US4787495A - Method and apparatus for selective scrap metal collection - Google Patents
Method and apparatus for selective scrap metal collection Download PDFInfo
- Publication number
- US4787495A US4787495A US06/676,785 US67678584A US4787495A US 4787495 A US4787495 A US 4787495A US 67678584 A US67678584 A US 67678584A US 4787495 A US4787495 A US 4787495A
- Authority
- US
- United States
- Prior art keywords
- ferrous
- weight
- metal
- scrap metal
- door
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003923 scrap metal Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 17
- 239000000463 material Substances 0.000 claims abstract description 153
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 86
- 238000003860 storage Methods 0.000 claims abstract description 41
- 239000007769 metal material Substances 0.000 claims abstract description 27
- 238000009826 distribution Methods 0.000 claims abstract description 4
- 238000000926 separation method Methods 0.000 claims abstract 7
- 229910052751 metal Inorganic materials 0.000 claims description 63
- 239000002184 metal Substances 0.000 claims description 63
- 230000007246 mechanism Effects 0.000 claims description 15
- 238000005303 weighing Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 12
- 230000033001 locomotion Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 39
- 229910052782 aluminium Inorganic materials 0.000 abstract description 38
- 230000001186 cumulative effect Effects 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 15
- 239000010959 steel Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 229910001385 heavy metal Inorganic materials 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 4
- 235000013361 beverage Nutrition 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000003813 thumb Anatomy 0.000 description 3
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000013102 re-test Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000013024 troubleshooting Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B9/00—Presses specially adapted for particular purposes
- B30B9/32—Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars
- B30B9/321—Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars for consolidating empty containers, e.g. cans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B9/00—Presses specially adapted for particular purposes
- B30B9/32—Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars
- B30B9/321—Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars for consolidating empty containers, e.g. cans
- B30B9/325—Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars for consolidating empty containers, e.g. cans between rotary pressing members, e.g. rollers, discs
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/06—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by returnable containers, i.e. reverse vending systems in which a user is rewarded for returning a container that serves as a token of value, e.g. bottles
- G07F7/0609—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by returnable containers, i.e. reverse vending systems in which a user is rewarded for returning a container that serves as a token of value, e.g. bottles by fluid containers, e.g. bottles, cups, gas containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C2501/00—Sorting according to a characteristic or feature of the articles or material to be sorted
- B07C2501/0036—Sorting out metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C2501/00—Sorting according to a characteristic or feature of the articles or material to be sorted
- B07C2501/0054—Sorting of waste or refuse
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S100/00—Presses
- Y10S100/902—Can crushers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S209/00—Classifying, separating, and assorting solids
- Y10S209/93—Municipal solid waste sorting
Definitions
- This invention relates generally to a method and apparatus for selectively recovering or collecting scrap metal having selected properties. More particularly, the present invention relates to a method and apparatus for segregating non-magnetic metal containers such as aluminum containers or cans from other deposited materials and for compensating depositors of such scrap metal based on the weight of the scrap metal so collected.
- Non-reusable, non-returnable metal containers or cans of various types are currently used to package many different types of foods and beverages and have become part of the American way of life. Many products, particularly soft drinks and malt cereal beverages, are provided to the consumer in metal cans.
- Aluminum cans or containers provide particular advantages because of the relatively light weight of aluminum. Aluminum's resistance to corrosion and food contamination is also an important characteristic, as is the fact that aluminum leaves no "tinny" taste.
- a further advantage of aluminum is that aluminum cans or lids can be provided with tear tabs, press tabs or pop tops making them even more convenient for use by the consumer and eliminating the need for can openers and the like. More than 60 billion aluminum cans are used each year. The growth of this market is 8 to 10 percent per year. Currently about 53 percent of aluminum cans are being recycled.
- such apparatus would be located throughout the community at convenient locations such as parking lots and shopping malls and the like and would operate unattended to reduce cost and enable the collection apparatus or facility to pay fair compensation for aluminum containers and the like.
- non-magnetic materials are collected at the bottom of a pneumatic classifier conveyor which transports the aluminum, non-ferrous metal containers to a crusher. The materials so transported are crushed and weighed. After weighing, the crushed aluminum cans are conveyed by a pneumatic stacker conveyor and deposited into an inclined storage location at the top of the apparatus.
- the apparatus of Miller is provided with a compensation dispenser which dipenses or disperses coins, tokens and other symbols of value, the amount of which is determined by the weight of the non-ferrous materials that pass through the crusher and are weighed by the weighing means during operation of the collection apparatus.
- This type of apparatus is designed to be used in an unattended mode and is frequently placed in parking lots or shopping centers, shopping malls, and the like where it is easy for persons, customers and consumers who patronize the retail stores to dispose of their collected aluminum cans while being paid therefor.
- the recovered aluminum from this source saves energy and raw materials while simultaneously reducing the problems associated with the disposing of such cans after their contents have been consumed and greatly alleviating the litter problem. While the present price of tin-plated steel cans makes it almost impossible to compensate for them, their collection is of some intrinsic value insofar as cleaning up the environment is concerned. Notwithstanding, a depositor is notified that he will not be compensated for a tin-plated steel can, at least at the present time.
- Untrained service personnel tend to operate the system in such a manner as to damage the solid state relays and there is a tendency on the part of maintenance personnel to calibrate the system even when calibration is not required. Furthermore, the system had no mechanism for ensuring that the payout was equal to the advertised price per pound and an additional problem detrimental to the total operation of the system is that it can accept non-metallic objects which are lighter than cans or within the general weight-size profile of an aluminum can, such as milk cartons, small plastic bottles and the like which can be readily processed and payed for by the present apparatus.
- the deposited materials are carried from the hopper to a classifier by means of an endless conveyor belt and the classifier segregates magnetic or ferrous material from the non-magnetic materials.
- a pneumatic conveyor conveys aluminum cans to a crusher. The more dense non-magnetic materials collect in the bottom of the bin provided in the pneumatic conveyor and the aluminum materials is conveyed by the conveyor of the classifier to the crusher where the material is crushed so as to be more compact and to occupy significantly less space when stored. After passing through the crusher, the crushed material is weighed and its weight noted. The crushed material is then dumped into a stacker conveyor which transports the crushed aluminum cans to a storage bin in which they are stored until forwarded to a recycling plant.
- a digital electronic controller is provided to control the energization of the motors that drive the conveyors and the crusher and to provide power to the classifier.
- the weigher produces an analog signal that is digitized by an analog-to-digital converter, causes the compensation dispenser to dispense or disperse an appropriate amount of compensation in the form of coins or possibly even tokens.
- the apparatus is provided with motor alarm circuits which produce an alarm signal if any one of the motors is not running properly when energized, and the coin dispensing apparatus will produce an alarm signal if no coins or tokens are available to be dispensed.
- a detector is provided which produces an alarm signal each time a piece of magnetic material, such as a steel can or tin-plated steel can, is segregated from the materials deposited.
- the electronic controller also includes circuit means for automatic calibration of the weighing system which is used to measure the weight of the aluminum cans deposited therein to assure that it is accurately weighing the material dumped.
- the digital electronic controller adjusts the set gain of the system such that the output of the weighing system is well within the range of the analog-to-digital converter.
- the autocalibration is updated continuously between cycles which results in optimum performance of the weighing system.
- the load cell is initialized with a load-to-voltage-out reference resistor.
- the system is designed to reduce service in the field to an absolute minimum and built-in test features allow for easy and rapid troubleshooting.
- the system has an improved cycle time which is accompanied by increasing the weight of the bucket before stopping from 0.75 pounds to 1.5 pounds.
- the throughput of the apparatus is increased from 150-200 pounds per hour to 300-400 pounds per hour.
- retest features are incorporated which periodically reject all failed conditions. This system is capable of detecting operation of the scale-dump solenoid and the controller uses its knowledge of weight to detect whether the scale door is open.
- Other features include apparatus relating to the security of the money paid out such that the compensation rate is not set as previously done, with thumb wheel switches but in a non-volatile memory which provides an account of money and poundage and remembers the quantities even if power fails or is turned off. All solid state output devices are protected by short circuit protection circuitry to protect driver devices, and the error rate in weighing is less than one percent due to altering the sequence of operation and utilizing an improved bucket arrangement.
- Prior systems do not generally display the weight of the contents of the material to the operator or depositor while he is putting the material into the apparatus and none appears to provide an accuracy good to 0.01 pounds.
- the prior systems do not have internal counters or memories that keep track of the poundage and the compensation to the nearest hundredth of a pound and the nearest penny for compensation, and none of the systems of the prior system provide any real self-testing or auto test modes of operation to assist in troubleshooting and the like. Most do not have an error re-test feature to minimize down time, and a second metal detector to determine the presence of non-ferrous metallic materials. No prior systems use of a heavy detector whose operation depends on how far a door or platform is moved or displaced when material falls on it.
- a scrap metal collection apparatus that separates a selected material, e.g. aluminum, weighs the selected material and compensates the person depositing the selected material according to a pre-determined rate per unit weight of the material.
- the scrap metal collection apparatus separates ferrous materials, materials exceeding a certain weight, and non-metallic materials from the target material.
- the material is compacted prior to weighing and, following the weighing procedure, is distributed through a large storage volume.
- the identification of the excessively heavy material is accomplished by allowing the material to fall against a plate, the movement of the plate activating a switch when a material exceeding a predetermined weight impacts the plate.
- the plate is implemented in a manner to minimize conveyor jamming of the input conveyor belt.
- the material detected as being excessively heavy is deflected by a door having a latch arrangement.
- the compacted material distributing apparatus includes a distributor wheel with a plurality of arms for projecting the compacted material into the storage volume.
- a crusher wheel is provided with lugs not extending across the entire compacting surface of the wheel. Tracking guides are placed on the conveyor belts to minimize undesired sideward movement of the belt.
- time-out features are included by the control apparatus.
- the control apparatus also provides initialization function, pay-out features, and multiple input signals to monitor and control the operating cycle.
- FIG. 1 is a cross-sectional diagram of the container collection system of the initial invention.
- FIG. 2 is a detailed cross-sectional diagram of the classifier apparatus of the container collection system.
- FIG. 3 is a cross-sectional view of the detector door mechanism.
- FIG. 4 is a schematic cross-sectional view of the heavy detector system.
- FIG. 5 is a schematic cross-sectional view of a can position jamming the input conveyor belt.
- FIG. 6 is a cross-sectional diagram indicating how the heavy detector lever arm is supported.
- FIG. 7A is a top view of the airless can distributor.
- FIG. 7B is a cross-sectional view of a section of the airless can distributor.
- FIG. 8A is a front view of the crusher wheel.
- FIG. 8B is a side view of the crusher wheel.
- FIG. 9 is a schematic electrical diagram of the control apparatus of the container collection system.
- FIG. 10A is a side view demonstrating the position of the belt guide with respect to the pulley.
- FIG. 10B is front view demonstrating the position of the belt guide with respect to the pulley.
- FIG. 11A is a side cross-sectional view of adjustment mechanisms for the crusher assembly.
- FIG. 11B is a front cross-sectional view of adjustment mechanisms for the crusher assembly.
- a utility light 1 illuminates a front portion of the collection system. Operation of the machine is initiated by pressing start button 5. Payment for the scrap metal is delivered from coin drums 4 in vault 3 to coin cup 6. The scrap metal is deposited in input chute 7 that deposits the scrap metal on the input conveyor 8. The scrap metal proceeds past magnet pulley 9. Ferrous materials are deposited in steel storage bin 11 after passing steel metal detector 10. Non-ferrous materials are deposited in heavy metal door 12 and conducted past classifier assembly 13 and metal detector 14. Drop door 15 in conjunction with deflector door 27 deposits material with excessive weight or non-metallic materials in the heavy and non-metal materials storage 16. The remaining materials are placed in the crusher input hopper and compacted between crusher plate 18 and crusher wheel 19.
- the compacted materials are deposited in weight bucket 22 and the weight determined by load cell 21.
- the materials from the weight bucket 22 are deposited first in scale exit storage hopper 23 and then onto storage conveyor 24.
- the selected scrap materials are distributed in storage bin 25.
- the scrap materials are removed from the exit duct 28 with the assistance of agitator 26.
- the scrap metal collection system is operated under control of controller 20. An intrusion alarm 2 is present.
- FIG. 2 a more detailed diagram of the scrap metal selection apparatus for the scrap metal collection system is shown.
- Incoming cans 42 are transferred via input conveyor 8, driven by magnet pulley 9, and guided by the heavy metal detector deflector 33.
- Steel cans 43 are transferred past steel metal detector 10.
- Aluminum cans 44 are lead past metal detector 14.
- the heavy and non-ferrous materials are deflected from the main path by drop door 15 when closed drop door 15 engages ledge 161.
- a drop door restoring spring 37 and a drop door turnbuckle 31 are coupled to the drop door 15.
- the deflector door 27 is controlled by the deflector door solenoid 29, restoring spring for the deflector solenoid 34, the latch spring for the deflector solenoid 35, latch for the deflector door 36, the deflector door turnbuckle 41, and the stop for the deflector door solenoid 39.
- Plate 40 secures the drop door apparatus and the reflector door apparatus.
- the heavy door weight 32 controls the weight of material needed to activate heavy door switch 45.
- the deflector door 27 has the deflector door rotating arm 47 coupled thereto.
- Deflector door rotating arm 47 has deflector door restoring spring 34 and latch restoring spring 35 coupled thereto.
- Deflector door pivot arm 46 is coupled to deflector door rotating arm 47, to latch restoring spring 35 and turnbuckle 41 coupled thereto. Stop for latch 48, spacer 51, screw 50 and holder on plate 49 are shown.
- the non-ferrous materials 44 are conveyed by input conveyor 8, strike deflector drape 33 before impacting soft belt material 55.
- the soft belt material 55 is coupled to hard polystyrene material 56.
- the hard polystyrene material 56 is coupled to heavy detector door 12.
- the heavy detector door 12 has an adjustable heavy weight 32 with a thumb screw 52 and a heavy detector adjusting screw 53 with locking nut 54 coupled thereto.
- a stand 57 is provided to hold the assembly including heavy material switch 45 in place.
- FIG. 5 the situation wherein a stuck can 58 can cause a jam is illustrated.
- the use of the flexible belt material 55 and bent lug 59 of the conveyor belt in preventing jams is also illustrated.
- the shaft 60 coupled to heavy metal detector door 12 for rotation, in its relative interaction with classifier body 61, is shown.
- Storage conveyor 62 (or 24) is driven by conveyor gear motor 63 and chain drive 71 and delivers crushed materials to the materials distributor input chute 70.
- Housing 66 and adjustable housing end 67 guide the materials for distributor 69.
- Distributor 69 has belt material arms 68 and is driven by material distribution motor 64 and belt drive 65.
- FIG. 7B shows a cross-sectional view of distributor housing 66 and distributor 69 along with distributor belt arms 68.
- controller 20 is coupled to penny dispenser 72, nickel dispenser 73, quarter dispenser 74, and token dispenser 75.
- the controller is also coupled to steel can alert apparatus 76, out-of-money light 77, the crusher motor 78, the material distributor motor 64, the storage conveyor motor 63, the input conveyor motor 9, the scale bucket solenoid 79, the drop door solenoid 30 and the deflector door solenoid 29.
- the controller 20 receives signals from start switch 5, token top detector apparatus 80, quarter top detector apparatus 81, nickel top detector apparatus 82, penny top detector apparatus 83, door open apparatus 84, storage conveyor motion detector apparatus 85, input conveyor motion detection apparatus 86, heavy material detection apparatus 87, metal detection coil 88, steel can detector coil 89 and load cell 90.
- the pounds of material display 91 and the money dispensed display 92 are controlled by controller 20.
- FIG. 10A and FIG. 10B the drawings show where belt guides 93 are located with respect to conveyor belt 62.
- the conveyor belt 62 is moved over pulley 95.
- Pulley 95 is supported by pillow block 94.
- Pillow block 94 is, in turn, supported by pillow block mount 96 which is supported by conveyor support 97.
- Crusher wheel 19 is supported by pillow block 98.
- Crusher spring 99 contacts crusher plate 18, collar 108, washer 109, spring support 106, upper locking nut 100, lower locking nut 101 and adjustable screw 102.
- Crusher plate 18 is also in contact with adjustable rod 107 which is supported by spring support 106 in conjunction with shock mount 105, locking nut 103 and locking nut 104.
- operation of the container collection mechanism is initiated when start button 5 is pressed. Operation of the input conveyor mechanism 8 and the storage conveyor mechanism 24 begins immediately thereafter.
- the system controller 20 automatically adjusts and calibrates the weighing system and metal detector system 14. The pounds of material display and the money exchanged for the material display are initialized (i.e. to all zeros).
- deflector door is opened and drop door 15 is closed.
- This arrangement directs the deposited aluminum cans into the crusher input hopper 17.
- the crusher wheel 19, which was turned on after auto-zero and calibration, compacts the cans to 5 to 7 pounds per cubic foot and deposits them into the weight bucket 22.
- the weight of the material is monitored. When the weight of the material reaches 1.2 pounds, or if an elapsed time of 20 seconds has passed since metal has been detected at the metal detector 14, or if no increase in bucket weight is achieved in 30 seconds, the crusher 19 stops and the metal in the bucket is processed.
- a final weight of the bucket 22 and its contents is determined.
- the contents are then dumped and after a suitable stabilizing delay, the empty bucket 22 is again weighed, while the dumped cans are conveyed to storage.
- the system controller 20 processes the difference between the weight bucket 22 with and without the metal contents to determine the exact weight of the material.
- the compensation in the form of coins delivered to coin cup 6 is based on this weight.
- the input conveyor 8 stop.
- the crusher 19 is stopped when the weight of the weight contents is being computed.
- incoming cans are temporarily stored in the crusher input hopper 17.
- crusher 19 starts, it immediately crushes these cans and dumps them into the weight bucket 22 for weighing. This process continues as long as cans are being fed into the input chute 7.
- Cans are dumped from the weight bucket 22 into a scale exit hopper 23 that deposits them onto the storage conveyor 24.
- the storage conveyor 24 travels in the opposite direction of the inlet conveyor 8, and dumps the cans into the storage bin 25 via the can distributor.
- the front panel display will show the customer his new total weight. As a payout amount of one quarter is computed, it is paid out to the customer and is also displayed on the front panel. During a processing cycle, the payout and weight will not necessarily correspond. However, at final payout the weight received times the rate to be compensated per pound will agree with the payout amount on the display; except the payout is always rounded up to the nearest penny.
- the final payout sequence is initiated. The motors shut off, remaining tenths and hundredths of pounds will be displayed, and the final payout is made.
- the entire sequence is controlled by the system controller 20, a sophisticated electronic module consisting of a MPU board, a power board, a keyboard, a mother board, a high voltage control board and two external display boards.
- An exit blower system is provided to unload the machine. After the side doors are opened, the exit duct 28 is extended to a position over a transport vehicle. Switch A starts the blower and sends cans through the exit duct 28. Next, Switch B starts the agitator 26 that meters cans into the blower's air stream until the machine is empty. Switch B should be opened before Switch A is opened, to stop the exit operation to prevent cans from jamming the exit duct 28.
- FIG. 2 A closer look of the classifier assembly 13 is provided in FIG. 2.
- the non-ferrous material enters the classifier assembly it is deflected downward by a deflector 33 onto the heavy detector door 12.
- the non-ferrous material then slides down the classifier chute and through the second metal detector 14.
- the metal detector senses the material using the controller.
- the drop door 15 is closed and the deflector 27 is opened allowing the non-ferrous metal material to enter the crusher input hopper 17. After a suitable delay, the drop door 15 opens and the deflector door 27 closes. These doors are restored to their dormant position using a restoring spring 37 of the drop door 15 and a restoring spring 34 on the deflector door 27.
- Spring 35 is used to latch the deflector door so that heavy objects striking it will be deflected out rather than through to the crusher 19.
- FIG. 3 One part of the latch is built into the plate 40, the other part is better understood from FIG. 3.
- pivot arm 46 when pressure is applied against deflector door 27, pivot arm 46 is driven into stop 48 preventing the door from opening.
- the solenoid 29 pulls the pivot arm 46, it rotates counterclockwise to line up with deflector door turnbuckle 41 and deflector door solenoid 29.
- This arrangement causes the pivot arm to clear latch 48, thereby allowing the deflector door 27 to open.
- the deflector door 27 is rotated about Point A.
- Point A rotates clockwise and is restored to its original position by spring 34. Pivot arm 46 is restored to the latched position by spring 35.
- FIG. 4 is an exposed view of the heavy material detector system.
- the heavy material detector is attached to the heavy detect arm 12.
- the heavy detect arm is allowed to rotate freely about Point B.
- This assembly is a counter balanced weight system set to discriminate course weights. The balance is provided by weight 32. It is adjusted by loosing thumb screw 52 and sliding the weight on heavy detector bar 12. As non-ferrous material is received from the input conveyor, the material comes into contact with deflector drape 33 causing the non-ferrous material 44 to fall onto the heavy detector plate.
- the heavy detector plate is made up using a polystyrene plate 56 and belt material 55. Two inches of the end of the polystyrene has been eliminated thereby exposing the belt material 55.
- the exposed belt material provides a soft end that is flexible.
- FIG. 5 shows how a can can stick to the input conveyor belt 8 causing a jam. This jam can be eliminated by using the flexible belt 55 material.
- Both the lug on the input conveyor 59 and the end of the belt material 55 on the heavy detector are capable of flexing. However, the lug 59 cannot flex enough to prevent a jam. The addition of the belt material on the end of the heavy detector plate makes this area virtually jam proof.
- FIG. 6 shows how the shaft has been cut to make the counter-lever action about Point B uniform and almost friction free.
- a ledge 161 is shown added to the closure area of the drop door 15. This ledge prevents partially mashed cans from jamming and falling out of the heavy drop door. This condition occurs because of large mechanical leverage on the door swing causing the solenoid to bounce when closure occurs.
- FIG. 7 shows how the airless can distributor operates.
- crushed cans are conveyed up storage conveyor 24, they are dumped into a hopper 70 where they slide into the tray of the can distributor.
- the rotating paddle picks up the cans and slings them to the rear of the scrap metal collection system.
- the angle at which the cans leave the can distributor is dependent upon the adjustment of the lower plate 67 of the can distributor.
- the paddle wheel 69 is driven by a motor 64 through a belt drive 65. This belt drive arrangement reduces the paddle wheel speed to a reasonable speed of about 600 RPMS. This speed is adjustable by changing a pulley. The speed of the paddle wheel determines how far and with what velocity the cans leave the can distributor.
- FIG. 8 shows how the crusher plate has been redesigned with staggered lugs. Staggered lugs have been used to prevent cans from rhythmically bouncing at the entrance to the crusher. With this crusher arrangement cans are continually processed by the crusher.
- FIG. 9 is an electrical diagram of the control system of the scrap metal collection system.
- the output signals from the controller 20 control penny dispenser 72, nickel dispenser 73, quarter dispenser 74 and token dispenser 75, a steel can alert 76, "OUT OF MONEY" light 77, input conveyor motor 9, storage conveyor motor 63, can distributor motor 64, crusher motor 78, scale bucket solenoid 79, drop door solenoid 30, deflector door solenoid 29 and two displays (i.e. for pounds of material 91 and for dollars and cents deliverer 92).
- the input signals to the controller are the coin top detect signals (penny holder 83, nickel holder 82, quarter holder 81 and token holder 80), load cell 92, steel can detector coil 89, classifier metal detect coil 88, heavy detector switch 98, input conveyor motion detector 86, storage motion detector 85, open door switch 84 and start switch 5.
- the controller 20 can be implemented by a microprocessor control system. The controller 20 uses available input data to analyze the operation status and based on this information, output signals are provided by the controller 20 to produce the appropriate response.
- start switch 5 when start switch 5 is activated, a closure to ground causes the controller 20 to enter a pre-established an operational cycle. Immediately the input conveyor 9, the storage conveyor 24 and the can distributor 64 are energized. Also, the activation of the start switch 5 establishes a reference for the steel can and metal detector oscillators and the displays 91 and 82 are balanced. Prior to turning on the crusher 28, an auto-adjust of the load cell and a calibration is accomplished. After calibration, the controller turns on the crusher 78. The controller then sets a time delay of 30 seconds and goes into an evaluation mode looking for input signals from the motion detector, the heavy detector, the timer, and the weight change from the load cell. Each input is appropriately acted upon.
- heavy detect switch 87 When a heavy material is detected, heavy detect switch 87 is closed which, via the controller, forces the drop door solenoid 30 and the deflector door solenoid 29 to be de-energized until the heavy material has fallen out the door.
- Motion detector switches 85 and 86 are sampled over a timing period. Should a pre-determined number of counts not be received on either one of these detectors, then a shut down cycle is entered. The conveyors are cut off and then turned back on. If the error still persists then an error alarm is produced and the collection system shuts down. The system shuts down when weight is not added to the weight bucket after a predetermined period of time.
- the controller includes a signal storage mechanism that can be initiated when the OUT OF MONEY light is initiated or by other selected activity and stores the time of inactivity of the system (i.e. downtime) for verification of maintenance.
- the classifier metal detector coil 88 is combined in the controller to complete an oscillator circuit that allows processing of frequency data to determine when a piece of non-ferrous metal is received. Each time non-heavy metal is detected, the drop solenoid 30 and the deflector solenoid 29 are energized allowing the material to be crushed. As the doors are opened the reference valve for the metal detector is updated. Because of the drift of the metal detector oscillation, the oscillator by the controller 20 is re-initialized each time the deflector door and the drop door are open. This re-initialization ensures the proper relationship between door activation and detection of a metal object.
- the system includes the addition of belt guides which prevent the input conveyor and the storage conveyor from walking to one side or the other during operation.
- FIGS. 10A and 10B show where these guides are placed with respect to the conveyor belt 62.
- the lower pulley 95 is coupled onto the pillow block mount 96 which is coupled directly to the frame of the machine by pillow blocks 94.
- the belt guides are mounted to frame support 97.
- the belt guides are constructed using polypropylene material. This material is smooth surfaced allowing the belt edge to slide freely against it. When the belt rides over and into contact with the guides, pressure against the belt prevents further travel thereby preventing the belt 62 from walking off the end of the pulley 95.
- FIGS. 11A and 11B the apparatus for adjustment of tension on the crusher plate 18 and the spacing between the crusher plate 18 and the crusher wheel 19 is shown.
- the spacing is adjusted by loosing locking nut 103 and then either loosing or tightening locking nut 104. These adjustments cause the position of the crusher plate 18 to be moved closer to or further away from the crusher wheel 19. This is accomplished using adjustable rod 107 which is welded to the crusher plate 18. Pressure is applied to the plate using spring 99. In operation, the shock mount 105 prevents over-travel of the crusher plate 18 which would allow it to engage the crusher wheel 19.
- the stiffness of the plate 18 (tension) is adjusted using screw 102. It is held in place by the upper locking nut 100 and the lower locking nut 101.
- the system includes a method of updating the reference value of the metal detector during the operating cycle; the use of an additional feature of the increase of the weight in the bucket for time-out purposes; the incorporation of a non-volatile downtime timer for maintenance and operational purposes.
- the updating of the reference value for the metal detector is accomplished by recognizing that when the deflector and the drop doors open, no metal could be present in the metal detector. To assure optimum update, metal detector values are remembered for five sample times in a push down stack. The oldest value is always used for update which means that the operation of the metal detector must have been dormant just prior to the opening of the doors. In reality, the fifth back value is about 140 milliseconds before the doors open.
- the monitoring of the bucket weight increase as a function of time is accomplished by using a 30 second timer which is set as the search loop for cans in the bucket is entered. Each time the analog to digital converter is read, the new weight is compared to the existing weight. Each time the new weight exceeds the old weight by 0.02 lb. the 30 second timer is re-initialized.
- the downtime timer is active anytime the "OUT OF MONEY" light is illuminated. Its timing is achieved using the 60 Hz line. It is therefore accurate to the accuracy of the input 60 Hz. It counts in one-minute intervals and has a capability of 99.59 hrs.
- the non-volatile memory is used for storage of the timer values. Provisions have been made from the controller keyboard to reset this timer to all zeros.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Sorting Of Articles (AREA)
Abstract
Description
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/676,785 US4787495A (en) | 1984-11-30 | 1984-11-30 | Method and apparatus for selective scrap metal collection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/676,785 US4787495A (en) | 1984-11-30 | 1984-11-30 | Method and apparatus for selective scrap metal collection |
Publications (1)
Publication Number | Publication Date |
---|---|
US4787495A true US4787495A (en) | 1988-11-29 |
Family
ID=24715991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/676,785 Expired - Fee Related US4787495A (en) | 1984-11-30 | 1984-11-30 | Method and apparatus for selective scrap metal collection |
Country Status (1)
Country | Link |
---|---|
US (1) | US4787495A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5195429A (en) * | 1991-02-28 | 1993-03-23 | Firpo Sergio E | Assembly for perforating, crushing and baling crushable objects |
US5226519A (en) * | 1991-04-29 | 1993-07-13 | Environmental Products Corporation | Multiple use commodity collection and storage system |
US5273150A (en) * | 1990-09-17 | 1993-12-28 | Halton Oy | Device for handling returnable cans |
US5355987A (en) * | 1992-03-16 | 1994-10-18 | Environmental Products Corporation | Single station reverse vending machine |
US5456127A (en) * | 1993-03-15 | 1995-10-10 | Binder + Co Aktiengesellschaft | Method for determining the purity of treated used glass prior to recycling |
US5465822A (en) * | 1992-03-16 | 1995-11-14 | Environmental Products Corporation | Commodity densification assembly having a multiple path distribution device |
EP0709311A1 (en) * | 1994-10-26 | 1996-05-01 | B.S.C. Co., Ltd. | Empty container treatment vehicle |
US5630493A (en) * | 1992-03-16 | 1997-05-20 | Environmental Products Corporation | Acceptance assembly for a reverse vending machine |
US5704558A (en) * | 1996-09-16 | 1998-01-06 | Can Depot, L.P. | Automated recycling center for aluminum cans |
FR2765814A1 (en) * | 1997-07-10 | 1999-01-15 | Cogeac Soc | SORTING DEVICE FOR CONTAINERS AND PACKAGING |
US20090217828A1 (en) * | 2006-04-21 | 2009-09-03 | Hermann Scharfen | Unit for compacting hollow bodies |
US20140251877A1 (en) * | 2013-03-06 | 2014-09-11 | William S. Taylor | Aluminum Can System |
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US27643A (en) * | 1860-03-27 | Washing-machine | ||
US619799A (en) * | 1899-02-21 | Grain-trimming device | ||
US740453A (en) * | 1903-02-05 | 1903-10-06 | Hans L Moebeck | Grain-loader for cars. |
US1782996A (en) * | 1929-03-27 | 1930-11-25 | Gilbert D Moody | Apparatus for stacking ore and similar material |
US3749240A (en) * | 1971-12-16 | 1973-07-31 | Reynolds Metals Co | Apparatus for and method of classifying empty containers |
US4179018A (en) * | 1976-12-27 | 1979-12-18 | Miller John H | Method and apparatus for selective recovery of metal containers |
US4257511A (en) * | 1976-12-27 | 1981-03-24 | Miller John H | Method and apparatus for selective recovery of metal containers |
US4345679A (en) * | 1980-05-09 | 1982-08-24 | Dewoolfson Bruce H | Container collection apparatus with electromagnetic sensor and method |
US4402391A (en) * | 1980-12-01 | 1983-09-06 | Creative Technology Inc. | Selective scrap metal collection apparatus |
US4463844A (en) * | 1981-12-23 | 1984-08-07 | Adolph Coors Company | Apparatus and method for return of empty aluminum cans |
US4505370A (en) * | 1983-01-21 | 1985-03-19 | Reynolds Metals Company | Method for recycling cans |
US4516489A (en) * | 1982-06-24 | 1985-05-14 | Balcon Industries | Apparatus for crushing articles |
US4532859A (en) * | 1982-11-01 | 1985-08-06 | A/S Tomra Systems | Method for identification of metal boxes or cans and an apparatus for carrying out said method |
US4576289A (en) * | 1983-11-23 | 1986-03-18 | Reynolds Metals Company | Method and apparatus for recycling cans |
US4597487A (en) * | 1983-07-28 | 1986-07-01 | Creative Technology, Inc. | Method and apparatus for selective scrap metal collections |
-
1984
- 1984-11-30 US US06/676,785 patent/US4787495A/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US27643A (en) * | 1860-03-27 | Washing-machine | ||
US619799A (en) * | 1899-02-21 | Grain-trimming device | ||
US740453A (en) * | 1903-02-05 | 1903-10-06 | Hans L Moebeck | Grain-loader for cars. |
US1782996A (en) * | 1929-03-27 | 1930-11-25 | Gilbert D Moody | Apparatus for stacking ore and similar material |
US3749240A (en) * | 1971-12-16 | 1973-07-31 | Reynolds Metals Co | Apparatus for and method of classifying empty containers |
US4257511A (en) * | 1976-12-27 | 1981-03-24 | Miller John H | Method and apparatus for selective recovery of metal containers |
US4179018A (en) * | 1976-12-27 | 1979-12-18 | Miller John H | Method and apparatus for selective recovery of metal containers |
US4345679A (en) * | 1980-05-09 | 1982-08-24 | Dewoolfson Bruce H | Container collection apparatus with electromagnetic sensor and method |
US4402391A (en) * | 1980-12-01 | 1983-09-06 | Creative Technology Inc. | Selective scrap metal collection apparatus |
US4463844A (en) * | 1981-12-23 | 1984-08-07 | Adolph Coors Company | Apparatus and method for return of empty aluminum cans |
US4516489A (en) * | 1982-06-24 | 1985-05-14 | Balcon Industries | Apparatus for crushing articles |
US4532859A (en) * | 1982-11-01 | 1985-08-06 | A/S Tomra Systems | Method for identification of metal boxes or cans and an apparatus for carrying out said method |
US4505370A (en) * | 1983-01-21 | 1985-03-19 | Reynolds Metals Company | Method for recycling cans |
US4597487A (en) * | 1983-07-28 | 1986-07-01 | Creative Technology, Inc. | Method and apparatus for selective scrap metal collections |
US4576289A (en) * | 1983-11-23 | 1986-03-18 | Reynolds Metals Company | Method and apparatus for recycling cans |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5273150A (en) * | 1990-09-17 | 1993-12-28 | Halton Oy | Device for handling returnable cans |
US5195429A (en) * | 1991-02-28 | 1993-03-23 | Firpo Sergio E | Assembly for perforating, crushing and baling crushable objects |
US5226519A (en) * | 1991-04-29 | 1993-07-13 | Environmental Products Corporation | Multiple use commodity collection and storage system |
US5630493A (en) * | 1992-03-16 | 1997-05-20 | Environmental Products Corporation | Acceptance assembly for a reverse vending machine |
US5355987A (en) * | 1992-03-16 | 1994-10-18 | Environmental Products Corporation | Single station reverse vending machine |
US5465822A (en) * | 1992-03-16 | 1995-11-14 | Environmental Products Corporation | Commodity densification assembly having a multiple path distribution device |
US5456127A (en) * | 1993-03-15 | 1995-10-10 | Binder + Co Aktiengesellschaft | Method for determining the purity of treated used glass prior to recycling |
US5520343A (en) * | 1994-10-26 | 1996-05-28 | B.S.C. Co., Ltd. | Empty vessel treatment vehicles |
EP0709311A1 (en) * | 1994-10-26 | 1996-05-01 | B.S.C. Co., Ltd. | Empty container treatment vehicle |
US5704558A (en) * | 1996-09-16 | 1998-01-06 | Can Depot, L.P. | Automated recycling center for aluminum cans |
FR2765814A1 (en) * | 1997-07-10 | 1999-01-15 | Cogeac Soc | SORTING DEVICE FOR CONTAINERS AND PACKAGING |
WO1999002430A1 (en) * | 1997-07-10 | 1999-01-21 | Societe Cogeac | Device for sorting containers and packages |
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
US20090217828A1 (en) * | 2006-04-21 | 2009-09-03 | Hermann Scharfen | Unit for compacting hollow bodies |
US20140251877A1 (en) * | 2013-03-06 | 2014-09-11 | William S. Taylor | Aluminum Can System |
US9295994B2 (en) * | 2013-03-06 | 2016-03-29 | William S. Taylor | Aluminum can system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4597487A (en) | Method and apparatus for selective scrap metal collections | |
US4653627A (en) | Reverse vending machine | |
US4463844A (en) | Apparatus and method for return of empty aluminum cans | |
US4179018A (en) | Method and apparatus for selective recovery of metal containers | |
US4787495A (en) | Method and apparatus for selective scrap metal collection | |
US4257511A (en) | Method and apparatus for selective recovery of metal containers | |
CA1190201A (en) | Apparatus for recognizing, crushing, separating, weighing, and making payment for, used metal items, particularly aluminum cans | |
US5111927A (en) | Automated recycling machine | |
CA1172185A (en) | Feeding mechanism for dual coin sorters operating in parallel | |
US4345679A (en) | Container collection apparatus with electromagnetic sensor and method | |
US5361913A (en) | Reverse bottle vending, crushing and sorting machine | |
US3998237A (en) | Coin sorter | |
US4573641A (en) | Glass bottle collection and crushing apparatus | |
US4492295A (en) | Automated redemption center for metal containers | |
US5477953A (en) | Filter and filter cleaning system for a reverse vending machine | |
CA1160196A (en) | Apparatus for recognizing, crushing, separating, weighing and making payment for used metal items, particularly aluminum cans | |
US4512253A (en) | Apparatus for processing recyclable containers | |
US4402391A (en) | Selective scrap metal collection apparatus | |
US4469212A (en) | Container collection apparatus with piston-actuated crusher | |
US4472819A (en) | Can counter | |
US4505370A (en) | Method for recycling cans | |
US4576289A (en) | Method and apparatus for recycling cans | |
US6199702B1 (en) | Method and apparatus for collecting and removing recyclable containers from a redemption center for transport to a separating facility and separating the containers and their components | |
US4558775A (en) | Apparatus for passive analysis of containers to determine acceptability for recycling | |
US7682228B2 (en) | Coin intake mechanism for self-service cash redemption machine and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CREATIVE TECHNOLOGY,INC. SCOTTDALE ARIZONA A CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:TUTEN, WILLIAM J.;CROSBY, KENNITH D.;REEL/FRAME:004354/0673 Effective date: 19841130 |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: TUTEN, WILLIAM J., ARIZONA Free format text: ASSIGNS TO EACH ASSIGNEE AN UNDIVIDED FIFTY PERCENT (50%) INTEREST;ASSIGNOR:CREATIVE TECHNOLOGY, INC.;REEL/FRAME:005977/0726 Effective date: 19911121 Owner name: CROSBY, KENNITH D., ARIZONA Free format text: ASSIGNS TO EACH ASSIGNEE AN UNDIVIDED FIFTY PERCENT (50%) INTEREST;ASSIGNOR:CREATIVE TECHNOLOGY, INC.;REEL/FRAME:005977/0726 Effective date: 19911121 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20001129 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |