US4808181A - Intraocular lens having roughened surface area - Google Patents
Intraocular lens having roughened surface area Download PDFInfo
- Publication number
- US4808181A US4808181A US07/083,635 US8363587A US4808181A US 4808181 A US4808181 A US 4808181A US 8363587 A US8363587 A US 8363587A US 4808181 A US4808181 A US 4808181A
- Authority
- US
- United States
- Prior art keywords
- lens
- contact region
- surface area
- posterior
- roughened surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002775 capsule Substances 0.000 claims abstract description 28
- 238000004873 anchoring Methods 0.000 claims abstract description 23
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 20
- 238000002513 implantation Methods 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 17
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 10
- 229920001296 polysiloxane Polymers 0.000 claims description 7
- -1 polyethylene Polymers 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 210000001508 eye Anatomy 0.000 description 33
- 210000001519 tissue Anatomy 0.000 description 30
- 238000005755 formation reaction Methods 0.000 description 10
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 210000005252 bulbus oculi Anatomy 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 230000000873 masking effect Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000001886 ciliary effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 210000003717 douglas' pouch Anatomy 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 210000000184 posterior capsule of the len Anatomy 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000003683 corneal stroma Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1648—Multipart lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2002/1681—Intraocular lenses having supporting structure for lens, e.g. haptics
- A61F2002/1683—Intraocular lenses having supporting structure for lens, e.g. haptics having filiform haptics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0025—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in roughness
Definitions
- the present invention relates to an intraocular lens having a roughened surface area, and more particularly to an artificial intraocular lens for implantation in the posterior chamber of an eye, after extracapsular removal of the natural eye lens, wherein the roughened surface area serves to accelerate the adhesion of the adjacent tissue to the lens and enhance the anchoring of the lens to such adjacent tissue, to prevent dislodgment of the implanted lens.
- a known eye surgery procedure is to remove the cataracted lens through an incision in the wall of the cornea of the eyeball, and replace it by an artificial intraocular lens as an internal implant lens.
- One specific surgical procedure involves the extracapsular removal of the natural eye lens, leaving portions of the posterior lens capsule intact. Such intact posterior portions may then conveniently serve as an anchoring site for the intraocular lens to be implanted in the eye.
- U.S. Pat. No. 4,605,409 to Kelman discloses an intraocular lens having a small size optic and flexible haptics for the stated purposes as well as deformable masking means such as laterally disposed generally flat planar wings, which mask the side edge portions of the optic for specifically overcoming the problem of the edge glare effect of otherwise scattered incoming light rays at the peripheral marginal regions of such small size lens.
- the masking effect of the wings is achieved by leaving the flat surfaces of the wings in rough, unground condition, or by coating one of the surfaces of each wing with an opaque coating.
- U.S. Pat. No. 3,458,870 to Stone, Jr. concerns a structural corneal implant in the form of a curved annular holding member having a central opening containing a removable lens member, arranged such that the holder is seated in an incision pocket parallel to and intermediate the anterior and posterior surfaces of the corneal wall in the manner of a sandwich.
- the periphery of the annular holder is provided with a plurality of circular rows of holes extending completely therethrough to permit bilateral anchoring ingrowth of corneal stroma to fill the holes for providing a gross mechanical structural interconnection rather than one utilizing surface adhesion.
- U.S. Pat. No. 4,304,012 to Richard is to the same general effect, in this case providing the haptics with such anchoring holes completely therethrough for positioning the intraocular lens in contact with the iris or other eye tissue to permit such ingrowth of tissue completely through the holes.
- the holes are stated to have a diameter in the range of 0.002-0.006 inches (0.0508-0.1524 mm), and the mechanical structural interconnection is described as one in which the live tissue which grows through the given hole develops an enlarged rivet head like protrusion on the exposed side thereof and provides a "riveting" effect for a stronger attachment than otherwise.
- the intraocular lens for implantation in the posterior chamber of an eye, after extracapsular removal of the natural eye lens, the intraocular lens having at least one roughened surface area for accelerated adhesion thereto of tissue of the adjacent posterior capsule and enhanced anchoring of the implant lens to such tissue of the posterior capsule, to prevent dislodgment of the implanted lens.
- an intraocular lens of the foregoing type in which the roughened surface area is defined by a series of ordered narrow linear depressions or furrows, promoting surface adhesion, rather than gross mechanical interconnection, for achieving such anchoring, and within an accelerated period of time, of at most several hours, from the completion of the implanting of the intraocular lens in place in the interior of the eye.
- an intraocular lens of the stated type which is relatively safe and non-irritating to the eye in use, and which can be made from readily available materials, and preferably of flexible, temporarily deformable, construction to permit its deformation to reduce its apparent girth for insertion into an eye through a minimum size corneal incision, yet which will readily return to its original, expanded and undeformed state, while retaining its desired optical characteristics, once it is inside the eye, enabling the lens to be seated properly by the surgeon in the posterior chamber adjacent the posterior capsule.
- an artificial intraocular lens for implantation in the posterior chamber of an eye, following extracapsular removal of the natural eye lens.
- the intraocular lens comprises a lens assembly having an anterior surface formation and a posterior surface formation, at least a portion of the posterior surface formation constituting a planar contact region adapted to be seated against the adjacent planar tissue surface of the posterior capsule to form a connection interface for anchoring the lens.
- the contact region is advantageously provided with at least one roughened surface area defined by a series of ordered narrow linear depressions or furrows therein extending generally transversely of the plane of the contact region, for accelerated adhesion of the tissue of the adjacent lens posterior capsule wall part to the depressions and enhanced anchoring of the lens assembly to the lens posterior capsule wall part, to prevent dislodgment of the implanted intraocular lens.
- a plurality of such roughened surface areas may be provided at corresponding spaced apart local sites on the contact region.
- the lens assembly may include an optic or lens body comprising the contact region, such that the roughened surface area is located on the contact region at the periphery of the optic, for example as an annulus extending peripherally around the optic, or as individual spaced apart segment like arcs of an interrupted annulus extending peripherally around the optic.
- the lens assembly may include an optic provided with a pair of opposed haptics comprising portions of the contact region, such that at least one roughened surface area is located on a corresponding contact region portion of each haptic.
- the lens assembly may include an optic provided with a pair of laterally disposed light ray modifying wings comprising portions of the contact region, such that at least one roughened surface area is located on a corresponding contact region portion of each wing.
- FIG. 1 is a plan view of the back or posterior side of an artificial intraocular lens having an optic and haptics, and provided with a roughened surface area in the form of a peripheral annulus according to one embodiment of the present invention
- FIG. 2 is a side view of the embodiment of FIG. 1;
- FIGS. 3a and 3b are plan views of the back or posterior side of an intraocular lens having an optic and haptics, as well as one form of known glare effect preventing masking wings, termed a "Phaco Fit" lens assembly, showing the wings in normal expanded position in FIG. 3a and in temporary overlapping contracted position in FIG. 3b, the assembly being provided with roughened surface areas on the wings according to another embodiment of the present invention;
- FIG. 4 is a sectional view taken along the line 4--4 of FIG. 3a;
- FIGS. 5 and 6 are corresponding enlarged exaggerated schematic sectional views of two different embodiments of the roughened surface area provided on the lens assembly according to the present invention.
- FIG. 7 is a schematic sectional view of an eyeball showing one possible way in which the intraocular lens of the present invention may be positioned in the eye at the posterior wall part of the lens capsule, following extracapsular removal of the natural eye lens and anterior wall part of the lens capsule;
- FIG. 8 is an exaggerated schematic sectional view of a portion of the implanted lens in contact with the posterior wall part of the lens capsule, illustrating the arrangement of the surface adhesion of the live tissue to the roughened surface area of the implanted lens according to the present invention.
- an artificial intraocular lens 1 which is either rigid, e.g. made of PMMA, or deformable, e.g. made of silicone, such that the latter type lens may be deformed into a reduced girth form for insertion into the interior of an eye through a corneal incision of minimum size), as an implant for replacing the natural lens, such as a cataracted lens, by way of surgical procedures well known to those skilled in the art.
- Lens 1 is generally of the conventional type, comprising a composite lens assembly 2 having a preferably round or circular central light focusing lens body or optic 3, desirably provided with a symmetrical pair of position fixation means or haptics 4,5 or the like, i.e. oppositely disposed outwardly flaring resilient lens seating appendages.
- Optic 3 is preferably formed of plastic material as aforesaid, and haptics 4,5 are likewise preferably formed of plastic material.
- Haptics 4,5 or the like may be integrally connected to optic 3, and are used for embracing the adjacent portions of the eye interior, and more specificially in connection with the objects and advantages of the present invention, for aiding the seating of lens 1 in the posterior chamber adjacent to portions of the posterior capsule, i.e. after extracapsulary removal of the natural eye lens through an incision in the cornea followed by insertion therethrough of the intraocular lens for such seating by the surgeon.
- Lens assembly 2 has a front or anterior surface formation 6, collectively encompassing the corresponding front or anterior surfaces of optic 3 and haptics 4,5, and a back or posterior surface formation 7, likewise encompassing the corresponding back or posterior surfaces of optic 3 and haptics 4,5.
- posterior surface formation 7 is constituted as a planar contact region 8, which is adapted to be seated against the adjacent planar tissue of the eye in the posterior chamber, as for example the posterior wall part of the lens capsule, to form a connection interface for mechanical anchoring of lens assembly 2 thereat.
- contact region 8 is provided with at least one roughened surface area 9, such as area 9a, 9b and/or 9c, each of which is defined by a series of ordered narrow linear furrows or depressions 10 therein extending generally transversely of the plane P of contact region 8.
- Depressions 10 efficiently serve to achieve a primary object and advantage of the present invention, in facilitating accelerated adhesion of the adjacent tissue, e.g. the tissue of the lens capsule posterior wall part, to depressions 10 and enhanced ordered mechanical anchoring of lens assembly 2 to the lens capsule posterior wall part, so as to prevent dislodgment or displacement of the so implanted intraocular lens 1 by accident, slippage, or otherwise during normal use.
- adjacent tissue e.g. the tissue of the lens capsule posterior wall part
- a plurality of roughened surface areas 9 is provided at corresponding local sites on contact region 8, such as area 9a located at the periphery of optic 3 and outwardly beyond the primary optical light ray transmitting central portion thereof, and/or area 9b and/or 9c located at a suitable point on haptic 4 and/or 5, as the case may be.
- roughened surface area 9a may be disposed in the shape of a continuous ring or annulus extending peripherally around optic 3 as shown in FIG. 1, or alternatively in the shape of individual spaced apart segment like arcs 9aa (shown schematically in phantom as braced regions in FIG. 1) of an interrupted ring or annulus extending peripherally around optic 3 in a manner analogous to the continuous annulus shown in solid line in FIG. 1.
- segment like arcs 9aa are preferably provided in equidistant spaced relation to one another to assure more efficient balanced anchoring of lens assembly 2 in place.
- roughened surface area 9b or 9c may be disposed at any suitable location on the corresponding haptic 4 or 5, and where both areas 9b and 9c are present, the ordered linear furrows or depressions 10 thereof are favorably oriented at an angle to each other as shown in FIG. 1, not only to assure more efficient seating of lens assembly 2 in place, but also inhibition of any incipient tendency of lens assembly 2 to rotate about its center, i.e. in a direction roughly parallel to the linear direction of the ordered depressions 10.
- FIGS. 3a, 3b and 4 show another embodiment of an artificial intraocular lens 1' of otherwise conventional type, termed a "Phaco Fit" lens, which is analogous to lens 1 of the embodiment shown in FIGS. 1-2, and whose generally equivalent parts are assigned corresponding primed reference designations, i.e. lens assembly 2', optic 3', haptics 4', 5', anterior surface formation 6', posterior surface formation 7', contact region 8', and contact region plane P', and wherein the roughened surface area 9 defined by the ordered narrow linear furrows or depressions 10 is designated 9a', 9b' and /or 9c', as the case may be.
- a "Phaco Fit" lens which is analogous to lens 1 of the embodiment shown in FIGS. 1-2, and whose generally equivalent parts are assigned corresponding primed reference designations, i.e. lens assembly 2', optic 3', haptics 4', 5', anterior surface formation 6', posterior surface formation 7', contact region 8', and contact region plane
- lens assembly 2' includes a generally reduced width oval (or alternatively rectangular) shaped optic 3', which is provided with a pair of laterally disposed light ray modifying or masking slidable wings 11,12, integrally connected thereto, in posteriorly offset or rearward partially overlapping stepped disposition to optic 3', as shown in FIG. 4, for purposes more fully described in said U.S. Pat. No. 4,605,409 to Kelman, the disclosure of which is incorporated herein by reference.
- the included wings 11,12 are of complementary crescent shape to provide lens assembly 2' with an overall generally round or circular composite central shape, i.e. apart from the outwardly flaring haptics 4',5'.
- the posteriorly offset disposition of wings 11,12 relative to optic 3+ is such as to provide a space 13 between the posterior surface of optic 3' and the contact region plane P'.
- wings 11,12 comprise portions of the contact region 8', and individual roughened surface areas 9a' are located on corresponding portions of contact region 8' on each wings. While three such individual partial areas 9a' in equidistant spaced relation to each other, relative to such round composite central shape, may be distributed on various local sites of the two wings 11,12, it will be understood that, just as in the case of the embodiment of FIGS.
- any number of such local areas 9a' may be provided, optionally with or without the areas 9b' and/or 9c' on the portions of contact region 8' located on haptics 4' and/or 5', or preferably the entirety of the posterior surface of each of the wings 11,12 may contain a corresponding roughened surface area 9a' as contemplated specifically in FIGS. 3a and 3b for enhanced anchoring of lens 1' to the adjacent tissue.
- areas 9a' may be omitted from wings 11,12, and either or both of areas 9b' and 9c' may be included instead on haptics 4' and 5' of lens assembly 2' for analogous results.
- FIGS. 5 and 6 show in exaggerated enlarged detail two different configurations of depressions 10 defining a given roughened surface area 9, that of FIG. 5 corresponding to the arrangement of lens assembly 2 of FIGS. 1-2, and that of FIG. 6 corresponding to the arrangement of lens assembly 2' of FIGS. 3a, 3b and 4.
- the arrangement of FIG. 5 or the arrangement of FIG. 6 may be provided in lens assembly 2 of FIGS. 1-2, or in lens assembly 2' of FIGS.
- any other type roughened surface area defining series of ordered narrow linear furrows or depressions may be used, as the case may be, for accomplishing the overall objects and advantages of the present invention.
- FIG. 5 is directed to a series of side by side linear depressions 10, designated U, which have a generally U-shaped groove cross section, and which are bounded by intervening straight side walls S
- FIG. 6 is directed to a series of side by side linear depressions 10, designated V, which have a generally V-shaped groove cross section, and which are bounded by intervening inclined side walls.
- the corresponding grooves forming the depressions 10 extend generally transversely of the pertinent plane P or P' of the contact region 8 or 8'.
- FIG. 7 illustrates one preferred manner of positioning the intraocular lens 1 (or 1') in the eyeball 40.
- the relevant parts of the eyeball 40 include the cornea 41, the iris 42 having an adjustable size central opening or pupil 43 and dividing the adjacent aqueous humor containing interior into an anterior chamber 44 and a posterior chamber 45, and an encapsulated natural eye lens.
- the surgeon has already remoed the natural lens and a portion of the anterior wall part of the natural lens capsule 46 via the usual small size corneal incision 41a, leaving intact the posterior wall part 47 of lens capsule 46, which is held in place by the zonules or suspensory ligament and fibers 48 attached to its external periphery.
- the internal periphery of posterior wall part 47 forms a recessed anterior cul-de-sac or ciliary sulcus 49 which may serve as a seating location for the intraocular lens 1.
- the haptics 4,5 of lens 1 naturally urge posterior surface formation 7, and especially contact region 8, against the adjacent surface of tissue of the posterior capsule, for example wall part 47, to assure full coextensive contact seating of lens 1 in place, and particularly of depressions 10 of each roughened surface area 9 in abutment with the vicinal tissue thereat for promoting the desired adhesion connection.
- FIG. 8 indicates the disposition of the vicinal tissue T of the posterior wall part 47 in the U-shaped grooves forming the individual furrows or depressions 10 of the particular roughened surface area 9, a condition which surprisingly develops within a matter of only a few hours after completion of the seating of lens 1 (or 1'), pressed in place against posterior wall part 47.
- the tissue enters or grows into, and distributes itself along, the comparatively minute width and pronounced transverse length, i.e. depth, of each of the series of ordered narrow linearly extending depressions 10, for accelerated adhesion to the receptive interior surfaces of the grooves or depressions and enhanced anchoring of the intraocular lens to such adjacent tissue, e.g. the posterior wall part 47.
- connection interface between the depressions 10 of roughened surface area 9 and the adjacent tissue of posterior wall part 47 is one which inherently constitutes a surface adhesion type bonding, rather than a mechanical rivet type gross connection, and one which enables the tissue to become adhered to the internal surface expanse of the depressions 10 in comparatively rapid manner, rather than by slow ingrowth accumulation as a relatively large volume mass sufficient to fill out and engage the full cross section as well as the axial length of provided through holes for anchoring purposes as previously suggested by the art (cf. said U.S. Pat. No. 3,458,870 to Stone, Jr. and said U.S. Pat No. 4,304,012 to Richard).
- the roughened surface area 9 is defined by a series of ordered side by side narrow linearly extending furrows or depressions, such that they collectively reinforce one another in anchoring the lens assembly to the vicinal tissue, such as that of posterior wall part 47.
- any appropriate means may be used to impart the roughened surface area onto the contact region site.
- the side by side linear depressions or furrows may be provided by scoring, grinding or like conventional operations, directed at the local surface region or regions where the depressions are to be located.
- the ordered series necessarily provides an internal groove connection site, collectively of several orders of magnitude increase in surface area over the basic surface area of the corresponding contact region portion containing the given roughened surface area, i.e. in the direction of its plane P (or P'), the potential contact surface extent offered to the vicinal tissue for adhesion is correspondingly increased, so as to assure the desired surface adhesion connection in situ throughout the areal extent of the given roughened surface area.
- each depression 10 far exceeds the dimension across its entrance, and more than twice the value of the pronounced dimension of this depth (i.e. comprising at least the additive total depth extent of the two side walls bounding the given depression apart from the extent of the width therebetween) is multiplied by the running length of the given linear furrow or depression to obtain the total internal roughened surface area available for receptive adhesion contact by the vicinal tissue.
- the extraordinarily large potential surface area available for the contemplated adhesion contact is sufficient to achieve in a comparatively short period of time a fully bonded connection at the composite connection interface provided, which is adequate to inhibit accidental or otherwise caused dislodgment or slippage of the intraocular lens from its intended optical alignment position.
- the adhesion of the vicinal tissue to the depressions at the connection interface site is beneficially free from undesired gross stress and does not result in irritation of the vicinal tissue or adjacent parts of the eye.
- the posterior wall part of the posterior capsule more readily adheres to the roughened surface area according to the present invention than to a smooth surface, such that the vicinal tissue acts to fixate the intraocular lens in position within a short finite time span, of at most a few hours, and in turn prevents the lens from being dislodged.
- This enhanced adhering tendency regarding the roughened surface area depressions, as opposed to a smooth surface appears to occur independently of the surface property of some plastics such as silicone which promote collection of materials of the eye such as fibrin thereon, or of the opposite property of other plastics such as polymethylmethacrylate which inhibit collection of such eye materials thereon.
- the roughened surface area should desirably amount to a total of at least about 2 mm 2 in areal extent, and should contain, for example, about 40-120 side by side linear depressions per millimeter.
- the depressions should preferably be of a depth of at least about 0.01 mm up to a maximum of about one half of the thickness of the structure constituting the portion of the contact region at which the roughened surface area is provided.
- the depressions may be about 0.01-0.12 mm in depth, and the host structure containing the contact region may have a corresponding thickness of only about 0.25 mm.
- a plurality of individual roughened surface areas such as at least three individual segment like arcs of an interrupted annulus extending peripherally around the optic of the lens assembly, or the like, these are preferably provided in equidistant spaced relation to each other, for example with each arc being at least about 1 mm 2 in areal extent.
- the intraocular lens may have any desired shape and contain any appropriate optical elements, with or without collateral appendages such as haptics, light masking wings, or the like, so long as it includes at least one roughened surface area defined by a series of ordered narrow linear depressions appropriately located thereon in accordance with the present invention.
- the lens assembly will be made of polymethylmethacrylate (PMMA), and include an optic, haptics, and slidable wings.
- the optic may be provided with a thickness of about 1.5 mm, and a diameter of about 3 mm, and include slidable or foldable wings which are deformable so that the assembly can be inserted through a minimum size corneal incision, for example of only about 3 mm length, after which the composite lens can be allowed to expand to its original size and undeformed state, while retaining its desired optical characteristics, for appropriate seating in the eye by the surgeon, in the above described manner.
- the wings are positioned adjacent to the posterior face of the optic and are slidable along such face.
- the posterior face of each of the wings is positioned posteriorly of the posterior face of the optic so that the wings assume a space between the optic and the posterior capsule wall when the lens is seated.
- the roughened surface according to the present invention is located on the posterior face of the wings.
- the intraocular lens may be formed of any suitable light focusing optic serving material.
- any such material must be compatible with the eye fluid environment in the interior of the eyeball, for instance a non-toxic plastic, including in particular a plastic such as silicone, or polymethylmethacrylate (PMMA), or the like, with any associated haptic or the like position fixation members, wings, or the like, being of the same type material, or in the case of such position fixation members even a comparatively more flexible material than silicone, such as polypropylene.
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/083,635 US4808181A (en) | 1987-08-07 | 1987-08-07 | Intraocular lens having roughened surface area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/083,635 US4808181A (en) | 1987-08-07 | 1987-08-07 | Intraocular lens having roughened surface area |
Publications (1)
Publication Number | Publication Date |
---|---|
US4808181A true US4808181A (en) | 1989-02-28 |
Family
ID=22179684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/083,635 Expired - Fee Related US4808181A (en) | 1987-08-07 | 1987-08-07 | Intraocular lens having roughened surface area |
Country Status (1)
Country | Link |
---|---|
US (1) | US4808181A (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3939648A1 (en) * | 1989-11-30 | 1991-06-06 | Adatomed Pharma & Med | Intra=ocular lens of silicone rubber - with surface coated with protein with affinity to inner side of natural lens casing |
US5133751A (en) * | 1991-05-20 | 1992-07-28 | Jon Bayers | Intraocular lens |
EP0571296A1 (en) * | 1992-05-22 | 1993-11-24 | Guillaume Guilbert | Implant for an intra-ocular lens |
EP0599457A1 (en) * | 1992-09-28 | 1994-06-01 | Iolab Corporation | Ophthalmic lens with reduced edge glare |
US5405385A (en) * | 1992-04-02 | 1995-04-11 | Clemson University | Intraocular lens with integrated means of fixation |
US5549670A (en) * | 1995-05-09 | 1996-08-27 | Allergan, Inc. | IOL for reducing secondary opacification |
US5628797A (en) * | 1996-02-23 | 1997-05-13 | Richer; Homer E. | Cosmetic anterior chamber, intraocular lens and implantation method |
US5693094A (en) * | 1995-05-09 | 1997-12-02 | Allergan | IOL for reducing secondary opacification |
US5755786A (en) * | 1992-09-28 | 1998-05-26 | Iolab Corporation | Ophthalmic lens with reduced edge glare |
US5769889A (en) * | 1996-09-05 | 1998-06-23 | Kelman; Charles D. | High myopia anterior chamber lens with anti-glare mask |
EP0916320A2 (en) | 1997-10-14 | 1999-05-19 | Tassignon, Marie-José B.R. Dr. | Intraocular lens and method for preventing secondary opacification |
US6129759A (en) * | 1997-12-10 | 2000-10-10 | Staar Surgical Company, Inc. | Frosted haptic intraocular lens |
US6162249A (en) * | 1998-05-29 | 2000-12-19 | Allergan | IOI for inhibiting cell growth and reducing glare |
US6171337B1 (en) | 1999-03-31 | 2001-01-09 | Miles A. Galin | Positive power anterior chamber ocular implant |
US6406739B1 (en) | 2000-01-12 | 2002-06-18 | Alcon Universal Ltd. | Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses |
US20020095211A1 (en) * | 1995-05-09 | 2002-07-18 | Craig Young | IOL for reducing secondary opacification |
US6468306B1 (en) | 1998-05-29 | 2002-10-22 | Advanced Medical Optics, Inc | IOL for inhibiting cell growth and reducing glare |
US6592621B1 (en) * | 2000-11-10 | 2003-07-15 | Rudolph S. Domino | Flexible intra-ocular lens of variable focus |
US20030144733A1 (en) * | 1998-05-29 | 2003-07-31 | Brady Daniel G. | Novel enhanced intraocular lens for reducing glare |
US6648741B2 (en) | 2002-03-14 | 2003-11-18 | Advanced Medical Optics, Inc. | Apparatus for protecting the edge geometry of an intraocular lens during glass bead polishing process |
US20040199248A1 (en) * | 2002-05-04 | 2004-10-07 | Kurt Buzard | Anterior chamber phakic lens and methods of implantation |
US20050033420A1 (en) * | 2003-05-28 | 2005-02-10 | Bruce A. Christie | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20050075732A1 (en) * | 2003-10-07 | 2005-04-07 | Israel Henry M. | Prevention of dislocation of an IOL |
US20050090896A1 (en) * | 2001-02-20 | 2005-04-28 | Yehoshua Ben Nun | Intraocular lens |
US20050125056A1 (en) * | 2003-12-09 | 2005-06-09 | Jim Deacon | Foldable intraocular lens and method of making |
US20050248849A1 (en) * | 2004-04-23 | 2005-11-10 | Microvision, Inc. | Optical element that includes a microlens array and related method |
US20060113054A1 (en) * | 2004-12-01 | 2006-06-01 | Silvestrini Thomas A | Method of making an ocular implant |
US20060118263A1 (en) * | 2004-12-01 | 2006-06-08 | Silvestrini Thomas A | Method of making an ocular implant |
US20060203192A1 (en) * | 1999-03-01 | 2006-09-14 | David Miller | System and method for increasing the depth of focus of the human eye |
US20060235514A1 (en) * | 2005-04-14 | 2006-10-19 | Silvestrini Thomas A | Corneal optic formed of degradation resistant polymer |
US20060271027A1 (en) * | 2003-06-17 | 2006-11-30 | Thomas Silvestrini | Method and apparatus for aligning a mask with the visual axis of an eye |
US20060293746A1 (en) * | 1996-08-27 | 2006-12-28 | Craig Young | IOL for reducing secondary opacification |
US20070106381A1 (en) * | 2007-01-24 | 2007-05-10 | Blake Larry W | Umbrella-shaped accommodating artificial ocular lens (AAOL) device |
EP1800621A1 (en) * | 2005-12-23 | 2007-06-27 | Rupert Menapace | Intraocular lens |
US20070185574A1 (en) * | 2001-08-21 | 2007-08-09 | Yehoshua Ben Nun | Accommodating lens assembly |
US20070244561A1 (en) * | 2004-10-13 | 2007-10-18 | Nulens Ltd. | Accommodating Intraocular Lens (Aiol), and Aiol Assemblies Including Same |
US20080004699A1 (en) * | 2004-04-29 | 2008-01-03 | Nulens Ltd | Accommodating Intraocular Lens Assemblies and Accommodation Measurement Implant |
EP1882462A1 (en) * | 2005-05-20 | 2008-01-30 | Kowa Company, Ltd. | Intraocular lens |
US20080077238A1 (en) * | 2006-09-21 | 2008-03-27 | Advanced Medical Optics, Inc. | Intraocular lenses for managing glare, adhesion, and cell migration |
US20080077239A1 (en) * | 2006-09-21 | 2008-03-27 | Advanced Medical Optics, Inc. | Intraocular lenses for managing glare, adhesion, and cell migration |
US20080269890A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon Universal Ltd. | Intraocular lens with peripheral region designed to reduce negative dysphotopsia |
US20080269891A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon, Inc. | Intraocular lens with edge modification |
US20080269883A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon, Inc. | Ocular implant to correct dysphotopsia, glare, halos and dark shadow type phenomena |
US20080269886A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | IOL Peripheral Surface Designs to Reduce Negative Dysphotopsia |
US20080269882A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon Universal Ltd. | Intraocular lens with asymmetric optics |
US20080269881A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | Intraocular Lens with Asymmetric Haptics |
US20080269885A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | IOL Peripheral Surface Designs to Reduce Negative Dysphotopsia |
US20080269889A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | Haptic Junction Designs to Reduce Negative Dysphotopsia |
US20080294826A1 (en) * | 2007-05-21 | 2008-11-27 | International Business Machines Corporation | Apparatus and method to control access to stored information |
US20080300680A1 (en) * | 2005-03-30 | 2008-12-04 | Nulens Ltd | Accommodating Intraocular Lens (Aiol) and Discrete Components Therefor |
US20090030514A1 (en) * | 2005-05-20 | 2009-01-29 | Kowa Company, Ltd. | Intraocular lens |
US20090198247A1 (en) * | 2006-08-25 | 2009-08-06 | Nulens Ltd. | Intraocular lens implantation kit |
US7615073B2 (en) | 2003-12-09 | 2009-11-10 | Advanced Medical Optics, Inc. | Foldable intraocular lens and method of making |
US20110040376A1 (en) * | 2009-08-13 | 2011-02-17 | Acufocus, Inc. | Masked intraocular implants and lenses |
US20110112636A1 (en) * | 2008-07-24 | 2011-05-12 | Joshua Ben Nun | Accommodating Intraocular Lens (AIOL) Capsules |
US20110118836A1 (en) * | 2009-11-18 | 2011-05-19 | Abbott Medical Optics Inc. | Mark for intraocular lenses |
US20110230963A1 (en) * | 2008-11-20 | 2011-09-22 | Insight Innovations, Llc | Biocompatible biodegradable intraocular implant system |
USD656526S1 (en) | 2009-11-10 | 2012-03-27 | Acufocus, Inc. | Ocular mask |
US20120232649A1 (en) * | 2008-11-20 | 2012-09-13 | Insight Innovations, Llc | Intraocular Lens Cell Migration Inhibition System |
US8273123B2 (en) | 2007-03-05 | 2012-09-25 | Nulens Ltd. | Unitary accommodating intraocular lenses (AIOLs) and discrete base members for use therewith |
US8551167B2 (en) | 2008-11-20 | 2013-10-08 | Insight Innovations, Llc | Intraocular implant cell migration inhibition system |
USD702346S1 (en) | 2007-03-05 | 2014-04-08 | Nulens Ltd. | Haptic end plate for use in an intraocular assembly |
WO2015143514A1 (en) * | 2014-03-28 | 2015-10-01 | Mediphacos Indústrias Médicas S/A | Intraocular lens |
US9204962B2 (en) | 2013-03-13 | 2015-12-08 | Acufocus, Inc. | In situ adjustable optical mask |
US9427922B2 (en) | 2013-03-14 | 2016-08-30 | Acufocus, Inc. | Process for manufacturing an intraocular lens with an embedded mask |
US9545303B2 (en) | 2011-12-02 | 2017-01-17 | Acufocus, Inc. | Ocular mask having selective spectral transmission |
US9943402B2 (en) | 2008-11-20 | 2018-04-17 | Insight Innovations, Llc | Micropatterned intraocular implant |
US10687936B2 (en) | 2016-05-22 | 2020-06-23 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages |
US11224505B2 (en) | 2018-11-02 | 2022-01-18 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages including discrete lens unit with segmented lens haptics |
US11951699B2 (en) | 2021-08-05 | 2024-04-09 | Amo Groningen B.V. | Method and assembly for forming an intraocular lens |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4343050A (en) * | 1980-07-14 | 1982-08-10 | Kelman Charles D | Intraocular lenses |
US4449257A (en) * | 1982-05-03 | 1984-05-22 | Barnes-Hind/Hydrocurve, Inc. | Intraocular lens and method of retaining in place |
US4605409A (en) * | 1984-05-21 | 1986-08-12 | Kelman Charles D | Intraocular lens with miniature optic having expandable and contractible glare-reducing means |
-
1987
- 1987-08-07 US US07/083,635 patent/US4808181A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4343050A (en) * | 1980-07-14 | 1982-08-10 | Kelman Charles D | Intraocular lenses |
US4449257A (en) * | 1982-05-03 | 1984-05-22 | Barnes-Hind/Hydrocurve, Inc. | Intraocular lens and method of retaining in place |
US4605409A (en) * | 1984-05-21 | 1986-08-12 | Kelman Charles D | Intraocular lens with miniature optic having expandable and contractible glare-reducing means |
Cited By (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3939648A1 (en) * | 1989-11-30 | 1991-06-06 | Adatomed Pharma & Med | Intra=ocular lens of silicone rubber - with surface coated with protein with affinity to inner side of natural lens casing |
US5133751A (en) * | 1991-05-20 | 1992-07-28 | Jon Bayers | Intraocular lens |
US5405385A (en) * | 1992-04-02 | 1995-04-11 | Clemson University | Intraocular lens with integrated means of fixation |
EP0571296A1 (en) * | 1992-05-22 | 1993-11-24 | Guillaume Guilbert | Implant for an intra-ocular lens |
FR2691353A1 (en) * | 1992-05-22 | 1993-11-26 | Guilbert Guillaume | Implant carrying an intraocular lens. |
US5755786A (en) * | 1992-09-28 | 1998-05-26 | Iolab Corporation | Ophthalmic lens with reduced edge glare |
EP0599457A1 (en) * | 1992-09-28 | 1994-06-01 | Iolab Corporation | Ophthalmic lens with reduced edge glare |
US6264692B1 (en) | 1992-09-28 | 2001-07-24 | Bausch & Lomb Surgical, Inc. | Ophthalmic lens with reduced edge glare and method of making |
US6045577A (en) * | 1992-09-28 | 2000-04-04 | Iolab Corporation | Ophthalmic lens with reduced edge glare |
US5693093A (en) * | 1992-09-28 | 1997-12-02 | Iolab Corporation | Ophthalmic lens with reduced edge glare |
US20020095211A1 (en) * | 1995-05-09 | 2002-07-18 | Craig Young | IOL for reducing secondary opacification |
US6656222B2 (en) | 1995-05-09 | 2003-12-02 | Advanced Medical Optics, Inc. | IOL for reducing secondary opacification |
US5693094A (en) * | 1995-05-09 | 1997-12-02 | Allergan | IOL for reducing secondary opacification |
US6258123B1 (en) | 1995-05-09 | 2001-07-10 | Allergan | IOL for reducing secondary opacification |
US5549670A (en) * | 1995-05-09 | 1996-08-27 | Allergan, Inc. | IOL for reducing secondary opacification |
US20080288064A1 (en) * | 1995-05-09 | 2008-11-20 | Craig Young | IOL For Reducing Secondary Opacification |
US5628797A (en) * | 1996-02-23 | 1997-05-13 | Richer; Homer E. | Cosmetic anterior chamber, intraocular lens and implantation method |
US20060293746A1 (en) * | 1996-08-27 | 2006-12-28 | Craig Young | IOL for reducing secondary opacification |
US5769889A (en) * | 1996-09-05 | 1998-06-23 | Kelman; Charles D. | High myopia anterior chamber lens with anti-glare mask |
EP0916320A2 (en) | 1997-10-14 | 1999-05-19 | Tassignon, Marie-José B.R. Dr. | Intraocular lens and method for preventing secondary opacification |
US6027531A (en) * | 1997-10-14 | 2000-02-22 | Tassignon; Marie-Joseb. R. | Intraocular lens and method for preventing secondary opacification |
US6129759A (en) * | 1997-12-10 | 2000-10-10 | Staar Surgical Company, Inc. | Frosted haptic intraocular lens |
US6468306B1 (en) | 1998-05-29 | 2002-10-22 | Advanced Medical Optics, Inc | IOL for inhibiting cell growth and reducing glare |
US20030130733A1 (en) * | 1998-05-29 | 2003-07-10 | Advanced Medical Optics, Inc. | Novel intraocular lens for reducing glare |
US9949822B2 (en) | 1998-05-29 | 2018-04-24 | Johnson & Johnson Surgical Vision, Inc. | Intraocular lens for inhibiting cell growth and reducing glare |
US20030144733A1 (en) * | 1998-05-29 | 2003-07-31 | Brady Daniel G. | Novel enhanced intraocular lens for reducing glare |
US6162249A (en) * | 1998-05-29 | 2000-12-19 | Allergan | IOI for inhibiting cell growth and reducing glare |
US20050154456A1 (en) * | 1998-05-29 | 2005-07-14 | Brady Daniel G. | Novel enhanced intraocular lens for reducing glare |
US6884262B2 (en) | 1998-05-29 | 2005-04-26 | Advanced Medical Optics, Inc. | Enhanced intraocular lens for reducing glare |
US7404638B2 (en) | 1999-03-01 | 2008-07-29 | Boston Innovative Optics, Inc. | System and method for increasing the depth of focus of the human eye |
US8752958B2 (en) | 1999-03-01 | 2014-06-17 | Boston Innovative Optics, Inc. | System and method for increasing the depth of focus of the human eye |
US7404637B2 (en) | 1999-03-01 | 2008-07-29 | Boston Innovative Optics, Inc. | System and method for increasing the depth of focus of the human eye |
US20060203192A1 (en) * | 1999-03-01 | 2006-09-14 | David Miller | System and method for increasing the depth of focus of the human eye |
US8343215B2 (en) | 1999-03-01 | 2013-01-01 | Acufocus, Inc. | System and method for increasing the depth of focus of the human eye |
US20090059168A1 (en) * | 1999-03-01 | 2009-03-05 | Boston Innovative Optics, Inc. | System and method for increasing the depth focus of the human eye |
US6171337B1 (en) | 1999-03-31 | 2001-01-09 | Miles A. Galin | Positive power anterior chamber ocular implant |
US7014656B2 (en) | 1999-03-31 | 2006-03-21 | Novartis Ag | Positive power anterior chamber ocular implant |
US20030158600A1 (en) * | 1999-03-31 | 2003-08-21 | Galin Miles A. | Positive power anterior chamber ocular implant |
US6406739B1 (en) | 2000-01-12 | 2002-06-18 | Alcon Universal Ltd. | Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses |
US6632887B2 (en) | 2000-01-12 | 2003-10-14 | Alcon Universal Ltd. | Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses |
US6592621B1 (en) * | 2000-11-10 | 2003-07-15 | Rudolph S. Domino | Flexible intra-ocular lens of variable focus |
US20060069433A1 (en) * | 2001-02-20 | 2006-03-30 | Nulens, Ltd., | Intraocular lens |
US20050090896A1 (en) * | 2001-02-20 | 2005-04-28 | Yehoshua Ben Nun | Intraocular lens |
US7998199B2 (en) | 2001-08-21 | 2011-08-16 | Nulens, Ltd. | Method of anchoring an accommodating intraocular lens assembly |
US20110082544A1 (en) * | 2001-08-21 | 2011-04-07 | Nulens Ltd. | Accommodating lens assembly |
US8382831B2 (en) | 2001-08-21 | 2013-02-26 | Nulens Ltd. | Method and apparatus for anchoring an intraocular lens assembly |
US7854764B2 (en) | 2001-08-21 | 2010-12-21 | Nulens Ltd. | Accommodating lens assembly |
US20070185574A1 (en) * | 2001-08-21 | 2007-08-09 | Yehoshua Ben Nun | Accommodating lens assembly |
US6648741B2 (en) | 2002-03-14 | 2003-11-18 | Advanced Medical Optics, Inc. | Apparatus for protecting the edge geometry of an intraocular lens during glass bead polishing process |
US20040199248A1 (en) * | 2002-05-04 | 2004-10-07 | Kurt Buzard | Anterior chamber phakic lens and methods of implantation |
US20060271181A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060268228A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US8858624B2 (en) | 2003-05-28 | 2014-10-14 | Acufocus, Inc. | Method for increasing the depth of focus of a patient |
US20060271183A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060271179A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060271182A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US9138142B2 (en) | 2003-05-28 | 2015-09-22 | Acufocus, Inc. | Masked intraocular devices |
US20060271180A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20050033420A1 (en) * | 2003-05-28 | 2005-02-10 | Bruce A. Christie | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060079959A1 (en) * | 2003-05-28 | 2006-04-13 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060274265A1 (en) * | 2003-05-28 | 2006-12-07 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060271178A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US7628810B2 (en) | 2003-05-28 | 2009-12-08 | Acufocus, Inc. | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060268227A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060271177A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US8460374B2 (en) | 2003-05-28 | 2013-06-11 | Acufocus, Inc. | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060271176A1 (en) * | 2003-05-28 | 2006-11-30 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060079960A1 (en) * | 2003-05-28 | 2006-04-13 | Christie Bruce A | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
US20060271026A1 (en) * | 2003-06-17 | 2006-11-30 | Silvestrini Thomas A | Method and apparatus for aligning a mask with the visual axis of an eye |
US8079706B2 (en) | 2003-06-17 | 2011-12-20 | Acufocus, Inc. | Method and apparatus for aligning a mask with the visual axis of an eye |
US20070225691A1 (en) * | 2003-06-17 | 2007-09-27 | Silvestrini Thomas A | Method and apparatus for aligning a mask with the visual axis of an eye |
US20060271027A1 (en) * | 2003-06-17 | 2006-11-30 | Thomas Silvestrini | Method and apparatus for aligning a mask with the visual axis of an eye |
US8864824B2 (en) | 2003-06-17 | 2014-10-21 | Acufocus, Inc. | Method and apparatus for aligning a mask with the visual axis of an eye |
US20050075732A1 (en) * | 2003-10-07 | 2005-04-07 | Israel Henry M. | Prevention of dislocation of an IOL |
US10420639B2 (en) | 2003-12-09 | 2019-09-24 | Johnson & Johnson Surgical Vision, Inc. | Foldable intraocular lens and method of making |
US10028822B2 (en) | 2003-12-09 | 2018-07-24 | Johnson & Johnson Surgical Vision, Inc. | Foldable intraocular lens and method of making |
US9259308B2 (en) | 2003-12-09 | 2016-02-16 | Abbott Medical Optics Inc. | Foldable intraocular lens and method of making |
US7621949B2 (en) | 2003-12-09 | 2009-11-24 | Advanced Medical Optics, Inc. | Foldable intraocular lens and method of making |
US7615073B2 (en) | 2003-12-09 | 2009-11-10 | Advanced Medical Optics, Inc. | Foldable intraocular lens and method of making |
US9737396B2 (en) | 2003-12-09 | 2017-08-22 | Abbott Medical Optics Inc. | Foldable intraocular lens and method of making |
US20050125056A1 (en) * | 2003-12-09 | 2005-06-09 | Jim Deacon | Foldable intraocular lens and method of making |
US20100036490A1 (en) * | 2003-12-09 | 2010-02-11 | Abbott Medical Optics Inc. | Foldable intraocular lens and method of making |
US8382832B2 (en) | 2003-12-09 | 2013-02-26 | Abbott Medical Optics Inc. | Foldable intraocular lens and method of making |
US20050248849A1 (en) * | 2004-04-23 | 2005-11-10 | Microvision, Inc. | Optical element that includes a microlens array and related method |
US7580189B2 (en) * | 2004-04-23 | 2009-08-25 | Microvision, Inc. | Optical element that includes a microlens array and related method |
US10912643B2 (en) | 2004-04-29 | 2021-02-09 | Forsight Vision6, Inc. | Accommodating intraocular lens assemblies and accommodation measurement implant |
US20080004699A1 (en) * | 2004-04-29 | 2008-01-03 | Nulens Ltd | Accommodating Intraocular Lens Assemblies and Accommodation Measurement Implant |
US20110112635A1 (en) * | 2004-04-29 | 2011-05-12 | Nulens Ltd. | Accommodating intraocular lens measurement implant |
US8956409B2 (en) | 2004-04-29 | 2015-02-17 | Nulens Ltd. | Accommodating intraocular lens assemblies and accommodation measurement implant |
US7842087B2 (en) | 2004-04-29 | 2010-11-30 | Nulens Ltd. | Accommodating intraocular lens assemblies and accommodation measurement implant |
US12076229B2 (en) | 2004-04-29 | 2024-09-03 | Forsight Vision6, Inc. | Accommodating intraocular lens assemblies and accommodation measurement implant |
US20110035002A1 (en) * | 2004-04-29 | 2011-02-10 | Nulens Ltd. | Accommodating intraocular lens assemblies and accommodation measurement implant |
US20070244561A1 (en) * | 2004-10-13 | 2007-10-18 | Nulens Ltd. | Accommodating Intraocular Lens (Aiol), and Aiol Assemblies Including Same |
US7815678B2 (en) | 2004-10-13 | 2010-10-19 | Nulens Ltd. | Accommodating intraocular lens (AIOL), and AIOL assemblies including same |
US7491350B2 (en) | 2004-12-01 | 2009-02-17 | Acufocus, Inc. | Method of making an ocular implant |
US20060113054A1 (en) * | 2004-12-01 | 2006-06-01 | Silvestrini Thomas A | Method of making an ocular implant |
US20060271185A1 (en) * | 2004-12-01 | 2006-11-30 | Silvestrini Thomas A | Method of making an ocular implant |
US20060118263A1 (en) * | 2004-12-01 | 2006-06-08 | Silvestrini Thomas A | Method of making an ocular implant |
US20060271184A1 (en) * | 2004-12-01 | 2006-11-30 | Silvestrini Thomas A | Method of making an ocular implant |
US20080300680A1 (en) * | 2005-03-30 | 2008-12-04 | Nulens Ltd | Accommodating Intraocular Lens (Aiol) and Discrete Components Therefor |
US10966818B2 (en) | 2005-03-30 | 2021-04-06 | Forsight Vision6, Inc. | Accommodating intraocular lens (AIOL) assemblies, and discrete components therefor |
US9814568B2 (en) | 2005-03-30 | 2017-11-14 | Forsight Vision6, Inc. | Accommodating intraocular lens having dual shape memory optical elements |
US10166096B2 (en) | 2005-03-30 | 2019-01-01 | Forsight Vision6, Inc. | Foldable accommodating intraocular lens |
US8834565B2 (en) | 2005-03-30 | 2014-09-16 | Nulens Ltd. | Foldable accommodating intraocular lens |
US12036110B2 (en) | 2005-03-30 | 2024-07-16 | Forsight Vision6, Inc. | Accommodating intraocular lens (AIOL) assemblies, and discrete components therefor |
US8287592B2 (en) | 2005-04-14 | 2012-10-16 | Acufocus, Inc. | Ophthalmic devices having a degradation resistant polymer |
US7976577B2 (en) | 2005-04-14 | 2011-07-12 | Acufocus, Inc. | Corneal optic formed of degradation resistant polymer |
US20060235514A1 (en) * | 2005-04-14 | 2006-10-19 | Silvestrini Thomas A | Corneal optic formed of degradation resistant polymer |
EP1882462A1 (en) * | 2005-05-20 | 2008-01-30 | Kowa Company, Ltd. | Intraocular lens |
US20090082861A1 (en) * | 2005-05-20 | 2009-03-26 | Kowa Company, Ltd. | Intraocular lens |
CN101180008B (en) * | 2005-05-20 | 2010-10-13 | 兴和株式会社 | Artificial crystal |
KR101153266B1 (en) | 2005-05-20 | 2012-06-07 | 코와 가부시키가이샤 | Intraocular lens |
EP3263069A1 (en) * | 2005-05-20 | 2018-01-03 | Kowa Company, Ltd. | Intraocular lens |
US8267996B2 (en) | 2005-05-20 | 2012-09-18 | Kowa Company, Ltd. | Intraocular lens |
EP3000435A1 (en) * | 2005-05-20 | 2016-03-30 | Kowa Company, Ltd. | Intraocular lens |
EP1882462A4 (en) * | 2005-05-20 | 2010-01-06 | Kowa Co | Intraocular lens |
US20090030514A1 (en) * | 2005-05-20 | 2009-01-29 | Kowa Company, Ltd. | Intraocular lens |
EP1800621A1 (en) * | 2005-12-23 | 2007-06-27 | Rupert Menapace | Intraocular lens |
US20090198247A1 (en) * | 2006-08-25 | 2009-08-06 | Nulens Ltd. | Intraocular lens implantation kit |
US20080077238A1 (en) * | 2006-09-21 | 2008-03-27 | Advanced Medical Optics, Inc. | Intraocular lenses for managing glare, adhesion, and cell migration |
US9603702B2 (en) * | 2006-09-21 | 2017-03-28 | Abbott Medical Optics Inc. | Intraocular lenses for managing glare, adhesion, and cell migration |
US8568478B2 (en) | 2006-09-21 | 2013-10-29 | Abbott Medical Optics Inc. | Intraocular lenses for managing glare, adhesion, and cell migration |
US20140052245A1 (en) * | 2006-09-21 | 2014-02-20 | Abbott Medical Optics Inc. | Intraocular Lenses for Managing Glare, Adhesion, and Cell Migration |
US20080077239A1 (en) * | 2006-09-21 | 2008-03-27 | Advanced Medical Optics, Inc. | Intraocular lenses for managing glare, adhesion, and cell migration |
US20070106381A1 (en) * | 2007-01-24 | 2007-05-10 | Blake Larry W | Umbrella-shaped accommodating artificial ocular lens (AAOL) device |
US8608799B2 (en) * | 2007-01-24 | 2013-12-17 | Tekia, Inc. | Umbrella-shaped accommodating artificial ocular lens (AAOL) device |
US8273123B2 (en) | 2007-03-05 | 2012-09-25 | Nulens Ltd. | Unitary accommodating intraocular lenses (AIOLs) and discrete base members for use therewith |
USD702346S1 (en) | 2007-03-05 | 2014-04-08 | Nulens Ltd. | Haptic end plate for use in an intraocular assembly |
US20080269889A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | Haptic Junction Designs to Reduce Negative Dysphotopsia |
US20080269882A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon Universal Ltd. | Intraocular lens with asymmetric optics |
US20080269886A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | IOL Peripheral Surface Designs to Reduce Negative Dysphotopsia |
US20080269883A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon, Inc. | Ocular implant to correct dysphotopsia, glare, halos and dark shadow type phenomena |
US20080269881A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | Intraocular Lens with Asymmetric Haptics |
US20080269891A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon, Inc. | Intraocular lens with edge modification |
US20080269885A1 (en) * | 2007-04-30 | 2008-10-30 | Simpson Michael J | IOL Peripheral Surface Designs to Reduce Negative Dysphotopsia |
US20080269890A1 (en) * | 2007-04-30 | 2008-10-30 | Alcon Universal Ltd. | Intraocular lens with peripheral region designed to reduce negative dysphotopsia |
US20080294826A1 (en) * | 2007-05-21 | 2008-11-27 | International Business Machines Corporation | Apparatus and method to control access to stored information |
US20110112636A1 (en) * | 2008-07-24 | 2011-05-12 | Joshua Ben Nun | Accommodating Intraocular Lens (AIOL) Capsules |
US8398709B2 (en) | 2008-07-24 | 2013-03-19 | Nulens Ltd. | Accommodating intraocular lens (AIOL) capsules |
US9943404B2 (en) | 2008-11-20 | 2018-04-17 | Insight Innovations, Llc | Intraocular cell migration inhibition system |
US9204961B2 (en) | 2008-11-20 | 2015-12-08 | Insight Innovations, Llc | Method of implanting an intraocular device to inhibit cell migration and opacification of the posterior capsule of the eye |
US20110230963A1 (en) * | 2008-11-20 | 2011-09-22 | Insight Innovations, Llc | Biocompatible biodegradable intraocular implant system |
US10548766B2 (en) | 2008-11-20 | 2020-02-04 | Insight Innovations, Llc | Biocompatible biodegradable intraocular implant system |
US20120232649A1 (en) * | 2008-11-20 | 2012-09-13 | Insight Innovations, Llc | Intraocular Lens Cell Migration Inhibition System |
US9943402B2 (en) | 2008-11-20 | 2018-04-17 | Insight Innovations, Llc | Micropatterned intraocular implant |
US8551167B2 (en) | 2008-11-20 | 2013-10-08 | Insight Innovations, Llc | Intraocular implant cell migration inhibition system |
US9855135B2 (en) | 2008-11-20 | 2018-01-02 | Insight Innovations, Llc | Cell migration inhibition system |
US20110040376A1 (en) * | 2009-08-13 | 2011-02-17 | Acufocus, Inc. | Masked intraocular implants and lenses |
US9005281B2 (en) | 2009-08-13 | 2015-04-14 | Acufocus, Inc. | Masked intraocular implants and lenses |
US9492272B2 (en) | 2009-08-13 | 2016-11-15 | Acufocus, Inc. | Masked intraocular implants and lenses |
USD656526S1 (en) | 2009-11-10 | 2012-03-27 | Acufocus, Inc. | Ocular mask |
USD681086S1 (en) | 2009-11-10 | 2013-04-30 | Acufocus, Inc. | Ocular mask |
US20110118836A1 (en) * | 2009-11-18 | 2011-05-19 | Abbott Medical Optics Inc. | Mark for intraocular lenses |
US8357196B2 (en) | 2009-11-18 | 2013-01-22 | Abbott Medical Optics Inc. | Mark for intraocular lenses |
US9545303B2 (en) | 2011-12-02 | 2017-01-17 | Acufocus, Inc. | Ocular mask having selective spectral transmission |
US9204962B2 (en) | 2013-03-13 | 2015-12-08 | Acufocus, Inc. | In situ adjustable optical mask |
US9603704B2 (en) | 2013-03-13 | 2017-03-28 | Acufocus, Inc. | In situ adjustable optical mask |
US10350058B2 (en) | 2013-03-13 | 2019-07-16 | Acufocus, Inc. | In situ adjustable optical mask |
US10939995B2 (en) | 2013-03-13 | 2021-03-09 | Acufocus, Inc. | In situ adjustable optical mask |
US11771552B2 (en) | 2013-03-13 | 2023-10-03 | Acufocus, Inc. | In situ adjustable optical mask |
US9427922B2 (en) | 2013-03-14 | 2016-08-30 | Acufocus, Inc. | Process for manufacturing an intraocular lens with an embedded mask |
WO2015143514A1 (en) * | 2014-03-28 | 2015-10-01 | Mediphacos Indústrias Médicas S/A | Intraocular lens |
US10687936B2 (en) | 2016-05-22 | 2020-06-23 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages |
US11589980B2 (en) | 2016-05-22 | 2023-02-28 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages |
US11224505B2 (en) | 2018-11-02 | 2022-01-18 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages including discrete lens unit with segmented lens haptics |
US11951699B2 (en) | 2021-08-05 | 2024-04-09 | Amo Groningen B.V. | Method and assembly for forming an intraocular lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4808181A (en) | Intraocular lens having roughened surface area | |
CA1237556A (en) | Fixation system for intraocularlens structures | |
CA1217001A (en) | Intraocular posterior chamber lens | |
US4547914A (en) | Intraocular posterior chamber lens | |
US4244060A (en) | Intraocular lens | |
US4418431A (en) | Intraocular lens | |
US5776191A (en) | Fixation system for intraocular lens structures | |
US4946469A (en) | Intraocular lens | |
US4880427A (en) | Flexible posterior chamber lens | |
US4718904A (en) | Intraocular lens for capsular bag implantation | |
US6406494B1 (en) | Moveable intraocular lens | |
US3866249A (en) | Posterior chamber artificial intraocular lens | |
KR0127747B1 (en) | Intraocular Total Transplantation | |
US5476512A (en) | Anterior capsular fixating lens for posterior capsular ruptures | |
US6152959A (en) | Iris fixated intraocular lens | |
US4575374A (en) | Flexible anterior chamber lens | |
USRE31998E (en) | Posterior chamber lens implant | |
US4833890A (en) | Bipartite intraocular lens | |
US4662882A (en) | Intraocular lens | |
US20030171807A1 (en) | Intraocular lens | |
US4676793A (en) | Intraocular lens | |
JP2003525694A (en) | Accommodation intraocular lens | |
JP2001509695A (en) | Self-centering faxic intraocular lens | |
US4624670A (en) | Intraocular lens | |
EP1185219B1 (en) | Moveable intraocular lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Expired due to failure to pay maintenance fee |
Effective date: 19970305 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CA Free format text: SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:014913/0184 Effective date: 20040625 |
|
AS | Assignment |
Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 14913/0184;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0696 Effective date: 20070402 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |