensor can send first network traffic and corresponding data related to one type of process to one collector and second network traffic and corresponding data related to another type of process to another collector. - The
collectors 106 can be any type of storage medium that can serve as a repository for the network traffic and corresponding data captured by thesensors 104. In some embodiments, data storage for thecollectors 106 is located in an in-memory database, such as dashDB from IBM®, although it should be appreciated that the data storage for thecollectors 106 can be any software and/or hardware capable of providing rapid random access speeds typically used for analytics software. In various embodiments, thecollectors 106 can utilize solid state drives, disk drives, magnetic tape drives, or a combination of the foregoing according to cost, responsiveness, and size requirements. Further, thecollectors 106 can utilize various database structures such as a normalized relational database or a NoSQL database, among others. - In some embodiments, the
collectors 106 can only serve as network storage for the networktraffic monitoring system 100. In such embodiments, the networktraffic monitoring system 100 can include adata mover module 108 for retrieving data from thecollectors 106 and making the data available to network clients, such as the components of theanalytics engine 110. In effect, thedata mover module 108 can serve as a gateway for presenting network-attached storage to the network clients. In other embodiments, thecollectors 106 can perform additional functions, such as organizing, summarizing, and preprocessing data. For example, thecollectors 106 can tabulate how often packets of certain sizes or types are transmitted from different nodes of the network. Thecollectors 106 can also characterize the traffic flows going to and from various nodes. In some embodiments, thecollectors 106 can match packets based on sequence numbers, thus identifying traffic flows and connection links. As it can be inefficient to retain all data indefinitely in certain circumstances, in some embodiments, thecollectors 106 can periodically replace detailed network traffic data with consolidated summaries. In this manner, thecollectors 106 can retain a complete dataset describing one period (e.g., the past minute or other suitable period of time), with a smaller dataset of another period (e.g., the previous 2-10 minutes or other suitable period of time), and progressively consolidate network traffic and corresponding data of other periods of time (e.g., day, week, month, year, etc.). In some embodiments, network traffic and corresponding data for a set of flows identified as normal or routine can be winnowed at an earlier period of time while a more complete data set can be retained for a lengthier period of time for another set of flows identified as anomalous or as an attack. - The
analytics engine 110 can generate analytics using data collected by thesensors 104. Analytics generated by theanalytics engine 110 can include applicable analytics of nodes or a cluster of nodes operating in a network. For example, analytics generated by theanalytics engine 110 can include one or a combination of information related to flows of data through nodes, detected attacks on a network or nodes of a network, applications at nodes or distributed across the nodes, application dependency mappings for applications at nodes, policies implemented at nodes, and actual policies enforced at nodes. - Computer networks can be exposed to a variety of different attacks that expose vulnerabilities of computer systems in order to compromise their security. Some network traffic can be associated with malicious programs or devices. The
analytics engine 110 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation. Theanalytics engine 110 can then analyze network traffic and corresponding data to recognize when the network is under attack. In some embodiments, the network can operate within a trusted environment for a period of time so that theanalytics engine 110 can establish a baseline of normal operation. Since malware is constantly evolving and changing, machine learning can be used to dynamically update models for identifying malicious traffic patterns. - In some embodiments, the
analytics engine 110 can be used to identify observations which differ from other examples in a dataset. For example, if a training set of example data with known outlier labels exists, supervised anomaly detection techniques can be used. Supervised anomaly detection techniques utilize data sets that have been labeled as normal and abnormal and train a classifier. In a case in which it is unknown whether examples in the training data are outliers, unsupervised anomaly techniques can be used. Unsupervised anomaly detection techniques can be used to detect anomalies in an unlabeled test data set under the assumption that the majority of instances in the data set are normal by looking for instances that seem to fit to the remainder of the data set. - The
analytics engine 110 can include adata lake 130, an application dependency mapping (ADM)module 140, andelastic processing engines 150. Thedata lake 130 is a large-scale storage repository that provides massive storage for various types of data, enormous processing power, and the ability to handle nearly limitless concurrent tasks or jobs. In some embodiments, thedata lake 130 is implemented using the Hadoop® Distributed File System (HDFS™) from Apache® Software Foundation of Forest Hill, Md. HDFS™ is a highly scalable and distributed file system that can scale to thousands of cluster nodes, millions of files, and petabytes of data. HDFS™ is optimized for batch processing where data locations are exposed to allow computations to take place where the data resides. HDFS™ provides a single namespace for an entire cluster to allow for data coherency in a write-once, read-many access model. That is, clients can only append to existing files in the node. In HDFS™, files are separated into blocks, which are typically 64 MB in size and are replicated in multiple data nodes. Clients access data directly from data nodes. - In some embodiments, the
data mover 108 receives raw network traffic and corresponding data from thecollectors 106 and distributes or pushes the data to thedata lake 130. Thedata lake 130 can also receive and store out-of-band data 114, such as statuses on power levels, network availability, server performance, temperature conditions, cage door positions, and other data from internal sources, andthird party data 116, such as security reports (e.g., provided by Cisco® Systems, Inc. of San Jose, Calif., Arbor Networks® of Burlington, Mass., Symantec® Corp. of Sunnyvale, Calif., Sophos® Group plc of Abingdon, England, Microsoft® Corp. of Seattle, Wash., Verizon® Communications, Inc. of New York, N.Y., among others), geolocation data, IP watch lists, Whois data, configuration management database (CMDB) or configuration management system (CMS) as a service, and other data from external sources. In other embodiments, thedata lake 130 can instead fetch or pull raw traffic and corresponding data from thecollectors 106 and relevant data from the out-of-band data sources 114 and the third party data sources 116. In yet other embodiments, the functionality of thecollectors 106, thedata mover 108, the out-of-band data sources 114, the thirdparty data sources 116, and thedata lake 130 can be combined. Various combinations and configurations are possible as would be known to one of ordinary skill in the art. - Each component of the
data lake 130 can perform certain processing of the raw network traffic data and/or other data (e.g., host data, process data, user data, out-of-band data or third party data) to transform the raw data to a form useable by theelastic processing engines 150. In some embodiments, thedata lake 130 can include repositories for flow attributes 132, host and/or endpoint attributes 134, process attributes 136, and policy attributes 138. In some embodiments, thedata lake 130 can also include repositories for VM or container attributes, application attributes, tenant attributes, network topology, application dependency maps, cluster attributes, etc. - The flow attributes 132 relate to information about flows traversing the network. A flow is generally one or more packets sharing certain attributes that are sent within a network within a specified period of time. The flow attributes 132 can include packet header fields such as a source address (e.g., Internet Protocol (IP) address, Media Access Control (MAC) address, Domain Name System (DNS) name, or other network address), source port, destination address, destination port, protocol type, class of service, among other fields. The source address can correspond to a first endpoint (e.g., network device, physical server, virtual partition, etc.) of the network, and the destination address can correspond to a second endpoint, a multicast group, or a broadcast domain. The flow attributes 132 can also include aggregate packet data such as flow start time, flow end time, number of packets for a flow, number of bytes for a flow, the union of TCP flags for a flow, among other flow data.
- The host and/or endpoint attributes 134 describe host and/or endpoint data for each flow, and can include host and/or endpoint name, network address, operating system, CPU usage, network usage, disk space, ports, logged users, scheduled jobs, open files, and information regarding files and/or directories stored on a host and/or endpoint (e.g., presence, absence, or modifications of log files, configuration files, device special files, or protected electronic information). As discussed, in some embodiments, the host and/or endpoints attributes 134 can also include the out-of-
band data 114 regarding hosts such as power level, temperature, and physical location (e.g., room, row, rack, cage door position, etc.) or thethird party data 116 such as whether a host and/or endpoint is on an IP watch list or otherwise associated with a security threat, Whois data, or geocoordinates. In some embodiments, the out-of-band data 114 and thethird party data 116 can be associated by process, user, flow, or other more granular or less granular network element or network communication. - The process attributes 136 relate to process data corresponding to each flow, and can include process name (e.g., bash, httpd, netstat, etc.), ID, parent process ID, path (e.g., /usr2/username/bin/, /usr/local/bin, /usr/bin, etc.), CPU utilization, memory utilization, memory address, scheduling information, nice value, flags, priority, status, start time, terminal type, CPU time taken by the process, the command that started the process, and information regarding a process owner (e.g., user name, ID, user's real name, e-mail address, user's groups, terminal information, login time, expiration date of login, idle time, and information regarding files and/or directories of the user).
- The policy attributes 138 contain information relating to network policies. Policies establish whether a particular flow is allowed or denied by the network as well as a specific route by which a packet traverses the network. Policies can also be used to mark packets so that certain kinds of traffic receive differentiated service when used in combination with queuing techniques such as those based on priority, fairness, weighted fairness, token bucket, random early detection, round robin, among others. The policy attributes 138 can include policy statistics such as a number of times a policy was enforced or a number of times a policy was not enforced. The policy attributes 138 can also include associations with network traffic data. For example, flows found to be non-conformant can be linked or tagged with corresponding policies to assist in the investigation of non-conformance.
- The
analytics engine 110 can include any number ofengines 150, including for example, aflow engine 152 for identifying flows (e.g., flow engine 152) or anattacks engine 154 for identify attacks to the network. In some embodiments, the analytics engine can include a separate distributed denial of service (DDoS)attack engine 155 for specifically detecting DDoS attacks. In other embodiments, a DDoS attack engine can be a component or a sub-engine of a general attacks engine. In some embodiments, theattacks engine 154 and/or theDDoS engine 155 can use machine learning techniques to identify security threats to a network. For example, theattacks engine 154 and/or theDDoS engine 155 can be provided with examples of network states corresponding to an attack and network states corresponding to normal operation. Theattacks engine 154 and/or theDDoS engine 155 can then analyze network traffic data to recognize when the network is under attack. In some embodiments, the network can operate within a trusted environment for a time to establish a baseline for normal network operation for theattacks engine 154 and/or the DDoS. - The
analytics engine 110 can further include asearch engine 156. Thesearch engine 156 can be configured, for example to perform a structured search, an NLP (Natural Language Processing) search, or a visual search. Data can be provided to the engines from one or more processing components. - The
analytics engine 110 can also include a policy engine 158 that manages network policy, including creating and/or importing policies, monitoring policy conformance and non-conformance, enforcing policy, simulating changes to policy or network elements affecting policy, among other policy-related tasks. - The
ADM module 140 can determine dependencies of applications of the network. That is, particular patterns of traffic can correspond to an application, and the interconnectivity or dependencies of the application can be mapped to generate a graph for the application (i.e., an application dependency mapping). In this context, an application refers to a set of networking components that provides connectivity for a given set of workloads. For example, in a conventional three-tier architecture for a web application, first endpoints of the web tier, second endpoints of the application tier, and third endpoints of the data tier make up the web application. TheADM module 140 can receive input data from various repositories of the data lake 130 (e.g., the flow attributes 132, the host and/or endpoint attributes 134, the process attributes 136, etc.). TheADM module 140 can analyze the input data to determine that there is first traffic flowing between external endpoints on port 80 of the first endpoints corresponding to Hypertext Transfer Protocol (HTTP) requests and responses. The input data can also indicate second traffic between first ports of the first endpoints and second ports of the second endpoints corresponding to application server requests and responses and third traffic flowing between third ports of the second endpoints and fourth ports of the third endpoints corresponding to database requests and responses. TheADM module 140 can define an ADM for the web application as a three-tier application including a first EPG comprising the first endpoints, a second EPG comprising the second endpoints, and a third EPG comprising the third endpoints. - The
presentation module 116 can include an application programming interface (API) or command line interface (CLI) 160, a security information and event management (STEM)interface 162, and a web front-end 164. As theanalytics engine 110 processes network traffic and corresponding data and generates analytics data, the analytics data may not be in a human-readable form or it can be too voluminous for a user to navigate. Thepresentation module 116 can take the analytics data generated byanalytics engine 110 and further summarize, filter, and organize the analytics data as well as create intuitive presentations for the analytics data. - In some embodiments, the API or
CLI 160 can be implemented using Hadoop® Hive from Apache® for the back end, and Java® Database Connectivity (JDBC) from Oracle® Corporation of Redwood Shores, Calif., as an API layer. Hive is a data warehouse infrastructure that provides data summarization and ad hoc querying. Hive provides a mechanism to query data using a variation of structured query language (SQL) that is called HiveQL. JDBC is an API for the programming language Java®, which defines how a client can access a database. - In some embodiments, the
SIEM interface 162 can be implemented using Hadoop® Kafka for the back end, and software provided by Splunk®, Inc. of San Francisco, Calif. as the SIEM platform. Kafka is a distributed messaging system that is partitioned and replicated. Kafka uses the concept of topics. Topics are feeds of messages in specific ucategories. In some embodiments, Kafka can take raw packet captures and telemetry information from thedata mover 108 as input, and output messages to a SIEM platform, such as Splunk®. The Splunk® platform is utilized for searching, monitoring, and analyzing machine-generated data. - In some embodiments, the web front-
end 164 can be implemented using software provided by MongoDB®, Inc. of New York, N.Y. and Hadoop® ElasticSearch from Apache® for the back-end, and Ruby on Rails™ as the web application framework. MongoDB® is a document-oriented NoSQL database based on documents in the form of JavaScript® Object Notation (JSON) with dynamic schemas. ElasticSearch is a scalable and real-time search and analytics engine that provides domain-specific language (DSL) full querying based on JSON. Ruby on Rails™ is model-view-controller (MVC) framework that provides default structures for a database, a web service, and web pages. Ruby on Rails™ relies on web standards such as JSON or extensible markup language (XML) for data transfer, and hypertext markup language (HTML), cascading style sheets, (CSS), and JavaScript® for display and user interfacing. - Although
FIG. 1 illustrates an example configuration of the various components of a network traffic monitoring system, those of skill in the art will understand that the components of the networktraffic monitoring system 100 or any system described herein can be configured in a number of different ways and can include any other type and number of components. For example, thesensors 104, thecollectors 106, thedata mover 108, and thedata lake 130 can belong to one hardware and/or software module or multiple separate modules. Other modules can also be combined into fewer components and/or further divided into more components. -
FIG. 2 illustrates an example of anetwork environment 200 in accordance with an embodiment. In some embodiments, a network traffic monitoring system, such as the networktraffic monitoring system 100 ofFIG. 1 , can be implemented in thenetwork environment 200. It should be understood that, for thenetwork environment 200 and any environment discussed herein, there can be additional or fewer nodes, devices, links, networks, or components in similar or alternative configurations. Embodiments with different numbers and/or types of clients, networks, nodes, cloud components, servers, software components, devices, virtual or physical resources, configurations, topologies, services, appliances, deployments, or network devices are also contemplated herein. Further, thenetwork environment 200 can include any number or type of resources, which can be accessed and utilized by clients or tenants. The illustrations and examples provided herein are for clarity and simplicity. - The
network environment 200 can include anetwork fabric 202, a Layer 2 (L2)network 204, a Layer 3 (L3)network 206, andservers network fabric 202 can include spine switches 210 a, 210 b, 210 c, and 210 d (collectively, “210”) andleaf switches network fabric 202. The leaf switches 212 can include access ports (or non-fabric ports) and fabric ports. The fabric ports can provide uplinks to the spine switches 210, while the access ports can provide connectivity to endpoints (e.g., the servers 208), internal networks (e.g., the L2 network 204), or external networks (e.g., the L3 network 206). - The leaf switches 212 can reside at the edge of the
network fabric 202, and can thus represent the physical network edge. For instance, in some embodiments, the leaf switches 212 d and 212 e operate as border leaf switches in communication withedge devices 214 located in theexternal network 206. The border leaf switches 212 d and 212 e can be used to connect any type of external network device, service (e.g., firewall, deep packet inspector, traffic monitor, load balancer, etc.), or network (e.g., the L3 network 206) to thefabric 202. - Although the
network fabric 202 is illustrated and described herein as an example leaf-spine architecture, one of ordinary skill in the art will readily recognize that various embodiments can be implemented based on any network topology, including any datacenter or cloud network fabric. Indeed, other architectures, designs, infrastructures, and variations are contemplated herein. For example, the principles disclosed herein are applicable to topologies including three-tier (including core, aggregation, and access levels), fat tree, mesh, bus, hub and spoke, etc. Thus, in some embodiments, the leaf switches 212 can be top-of-rack switches configured according to a top-of-rack architecture. In other embodiments, the leaf switches 212 can be aggregation switches in any particular topology, such as end-of-row or middle-of-row topologies. In some embodiments, the leaf switches 212 can also be implemented using aggregation switches. - Moreover, the topology illustrated in
FIG. 2 and described herein is readily scalable and can accommodate a large number of components, as well as more complicated arrangements and configurations. For example, the network can include any number offabrics 202, which can be geographically dispersed or located in the same geographic area. Thus, network nodes can be used in any suitable network topology, which can include any number of servers, virtual machines or containers, switches, routers, appliances, controllers, gateways, or other nodes interconnected to form a large and complex network. Nodes can be coupled to other nodes or networks through one or more interfaces employing any suitable wired or wireless connection, which provides a viable pathway for electronic communications. - Network communications in the
network fabric 202 can flow through the leaf switches 212. In some embodiments, the leaf switches 212 can provide endpoints (e.g., the servers 208), internal networks (e.g., the L2 network 204), or external networks (e.g., the L3 network 206) access to thenetwork fabric 202, and can connect the leaf switches 212 to each other. In some embodiments, the leaf switches 212 can connect endpoint groups (EPGs) to thenetwork fabric 202, internal networks (e.g., the L2 network 204), and/or any external networks (e.g., the L3 network 206). EPGs are groupings of applications, or application components, and tiers for implementing forwarding and policy logic. EPGs can allow for separation of network policy, security, and forwarding from addressing by using logical application boundaries. EPGs can be used in thenetwork environment 200 for mapping applications in the network. For example, EPGs can comprise a grouping of endpoints in the network indicating connectivity and policy for applications. - As discussed, the servers 208 can connect to the
network fabric 202 via the leaf switches 212. For example, theservers servers network fabric 202 and/or any of the other leaf switches. Theservers L2 network 204. Theservers L2 network 204 make up a local area network (LAN). LANs can connect nodes over dedicated private communications links located in the same general physical location, such as a building or campus. - The
WAN 206 can connect to the leaf switches 212 d or 212 e via theL3 network 206. WANs can connect geographically dispersed nodes over long-distance communications links, such as common carrier telephone lines, optical light paths, synchronous optical networks (SONET), or synchronous digital hierarchy (SDH) links. LANs and WANs can include L2 and/or L3 networks and endpoints. - The Internet is an example of a WAN that connects disparate networks throughout the world, providing global communication between nodes on various networks. The nodes typically communicate over the network by exchanging discrete frames or packets of data according to predefined protocols, such as the Transmission Control Protocol/Internet Protocol (TCP/IP). In this context, a protocol can refer to a set of rules defining how the nodes interact with each other. Computer networks can be further interconnected by an intermediate network node, such as a router, to extend the effective size of each network. The endpoints 208 can include any communication device or component, such as a computer, server, blade, hypervisor, virtual machine, container, process (e.g., running on a virtual machine), switch, router, gateway, host, device, external network, etc.
- In some embodiments, the
network environment 200 also includes a network controller running on thehost 208 a. The network controller is implemented using the Application Policy Infrastructure Controller (APIC™) from Cisco®. The APIC™ provides a centralized point of automation and management, policy programming, application deployment, and health monitoring for thefabric 202. In some embodiments, the APIC™ is operated as a replicated synchronized clustered controller. In other embodiments, other configurations or software-defined networking (SDN) platforms can be utilized for managing thefabric 202. - In some embodiments, a physical server 208 can have instantiated thereon a
hypervisor 216 for creating and running one or more virtual switches (not shown) and one or morevirtual machines 218, as shown for thehost 208 b. In other embodiments, physical servers can run a shared kernel for hosting containers. In yet other embodiments, the physical server 208 can run other software for supporting other virtual partitioning approaches. Networks in accordance with various embodiments can include any number of physical servers hosting any number of virtual machines, containers, or other virtual partitions. Hosts can also comprise blade/physical servers without virtual machines, containers, or other virtual partitions, such as theservers - The
network environment 200 can also integrate a network traffic monitoring system, such as the networktraffic monitoring system 100 shown inFIG. 1 . For example, the network traffic monitoring system ofFIG. 2 includessensors collectors 222, and an analytics engine, such as theanalytics engine 110 ofFIG. 1 , executing on theserver 208 e. Theanalytics engine 208 e can receive and process network traffic data collected by thecollectors 222 and detected by the sensors 220 placed on nodes located throughout thenetwork environment 200. Although theanalytics engine 208 e is shown to be a standalone network appliance inFIG. 2 , it will be appreciated that theanalytics engine 208 e can also be implemented as a virtual partition (e.g., VM or container) that can be distributed onto a host or cluster of hosts, software as a service (SaaS), or other suitable method of distribution. In some embodiments, the sensors 220 run on the leaf switches 212 (e.g., the sensor 220 a), the hosts 208 (e.g., thesensor 220 b), the hypervisor 216 (e.g., thesensor 220 c), and the VMs 218 (e.g., thesensor 220 d). In other embodiments, the sensors 220 can also run on the spine switches 210, virtual switches, service appliances (e.g., firewall, deep packet inspector, traffic monitor, load balancer, etc.) and in between network elements. In some embodiments, sensors 220 can be located at each (or nearly every) network component to capture granular packet statistics and data at each hop of data transmission. In other embodiments, the sensors 220 may not be installed in all components or portions of the network (e.g., shared hosting environment in which customers have exclusive control of some virtual machines). - As shown in
FIG. 2 , a host can include multiple sensors 220 running on the host (e.g., thehost sensor 220 b) and various components of the host (e.g., thehypervisor sensor 220 c and theVM sensor 220 d) so that all (or substantially all) packets traversing thenetwork environment 200 can be monitored. For example, if one of theVMs 218 running on thehost 208 b receives a first packet from theWAN 206, the first packet can pass through theborder leaf switch 212 d, thespine switch 210 b, theleaf switch 212 b, thehost 208 b, thehypervisor 216, and the VM. Since all or nearly all of these components contain a respective sensor, the first packet will likely be identified and reported to one of thecollectors 222. As another example, if a second packet is transmitted from one of theVMs 218 running on thehost 208 b to thehost 208 d, sensors installed along the data path, such as at theVM 218, thehypervisor 216, thehost 208 b, theleaf switch 212 b, and thehost 208 d will likely result in capture of metadata from the second packet. - The network
traffic monitoring system 100 shown inFIG. 1 can be used to gather network traffic data and generate analytics for nodes and clusters of nodes on a per-network basis. Specifically, the networktraffic monitoring system 100 can gather network traffic data and generate analytics for nodes within a single network, e.g. at a single datacenter. - Current network traffic monitoring systems are not implemented with systems or otherwise configured to provide interoperability between nodes and clusters of nodes in different networks. For example, datacenters are currently not configured to exchange gathered network traffic data between each other. The systems and methods described herein can be implemented with or included as part of one or a plurality of network
traffic monitoring systems 100 to provide interoperability, e.g. as part of a federated network, between nodes or clusters of nodes within different networks. This, in turn, can reduce redundancies in controlling operation of the nodes or the cluster of nodes within the different networks. For example, datacenters might redundantly create the same application dependency mapping, when only one of the datacenters needs to actually create the application dependency mapping, thereby wasting resources of the other datacenter. - Additionally, current network traffic monitoring systems are not implemented with systems or otherwise configured to provide cross-network visibility, as part of providing interoperability between nodes and clusters of nodes in different network. The systems and methods described herein can be implemented with or included as part of one or a plurality of network
traffic monitoring systems 100 to provide visibility, e.g. as part of providing interoperability across nodes or clusters of nodes within different networks. As a result, a user can view aggregated data, including aggregated analytics and network traffic data, across a plurality of networks in order to analyze operation of nodes and clusters of nodes across different network. The user can use the aggregated data to manage nodes or clusters of nodes with respect to how nodes or clusters of nodes are operating in other networks. -
FIG. 3 depicts a diagram of an example peer-to-peer architecture 300 for providing interoperability between clusters of nodes in different networks. The peer-to-peer architecture 300 includes afirst network 302 including a firstnetwork node cluster 304, asecond network 306 including a second network node cluster 308, and athird network 310 including a third network node cluster 312. Nodes in any one of the firstnetwork node cluster 304, the second network node cluster 308, and the third network node cluster 312 can be grouped together according to an applicable technique for clustering nodes in a network, such as the clustering techniques described herein. For example, nodes in the firstnetwork node cluster 304 can be grouped together based on whether they are hosting the same application. - The
first network 302, thesecond network 306, and thethird network 310 can be associated with one or a plurality of tenants. For example, thefirst network 302 can be a first LAN of a tenant and thesecond network 306 can be a second LAN of the tenant. Additionally, thefirst network 302, thesecond network 306, and thethird network 310 can be implemented at different physical locations. For example, thefirst network 302 and thesecond network 306 can be implemented at different datacenters, e.g. potentially of the same tenant. - The
first network 302, thesecond network 306, and thethird network 310 can each include a networktraffic monitoring system 100 corresponding to each network. For example, thefirst network 302 can have or otherwise implement a first networktraffic monitoring system 100, thesecond network 306 can have or otherwise implement a second networktraffic monitoring system 100, and thethird network 310 can have or otherwise implement a third networktraffic monitoring system 100. Further in the example, each of the corresponding networktraffic monitoring systems 100 can operate specifically within the network in which they are implemented. For example, a first network traffic monitoring system implemented in thefirst network 302 can monitor network traffic solely within thefirst network 302, while a second network traffic monitoring system implemented in thesecond network 306 can monitor network traffic solely within thesecond network 306. - Each network
traffic monitoring system 100 can include sensors implemented in each of the correspondingfirst network 302, thesecond network 306, and thethird network 310. Sensors included as part of the networktraffic monitoring systems 100 can gather network traffic data for each of the corresponding network node clusters in the corresponding networks. For example, a networktraffic monitoring system 100 implemented in thethird network 310 can gather network traffic data for the third network node cluster 312, e.g. based on a flow of the data through the third network node cluster 312. Subsequently, using network traffic data gathered by sensors for the corresponding network node clusters, each corresponding networktraffic monitoring system 100 can generate analytics for each of the corresponding network node clusters. For example, a networktraffic monitoring system 100 implemented in thesecond network 306 can generate analytics for the second network node cluster 308 using network traffic data gathered by sensors implemented as part of the networktraffic monitoring system 100. - In the peer-to-
peer architecture 300 shown inFIG. 3 , each of thefirst network 302, thesecond network 306, and thethird network 310 can directly communicate with each other. More specifically, thefirst network 302, thesecond network 306, and thethird network 306 can communicate with each other directly, as part of a federated network. A federated network, as will be discussed in greater detail with respect toFIGS. 5 and 6 , can include exchanging resources between different networks and using the exchanged resources during the course of operation of the different networks. For example, thesecond network 306 can directly exchange data with thefirst network 302 and also directly exchange data with thethird network 310, as part of a federated network. - The
networks networks networks first network 302, thesecond network 306, and thethird network 310. More specifically, a system implemented at each of thefirst network 302, thesecond network 306, and thethird network 310 can control the exchange of data between the correspondingnetworks networks - In providing interoperability, the peer-to-
peer architecture 300 can be used to allow clusters of nodes to directly share either or both collected network traffic data and analytics generated from the collected network traffic data. For example, thesecond network 306 can directly send to both thefirst network 302 and thethird network 310, andcorresponding node clusters 304 and 312, analytics indicating applications and/or application dependencies discovered in the second network node cluster 308. In another example, thethird network 310 can directly push to both thefirst network 302 and thesecond network 306, andcorresponding node clusters 304 and 308, policies implemented at the third network node cluster 312. - Further, in providing interoperability, the peer-to-
peer architecture 300 can be used to aggregate either or both gathered network traffic data and analytics generated from the gathered network traffic data. More specifically, the peer-to-peer architecture 300 can be used to transmit data from one network to another, where the data can subsequently be aggregated with other data. For example, thethird network 310 can transmit flow data generated in thethird network 310 to thesecond network 306. Further in the example, at thesecond network 306, the flow data can be aggregated with flow data generated in thesecond network 306 to create aggregated data across thesecond network 306 and thethird network 310. Data aggregated across networks using the peer-to-peer architecture 300 can subsequently be presented to a user/network administrator. This provides the user with visibility across networks and can allow a user to more efficiently manage nodes and clusters within nodes in the networks, e.g. reduces redundancies in monitoring and controlling the nodes. - Additionally, in providing interoperability, the peer-to-
peer architecture 300 can be used to control operation of thefirst network 302, thesecond network 306, and thethird network 310 and corresponding node clusters in a peer-to-peer manner. For example, sensors implemented in thethird network 310, e.g. as part of a networktraffic monitoring system 100 implemented in thethird network 310, can be controlled or configured through either or both thefirst network 302 and thesecond network 306. Additionally, in controlling operation through the peer-to-peer architecture 300, one of thenetwork node clusters 304, 308, and 312 can be controlled based on, or otherwise using, the other clusters. For example, policies can be created in thesecond network 306 from network traffic data collected for the second network node cluster 308. The policies can subsequently be pushed to thethird network 310 and used to control operation of the third network node cluster 312. -
FIG. 4 depicts a diagram of an examplehierarchical architecture 400 for providing interoperability between clusters of nodes in different networks. Thehierarchical architecture 400 includes afirst network 402 including a firstnetwork node cluster 404, asecond network 406 including a second network node cluster 408, and athird network 410 including a third network node cluster 412. Nodes in any one of the firstnetwork node cluster 404, the second network node cluster 408, and the third network node cluster 412 can be grouped together according to an applicable technique for clustering nodes in a network, such as the clustering techniques described herein. For example, nodes in the firstnetwork node cluster 404 can be grouped together based on workloads on the nodes. - The
first network 402, thesecond network 406, and thethird network 410 can be associated with one or a plurality of tenants. For example, thefirst network 402 can be a first LAN of a tenant and thesecond network 406 and thethird network 410 can be different LANs of the tenant. Additionally, thefirst network 402, thesecond network 406, and thethird network 410 can be implemented at different physical locations. For example, thefirst network 402 and thesecond network 306 can be implemented at different datacenters, e.g. potentially of the same tenant. - The
first network 402, thesecond network 406, and thethird network 410 can each include a networktraffic monitoring system 100 corresponding to each network. For example, thefirst network 402 can have or otherwise implement a first networktraffic monitoring system 100, thesecond network 406 can have or otherwise implement a second networktraffic monitoring system 100, and thethird network 410 can have or otherwise implement a third networktraffic monitoring system 100. Further in the example, each of the corresponding networktraffic monitoring systems 100 can operate specifically within the network in which they are implemented. For example, a first network traffic monitoring system implemented in thefirst network 402 can monitor network traffic solely within thefirst network 402, while a second network traffic monitoring system implemented in thesecond network 406 can monitor network traffic solely within thesecond network 406. - Each network
traffic monitoring system 100 can include sensors implemented in each of the correspondingfirst network 402, thesecond network 406, and thethird network 410. Sensors included as part of the networktraffic monitoring systems 100 can gather network traffic data for each of the corresponding network node clusters in the corresponding networks. For example, a networktraffic monitoring system 100 implemented in thefirst network 410 can gather network traffic data for the firstnetwork node cluster 404, e.g. based on a flow of the data through the firstnetwork node cluster 404. Subsequently, using network traffic data gathered by sensors for the corresponding network node clusters, each corresponding networktraffic monitoring system 100 can generate analytics for each of the corresponding network node clusters. For example, a networktraffic monitoring system 100 implemented in thethird network 410 can generate analytics for the third network node cluster 412 using network traffic data gathered by sensors implemented as part of the networktraffic monitoring system 100. - In the
hierarchical architecture 400 shown inFIG. 4 , thefirst network 402 serves as a root node by communicating directly with thesecond network 406 andthird network 410. More specifically, thefirst network 402 can communicate with both thesecond network 406 and thethird network 410, as part of a federated network. Further, in thehierarchical architecture 400, thesecond network 406 and thethird network 410 can refrain from or otherwise not be able to directly communicate with each other and instead have to communicate with each other through at least one intermediary. For example, thesecond network 406 can communicate with thethird network 410 by sending data to thefirst network 402, which can subsequently route the data to thethird network 410. - The
second network 406 and thethird network 410 can communicate with thefirst network 402 in a hierarchical manner for purposes of providing interoperability between the correspondingnetworks first network 402 to provide interoperability between the correspondingnetworks first network 402, thesecond network 406, and thethird network 410. More specifically, a system implemented at each of thefirst network 402, thesecond network 406, and thethird network 410 can control the exchange of data between the correspondingnetworks networks - In providing interoperability, the
hierarchical architecture 400 can be used to allow clusters of nodes to share either or both collected network traffic data and analytics generated from the collected network traffic data. For example, thesecond network 406 can send tags created in the second network node cluster 408 to thefirst network 402 and the firstnetwork node cluster 404. In another example, thethird network 410 can push to both thefirst network 402 and thesecond network 406 through thefirst network 402, andcorresponding node clusters 404 and 408, traffic flow information for the third network node cluster 412. - Further, in providing interoperability, the
hierarchical architecture 400 can be used to aggregate either or both gathered network traffic data and analytics generated from the gathered network data. More specifically, thehierarchical architecture 400 can be used to transmit data from one network to another, where the data can subsequently be aggregated with other data. For example, thethird network 410 can transmit policies generated and/or implemented at thethird network 410 to thefirst network 402. Further in the example, at thefirst network 402, the policies can be aggregated with policies generated and/or implemented at thefirst network 402 to create aggregated data across thefirst network 402 and thethird network 410. Data aggregated across networks using thehierarchical architecture 400 can subsequently be presented to a user/network administrator. - Additionally, in providing interoperability, the
hierarchical architecture 400 can be used to control operation of thefirst network 402, thesecond network 406, and thethird network 410 and corresponding node clusters in a hierarchical manner. For example, sensors implemented in thesecond network 406, e.g. as part of a networktraffic monitoring system 100 implemented in thesecond network 406, can be controlled or configured through thefirst network 402. Additionally, in controlling operation through thehierarchical architecture 400, either or both the second network node cluster 408 and the third network node cluster can be controlled based on, or otherwise using, the firstnetwork node cluster 404. For example, policies can be created in thesecond network 406 from network traffic data collected for the second network node cluster 408. The policies can subsequently be pushed to thethird network 410 by the firstnetwork node cluster 404 and used to control operation of the third network node cluster 412. -
FIG. 5 illustrates an example networknode interoperability system 500. The networknode interoperability system 500 functions to provide interoperability between nodes or clusters of nodes in different networks. The networknode interoperability system 500 can be implemented at one or a plurality of networks and/or node clusters in the plurality of networks. Specifically, the networknode interoperability system 500 can be implemented at node clusters in different networks according to the peer-to-peer architecture 300 to achieve interoperability between the node clusters across the different networks. Alternatively, the networknode interoperability system 500 can be implemented at a first node cluster in a first network that acts as a root node for other node clusters in other network. Additionally, portions of the networknode interoperability system 500 can be implemented remote from nodes and clusters of nodes in different network, e.g. in the cloud. - The network
node interoperability system 500 can be implemented as part of or integrated with the networktraffic monitoring system 100. For example, the networknode interoperability system 500 can use network traffic data gathered by sensors of the networktraffic monitoring system 100 to provide interoperability between nodes or clusters of nodes in different networks. In another example, the networknode interoperability system 500 can use analytics generated from network traffic data gathered by the networktraffic monitoring system 100 to provide interoperability between nodes or clusters of nodes in different networks. Additionally, the networknode interoperability system 500 can be integrated with networktraffic monitoring systems 100 in different networks. For example, the networknode interoperability system 500 can be integrated with a networktraffic monitoring system 100 implemented in a first network and serve as a root node to another networknode interoperability system 500 integrated with another networktraffic monitoring system 100 implemented in a second network. - The example network
node interoperability system 500 shown inFIG. 5 includes aninternetwork communicator 502, adata aggregator 504, adata tagger 506, an inventory manager 508, and aninteroperability user interface 510. Theinternetwork communicator 502 functions to send and receive data for purposes of providing interoperability between nodes and clusters of nodes in different networks. Theinternetwork communicator 502 can send and receive data through external APIs. More specifically, theinternetwork communicator 502, when implemented in a network, can use an external API to exchange data with another networknode interoperability system 500 implemented in another network, for purposes of providing interoperability between nodes and clusters of nodes in the networks. - The
internetwork communicator 502 can send and receive, or otherwise provide access to, either or both network traffic data and analytics generated from the network traffic data. For example, theinternetwork communicator 502 can send tags/annotation tags used to tag gathered network traffic data or analytics, for purposes of providing user visibility into networks. In another example, theinternetwork communicator 502 can receive application definitions from another network node cluster for use in discovering applications within a network node cluster in further providing user visibility into networks. In another example, theinternetwork communicator 502 can receive sensor data of sensors included as part of a networktraffic monitoring system 100 in another network, for use in managing the sensors across the networks. - In providing interoperability, the
internetwork communicator 502 can exchange data with other networks and/or nodes or clusters of nodes in the other networks. For example, theinternetwork communicator 502 can provide analytics indicating identified inventory, e.g. applications in a network, to another network. Theinternetwork communicator 502 can exchange data with other networknode interoperability systems 500 implemented in or otherwise associated with other networks, as part of theinternetwork communicator 502 exchanging data with other networks and/or nodes or clusters of nodes in other networks. For example, theinternetwork communicator 502 can send analytics generated for a local network to a cluster of nodes serving as a root node in another network. In another example, theinternetwork communicator 502 can receive traffic flows generated for a cluster of nodes in another network from another networknode interoperability system 500 implemented in the other network. - The
internetwork communicator 502 can send and receive policies. Policies sent and received by theinternetwork communicator 502 can be used to manage nodes in a network associated with theinternetwork communicator 502 or nodes in other networks. In managing nodes using policies received by or sent from theinternetwork communicator 502, datacenters can be managed. For example, theinternetwork communicator 502 can receive policies deployed by a tenant to manage a datacenter as part of the tenant managing a plurality of datacenters. Theinternetwork communicator 502 can receive policies implemented in a node cluster of another network, which can subsequently be used to manage a node cluster in a network that theinternetwork communicator 502 is deployed in or a network otherwise associated with theinternetwork communicator 502. - Returning to the example network
node interoperability system 500 shown inFIG. 5 , the data aggregator 504 functions to aggregate data gathered or generated by one or a plurality of networktraffic monitoring systems 100. Specifically, thedata aggregator 504 can aggregate either or both network traffic data and analytics generated from network traffic data. For example, thedata aggregator 504 can aggregate policies generated at or otherwise implemented at one or a plurality of node clusters. In another example, thedata aggregator 504 can aggregate network flows occurring in a plurality of node clusters. - The
data aggregator 504 can aggregate data across networks, as part of providing interoperability between the networks and nodes or clusters of nodes in the networks. In aggregating data across networks, thedata aggregator 504 can aggregate data received by theinternetwork communicator 502 as part of the peer-to-peer architecture 300. For example, thedata aggregator 504 can aggregate first analytics generated for a first cluster of nodes in a first network with second analytics generated for a second cluster of nodes in a second network, as part of providing interoperability between the nodes in the first and second networks. Further, in aggregating data across networks, thedata aggregator 504 can aggregated data received by theinternetwork communicator 502 as part of thehierarchical architecture 400. For example thedata aggregator 504 can aggregate first network traffic data for a node cluster in a first network that is received at a root node with second network traffic data for another node cluster in a second network that is received at the root node. - Aggregated data created by the
data aggregator 504 can be used to manage nodes and clusters of nodes across networks, in providing interoperability between the nodes and clusters of nodes. For example, data aggregated by thedata aggregator 504 can be used to manage nodes in networks of the same tenant, e.g. providing visibility of the nodes to the tenant across the networks as part of providing interoperability between the nodes. In another example, data aggregated by thedata aggregator 504 can be used to manage nodes in networks of different tenants, e.g. providing visibility of the nodes across tenants as part of providing interoperability between the nodes. - Additionally, aggregated data created by the
data aggregator 504 can be used to create policies across networks, as part of providing interoperability between nodes and clusters of nodes. Specifically, either or both network traffic data and analytics generated from the network traffic data can be used to generate a policy. The policy can then be pushed to one or a plurality of network nodes in the networks, for use in managing the one or the plurality of nodes in the networks. For example, network traffic data aggregated across a plurality of datacenters of a tenant can be used to generate a policy for the tenant. Further in the example, the policy can be pushed to nodes in the datacenters for use in managing nodes within the datacenters. - Aggregated data created by the
data aggregator 504 can include sensor information aggregated across clusters of nodes in different networks. For example, aggregated data created by thedata aggregator 504 can include locations, e.g. logical locations, where sensors of the networktraffic monitoring system 100 or systems reside in across networks. Additionally, aggregated data created by thedata aggregator 504 can include network resource usage information of nodes and clusters of nodes within different networks. For example, aggregated data can include an amount of bandwidth used by clusters of nodes in different networks to run the same application. - Additionally, aggregated data created by the
data aggregator 504 can be used to manage loads on servers or assigned network resources in datacenters. Specifically, either or both network traffic data and analytics generated from the network traffic data can be used to determine an aggregated bandwidth usage across datacenters. Further, amounts of network resources assigned to datacenters can be controlled based on a lower load on the datacenters, as identified from the aggregated bandwidth usages. For example, if aggregated data indicates that a first datacenter is consuming more network resources than a second datacenter in hosting the same accounting application, then an amount of network resources provisioned to either or both datacenters can be adjusted based on the disparity in consumed network resources. Further in the example, a number of servers in the second datacenter assigned to host the application can be reduced based on the disparity in the consumed network resources. - Aggregated data created by the
data aggregator 504 can be used to determine how operation of clusters of nodes impact operation of other clusters of nodes in other networks, as part of providing interoperability between the nodes. More specifically, aggregated data created by thedata aggregator 504 can be used to determine how changes in operation of clusters of nodes impacts operation of other clusters of nodes in other networks. For example, if a new policy is implemented in a datacenter, then aggregated data created by thedata aggregator 504 can indicate or otherwise be analyzed to determine how implementation of the policy in the datacenter impacts operation of other datacenters. Additionally, aggregated data created by thedata aggregator 504 can be used to determine how changes in operation of clusters of nodes impacts operation of other clusters of nodes, without actually making the changes to the operation of clusters of nodes. For example, aggregated data created by thedata aggregator 504 can be analyzed to determine how reducing an amount of assigned bandwidth to a cluster of nodes impacts operation of other nodes, without actually reducing the amount of bandwidth assigned to the cluster of nodes. - Referring back to the example network
node interoperability system 500, thedata tagger 506 can tag network traffic data. In tagging network traffic data, thedata tagger 506 can tag network traffic flows included as part of network traffic data. Tags utilized by thedata tagger 506 can be specific to one or a combination of an application, a tenant, and a policy. For example, thedata tagger 506 can tag network flows associated with running a specific application with a tag for the application. In another example, thedata tagger 506 can tag network traffic data with a policy used in controlling operation of a cluster of network nodes associated with the network traffic data. - Tags utilized by the
data tagger 506 to tag network traffic data can be generated by thedata tagger 506. Specifically, thedata tagger 506 can generate tags based on one or a combination of an identification of a tenant, defined policies, application dependency mappings, and application definitions. For example, thedata tagger 506 can create a tag for defining network traffic data using a policy implemented at a network node cluster. Tags created by thedata tagger 506 can be provided to another network or the networknode interoperability system 500 implemented in the other network, as part of providing operability between networks and clusters of nodes in the networks. Tags created by thedata tagger 506 and provided to other networks can subsequently be used to tag network traffic data in the other networks, potentially as part of providing interoperability between networks. - The data tagger 506 can tag network traffic data using tags received from another network node cluster, e.g. a node cluster in another network, as part of providing interoperability between the networks. More specifically, the
data tagger 506 can tag network traffic data using application definitions and defined policies for another tenant in another network. For example, thedata tagger 506 can use definitions of newly discovered applications in another network to tag network traffic data collected for a network in which thedata tagger 506 is implemented. In another example, thedata tagger 506 can tag network traffic data generated in a network of a tenant using policies defined for a network of another tenant. - Referring back to the example network
node interoperability system 500, the inventory manager 508 can manage inventories in one or a plurality of network node clusters within a network. In managing inventory, the inventory manager can maintain inventory information for a network node cluster. Inventory information can include applications running in a network node clusters, nodes, e.g. endpoints, in a network node cluster, logical spaces associated with a network node cluster, virtual routing and forwarding instances (hereinafter referred to as “VRFs”) associated with network node clusters, groups within a tenant associated with a node cluster, and physical locations or datacenters associated with a network node cluster. - In managing inventory, the inventory manager 508 can discover applications and application dependency mappings, in a network node cluster. The inventory manager 508 can use application definitions to discover applications and subsequently track applications in a network node cluster. For example, using application definitions for an accounting application, the inventory manager 508 can discover the accounting application in a network node cluster, e.g. based on network traffic data collected for the cluster. The inventory manager 508 can use application definitions received and/or created by another network node cluster in another network to identify applications in a network node cluster, e.g. as part of providing interoperability between networks and node clusters within the networks.
- As part of discovering applications the inventory manager 508 can generate application definitions for use in discovering applications. The inventory manager 508 can generate application definitions based on previously discovered applications and network traffic data. For example, based on a signature in past network traffic data of a specific application, the inventory manager 508 can define application definitions for the specific application. Application definitions generated by the inventory manager 508 can be provided to network node interoperability systems in other networks for purposes of providing interoperability between the networks and node clusters in the networks.
- Returning to the example network
node interoperability system 500 shown inFIG. 5 , theinteroperability user interface 510 is an interface through which data can be presented to a user in providing interoperability between nodes and clusters of nodes in different networks. Theinteroperability user interface 510 can be used to present either or both collected network traffic data and analytics generated from the network traffic data to a user. For example, theinteroperability user interface 510 can be used to present analytics for clusters of nodes to a user, as part of providing interoperability between the clusters of nodes. Theinteroperability user interface 510 can be implemented through or otherwise present data to a user through an external - API.
- The
interoperability user interface 510 can present to a user, e.g. in a single pane view, data aggregated across a plurality nodes and clusters of nodes in different networks by thedata aggregator 504. For example, theinteroperability user interface 510 can present traffic flows for clusters of network nodes in different datacenters or networks of a tenant. This provides a user with visibility across networks, as the user can view traffic flows or other aggregated data and analytics of clusters of nodes across datacenters, thereby allowing the user to more efficiently monitor and control the datacenters. In another example, theinteroperability user interface 510 can present discovered applications or application dependency mappings across a plurality of networks and node clusters in the networks. - Further, the
interoperability user interface 510 can present data based on maintained inventory information. More specifically, theinteroperability user interface 510 can present inventory across datacenters of a tenant to a user to allow the user to more efficiently monitor and manage the datacenters. In presenting data based on maintained inventory information, theinteroperability user interface 510 can present data based on groups in inventory information. For example theinteroperability user interface 510 can present network traffic data and analytics for a group of a tenant across a plurality of networks. In another example, theinteroperability user interface 510 can present network traffic data and analytics for VRFs across networks of a tenant. - The
interoperability user interface 510 can present aggregated sensor information for sensors across a plurality of networks. More specifically, theinteroperability user interface 510 can present a single pane view of sensors included as part of the networktraffic monitoring systems 100 across a plurality of networks. For example, theinteroperability user interface 510 can present operation configurations of sensors in different networks of a tenant. Presenting senor information across networks provides a user with greater visibility and allows the user to more efficiently manage or control sensors. -
FIG. 6 illustrates a flowchart for an example method of providing interoperability between clusters of nodes in different networks. The method shown inFIG. 6 is provided by way of example, as there are a variety of ways to carry out the method. Additionally, while the example method is illustrated with a particular order of blocks, those of ordinary skill in the art will appreciate thatFIG. 6 and the blocks shown therein can be executed in any order and can include fewer or more blocks than illustrated. - Each block shown in
FIG. 6 represents one or more steps, processes, methods or routines in the method. For the sake of clarity and explanation purposes, the blocks inFIG. 6 are described with reference to the networktraffic monitoring system 100 shown inFIG. 1 and the networknode interoperability system 500 shown inFIG. 5 . - At
step 600, the networktraffic monitoring system 100 identifies a first cluster of nodes in a first network and a second cluster of nodes in a second network. The networktraffic monitoring system 100 can be two separate systems implemented separately in the corresponding first network and the second network. The cluster of nodes can be identified based on whether concatenated feature vectors of the nodes exceed specified similarity thresholds. Additionally, the cluster of nodes can be identified based on whether either or both corresponding network-based feature vectors of the nodes are similar to a specific degree and corresponding process-based feature vectors are only a specific distance apart. - At
step 602, the networknode interoperability system 500 provides interoperability between the first cluster of nodes and the second cluster of nodes, e.g. by facilitating data exchange between the networks and/or the first cluster of nodes and the second cluster of nodes. The networknode interoperability system 500 can provide interoperability between the first cluster of nodes and the second cluster of nodes as part of a federated network. Additionally, the networknode interoperability system 500 can provide interoperability between the first cluster of nodes and the second cluster of nodes using either a hierarchical architecture or a peer-to-peer architecture. In providing interoperability between the first cluster of nodes and the second cluster of nodes, the networknode interoperability system 500 can be two separate systems implemented separately in the corresponding first and second networks. Additionally, in providing interoperability between the first cluster of nodes and the second cluster of nodes, the networknode interoperability system 500 can be implemented at another cluster of nodes in another network, e.g. a root node. - At
step 604, the networktraffic monitoring system 100 generates analytics for the first cluster of nodes using first network traffic data gathered based on network traffic flowing through the first cluster of nodes. Network traffic data used to generate analytics for the first cluster of nodes can be gathered using sensors integrated as part of the networktraffic monitoring system 100 in the first network. Analytics can include one or a combination of discovered inventory, discovered applications, tags, application dependency mappings, network resource usages, application definitions, and sensor information for the first cluster of nodes. - At
step 606, the networknode interoperability system 500 provides the second cluster of nodes access to the analytics for the first cluster of nodes as part of providing interoperability between the first cluster of nodes and the second cluster of nodes. In providing access to the analytics for the first cluster of nodes, theinternetwork communicator 502 can receive the analytics from the networktraffic monitoring system 100 that generated the analytics for the first cluster of nodes. Additionally, in providing the second cluster of nodes access to the analytics for the first cluster of nodes, theinternetwork communicator 502 can send the analytics to the networknode interoperability system 500 associated with or implemented in the second network, as part of providing interoperability between the first cluster of nodes and the second cluster of nodes. - The disclosure now turns to
FIGS. 7 and 8 , which illustrate example network devices and computing devices, such as switches, routers, load balancers, client devices, and so forth. -
FIG. 7 illustrates anexample network device 700 suitable for performing switching, routing, load balancing, and other networking operations.Network device 700 includes a central processing unit (CPU) 704,interfaces 702, and a bus 710 (e.g., a PCI bus). When acting under the control of appropriate software or firmware, theCPU 704 is responsible for executing packet management, error detection, and/or routing functions. TheCPU 704 preferably accomplishes all these functions under the control of software including an operating system and any appropriate applications software.CPU 704 may include one ormore processors 708, such as a processor from the INTEL X86 family of microprocessors. In some cases,processor 708 can be specially designed hardware for controlling the operations ofnetwork device 700. In some cases, a memory 706 (e.g., non-volatile RAM, ROM, etc.) also forms part ofCPU 704. However, there are many different ways in which memory could be coupled to the system. - The
interfaces 702 are typically provided as modular interface cards (sometimes referred to as “line cards”). Generally, they control the sending and receiving of data packets over the network and sometimes support other peripherals used with thenetwork device 700. Among the interfaces that may be provided are Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like. In addition, various very high-speed interfaces may be provided such as fast token ring interfaces, wireless interfaces, Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces, WIFI interfaces, 3G/4G/5G cellular interfaces, CAN BUS, LoRA, and the like. Generally, these interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM. The independent processors may control such communications intensive tasks as packet switching, media control, signal processing, crypto processing, and management. By providing separate processors for the communications intensive tasks, these interfaces allow themaster microprocessor 704 to efficiently perform routing computations, network diagnostics, security functions, etc. - Although the system shown in
FIG. 7 is one specific network device of the present subject matter, it is by no means the only network device architecture on which the present subject matter can be implemented. For example, an architecture having a single processor that handles communications as well as routing computations, etc., is often used. Further, other types of interfaces and media could also be used with thenetwork device 700. - Regardless of the network device's configuration, it may employ one or more memories or memory modules (including memory 706) configured to store program instructions for the general-purpose network operations and mechanisms for roaming, route optimization and routing functions described herein. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store tables such as mobility binding, registration, and association tables, etc.
Memory 706 could also hold various software containers and virtualized execution environments and data. - The
network device 700 can also include an application-specific integrated circuit (ASIC), which can be configured to perform routing and/or switching operations. The ASIC can communicate with other components in thenetwork device 700 via thebus 710, to exchange data and signals and coordinate various types of operations by thenetwork device 700, such as routing, switching, and/or data storage operations, for example. -
FIG. 8 illustrates acomputing system architecture 800 wherein the components of the system are in electrical communication with each other using aconnection 805, such as a bus.Exemplary system 800 includes a processing unit (CPU or processor) 810 and asystem connection 805 that couples various system components including thesystem memory 815, such as read only memory (ROM) 820 and random access memory (RAM) 825, to theprocessor 810. Thesystem 800 can include a cache of high-speed memory connected directly with, in close proximity to, or integrated as part of theprocessor 810. Thesystem 800 can copy data from thememory 815 and/or thestorage device 830 to thecache 812 for quick access by theprocessor 810. In this way, the cache can provide a performance boost that avoidsprocessor 810 delays while waiting for data. These and other modules can control or be configured to control theprocessor 810 to perform various actions.Other system memory 815 may be available for use as well. Thememory 815 can include multiple different types of memory with different performance characteristics. Theprocessor 810 can include any general purpose processor and a hardware or software service, such asservice 1 832,service 2 834, andservice 3 836 stored instorage device 830, configured to control theprocessor 810 as well as a special-purpose processor where software instructions are incorporated into the actual processor design. Theprocessor 810 may be a completely self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric. - To enable user interaction with the
system 800, aninput device 845 can represent any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. Anoutput device 835 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems can enable a user to provide multiple types of input to communicate with thesystem 800. Thecommunications interface 840 can generally govern and manage the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic features here may easily be substituted for improved hardware or firmware arrangements as they are developed. -
Storage device 830 is a non-volatile memory and can be a hard disk or other types of computer readable media which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, solid state memory devices, digital versatile disks, cartridges, random access memories (RAMs) 825, read only memory (ROM) 820, and hybrids thereof. - The
storage device 830 can includeservices processor 810. Other hardware or software modules are contemplated. Thestorage device 830 can be connected to thesystem connection 805. In one aspect, a hardware module that performs a particular function can include the software component stored in a computer-readable medium in connection with the necessary hardware components, such as theprocessor 810,connection 805,output device 835, and so forth, to carry out the function. - For clarity of explanation, in some instances the present technology may be presented as including individual functional blocks including functional blocks comprising devices, device components, steps or routines in a method embodied in software, or combinations of hardware and software.
- In some embodiments the computer-readable storage devices, mediums, and memories can include a cable or wireless signal containing a bit stream and the like. However, when mentioned, non-transitory computer-readable storage media expressly exclude media such as energy, carrier signals, electromagnetic waves, and signals per se.
- Methods according to the above-described examples can be implemented using computer-executable instructions that are stored or otherwise available from computer readable media. Such instructions can comprise, for example, instructions and data which cause or otherwise configure a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Portions of computer resources used can be accessible over a network. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, firmware, or source code. Examples of computer-readable media that may be used to store instructions, information used, and/or information created during methods according to described examples include magnetic or optical disks, flash memory, USB devices provided with non-volatile memory, networked storage devices, and so on.
- Devices implementing methods according to these disclosures can comprise hardware, firmware and/or software, and can take any of a variety of form factors. Typical examples of such form factors include laptops, smart phones, small form factor personal computers, personal digital assistants, rackmount devices, standalone devices, and so on. Functionality described herein also can be embodied in peripherals or add-in cards. Such functionality can also be implemented on a circuit board among different chips or different processes executing in a single device, by way of further example.
- The instructions, media for conveying such instructions, computing resources for executing them, and other structures for supporting such computing resources are means for providing the functions described in these disclosures.
- Although a variety of examples and other information was used to explain aspects within the scope of the appended claims, no limitation of the claims should be implied based on particular features or arrangements in such examples, as one of ordinary skill would be able to use these examples to derive a wide variety of implementations. Further and although some subject matter may have been described in language specific to examples of structural features and/or method steps, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to these described features or acts. For example, such functionality can be distributed differently or performed in components other than those identified herein. Rather, the described features and steps are disclosed as examples of components of systems and methods within the scope of the appended claims.
- Claim language reciting “at least one of” refers to at least one of a set and indicates that one member of the set or multiple members of the set satisfy the claim. For example, claim language reciting “at least one of A and B” means A, B, or A and B.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/793,424 US10523541B2 (en) | 2017-10-25 | 2017-10-25 | Federated network and application data analytics platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/793,424 US10523541B2 (en) | 2017-10-25 | 2017-10-25 | Federated network and application data analytics platform |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190123985A1 true US20190123985A1 (en) | 2019-04-25 |
US10523541B2 US10523541B2 (en) | 2019-12-31 |
Family
ID=66170248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/793,424 Active 2038-06-29 US10523541B2 (en) | 2017-10-25 | 2017-10-25 | Federated network and application data analytics platform |
Country Status (1)
Country | Link |
---|---|
US (1) | US10523541B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10693722B2 (en) | 2018-03-28 | 2020-06-23 | Dell Products L.P. | Agentless method to bring solution and cluster awareness into infrastructure and support management portals |
US10735271B2 (en) * | 2017-12-01 | 2020-08-04 | Cisco Technology, Inc. | Automated and adaptive generation of test stimuli for a network or system |
US10754708B2 (en) | 2018-03-28 | 2020-08-25 | EMC IP Holding Company LLC | Orchestrator and console agnostic method to deploy infrastructure through self-describing deployment templates |
US20200296603A1 (en) * | 2019-03-14 | 2020-09-17 | Cisco Technology, Inc. | Deploying network functions in a communication network based on geo-social network data |
US10795756B2 (en) | 2018-04-24 | 2020-10-06 | EMC IP Holding Company LLC | System and method to predictively service and support the solution |
US10862761B2 (en) | 2019-04-29 | 2020-12-08 | EMC IP Holding Company LLC | System and method for management of distributed systems |
US10977028B1 (en) | 2020-01-22 | 2021-04-13 | Capital One Services, Llc | Computer-based systems configured to generate and/or maintain resilient versions of application data usable by operationally distinct clusters and methods of use thereof |
US11048686B2 (en) * | 2018-01-05 | 2021-06-29 | Telia Company Ab | Method and a node for storage of data in a network |
US11075925B2 (en) | 2018-01-31 | 2021-07-27 | EMC IP Holding Company LLC | System and method to enable component inventory and compliance in the platform |
US11086738B2 (en) * | 2018-04-24 | 2021-08-10 | EMC IP Holding Company LLC | System and method to automate solution level contextual support |
US20210316883A1 (en) * | 2020-04-11 | 2021-10-14 | Hamilton Sundstrand Corporation | Prognostic and health monitoring by energy metering at power supply interface |
US11277475B1 (en) * | 2021-06-01 | 2022-03-15 | Servicenow, Inc. | Automatic discovery of storage cluster |
US11301557B2 (en) | 2019-07-19 | 2022-04-12 | Dell Products L.P. | System and method for data processing device management |
US20220166684A1 (en) * | 2020-11-25 | 2022-05-26 | Cerner Innovation, Inc. | Dashboard interface |
US11388196B2 (en) * | 2019-09-30 | 2022-07-12 | AO Kaspersky Lab | System and method for analyzing relationships between clusters of electronic devices to counter cyberattacks |
US11599422B2 (en) | 2018-10-16 | 2023-03-07 | EMC IP Holding Company LLC | System and method for device independent backup in distributed system |
US20230073891A1 (en) * | 2021-09-09 | 2023-03-09 | Beijing Bytedance Network Technology Co., Ltd. | Multifunctional application gateway for security and privacy |
US20230353551A1 (en) * | 2019-09-18 | 2023-11-02 | Bioconnect Inc. | Access control system |
US12040958B2 (en) | 2022-03-09 | 2024-07-16 | Cisco Technology, Inc. | Dynamic multi-cloud network traffic flow monitoring |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11675690B2 (en) * | 2021-06-09 | 2023-06-13 | Capital One Services, Llc | Lineage-driven source code generation for building, testing, deploying, and maintaining data marts and data pipelines |
US12155640B2 (en) * | 2021-10-21 | 2024-11-26 | Jpmorgan Chase Bank, N.A. | Systems and methods for cloud federated token just in time authorization |
US12143284B1 (en) * | 2023-06-01 | 2024-11-12 | VMware LLC | Health check as a service |
Family Cites Families (634)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5086385A (en) | 1989-01-31 | 1992-02-04 | Custom Command Systems | Expandable home automation system |
US5400246A (en) | 1989-05-09 | 1995-03-21 | Ansan Industries, Ltd. | Peripheral data acquisition, monitor, and adaptive control system via personal computer |
WO1992005485A2 (en) | 1990-09-17 | 1992-04-02 | Cabletron Systems, Inc. | Network management system using model-based intelligence |
US5319754A (en) | 1991-10-03 | 1994-06-07 | Compaq Computer Corporation | Data transfer system between a computer and a host adapter using multiple arrays |
US6850252B1 (en) | 1999-10-05 | 2005-02-01 | Steven M. Hoffberg | Intelligent electronic appliance system and method |
EP0592079A2 (en) | 1992-09-20 | 1994-04-13 | Sun Microsystems, Inc. | Automated software installation and operating environment configuration on a computer system |
US5742829A (en) | 1995-03-10 | 1998-04-21 | Microsoft Corporation | Automatic software installation on heterogeneous networked client computer systems |
IT1285179B1 (en) | 1995-04-24 | 1998-06-03 | Motorola Inc | PROCEDURE AND APPARATUS FOR THE CONTROL OF SENSITIVE ADDRESSING FOR COMMUNICATIONS SYSTEMS. |
US5726644A (en) | 1995-06-30 | 1998-03-10 | Philips Electronics North America Corporation | Lighting control system with packet hopping communication |
US5822731A (en) | 1995-09-15 | 1998-10-13 | Infonautics Corporation | Adjusting a hidden Markov model tagger for sentence fragments |
US6249241B1 (en) | 1995-09-21 | 2001-06-19 | The United States Of America As Represented By The Secretary Of The Navy | Marine vessel traffic system |
US5831848A (en) | 1995-11-17 | 1998-11-03 | Phoenix Controls Corporation | Distributed environmental process control system |
US6151643A (en) | 1996-06-07 | 2000-11-21 | Networks Associates, Inc. | Automatic updating of diverse software products on multiple client computer systems by downloading scanning application to client computer and generating software list on client computer |
US6144962A (en) | 1996-10-15 | 2000-11-07 | Mercury Interactive Corporation | Visualization of web sites and hierarchical data structures |
US5964841A (en) | 1997-03-03 | 1999-10-12 | Cisco Technology, Inc. | Technique for handling forwarding transients with link state routing protocol |
US6247058B1 (en) | 1998-03-30 | 2001-06-12 | Hewlett-Packard Company | Method and apparatus for processing network packets using time stamps |
US6141595A (en) | 1998-04-03 | 2000-10-31 | Johnson Controls Technology Company | Common object architecture supporting application-centric building automation systems |
US6012096A (en) | 1998-04-23 | 2000-01-04 | Microsoft Corporation | Method and system for peer-to-peer network latency measurement |
US6185566B1 (en) | 1998-05-05 | 2001-02-06 | Robert A. Adams | Network management system having an embedded network database |
AU7346498A (en) | 1998-05-13 | 1999-11-29 | Glaxo Group Limited | Remote installation of computer operating systems |
US6157955A (en) | 1998-06-15 | 2000-12-05 | Intel Corporation | Packet processing system including a policy engine having a classification unit |
US6353775B1 (en) | 1998-07-28 | 2002-03-05 | Honeywell International Inc. | Multiple instance single value identifiers environmental control communication method and system |
US6628304B2 (en) | 1998-12-09 | 2003-09-30 | Cisco Technology, Inc. | Method and apparatus providing a graphical user interface for representing and navigating hierarchical networks |
US6330562B1 (en) | 1999-01-29 | 2001-12-11 | International Business Machines Corporation | System and method for managing security objects |
US20070162420A1 (en) | 2004-01-21 | 2007-07-12 | Oracle International Corporation | Techniques for automatically discovering a database device on a network |
US6484315B1 (en) | 1999-02-01 | 2002-11-19 | Cisco Technology, Inc. | Method and system for dynamically distributing updates in a network |
US6239699B1 (en) | 1999-03-03 | 2001-05-29 | Lucent Technologies Inc. | Intelligent alarm filtering in a telecommunications network |
US8272875B1 (en) | 1999-03-09 | 2012-09-25 | Realityworks, Inc. | Educational device for simulating addictive behavior and method of using |
US6546420B1 (en) | 1999-03-31 | 2003-04-08 | Cisco Technology, Inc. | Aggregating information about network message flows |
US6801878B1 (en) | 1999-04-08 | 2004-10-05 | George Mason University | System and method for managing sensors of a system |
US8179809B1 (en) | 1999-08-23 | 2012-05-15 | Oracle America, Inc. | Approach for allocating resources to an apparatus based on suspendable resource requirements |
US6611896B1 (en) | 1999-08-25 | 2003-08-26 | Emc Corporation | Dynamic mirror service policy with seek adjustment in a non-physical mirrored storage environment |
WO2001025894A1 (en) | 1999-10-05 | 2001-04-12 | Ejasent Inc. | Snapshot virtual-templating |
US8140658B1 (en) | 1999-10-06 | 2012-03-20 | Borgia/Cummins, Llc | Apparatus for internetworked wireless integrated network sensors (WINS) |
US6728779B1 (en) | 1999-12-01 | 2004-04-27 | Lucent Technologies Inc. | Method and apparatus for exchanging routing information in a packet-based data network |
GB2357390B (en) | 1999-12-16 | 2002-09-25 | 3Com Corp | Ethernet units adapted for loop configuration and method of operating same |
US7203740B1 (en) | 1999-12-22 | 2007-04-10 | Intel Corporation | Method and apparatus for allowing proprietary forwarding elements to interoperate with standard control elements in an open architecture for network devices |
US6871284B2 (en) | 2000-01-07 | 2005-03-22 | Securify, Inc. | Credential/condition assertion verification optimization |
US7120934B2 (en) | 2000-03-30 | 2006-10-10 | Ishikawa Mark M | System, method and apparatus for detecting, identifying and responding to fraudulent requests on a network |
EP1146766A1 (en) | 2000-04-11 | 2001-10-17 | Alcatel | Connection control module |
US7024468B1 (en) | 2000-04-27 | 2006-04-04 | Hewlett-Packard Development Company, L.P. | Internet usage data recording system and method with configurable data collector system |
US6925490B1 (en) | 2000-05-31 | 2005-08-02 | International Business Machines Corporation | Method, system and program products for controlling system traffic of a clustered computing environment |
US6847993B1 (en) | 2000-05-31 | 2005-01-25 | International Business Machines Corporation | Method, system and program products for managing cluster configurations |
US6816461B1 (en) | 2000-06-16 | 2004-11-09 | Ciena Corporation | Method of controlling a network element to aggregate alarms and faults of a communications network |
US7693976B2 (en) | 2000-07-11 | 2010-04-06 | Ciena Corporation | Granular management of network resources |
US20020103793A1 (en) | 2000-08-02 | 2002-08-01 | Daphne Koller | Method and apparatus for learning probabilistic relational models having attribute and link uncertainty and for performing selectivity estimation using probabilistic relational models |
US7181769B1 (en) | 2000-08-25 | 2007-02-20 | Ncircle Network Security, Inc. | Network security system having a device profiler communicatively coupled to a traffic monitor |
US8010469B2 (en) | 2000-09-25 | 2011-08-30 | Crossbeam Systems, Inc. | Systems and methods for processing data flows |
US9800608B2 (en) | 2000-09-25 | 2017-10-24 | Symantec Corporation | Processing data flows with a data flow processor |
US7080161B2 (en) | 2000-10-17 | 2006-07-18 | Avaya Technology Corp. | Routing information exchange |
US20030097439A1 (en) | 2000-10-23 | 2003-05-22 | Strayer William Timothy | Systems and methods for identifying anomalies in network data streams |
US8875116B2 (en) | 2000-11-17 | 2014-10-28 | Hewlett-Packard Development Company, L.P. | Network for updating firmware and / or software in wireless communication devices |
US7133923B2 (en) | 2000-12-11 | 2006-11-07 | Acme Packet, Inc. | System and method for assisting in controlling real-time transport protocol flow through multiple networks via screening |
US6973023B1 (en) | 2000-12-30 | 2005-12-06 | Cisco Technology, Inc. | Method for routing information over a network employing centralized control |
US7065569B2 (en) | 2001-01-09 | 2006-06-20 | Turin Networks, Inc. | System and method for remote traffic management in a communication network |
US20040213221A1 (en) | 2001-01-16 | 2004-10-28 | Seyhan Civanlar | System and method for soft bandwidth |
US6938122B2 (en) | 2001-01-23 | 2005-08-30 | Emc Corporation | Remote mirroring in a switched environment |
US7444404B2 (en) | 2001-02-05 | 2008-10-28 | Arbor Networks, Inc. | Network traffic regulation including consistency based detection and filtering of packets with spoof source addresses |
FI20010596A0 (en) | 2001-03-22 | 2001-03-22 | Ssh Comm Security Oyj | Security system for a data communication network |
US7139242B2 (en) | 2001-03-28 | 2006-11-21 | Proficient Networks, Inc. | Methods, apparatuses and systems facilitating deployment, support and configuration of network routing policies |
US7096273B1 (en) | 2001-04-25 | 2006-08-22 | Cisco Technology, Inc. | DHCP over mobile IP |
US20030023601A1 (en) | 2001-05-08 | 2003-01-30 | Fortier Joseph W. | System and method for intercommunication among disparate communication networks |
US6738933B2 (en) | 2001-05-09 | 2004-05-18 | Mercury Interactive Corporation | Root cause analysis of server system performance degradations |
US6525658B2 (en) | 2001-06-11 | 2003-02-25 | Ensco, Inc. | Method and device for event detection utilizing data from a multiplicity of sensor sources |
US7162643B1 (en) | 2001-06-15 | 2007-01-09 | Informatica Corporation | Method and system for providing transfer of analytic application data over a network |
GB2393607B (en) | 2001-06-27 | 2004-12-08 | Arbor Networks | Method and a system for monitoring control signal traffic over a computer network |
US6958998B2 (en) | 2001-07-09 | 2005-10-25 | International Business Machines Corporation | Traffic management in packet-based networks |
US20040010703A1 (en) | 2001-08-01 | 2004-01-15 | Networks Associates Technology, Inc. | Persistent storage access system and method for a wireless malware scan engine |
US9836424B2 (en) | 2001-08-24 | 2017-12-05 | Intel Corporation | General input/output architecture, protocol and related methods to implement flow control |
US7111055B2 (en) | 2001-08-30 | 2006-09-19 | Sun Microsystems, Inc. | Method and apparatus to facilitate automated software installation on remote computers over a network |
US7633942B2 (en) | 2001-10-15 | 2009-12-15 | Avaya Inc. | Network traffic generation and monitoring systems and methods for their use in testing frameworks for determining suitability of a network for target applications |
US7325233B2 (en) | 2001-11-07 | 2008-01-29 | Sap Ag | Process attachable virtual machines |
US7603440B1 (en) | 2001-11-09 | 2009-10-13 | Persystent Technology Corporation | System and method for management of end user computing devices |
US7437762B2 (en) | 2001-11-29 | 2008-10-14 | International Business Machines Corporation | Method, computer program element and a system for processing alarms triggered by a monitoring system |
US6996817B2 (en) | 2001-12-12 | 2006-02-07 | Valve Corporation | Method and system for upgrading and rolling back versions |
US20030126242A1 (en) | 2001-12-28 | 2003-07-03 | Chang Albert H. | Network boot system and method using remotely-stored, client-specific boot images created from shared, base snapshot image |
US20030151513A1 (en) | 2002-01-10 | 2003-08-14 | Falk Herrmann | Self-organizing hierarchical wireless network for surveillance and control |
JP3963728B2 (en) | 2002-01-22 | 2007-08-22 | 富士通株式会社 | Spanning tree bypass method and apparatus |
US7743415B2 (en) | 2002-01-31 | 2010-06-22 | Riverbed Technology, Inc. | Denial of service attacks characterization |
US7349761B1 (en) | 2002-02-07 | 2008-03-25 | Cruse Mike B | System and method for distributed facility management and operational control |
US8370936B2 (en) | 2002-02-08 | 2013-02-05 | Juniper Networks, Inc. | Multi-method gateway-based network security systems and methods |
US7693947B2 (en) | 2002-03-08 | 2010-04-06 | Mcafee, Inc. | Systems and methods for graphically displaying messaging traffic |
US7346672B2 (en) | 2002-03-12 | 2008-03-18 | Hewlett-Packard Development Company, L.P. | Automatic TFTP firmware download |
US20040243533A1 (en) | 2002-04-08 | 2004-12-02 | Wsi Corporation | Method for interactively creating real-time visualizations of traffic information |
US7747729B2 (en) | 2002-06-14 | 2010-06-29 | Hanoch Levy | Determining client latencies over a network |
EP1383261A1 (en) | 2002-07-15 | 2004-01-21 | Alcatel | Protection method and system for traffic of different service classes |
US7337206B1 (en) | 2002-07-15 | 2008-02-26 | Network Physics | Method for detecting congestion in internet traffic |
JP2004056604A (en) | 2002-07-23 | 2004-02-19 | Fujitsu Ltd | Network operation monitoring device |
US6983323B2 (en) | 2002-08-12 | 2006-01-03 | Tippingpoint Technologies, Inc. | Multi-level packet screening with dynamically selected filtering criteria |
US7185103B1 (en) | 2002-09-10 | 2007-02-27 | Juniper Networks, Inc. | Rate-controlled transmission of traffic flow information |
US7370092B2 (en) | 2002-09-12 | 2008-05-06 | Computer Sciences Corporation | System and method for enhanced software updating and revision |
US8407798B1 (en) | 2002-10-01 | 2013-03-26 | Skybox Secutiry Inc. | Method for simulation aided security event management |
US8191136B2 (en) | 2002-11-04 | 2012-05-29 | Riverbed Technology, Inc. | Connection based denial of service detection |
US7340674B2 (en) | 2002-12-16 | 2008-03-04 | Xerox Corporation | Method and apparatus for normalizing quoting styles in electronic mail messages |
US9818136B1 (en) | 2003-02-05 | 2017-11-14 | Steven M. Hoffberg | System and method for determining contingent relevance |
EP1450511A1 (en) | 2003-02-18 | 2004-08-25 | Alcatel | Device and method for simulating network traffic treatments of a network using policy rules |
US7002464B2 (en) | 2003-03-19 | 2006-02-21 | Home Data Source, Inc. | Relative timing mechanism for event sequencing without clock synchronization |
US7360072B1 (en) | 2003-03-28 | 2008-04-15 | Cisco Technology, Inc. | iSCSI system OS boot configuration modification |
US8171551B2 (en) | 2003-04-01 | 2012-05-01 | Mcafee, Inc. | Malware detection using external call characteristics |
US7895649B1 (en) | 2003-04-04 | 2011-02-22 | Raytheon Company | Dynamic rule generation for an enterprise intrusion detection system |
US8209680B1 (en) | 2003-04-11 | 2012-06-26 | Vmware, Inc. | System and method for disk imaging on diverse computers |
US7317693B1 (en) | 2003-05-12 | 2008-01-08 | Sourcefire, Inc. | Systems and methods for determining the network topology of a network |
US7281126B2 (en) | 2003-05-30 | 2007-10-09 | Sun Microsystems, Inc. | Method of installing an image on a client over a network securely using a wanboot binary and a kernel to install the image |
US7420931B2 (en) | 2003-06-05 | 2008-09-02 | Nvidia Corporation | Using TCP/IP offload to accelerate packet filtering |
US7827602B2 (en) | 2003-06-30 | 2010-11-02 | At&T Intellectual Property I, L.P. | Network firewall host application identification and authentication |
US8296847B2 (en) | 2003-07-25 | 2012-10-23 | Hewlett-Packard Development Company, L.P. | Method of managing utilization of network intrusion detection systems in a dynamic data center |
US7266754B2 (en) | 2003-08-14 | 2007-09-04 | Cisco Technology, Inc. | Detecting network denial of service attacks |
US7568107B1 (en) | 2003-08-20 | 2009-07-28 | Extreme Networks, Inc. | Method and system for auto discovery of authenticator for network login |
US7522596B2 (en) | 2003-08-25 | 2009-04-21 | Alcatel Lucent | Enhanced DVMRP for destination-based forwarding of multicast data |
US7483384B2 (en) | 2003-09-22 | 2009-01-27 | Hewlett-Packard Development Company, L.P. | System and method for monitoring network traffic |
WO2005031659A2 (en) | 2003-09-25 | 2005-04-07 | Gary Williams Retail Solutions, Inc. | Money dispensing system |
WO2005034446A1 (en) | 2003-10-03 | 2005-04-14 | Fujitsu Limited | Network system based on policy rule |
US20050198629A1 (en) | 2003-10-10 | 2005-09-08 | Vipul Vishwanath | Method and system for provisioning servers based on a policy and rule hierarchy |
US20050177829A1 (en) | 2003-10-10 | 2005-08-11 | Vipul Vishwanath | Method of applying constraints against discovered attributes in provisioning computers |
US8560671B1 (en) | 2003-10-23 | 2013-10-15 | Netapp, Inc. | Systems and methods for path-based management of virtual servers in storage network environments |
US20050108331A1 (en) | 2003-10-31 | 2005-05-19 | Osterman Lawrence W. | Presence tracking for datagram based protocols with search |
US7885197B2 (en) | 2003-11-17 | 2011-02-08 | Intel Corporation | System and method for measuring per node packet loss in a wireless network |
CA2547630A1 (en) | 2003-11-26 | 2005-06-16 | Hewlett-Packard Development Company, L.P. | System and method for management and installation of operating system images for computers |
US7975035B2 (en) | 2003-12-01 | 2011-07-05 | International Business Machines Corporation | Method and apparatus to support application and network awareness of collaborative applications using multi-attribute clustering |
US7385605B2 (en) | 2003-12-04 | 2008-06-10 | International Business Machines Corporation | Computer display system for dynamically modifying stacked area line graphs to change the order or presence of a set of stacked areas in the graph respectively representative of the proportions contributed to a total by each of a set of time dependent variables |
US20050138157A1 (en) | 2003-12-23 | 2005-06-23 | Ken-Ju Jung | Network device discovery system and method thereof |
US7930540B2 (en) | 2004-01-22 | 2011-04-19 | Mcafee, Inc. | Cryptographic policy enforcement |
US8990430B2 (en) | 2004-02-19 | 2015-03-24 | Cisco Technology, Inc. | Interface bundles in virtual network devices |
WO2005079534A2 (en) | 2004-02-19 | 2005-09-01 | Georgia Tech Research Corporation | Systems and methods for parallel communication |
US7466681B2 (en) | 2004-03-19 | 2008-12-16 | Nortel Networks Limited | Method and apparatus for sensor network routing |
US8584239B2 (en) | 2004-04-01 | 2013-11-12 | Fireeye, Inc. | Virtual machine with dynamic data flow analysis |
EP1589716A1 (en) | 2004-04-20 | 2005-10-26 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Method of detecting anomalous behaviour in a computer network |
US7484237B2 (en) | 2004-05-13 | 2009-01-27 | Hewlett-Packard Development Company, L.P. | Method and apparatus for role-based security policy management |
US7961637B2 (en) | 2004-06-07 | 2011-06-14 | Spirent Communications Of Rockville, Inc. | Method and apparatus for monitoring latency, jitter, packet throughput and packet loss ratio between two points on a network |
US20050289244A1 (en) | 2004-06-28 | 2005-12-29 | Himansu Sahu | Method for service chaining in a communication network |
KR100608821B1 (en) | 2004-07-22 | 2006-08-08 | 엘지전자 주식회사 | Apparatus and method for measuring round-trip delay time of a mobile terminal |
EP1771998B1 (en) | 2004-07-23 | 2015-04-15 | Citrix Systems, Inc. | Systems and methods for optimizing communications between network nodes |
WO2006016698A1 (en) | 2004-08-11 | 2006-02-16 | Nec Corporation | Virtual lan system and node device |
US8572734B2 (en) | 2004-08-12 | 2013-10-29 | Verizon Patent And Licensing Inc. | Geographical intrusion response prioritization mapping through authentication and flight data correlation |
US7475424B2 (en) | 2004-09-02 | 2009-01-06 | International Business Machines Corporation | System and method for on-demand dynamic control of security policies/rules by a client computing device |
US7490235B2 (en) | 2004-10-08 | 2009-02-10 | International Business Machines Corporation | Offline analysis of packets |
US7760653B2 (en) | 2004-10-26 | 2010-07-20 | Riverbed Technology, Inc. | Stackable aggregation for connection based anomaly detection |
US7644438B1 (en) | 2004-10-27 | 2010-01-05 | Arcsight, Inc. | Security event aggregation at software agent |
US7610375B2 (en) | 2004-10-28 | 2009-10-27 | Cisco Technology, Inc. | Intrusion detection in a data center environment |
US7681131B1 (en) | 2004-11-10 | 2010-03-16 | InternetPerils, Inc. | Method and apparatus for aggregating, condensing, supersetting, and displaying network topology and performance data |
US9489496B2 (en) | 2004-11-12 | 2016-11-08 | Apple Inc. | Secure software updates |
US7496575B2 (en) | 2004-11-22 | 2009-02-24 | Verdasys, Inc. | Application instrumentation and monitoring |
US9160755B2 (en) | 2004-12-21 | 2015-10-13 | Mcafee, Inc. | Trusted communication network |
US7395195B2 (en) | 2004-12-27 | 2008-07-01 | Sap Aktiengesellschaft | Sensor network modeling and deployment |
US20060173912A1 (en) | 2004-12-27 | 2006-08-03 | Eric Lindvall | Automated deployment of operating system and data space to a server |
US7398382B2 (en) | 2004-12-29 | 2008-07-08 | Intel Corporation | Method and apparatus to enhance platform boot efficiency |
US7657942B2 (en) | 2005-01-11 | 2010-02-02 | International Business Machines Corporation | Method of assuring enterprise security standards compliance |
US7729284B2 (en) | 2005-01-19 | 2010-06-01 | Emulex Design & Manufacturing Corporation | Discovery and configuration of devices across an Ethernet interface |
US7657536B2 (en) | 2005-02-28 | 2010-02-02 | International Business Machines Corporation | Application of resource-dependent policies to managed resources in a distributed computing system |
US7808897B1 (en) | 2005-03-01 | 2010-10-05 | International Business Machines Corporation | Fast network security utilizing intrusion prevention systems |
US8589530B2 (en) | 2005-03-28 | 2013-11-19 | Riverbed Technology, Inc. | Method and system for managing a distributed network of network monitoring devices |
US20060274659A1 (en) | 2005-05-06 | 2006-12-07 | Battelle Memorial Institute | Method and system for generating synthetic digital network traffic |
US20070097976A1 (en) | 2005-05-20 | 2007-05-03 | Wood George D | Suspect traffic redirection |
US20060272018A1 (en) | 2005-05-27 | 2006-11-30 | Mci, Inc. | Method and apparatus for detecting denial of service attacks |
US7609625B2 (en) | 2005-07-06 | 2009-10-27 | Fortinet, Inc. | Systems and methods for detecting and preventing flooding attacks in a network environment |
US7580351B2 (en) | 2005-07-12 | 2009-08-25 | Cisco Technology, Inc | Dynamically controlling the rate and internal priority of packets destined for the control plane of a routing device |
US7874001B2 (en) | 2005-07-15 | 2011-01-18 | Microsoft Corporation | Detecting user-mode rootkits |
US9871767B2 (en) | 2005-07-18 | 2018-01-16 | Mutualink, Inc. | Enabling ad hoc trusted connections among enclaved communication communities |
US7567805B2 (en) | 2005-08-01 | 2009-07-28 | Cisco Technology, Inc. | Method and system for dynamic assignment of wireless LAN access point identity |
KR100716620B1 (en) | 2005-08-17 | 2007-05-09 | 고려대학교 산학협력단 | Network monitoring device and method using parallel coordinate system |
US8429630B2 (en) | 2005-09-15 | 2013-04-23 | Ca, Inc. | Globally distributed utility computing cloud |
US8001610B1 (en) | 2005-09-28 | 2011-08-16 | Juniper Networks, Inc. | Network defense system utilizing endpoint health indicators and user identity |
US20110314148A1 (en) | 2005-11-12 | 2011-12-22 | LogRhythm Inc. | Log collection, structuring and processing |
US7930752B2 (en) | 2005-11-18 | 2011-04-19 | Nexthink S.A. | Method for the detection and visualization of anomalous behaviors in a computer network |
EP1788752A1 (en) | 2005-11-21 | 2007-05-23 | Alcatel Lucent | Network node with control plane processor overload protection |
US7600005B2 (en) | 2005-11-23 | 2009-10-06 | Sun Microsystems, Inc. | Method and apparatus for provisioning heterogeneous operating systems onto heterogeneous hardware systems |
WO2007070711A2 (en) | 2005-12-15 | 2007-06-21 | Malloy Patrick J | Interactive network monitoring and analysis |
KR100772394B1 (en) | 2006-02-09 | 2007-11-01 | 삼성전자주식회사 | Retransmission prevention window update method and apparatus in IPSec |
US20070195729A1 (en) | 2006-02-17 | 2007-08-23 | Hongbing Li | System and method for self-configuring adaptive wireless router network |
US7873025B2 (en) | 2006-02-23 | 2011-01-18 | Cisco Technology, Inc. | Network device that determines application-level network latency by monitoring option values in a transport layer message |
JP4634320B2 (en) | 2006-02-28 | 2011-02-16 | 株式会社日立製作所 | Device and network system for anti-abnormal communication protection |
US8266697B2 (en) | 2006-03-04 | 2012-09-11 | 21St Century Technologies, Inc. | Enabling network intrusion detection by representing network activity in graphical form utilizing distributed data sensors to detect and transmit activity data |
US7546450B2 (en) | 2006-03-07 | 2009-06-09 | Sun Microsystems, Inc. | Method and apparatus for operating system deployment |
GB2435980A (en) | 2006-03-09 | 2007-09-12 | Agilent Technologies Inc | Optimizing routing of demands in a network |
US7530105B2 (en) | 2006-03-21 | 2009-05-05 | 21St Century Technologies, Inc. | Tactical and strategic attack detection and prediction |
US7610330B1 (en) | 2006-03-30 | 2009-10-27 | Packeteer, Inc. | Multi-dimensional computation distribution in a packet processing device having multiple processing architecture |
US20070230415A1 (en) | 2006-03-31 | 2007-10-04 | Symbol Technologies, Inc. | Methods and apparatus for cluster management using a common configuration file |
KR20070099201A (en) | 2006-04-03 | 2007-10-09 | 삼성전자주식회사 | Security management method of portable wireless device and security management device using same |
US8966018B2 (en) | 2006-05-19 | 2015-02-24 | Trapeze Networks, Inc. | Automated network device configuration and network deployment |
US20080082662A1 (en) | 2006-05-19 | 2008-04-03 | Richard Dandliker | Method and apparatus for controlling access to network resources based on reputation |
US8429746B2 (en) | 2006-05-22 | 2013-04-23 | Neuraliq, Inc. | Decoy network technology with automatic signature generation for intrusion detection and intrusion prevention systems |
US7873074B1 (en) | 2006-06-01 | 2011-01-18 | Avaya Inc. | Adaptive selection of bandwidth parameters to meet a service provider pricing model |
US7592906B1 (en) | 2006-06-05 | 2009-09-22 | Juniper Networks, Inc. | Network policy evaluation |
US7783457B2 (en) | 2006-06-15 | 2010-08-24 | Oracle America, Inc. | Sensor localization using lateral inhibition |
KR100799302B1 (en) | 2006-06-21 | 2008-01-29 | 한국전자통신연구원 | Hidden process detection system and method using system event information |
US8239915B1 (en) | 2006-06-30 | 2012-08-07 | Symantec Corporation | Endpoint management using trust rating data |
US8365286B2 (en) | 2006-06-30 | 2013-01-29 | Sophos Plc | Method and system for classification of software using characteristics and combinations of such characteristics |
US8151337B2 (en) | 2006-06-30 | 2012-04-03 | Microsoft Corporation | Applying firewalls to virtualized environments |
US7894434B2 (en) | 2006-07-03 | 2011-02-22 | Hewlett-Packard Development Company, L.P. | Method, apparatus, and system for capturing traffic statistics between two sites of MPLS based VPN |
US7748000B2 (en) | 2006-07-27 | 2010-06-29 | International Business Machines Corporation | Filtering a list of available install items for an install program based on a consumer's install policy |
JP4126707B2 (en) | 2006-07-28 | 2008-07-30 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Technology for analyzing the state of information systems |
US7788250B2 (en) | 2006-08-04 | 2010-08-31 | Mohammad Salman | Flexible request and response communications interfaces |
US7957934B2 (en) | 2007-05-15 | 2011-06-07 | Dynatrace Software Gmbh | Method and system for processing application performance data ouside of monitored applications to limit overhead caused by monitoring |
US8345561B2 (en) | 2006-08-22 | 2013-01-01 | Rueters America Inc. | Time monitor |
KR100793057B1 (en) | 2006-09-01 | 2008-01-10 | 한국전자통신연구원 | KS middleware apparatus and method thereof for generating information service based on heterogeneous sensor network, and information service providing system using same |
US8056134B1 (en) | 2006-09-10 | 2011-11-08 | Ogilvie John W | Malware detection and identification via malware spoofing |
WO2008154029A1 (en) | 2007-06-11 | 2008-12-18 | The Trustees Of Columbia University In The City Of New York | Data classification and hierarchical clustering |
US7743242B2 (en) | 2006-10-16 | 2010-06-22 | Scalent Systems Inc. | Method and system for automatic generation of operating system boot images |
CN1937623A (en) | 2006-10-18 | 2007-03-28 | 华为技术有限公司 | Method and system for controlling network business |
US7768921B2 (en) | 2006-10-30 | 2010-08-03 | Juniper Networks, Inc. | Identification of potential network threats using a distributed threshold random walk |
US7861933B2 (en) | 2006-11-06 | 2011-01-04 | Ikan Technologies Inc. | Methods and systems for network configuration |
US7774498B1 (en) | 2006-11-06 | 2010-08-10 | Cisco Technology, Inc. | Methods and apparatus for trusted application centric QoS provisioning |
US8181248B2 (en) | 2006-11-23 | 2012-05-15 | Electronics And Telecommunications Research Institute | System and method of detecting anomaly malicious code by using process behavior prediction technique |
US8769120B2 (en) | 2006-11-28 | 2014-07-01 | Sap Ag | Method and system to monitor parameters of a data flow path in a communication system |
WO2008069439A1 (en) | 2006-12-05 | 2008-06-12 | Electronics And Telecommunications Research Institute | Method for grouping sensor nodes in heterogeneous wireless sensor networks |
US9280337B2 (en) | 2006-12-18 | 2016-03-08 | Adobe Systems Incorporated | Secured distribution of software updates |
US8312115B2 (en) | 2006-12-21 | 2012-11-13 | 1E Limited | Network booting apparatus and method |
US8250657B1 (en) | 2006-12-29 | 2012-08-21 | Symantec Corporation | Web site hygiene-based computer security |
US8640086B2 (en) | 2006-12-29 | 2014-01-28 | Sap Ag | Graphical user interface system and method for presenting objects |
US7788477B1 (en) | 2007-01-31 | 2010-08-31 | Hewlett-Packard Development Company, L.P. | Methods, apparatus and articles of manufacture to control operating system images for diskless servers |
US8762951B1 (en) | 2007-03-21 | 2014-06-24 | Oracle America, Inc. | Apparatus and method for profiling system events in a fine grain multi-threaded multi-core processor |
US8572735B2 (en) | 2007-03-29 | 2013-10-29 | George Mason Research Foundation, Inc. | Attack resistant continuous network service trustworthiness controller |
US9083712B2 (en) | 2007-04-04 | 2015-07-14 | Sri International | Method and apparatus for generating highly predictive blacklists |
US8005935B2 (en) | 2007-04-05 | 2011-08-23 | International Business Machines Corporation | Methods and computer program products for managing application performance on a network |
US8706914B2 (en) | 2007-04-23 | 2014-04-22 | David D. Duchesneau | Computing infrastructure |
US9405585B2 (en) | 2007-04-30 | 2016-08-02 | International Business Machines Corporation | Management of heterogeneous workloads |
US8256003B2 (en) | 2007-05-10 | 2012-08-28 | Microsoft Corporation | Real-time network malware protection |
US8209738B2 (en) | 2007-05-31 | 2012-06-26 | The Board Of Trustees Of The University Of Illinois | Analysis of distributed policy rule-sets for compliance with global policy |
WO2008151321A2 (en) | 2007-06-08 | 2008-12-11 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and media for enforcing a security policy in a network including a plurality of components |
ATE485642T1 (en) | 2007-06-14 | 2010-11-15 | Koninkl Philips Electronics Nv | NETWORK DEVICE FOR USE IN A NETWORK |
US7934248B1 (en) | 2007-06-27 | 2011-04-26 | Emc Corporation | Network policy enforcement dashboard views |
JP2009016906A (en) | 2007-06-29 | 2009-01-22 | Toshiba Corp | Information processor, its reproduction method |
US9014047B2 (en) | 2007-07-10 | 2015-04-21 | Level 3 Communications, Llc | System and method for aggregating and reporting network traffic data |
US8451731B1 (en) | 2007-07-25 | 2013-05-28 | Xangati, Inc. | Network monitoring using virtual packets |
KR100862971B1 (en) | 2007-07-26 | 2008-10-13 | 강릉대학교산학협력단 | Firmware Update Method for Nodes in Wireless Sensor Network |
US8291495B1 (en) | 2007-08-08 | 2012-10-16 | Juniper Networks, Inc. | Identifying applications for intrusion detection systems |
US20090059934A1 (en) | 2007-08-30 | 2009-03-05 | Motorola, Inc. | Method and device for providing a bridge in a network |
US8613084B2 (en) | 2007-09-18 | 2013-12-17 | Mcafee, Inc. | System, method, and computer program product for detecting at least potentially unwanted activity based on execution profile monitoring |
ATE451780T1 (en) | 2007-09-28 | 2009-12-15 | Zimory Gmbh | METHOD AND SYSTEM FOR AUTOMATIC REMOTE PROVISION OF A SERVER VIA VIRTUAL DEVICE APPLICATIONS |
US8248928B1 (en) | 2007-10-09 | 2012-08-21 | Foundry Networks, Llc | Monitoring server load balancing |
US8442073B2 (en) | 2007-10-25 | 2013-05-14 | Siemens Aktiengesellschaft | Method and an apparatus for analyzing a communication network |
US8305896B2 (en) | 2007-10-31 | 2012-11-06 | Cisco Technology, Inc. | Selective performance enhancement of traffic flows |
KR101394338B1 (en) | 2007-10-31 | 2014-05-30 | 삼성전자주식회사 | Method and apparatus for displaying topology information of a wireless sensor network and system therefor |
KR100938672B1 (en) | 2007-11-20 | 2010-01-25 | 한국전자통신연구원 | Apparatus and method for detecting dynamic link library inserted by malicious code |
KR100974888B1 (en) | 2007-11-26 | 2010-08-11 | 한국전자통신연구원 | Abnormal traffic detection device and method |
US7970946B1 (en) | 2007-11-27 | 2011-06-28 | Google Inc. | Recording and serializing events |
US8775577B1 (en) | 2007-12-18 | 2014-07-08 | Amazon Technologies, Inc. | System and method for configuration management service |
US20090168648A1 (en) | 2007-12-29 | 2009-07-02 | Arbor Networks, Inc. | Method and System for Annotating Network Flow Information |
US20090182818A1 (en) | 2008-01-11 | 2009-07-16 | Fortinet, Inc. A Delaware Corporation | Heuristic detection of probable misspelled addresses in electronic communications |
JP2009171194A (en) | 2008-01-16 | 2009-07-30 | Oki Electric Ind Co Ltd | Packet sampling method, packet sampling device, network monitoring device |
WO2009096970A1 (en) | 2008-01-31 | 2009-08-06 | Hewlett-Packard Development Company, L.P. | Automated application dependency mapping |
US8719936B2 (en) | 2008-02-01 | 2014-05-06 | Northeastern University | VMM-based intrusion detection system |
US9240945B2 (en) | 2008-03-19 | 2016-01-19 | Citrix Systems, Inc. | Access, priority and bandwidth management based on application identity |
US8793117B1 (en) | 2008-04-16 | 2014-07-29 | Scalable Network Technologies, Inc. | System and method for virtualization of networking system software via emulation |
US7844744B2 (en) | 2008-04-25 | 2010-11-30 | International Business Machines Corporation | Providing server security via a security sensor application shared by multiple operating system partitions |
US8224936B2 (en) | 2008-05-21 | 2012-07-17 | Cisco Technology, Inc. | Configuration file override |
US9270477B2 (en) | 2008-05-28 | 2016-02-23 | Airmagnet, Inc. | Method and apparatus of measuring and reporting data gap from within an analysis tool |
US9152789B2 (en) | 2008-05-28 | 2015-10-06 | Zscaler, Inc. | Systems and methods for dynamic cloud-based malware behavior analysis |
US8713177B2 (en) | 2008-05-30 | 2014-04-29 | Red Hat, Inc. | Remote management of networked systems using secure modular platform |
US8255972B2 (en) | 2008-06-06 | 2012-08-28 | International Business Machines Corporation | Method to automatically map business function level policies to it management policies |
US8160063B2 (en) | 2008-06-09 | 2012-04-17 | Microsoft Corporation | Data center interconnect and traffic engineering |
US9369299B2 (en) | 2008-06-10 | 2016-06-14 | Bradford Networks, Inc. | Network access control system and method for devices connecting to network using remote access control methods |
EP2134057B1 (en) | 2008-06-12 | 2013-05-01 | Alcatel Lucent | Method for protecting a packet-based network from attacks, as well as security border node |
US8630316B2 (en) | 2008-06-19 | 2014-01-14 | Microsoft Corporation | Clock synchronization using correlation events |
US8930828B2 (en) | 2008-06-22 | 2015-01-06 | Microsoft Corporation | Distinguishing conference participants |
US8856926B2 (en) | 2008-06-27 | 2014-10-07 | Juniper Networks, Inc. | Dynamic policy provisioning within network security devices |
JP5590825B2 (en) | 2008-06-30 | 2014-09-17 | キヤノン株式会社 | Communication device and method for determining round trip time |
US8046443B2 (en) | 2008-08-21 | 2011-10-25 | Red Hat, Inc. | Rapid deployment remote network monitor |
US7904420B2 (en) | 2008-08-26 | 2011-03-08 | Raytheon Company | Identification and verification of common cluster files residing on nodes in a cluster |
US8023504B2 (en) | 2008-08-27 | 2011-09-20 | Cisco Technology, Inc. | Integrating security server policies with optimized routing control |
US8752042B2 (en) | 2008-08-27 | 2014-06-10 | Cardinalcommerce Corporation | Intelligent server routing |
US8755396B2 (en) | 2008-09-11 | 2014-06-17 | Juniper Networks, Inc. | Methods and apparatus related to flow control within a data center switch fabric |
US9495538B2 (en) | 2008-09-25 | 2016-11-15 | Symantec Corporation | Graduated enforcement of restrictions according to an application's reputation |
US8572717B2 (en) | 2008-10-09 | 2013-10-29 | Juniper Networks, Inc. | Dynamic access control policy with port restrictions for a network security appliance |
US20110202655A1 (en) | 2008-10-28 | 2011-08-18 | Sharma Ratnesh K | Data Center Manager |
US7902973B2 (en) | 2008-11-17 | 2011-03-08 | Cisco Technology, Inc. | Alarm reordering to handle alarm storms in large networks |
US8775578B2 (en) | 2008-11-28 | 2014-07-08 | Red Hat, Inc. | Providing hardware updates in a software environment |
JP4629768B2 (en) | 2008-12-03 | 2011-02-09 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Parallelization processing method, system, and program |
US8462212B1 (en) | 2008-12-04 | 2013-06-11 | Stoplift, Inc. | Correlating detected events with image data |
EP2364543B1 (en) | 2008-12-08 | 2017-02-15 | Telefonaktiebolaget LM Ericsson (publ) | Broadband network access |
US8566571B2 (en) | 2008-12-12 | 2013-10-22 | Novell, Inc. | Pre-boot securing of operating system (OS) for endpoint evaluation |
US9258217B2 (en) | 2008-12-16 | 2016-02-09 | At&T Intellectual Property I, L.P. | Systems and methods for rule-based anomaly detection on IP network flow |
CN101770551A (en) | 2008-12-30 | 2010-07-07 | 中国科学院软件研究所 | Method for processing hidden process based on hardware simulator |
CN104883322B (en) | 2009-01-16 | 2019-07-12 | 主线网络控股有限公司 | The computing system that data avoid the method blocked simultaneously and are connected to network is transmitted by computer via network |
US20100306180A1 (en) | 2009-01-28 | 2010-12-02 | Digitiliti, Inc. | File revision management |
US8866821B2 (en) | 2009-01-30 | 2014-10-21 | Microsoft Corporation | Depth map movement tracking via optical flow and velocity prediction |
US7864707B2 (en) | 2009-02-24 | 2011-01-04 | International Business Machines Corporation | Determination of network topology using flow-based traffic information |
US8667096B2 (en) | 2009-02-27 | 2014-03-04 | Red Hat, Inc. | Automatically generating system restoration order for network recovery |
EP2224357A1 (en) | 2009-02-27 | 2010-09-01 | BRITISH TELECOMMUNICATIONS public limited company | Video segmentation |
US7787480B1 (en) | 2009-03-04 | 2010-08-31 | Juniper Networks, Inc. | Routing frames in a trill network using service VLAN identifiers |
US8838804B2 (en) | 2009-03-12 | 2014-09-16 | Novell, Inc. | Securing a network connection by way of an endpoint computing device |
US20100235915A1 (en) | 2009-03-12 | 2010-09-16 | Nasir Memon | Using host symptoms, host roles, and/or host reputation for detection of host infection |
US8904520B1 (en) | 2009-03-19 | 2014-12-02 | Symantec Corporation | Communication-based reputation system |
US8667121B2 (en) | 2009-03-25 | 2014-03-04 | Mcafee, Inc. | System and method for managing data and policies |
US8381289B1 (en) | 2009-03-31 | 2013-02-19 | Symantec Corporation | Communication-based host reputation system |
US8516590B1 (en) | 2009-04-25 | 2013-08-20 | Dasient, Inc. | Malicious advertisement detection and remediation |
EP2249525B1 (en) | 2009-05-06 | 2012-10-31 | Alcatel Lucent | Traffic-engineered connection establishment across resource domains for data transport |
US8918531B2 (en) | 2009-05-07 | 2014-12-23 | Cisco Technology, Inc. | Automated network device provisioning using dynamic host configuration protocol |
US8588422B2 (en) | 2009-05-28 | 2013-11-19 | Novell, Inc. | Key management to protect encrypted data of an endpoint computing device |
US8040822B2 (en) | 2009-06-04 | 2011-10-18 | Alcatel Lucent | Configuring communication services using policy groups |
US9778953B2 (en) | 2009-06-16 | 2017-10-03 | International Business Machines Corporation | Process and system for comprehensive IT discovery without credentials |
US9210050B2 (en) | 2009-07-09 | 2015-12-08 | Centurylink Intellectual Property Llc | System and method for a testing vector and associated performance map |
US20110029658A1 (en) | 2009-07-24 | 2011-02-03 | Theodore Werth | System and methods for providing a multi-device, multi-service platform via a client agent |
US8832013B1 (en) | 2009-07-24 | 2014-09-09 | Decision Lens, Inc. | Method and system for analytic network process (ANP) total influence analysis |
KR101548021B1 (en) | 2009-08-06 | 2015-08-28 | 주식회사 케이티 | Method For Managing Network |
US9158649B2 (en) | 2009-08-14 | 2015-10-13 | Microsoft Technology Licensing, Llc | Methods and computer program products for generating a model of network application health |
CN101998629B (en) | 2009-08-28 | 2014-05-21 | 国际商业机器公司 | Method, device and system for searching for virtual resources |
WO2011027352A1 (en) | 2009-09-03 | 2011-03-10 | Mcafee, Inc. | Network access control |
US9049617B2 (en) | 2009-09-23 | 2015-06-02 | At&T Intellectual Property I, L.P. | Signaling-less dynamic call setup and teardown by utilizing observed session state information |
US8489717B2 (en) | 2009-09-24 | 2013-07-16 | Hitachi, Ltd. | Accelerated cable modem restart service |
US8832222B2 (en) | 2009-10-05 | 2014-09-09 | Vss Monitoring, Inc. | Method, apparatus and system for inserting a VLAN tag into a captured data packet |
JP4931978B2 (en) | 2009-10-06 | 2012-05-16 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Parallelization processing method, system, and program |
US8572739B1 (en) | 2009-10-27 | 2013-10-29 | Trend Micro Incorporated | Detection of malicious modules injected on legitimate processes |
EP2495916A4 (en) | 2009-10-30 | 2014-10-01 | Mitsubishi Electric Corp | Gateway apparatus, communication system and communication method |
TWI507985B (en) | 2009-11-02 | 2015-11-11 | Wistron Corp | Electronic device capable of automatically setting up operating systems and related method and system |
US8621460B2 (en) | 2009-11-02 | 2013-12-31 | International Business Machines Corporation | Endpoint-hosted hypervisor management |
US8442048B2 (en) | 2009-11-04 | 2013-05-14 | Juniper Networks, Inc. | Methods and apparatus for configuring a virtual network switch |
US8965981B2 (en) | 2009-11-25 | 2015-02-24 | At&T Intellectual Property I, L.P. | Method and apparatus for botnet analysis and visualization |
US20110126197A1 (en) | 2009-11-25 | 2011-05-26 | Novell, Inc. | System and method for controlling cloud and virtualized data centers in an intelligent workload management system |
US20110145885A1 (en) | 2009-12-10 | 2011-06-16 | Bank Of America Corporation | Policy Adherence And Compliance Model |
US20110153811A1 (en) | 2009-12-18 | 2011-06-23 | Hyun Cheol Jeong | System and method for modeling activity patterns of network traffic to detect botnets |
US20110153039A1 (en) | 2009-12-23 | 2011-06-23 | Viktor Gvelesiani | System and method for providing diagnostic information and graphical user interface therefor |
US8310950B2 (en) | 2009-12-28 | 2012-11-13 | Oracle America, Inc. | Self-configuring networking devices for providing services in a nework |
US8291258B2 (en) | 2010-01-08 | 2012-10-16 | Juniper Networks, Inc. | High availability for network security devices |
US8774232B2 (en) | 2010-01-08 | 2014-07-08 | Ciena Corporation | Systems and methods of measuring latency and routing thereon in optical networks |
US8819826B2 (en) | 2010-01-27 | 2014-08-26 | Mcafee, Inc. | Method and system for detection of malware that connect to network destinations through cloud scanning and web reputation |
US20110196957A1 (en) | 2010-02-05 | 2011-08-11 | International Business Machines Corporation | Real-Time Policy Visualization by Configuration Item to Demonstrate Real-Time and Historical Interaction of Policies |
US9160737B2 (en) | 2010-02-26 | 2015-10-13 | Microsoft Technology Licensing, Llc | Statistical security for anonymous mesh-up oriented online services |
US8869138B2 (en) | 2011-11-11 | 2014-10-21 | Wyse Technology L.L.C. | Robust firmware update with recovery logic |
US9413649B2 (en) | 2010-03-12 | 2016-08-09 | Force10 Networks, Inc. | Virtual network device architecture |
US20110228696A1 (en) | 2010-03-19 | 2011-09-22 | Navneet Agarwal | Dynamic directed acyclic graph (dag) topology reporting |
US8489765B2 (en) | 2010-03-19 | 2013-07-16 | Cisco Technology, Inc. | Dynamic directed acyclic graph (DAG) adjustment |
US8560658B2 (en) | 2010-03-23 | 2013-10-15 | Juniper Networks, Inc. | Managing distributed address pools within network devices |
KR101122650B1 (en) | 2010-04-28 | 2012-03-09 | 한국전자통신연구원 | Apparatus, system and method for detecting malicious code injected with fraud into normal process |
US8281397B2 (en) | 2010-04-29 | 2012-10-02 | Telcordia Technologies, Inc. | Method and apparatus for detecting spoofed network traffic |
US9270663B2 (en) | 2010-04-30 | 2016-02-23 | T-Central, Inc. | System and method to enable PKI- and PMI-based distributed locking of content and distributed unlocking of protected content and/or scoring of users and/or scoring of end-entity access means—added |
US8549650B2 (en) | 2010-05-06 | 2013-10-01 | Tenable Network Security, Inc. | System and method for three-dimensional visualization of vulnerability and asset data |
WO2011137935A1 (en) | 2010-05-07 | 2011-11-10 | Ulysses Systems (Uk) Limited | System and method for identifying relevant information for an enterprise |
US20110283277A1 (en) | 2010-05-11 | 2011-11-17 | International Business Machines Corporation | Virtualization and dynamic resource allocation aware storage level reordering |
EP2569711A4 (en) | 2010-05-13 | 2017-03-15 | VeriSign, Inc. | Systems and methods for identifying malicious domains using internet-wide dns lookup patterns |
US8745188B2 (en) | 2010-06-07 | 2014-06-03 | Novell, Inc. | System and method for managing changes in a network datacenter |
US8433790B2 (en) | 2010-06-11 | 2013-04-30 | Sourcefire, Inc. | System and method for assigning network blocks to sensors |
EP2583211B1 (en) | 2010-06-15 | 2020-04-15 | Oracle International Corporation | Virtual computing infrastructure |
US8832461B2 (en) | 2010-06-25 | 2014-09-09 | Microsoft Corporation | Trusted sensors |
US8570861B1 (en) | 2010-06-29 | 2013-10-29 | Amazon Technologies, Inc. | Reputation-based networking |
US9384112B2 (en) | 2010-07-01 | 2016-07-05 | Logrhythm, Inc. | Log collection, structuring and processing |
US8588081B2 (en) | 2010-07-14 | 2013-11-19 | Cisco Technology, Inc. | Monitoring a flow set to detect faults |
US8489775B2 (en) | 2010-07-21 | 2013-07-16 | Dell Products L.P. | System-wide time synchronization across power management interfaces and sensor data |
US8849926B2 (en) | 2010-08-06 | 2014-09-30 | Simon Fraser University | System and method for self-calibrating, self-organizing and localizing sensors in wireless sensor networks |
CN102387169B (en) | 2010-08-26 | 2014-07-23 | 阿里巴巴集团控股有限公司 | Delete method, system and delete server for distributed cache objects |
US8661544B2 (en) | 2010-08-31 | 2014-02-25 | Cisco Technology, Inc. | Detecting botnets |
US8683389B1 (en) | 2010-09-08 | 2014-03-25 | The New England Complex Systems Institute, Inc. | Method and apparatus for dynamic information visualization |
US8413235B1 (en) | 2010-09-10 | 2013-04-02 | Symantec Corporation | Malware detection using file heritage data |
US8707275B2 (en) | 2010-09-14 | 2014-04-22 | Microsoft Corporation | Simulation environment for distributed programs |
US8935785B2 (en) | 2010-09-24 | 2015-01-13 | Verisign, Inc | IP prioritization and scoring system for DDoS detection and mitigation |
US8351430B2 (en) | 2010-09-30 | 2013-01-08 | Microsoft Corporation | Routing using global address pairs |
US8838830B2 (en) | 2010-10-12 | 2014-09-16 | Sap Portals Israel Ltd | Optimizing distributed computer networks |
US20120102361A1 (en) | 2010-10-25 | 2012-04-26 | Computer Associates Think, Inc. | Heuristic policy analysis |
US20120102543A1 (en) | 2010-10-26 | 2012-04-26 | 360 GRC, Inc. | Audit Management System |
US20150222939A1 (en) | 2010-10-28 | 2015-08-06 | Avvasi Inc. | System for monitoring a video network and methods for use therewith |
US8832835B1 (en) | 2010-10-28 | 2014-09-09 | Symantec Corporation | Detecting and remediating malware dropped by files |
JP5568776B2 (en) | 2010-11-05 | 2014-08-13 | 株式会社日立製作所 | Computer monitoring system and monitoring method |
TWI453624B (en) | 2010-11-09 | 2014-09-21 | Inst Information Industry | Information security protection host |
US9117075B1 (en) | 2010-11-22 | 2015-08-25 | Trend Micro Inc. | Early malware detection by cross-referencing host data |
DE112011103880T5 (en) | 2010-11-23 | 2013-08-22 | International Business Machines Corporation | Directly migrate software images using streaming technology |
KR20120057066A (en) | 2010-11-26 | 2012-06-05 | 한국전자통신연구원 | Method and system for providing network security operation system, security event processing apparatus and visual processing apparatus for network security operation |
US20120137278A1 (en) | 2010-11-30 | 2012-05-31 | International Business Machines Corporation | Generating a customized set of tasks for migration of a deployed software solution |
US9660940B2 (en) | 2010-12-01 | 2017-05-23 | Juniper Networks, Inc. | Methods and apparatus for flow control associated with a switch fabric |
US9128803B2 (en) | 2010-12-15 | 2015-09-08 | Microsoft Technology Licensing, Llc | Application model for implementing composite applications |
US8499348B1 (en) | 2010-12-28 | 2013-07-30 | Amazon Technologies, Inc. | Detection of and responses to network attacks |
US9225793B2 (en) | 2011-01-28 | 2015-12-29 | Cisco Technology, Inc. | Aggregating sensor data |
US20120197856A1 (en) | 2011-01-28 | 2012-08-02 | Cisco Technology, Inc. | Hierarchical Network for Collecting, Aggregating, Indexing, and Searching Sensor Data |
US20120195198A1 (en) | 2011-01-31 | 2012-08-02 | Joseph Regan | Method and apparatus providing protocol policing |
US20120198541A1 (en) | 2011-02-02 | 2012-08-02 | Reeves Randall E | Methods and apparatus for preventing network intrusion |
US9276752B2 (en) | 2011-02-11 | 2016-03-01 | Siemens Healthcare Diagnostics Inc. | System and method for secure software update |
US9112830B2 (en) | 2011-02-23 | 2015-08-18 | Mcafee, Inc. | System and method for interlocking a host and a gateway |
US8665883B2 (en) | 2011-02-28 | 2014-03-04 | Alcatel Lucent | Generalized multi-homing for virtual private LAN services |
US8538926B2 (en) | 2011-03-08 | 2013-09-17 | Rackspace Us, Inc. | Massively scalable object storage system for storing object replicas |
US20120233473A1 (en) | 2011-03-08 | 2012-09-13 | Cisco Technology, Inc. | Power Management in Networks |
US9118637B2 (en) | 2011-03-09 | 2015-08-25 | Arris Enterprises, Inc. | Dual-mode download manager |
JP5678751B2 (en) | 2011-03-18 | 2015-03-04 | 株式会社リコー | Quarantine network system |
US9122877B2 (en) | 2011-03-21 | 2015-09-01 | Mcafee, Inc. | System and method for malware and network reputation correlation |
US20120246303A1 (en) | 2011-03-23 | 2012-09-27 | LogRhythm Inc. | Log collection, structuring and processing |
US20120254109A1 (en) | 2011-03-28 | 2012-10-04 | Microsoft Corporation | Distributed component runtime |
EP2692092B1 (en) | 2011-03-28 | 2014-12-17 | Citrix Systems Inc. | Systems and methods for tracking application layer flow via a multi-connection intermediary device |
US9170917B2 (en) | 2011-04-01 | 2015-10-27 | Paypal, Inc. | Flow tracing though diverse logical and physical application and infrastructure layers/dependencies |
US9465589B2 (en) | 2011-04-05 | 2016-10-11 | Microsoft Technology Licensing, Llc | Stateful component authoring and execution |
US9071575B2 (en) | 2011-04-21 | 2015-06-30 | Robert K. Lemaster | Method and system for abuse route aggregation and distribution |
US8612169B2 (en) | 2011-04-26 | 2013-12-17 | International Business Machines Corporation | Method and system for detecting anomalies in a bipartite graph |
US9270572B2 (en) | 2011-05-02 | 2016-02-23 | Brocade Communications Systems Inc. | Layer-3 support in TRILL networks |
US9049259B2 (en) | 2011-05-03 | 2015-06-02 | Onepatont Software Limited | System and method for dynamically providing visual action or activity news feed |
US9396327B2 (en) | 2011-05-16 | 2016-07-19 | D2L Corporation | Systems and methods for security verification in electronic learning systems and other systems |
US8966625B1 (en) | 2011-05-24 | 2015-02-24 | Palo Alto Networks, Inc. | Identification of malware sites using unknown URL sites and newly registered DNS addresses |
US20120300628A1 (en) | 2011-05-26 | 2012-11-29 | Dan Prescott | Method and apparatus to passively determine the state of a flow including determining flow state in the event of missing data on one or both sides of the flow |
US9465696B2 (en) | 2011-06-03 | 2016-10-11 | Apple Inc. | Methods and apparatus for multi-phase multi-source backup |
US8719835B2 (en) | 2011-06-07 | 2014-05-06 | Telefonaktiebolaget L M Ericsson (Publ) | Ranking service units to provide and protect highly available services using the Nway redundancy model |
US9407533B2 (en) | 2011-06-28 | 2016-08-02 | Brocade Communications Systems, Inc. | Multicast in a trill network |
US8370407B1 (en) | 2011-06-28 | 2013-02-05 | Go Daddy Operating Company, LLC | Systems providing a network resource address reputation service |
US9450873B2 (en) | 2011-06-28 | 2016-09-20 | Microsoft Technology Licensing, Llc | Performance isolation for clouds |
US9250918B2 (en) | 2011-06-30 | 2016-02-02 | Bmc Software, Inc. | Server management with dynamic construction of pre-boot images |
US9116968B2 (en) | 2011-06-30 | 2015-08-25 | Bmc Software, Inc. | Methods and apparatus related to graph transformation and synchronization |
US9185127B2 (en) | 2011-07-06 | 2015-11-10 | Nominum, Inc. | Network protection service |
US8726379B1 (en) | 2011-07-15 | 2014-05-13 | Norse Corporation | Systems and methods for dynamic protection from electronic attacks |
EP2737404A4 (en) | 2011-07-26 | 2015-04-29 | Light Cyber Ltd | A method for detecting anomaly action within a computer network |
EP2737427A4 (en) | 2011-07-29 | 2015-04-15 | Hewlett Packard Development Co | Systems and methods for distributed rule-based correlation of events |
US8719452B1 (en) | 2011-07-29 | 2014-05-06 | Google Inc. | Correction of client-assigned timestamps |
US20130038358A1 (en) | 2011-08-10 | 2013-02-14 | David M. Cook | Wireless sensor node and method |
US8881258B2 (en) | 2011-08-24 | 2014-11-04 | Mcafee, Inc. | System, method, and computer program for preventing infections from spreading in a network environment using dynamic application of a firewall policy |
WO2013033222A1 (en) | 2011-08-29 | 2013-03-07 | Fiberlink Communications Corporation | Platform for deployment and distribution of modules to endpoints |
WO2013030830A1 (en) | 2011-08-31 | 2013-03-07 | Daniel Levy | Automatic ranking of entities based on interactions therebetween |
US9916538B2 (en) | 2012-09-15 | 2018-03-13 | Z Advanced Computing, Inc. | Method and system for feature detection |
US8311973B1 (en) | 2011-09-24 | 2012-11-13 | Zadeh Lotfi A | Methods and systems for applications for Z-numbers |
US20130085889A1 (en) | 2011-09-29 | 2013-04-04 | Sears Brands, Llc | Systems and methods for managing returns or exchanges made via a computer network |
US8694644B2 (en) | 2011-09-29 | 2014-04-08 | Nec Laboratories America, Inc. | Network-aware coordination of virtual machine migrations in enterprise data centers and clouds |
US8677487B2 (en) | 2011-10-18 | 2014-03-18 | Mcafee, Inc. | System and method for detecting a malicious command and control channel |
CN102387608B (en) | 2011-10-21 | 2014-12-10 | 大唐移动通信设备有限公司 | Access method of WiFi (Wireless Fidelity) access point (AP), WiFi AP and WiFi system |
US9148381B2 (en) | 2011-10-21 | 2015-09-29 | Qualcomm Incorporated | Cloud computing enhanced gateway for communication networks |
US8773999B2 (en) | 2011-10-26 | 2014-07-08 | International Business Machines Corporation | Distributed chassis architecture having integrated service appliances |
CN103095597B (en) | 2011-10-28 | 2017-04-26 | 华为技术有限公司 | Load balancing method and device |
US8812447B1 (en) | 2011-11-09 | 2014-08-19 | Access Sciences Corporation | Computer implemented system for accelerating electronic file migration from multiple sources to multiple destinations |
US8447851B1 (en) | 2011-11-10 | 2013-05-21 | CopperEgg Corporation | System for monitoring elastic cloud-based computing systems as a service |
US9003141B2 (en) | 2011-11-14 | 2015-04-07 | Ca, Inc. | Enhanced software application platform |
EP2748714B1 (en) | 2011-11-15 | 2021-01-13 | Nicira, Inc. | Connection identifier assignment and source network address translation |
US9614914B2 (en) | 2011-11-18 | 2017-04-04 | Thomson Licensing | System comprising a publish/subscribe broker for a remote management of end-user devices, and respective end-user device |
CN102521537B (en) | 2011-12-06 | 2015-05-20 | 北京航空航天大学 | Detection method and device for hidden process based on virtual machine monitor |
US8887238B2 (en) | 2011-12-07 | 2014-11-11 | Time Warner Cable Enterprises Llc | Mechanism for establishing reputation in a network environment |
US8976794B2 (en) | 2011-12-07 | 2015-03-10 | Futurewei Technologies, Inc. | Method to carry FCoE frames over a TRILL based network |
US9817860B2 (en) * | 2011-12-13 | 2017-11-14 | Microsoft Technology Licensing, Llc | Generation and application of correctness-enforced executable filters |
US8881145B2 (en) | 2011-12-15 | 2014-11-04 | Industrial Technology Research Institute | System and method for generating application-level dependencies in one or more virtual machines |
US8914497B1 (en) | 2011-12-15 | 2014-12-16 | Amazon Technologies, Inc. | System and method for throttling service requests having non-uniform workloads |
EP2605453B1 (en) | 2011-12-16 | 2014-11-12 | Alcatel Lucent | Method and apparatus for monitoring transmission characteristics in a network |
US8966021B1 (en) | 2011-12-20 | 2015-02-24 | Amazon Technologies, Inc. | Composable machine image |
US9083741B2 (en) | 2011-12-29 | 2015-07-14 | Architecture Technology Corporation | Network defense system and framework for detecting and geolocating botnet cyber attacks |
US8973147B2 (en) | 2011-12-29 | 2015-03-03 | Mcafee, Inc. | Geo-mapping system security events |
US10514937B2 (en) | 2012-01-05 | 2019-12-24 | Vmware, Inc. | Auto-discovery service and method of discovering applications within a virtual network |
US9575809B2 (en) | 2012-01-10 | 2017-02-21 | Microsoft Technology Licensing, Llc | Distributed stochastic clustering for automated formation of connected networks of agents |
EP2805475A1 (en) | 2012-01-16 | 2014-11-26 | Nokia Solutions and Networks Oy | Vendor specific base station auto - configuration framework |
US9246702B1 (en) | 2012-01-31 | 2016-01-26 | Cisco Technology, Inc. | System and method for configuring service appliances as virtual line cards in a network environment |
US9612814B2 (en) | 2012-02-02 | 2017-04-04 | Sungard Availability Services, Lp | Network topology-aware recovery automation |
US9088517B2 (en) | 2012-02-08 | 2015-07-21 | Cisco Technology, Inc. | Stitching multicast trees |
US9372213B2 (en) | 2012-02-15 | 2016-06-21 | Alpha and Omega, Inc. | Sensors for electrical connectors |
US8640239B2 (en) | 2012-02-20 | 2014-01-28 | International Business Machines Corporation | Network intrusion detection in a network that includes a distributed virtual switch fabric |
US9426068B2 (en) | 2012-02-24 | 2016-08-23 | Futurewei Technologies, Inc. | Balancing of forwarding and address resolution in overlay networks |
US8997227B1 (en) | 2012-02-27 | 2015-03-31 | Amazon Technologies, Inc. | Attack traffic signature generation using statistical pattern recognition |
EP2822215A1 (en) | 2012-03-02 | 2015-01-07 | Sony Corporation | Information processing device, information processing method, and programme |
US9052961B2 (en) | 2012-03-02 | 2015-06-09 | Vmware, Inc. | System to generate a deployment plan for a cloud infrastructure according to logical, multi-tier application blueprint |
RU2486588C1 (en) | 2012-03-14 | 2013-06-27 | Закрытое акционерное общество "Лаборатория Касперского" | System and method for efficient treatment of computer from malware and effects of its work |
US8789164B2 (en) | 2012-03-16 | 2014-07-22 | International Business Machines Corporation | Scalable virtual appliance cloud (SVAC) and devices usable in an SVAC |
US8825848B1 (en) | 2012-03-20 | 2014-09-02 | Emc Corporation | Ordering of event records in an electronic system for forensic analysis |
US8832831B2 (en) | 2012-03-21 | 2014-09-09 | Radware, Ltd. | Method and system for detecting and mitigating attacks performed using cryptographic protocols |
US9621413B1 (en) | 2012-03-29 | 2017-04-11 | Arris Enterprises, Inc. | Displaying dynamic host configuration protocol (DHCP) transaction states using a DHCP relay agent |
US8931043B2 (en) | 2012-04-10 | 2015-01-06 | Mcafee Inc. | System and method for determining and using local reputations of users and hosts to protect information in a network environment |
US9608881B2 (en) | 2012-04-13 | 2017-03-28 | International Business Machines Corporation | Service compliance enforcement using user activity monitoring and work request verification |
US9210180B2 (en) | 2012-04-18 | 2015-12-08 | Radware Ltd. | Techniques for separating the processing of clients' traffic to different zones in software defined networks |
US9092616B2 (en) | 2012-05-01 | 2015-07-28 | Taasera, Inc. | Systems and methods for threat identification and remediation |
US9674589B2 (en) | 2012-05-04 | 2017-06-06 | Itron, Inc. | Coordinated collection of metering data |
US8867367B2 (en) | 2012-05-10 | 2014-10-21 | Telefonaktiebolaget L M Ericsson (Publ) | 802.1aq support over IETF EVPN |
US20130304900A1 (en) | 2012-05-14 | 2013-11-14 | Sap Ag | Reputation management using evolving reputation scores |
US9503463B2 (en) | 2012-05-14 | 2016-11-22 | Zimperium, Inc. | Detection of threats to networks, based on geographic location |
US8812725B2 (en) | 2012-05-18 | 2014-08-19 | Cisco Technology Inc. | System and method for latency reduction in a network environment |
US10116696B2 (en) | 2012-05-22 | 2018-10-30 | Sri International | Network privilege manager for a dynamically programmable computer network |
CN102722563B (en) | 2012-05-31 | 2014-12-03 | 优视科技有限公司 | Method and device for displaying page |
WO2013184099A1 (en) | 2012-06-05 | 2013-12-12 | Empire Technology Development, Llc | Cross-user correlation for detecting server-side multi-target intrusion |
US9501744B1 (en) | 2012-06-11 | 2016-11-22 | Dell Software Inc. | System and method for classifying data |
US9055006B2 (en) | 2012-06-11 | 2015-06-09 | Radware, Ltd. | Techniques for traffic diversion in software defined networks for mitigating denial of service attacks |
US9779260B1 (en) | 2012-06-11 | 2017-10-03 | Dell Software Inc. | Aggregation and classification of secure data |
US8989049B2 (en) | 2012-06-15 | 2015-03-24 | Cisco Technology, Inc. | System and method for virtual portchannel load balancing in a trill network |
US8959325B2 (en) | 2012-06-21 | 2015-02-17 | Breakingpoint Systems, Inc. | Systems and methods for booting devices using assigned servers in a multiple-card computing system |
US20130347103A1 (en) | 2012-06-21 | 2013-12-26 | Mark Veteikis | Packet capture for error tracking |
US9038178B1 (en) | 2012-06-25 | 2015-05-19 | Emc Corporation | Detection of malware beaconing activities |
US9213590B2 (en) | 2012-06-27 | 2015-12-15 | Brocade Communications Systems, Inc. | Network monitoring and diagnostics |
US9686169B2 (en) | 2012-07-02 | 2017-06-20 | Ixia | Real-time highly accurate network latency measurement with low generated traffic or data requirements |
US9792320B2 (en) | 2012-07-06 | 2017-10-17 | Box, Inc. | System and method for performing shard migration to support functions of a cloud-based service |
US8868030B2 (en) | 2012-07-30 | 2014-10-21 | General Motors Llc | Automated vehicle intrusion device |
US9852073B2 (en) | 2012-08-07 | 2017-12-26 | Dell Products L.P. | System and method for data redundancy within a cache |
US9632672B2 (en) | 2012-08-09 | 2017-04-25 | Itron, Inc. | Interface for clustered utility nodes |
US9548908B2 (en) | 2012-08-21 | 2017-01-17 | Cisco Technology, Inc. | Flow de-duplication for network monitoring |
US8792380B2 (en) | 2012-08-24 | 2014-07-29 | Accedian Networks Inc. | System for establishing and maintaining a clock reference indicating one-way latency in a data network |
US8984331B2 (en) | 2012-09-06 | 2015-03-17 | Triumfant, Inc. | Systems and methods for automated memory and thread execution anomaly detection in a computer network |
US20150067786A1 (en) | 2013-09-04 | 2015-03-05 | Michael Stephen Fiske | Visual image authentication and transaction authorization using non-determinism |
US10194284B2 (en) | 2012-09-12 | 2019-01-29 | Digit International Inc. | Embedded communication in message based transports |
US20140089494A1 (en) | 2012-09-27 | 2014-03-27 | Hewlett-Packard Development Company, L.P. | Managing compliance across information technology components |
US9674030B2 (en) | 2012-09-28 | 2017-06-06 | Juniper Networks, Inc. | Methods and apparatus for a common control protocol for wired and wireless nodes |
US9164965B2 (en) | 2012-09-28 | 2015-10-20 | Oracle International Corporation | Interactive topological views of combined hardware and software systems |
EP2932667A4 (en) | 2012-10-03 | 2016-09-28 | Distrix Networks Ltd | Systems and methods for adaptive load balanced communications, routing, filtering, and access control in distributed networks |
WO2014055400A1 (en) | 2012-10-05 | 2014-04-10 | Nec Laboratories America, Inc. | Network management |
US9083613B2 (en) | 2012-10-16 | 2015-07-14 | Cisco Technology, Inc. | Detection of cabling error in communication network |
CN103023970B (en) | 2012-11-15 | 2015-07-22 | 中国科学院计算机网络信息中心 | Method and system for storing mass data of Internet of Things (IoT) |
US9178912B2 (en) | 2012-11-15 | 2015-11-03 | Cisco Technology, Inc. | Virtual device context (VDC) integration for network services |
US9171151B2 (en) | 2012-11-16 | 2015-10-27 | Microsoft Technology Licensing, Llc | Reputation-based in-network filtering of client event information |
US9253140B2 (en) | 2012-11-20 | 2016-02-02 | Cisco Technology, Inc. | System and method for optimizing within subnet communication in a network environment |
US9535871B2 (en) | 2012-11-27 | 2017-01-03 | Red Hat Israel, Ltd. | Dynamic routing through virtual appliances |
US9960974B2 (en) | 2012-11-30 | 2018-05-01 | International Business Machines Corporation | Dependency mapping among a system of servers, analytics and visualization thereof |
US9742877B2 (en) | 2012-12-04 | 2017-08-22 | International Business Machines Corporation | Clustering support across geographical boundaries |
US9313096B2 (en) | 2012-12-04 | 2016-04-12 | International Business Machines Corporation | Object oriented networks |
US20140173623A1 (en) | 2012-12-17 | 2014-06-19 | Mediatek Inc. | Method for controlling task migration of task in heterogeneous multi-core system based on dynamic migration threshold and related computer readable medium |
US8813236B1 (en) | 2013-01-07 | 2014-08-19 | Narus, Inc. | Detecting malicious endpoints using network connectivity and flow information |
EP2946330B1 (en) | 2013-01-21 | 2018-05-16 | Morphisec Information, Security 2014 Ltd. | Method and system for protecting computerized systems from malicious code |
JP2017503222A (en) | 2013-01-25 | 2017-01-26 | レムテクス, インコーポレイテッド | Network security system, method and apparatus |
US9191402B2 (en) | 2013-01-25 | 2015-11-17 | Opendns, Inc. | Domain classification based on client request behavior |
US20140215573A1 (en) | 2013-01-31 | 2014-07-31 | Desire2Learn Incorporated | System and method for application accounts |
US9130836B2 (en) | 2013-02-04 | 2015-09-08 | Cisco Technology, Inc. | Provisoning of a new node joining an existing cluster in a data center environment |
US9369431B1 (en) | 2013-02-07 | 2016-06-14 | Infoblox Inc. | Security device controller |
US9080707B2 (en) | 2013-02-12 | 2015-07-14 | Bayer Medical Care Inc. | Intelligent contrast warmer and contrast holder |
US9286047B1 (en) | 2013-02-13 | 2016-03-15 | Cisco Technology, Inc. | Deployment and upgrade of network devices in a network environment |
EP2959698A1 (en) | 2013-02-22 | 2015-12-30 | Adaptive Mobile Security Limited | System and method for embedded mobile (em)/machine to machine (m2m) security, pattern detection, mitigation |
US9143582B2 (en) | 2013-03-08 | 2015-09-22 | International Business Machines Corporation | Interoperability for distributed overlay virtual environments |
US9378068B2 (en) | 2013-03-13 | 2016-06-28 | International Business Machines Corporation | Load balancing for a virtual networking system |
US9237111B2 (en) | 2013-03-14 | 2016-01-12 | International Business Machines Corporation | Credit-based flow control in lossless ethernet networks |
US8848744B1 (en) | 2013-03-15 | 2014-09-30 | Extrahop Networks, Inc. | Resynchronization of passive monitoring of a flow based on hole detection |
US9721086B2 (en) | 2013-03-15 | 2017-08-01 | Advanced Elemental Technologies, Inc. | Methods and systems for secure and reliable identity-based computing |
US9477500B2 (en) | 2013-03-15 | 2016-10-25 | Avi Networks | Managing and controlling a distributed network service platform |
US9407519B2 (en) | 2013-03-15 | 2016-08-02 | Vmware, Inc. | Virtual network flow monitoring |
US9043912B2 (en) | 2013-03-15 | 2015-05-26 | Mehdi Mahvi | Method for thwarting application layer hypertext transport protocol flood attacks focused on consecutively similar application-specific data packets |
US9380066B2 (en) | 2013-03-29 | 2016-06-28 | Intel Corporation | Distributed traffic pattern analysis and entropy prediction for detecting malware in a network environment |
EP2797291A1 (en) | 2013-04-22 | 2014-10-29 | Telefonaktiebolaget L M Ericsson (publ) | Traffic analysis for http user agent based device category mapping |
KR101394424B1 (en) | 2013-04-22 | 2014-05-13 | 한국인터넷진흥원 | Hypervisor-based intrusion prevention platform and virtual network intrusion prevention system |
US9015716B2 (en) | 2013-04-30 | 2015-04-21 | Splunk Inc. | Proactive monitoring tree with node pinning for concurrent node comparisons |
US9294483B2 (en) | 2013-05-03 | 2016-03-22 | John Wong | Method and system for mitigation of distributed denial of service (DDOS) attacks |
US9392022B2 (en) | 2013-05-03 | 2016-07-12 | Vmware, Inc. | Methods and apparatus to measure compliance of a virtual computing environment |
US10977229B2 (en) | 2013-05-21 | 2021-04-13 | Facebook, Inc. | Database sharding with update layer |
US20140348182A1 (en) | 2013-05-22 | 2014-11-27 | Iii Holdings 2, Llc | Time synchronization between nodes of a switched interconnect fabric |
US20140351415A1 (en) | 2013-05-24 | 2014-11-27 | PacketSled Inc. | Selective packet capture |
US9246945B2 (en) | 2013-05-29 | 2016-01-26 | International Business Machines Corporation | Techniques for reconciling permission usage with security policy for policy optimization and monitoring continuous compliance |
US9191400B1 (en) | 2013-06-12 | 2015-11-17 | The United States Of America, As Represented By The Secretary Of The Navy | Cyphertext (CT) analytic engine and method for network anomaly detection |
US9769174B2 (en) | 2013-06-14 | 2017-09-19 | Catbird Networks, Inc. | Systems and methods for creating and modifying access control lists |
US11196636B2 (en) | 2013-06-14 | 2021-12-07 | Catbird Networks, Inc. | Systems and methods for network data flow aggregation |
US9197654B2 (en) | 2013-06-28 | 2015-11-24 | Mcafee, Inc. | Rootkit detection by using HW resources to detect inconsistencies in network traffic |
US20150006714A1 (en) | 2013-06-28 | 2015-01-01 | Microsoft Corporation | Run-time verification of middlebox routing and traffic processing |
US20150009840A1 (en) | 2013-07-03 | 2015-01-08 | Niksun, Inc. | Packet time stamp processing methods, systems, and apparatus |
IL227598B (en) | 2013-07-22 | 2018-05-31 | Verint Systems Ltd | Systems and methods for identifying malicious hosts |
US9246773B2 (en) | 2013-07-30 | 2016-01-26 | Draios Inc. | System, method, and graphical user interface for application topology mapping in hosted computing environments |
US9319293B2 (en) | 2013-07-31 | 2016-04-19 | Calix, Inc. | Methods and apparatuses for network flow analysis and control |
US20150039751A1 (en) | 2013-08-02 | 2015-02-05 | PacketSled Inc. | Dynamic parallel coordinates visualization of network flows |
US9450810B2 (en) | 2013-08-02 | 2016-09-20 | Cisco Technoogy, Inc. | Policy-driven automatic redundant fabric placement mechanism for virtual data centers |
US20150046882A1 (en) | 2013-08-07 | 2015-02-12 | Siemens Product Lifecycle Management Software Inc. | User interaction and display of tree hierarchy data on limited screen space |
CN104424013B (en) | 2013-08-26 | 2018-03-09 | 国际商业机器公司 | The method and apparatus for disposing virtual machine in a computing environment |
US9197666B2 (en) | 2013-08-26 | 2015-11-24 | Verizon Patent And Licensing Inc. | Method and apparatus for mitigating distributed denial of service attacks |
US9811435B2 (en) | 2013-09-03 | 2017-11-07 | Cisco Technology, Inc. | System for virtual machine risk monitoring |
US9607146B2 (en) | 2013-09-18 | 2017-03-28 | Qualcomm Incorporated | Data flow based behavioral analysis on mobile devices |
WO2015042171A1 (en) | 2013-09-18 | 2015-03-26 | Jolata, Inc. | Highly probable identification of related messages using sparse hash function sets |
US9385959B2 (en) | 2013-09-26 | 2016-07-05 | Acelio, Inc. | System and method for improving TCP performance in virtualized environments |
US9507847B2 (en) | 2013-09-27 | 2016-11-29 | International Business Machines Corporation | Automatic log sensor tuning |
US9418222B1 (en) | 2013-09-27 | 2016-08-16 | Symantec Corporation | Techniques for detecting advanced security threats |
US9369435B2 (en) | 2013-09-30 | 2016-06-14 | Cisco Technology, Inc. | Method for providing authoritative application-based routing and an improved application firewall |
WO2015050488A1 (en) | 2013-10-03 | 2015-04-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Method, system, computer program and computer program product for monitoring data packet flows between virtual machines, vms, within a data centre |
EP2860912A1 (en) | 2013-10-11 | 2015-04-15 | Telefonica Digital España, S.L.U. | A method for correlating network traffic data from distributed systems and computer program thereof |
US9330156B2 (en) | 2013-10-18 | 2016-05-03 | Cisco Technology, Inc. | System and method for software defined network aware data replication |
US20150113133A1 (en) | 2013-10-21 | 2015-04-23 | Nyansa, Inc. | System and method for observing and controlling a programmable network using closed loop control |
US9405903B1 (en) | 2013-10-31 | 2016-08-02 | Palo Alto Networks, Inc. | Sinkholing bad network domains by registering the bad network domains on the internet |
US9973534B2 (en) | 2013-11-04 | 2018-05-15 | Lookout, Inc. | Methods and systems for secure network connections |
US9502111B2 (en) | 2013-11-05 | 2016-11-22 | Cisco Technology, Inc. | Weighted equal cost multipath routing |
US9634938B2 (en) | 2013-11-05 | 2017-04-25 | International Business Machines Corporation | Adaptive scheduling of data flows in data center networks for efficient resource utilization |
US9513938B2 (en) | 2013-11-07 | 2016-12-06 | Sap Se | Virtual appliance integration with cloud management software |
US9088598B1 (en) | 2013-11-14 | 2015-07-21 | Narus, Inc. | Systematic mining of associated server herds for uncovering malware and attack campaigns |
US9819551B2 (en) | 2013-11-20 | 2017-11-14 | Big Switch Networks, Inc. | Systems and methods for testing networks with a controller |
US9454324B1 (en) | 2013-12-18 | 2016-09-27 | Emc Corporation | Methods and apparatus for data lifecycle analysis |
US9507686B2 (en) | 2013-12-20 | 2016-11-29 | Netapp, Inc. | System, method, and computer program product for monitoring health of computer system assets |
EP2887595B8 (en) | 2013-12-23 | 2019-10-16 | Rohde & Schwarz GmbH & Co. KG | Method and node for retransmitting data packets in a tcp connection |
WO2015099778A1 (en) | 2013-12-27 | 2015-07-02 | Mcafee, Inc. | Segregating executable files exhibiting network activity |
US9563517B1 (en) | 2013-12-30 | 2017-02-07 | EMC IP Holding Company LLC | Cloud snapshots |
CN103716137B (en) | 2013-12-30 | 2017-02-01 | 上海交通大学 | Method and system for identifying reasons of ZigBee sensor network packet loss |
US9363282B1 (en) * | 2014-01-28 | 2016-06-07 | Infoblox Inc. | Platforms for implementing an analytics framework for DNS security |
US10142259B2 (en) | 2014-03-03 | 2018-11-27 | Ericsson Ab | Conflict detection and resolution in an ABR network |
US9294486B1 (en) | 2014-03-05 | 2016-03-22 | Sandia Corporation | Malware detection and analysis |
KR101889500B1 (en) | 2014-03-07 | 2018-09-20 | 한국전자통신연구원 | Method and System for Network Connection-Chain Traceback using Network Flow Data |
US9886521B2 (en) | 2014-03-13 | 2018-02-06 | International Business Machines Corporation | Adaptive sampling schemes for clustering streaming graphs |
US20150261842A1 (en) | 2014-03-15 | 2015-09-17 | International Business Machines Corporation | Conformance specification and checking for hosting services |
US10263836B2 (en) | 2014-03-24 | 2019-04-16 | Microsoft Technology Licensing, Llc | Identifying troubleshooting options for resolving network failures |
US9853997B2 (en) | 2014-04-14 | 2017-12-26 | Drexel University | Multi-channel change-point malware detection |
US9762443B2 (en) | 2014-04-15 | 2017-09-12 | Splunk Inc. | Transformation of network data at remote capture agents |
US9652784B2 (en) * | 2014-04-18 | 2017-05-16 | Level 3 Communications, Llc | Systems and methods for generating network intelligence through real-time analytics |
US9319384B2 (en) | 2014-04-30 | 2016-04-19 | Fortinet, Inc. | Filtering hidden data embedded in media files |
US9659079B2 (en) | 2014-05-30 | 2017-05-23 | Wal-Mart Stores, Inc. | Shard determination logic for scalable order and inventory management architecture with a sharded transactional database |
US9531589B2 (en) | 2014-05-30 | 2016-12-27 | Cisco Technology, Inc. | Automating monitoring using configuration event triggers in a network environment |
JP6419859B2 (en) | 2014-06-30 | 2018-11-07 | アマゾン・テクノロジーズ・インコーポレーテッド | Interactive interface for machine learning model evaluation |
EP3164971A1 (en) | 2014-07-01 | 2017-05-10 | Telefonaktiebolaget LM Ericsson (publ) | Methods and nodes for congestion control |
CN104065518A (en) | 2014-07-07 | 2014-09-24 | 北京市博汇科技股份有限公司 | Determining method and device for network data packet loss position |
US9645892B1 (en) | 2014-07-08 | 2017-05-09 | EMC IP Holding Company LLC | Recording file events in change logs while incrementally backing up file systems |
US9887886B2 (en) | 2014-07-15 | 2018-02-06 | Sap Se | Forensic software investigation |
US10659478B2 (en) | 2014-07-21 | 2020-05-19 | David Paul Heilig | Identifying stealth packets in network communications through use of packet headers |
WO2016019172A1 (en) | 2014-07-30 | 2016-02-04 | Forward Networks, Inc. | Systems and methods for network management |
US20160036837A1 (en) | 2014-08-04 | 2016-02-04 | Microsoft Corporation | Detecting attacks on data centers |
CN105517668B (en) | 2014-08-06 | 2019-05-28 | 华为技术有限公司 | Identify the method and device of network transmission congestion |
US20160050132A1 (en) | 2014-08-18 | 2016-02-18 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system to dynamically collect statistics of traffic flows in a software-defined networking (sdn) system |
US9992225B2 (en) | 2014-09-12 | 2018-06-05 | Topspin Security Ltd. | System and a method for identifying malware network activity using a decoy environment |
US9537841B2 (en) | 2014-09-14 | 2017-01-03 | Sophos Limited | Key management for compromised enterprise endpoints |
US9935854B2 (en) | 2014-09-23 | 2018-04-03 | Uila Networks, Inc. | Infrastructure performance monitoring |
US10091174B2 (en) | 2014-09-29 | 2018-10-02 | Dropbox, Inc. | Identifying related user accounts based on authentication data |
US10270658B2 (en) | 2014-09-30 | 2019-04-23 | Cisco Technology, Inc. | Zero touch configuration and synchronization of a service appliance in a network environment |
US9524173B2 (en) | 2014-10-09 | 2016-12-20 | Brocade Communications Systems, Inc. | Fast reboot for a switch |
US11159599B2 (en) | 2014-10-10 | 2021-10-26 | Dynatrace Llc | Method and system for real-time modeling of communication, virtualization and transaction execution related topological aspects of monitored software applications and hardware entities |
US9781004B2 (en) | 2014-10-16 | 2017-10-03 | Cisco Technology, Inc. | Discovering and grouping application endpoints in a network environment |
US10237148B2 (en) * | 2014-10-17 | 2019-03-19 | Robin Systems, Inc. | Providing a data set for tracking and diagnosing datacenter issues |
US10171318B2 (en) | 2014-10-21 | 2019-01-01 | RiskIQ, Inc. | System and method of identifying internet-facing assets |
US9762490B2 (en) | 2014-10-27 | 2017-09-12 | Telefonaktiebolaget L M Ericsson (Publ) | Content filtering for information centric networks |
WO2016069119A1 (en) | 2014-10-31 | 2016-05-06 | Cyber Crucible Inc. | A system and method for network intrusion detection of covert channels based on off-line network traffic |
EP3021217A1 (en) | 2014-11-14 | 2016-05-18 | Semmle Limited | Distributed analysis and attribution of source code |
US9904584B2 (en) | 2014-11-26 | 2018-02-27 | Microsoft Technology Licensing, Llc | Performance anomaly diagnosis |
US9495193B2 (en) | 2014-12-05 | 2016-11-15 | International Business Machines Corporation | Monitoring hypervisor and provisioned instances of hosted virtual machines using monitoring templates |
US9584536B2 (en) | 2014-12-12 | 2017-02-28 | Fortinet, Inc. | Presentation of threat history associated with network activity |
US9667653B2 (en) | 2014-12-15 | 2017-05-30 | International Business Machines Corporation | Context-aware network service policy management |
US9253206B1 (en) | 2014-12-18 | 2016-02-02 | Docusign, Inc. | Systems and methods for protecting an online service attack against a network-based attack |
US9609517B2 (en) | 2014-12-19 | 2017-03-28 | Intel Corporation | Cooperative security in wireless sensor networks |
US10261851B2 (en) | 2015-01-23 | 2019-04-16 | Lightbend, Inc. | Anomaly detection using circumstance-specific detectors |
US10893100B2 (en) | 2015-03-12 | 2021-01-12 | International Business Machines Corporation | Providing agentless application performance monitoring (APM) to tenant applications by leveraging software-defined networking (SDN) |
US10193929B2 (en) | 2015-03-13 | 2019-01-29 | Varmour Networks, Inc. | Methods and systems for improving analytics in distributed networks |
US9819689B2 (en) | 2015-03-13 | 2017-11-14 | Microsoft Technology Licensing, Llc | Large scale malicious process detection |
US9438618B1 (en) | 2015-03-30 | 2016-09-06 | Amazon Technologies, Inc. | Threat detection and mitigation through run-time introspection and instrumentation |
US10291473B2 (en) | 2015-03-31 | 2019-05-14 | Ca, Inc. | Routing policy impact simulation |
US9462013B1 (en) | 2015-04-29 | 2016-10-04 | International Business Machines Corporation | Managing security breaches in a networked computing environment |
US10374904B2 (en) | 2015-05-15 | 2019-08-06 | Cisco Technology, Inc. | Diagnostic network visualization |
US9800497B2 (en) | 2015-05-27 | 2017-10-24 | Cisco Technology, Inc. | Operations, administration and management (OAM) in overlay data center environments |
US20160359695A1 (en) | 2015-06-04 | 2016-12-08 | Cisco Technology, Inc. | Network behavior data collection and analytics for anomaly detection |
US9967158B2 (en) | 2015-06-05 | 2018-05-08 | Cisco Technology, Inc. | Interactive hierarchical network chord diagram for application dependency mapping |
US10142353B2 (en) * | 2015-06-05 | 2018-11-27 | Cisco Technology, Inc. | System for monitoring and managing datacenters |
US10536357B2 (en) | 2015-06-05 | 2020-01-14 | Cisco Technology, Inc. | Late data detection in data center |
US10033766B2 (en) | 2015-06-05 | 2018-07-24 | Cisco Technology, Inc. | Policy-driven compliance |
US10089099B2 (en) | 2015-06-05 | 2018-10-02 | Cisco Technology, Inc. | Automatic software upgrade |
US9553885B2 (en) | 2015-06-08 | 2017-01-24 | Illusive Networks Ltd. | System and method for creation, deployment and management of augmented attacker map |
US10063446B2 (en) | 2015-06-26 | 2018-08-28 | Intel Corporation | Netflow collection and export offload using network silicon |
US10362113B2 (en) | 2015-07-02 | 2019-07-23 | Prasenjit Bhadra | Cognitive intelligence platform for distributed M2M/ IoT systems |
US10091087B2 (en) | 2015-07-20 | 2018-10-02 | Cisco Technology, Inc. | Methods and systems for load balancing based on data shard leader |
US20170032310A1 (en) | 2015-07-28 | 2017-02-02 | Charles Mimnaugh | Inventory management and marketplace |
US10498588B2 (en) | 2015-08-13 | 2019-12-03 | Level 3 Communications, Llc | Systems and methods for managing network health |
US20170070582A1 (en) | 2015-09-03 | 2017-03-09 | Alcatel Lucent | Network entity discovery and service stitching |
US9733973B2 (en) | 2015-09-16 | 2017-08-15 | Cisco Technology, Inc. | Automatically determining sensor location in a virtualized computing environment |
US20170149810A1 (en) * | 2015-11-25 | 2017-05-25 | Hewlett Packard Enterprise Development Lp | Malware detection on web proxy log data |
US9538401B1 (en) * | 2015-12-18 | 2017-01-03 | Verizon Patent And Licensing Inc. | Cellular network cell clustering and prediction based on network traffic patterns |
US10306490B2 (en) | 2016-01-20 | 2019-05-28 | Netscout Systems Texas, Llc | Multi KPI correlation in wireless protocols |
US10462104B2 (en) | 2016-02-29 | 2019-10-29 | Level 3 Communications, Llc | Systems and methods for dynamic firewall policy configuration |
US10284444B2 (en) | 2016-02-29 | 2019-05-07 | Airmagnet, Inc. | Visual representation of end user response time in a multi-tiered network application |
WO2017168202A1 (en) | 2016-03-27 | 2017-10-05 | Yogesh Chunilal Rathod | Identifying & storing followers, following users, viewers, users and connections for user |
US10523598B2 (en) | 2016-04-04 | 2019-12-31 | Futurewei Technologies, Inc. | Multi-path virtual switching |
US10243926B2 (en) | 2016-04-08 | 2019-03-26 | Cisco Technology, Inc. | Configuring firewalls for an industrial automation network |
WO2017184233A1 (en) | 2016-04-18 | 2017-10-26 | Acalvio Technologies, Inc. | Systems and methods for detecting and tracking adversary trajectory |
US10153977B2 (en) | 2016-05-12 | 2018-12-11 | Cisco Technology, Inc. | Adapting control plane policing parameters dynamically |
US10171357B2 (en) | 2016-05-27 | 2019-01-01 | Cisco Technology, Inc. | Techniques for managing software defined networking controller in-band communications in a data center network |
US10289438B2 (en) | 2016-06-16 | 2019-05-14 | Cisco Technology, Inc. | Techniques for coordination of application components deployed on distributed virtual machines |
US20180007115A1 (en) | 2016-07-01 | 2018-01-04 | Cisco Technology, Inc. | Fog enabled telemetry embedded in real time multimedia applications |
US10972388B2 (en) | 2016-11-22 | 2021-04-06 | Cisco Technology, Inc. | Federated microburst detection |
CN107196807A (en) | 2017-06-20 | 2017-09-22 | 清华大学深圳研究生院 | Network intermediary device and its dispositions method |
US20190123983A1 (en) * | 2017-10-25 | 2019-04-25 | Cisco Technology, Inc. | Data integration and user application framework |
US10574575B2 (en) * | 2018-01-25 | 2020-02-25 | Cisco Technology, Inc. | Network flow stitching using middle box flow stitching |
-
2017
- 2017-10-25 US US15/793,424 patent/US10523541B2/en active Active
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10735271B2 (en) * | 2017-12-01 | 2020-08-04 | Cisco Technology, Inc. | Automated and adaptive generation of test stimuli for a network or system |
US11048686B2 (en) * | 2018-01-05 | 2021-06-29 | Telia Company Ab | Method and a node for storage of data in a network |
US11075925B2 (en) | 2018-01-31 | 2021-07-27 | EMC IP Holding Company LLC | System and method to enable component inventory and compliance in the platform |
US10754708B2 (en) | 2018-03-28 | 2020-08-25 | EMC IP Holding Company LLC | Orchestrator and console agnostic method to deploy infrastructure through self-describing deployment templates |
US10693722B2 (en) | 2018-03-28 | 2020-06-23 | Dell Products L.P. | Agentless method to bring solution and cluster awareness into infrastructure and support management portals |
US11086738B2 (en) * | 2018-04-24 | 2021-08-10 | EMC IP Holding Company LLC | System and method to automate solution level contextual support |
US10795756B2 (en) | 2018-04-24 | 2020-10-06 | EMC IP Holding Company LLC | System and method to predictively service and support the solution |
US11599422B2 (en) | 2018-10-16 | 2023-03-07 | EMC IP Holding Company LLC | System and method for device independent backup in distributed system |
US20200296603A1 (en) * | 2019-03-14 | 2020-09-17 | Cisco Technology, Inc. | Deploying network functions in a communication network based on geo-social network data |
US10939308B2 (en) * | 2019-03-14 | 2021-03-02 | Cisco Technology, Inc. | Deploying network functions in a communication network based on geo-social network data |
US10862761B2 (en) | 2019-04-29 | 2020-12-08 | EMC IP Holding Company LLC | System and method for management of distributed systems |
US11301557B2 (en) | 2019-07-19 | 2022-04-12 | Dell Products L.P. | System and method for data processing device management |
US20230353551A1 (en) * | 2019-09-18 | 2023-11-02 | Bioconnect Inc. | Access control system |
US11388196B2 (en) * | 2019-09-30 | 2022-07-12 | AO Kaspersky Lab | System and method for analyzing relationships between clusters of electronic devices to counter cyberattacks |
US10977028B1 (en) | 2020-01-22 | 2021-04-13 | Capital One Services, Llc | Computer-based systems configured to generate and/or maintain resilient versions of application data usable by operationally distinct clusters and methods of use thereof |
US11422796B2 (en) | 2020-01-22 | 2022-08-23 | Capital One Services, Llc | Computer-based systems configured to generate and/or maintain resilient versions of application data usable by operationally distinct clusters and methods of use thereof |
US20210316883A1 (en) * | 2020-04-11 | 2021-10-14 | Hamilton Sundstrand Corporation | Prognostic and health monitoring by energy metering at power supply interface |
US11661212B2 (en) * | 2020-04-11 | 2023-05-30 | Hamilton Sundstrand Corporation | Prognostic and health monitoring by energy metering at power supply interface |
US20220166684A1 (en) * | 2020-11-25 | 2022-05-26 | Cerner Innovation, Inc. | Dashboard interface |
US11831518B2 (en) * | 2020-11-25 | 2023-11-28 | Cerner Innovation, Inc. | Dashboard interface |
US20240089179A1 (en) * | 2020-11-25 | 2024-03-14 | Cerner Innovation, Inc. | Dashboard interface |
US11277475B1 (en) * | 2021-06-01 | 2022-03-15 | Servicenow, Inc. | Automatic discovery of storage cluster |
US20230073891A1 (en) * | 2021-09-09 | 2023-03-09 | Beijing Bytedance Network Technology Co., Ltd. | Multifunctional application gateway for security and privacy |
US12040958B2 (en) | 2022-03-09 | 2024-07-16 | Cisco Technology, Inc. | Dynamic multi-cloud network traffic flow monitoring |
Also Published As
Publication number | Publication date |
---|---|
US10523541B2 (en) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10523541B2 (en) | Federated network and application data analytics platform | |
US11750653B2 (en) | Network intrusion counter-intelligence | |
EP3744072B1 (en) | Network flow stitching using middle box flow stitching | |
US11924240B2 (en) | Mechanism for identifying differences between network snapshots | |
US11044170B2 (en) | Network migration assistant | |
US20190123983A1 (en) | Data integration and user application framework | |
US11128700B2 (en) | Load balancing configuration based on traffic flow telemetry | |
US20160357424A1 (en) | Collapsing and placement of applications | |
US10917438B2 (en) | Secure publishing for policy updates | |
US10826803B2 (en) | Mechanism for facilitating efficient policy updates | |
US20210218638A1 (en) | Automatic configuration discovery based on traffic flow data | |
US10798015B2 (en) | Discovery of middleboxes using traffic flow stitching | |
US11895156B2 (en) | Securing network resources from known threats | |
US11627166B2 (en) | Scope discovery and policy generation in an enterprise network | |
US11463483B2 (en) | Systems and methods for determining effectiveness of network segmentation policies | |
US20220070197A1 (en) | Systems and methods for detecting vulnerabilities in network processes during runtime |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: CISCO TECHNOLOGY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAO, SUPREETH;YADAV, NAVINDRA;MALLESHAIAH, PRASANNAKUMAR JOBIGENAHALLY;AND OTHERS;SIGNING DATES FROM 20171106 TO 20171122;REEL/FRAME:045602/0163 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |