US4760442A - Wideband digital signal distribution system - Google Patents
Wideband digital signal distribution system Download PDFInfo
- Publication number
- US4760442A US4760442A US06/753,535 US75353585A US4760442A US 4760442 A US4760442 A US 4760442A US 75353585 A US75353585 A US 75353585A US 4760442 A US4760442 A US 4760442A
- Authority
- US
- United States
- Prior art keywords
- signals
- customer
- line
- transmission
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/236—Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
- H04N21/2365—Multiplexing of several video streams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/434—Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
- H04N21/4347—Demultiplexing of several video streams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/173—Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
- H04N7/17345—Control of the passage of the selected programme
- H04N7/17354—Control of the passage of the selected programme in an intermediate station common to a plurality of user terminals
Definitions
- This invention relates to wideband signal distribution systems for digital signals such as video program signals, i.e. digital signal streams each representing a video picture signal and any voice signal corresponding to the picture signal information.
- An E. M. Ulicki U.S. Pat. No. 3,757,225 shows a communication system which collects analog television signals and frequency division multiplexes them onto a cable system with command control signals for distribution to a customer station where different programs may be selectively displayed on a common display channel.
- program selection devices are provided in an intermediate program exchange which employs optical selection devices to enable a program signal to be steered to an individual customer.
- a video and data distribution module with a customer terminal in an I. Gimple et al. U.S. Pat. No. 4,430.731, frequency division multiplexes analog program signals with digital data ard control signals onto a transmission circuit to remote video data distribution modules in different neighborhoods. There a selected program is frequency converted to a range which is appropriate for a particular customer.
- a program signal stream is coupled through a switch matrix, in the same office with switch matrices for the voice and video parts of video telephone service, to a particular customer over an optical fiber link.
- the method for communicating customer selections to the switch is not specifically shown.
- a T. W. Canning U.S. Pat. No. 3,992,686 teaches a backplane transmission line system for distributing signals among printed circuit boards. Components on one circuit board are interconnected to other circuit boards by way of transmission lines terminated at both ends with the characteristic impedance.
- Wideband signal distribution systems are improved by transmitting each of a plurality of wideband signals in digital form on an individual, nonreflectively terminated, transmission line extending among a plurality of customer line interface circuits.
- Each customer line interface circuit includes high-input-impedance tap couplings for signals from the different transmission lines and circuitry controllable for selectably coupling at least one of the tap couplings to an output connection of the line interface circuit.
- FIG. 1 is a functional block diagram of a video program distribution system in accordance with the invention
- FIG. 2 is a diagram in greater detail of a remote terminal portion of the system of FIG. 1;
- FIG. 3. is a diagram of a customer line card for use in FIG. 2;
- FIG. 4 illustrates detail of program select logic used in FIG. 3.
- FIG. 5 is a block diagram of a wideband signal distribution system for distributing customer voice and customer data along with selected video signals.
- FIG. 1 illustrates a wideband data signal distribution system for video program, i.e. picture and associated sound, signal distribution.
- the system of FIG. 1 includes portions in a central office 10, such as a switching office in the public switched telephone network (PSTN), a remote terminal 11 at which wideband signal switching or routing to customer premises is accomplished, and an illustrative customer premises 12 of a customer who receives one or more selectable video programs at a time.
- a plurality N of video program sources (not shown) provide digitally encoded program signals, assumed to be in electrical form, to the office 10 wherein they are individually converted to optical, i.e. lightwave, form in electro-optical signal converters collectively represented by a converter 13.
- Digitally encoded signals are employed because, as compared to, e.g., analog signals representing the same information, they can be relatively inexpensively regenerated to remove transmission-induced distortions; and they are well suited for digital logic selection gating.
- Outputs of the converter 13 are transmitted via N separate lightguide fibers 16, schematically represented by a single broad arrow, to the remote terminal 11.
- N separate lightguide fibers 16 schematically represented by a single broad arrow
- the digitally encoded video program signals in optical form are restored individually to digitally encoded electrical form by opto-electric converters schematically represented by a single such converter 17.
- N individual video program signals appear in separate circuit paths of a cable 14 in the output of converter 17 and are applied in parallel to a plurality of customer line interface circuits, or cards, such as the card 18 within the broken-line box in the drawing.
- Availability of the N separate video program signals to other line cards is schematically represented by an angled broad arrow 19 in the drawing.
- a line card contains the customer line interface circuitry for providing selectable wideband data signal distribution service to an individual customer.
- a se1ect circuit 20 is provided for selecting among the N available video signals, herein sometimes called channels, any one or more of n channels, where n ⁇ N, for extended transmission to the customer premises 12 associated with that line card.
- Signals of any selected channel are reconverted to optical form, again as schematically represented by a single electro-optical converter 21.
- another opto-electrical converter 22 represents restoration of optical signals to the electrical format before application of video program signals to respective ones of display devices such as television receivers 23 and 26.
- Video signals are reconverted to analog form, if necessary for the particular receiver, by a suitable digital to analog converter (not shown).
- the selection is made under the joint control of signals provided from central office 10 for access control of all customers and from individual customer premises 12 for individual customer selection requests.
- a microprocessor based controller 27 on card 18 receives digital channel selection signals from customer premises 12 by way of a customer operated keypad 28, a microprocessor 29, electro-optical converter 30, and opto-electrical converter 31. Any suitable controller can be employed for controller 27, and in one application an Intel 8051 microcontroller was employed. Microprocessor 29 translates keystrokes to corresponding binary coded signals for transmission to remote terminal 11. Such control information is transmitted either for current time control of channel selection or for prospective control, e.g., a customer can order access to a certain channel or group of channels at a certain future date and hour or at specified periodically occurring times. This is sometimes called "pay per view" service; and the video programming is secure, from the programming provider's standpoint, without need for scramblers. The manner of inputting and transmitting such control information is well known and comprises no part of the present invention.
- Controller 27 responds to selection signals from premises 12 for current time selections by providing corresponding control signals, illustratively six bits, on a bus 32 to select circuit 20. Selection signals from premises 12 for prospective time selections are relayed to central office 10 which advantageously manages such prospective orders along with customer billing in a manner now well known in the art. Those prospective orders are combined with similar orders from interface circuitry of other line cards in a bidirectional transmission circuit 24 and transmitted to office 10 by way of converters 34 and 33, which convert between electrical and optical formats as appropriate for the particular direction of transmission. In the office 10 the order signals are processed automatically or by an operator, as schematically represented by a computer terminal 36. At appropriate times channel access information for a particular customer is transmitted back to the appropriate line card microprocessor controller for implementation. Short diagonal line connections on circuits extending between controller 27 and converter 34 schematically represent parallel, e.g., time multiplexed, control signal couplings of the type described between office 10 and all line cards at the remote terminal 11.
- FIG. 2 illustrates the remote terminal 11 in greater detail.
- Video program signals on respective circuits of cable 14 are each coupled by a separate buffer amplifier in an array of fanout buffers 36 to a plurality of cables, such as cables 37 and 38, for application of signals to a respective different subset of customer line cards, e.g., the cards mounted on a single shelf of an equipment rack (not separately shown).
- Each of the buffers 36 provides suitable gain for the fanout of a different one of the N digitally encoded video signals to N separate outputs of that amplifier.
- a distribution card such as one of cards 39 and 40, provides several functions. One of the functions is performed by a set of video buffers 41 for separately providing buffering of the N individual program signals to the subscriber line cards. Such buffering compensates for such things as impedance mismatches and cable crosstalk between cables 37 and 38.
- the distribution cards are alike so details of only one are illustrated.
- Output of each of the N buffers 41 is coupled to an input of a different transmission line in a cable 42.
- Each such line is provided at its remote end with a nonreflecting termination, schematically represented for all transmission lines by the single resistor 43 connected between the end of the cable and a terminal of a reference voltage supply which has its other terminal (not shown) connected to ground. It is assumed that circuits of all of the illustrated line interface circuit blocks are provided with a ground reference even though such is not separately shown.
- all transmission lines are separately tapped to provide a high input impedance coupling to a buffer amplifier as shown in greater detail in FIG. 3.
- the coupling impedance must be high enough so that the coupling does not significantly reduce signal amplitude available along the transmission line to inputs of any other of the C cards of the subset coupled to that transmission line.
- there are C 12 cards to an equipment shelf.
- One or more program channels are coupled through a line card to appear at its video signal output. That output is advantageously in optical signal form on one or more lightguide fibers 47 for transmission to the associated customer premises.
- the signals involved are binary coded, digital signal pulses; and the amplifiers are relatively simple transistor amplifiers. For example, five-transistor, differential amplifiers have been employed; and these do not require the filtering for wideband linearity required for analog video signaling. Such asynchronously operated digital signal amplifiers are much less expensive to implement than would be the case for a suitable number of broadband linear amplifiers required for analog signal distribution systems.
- Distribution cards such as card 39, also include a microprocessor 48 for time multiplexing and demultiplexing (muxdem) digital control signals to be bidirectionally coupled between the central office and the various line cards of a line card subset.
- a computer 49 performs bidirectional muxdem functions for such control signals with respect to all of the subsets of line cards.
- Access control signals from the central office and coupled via the circuit 24 are demultiplexed and distributed to appropriate ones of bidirectional control circuits, such as circuits 50 and 51, of the card subsets. In one such application, for 300 customer line cards, twelve cards were included in each of twenty-five subsets. Employment of a microprocessor 48 in each distribution card in cooperation with the computer 49 in a software controlled muxdem operation makes reconfiguring of the system to add or subtract customers relatively simple and inexpensive.
- a service circuit 52 receives signals from line card controllers indicating when they are ready to send or receive messages.
- Microprocessor 48 collects, via an uplink circuit 53, or distributes, via a downlink circuit 56, traffic as necessary in accordance with any of the known local area network protocols.
- Each of the line cards, such as 46 has an input connection from the circuit 56 and outputs the circuits 52 and 53.
- each line card has an input connection for its circuit 34 from the associated one of the customer premises for receiving channel selection signals for both current time and prospective selection orders.
- the line card microprocessor executes current time selection orders as received and passes on prospective selection orders via circuit 53 for use in central office 10.
- the central office facilities use the prospective selection order information to provide access control signals through the described paths and down link circuit 56 to guide the appropriate line card controller in its execution of current time orders.
- line interface circuits of all line cards are essentially the same, and one embodiment thereof is shown in greater detail in FIGS. 3 and 4.
- all card subsets are arranged in essentially the same manner so only the one subset has been hereinbefore described and others are schematically represented by the distribution card 40 and illustrated partial connections thereto.
- FIG. 3 depicts further detail of one of the line card interface circuits, such as the circuit of card 46, and its connections to two, 57 and 58, of the N transmission lines of the cable 42.
- Each of those transmission lines is, for example, a printed wiring board microstrip line.
- These two transmission lines are terminated in their characteristic impedances, schematically represented in the form of resistors 59 and 60, respectively, each connected between a reference voltage and an end of its transmission line remote from the associated distribution card.
- High input impedance amplifiers such as amplifiers 61 and 62, couple tapping points on transmission lines 57 and 58, respectively, to N different input connections to a selecting circuit 63 (shown in greater detail in FIG. 4).
- the amplifiers are for example MC 10101 ECL or gate amplifiers which exhibit sufficiently high impedance to permit accurate digital signal coupling from the transmission line without unduly reducing the remaining signal on the line for use by other line interface circuits of the subset.
- any one or more of the customers served by terminal 11 can access the same video program channel at the same time if they wish.
- Selecting circuit 63 is responsive to B N +B n +1 selection control signals.
- B N is an integer number of binary coded signal bits (where B N ⁇ log 2 N) designating one of the N input digital video program signals at a time.
- B n is an integer number of binary coded signal bits (where B n ⁇ log 2 n) designating one of the n outputs of the circuit 63.
- An additional clock signal lead is not specifically shown in FIG. 3.
- the selection control signals are provided via multiple signal paths 66 from a microprocessor 67. That microprocessor receives at one input the channel select circuit 34 from the associated customer premises, and it also has connections to circuits 52, 53, and 56 for the aforementioned channel access communication with the central office via the distribution card circuits of the line card subset.
- office 10 supplies to each line card microprocessor 67 for such customer signals defining the video signal channel and time limits for access by that customer. Those limits are stored in microprocessor memory, not separately shown, and used by the microprocessor 67 for comparing current time, channel selection orders and time of reception of such orders with the stored limit information to determine whether or not access will be granted.
- Such software controlled comparing operations are well known in the art and require no further description.
- Each of the digitally encoded signal outputs 0-(n-1) of circuit 63 is retimed in its individual retiming circuit, such as one of the circuits 68 and 69. before being converted to optical form in the electro-optical converters 70 and 71, respectively, on the way to optical fibers 47 and the customer premises.
- Retiming is provided because prior circuits are asynchronous, and a certain amount of edge jitter and data skewing can be picked up which should be removed before transmission on to the customer.
- One conventional retiming arrangement employs a phase locked loop type of circuit to detect the phase at the digital signal bit rate and use the recovered timing information to clock a D-type bistable circuit in the video signal path for regenerating the digital signals cleanly.
- the selecting circuit 63 includes n arrays, one for each output, of logic gates for selecting digitally encoded video signals. Two such arrays, 72 and 73, are shown; and each includes one AND logic gate, e.g., 76, for each of the N digitally encoded video program channel signals and an OR gate 77 to combine outputs of those AND gates to an associated output to combining circuit 70.
- Each AND gate also has an enabling input from a different output of a B N -input-to-one-out-of-N-output decoder, such as the two decoders 78 and 79 illustrated.
- Latch address circuits in the signal paths 66 supply signals to select one of a set of n latch circuits, such as circuits 80 and 81, at a time for storing the B N -bit coded signal designating a video program channel.
- Those B N -bit coded signals designate one of the circuit 63 inputs and hence one of the AND gates of the one of the gate arrays, e.g., 72, 73, corresponding to the decoder.
- a decoder 64 reduces the binary coded address information to one-out-of-n format for actuating one AND gate of a set 65 of such gates.
- Those gates are all enabled from time to time by a clock signal provided on a lead 74 from microprocessor 67 when new selection information, including information indicating removal of all selection, is to be latched.
- the actuated one of the enabled AND gates provides an output for clocking a corresponding one of the latch circuits to store that new information.
- Those stored coded signals are then continuously available, through a corresponding one of the decoders for enabling one AND gate per array.
- FIG. 5 illustrates a modification of the FIG. 1 system to achieve a wideband service in which, in addition to the previously described wideband video program signal distribution, and control of selection of such signals, there are provided arrangements for accommodating bidirectional communication of customer narrowband digital signals. Only one connection 90 is needed to the customer.
- Such narrowband digital signals include, for example, digitalized voice communication (independently of the voice signals associated with any distributed video program signal) and bidirectional data communication (independently of the mentioned control signal communication) between the central office and a customer's premises.
- those arrangements provide further for those voice and data communication signals to be multiplexed with the wideband signals, illustratively, onto a single lightguide fiber between the remote terminal and those customer premises.
- a control muxdem 80 replaces the circuit branching point represented in FIG. 1 between converter 34 and line card 18 for control signals passing between the central office and the line cards of the remote terminal 11.
- Those control signals include signals from the customer for controlling the future program selections of the customer and time-channel signals from the office for controlling the extent of access to program signals to be permitted to the customer.
- a microprocessor based controller 81 provides the control signal interface for a modified line card 82 through that muxdem 80. Controller 81 output determines selection of one or more of n wideband video program signals, with associated voice, from the N inputs to select circuit 83 from transmission lines of cable 42 as previously outlined in connection with the embodiment of FIG. 1.
- Bidirectional data signal communication coupling is provided between card 82 and a data muxdem 86, and similar coupling is provided through other bidirectional couplings between the muxdem and other line cards.
- the central office 10 facilities are advantageously employed in the usual manner for receiving data signals from different destinations and switching and multiplexing them there as needed to route them to the destinations to be reached through the muxdem 86 in remote terminal 11; and similarly the office demultiplexes signals from that muxdem and switches them to their respective destinations as is well known in the art.
- a voice muxdem 87 provides bidirectional coupling for digitalized voice signals between the central office and the various line cards of the remote terminal 11.
- Each line card such as card 82, includes a demultiplexer 88 for receiving voice, data, and selection control signals from an associated customer premises 89 by way of a single bidirectional optical fiber 90 and an electrical-optical signal mode converter 91.
- That converter includes, for example, a combiner for coupling signals in optical form both out of and into the same end of the fiber 90, modulated at different wavelengths for each direction of transmission, as shown illustratively in a paper "An Engineering Guide to Couplers" by J. C. Williams et al., Laser Focus, Vol. 17, No. 10, pages 129-134.
- Appropriate individual converters, electrical-to-optical for input to the fiber and optical-to-electrical for output from the fiber are also employed.
- displays 23 and 26 and keypad 28 and microprocessor 29 are provided as before. In addition other facilities are provided. Multiple keypad-microprocessor units are available as schematically represented by the keypad 92 and microprocessor 93. Also included are a data set 96 and a conventional telephone station set 97. Outputs from any one or more of the microprocessors 29 or 93, the data set 96, and the telephone set 96 are applied to a voice/data/control multiplexer 98, through an analog- to-digital converter 99 in the case of the telephone set output.
- the time multiplexed output of multiplexer 98 is then coupled through an electrical-to-optical converter 100, wherein it is also modulated to the wavelength for uplink direction of transmission via fiber 90, to the remote terminal.
- converter 91 in that terminal those uplink wavelength signals are restored to baseband electrical format and coupled to the input of demuxer 88.
- the line card 82 includes a data/voice/video multiplexer 101 for combining digital data and voice signals from muxdems 86 and 87 with digitalized video (with its associated voice) signals for the selected n program signal channels from select circuit 83.
- Time multiplexed output of that circuit includes all of those signals combined into a single electrical signal stream for application to an input of converter 91 and thence application in optical form to the downlink wavelength on fiber 90.
- the multiplexed signals are restored to electrical form in converter 100 and coupled from there to a voice/data/video demultiplexer 102 in which the video program signals are separated out for application to appropriate ones of the displays 23. 26, data signals are separately applied to data set 96, and voice signals are coupled through a digital-to-analog converter 103 to the station set 97.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
Abstract
Description
Claims (6)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/753,535 US4760442A (en) | 1985-07-10 | 1985-07-10 | Wideband digital signal distribution system |
CA000512418A CA1250979A (en) | 1985-07-10 | 1986-06-25 | Wideband digital signal distribution system |
EP86305102A EP0208501B1 (en) | 1985-07-10 | 1986-07-01 | Wideband digital signal distribution system |
DE8686305102T DE3677077D1 (en) | 1985-07-10 | 1986-07-01 | DISTRIBUTION SYSTEM FOR BROADBAND DIGITAL SIGNALS. |
JP61160977A JP3088725B2 (en) | 1985-07-10 | 1986-07-10 | Signal distribution system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/753,535 US4760442A (en) | 1985-07-10 | 1985-07-10 | Wideband digital signal distribution system |
Publications (1)
Publication Number | Publication Date |
---|---|
US4760442A true US4760442A (en) | 1988-07-26 |
Family
ID=25031049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/753,535 Expired - Lifetime US4760442A (en) | 1985-07-10 | 1985-07-10 | Wideband digital signal distribution system |
Country Status (5)
Country | Link |
---|---|
US (1) | US4760442A (en) |
EP (1) | EP0208501B1 (en) |
JP (1) | JP3088725B2 (en) |
CA (1) | CA1250979A (en) |
DE (1) | DE3677077D1 (en) |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4891694A (en) * | 1988-11-21 | 1990-01-02 | Bell Communications Research, Inc. | Fiber optic cable television distribution system |
US4949170A (en) * | 1988-09-22 | 1990-08-14 | Pioneer Electronic Corporation | Video information transmission service system and head end device therefor |
US4994909A (en) * | 1989-05-04 | 1991-02-19 | Northern Telecom Limited | Video signal distribution system |
US5093718A (en) * | 1990-09-28 | 1992-03-03 | Inteletext Systems, Inc. | Interactive home information system |
US5130793A (en) * | 1988-07-22 | 1992-07-14 | Etat Francais | Reconfigurable multiple-point wired in-house network for simultaneous and/or alternative distribution of several types of signals, notably baseband images, and method for the configuration of a system such as this |
US5132827A (en) * | 1989-09-06 | 1992-07-21 | International Business Machines Corporation | Optical fibre communication link for connecting a peripheral device to a computer system |
US5204768A (en) * | 1991-02-12 | 1993-04-20 | Mind Path Technologies, Inc. | Remote controlled electronic presentation system |
US5220420A (en) * | 1990-09-28 | 1993-06-15 | Inteletext Systems, Inc. | Interactive home information system for distributing compressed television programming |
US5347384A (en) * | 1992-06-30 | 1994-09-13 | Loral Aerospace Corp. | Fiber optic distribution of image data |
US5412720A (en) * | 1990-09-28 | 1995-05-02 | Ictv, Inc. | Interactive home information system |
US5414455A (en) * | 1993-07-07 | 1995-05-09 | Digital Equipment Corporation | Segmented video on demand system |
US5442390A (en) * | 1993-07-07 | 1995-08-15 | Digital Equipment Corporation | Video on demand with memory accessing and or like functions |
US5479202A (en) * | 1993-11-01 | 1995-12-26 | Gte Laboratories Incorporated | Television receiver for accessing switched broadband networks |
US5485197A (en) * | 1990-09-28 | 1996-01-16 | Ictv, Inc. | Carousel display |
US5534912A (en) * | 1994-04-26 | 1996-07-09 | Bell Atlantic Network Services, Inc. | Extended range video on demand distribution system |
US5557316A (en) * | 1990-09-28 | 1996-09-17 | Ictv, Inc. | System for distributing broadcast television services identically on a first bandwidth portion of a plurality of express trunks and interactive services over a second bandwidth portion of each express trunk on a subscriber demand basis |
US5572347A (en) * | 1991-07-30 | 1996-11-05 | Alcatel Network Systems, Inc. | Switched video architecture for an optical fiber-to-the-curb telecommunications system |
US5574965A (en) * | 1991-10-04 | 1996-11-12 | D2B Systems Company Limited | Local communication bus system and apparatuses for use in such a system |
US5587734A (en) * | 1990-09-28 | 1996-12-24 | Ictv, Inc. | User interface for selecting television information services through pseudo-channel access |
US5594507A (en) * | 1990-09-28 | 1997-01-14 | Ictv, Inc. | Compressed digital overlay controller and method for MPEG type video signal |
US5608448A (en) * | 1995-04-10 | 1997-03-04 | Lockheed Martin Corporation | Hybrid architecture for video on demand server |
US5610916A (en) * | 1995-03-16 | 1997-03-11 | Bell Atlantic Network Services, Inc. | Shared receiving systems utilizing telephone cables as video drops |
EP0766474A1 (en) * | 1995-09-28 | 1997-04-02 | AT&T Corp. | Curbside circuitry for interactive communication services |
US5751338A (en) * | 1994-12-30 | 1998-05-12 | Visionary Corporate Technologies | Methods and systems for multimedia communications via public telephone networks |
US5761312A (en) * | 1995-06-07 | 1998-06-02 | Zelikovitz, Deceased; Joseph | Enhanced individual intelligent communication platform for subscribers on a telephone system |
US5784683A (en) * | 1995-05-16 | 1998-07-21 | Bell Atlantic Network Services, Inc. | Shared use video processing systems for distributing program signals from multiplexed digitized information signals |
US5793410A (en) * | 1995-05-26 | 1998-08-11 | Hyundai Electronics America | Video pedestal network |
US5808671A (en) * | 1994-11-24 | 1998-09-15 | Augat Photon Systems Inc. | Apparatus and method for remote monitoring of video signals |
US5883661A (en) * | 1990-09-28 | 1999-03-16 | Ictv, Inc. | Output switching for load levelling across multiple service areas |
US6002502A (en) * | 1995-12-07 | 1999-12-14 | Bell Atlantic Network Services, Inc. | Switchable optical network unit |
US6034678A (en) * | 1991-09-10 | 2000-03-07 | Ictv, Inc. | Cable television system with remote interactive processor |
US6359881B1 (en) * | 1997-12-31 | 2002-03-19 | At&T Corp. | Hybrid fiber twisted pair local loop network service architecture |
US6424646B1 (en) | 1997-12-31 | 2002-07-23 | At&T Corp. | Integrated services director (ISD) overall architecture |
US6594826B1 (en) | 1995-05-26 | 2003-07-15 | Irdeto Access, Inc. | Video pedestal network |
US6619865B1 (en) * | 1990-11-30 | 2003-09-16 | Hitachi, Ltd. | Optical frequency division multiplexing network |
US20040151212A1 (en) * | 1997-12-31 | 2004-08-05 | Irwin Gerszberg | Integrated services director (ISD) overall architecture |
US20050114906A1 (en) * | 1993-05-03 | 2005-05-26 | Ictv, Inc. | System for interactive television |
US20050259541A1 (en) * | 2003-03-04 | 2005-11-24 | Yasuo Suzuki | Delivery method and delivery system of contents information, and central station thereof |
US6972786B1 (en) | 1994-12-30 | 2005-12-06 | Collaboration Properties, Inc. | Multimedia services using central office |
US20060130113A1 (en) * | 2004-12-15 | 2006-06-15 | Carlucci John B | Method and apparatus for wideband distribution of content |
US20070009235A1 (en) * | 2005-07-07 | 2007-01-11 | Eric Walters | System and method for digital content retrieval |
US20070011717A1 (en) * | 2005-07-06 | 2007-01-11 | Lauder Gary M | Distribution of interactive information content within a plurality of disparate distribution networks |
US7272298B1 (en) | 1998-05-06 | 2007-09-18 | Burst.Com, Inc. | System and method for time-shifted program viewing |
US7301944B1 (en) | 1997-10-24 | 2007-11-27 | Tranz-Send Broadcasting Network, Inc. | Media file distribution with adaptive transmission protocols |
US7529465B2 (en) | 1998-07-30 | 2009-05-05 | Tivo Inc. | System for time shifting multimedia content streams |
US7558472B2 (en) | 2000-08-22 | 2009-07-07 | Tivo Inc. | Multimedia signal processing system |
US20090207866A1 (en) * | 2008-02-19 | 2009-08-20 | Chris Cholas | Apparatus and methods for utilizing statistical multiplexing to ensure quality of service in a network |
US20090307741A1 (en) * | 2008-06-09 | 2009-12-10 | Echostar Technologies L.L.C. | Methods and apparatus for dividing an audio/video stream into multiple segments using text data |
US7752649B1 (en) * | 1981-11-03 | 2010-07-06 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US7984474B2 (en) | 2000-02-08 | 2011-07-19 | Quartics, Inc. | Method and apparatus for a digitized CATV network for bundled services |
US8136140B2 (en) | 2007-11-20 | 2012-03-13 | Dish Network L.L.C. | Methods and apparatus for generating metadata utilized to filter content from a video stream using text data |
US8156520B2 (en) | 2008-05-30 | 2012-04-10 | EchoStar Technologies, L.L.C. | Methods and apparatus for presenting substitute content in an audio/video stream using text data |
US8165450B2 (en) | 2007-11-19 | 2012-04-24 | Echostar Technologies L.L.C. | Methods and apparatus for filtering content in a video stream using text data |
US8165451B2 (en) | 2007-11-20 | 2012-04-24 | Echostar Technologies L.L.C. | Methods and apparatus for displaying information regarding interstitials of a video stream |
US8380041B2 (en) | 1998-07-30 | 2013-02-19 | Tivo Inc. | Transportable digital video recorder system |
US8407735B2 (en) | 2008-12-24 | 2013-03-26 | Echostar Technologies L.L.C. | Methods and apparatus for identifying segments of content in a presentation stream using signature data |
US8437617B2 (en) | 2009-06-17 | 2013-05-07 | Echostar Technologies L.L.C. | Method and apparatus for modifying the presentation of content |
US8510771B2 (en) | 2008-12-24 | 2013-08-13 | Echostar Technologies L.L.C. | Methods and apparatus for filtering content from a presentation stream using signature data |
US8577205B2 (en) | 1998-07-30 | 2013-11-05 | Tivo Inc. | Digital video recording system |
US8588579B2 (en) | 2008-12-24 | 2013-11-19 | Echostar Technologies L.L.C. | Methods and apparatus for filtering and inserting content into a presentation stream using signature data |
US8606085B2 (en) | 2008-03-20 | 2013-12-10 | Dish Network L.L.C. | Method and apparatus for replacement of audio data in recorded audio/video stream |
US8934758B2 (en) | 2010-02-09 | 2015-01-13 | Echostar Global B.V. | Methods and apparatus for presenting supplemental content in association with recorded content |
US9021541B2 (en) | 2010-10-14 | 2015-04-28 | Activevideo Networks, Inc. | Streaming digital video between video devices using a cable television system |
US9042454B2 (en) | 2007-01-12 | 2015-05-26 | Activevideo Networks, Inc. | Interactive encoded content system including object models for viewing on a remote device |
US9077860B2 (en) | 2005-07-26 | 2015-07-07 | Activevideo Networks, Inc. | System and method for providing video content associated with a source image to a television in a communication network |
US9123084B2 (en) | 2012-04-12 | 2015-09-01 | Activevideo Networks, Inc. | Graphical application integration with MPEG objects |
US9204203B2 (en) | 2011-04-07 | 2015-12-01 | Activevideo Networks, Inc. | Reduction of latency in video distribution networks using adaptive bit rates |
US9219922B2 (en) | 2013-06-06 | 2015-12-22 | Activevideo Networks, Inc. | System and method for exploiting scene graph information in construction of an encoded video sequence |
US9294785B2 (en) | 2013-06-06 | 2016-03-22 | Activevideo Networks, Inc. | System and method for exploiting scene graph information in construction of an encoded video sequence |
US9326047B2 (en) | 2013-06-06 | 2016-04-26 | Activevideo Networks, Inc. | Overlay rendering of user interface onto source video |
US9706234B2 (en) | 2007-07-24 | 2017-07-11 | Time Warner Cable Enterprises Llc | Generation, distribution and use of content metadata in a network |
US9788029B2 (en) | 2014-04-25 | 2017-10-10 | Activevideo Networks, Inc. | Intelligent multiplexing using class-based, multi-dimensioned decision logic for managed networks |
US9800945B2 (en) | 2012-04-03 | 2017-10-24 | Activevideo Networks, Inc. | Class-based intelligent multiplexing over unmanaged networks |
US9826197B2 (en) | 2007-01-12 | 2017-11-21 | Activevideo Networks, Inc. | Providing television broadcasts over a managed network and interactive content over an unmanaged network to a client device |
US9883219B2 (en) | 2005-02-01 | 2018-01-30 | Time Warner Cable Enterprises Llc | Apparatus and methods for multi-stage multiplexing in a network |
US9967534B1 (en) | 2004-11-19 | 2018-05-08 | Tivo Solutions Inc. | Digital video recorder video editing system |
US10200731B2 (en) | 2010-09-03 | 2019-02-05 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
US10275128B2 (en) | 2013-03-15 | 2019-04-30 | Activevideo Networks, Inc. | Multiple-mode system and method for providing user selectable video content |
US10411939B2 (en) | 2010-05-27 | 2019-09-10 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
US10409445B2 (en) | 2012-01-09 | 2019-09-10 | Activevideo Networks, Inc. | Rendering of an interactive lean-backward user interface on a television |
US10432990B2 (en) | 2001-09-20 | 2019-10-01 | Time Warner Cable Enterprises Llc | Apparatus and methods for carrier allocation in a communications network |
US11172269B2 (en) | 2020-03-04 | 2021-11-09 | Dish Network L.L.C. | Automated commercial content shifting in a video streaming system |
US11991234B2 (en) | 2004-04-30 | 2024-05-21 | DISH Technologies L.L.C. | Apparatus, system, and method for multi-bitrate content streaming |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2650464B1 (en) * | 1989-07-27 | 1991-10-04 | Locatel | TELEVISION SYSTEM |
FR2725861B1 (en) * | 1994-10-13 | 1996-12-06 | Menand Alain | VIDEO AND AUDIO COMMUNICATION NETWORK |
US5812930A (en) * | 1996-07-10 | 1998-09-22 | International Business Machines Corp. | Information handling systems with broadband and narrowband communication channels between repository and display systems |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3701849A (en) * | 1970-02-09 | 1972-10-31 | Bell Telephone Labor Inc | Concentrator arrangement for wideband switching |
US3757225A (en) * | 1972-03-16 | 1973-09-04 | Telebeam Corp | Communication system |
US3955188A (en) * | 1971-01-04 | 1976-05-04 | Honeywell Information Systems Inc. | Encoding technique for enabling a device to process different types of digital information transmitted along a single information channel |
US3958088A (en) * | 1974-03-29 | 1976-05-18 | Xerox Corporation | Communications systems having a selective facsimile output |
US3992686A (en) * | 1975-07-24 | 1976-11-16 | The Singer Company | Backplane transmission line system |
DE2538638A1 (en) * | 1975-08-30 | 1977-03-03 | Foerderungsgemeinschaft Des He | Integrated communications network using fibre-optic transmission - has one send and receive conductor for video speech and data |
US4054910A (en) * | 1976-02-26 | 1977-10-18 | Tel-E-Tel, Inc. | Communication system for the transmission of closed circuit television over an ordinary pair of wires |
US4081753A (en) * | 1976-12-13 | 1978-03-28 | Miller Arthur O | Automatic programming system for television receivers |
US4135202A (en) * | 1973-12-03 | 1979-01-16 | Communications Patents Limited | Broadcasting systems with fibre optic transmission lines |
US4228543A (en) * | 1978-03-24 | 1980-10-14 | Jackson Joseph N | Programmable television receiver controllers |
US4430731A (en) * | 1980-04-30 | 1984-02-07 | The Manitoba Telephone System | Video and data distribution module with subscriber terminal |
US4475187A (en) * | 1981-03-12 | 1984-10-02 | Siemens Aktiengesellschaft | Broad band exchange system to minimize crosstalk using threshold value multiplex circuits |
EP0120742A1 (en) * | 1983-03-23 | 1984-10-03 | SAT (Société Anonyme de Télécommunications),Société Anonyme | Cable network for video communication |
US4498168A (en) * | 1982-12-13 | 1985-02-05 | Trw Inc. | Communication network and method for its use |
US4506387A (en) * | 1983-05-25 | 1985-03-19 | Walter Howard F | Programming-on-demand cable system and method |
US4512033A (en) * | 1982-11-29 | 1985-04-16 | C-Cor Labs, Inc. | Remote level adjustment system for use in a multi-terminal communications system |
US4538174A (en) * | 1982-03-11 | 1985-08-27 | Communications Patents Limited | Two-way subscriber TV system with multiple subscriber's sets |
US4627076A (en) * | 1982-02-24 | 1986-12-02 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Low power digital bus |
US4682349A (en) * | 1984-04-10 | 1987-07-21 | Pierre Sorriaux | Switching system with video switching matrix |
US4686698A (en) * | 1985-04-08 | 1987-08-11 | Datapoint Corporation | Workstation for interfacing with a video conferencing network |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1142244A (en) * | 1979-08-22 | 1983-03-01 | Eric J. Gargini | Wired broadcasting system with subscriber controlled switched programme selection |
JPS59126389A (en) * | 1983-01-08 | 1984-07-20 | Pioneer Electronic Corp | Terminal device in charged catv system |
US4527194A (en) * | 1983-07-27 | 1985-07-02 | Zenith Electronics Corporation | Channel assignment for CATV system |
DE3403659A1 (en) * | 1984-02-03 | 1985-08-14 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | BROADBAND INTEGRATED SUBSCRIBER CONNECTION SYSTEM |
-
1985
- 1985-07-10 US US06/753,535 patent/US4760442A/en not_active Expired - Lifetime
-
1986
- 1986-06-25 CA CA000512418A patent/CA1250979A/en not_active Expired
- 1986-07-01 DE DE8686305102T patent/DE3677077D1/en not_active Expired - Fee Related
- 1986-07-01 EP EP86305102A patent/EP0208501B1/en not_active Expired - Lifetime
- 1986-07-10 JP JP61160977A patent/JP3088725B2/en not_active Expired - Fee Related
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3701849A (en) * | 1970-02-09 | 1972-10-31 | Bell Telephone Labor Inc | Concentrator arrangement for wideband switching |
US3955188A (en) * | 1971-01-04 | 1976-05-04 | Honeywell Information Systems Inc. | Encoding technique for enabling a device to process different types of digital information transmitted along a single information channel |
US3757225A (en) * | 1972-03-16 | 1973-09-04 | Telebeam Corp | Communication system |
US4135202A (en) * | 1973-12-03 | 1979-01-16 | Communications Patents Limited | Broadcasting systems with fibre optic transmission lines |
US3958088A (en) * | 1974-03-29 | 1976-05-18 | Xerox Corporation | Communications systems having a selective facsimile output |
US3992686A (en) * | 1975-07-24 | 1976-11-16 | The Singer Company | Backplane transmission line system |
DE2538638A1 (en) * | 1975-08-30 | 1977-03-03 | Foerderungsgemeinschaft Des He | Integrated communications network using fibre-optic transmission - has one send and receive conductor for video speech and data |
US4054910A (en) * | 1976-02-26 | 1977-10-18 | Tel-E-Tel, Inc. | Communication system for the transmission of closed circuit television over an ordinary pair of wires |
US4081753A (en) * | 1976-12-13 | 1978-03-28 | Miller Arthur O | Automatic programming system for television receivers |
US4228543A (en) * | 1978-03-24 | 1980-10-14 | Jackson Joseph N | Programmable television receiver controllers |
US4430731A (en) * | 1980-04-30 | 1984-02-07 | The Manitoba Telephone System | Video and data distribution module with subscriber terminal |
US4475187A (en) * | 1981-03-12 | 1984-10-02 | Siemens Aktiengesellschaft | Broad band exchange system to minimize crosstalk using threshold value multiplex circuits |
US4627076A (en) * | 1982-02-24 | 1986-12-02 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Low power digital bus |
US4538174A (en) * | 1982-03-11 | 1985-08-27 | Communications Patents Limited | Two-way subscriber TV system with multiple subscriber's sets |
US4512033A (en) * | 1982-11-29 | 1985-04-16 | C-Cor Labs, Inc. | Remote level adjustment system for use in a multi-terminal communications system |
US4498168A (en) * | 1982-12-13 | 1985-02-05 | Trw Inc. | Communication network and method for its use |
EP0120742A1 (en) * | 1983-03-23 | 1984-10-03 | SAT (Société Anonyme de Télécommunications),Société Anonyme | Cable network for video communication |
US4616256A (en) * | 1983-03-23 | 1986-10-07 | Societe Anonyme De Telecommunications | Television channel distribution network |
US4506387A (en) * | 1983-05-25 | 1985-03-19 | Walter Howard F | Programming-on-demand cable system and method |
US4682349A (en) * | 1984-04-10 | 1987-07-21 | Pierre Sorriaux | Switching system with video switching matrix |
US4686698A (en) * | 1985-04-08 | 1987-08-11 | Datapoint Corporation | Workstation for interfacing with a video conferencing network |
Non-Patent Citations (8)
Title |
---|
"Dial a Program--an HF Remote Selection Cable Television System," Proceedings of the IEEE, R. P. Gabriel, Jul. 1970, vol. 58, No. 7, pp. 1016-1023. |
Dial a Program an HF Remote Selection Cable Television System, Proceedings of the IEEE, R. P. Gabriel, Jul. 1970, vol. 58, No. 7, pp. 1016 1023. * |
Elmer H. Hara, "Conceptual Design of a Switched Television-Distribution System Using Optical-Fiber Waveguides", IEEE Transactions on Cable Television, vol. CATV-2, No. 3, Jul. 1977. |
Elmer H. Hara, Conceptual Design of a Switched Television Distribution System Using Optical Fiber Waveguides , IEEE Transactions on Cable Television , vol. CATV 2, No. 3, Jul. 1977. * |
Gray et al, "A Multiservice System Using Fiber Optic Loops", NTG-Fachber, vol. 73, 1980, pp. 119-124. |
Gray et al, A Multiservice System Using Fiber Optic Loops , NTG Fachber , vol. 73, 1980, pp. 119 124. * |
W. K. Ritchie, "Multiservice Cable-Television Distribution Systems", British Telecommunications Engineering, vol. 1, No. 4, Jan. 1983, pp. 205-210. |
W. K. Ritchie, Multiservice Cable Television Distribution Systems , British Telecommunications Engineering, vol. 1, No. 4, Jan. 1983, pp. 205 210. * |
Cited By (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8893177B1 (en) | 1981-11-03 | 2014-11-18 | {Personalized Media Communications, LLC | Signal processing apparatus and methods |
US8587720B1 (en) | 1981-11-03 | 2013-11-19 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US9210370B1 (en) | 1981-11-03 | 2015-12-08 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US9674560B1 (en) | 1981-11-03 | 2017-06-06 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8739241B1 (en) | 1981-11-03 | 2014-05-27 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US9038124B1 (en) | 1981-11-03 | 2015-05-19 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8973034B1 (en) | 1981-11-03 | 2015-03-03 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US10334292B1 (en) | 1981-11-03 | 2019-06-25 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US10523350B1 (en) | 1981-11-03 | 2019-12-31 | Personalized Media Communications LLC | Signal processing apparatus and methods |
USRE47867E1 (en) | 1981-11-03 | 2020-02-18 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8584162B1 (en) | 1981-11-03 | 2013-11-12 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8601528B1 (en) | 1981-11-03 | 2013-12-03 | Personalized Media Communications, L.L.C. | Signal processing apparatus and methods |
US8572671B1 (en) | 1981-11-03 | 2013-10-29 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US10609425B1 (en) | 1981-11-03 | 2020-03-31 | Personalized Media Communications, L.L.C. | Signal processing apparatus and methods |
US10616638B1 (en) | 1981-11-03 | 2020-04-07 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8566868B1 (en) | 1981-11-03 | 2013-10-22 | Personalized Media Communications, L.L.C. | Signal processing apparatus and methods |
US8914825B1 (en) | 1981-11-03 | 2014-12-16 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US7752649B1 (en) * | 1981-11-03 | 2010-07-06 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US10715835B1 (en) | 1981-11-03 | 2020-07-14 | John Christopher Harvey | Signal processing apparatus and methods |
US8752088B1 (en) | 1981-11-03 | 2014-06-10 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US9294205B1 (en) | 1981-11-03 | 2016-03-22 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8869229B1 (en) | 1981-11-03 | 2014-10-21 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8558950B1 (en) | 1981-11-03 | 2013-10-15 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8559635B1 (en) | 1981-11-03 | 2013-10-15 | Personalized Media Communications, L.L.C. | Signal processing apparatus and methods |
US8607296B1 (en) | 1981-11-03 | 2013-12-10 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8613034B1 (en) | 1981-11-03 | 2013-12-17 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8621547B1 (en) | 1981-11-03 | 2013-12-31 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8635644B1 (en) | 1981-11-03 | 2014-01-21 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8640184B1 (en) | 1981-11-03 | 2014-01-28 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8869228B1 (en) | 1981-11-03 | 2014-10-21 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8839293B1 (en) | 1981-11-03 | 2014-09-16 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8804727B1 (en) | 1981-11-03 | 2014-08-12 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8646001B1 (en) | 1981-11-03 | 2014-02-04 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8675775B1 (en) | 1981-11-03 | 2014-03-18 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8683539B1 (en) | 1981-11-03 | 2014-03-25 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US8395707B1 (en) | 1981-11-03 | 2013-03-12 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8713624B1 (en) | 1981-11-03 | 2014-04-29 | Personalized Media Communications LLC | Signal processing apparatus and methods |
US8191091B1 (en) | 1981-11-03 | 2012-05-29 | Personalized Media Communications, Llc | Signal processing apparatus and methods |
US5130793A (en) * | 1988-07-22 | 1992-07-14 | Etat Francais | Reconfigurable multiple-point wired in-house network for simultaneous and/or alternative distribution of several types of signals, notably baseband images, and method for the configuration of a system such as this |
US4949170A (en) * | 1988-09-22 | 1990-08-14 | Pioneer Electronic Corporation | Video information transmission service system and head end device therefor |
US4891694A (en) * | 1988-11-21 | 1990-01-02 | Bell Communications Research, Inc. | Fiber optic cable television distribution system |
US4994909A (en) * | 1989-05-04 | 1991-02-19 | Northern Telecom Limited | Video signal distribution system |
US5132827A (en) * | 1989-09-06 | 1992-07-21 | International Business Machines Corporation | Optical fibre communication link for connecting a peripheral device to a computer system |
US5526034A (en) * | 1990-09-28 | 1996-06-11 | Ictv, Inc. | Interactive home information system with signal assignment |
US5485197A (en) * | 1990-09-28 | 1996-01-16 | Ictv, Inc. | Carousel display |
US5587734A (en) * | 1990-09-28 | 1996-12-24 | Ictv, Inc. | User interface for selecting television information services through pseudo-channel access |
US5093718A (en) * | 1990-09-28 | 1992-03-03 | Inteletext Systems, Inc. | Interactive home information system |
US5883661A (en) * | 1990-09-28 | 1999-03-16 | Ictv, Inc. | Output switching for load levelling across multiple service areas |
US5557316A (en) * | 1990-09-28 | 1996-09-17 | Ictv, Inc. | System for distributing broadcast television services identically on a first bandwidth portion of a plurality of express trunks and interactive services over a second bandwidth portion of each express trunk on a subscriber demand basis |
US5550578A (en) * | 1990-09-28 | 1996-08-27 | Ictv, Inc. | Interactive and conventional television information system |
US6100883A (en) * | 1990-09-28 | 2000-08-08 | Ictv, Inc. | Home interface controller for providing interactive cable television |
US5220420A (en) * | 1990-09-28 | 1993-06-15 | Inteletext Systems, Inc. | Interactive home information system for distributing compressed television programming |
US5594507A (en) * | 1990-09-28 | 1997-01-14 | Ictv, Inc. | Compressed digital overlay controller and method for MPEG type video signal |
US5412720A (en) * | 1990-09-28 | 1995-05-02 | Ictv, Inc. | Interactive home information system |
US7127170B2 (en) | 1990-11-30 | 2006-10-24 | Hitachi, Ltd. | Optical frequency division multiplexing network |
US6619865B1 (en) * | 1990-11-30 | 2003-09-16 | Hitachi, Ltd. | Optical frequency division multiplexing network |
US5204768A (en) * | 1991-02-12 | 1993-04-20 | Mind Path Technologies, Inc. | Remote controlled electronic presentation system |
US5572347A (en) * | 1991-07-30 | 1996-11-05 | Alcatel Network Systems, Inc. | Switched video architecture for an optical fiber-to-the-curb telecommunications system |
US6034678A (en) * | 1991-09-10 | 2000-03-07 | Ictv, Inc. | Cable television system with remote interactive processor |
US5574965A (en) * | 1991-10-04 | 1996-11-12 | D2B Systems Company Limited | Local communication bus system and apparatuses for use in such a system |
US5347384A (en) * | 1992-06-30 | 1994-09-13 | Loral Aerospace Corp. | Fiber optic distribution of image data |
US20050114906A1 (en) * | 1993-05-03 | 2005-05-26 | Ictv, Inc. | System for interactive television |
US5414455A (en) * | 1993-07-07 | 1995-05-09 | Digital Equipment Corporation | Segmented video on demand system |
US5442390A (en) * | 1993-07-07 | 1995-08-15 | Digital Equipment Corporation | Video on demand with memory accessing and or like functions |
US5479202A (en) * | 1993-11-01 | 1995-12-26 | Gte Laboratories Incorporated | Television receiver for accessing switched broadband networks |
US5534912A (en) * | 1994-04-26 | 1996-07-09 | Bell Atlantic Network Services, Inc. | Extended range video on demand distribution system |
US5808671A (en) * | 1994-11-24 | 1998-09-15 | Augat Photon Systems Inc. | Apparatus and method for remote monitoring of video signals |
US5751338A (en) * | 1994-12-30 | 1998-05-12 | Visionary Corporate Technologies | Methods and systems for multimedia communications via public telephone networks |
US6081291A (en) * | 1994-12-30 | 2000-06-27 | Vct, Inc. | Methods and systems for multimedia communication via public telephone networks |
US6972786B1 (en) | 1994-12-30 | 2005-12-06 | Collaboration Properties, Inc. | Multimedia services using central office |
US5610916A (en) * | 1995-03-16 | 1997-03-11 | Bell Atlantic Network Services, Inc. | Shared receiving systems utilizing telephone cables as video drops |
US5608448A (en) * | 1995-04-10 | 1997-03-04 | Lockheed Martin Corporation | Hybrid architecture for video on demand server |
US5784683A (en) * | 1995-05-16 | 1998-07-21 | Bell Atlantic Network Services, Inc. | Shared use video processing systems for distributing program signals from multiplexed digitized information signals |
US7278152B1 (en) | 1995-05-26 | 2007-10-02 | Irdeto Access, Inc. | Video pedestal network |
US6594826B1 (en) | 1995-05-26 | 2003-07-15 | Irdeto Access, Inc. | Video pedestal network |
US20030200549A1 (en) * | 1995-05-26 | 2003-10-23 | Hyundai Electronics Of America | Video pedestal network |
US6738983B1 (en) | 1995-05-26 | 2004-05-18 | Irdeto Access, Inc. | Video pedestal network |
US5793410A (en) * | 1995-05-26 | 1998-08-11 | Hyundai Electronics America | Video pedestal network |
US20080046938A9 (en) * | 1995-05-26 | 2008-02-21 | Irdeto Access, Inc. | Video pedestal network |
US5761312A (en) * | 1995-06-07 | 1998-06-02 | Zelikovitz, Deceased; Joseph | Enhanced individual intelligent communication platform for subscribers on a telephone system |
EP0766474A1 (en) * | 1995-09-28 | 1997-04-02 | AT&T Corp. | Curbside circuitry for interactive communication services |
US6305020B1 (en) | 1995-11-01 | 2001-10-16 | Ictv, Inc. | System manager and hypertext control interface for interactive cable television system |
US6002502A (en) * | 1995-12-07 | 1999-12-14 | Bell Atlantic Network Services, Inc. | Switchable optical network unit |
US6097515A (en) * | 1995-12-07 | 2000-08-01 | Bell Atlantic Network Services, Inc. | Switchable optical network unit |
US7301944B1 (en) | 1997-10-24 | 2007-11-27 | Tranz-Send Broadcasting Network, Inc. | Media file distribution with adaptive transmission protocols |
US20080120430A1 (en) * | 1997-10-24 | 2008-05-22 | Redmond Scott D | Peered Content Distribution |
US6546016B1 (en) | 1997-12-31 | 2003-04-08 | At&T Corp. | Coaxial cable/twisted pair cable telecommunications network architecture |
US6424646B1 (en) | 1997-12-31 | 2002-07-23 | At&T Corp. | Integrated services director (ISD) overall architecture |
US6359881B1 (en) * | 1997-12-31 | 2002-03-19 | At&T Corp. | Hybrid fiber twisted pair local loop network service architecture |
US20040151212A1 (en) * | 1997-12-31 | 2004-08-05 | Irwin Gerszberg | Integrated services director (ISD) overall architecture |
US6885662B2 (en) | 1997-12-31 | 2005-04-26 | At&T Corp. | Hybrid fiber twisted pair local loop network service architecture |
US20100098000A1 (en) * | 1997-12-31 | 2010-04-22 | Irwin Gerszberg | Hybrid fiber twisted pair local loop network service architecture |
US7054313B1 (en) | 1997-12-31 | 2006-05-30 | At&T Corp. | Integrated services director (ISD) overall architecture |
US8355365B2 (en) | 1997-12-31 | 2013-01-15 | At&T Intellectual Property Ii, L.P. | Hybrid fiber twisted pair local loop network service architecture |
US7376142B2 (en) | 1997-12-31 | 2008-05-20 | At&T Corp. | Integrated services director (ISD) overall architecture |
US9113212B2 (en) | 1998-05-06 | 2015-08-18 | Tivo Inc. | Simultaneous recording and playback of audio/video programs |
US8380049B2 (en) | 1998-05-06 | 2013-02-19 | Tivo Inc. | Playback of audio/video content with control codes |
US9467749B2 (en) | 1998-05-06 | 2016-10-11 | Tivo Inc. | Playback of audio/video content with control codes |
US9350934B2 (en) | 1998-05-06 | 2016-05-24 | Tivo Inc. | System and method for time-shifted program viewing |
US9094724B2 (en) | 1998-05-06 | 2015-07-28 | Tivo Inc. | Multi-channel playback of audio/video content |
USRE43325E1 (en) | 1998-05-06 | 2012-04-24 | Tivo Inc. | System and method for time-shifted program viewing |
US9300902B2 (en) | 1998-05-06 | 2016-03-29 | Tivo Inc. | Playback of audio/video content with control codes |
US7272298B1 (en) | 1998-05-06 | 2007-09-18 | Burst.Com, Inc. | System and method for time-shifted program viewing |
US9344668B2 (en) | 1998-05-06 | 2016-05-17 | Tivo Inc. | System and method for time-shifted program viewing |
US20080075426A1 (en) * | 1998-05-06 | 2008-03-27 | Lang Richard A | Playback of Audio/Video Content with Control Codes |
US8380041B2 (en) | 1998-07-30 | 2013-02-19 | Tivo Inc. | Transportable digital video recorder system |
US8538241B2 (en) | 1998-07-30 | 2013-09-17 | Tivo Inc. | Multimedia signal processing system |
US7668435B2 (en) | 1998-07-30 | 2010-02-23 | Tivo Inc. | Multimedia signal processing system |
US8577205B2 (en) | 1998-07-30 | 2013-11-05 | Tivo Inc. | Digital video recording system |
US8457476B2 (en) | 1998-07-30 | 2013-06-04 | Tivo Inc. | Multimedia signal processing system |
US9002173B2 (en) | 1998-07-30 | 2015-04-07 | Tivo Inc. | Digital security surveillance system |
US8526781B2 (en) | 1998-07-30 | 2013-09-03 | Tivo Inc. | Multiple output digital video recording system |
US8965173B2 (en) | 1998-07-30 | 2015-02-24 | Tivo Inc. | Multimedia stream processing system |
US8824865B2 (en) | 1998-07-30 | 2014-09-02 | Tivo Inc. | Digital video recorder system with an integrated DVD recording device |
US7529465B2 (en) | 1998-07-30 | 2009-05-05 | Tivo Inc. | System for time shifting multimedia content streams |
US7984474B2 (en) | 2000-02-08 | 2011-07-19 | Quartics, Inc. | Method and apparatus for a digitized CATV network for bundled services |
US7558472B2 (en) | 2000-08-22 | 2009-07-07 | Tivo Inc. | Multimedia signal processing system |
US10432990B2 (en) | 2001-09-20 | 2019-10-01 | Time Warner Cable Enterprises Llc | Apparatus and methods for carrier allocation in a communications network |
US11303944B2 (en) | 2001-09-20 | 2022-04-12 | Time Warner Cable Enterprises Llc | Apparatus and methods for carrier allocation in a communications network |
US7616892B2 (en) * | 2003-03-04 | 2009-11-10 | Fujitsu Limited | Delivery method and delivery system of contents information, and central station thereof |
US20050259541A1 (en) * | 2003-03-04 | 2005-11-24 | Yasuo Suzuki | Delivery method and delivery system of contents information, and central station thereof |
US11991234B2 (en) | 2004-04-30 | 2024-05-21 | DISH Technologies L.L.C. | Apparatus, system, and method for multi-bitrate content streaming |
US9967534B1 (en) | 2004-11-19 | 2018-05-08 | Tivo Solutions Inc. | Digital video recorder video editing system |
US9723267B2 (en) | 2004-12-15 | 2017-08-01 | Time Warner Cable Enterprises Llc | Method and apparatus for wideband distribution of content |
US20060130113A1 (en) * | 2004-12-15 | 2006-06-15 | Carlucci John B | Method and apparatus for wideband distribution of content |
US11509866B2 (en) | 2004-12-15 | 2022-11-22 | Time Warner Cable Enterprises Llc | Method and apparatus for multi-band distribution of digital content |
WO2006065948A3 (en) * | 2004-12-15 | 2007-03-15 | Time Warner Cable Inc | Method and apparatus for wideband distribution of content |
US9883219B2 (en) | 2005-02-01 | 2018-01-30 | Time Warner Cable Enterprises Llc | Apparatus and methods for multi-stage multiplexing in a network |
US20070011717A1 (en) * | 2005-07-06 | 2007-01-11 | Lauder Gary M | Distribution of interactive information content within a plurality of disparate distribution networks |
US8139924B2 (en) | 2005-07-07 | 2012-03-20 | Tivo Inc. | System and method for digital content retrieval |
US8687949B2 (en) | 2005-07-07 | 2014-04-01 | Tivo Inc. | System and method for digital content retrieval |
US20070009235A1 (en) * | 2005-07-07 | 2007-01-11 | Eric Walters | System and method for digital content retrieval |
US9077860B2 (en) | 2005-07-26 | 2015-07-07 | Activevideo Networks, Inc. | System and method for providing video content associated with a source image to a television in a communication network |
US9042454B2 (en) | 2007-01-12 | 2015-05-26 | Activevideo Networks, Inc. | Interactive encoded content system including object models for viewing on a remote device |
US9355681B2 (en) | 2007-01-12 | 2016-05-31 | Activevideo Networks, Inc. | MPEG objects and systems and methods for using MPEG objects |
US9826197B2 (en) | 2007-01-12 | 2017-11-21 | Activevideo Networks, Inc. | Providing television broadcasts over a managed network and interactive content over an unmanaged network to a client device |
US9706234B2 (en) | 2007-07-24 | 2017-07-11 | Time Warner Cable Enterprises Llc | Generation, distribution and use of content metadata in a network |
US8165450B2 (en) | 2007-11-19 | 2012-04-24 | Echostar Technologies L.L.C. | Methods and apparatus for filtering content in a video stream using text data |
US8977106B2 (en) | 2007-11-19 | 2015-03-10 | Echostar Technologies L.L.C. | Methods and apparatus for filtering content in a video stream using closed captioning data |
US8965177B2 (en) | 2007-11-20 | 2015-02-24 | Echostar Technologies L.L.C. | Methods and apparatus for displaying interstitial breaks in a progress bar of a video stream |
US8165451B2 (en) | 2007-11-20 | 2012-04-24 | Echostar Technologies L.L.C. | Methods and apparatus for displaying information regarding interstitials of a video stream |
US8136140B2 (en) | 2007-11-20 | 2012-03-13 | Dish Network L.L.C. | Methods and apparatus for generating metadata utilized to filter content from a video stream using text data |
US20090207866A1 (en) * | 2008-02-19 | 2009-08-20 | Chris Cholas | Apparatus and methods for utilizing statistical multiplexing to ensure quality of service in a network |
US8300541B2 (en) | 2008-02-19 | 2012-10-30 | Time Warner Cable Inc. | Apparatus and methods for utilizing statistical multiplexing to ensure quality of service in a network |
US8606085B2 (en) | 2008-03-20 | 2013-12-10 | Dish Network L.L.C. | Method and apparatus for replacement of audio data in recorded audio/video stream |
US8156520B2 (en) | 2008-05-30 | 2012-04-10 | EchoStar Technologies, L.L.C. | Methods and apparatus for presenting substitute content in an audio/video stream using text data |
US8726309B2 (en) | 2008-05-30 | 2014-05-13 | Echostar Technologies L.L.C. | Methods and apparatus for presenting substitute content in an audio/video stream using text data |
US9357260B2 (en) | 2008-05-30 | 2016-05-31 | Echostar Technologies L.L.C. | Methods and apparatus for presenting substitute content in an audio/video stream using text data |
US20090307741A1 (en) * | 2008-06-09 | 2009-12-10 | Echostar Technologies L.L.C. | Methods and apparatus for dividing an audio/video stream into multiple segments using text data |
US8407735B2 (en) | 2008-12-24 | 2013-03-26 | Echostar Technologies L.L.C. | Methods and apparatus for identifying segments of content in a presentation stream using signature data |
US8510771B2 (en) | 2008-12-24 | 2013-08-13 | Echostar Technologies L.L.C. | Methods and apparatus for filtering content from a presentation stream using signature data |
US8588579B2 (en) | 2008-12-24 | 2013-11-19 | Echostar Technologies L.L.C. | Methods and apparatus for filtering and inserting content into a presentation stream using signature data |
US8437617B2 (en) | 2009-06-17 | 2013-05-07 | Echostar Technologies L.L.C. | Method and apparatus for modifying the presentation of content |
US8934758B2 (en) | 2010-02-09 | 2015-01-13 | Echostar Global B.V. | Methods and apparatus for presenting supplemental content in association with recorded content |
US10411939B2 (en) | 2010-05-27 | 2019-09-10 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
USRE47760E1 (en) | 2010-09-03 | 2019-12-03 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
US10200731B2 (en) | 2010-09-03 | 2019-02-05 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
US11153622B2 (en) | 2010-09-03 | 2021-10-19 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
US10681405B2 (en) | 2010-09-03 | 2020-06-09 | Time Warner Cable Enterprises Llc | Digital domain content processing and distribution apparatus and methods |
US9021541B2 (en) | 2010-10-14 | 2015-04-28 | Activevideo Networks, Inc. | Streaming digital video between video devices using a cable television system |
US9204203B2 (en) | 2011-04-07 | 2015-12-01 | Activevideo Networks, Inc. | Reduction of latency in video distribution networks using adaptive bit rates |
US10409445B2 (en) | 2012-01-09 | 2019-09-10 | Activevideo Networks, Inc. | Rendering of an interactive lean-backward user interface on a television |
US10757481B2 (en) | 2012-04-03 | 2020-08-25 | Activevideo Networks, Inc. | Class-based intelligent multiplexing over unmanaged networks |
US10506298B2 (en) | 2012-04-03 | 2019-12-10 | Activevideo Networks, Inc. | Class-based intelligent multiplexing over unmanaged networks |
US9800945B2 (en) | 2012-04-03 | 2017-10-24 | Activevideo Networks, Inc. | Class-based intelligent multiplexing over unmanaged networks |
US9123084B2 (en) | 2012-04-12 | 2015-09-01 | Activevideo Networks, Inc. | Graphical application integration with MPEG objects |
US10275128B2 (en) | 2013-03-15 | 2019-04-30 | Activevideo Networks, Inc. | Multiple-mode system and method for providing user selectable video content |
US11073969B2 (en) | 2013-03-15 | 2021-07-27 | Activevideo Networks, Inc. | Multiple-mode system and method for providing user selectable video content |
US10200744B2 (en) | 2013-06-06 | 2019-02-05 | Activevideo Networks, Inc. | Overlay rendering of user interface onto source video |
US9326047B2 (en) | 2013-06-06 | 2016-04-26 | Activevideo Networks, Inc. | Overlay rendering of user interface onto source video |
US9294785B2 (en) | 2013-06-06 | 2016-03-22 | Activevideo Networks, Inc. | System and method for exploiting scene graph information in construction of an encoded video sequence |
US9219922B2 (en) | 2013-06-06 | 2015-12-22 | Activevideo Networks, Inc. | System and method for exploiting scene graph information in construction of an encoded video sequence |
US9788029B2 (en) | 2014-04-25 | 2017-10-10 | Activevideo Networks, Inc. | Intelligent multiplexing using class-based, multi-dimensioned decision logic for managed networks |
US11172269B2 (en) | 2020-03-04 | 2021-11-09 | Dish Network L.L.C. | Automated commercial content shifting in a video streaming system |
Also Published As
Publication number | Publication date |
---|---|
JPS6238094A (en) | 1987-02-19 |
DE3677077D1 (en) | 1991-02-28 |
EP0208501B1 (en) | 1991-01-23 |
CA1250979A (en) | 1989-03-07 |
JP3088725B2 (en) | 2000-09-18 |
EP0208501A1 (en) | 1987-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4760442A (en) | Wideband digital signal distribution system | |
US5202780A (en) | Optical communication system for the subscriber area | |
US6445472B1 (en) | Optical fiber subscriber network | |
EP0483790B1 (en) | Switching system of optical transmission lines for protecting from trouble | |
EP0617876B1 (en) | Fibre optic telephone loop network | |
US5543951A (en) | Method for receive-side clock supply for video signals digitally transmitted with ATM in fiber/coaxial subscriber line networks | |
US5121244A (en) | Optical subscriber network transmission system | |
EP0020878A1 (en) | Service integrated information transmission and switching system for sound, picture and data | |
US6058227A (en) | Method and apparatus for an opto-electronic circuit switch | |
CA1204230A (en) | Broadband communication system | |
CA1160771A (en) | Service integrated, digital transmission system | |
US5668652A (en) | Optical WDM (wavelength division multiplexing) transmission system and method for configuring the same | |
EP1269672B1 (en) | Multiple input waveguide grating router for broadcast and multicast services | |
US5422949A (en) | Subscriber terminal apparatus | |
US6496639B1 (en) | Method and apparatus for upgrading an optical fiber communication system | |
US20070248087A1 (en) | System and method for signal processing | |
US6055077A (en) | Multimedia distribution system using fiber optic lines | |
JPS6130139A (en) | Optical transmission system | |
EP0633675B1 (en) | A telecommunications network and a main station and a substation for use in such a network | |
Schaffer | Switching in the broad-band ISDN | |
EP0435467A2 (en) | Optical network | |
KR960010489B1 (en) | Digital catv system comprising small distribution centers | |
Newell et al. | Transmission and routing experiments with uncompressed digital HDTV signals | |
JPS60172839A (en) | Optical transmission system | |
Heidemann et al. | RACE 1051: demonstration of a multigigabit technology for provision of digital video services |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BELL TELEPHONE LABORATORIES, INCORPORATED 600 MOUN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:O'CONNELL, STEVEN S.;UTBERG, DANIEL N.;REEL/FRAME:004429/0555 Effective date: 19850708 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |