US4576179A - Respiration and heart rate monitoring apparatus - Google Patents
Respiration and heart rate monitoring apparatus Download PDFInfo
- Publication number
- US4576179A US4576179A US06/492,056 US49205683A US4576179A US 4576179 A US4576179 A US 4576179A US 49205683 A US49205683 A US 49205683A US 4576179 A US4576179 A US 4576179A
- Authority
- US
- United States
- Prior art keywords
- respiration
- members
- crystal
- chest
- pier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000029058 respiratory gaseous exchange Effects 0.000 title claims abstract description 153
- 238000012544 monitoring process Methods 0.000 title claims abstract description 30
- 239000013078 crystal Substances 0.000 claims abstract description 88
- 230000033001 locomotion Effects 0.000 claims abstract description 36
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 210000000038 chest Anatomy 0.000 claims description 48
- 210000000779 thoracic wall Anatomy 0.000 claims description 29
- 239000003990 capacitor Substances 0.000 claims description 22
- 238000005452 bending Methods 0.000 claims description 17
- 230000009471 action Effects 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 239000003989 dielectric material Substances 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 1
- 210000003205 muscle Anatomy 0.000 abstract description 12
- 239000004020 conductor Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 208000008784 apnea Diseases 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000037380 skin damage Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
- A61B5/1135—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing by monitoring thoracic expansion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
- A61B5/307—Input circuits therefor specially adapted for particular uses
- A61B5/308—Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
Definitions
- the present invention relates to a respiration and heartbeat monitoring system employing a highly sensitive chest motion transducer and associated amplification and filter circuits.
- the invention is particularly well suited to the monitoring of respiration and heart rate in infants, although the invention may also be used in monitoring adults and animals.
- the Morrow and Sheer patents disclose mountings for piezoelectric crystals for measuring vascular blood flow parameters.
- the Reibold patent discloses a transducer for measuring respiration employing a large piezoelectric crystal of disc-like geometry bonded directly to a slightly larger metallic disc. Reibold attaches bending arms to the disc so that the arms extend outward from the chest. The arms secures them to ends of the discontinuous chest belt. The belt apparently couples chest expansion forces to the crystal and holds the discs adjacent the chest wall.
- the Reibold device is not well suited to detection of small chest movements such as occur in respiration in infants.
- respiration transducer might produce erroneous indications of continued respiration due to detection of chest movements associated with heartbeat, vascular movements or muscle noise. In addition, such movements could distort normal respiration rates measured by such a sensitive transducer.
- a further object of the present invention to provide a patient monitoring system employing a sensitive respiration transducer, which provides for the inhibiting of erroneous respiration indications caused by heartbeat, vascular movements and muscle noise.
- An apparatus of an embodiment of the present invention includes a respiration detector having an elongated, flexible or elastically deformable beam member and a crystal transducer attached to the beam member on spaced piers in a bridge-like configuration. Longitudinal axes of the crystal transducer and beam member are adapted to be held generally parallel to an outer surface of chest wall of a patient. Bending stresses are transmitted to the crystal transducer during respiration. The crystal transducer is adapted to produce electrical signals responsive to the bending stresses applied to it as an indication of respiration.
- the respiration detector and electrocardiograph electrodes may be held against the chest of the patient by a belt which overlies the respiration detector.
- the electrocardiograph electrodes produce signals responsive to electrical activity associated with the heartbeat of the patient.
- the respiration transducer and electrocardiograph electrodes may be electrically connected to monitoring circuitry by means of a cable.
- the monitoring circuit produces an indication of heart rate from electrical signals from the electrodes and an indication of respiration rate from electrical signals from the transducer.
- the monitoring circuitry may include filter circuits for inhibiting detection of signals produced by the transducer crystal occurring substantially simultaneously with the signals from the electrodes to thereby inhibit erroneous indications of respiration caused by chest motion due to heartbeat.
- the filter circuits may also inhibit detection of single polarity signals characteristic of muscle noise. These filter circuits permit the use of a highly sensitive respiration detector and a highly sensitive amplifier in the monitoring circuit.
- Such a highly sensitive respiration sensing detector may be provided by coupling motion of an elongated flexible beam member to longitudinal ends of a piezoelectric crystal by means of a pair of spaced pier members.
- a means for applying bending forces to the piezoelectric crystal may include a first rigid pier and a second rigid pier, both having principal surfaces adapted to be disposed generally parallel to the outer surface of the chest of the patient.
- the first and second piers may be arranged in spaced relationship to define a gap therebetween.
- First and second flexible beams may be attached to the piers so that the beams both bridge the gap between the piers and so that the beams are arranged in spaced parallel relation.
- the crystal may be located between the first and second beams and bridge the gap between the piers.
- a flexible belt may be employed to encircle the chest of the patient, and, together with the beams and piers, apply a bending stress to the piezoelectric crystal in response to chest expansion during respiration.
- the respiration sensing detector may comprise a base member adapted for location adjacent the chest of the subject.
- the base member is elastically deformable from a rest configuration in response to chest movement.
- First and second pier members may be attached at spaced locations along a longitudinal axis of the base member to define a gap between the pier members.
- a piezoelectric crystal transducer may be provided having opposite ends attached to each pier member so that the transducer spans the gap between the pier members and so that bending stresses developed in the base member during respiration are transmitted to the ends of the transducer to produce an electrical signal.
- Opposite end portions of the pier members may be bonded to the base member, and portions of the pier members adjacent the gap may be free to deflect away from the base member in response to chest movements during respiration.
- the length of the flexible member along its longitudinal axis is selected so that it is substantially greater then the length of the transducer crystal spanning the gap between the pier members. This permits the use of a small transducer crystal whose longest dimension lies along the longitudinal axis of the base member.
- a respiration transducer signal amplifier may be provided for amplifying signals produced by a respiration detector such as described above.
- An electronic switch such as an FET, may be provided for blocking the amplified transducer signal responsive to the receipt of signals from the electrocardiograph electrodes. Additional circuits may eliminate signals characteristic of muscle noise by filtering out signals which do not have positive and negative going components. This inhibits erroneous respiration indications due to heartbeat and muscle noise.
- the monitoring circuit may further comprise a respiration rate measuring circuit including a capacitor, biasing circuitry for continually changing the charge on the capacitor and circuitry for coupling the FET switch to the capacitor for charging or discharging the capacitor responsive to a transducer signal indicating a chest motion due to respiration.
- a comparator circuit compares the charge on the capacitor to a reference voltage and produces an indication if the delay between respiration signals exceeds a preselected time.
- the reference voltage may be selected to provide a desired delay between the receipt of the previous respiration signal and the initiation of an alarm indication.
- FIG. 1a is a pictorial view of a double beam respiration detector.
- FIG. 1b is a plan view, in partial phantom, of a double beam respiration detector with grounding electrode.
- FIG. 1c is a side view of the device of FIG. 1b.
- FIG. 1d shows the device of FIG. 1b incorporated into a respiration and heart rate sensor including heart rate monitoring electrodes.
- FIG. 2a is a pictorial view, in partial phantom, of a respiration detector having a single base plate.
- FIGS. 2b and 2c are cross-sectional views of the detector of FIG. 2a incorporated into a respiration and heart rate sensor belt including heart rate monitoring electrodes.
- FIG. 3 is a schematic block diagram of the respiration and heart rate monitoring system of the present invention.
- FIGS. 4-7 are schematic diagrams of the circuitry shown more generally in FIG. 3.
- the present invention relates to systems designed to monitor heart and respiration rates of adults and infants. Newly born infants have extremely small chest movement during sleep and, therefore, extremely sensitive detectors are required to monitor their respiration. According to the teachings of the present invention, the required sensitivity is obtained by the combination of a highly sensitive respiration detector, high sensitivity amplification circuitry, and heart rate and muscle noise filtering circuits, for elimination of erroneous respiration indications. Additional filter circuitry, in both respiration transducer indicator circuits and heart rate indicator circuits, inhibits erroneous signals caused by electrical noise. An alarm system is coupled to the indicator circuits to provide audible and visible signals when respiration and/or heartbeat has ceased or when an electrical connection to the detectors has been broken.
- the detector consists generally of a transducer crystal 12 and a device 14 for applying bending forces to the crystal transducer 12 responsive to chest motion.
- the force applying device 14 consists of a first rigid pier 16 and a second rigid pier 18, each having principal surfaces 20 adapted to be disposed generally parallel to the outer surface 21 of the chest of the patient.
- the piers 16 and 18 are spaced apart to define a gap 22 between proximate edges 24 of the piers.
- the piers may be made of a dielectric material or thick, rigid ceramic.
- An elongated flexible member may consist of two parallel flexible beams 26.
- the crystal transducer 12 may be located between the beams 26 and span the gap 22 between the piers 16 and 18.
- the beams 26 may be attached to the piers 16/18 at locations 28 at opposite end of the piers.
- the longitudinal axis of the crystal transducer 12 may be located parallel to the longitudinal axes of the beams 26.
- the length of the flexible beams, X may be selected to be at least twice the length of the crystal, L. It may be noted that the length is equal to the length of the entire device 14 shown in FIGS. 1a through 1d. Alternatively, the width W of the gap 22 may be less than one third the length X of the flexible beams.
- beams of suitable flexibility have been constructed from brass 0.032" thick (T), 0.25" wide and 1.75" long (X).
- FIGS. 1b and 1c show the attachment of a grounding electrode 30 to the respiration detector.
- the electrode is used in conjunction with the heart rate monitoring circuits discussed below.
- Rigid members 32 may be employed to attach the grounding electrode to the flexible beams 26.
- the electrode and rigid members 32 may facilitate coupling of bending stresses to the transducer crystal 12.
- Electrodes may be made to the transducer crystal and grounding electrodes by means of copper conductors on one of the rigid piers. As shown best in FIG. 1b, two copper conductors 34 and 36 may be provided on the pier 18. These conductors provide an electrical output signal from the transducer crystal 12 and may be attached at points 38 and 40 to electrical cables leading to a monitoring circuit.
- the conductor 34 may also be electrically connected to the flexible beams 26, and, thereby, electrically connected through the members 32 to the electrode 30. This conductor path may be selected as the electrical ground for the system.
- FIG. 1d shows the relative placements of the grounding electrode 30 and two electrocardiogram electrodes 41 and 42.
- FIG. 1d also shows the location of the transducer crystal assembly within a flexible belt 44.
- the belt 44 may be positioned to encircle the chest of the patient. Bending forces are applied to the crystal 12, causing its longitudinal axis 46 to bend or deflect slightly from a straight line. Normally, when no stress is placed on the assembly, the longitudinal axis of the crystal transducer would be straight.
- the flexible beams 26 are designed to be more flexible than the crystal 12 for deflections in a direction 48 perpendicular to the chest wall.
- the piers 16 and 18 are designed to be substantially rigid to such deflections.
- the arrangement may operate to reduce tensile stretching stress on the crystal. As will be apparent from FIG. 1d the straight line distance between bonding points 50 of the crystal 12 to the piers 16/18 shortens slightly as the flexible beams 26 bend in response to stress caused by chest motion.
- the arrangement also protects the crystal 12 from forces or torques which are not generally perpendicular to the chest wall. This permits use of a relatively smaller, thinner and less expensive transducer crystal 12.
- FIGS. 2a through 2c an alternate embodiment of a respiration detector, made in accordance with the teachings of the present invention, is indicated generally by the numeral 110.
- the detector consists of a base member or plate 112 and a transducer crystal 114 supported on the base member by a first pier member 116 and a second pier member 118. As shown in the figure, the pier members 116 and 118 are separated by a central gap 120 which the crystal 114 overlies in a bridge-like or spanning configuration.
- the base member 112 may be made of an elastically deformable material such as spring steel.
- a first major surface 122 of the base member 112 may be held generally parallel to the chest wall of the patient.
- Opposite end portions 124 and 126 of the base member 112 may be bonded to the first pier member 116 and second pier member 118, respectively.
- the areas of bonding are indicated by the cross-hatched regions identified by numeral 127.
- a longitudinal axis in the plane of the base member 112 is indicated by the line A--A.
- the respiration transducer When the respiration transducer is held against the chest wall of the patient, flexure of the chest wall elastically deforms the base member 112 so that the axis A--A is no longer a straight line.
- the pier members 116/118 may couple forces developed at longitudinally opposite ends of the base member 112 to end portions of the transducer crystal 114. End portions 129, of the pier members 116/118 may separate from the base plate 112 as the base plate 112 flexes. Care must be taken that tensile stresses on the crystal 114 used in this embodiment do not become sufficiently large to damage the crystal 114.
- a crystal 114 is selected with a length L along the longitudinal axis A--A of about 0.75".
- the length of the base member 112 (X) may be about 1.75" and the width of the gap 120 (W) may be about 0.25".
- stress imparted to the transducer crystal 114 produces a voltage across terminals of electrical leads 128.
- One of the leads may be grounded to the base plate 112 as indicated in the figure.
- the pier members 116 and 118 may, in a preferred embodiment, be made of dielectric material. In this event, the leads 128 need not be insulated.
- FIGS. 2b and 2c show the orientation of components of the detector of FIG. 2a in cross-section at different stages of chest movement during respiration.
- a chest belt 130 is shown surrounding a thoracic region 132 of the patient or subject.
- a portion 131 of the belt 130 encases the respiration detector and a strap portion 133 encircles the thoracic region 132.
- An end portion 135 of the strap is releasably attached to the portion 131, for example by means of VELCRO strips. This permits the patient to be laid on the opened belt 130, and the portions 135 and 131 adjusted and attached without turning over the patient.
- Electrocardiograph electrodes 134 are fixed to the belt 130.
- the electrodes 134 are thin, dry electrodes, typically about 1/2 inch in diameter.
- a grounding electrode 137 may be attached to the respiration detector base plate 112. The electrode surfaces are held snugly against the chest of the patient. This arrangement coupled with a sensitive input amplifier for the ECG electrodes permits the use of the electrodes in a dry condition without the application of conductive paste to the skin of the patient which may cause skin damage.
- the respiration transducer 110 is located inside the belt 130 and held in place by the belt walls which provide a smooth belt cover 136 for protection of the respiration transducer 110.
- FIG. 2b the respiration sensor 110 is shown in the configuration which would occur during upward expansion or flexure of the chest wall as indicated schematically by the arrows 138.
- adjacent ends 129 of the pier members 116/118 are displaced away from the base member 112 by the movement of the chest wall and exert stress on the piezoelectric crystal 114 producing an electrical signal.
- the base member 112 returns to its undeformed state when the upward flexing forces 138 are removed as during exhalation. In this configuration, the stress on the piezoelectric crystal 114 may be reduced thus changing the electrical output of the transducer 110.
- FIG. 3 is a schematic block diagram of the respiration and heart rate monitoring system of the present invention.
- the circuit includes a sensitive crystal respiration transducer 200 such as the transducer shown in FIGS. 1a or 2a.
- the system also includes ECG electrodes shown schematically as block 202.
- the crystal respiration transducer 200 and the ECG electrodes 202 are connected to a circuitry package which comprises the remainder of FIG. 3. This connection may be made by means of a single cable. Because the monitoring circuitry constantly monitors signals from the respiration transducer and the electrodes, a loose electrode, broken lead or disconnected cable will be detected by the system as an absence of respiration or heart rate, and an alarm will be produced.
- the signals from the ECG electrodes are applied to the ECG amplifier and filters 204, described in greater detail in connection with FIG. 4.
- the ECG amplifier and filters are characterized by a high input impedance and sufficient sensitivity to allow the use of dry electrodes.
- An amplified and filtered signal from the ECG amplifier and filters is then applied to a ECG rate detector 206, described in greater detail in connection with FIG. 5.
- the ECG rate detector is adapted to produce an ECG alarm signal in response to a heart rate abnormality.
- the ECG alarm signal is communicated to the indicators and alarm system 208.
- the indicators and alarm system activate an acoustical alarm 210 or heartbeat indicator 212.
- An output signal of the crystal respiration transducer 200 is applied to the respiration amplifer and filters 214, discussed in greater detail in connection with FIG. 6.
- shaped ECG pulses, produced by the ECG amplifier and filter circuit 204 are applied to the respiration amplifier and filter 214.
- the respiration amplifier and filters circuit has a high input impedance to improve the voltage response of the transducer crystal.
- the respiration amplifier and filters circuit 214 operates to inhibit detection of signals produced by the crystal respiration transducer occurring substantially simultaneously with signals from the electrocardiograph electrodes, thereby inhibiting erroneous indications of respiration caused by chest motion due to heartbeat.
- a filtered respiration signal from the respiration amplifier and filters circuit 214 is applied to the respiration rate detector 216.
- the respiration rate detector provides an indication of a reduction of respiration rate below a preset threshold. If respiration rate falls below the preset threshold, a signal is applied to the indicators and alarm system 208 which activates a respiration alarm 218.
- the circuit does not respond to single-polarity signals produced by small muscle movement or noise.
- the electrical circuitry is powered by a low voltage battery source to prevent shock hazards and permit the circuitry to be produced in a small, self-contained, portable package.
- a battery condition indicator circuit 220 is also provided. In the case that the battery voltage falls below a preset level, a signal is transmitted to the indicators and alarm system 208 which subsequently activates the battery alarm indicator 222.
- All of the indications produced by the indicator and alarm system may be audible and/or visual indications and provision may be made for short range radio transmission of the signals to remote monitoring stations.
- FIG. 4 is a schematic circuit diagram of the ECG amplifier and filter circuit 204.
- the first stage of the circuit includes an amplifier 150 having a high impedance input section. Noise reduction is achieved by the input circuit which increases common mode signal level capabilities.
- Each notch filter 152 and 154 are provided for reducing noise, chiefly 60 cycle hum, which may be induced in the system.
- Each notch filter includes a gyrator based on amplifiers 156 and 158. This circuit arrangement avoids the use of heavy and bulky inductors in the filters.
- Amplifier 160 forms the basis of a bandpass filter. An output signal from comparator 160 is subsequently applied to pulse shaping and filtering circuit 162.
- ECG pulse shaping and filtering circuit 162 will now be described in greater detail.
- An ECG pulse entering the circuit 162 will be predominantly negative as shown in FIG. 4.
- a rectifier circuit, including a first amplifier 163, transforms the pulse into a positive waveform as shown.
- the first amplifier circuit acts as a small signal half-wave rectifier which produces only a positive rectified pulse. Noise signals also will pass through the first amplifier circuit, the noise being predominantly 60 Hz noise which is a primary source of malfunction in monitoring circuits of this type. Oscillatory or sinusoidal type noise signals are in effect filtered in a unique and advantageous way, described below.
- the half-wave rectifier will rectify all sinusoidal-like waveforms. Such half-waveforms have a direct current or average value to peak value of 0.32.
- a comparator circuit including an amplifier 164, operating as a comparator, filters oscillatory or sinusoidal noise signals from ECG pulses. More specifically, a 47k ohm resistor and 22 microfarad capacitor filter the waveform from the rectifier to produce an average dc value and hold an inverting terminal 167 of a second amplifier 164 at that average value.
- a voltage divider consisting of a 27k ohm resistor 165 and a 10k ohm resistor 166, may impose about 0.27 times the peak amplitude at a second, non-inverting terminal 169 of the second amplifier 164.
- the input voltages of the second amplifier are very nearly the same, and the amplifier 164 is biased slightly to keep the amplifier output low when only sinusoidal noise is present.
- the ECG pulse output of the rectifier is, typically, a relatively narrow (low duty cycle) pulse.
- the average value is very small and consequently the voltage at the inverting terminal 167 changes very little (i.e., a few millivolts).
- approximately 1/3 of the ECG pulse voltage is applied through the voltage divider to the non-inverting terminal 169 which causes the output of the amplifier 164 to go positive during the input ECG pulse.
- both input terminal voltages of the amplifier 164 change accordingly and in the same direction. Thus, noise is effectively filtered.
- the rectifier circuit could be the full-wave type. In such a case the average-to-peak value of sinusoidal waveforms would be 0.64. However, the half-wave rectifier is preferred because the ECG rectified pulse has a smaller average value.
- ECG pulse from the circuit 162 is applied both to the ECG rate detector of FIG. 5 and the respiration amplifier and filters 214 of FIG. 6. Referring first to FIG. 5, the ECG pulse is applied to three delay circuits 170, 172 and 174.
- the ECG rate detector provides an alarm signal if the heart rate does not exceed a preset rate, the rate being selectable (80 BPM, 72 BPM, 65 BPM).
- the first delay circuit 170 includes a capacitor 176 which is continuously charged by biasing circuitry including the plus and minus 3 volt power supply voltage and the resistor 178. Receipt of an ECG pulse causes transistor 180 to conduct, thereby discharging the capacitor 176. If a ECG pulse is not received, the capacitor 176 will continue to charge until a voltage level is reached at the positive input terminal of comparator 182 which will produce a pulse. The pulse is applied to the second time delay circuit 172. The voltage which must be reached across capacitor 176 in order to enable the comparator 182 is determined by the setting of potentiometer 184. The setting of the potentiometer determines the bias voltage applied to the negative terminal of the comparator 182, and, therefore, the threshold level at which an indicator pulse is produced.
- the delay circuits 172 and 174 operate in a similar manner except that the voltage on the negative terminal of the amplifiers 186 and 188 is held at ground.
- the delay circuit 172 acts as a memory circuit to prevent an ECG alarm in the event of
- ECG alarm signal from the ECG rate detector is subsequently applied to the indicators and alarm system 208.
- FIG. 6 is a detailed schematic circuit diagram of the respiration amplifier and filters circuit 214 showing the connection of the crystal respiration transducer 200.
- the input circuitry associated with the operational amplifier 190 provides a high impedance to maximize voltage response from the crystal. Noise, predominately 60 cycle noise, inherent in the use of such a high impedance is reduced by the use of two filter stages employing the operational amplifiers 190 and 192.
- An amplified transducer signal at the output of operational amplifier 192 is applied to an input terminal of an electronic switch such as the drain terminal 194 of field effect transistor 196.
- ECG pulses from the ECG amplifier and filter circuit 204 are applied to the gate terminal 198 of the field effect transistor via transistor 199.
- the transistor switch inhibits detection of signals produced by the crystal respiration transducer occurring substantially simultaneously with signals from the electrocardiograph electrodes, thereby inhibiting erroneous indication of respiration caused by chest motion due to heartbeat.
- a filtered respiration signal which appears at terminal 197 is applied to the respiration rate detector 216 which will now be described in connection with FIG. 7.
- a first amplifier 300 receives the filtered respiration signal from the circuit of FIG. 6.
- the first amplifier 300 is a voltage follower, or buffer, amplifier.
- a second amplifier 302, receiving an output signal of the first amplifier, has a gain of approximately 10.
- Two diodes 304 and 306 are provided in the feedback path 308 and cause the amplifier 302 to have Schmitt circuit hysteresis property, where preferably the hysteresis limits are approximately ⁇ 20 millivolts.
- a capacitor 310 is continuously charged by a bias voltage selected by switches 307 or 309. The selection determines the time delay of the circuit.
- a transistor 311 is provided to discharge the capacitor 310 in response to receipt of a respiration signal.
- the Schmitt action clamps the output at plus or minus 20 millivolts and the timing capacitor 310 begins charging.
- the comparator 314 produces an alarm signal.
- the Schmitt trigger action clamps the output voltage and the timing capacitor continues to charge toward an alarm signal voltage because the coupling capacitor 316 will not pass the steady signal from the Schmitt trigger.
- a signal produced by respiration which has positive and negative excursions, must be present.
- Such a signal produces an output pulse which causes the transistor 311 to conduct, thereby discharging the timing capacitor 310.
- Output alarm signals from the respiration rate detector circuit of FIG. 7 may be applied to the indicator and alarm system 208 to provide visible or audible alarm indication when respiration rate falls below a predetermined rate.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Pulmonology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/492,056 US4576179A (en) | 1983-05-06 | 1983-05-06 | Respiration and heart rate monitoring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/492,056 US4576179A (en) | 1983-05-06 | 1983-05-06 | Respiration and heart rate monitoring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US4576179A true US4576179A (en) | 1986-03-18 |
Family
ID=23954763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/492,056 Expired - Fee Related US4576179A (en) | 1983-05-06 | 1983-05-06 | Respiration and heart rate monitoring apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | US4576179A (en) |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4657026A (en) * | 1986-07-14 | 1987-04-14 | Tagg James R | Apnea alarm systems |
US4696307A (en) * | 1984-09-11 | 1987-09-29 | Montgieux Francois F | Device for continuously detecting the breathing rhythm, in particular with a view to preventing the sudden death of an infant due to cessation of breathing during sleep |
GB2192460A (en) * | 1986-07-08 | 1988-01-13 | John Keith Millns | Movement sensing apparatus |
WO1989005116A1 (en) * | 1987-12-03 | 1989-06-15 | American Health Products, Inc. | A portable belt monitor of physiological functions |
US4862144A (en) * | 1987-04-21 | 1989-08-29 | Tao Billy S K | Movement monitor |
US4889131A (en) * | 1987-12-03 | 1989-12-26 | American Health Products, Inc. | Portable belt monitor of physiological functions and sensors therefor |
JPH02246837A (en) * | 1989-03-17 | 1990-10-02 | Omron Tateisi Electron Co | Measuring device for number of respiration and nap detector |
US4960118A (en) * | 1989-05-01 | 1990-10-02 | Pennock Bernard E | Method and apparatus for measuring respiratory flow |
WO1990011042A1 (en) * | 1989-03-20 | 1990-10-04 | Nims, Inc. | Non-invasive cardiac function measurement |
USD315210S (en) | 1987-12-03 | 1991-03-05 | American Health Products, Inc. | Combined portable cardiac and respiratory monitor |
US5069221A (en) * | 1987-12-30 | 1991-12-03 | Densa Limited | Displacement sensor and medical apparatus |
US5178151A (en) * | 1988-04-20 | 1993-01-12 | Sackner Marvin A | System for non-invasive detection of changes of cardiac volumes and aortic pulses |
US5235989A (en) * | 1990-03-07 | 1993-08-17 | Sleep Disorders Center | Apparatus for sensing respiration movements |
US5277194A (en) * | 1989-01-31 | 1994-01-11 | Craig Hosterman | Breathing monitor and stimulator |
AU655819B2 (en) * | 1991-05-23 | 1995-01-12 | Hisense Ltd. | Movement detector and apnea monitor including same |
US5400012A (en) * | 1993-04-12 | 1995-03-21 | Lifetek, Inc. | Breathing monitor |
US5448996A (en) * | 1990-02-02 | 1995-09-12 | Lifesigns, Inc. | Patient monitor sheets |
WO1996018176A1 (en) * | 1994-12-07 | 1996-06-13 | Lifetek, Inc. | Breathing monitor |
WO1996032055A1 (en) * | 1995-04-11 | 1996-10-17 | Resmed Limited | Monitoring the occurrence of apneic and hypopneic arousals |
US5611349A (en) * | 1993-04-26 | 1997-03-18 | I Am Fine, Inc. | Respiration monitor with simplified breath detector |
WO1999002087A1 (en) * | 1997-07-11 | 1999-01-21 | Micro Monitoring Systems Pty. Ltd. | Apnoea monitor |
US6019732A (en) * | 1997-04-11 | 2000-02-01 | Volgyesi; George A. | Device and method for measuring tidal volume |
US6029665A (en) * | 1993-11-05 | 2000-02-29 | Resmed Limited | Determination of patency of airway |
US6152129A (en) * | 1996-08-14 | 2000-11-28 | Resmed Limited | Determination of leak and respiratory airflow |
US6182657B1 (en) | 1995-09-18 | 2001-02-06 | Resmed Limited | Pressure control in CPAP treatment or assisted respiration |
US6213119B1 (en) | 1995-10-23 | 2001-04-10 | Resmed Limited | Inspiratory duration in CPAP or assisted respiration treatment |
US6289237B1 (en) | 1998-12-22 | 2001-09-11 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for energizing a remote station and related method |
US6332463B1 (en) | 1995-09-15 | 2001-12-25 | Resmed Limited | Flow estimation and compensation of flow-induced pressure swings in CPAP treatment and assisted respiration |
WO2002022017A1 (en) * | 2000-09-15 | 2002-03-21 | Friendly Sensors Ag | Device and method for producing respiration-related data |
US6367474B1 (en) | 1997-11-07 | 2002-04-09 | Resmed Limited | Administration of CPAP treatment pressure in presence of APNEA |
US6383143B1 (en) | 1999-10-13 | 2002-05-07 | Gerald A. Rost | Respiratory monitor |
US6532957B2 (en) | 1996-09-23 | 2003-03-18 | Resmed Limited | Assisted ventilation to match patient respiratory need |
US20030105405A1 (en) * | 2001-06-18 | 2003-06-05 | Galen Peter M. | Multi-parameter acquisition of ECG and related physiologic data employing multi-parameter sensor and conventional ECG lead conductors, and enabled for remote operational management communication |
US20030105406A1 (en) * | 2001-06-18 | 2003-06-05 | Galen Peter M. | Multi-parameter acquisition of ECG and related physiologic data employing conventional ECG lead conductors |
US20030105404A1 (en) * | 2001-06-18 | 2003-06-05 | Galen Peter M. | Multi-parameter acquisition of ECG and other physiologic data exclusively employing conventional ECG lead conductors |
US6615074B2 (en) | 1998-12-22 | 2003-09-02 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for energizing a remote station and related method |
US20030176801A1 (en) * | 2002-03-14 | 2003-09-18 | Inovise Medical, Inc. | Audio/ECG sensor/coupler with integrated signal processing |
US20040085247A1 (en) * | 2002-08-15 | 2004-05-06 | Mickle Marlin H. | Energy harvesting circuits and associated methods |
US20040127804A1 (en) * | 2002-12-27 | 2004-07-01 | Hatlesad John D. | Measurement of respiratory sinus arrhythmia using respiratory and electrogram sensors in an implantable device |
US20040123866A1 (en) * | 1993-11-05 | 2004-07-01 | Michael Berthon-Jones | Determination of patency of the airway |
US20040215094A1 (en) * | 2003-04-24 | 2004-10-28 | Inovise Medical, Inc. | Combined electrical and audio anatomical signal sensor |
US20040214478A1 (en) * | 2003-04-24 | 2004-10-28 | Inovise Medical, Inc. | Coupler-adapeter for electrical amd audio anatomical signal sensor |
US20040220486A1 (en) * | 2003-04-29 | 2004-11-04 | Inovise Medical, Inc. | Electrical and audio anatomy-signal sensor/coupler-adapter |
US20050033190A1 (en) * | 2003-08-06 | 2005-02-10 | Inovise Medical, Inc. | Heart-activity monitoring with multi-axial audio detection |
US20050113703A1 (en) * | 2003-09-12 | 2005-05-26 | Jonathan Farringdon | Method and apparatus for measuring heart related parameters |
US20050124902A1 (en) * | 2003-12-01 | 2005-06-09 | Inovise Medical, Inc. | Electrical and audio anatomy-signal sensor system |
US20050273015A1 (en) * | 2002-03-14 | 2005-12-08 | Inovise Medical, Inc. | Heart-activity monitoring with low-pressure, high-mass anatomy sensor contact |
US20050276309A1 (en) * | 2004-06-11 | 2005-12-15 | Jochim Koch | Device for measuring the body core temperature |
US7010342B2 (en) | 2002-03-14 | 2006-03-07 | Inovise Medical, Inc. | Method and apparatus for detecting and transmitting electrical and related audio signals from a single, common anatomical site |
US20060276718A1 (en) * | 2003-09-03 | 2006-12-07 | Stefan Madaus | Detection appliance and method for observing sleep-related breathing disorders |
US20070038137A1 (en) * | 2005-05-26 | 2007-02-15 | Inovise Medical, Inc. | Cardio-function cafeteria system and methodology |
US20080146957A1 (en) * | 2006-12-14 | 2008-06-19 | Wasnick Michael S | Deep breathing training device |
US20080142004A1 (en) * | 2006-12-14 | 2008-06-19 | Wasnick Michael S | Deep breathing training device |
WO2008096328A2 (en) * | 2007-02-09 | 2008-08-14 | Gregory John Gallagher | Infant monitor |
US20080300499A1 (en) * | 2007-06-04 | 2008-12-04 | Richard Ellis Strube | Portable Apnea and Cardiac Monitor |
US20090287265A1 (en) * | 2008-05-02 | 2009-11-19 | Dymedix Corporation | Agitator to stimulate the central nervous system |
US20100048986A1 (en) * | 2008-08-22 | 2010-02-25 | Dymedix Corporation | Dosage optimization for a closed loop neuromodulator |
US20100069773A1 (en) * | 2008-09-12 | 2010-03-18 | Dymedix Corporation | Wireless pyro/piezo sensor system |
US20100274099A1 (en) * | 2008-12-30 | 2010-10-28 | Masimo Corporation | Acoustic sensor assembly |
US20110066081A1 (en) * | 2009-09-14 | 2011-03-17 | Hiroshi Goto | Sensor-Based Health Monitoring System |
US20110213272A1 (en) * | 2009-10-15 | 2011-09-01 | Telfort Valery G | Acoustic patient sensor |
US8679024B2 (en) | 2010-10-26 | 2014-03-25 | Medtronic, Inc. | System and method for deriving respiration from intracardiac electrograms (EGM) or ECG signals |
US8844537B1 (en) | 2010-10-13 | 2014-09-30 | Michael T. Abramson | System and method for alleviating sleep apnea |
US20150281424A1 (en) * | 2000-12-15 | 2015-10-01 | Apple Inc. | Personal items network, and associated methods |
US9192351B1 (en) | 2011-07-22 | 2015-11-24 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US9370335B2 (en) | 2009-10-15 | 2016-06-21 | Masimo Corporation | Physiological acoustic monitoring system |
US9386961B2 (en) | 2009-10-15 | 2016-07-12 | Masimo Corporation | Physiological acoustic monitoring system |
US9782110B2 (en) | 2010-06-02 | 2017-10-10 | Masimo Corporation | Opticoustic sensor |
US9955937B2 (en) | 2012-09-20 | 2018-05-01 | Masimo Corporation | Acoustic patient sensor coupler |
US10357209B2 (en) | 2009-10-15 | 2019-07-23 | Masimo Corporation | Bidirectional physiological information display |
US10463340B2 (en) | 2009-10-15 | 2019-11-05 | Masimo Corporation | Acoustic respiratory monitoring systems and methods |
US10828007B1 (en) | 2013-10-11 | 2020-11-10 | Masimo Corporation | Acoustic sensor with attachment portion |
US20210236004A1 (en) * | 2014-11-07 | 2021-08-05 | Respirix, Inc. | Devices and methods for monitoring physiologic parameters |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3572317A (en) * | 1968-10-02 | 1971-03-23 | Hoffmann La Roche | Respiratory distress monitor |
US3724274A (en) * | 1971-02-11 | 1973-04-03 | Millar Instruments | Pressure transducers and method of physiological pressure transducers |
US3782368A (en) * | 1971-05-24 | 1974-01-01 | Mc Donnell Douglas Corp | Transducer construction and system for measuring respiration |
US3976052A (en) * | 1974-04-19 | 1976-08-24 | Hewlett-Packard Gmbh | Respiration monitor |
US3995247A (en) * | 1975-10-22 | 1976-11-30 | Kulite Semiconductor Products, Inc. | Transducers employing gap-bridging shim members |
US4047144A (en) * | 1971-06-30 | 1977-09-06 | Becton, Dickinson Electronics Company | Transducer |
GB1492875A (en) * | 1975-03-12 | 1977-11-23 | Leuner H | Device for the measurement of respiratory movement |
US4169462A (en) * | 1977-05-19 | 1979-10-02 | Strube Richard E | Crib death detector |
US4296757A (en) * | 1980-04-14 | 1981-10-27 | Thomas Taylor | Respiratory monitor and excessive intrathoracic or abdominal pressure indicator |
US4305400A (en) * | 1979-10-15 | 1981-12-15 | Squibb Vitatek Inc. | Respiration monitoring method and apparatus including cardio-vascular artifact detection |
US4306567A (en) * | 1977-12-22 | 1981-12-22 | Krasner Jerome L | Detection and monitoring device |
US4379460A (en) * | 1980-09-18 | 1983-04-12 | Judell Neil H K | Method and apparatus for removing cardiac artifact in impedance plethysmographic respiration monitoring |
US4422458A (en) * | 1980-04-28 | 1983-12-27 | Montefiore Hospital And Medical Center, Inc. | Method and apparatus for detecting respiratory distress |
-
1983
- 1983-05-06 US US06/492,056 patent/US4576179A/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3572317A (en) * | 1968-10-02 | 1971-03-23 | Hoffmann La Roche | Respiratory distress monitor |
US3724274A (en) * | 1971-02-11 | 1973-04-03 | Millar Instruments | Pressure transducers and method of physiological pressure transducers |
US3782368A (en) * | 1971-05-24 | 1974-01-01 | Mc Donnell Douglas Corp | Transducer construction and system for measuring respiration |
US4047144A (en) * | 1971-06-30 | 1977-09-06 | Becton, Dickinson Electronics Company | Transducer |
US3976052A (en) * | 1974-04-19 | 1976-08-24 | Hewlett-Packard Gmbh | Respiration monitor |
GB1492875A (en) * | 1975-03-12 | 1977-11-23 | Leuner H | Device for the measurement of respiratory movement |
US3995247A (en) * | 1975-10-22 | 1976-11-30 | Kulite Semiconductor Products, Inc. | Transducers employing gap-bridging shim members |
US4169462A (en) * | 1977-05-19 | 1979-10-02 | Strube Richard E | Crib death detector |
US4306567A (en) * | 1977-12-22 | 1981-12-22 | Krasner Jerome L | Detection and monitoring device |
US4305400A (en) * | 1979-10-15 | 1981-12-15 | Squibb Vitatek Inc. | Respiration monitoring method and apparatus including cardio-vascular artifact detection |
US4296757A (en) * | 1980-04-14 | 1981-10-27 | Thomas Taylor | Respiratory monitor and excessive intrathoracic or abdominal pressure indicator |
US4422458A (en) * | 1980-04-28 | 1983-12-27 | Montefiore Hospital And Medical Center, Inc. | Method and apparatus for detecting respiratory distress |
US4379460A (en) * | 1980-09-18 | 1983-04-12 | Judell Neil H K | Method and apparatus for removing cardiac artifact in impedance plethysmographic respiration monitoring |
Cited By (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4696307A (en) * | 1984-09-11 | 1987-09-29 | Montgieux Francois F | Device for continuously detecting the breathing rhythm, in particular with a view to preventing the sudden death of an infant due to cessation of breathing during sleep |
GB2192460A (en) * | 1986-07-08 | 1988-01-13 | John Keith Millns | Movement sensing apparatus |
GB2192460B (en) * | 1986-07-08 | 1990-08-01 | John Keith Millns | Respiratory movement sensing assemblies and apparatus |
US4657026A (en) * | 1986-07-14 | 1987-04-14 | Tagg James R | Apnea alarm systems |
US4862144A (en) * | 1987-04-21 | 1989-08-29 | Tao Billy S K | Movement monitor |
USD315210S (en) | 1987-12-03 | 1991-03-05 | American Health Products, Inc. | Combined portable cardiac and respiratory monitor |
WO1989005116A1 (en) * | 1987-12-03 | 1989-06-15 | American Health Products, Inc. | A portable belt monitor of physiological functions |
US4889131A (en) * | 1987-12-03 | 1989-12-26 | American Health Products, Inc. | Portable belt monitor of physiological functions and sensors therefor |
US4909260A (en) * | 1987-12-03 | 1990-03-20 | American Health Products, Inc. | Portable belt monitor of physiological functions and sensors therefor |
US5069221A (en) * | 1987-12-30 | 1991-12-03 | Densa Limited | Displacement sensor and medical apparatus |
US5178151A (en) * | 1988-04-20 | 1993-01-12 | Sackner Marvin A | System for non-invasive detection of changes of cardiac volumes and aortic pulses |
US5277194A (en) * | 1989-01-31 | 1994-01-11 | Craig Hosterman | Breathing monitor and stimulator |
JP2760019B2 (en) | 1989-03-17 | 1998-05-28 | オムロン株式会社 | Snooze detection device |
JPH02246837A (en) * | 1989-03-17 | 1990-10-02 | Omron Tateisi Electron Co | Measuring device for number of respiration and nap detector |
WO1990011042A1 (en) * | 1989-03-20 | 1990-10-04 | Nims, Inc. | Non-invasive cardiac function measurement |
US4960118A (en) * | 1989-05-01 | 1990-10-02 | Pennock Bernard E | Method and apparatus for measuring respiratory flow |
US5448996A (en) * | 1990-02-02 | 1995-09-12 | Lifesigns, Inc. | Patient monitor sheets |
US5235989A (en) * | 1990-03-07 | 1993-08-17 | Sleep Disorders Center | Apparatus for sensing respiration movements |
AU655819B2 (en) * | 1991-05-23 | 1995-01-12 | Hisense Ltd. | Movement detector and apnea monitor including same |
US5400012A (en) * | 1993-04-12 | 1995-03-21 | Lifetek, Inc. | Breathing monitor |
US5864291A (en) * | 1993-04-12 | 1999-01-26 | Lifetek, Inc. | Breathing monitor with isolating coupler |
US5611349A (en) * | 1993-04-26 | 1997-03-18 | I Am Fine, Inc. | Respiration monitor with simplified breath detector |
US7730886B2 (en) | 1993-11-05 | 2010-06-08 | Resmed Limited | Determination of patency of the airway |
US20080163873A1 (en) * | 1993-11-05 | 2008-07-10 | Michael Berthon-Jones | Determination of patency of the airway |
US8752547B2 (en) | 1993-11-05 | 2014-06-17 | Resmed Limited | Distinguishing between closed and open airway apneas and treating patients accordingly |
US7320320B2 (en) | 1993-11-05 | 2008-01-22 | Resmed Limited | Determination of patency of the airway |
US6029665A (en) * | 1993-11-05 | 2000-02-29 | Resmed Limited | Determination of patency of airway |
US8381722B2 (en) | 1993-11-05 | 2013-02-26 | Resmed Limited | Distinguishing between closed and open airway apneas and treating patients accordingly |
US6138675A (en) * | 1993-11-05 | 2000-10-31 | Resmed Ltd. | Determination of the occurrence of an apnea |
US20100242965A1 (en) * | 1993-11-05 | 2010-09-30 | Michael Berthon-Jones | Distinguishing between closed and open airway apneas and treating patients accordingly |
US20040123866A1 (en) * | 1993-11-05 | 2004-07-01 | Michael Berthon-Jones | Determination of patency of the airway |
US8360060B2 (en) | 1993-11-05 | 2013-01-29 | Resmed Limited | Distinguishing between closed and open airway apneas and treating patients accordingly |
WO1996018176A1 (en) * | 1994-12-07 | 1996-06-13 | Lifetek, Inc. | Breathing monitor |
US6091973A (en) * | 1995-04-11 | 2000-07-18 | Resmed Limited | Monitoring the occurrence of apneic and hypopneic arousals |
US6363270B1 (en) | 1995-04-11 | 2002-03-26 | Resmed Limited | Monitoring the occurrence of apneic and hypopneic arousals |
WO1996032055A1 (en) * | 1995-04-11 | 1996-10-17 | Resmed Limited | Monitoring the occurrence of apneic and hypopneic arousals |
US6332463B1 (en) | 1995-09-15 | 2001-12-25 | Resmed Limited | Flow estimation and compensation of flow-induced pressure swings in CPAP treatment and assisted respiration |
US6182657B1 (en) | 1995-09-18 | 2001-02-06 | Resmed Limited | Pressure control in CPAP treatment or assisted respiration |
US6526974B1 (en) | 1995-09-18 | 2003-03-04 | John William Ernest Brydon | Pressure control in CPAP treatment or assisted respiration |
US6213119B1 (en) | 1995-10-23 | 2001-04-10 | Resmed Limited | Inspiratory duration in CPAP or assisted respiration treatment |
US6279569B1 (en) | 1996-08-14 | 2001-08-28 | Resmed Limited | Determination of leak and respiratory airflow |
US6152129A (en) * | 1996-08-14 | 2000-11-28 | Resmed Limited | Determination of leak and respiratory airflow |
US7137389B2 (en) | 1996-09-23 | 2006-11-21 | Resmed Limited | Method and apparatus for determining instantaneous inspired volume of a subject during ventilatory assistance |
US8733351B2 (en) | 1996-09-23 | 2014-05-27 | Resmed Limited | Method and apparatus for providing ventilatory assistance |
US6532957B2 (en) | 1996-09-23 | 2003-03-18 | Resmed Limited | Assisted ventilation to match patient respiratory need |
US9974911B2 (en) | 1996-09-23 | 2018-05-22 | Resmed Limited | Method and apparatus for providing ventilatory assistance |
US6688307B2 (en) | 1996-09-23 | 2004-02-10 | Resmed Limited | Methods and apparatus for determining instantaneous elastic recoil and assistance pressure during ventilatory support |
US7644713B2 (en) | 1996-09-23 | 2010-01-12 | Resmed Limited | Method and apparatus for determining instantaneous leak during ventilatory assistance |
US8051853B2 (en) | 1996-09-23 | 2011-11-08 | Resmed Limited | Method and apparatus for providing ventilatory assistance |
US6810876B2 (en) | 1996-09-23 | 2004-11-02 | Resmed Ltd. | Assisted ventilation to match patient respiratory need |
US6019732A (en) * | 1997-04-11 | 2000-02-01 | Volgyesi; George A. | Device and method for measuring tidal volume |
WO1999002087A1 (en) * | 1997-07-11 | 1999-01-21 | Micro Monitoring Systems Pty. Ltd. | Apnoea monitor |
US8684000B2 (en) | 1997-11-07 | 2014-04-01 | Resmed Limited | Administration of CPAP treatment pressure in presence of apnea |
US9526855B2 (en) | 1997-11-07 | 2016-12-27 | Resmed Limited | Administration of CPAP treatment pressure in presence of apnea |
US6367474B1 (en) | 1997-11-07 | 2002-04-09 | Resmed Limited | Administration of CPAP treatment pressure in presence of APNEA |
US20030199778A1 (en) * | 1998-12-22 | 2003-10-23 | Marlin Mickle | Apparatus for energizing a remote station and related method |
JP2002533052A (en) * | 1998-12-22 | 2002-10-02 | ユニバーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブ ハイヤー エデュケーション | Apparatus for providing energy to a remote station and associated method |
US6289237B1 (en) | 1998-12-22 | 2001-09-11 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for energizing a remote station and related method |
US6615074B2 (en) | 1998-12-22 | 2003-09-02 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for energizing a remote station and related method |
US6383143B1 (en) | 1999-10-13 | 2002-05-07 | Gerald A. Rost | Respiratory monitor |
WO2002022017A1 (en) * | 2000-09-15 | 2002-03-21 | Friendly Sensors Ag | Device and method for producing respiration-related data |
US10639552B2 (en) | 2000-12-15 | 2020-05-05 | Apple Inc. | Personal items network, and associated methods |
US20150281424A1 (en) * | 2000-12-15 | 2015-10-01 | Apple Inc. | Personal items network, and associated methods |
US10080971B2 (en) | 2000-12-15 | 2018-09-25 | Apple Inc. | Personal items network, and associated methods |
US10406445B2 (en) * | 2000-12-15 | 2019-09-10 | Apple Inc. | Personal items network, and associated methods |
US10427050B2 (en) | 2000-12-15 | 2019-10-01 | Apple Inc. | Personal items network, and associated methods |
US20030105405A1 (en) * | 2001-06-18 | 2003-06-05 | Galen Peter M. | Multi-parameter acquisition of ECG and related physiologic data employing multi-parameter sensor and conventional ECG lead conductors, and enabled for remote operational management communication |
US20030105406A1 (en) * | 2001-06-18 | 2003-06-05 | Galen Peter M. | Multi-parameter acquisition of ECG and related physiologic data employing conventional ECG lead conductors |
US20030105404A1 (en) * | 2001-06-18 | 2003-06-05 | Galen Peter M. | Multi-parameter acquisition of ECG and other physiologic data exclusively employing conventional ECG lead conductors |
US7065397B2 (en) | 2001-06-18 | 2006-06-20 | Inovise Medical, Inc. | Multi-parameter acquisition of ECG and related physiologic data employing multi-parameter sensor and conventional ECG lead conductors, and enabled for remote operational management communication |
US20030176801A1 (en) * | 2002-03-14 | 2003-09-18 | Inovise Medical, Inc. | Audio/ECG sensor/coupler with integrated signal processing |
US20050273015A1 (en) * | 2002-03-14 | 2005-12-08 | Inovise Medical, Inc. | Heart-activity monitoring with low-pressure, high-mass anatomy sensor contact |
US7010342B2 (en) | 2002-03-14 | 2006-03-07 | Inovise Medical, Inc. | Method and apparatus for detecting and transmitting electrical and related audio signals from a single, common anatomical site |
US20040085247A1 (en) * | 2002-08-15 | 2004-05-06 | Mickle Marlin H. | Energy harvesting circuits and associated methods |
US6856291B2 (en) | 2002-08-15 | 2005-02-15 | University Of Pittsburgh- Of The Commonwealth System Of Higher Education | Energy harvesting circuits and associated methods |
US20040127804A1 (en) * | 2002-12-27 | 2004-07-01 | Hatlesad John D. | Measurement of respiratory sinus arrhythmia using respiratory and electrogram sensors in an implantable device |
US7343199B2 (en) * | 2002-12-27 | 2008-03-11 | Cardiac Pacemakers, Inc. | Measurement of respiratory sinus arrhythmia using respiratory and electrogram sensors in an implantable device |
US20040214478A1 (en) * | 2003-04-24 | 2004-10-28 | Inovise Medical, Inc. | Coupler-adapeter for electrical amd audio anatomical signal sensor |
US7110804B2 (en) | 2003-04-24 | 2006-09-19 | Inovise Medical, Inc. | Combined electrical and audio anatomical signal sensor |
US20040215094A1 (en) * | 2003-04-24 | 2004-10-28 | Inovise Medical, Inc. | Combined electrical and audio anatomical signal sensor |
US20040220486A1 (en) * | 2003-04-29 | 2004-11-04 | Inovise Medical, Inc. | Electrical and audio anatomy-signal sensor/coupler-adapter |
US7302290B2 (en) | 2003-08-06 | 2007-11-27 | Inovise, Medical, Inc. | Heart-activity monitoring with multi-axial audio detection |
US20050033190A1 (en) * | 2003-08-06 | 2005-02-10 | Inovise Medical, Inc. | Heart-activity monitoring with multi-axial audio detection |
US10154811B2 (en) * | 2003-09-03 | 2018-12-18 | Resmed R&D Germany Gmbh | Detection appliance and method for observing sleep-related breathing disorders |
US20060276718A1 (en) * | 2003-09-03 | 2006-12-07 | Stefan Madaus | Detection appliance and method for observing sleep-related breathing disorders |
EP2319410A1 (en) * | 2003-09-12 | 2011-05-11 | BodyMedia, Inc. | Apparatus for measuring heart related parameters |
US8369936B2 (en) | 2003-09-12 | 2013-02-05 | Bodymedia, Inc. | Wearable apparatus for measuring heart-related parameters and deriving human status parameters from sensed physiological and contextual parameters |
EP1667579A4 (en) * | 2003-09-12 | 2008-06-11 | Bodymedia Inc | Method and apparatus for measuring heart related parameters |
US7502643B2 (en) | 2003-09-12 | 2009-03-10 | Bodymedia, Inc. | Method and apparatus for measuring heart related parameters |
EP1667579A2 (en) * | 2003-09-12 | 2006-06-14 | Bodymedia, Inc. | Method and apparatus for measuring heart related parameters |
US20100286532A1 (en) * | 2003-09-12 | 2010-11-11 | Bodymedia, Inc. | Wearable apparatus for measuring heart-related parameters and deriving human status parameters from sensed physiological and contextual parameters |
US20050113703A1 (en) * | 2003-09-12 | 2005-05-26 | Jonathan Farringdon | Method and apparatus for measuring heart related parameters |
US20050124902A1 (en) * | 2003-12-01 | 2005-06-09 | Inovise Medical, Inc. | Electrical and audio anatomy-signal sensor system |
US20050276309A1 (en) * | 2004-06-11 | 2005-12-15 | Jochim Koch | Device for measuring the body core temperature |
US8511892B2 (en) * | 2004-06-11 | 2013-08-20 | DRäGERWERK AKTIENGESELLSCHAFT | Device for measuring the body core temperature |
US20070038137A1 (en) * | 2005-05-26 | 2007-02-15 | Inovise Medical, Inc. | Cardio-function cafeteria system and methodology |
US20090216138A1 (en) * | 2005-05-26 | 2009-08-27 | Inovise Medical, Inc. | Cardio-Function cafeteria methodology |
US20080146957A1 (en) * | 2006-12-14 | 2008-06-19 | Wasnick Michael S | Deep breathing training device |
US20080142004A1 (en) * | 2006-12-14 | 2008-06-19 | Wasnick Michael S | Deep breathing training device |
WO2008096328A3 (en) * | 2007-02-09 | 2008-10-30 | Gregory John Gallagher | Infant monitor |
US8461996B2 (en) | 2007-02-09 | 2013-06-11 | Gregory J. Gallagher | Infant monitor |
WO2008096328A2 (en) * | 2007-02-09 | 2008-08-14 | Gregory John Gallagher | Infant monitor |
US20080300499A1 (en) * | 2007-06-04 | 2008-12-04 | Richard Ellis Strube | Portable Apnea and Cardiac Monitor |
US8579794B2 (en) | 2008-05-02 | 2013-11-12 | Dymedix Corporation | Agitator to stimulate the central nervous system |
US20090287265A1 (en) * | 2008-05-02 | 2009-11-19 | Dymedix Corporation | Agitator to stimulate the central nervous system |
US20100056941A1 (en) * | 2008-08-22 | 2010-03-04 | Dymedix Corporation | Device controller and datalogger for a closed loop neuromodulator |
US20100049265A1 (en) * | 2008-08-22 | 2010-02-25 | Dymedix Corporation | EMI/ESD hardened sensor interface for a closed loop neuromodulator |
US20100057148A1 (en) * | 2008-08-22 | 2010-03-04 | Dymedix Corporation | Stimulus timer for a closed loop neuromodulator |
US20100049264A1 (en) * | 2008-08-22 | 2010-02-25 | Dymedix Corporation | Diagnostic indicator and PSG interface for a closed loop neuromodulator |
US20100056852A1 (en) * | 2008-08-22 | 2010-03-04 | Dymedix Corporation | Stimulus escalator for a closed loop neuromodulator |
US20100048985A1 (en) * | 2008-08-22 | 2010-02-25 | Dymedix Corporation | EMI/ESD hardened transducer driver driver for a closed loop neuromodulator |
US20100056942A1 (en) * | 2008-08-22 | 2010-03-04 | Dymedix Corporation | Activity detector for a closed loop neuromodulator |
US8834347B2 (en) | 2008-08-22 | 2014-09-16 | Dymedix Corporation | Anti-habituating sleep therapy for a closed loop neuromodulator |
US20100056855A1 (en) * | 2008-08-22 | 2010-03-04 | Dymedix Corporation | Closed loop neuromodulator |
US8834346B2 (en) | 2008-08-22 | 2014-09-16 | Dymedix Corporation | Stimulus sequencer for a closed loop neuromodulator |
US20100048986A1 (en) * | 2008-08-22 | 2010-02-25 | Dymedix Corporation | Dosage optimization for a closed loop neuromodulator |
US20100069773A1 (en) * | 2008-09-12 | 2010-03-18 | Dymedix Corporation | Wireless pyro/piezo sensor system |
US20100069769A1 (en) * | 2008-09-12 | 2010-03-18 | Dymedix Corporation | Wireless pyro/piezo sensor base station |
US11559275B2 (en) * | 2008-12-30 | 2023-01-24 | Masimo Corporation | Acoustic sensor assembly |
US9795358B2 (en) * | 2008-12-30 | 2017-10-24 | Masimo Corporation | Acoustic sensor assembly |
US10548561B2 (en) * | 2008-12-30 | 2020-02-04 | Masimo Corporation | Acoustic sensor assembly |
US20140309559A1 (en) * | 2008-12-30 | 2014-10-16 | Masimo Corporation | Acoustic sensor assembly |
US9028429B2 (en) * | 2008-12-30 | 2015-05-12 | Masimo Corporation | Acoustic sensor assembly |
US20150196270A1 (en) * | 2008-12-30 | 2015-07-16 | Masimo Corporation | Acoustic sensor assembly |
US9131917B2 (en) * | 2008-12-30 | 2015-09-15 | Masimo Corporation | Acoustic sensor assembly |
US12232905B2 (en) * | 2008-12-30 | 2025-02-25 | Masimo Corporation | Acoustic sensor assembly |
US8771204B2 (en) * | 2008-12-30 | 2014-07-08 | Masimo Corporation | Acoustic sensor assembly |
US20180125445A1 (en) * | 2008-12-30 | 2018-05-10 | Masimo Corporation | Acoustic sensor assembly |
US20100274099A1 (en) * | 2008-12-30 | 2010-10-28 | Masimo Corporation | Acoustic sensor assembly |
US8172777B2 (en) * | 2009-09-14 | 2012-05-08 | Empire Technology Development Llc | Sensor-based health monitoring system |
US20110066081A1 (en) * | 2009-09-14 | 2011-03-17 | Hiroshi Goto | Sensor-Based Health Monitoring System |
US9386961B2 (en) | 2009-10-15 | 2016-07-12 | Masimo Corporation | Physiological acoustic monitoring system |
US8755535B2 (en) | 2009-10-15 | 2014-06-17 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US12257081B2 (en) | 2009-10-15 | 2025-03-25 | Masimo Corporation | Bidirectional physiological information display |
US9538980B2 (en) | 2009-10-15 | 2017-01-10 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US9867578B2 (en) | 2009-10-15 | 2018-01-16 | Masimo Corporation | Physiological acoustic monitoring system |
US20110213274A1 (en) * | 2009-10-15 | 2011-09-01 | Telfort Valery G | Acoustic respiratory monitoring sensor having multiple sensing elements |
US20110213272A1 (en) * | 2009-10-15 | 2011-09-01 | Telfort Valery G | Acoustic patient sensor |
US9370335B2 (en) | 2009-10-15 | 2016-06-21 | Masimo Corporation | Physiological acoustic monitoring system |
US11998362B2 (en) | 2009-10-15 | 2024-06-04 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US10098610B2 (en) | 2009-10-15 | 2018-10-16 | Masimo Corporation | Physiological acoustic monitoring system |
US10925544B2 (en) | 2009-10-15 | 2021-02-23 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US10349895B2 (en) | 2009-10-15 | 2019-07-16 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US10357209B2 (en) | 2009-10-15 | 2019-07-23 | Masimo Corporation | Bidirectional physiological information display |
US8690799B2 (en) | 2009-10-15 | 2014-04-08 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US8715206B2 (en) | 2009-10-15 | 2014-05-06 | Masimo Corporation | Acoustic patient sensor |
US10463340B2 (en) | 2009-10-15 | 2019-11-05 | Masimo Corporation | Acoustic respiratory monitoring systems and methods |
US8702627B2 (en) | 2009-10-15 | 2014-04-22 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
US9782110B2 (en) | 2010-06-02 | 2017-10-10 | Masimo Corporation | Opticoustic sensor |
US9763767B2 (en) | 2010-10-13 | 2017-09-19 | Michael T. Abramson | System and method for alleviating sleep apnea |
US8844537B1 (en) | 2010-10-13 | 2014-09-30 | Michael T. Abramson | System and method for alleviating sleep apnea |
US8679024B2 (en) | 2010-10-26 | 2014-03-25 | Medtronic, Inc. | System and method for deriving respiration from intracardiac electrograms (EGM) or ECG signals |
US9192351B1 (en) | 2011-07-22 | 2015-11-24 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
US11020084B2 (en) | 2012-09-20 | 2021-06-01 | Masimo Corporation | Acoustic patient sensor coupler |
US11992361B2 (en) | 2012-09-20 | 2024-05-28 | Masimo Corporation | Acoustic patient sensor coupler |
US9955937B2 (en) | 2012-09-20 | 2018-05-01 | Masimo Corporation | Acoustic patient sensor coupler |
US10828007B1 (en) | 2013-10-11 | 2020-11-10 | Masimo Corporation | Acoustic sensor with attachment portion |
US12016721B2 (en) | 2013-10-11 | 2024-06-25 | Masimo Corporation | Acoustic sensor with attachment portion |
US20210236004A1 (en) * | 2014-11-07 | 2021-08-05 | Respirix, Inc. | Devices and methods for monitoring physiologic parameters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4576179A (en) | Respiration and heart rate monitoring apparatus | |
EP1090583B1 (en) | Electrode belt of heart rate monitor | |
US4889131A (en) | Portable belt monitor of physiological functions and sensors therefor | |
JP2605584Y2 (en) | Multi sensor | |
US4909260A (en) | Portable belt monitor of physiological functions and sensors therefor | |
US5311875A (en) | Breath sensing apparatus | |
US4949730A (en) | Monitoring device intended especially for parturition and its application | |
EP0936936B1 (en) | An implantable medical device comprising an accelerometer | |
US5467768A (en) | Multi-purpose sensor | |
US3782368A (en) | Transducer construction and system for measuring respiration | |
WO2008010216A2 (en) | Fetal motor activity monitoring apparatus and pad therfor | |
GB2109559A (en) | Heartbeat rate indicator | |
EP0068032A1 (en) | Electrocardiograph | |
WO2003067967A1 (en) | Body temperature holding device with heart rate and respiration rate detecting function for small animals and heart rate and respiration rate measuring system for small animals using the device | |
JPH05298589A (en) | Living body signal measuring unit | |
US4030484A (en) | Non-invasive blood pressure monitor | |
US11813064B2 (en) | Apparatus and electronic circuitry for sensing biosignals | |
JP2006340820A (en) | Body motion sensing sensor, and body motion monitoring system using it | |
KR20190052636A (en) | Respiratory monitoring system | |
JP2600744Y2 (en) | Multi sensor | |
JP2600950Y2 (en) | Biological electrode | |
Aminian et al. | A piezoelectric belt for cardiac pulse and respiration measurements on small mammals | |
EP0085577B1 (en) | A heart-beat rate indicator | |
JPS644325Y2 (en) | ||
EP3474732B1 (en) | Device for monitoring patient's vital functions comprising a piezoelectric transducer and a measuring capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: A.H. ROBINS COMPANY, INCORPORATED, 1405 CUMMINGS D Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MANUS, EUGENE A.;WILEY, PARIS H.;REEL/FRAME:004129/0268 Effective date: 19830505 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19980318 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |