US5009664A - Marrow nail for the treatment of bone fractures - Google Patents
Marrow nail for the treatment of bone fractures Download PDFInfo
- Publication number
- US5009664A US5009664A US07/254,086 US25408688A US5009664A US 5009664 A US5009664 A US 5009664A US 25408688 A US25408688 A US 25408688A US 5009664 A US5009664 A US 5009664A
- Authority
- US
- United States
- Prior art keywords
- nail
- marrow
- marrow nail
- tip
- carbon fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 208000010392 Bone Fractures Diseases 0.000 title claims abstract description 13
- 238000011282 treatment Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000004918 carbon fiber reinforced polymer Substances 0.000 claims abstract description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 16
- 239000004917 carbon fiber Substances 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000004033 plastic Substances 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 241000587161 Gomphocarpus Species 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 description 32
- 239000000463 material Substances 0.000 description 15
- 206010017076 Fracture Diseases 0.000 description 9
- 238000005452 bending Methods 0.000 description 4
- -1 for example Polymers 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000005555 metalworking Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010020100 Hip fracture Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/72—Intramedullary devices, e.g. pins or nails
Definitions
- the present invention relates to a marrow nail for the treatment of bone fractures according to a marrow cavity nailing procedure.
- Marrow nailing methods are known, for example, the publication entitled “Die Bundel-Nagelung” [Bundle Nailing] published by Springer-Verlag, Berlin, Gottingen, Heidelberg, 1961, pages 3-26 and 56-58, discloses the treatment of fractures in long tubular bones by a marrow nailing method in which a metallic marrow nail is driven through the marrow cavity of a selected bone across the location of the fracture, and is there anchored in the marrow cavity to stabilize the fracture after the bone has been appropriately repositioned. After complete healing of the fracture, the marrow nail is then removed. The desired stabilization of a fracture in such a marrow nailing procedure is realized by clamping the marrow nail in either the transverse or longitudinal direction, with the marrow nail having a variety of permissible cross-sectional configurations.
- the known metal marrow nails have several drawbacks.
- the rigid metal nails used in the prior art involve the risk of splitting the bone, the risk of the nail tip being caught at an inappropriate location, the risk of the nail being bent, the risk of bending the nail during the nailing process due to the relatively weak resistance of the nails to bending stresses.
- Other types of marrow nailing such as, for example, bundle nailing by means of a bundle of thin elastic steel nails, have the drawback that their stability is not always ensured and that certain treatments are necessarily employed in conjunction with each type of nail.
- spring nails which are arranged in the marrow tube in an elastically clamped arrangement and are distributed in a fan shape at the end opposite the point where they are driven in. If there is pressure stress on a bone stabilized in this manner, such pressure is distributed to the bone uniformly over the entire length of the nails.
- the prior art spring nails provide good support in the proximal part of the fracture as well as good rotational stability. Due to the resiliency of these prior art spring nails, it is possible to employ turning of a preliminary driver to cause threading of the bone fragments and accurate repositioning of the fragments.
- spring nails must be made of a high quality metal to produce the required strength and elasticity characteristics and to avoid adversely affecting the bone tissue. Additionally, if spring nails are employed, it is the custom to employ three or more nails to fix pertrochanteric fractures.
- the prior art bone nails have the drawback that they are bodies made of a foreign material with respect to the human body, so that it is necessary in every case to extract the prior art bone nails in a second surgical procedure. Moreover, since the characteristics of the prior art bone nails are not well adapted to conform to those of the surrounding bone material, relative movements between the bone material and the bone nails cause damaging results due to their different stress behavior when the bone is placed under load.
- marrow nail according to the invention for use in a marrow cavity nailing procedure for the treatment of bone fractures, including:
- a tubular, carbon fiber reinforced plastic nail body having a tip which has a distal end, the nail body being elongated and being curved along its length;
- the invention advantageously provides a substitute material for steel materials for use in osteosynthesis, the material employed having a relatively high load bearing capability, being relatively light-weight, and being capable of adapting to the deformation behavior of the surrounding bone material when under load so that the bond of the bone and the substitute material according to the invention constitutes a dynamic unit which will be maintained even under load.
- the endoprosthesis can remain at its original location and can be worked on in such a manner that an extension of the prosthesis can be provided, or other endoprosthesis components can be inserted, without a need to employ metal-working tools.
- the use of such metalworking tools would involve extensive damage to the surrounding tissue.
- the nail according to the invention which is a hollow body, need not be slotted in order to impart to it the elasticity required for driving it in, in contrast to a Kuntscher nail, for example.
- the marrow nail according to the invention as a closed, cylindrical hollow body it is possible to obtain a marrow nail having the elasticity required for driving it in while also maintaining its torsional stiffness, in contrast to the Kuntscher nail, where such torsional stiffness is considerably reduced due to the possibility that the two free edges can be longitudinally displaced in the region of the slot.
- the marrow nail has the cross section of a hollow cylinder and a sharply ground, annular cutting edge at its tip.
- the marrow nail is composed of a tube knit of carbon fibers and a hardenable synthetic resin.
- the tube may contain carbon fibers which are arranged in a crisscross interconnection while the hardenable synthetic resin may be composed of a biocompatible TEEC matrix material in which the carbon fibers are embedded and which preferably hardens at a high temperature of approximately 380° C.
- the marrow nail is bent in the shape of a C.
- the marrow nail according to the invention may include a metal force introduction element which is inserted during fabrication into the marrow nail head and which is composed, for example, of a hollow cylinder whose interior wall has a rough surface.
- FIG. 1 is a longitudinal sectional view of a marrow nail according to the invention, composed of a carbon fiber reinforced plastic.
- FIG. 2 is an enlarged sectional view of the tip of the marrow nail of FIG. 1.
- FIG. 3 is an enlarged sectional view of the marrow nail head of FIG. 1.
- FIG. 1 is a longitudinal section taken through a tubular marrow nail 1 which is composed of carbon fiber reinforced plastic.
- the marrow nail 1 is slightly curved longitudinally generally in the shape of a C, and has a tip 2 as well as a constricted head 3.
- the diameter of the marrow nail 1 is about 10 mm.
- the tubular marrow nail 1 has the shape of a hollow cylinder.
- the carbon fiber reinforced plastic marrow nail 1 is manufactured starting with a tube of carbon fiber which is preferably knit in a crisscross fashion having many interconnections. This tube is then saturated with a hardenable plastic.
- the hardenable plastic is preferably composed of a biocompatible PEEK (polyertherclkerketone, matrix material which embeds the carbon fibers and which hardens at a high temperature of preferably 380° C.
- the hardenable plastic such as, for example, polyamide 6 or polyamide 6, 6.
- materials can be used which are customarily referred to as bulk plastics, such as, for example, polyolefins (polyethylene, polypropylene).
- this produces a high strength marrow cavity nail 1 which is distinguished by high tensile strength and stiffness as well as high heat resistance.
- the C or J shape of the marrow nail 1 can be obtained by the introduction of a suitable core in the form of, for example, a cylindrical wire having the corresponding outer diameter and around which the knit tube of carbon fibers is formed or drawn. After application and hardening of a suitable synthetic resin, the core (not shown) can be removed and the marrow nail 1 made of carbon fiber reinforced plastic can be worked further.
- the hardenable synthetic resin can be applied under high pressure, or alternatively the surface of the marrow nail 1 may subsequently be polished.
- the use of a carbon fiber reinforced plastic material for the production of a marrow nail 1, in conjunction with formation of a suitable diameter of the marrow nail 1, ensures that when the marrow nail 1 is driven into the marrow cavity of a bone, it is possible to guide the marrow nail 1 accurately from its point of entry in the bone without bending of the marrow nail 1 and without the marrow nail 1 having uncontrolled movements.
- the tip 2 of the marrow nail 1 has a sharply ground annular cutting edge which permits driving in of the marrow nail 1 with little force while avoiding crushing of bone marrow during the driving-in process.
- the marrow nail 1 When the marrow nail 1 is inserted in the bone, it is distinguished by its high rotational stability and its ability to absorb even the strongest vibrations without material fatigue. A further advantage is its good tissue compatibility and the avoidance of any negative influences on the bone marrow such as may occur, for example, in conjunction with a steel nail due to corrosion.
- the cylindrical, slightly bent shape of the marrow nail 1, in conjunction with its selected diameter, permits secure contact of the marrow nail 1 in the marrow cavity of the bone and thereby provides the prerequisite characteristics necessary for a marrow nail used for the stabilization of bone fragments, when only a single marrow nail is used.
- Extraction of the marrow nail 1 when the fracture is healed can be performed easily by gripping the constricted or flattened head 3 of the marrow nail 1, without the danger of the marrow nail 1 breaking off, since the marrow nail 1 is composed of a fiber material which is bonded together, rather than metal which tends to break relatively easily.
- FIG. 2 shows, at an enlarged scale, the tip 2 of the marrow nail 1 and clearly shows a conically, slightly tapered outer face 21 of the tip 2.
- This outer face 21 is created preferably by sharp grinding of the tip 2, so as to thereby create an annular cutting edge.
- FIG. 3 shows, to an enlarged scale, the marrow head 3 which is composed of a cylindrically constricted or flattened portion 31 and an outwardly thickened, bent or crimped end piece 32, hereinafter referred to as relatively enlarged portion 32.
- a metal force introducing element 34 in the form of a hollow cylinder of titanium in this embodiment is inserted into the head 3 in the region of the constricted portion 31 before that portion is constricted to form its final shape, namely that of the cylindrically constricted or flattened portion 31.
- the interior surface of the force introducing element 33 is roughened, preferably in the form of parallel grooves or threaded grooves so that head 3, and with it the entire marrow nail 1, can be pulled out of the marrow cavity in which it has been inserted by the gripping thereof with a suitable tool, for example a forceps, in a force-locking manner for extraction of the marrow nail 1 from the marrow cavity or to change the position of the tip 2 of the nail 1 for repositioning of the marrow nail 1.
- a suitable tool for example a forceps
- constricted or flattened head 3 of the hollow cylindrical marrow nail 1 can also facilitate the attachment of a suitable tool which is to be used for driving the marrow nail 1 into the marrow cavity of a bone.
- the metal force introducing element 34 may be inserted, prior to formation of the final marrow nail 1, into the fabric of carbon fibers when the marrow nail 1 is being manufactured.
- the force introducing element 34 can therefore be bonded to the plastic used to coat the carbon fibers so that, during hardening of the plastic, a firm bond occurs between the plastic-and-carbon-fiber portion of the marrow nail head 3 with the metal force introducing element 34.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3734108 | 1987-10-06 | ||
DE19873734108 DE3734108A1 (en) | 1987-10-06 | 1987-10-06 | INTERMEDIATE NAIL FOR TREATMENT OF BONE BREAKS |
Publications (1)
Publication Number | Publication Date |
---|---|
US5009664A true US5009664A (en) | 1991-04-23 |
Family
ID=6337923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/254,086 Expired - Fee Related US5009664A (en) | 1987-10-06 | 1988-10-06 | Marrow nail for the treatment of bone fractures |
Country Status (3)
Country | Link |
---|---|
US (1) | US5009664A (en) |
EP (1) | EP0311555A3 (en) |
DE (1) | DE3734108A1 (en) |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994012126A1 (en) * | 1992-11-27 | 1994-06-09 | Clemson University | Intramedullary rod for fixation of femoral fractures |
US5454815A (en) * | 1992-04-01 | 1995-10-03 | Imt Integral Medizintechnik Trading Ag | Bone rasp made of plastics |
US6010506A (en) * | 1998-09-14 | 2000-01-04 | Smith & Nephew, Inc. | Intramedullary nail hybrid bow |
WO2000028906A1 (en) * | 1998-11-17 | 2000-05-25 | Synthes Ag Chur | Intramedullary nail for the operative treatment of fractures of the lower arm |
US20020173792A1 (en) * | 1999-04-09 | 2002-11-21 | Depuy Orthopaedics, Inc. | Non-metal inserts for bone support assembly |
US20030009147A1 (en) * | 1990-06-28 | 2003-01-09 | Bonutti Peter M. | Biodegradable sac and method of using same |
US6602293B1 (en) | 1996-11-01 | 2003-08-05 | The Johns Hopkins University | Polymeric composite orthopedic implant |
US20030225438A1 (en) * | 2000-03-13 | 2003-12-04 | Bonutti Peter M. | Method of using ultrasonic vibration to secure body tissue |
US20040172033A1 (en) * | 1991-08-12 | 2004-09-02 | Bonutti Peter M. | Tissue stabilization device and method |
US20040220616A1 (en) * | 2000-03-13 | 2004-11-04 | Bonutti Peter M. | Method and device for securing body tissue |
US20050178083A1 (en) * | 2003-12-04 | 2005-08-18 | Ludovic Fournie | Self-stiffened panels of preimpregnated composite and manufacturing process for components of such panels |
US20050187550A1 (en) * | 2003-12-01 | 2005-08-25 | Grusin N. K. | Humeral nail |
US20060200141A1 (en) * | 2005-02-18 | 2006-09-07 | Si Janna | Hindfoot nail |
GB2427195A (en) * | 2005-06-13 | 2006-12-20 | Veterinary Innovations Ltd | Biocompatible thermoplastics containing carbon fibre and devices for treating bone fractures |
US20070270833A1 (en) * | 2006-02-07 | 2007-11-22 | Bonutti Peter M | Methods and devices for trauma welding |
US20080039873A1 (en) * | 2004-03-09 | 2008-02-14 | Marctec, Llc. | Method and device for securing body tissue |
US20080140116A1 (en) * | 1999-08-09 | 2008-06-12 | Bonutti Peter M | Method and apparatus for securing tissue |
US20090163938A1 (en) * | 2003-04-30 | 2009-06-25 | Bonutti Peter M | Tissue fastener and methods for using same |
US20100010490A1 (en) * | 2008-07-09 | 2010-01-14 | Amei Technologies, Inc. | Ankle arthrodesis nail and outrigger assembly |
WO2010082183A2 (en) | 2009-01-16 | 2010-07-22 | N.M.B. Medical Applications Ltd. | Composite material bone implant |
US7854750B2 (en) | 2002-08-27 | 2010-12-21 | P Tech, Llc. | Apparatus and method for securing a suture |
US7879072B2 (en) | 1997-08-01 | 2011-02-01 | P Tech, Llc. | Method for implanting a flowable fastener |
US20110054473A1 (en) * | 2008-07-09 | 2011-03-03 | Amei Technologies, Inc. | Ankle arthrodesis nail and outrigger assembly |
US20110196369A1 (en) * | 2006-09-27 | 2011-08-11 | Osman Said G | Biologic Intramedullary Fixation Device and Methods of Use |
WO2011154891A2 (en) | 2010-06-07 | 2011-12-15 | Carbofix Orthopedics Ltd. | Composite material bone implant and methods |
US8496657B2 (en) | 2006-02-07 | 2013-07-30 | P Tech, Llc. | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
US8721643B2 (en) | 2005-08-23 | 2014-05-13 | Smith & Nephew, Inc. | Telemetric orthopaedic implant |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US8845699B2 (en) | 1999-08-09 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Method of securing tissue |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
US9138222B2 (en) | 2000-03-13 | 2015-09-22 | P Tech, Llc | Method and device for securing body tissue |
US9149281B2 (en) | 2002-03-20 | 2015-10-06 | P Tech, Llc | Robotic system for engaging a fastener with body tissue |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US9226828B2 (en) | 2004-10-26 | 2016-01-05 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9439642B2 (en) | 2006-02-07 | 2016-09-13 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US9492210B2 (en) | 2008-10-15 | 2016-11-15 | Smith & Nephew, Inc. | Composite internal fixators |
US9526549B2 (en) | 2012-01-16 | 2016-12-27 | Carbofix Orthopedics Ltd. | Bone screw with insert |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
WO2018002917A1 (en) | 2016-06-27 | 2018-01-04 | Ossio Ltd. | Fiber reinforced biocomposite medical implants with high mineral content |
US10045798B2 (en) | 2012-11-11 | 2018-08-14 | Carbofix Orthopedics Ltd. | Composite implant coating |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
US10154867B2 (en) | 2010-06-07 | 2018-12-18 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
WO2019049062A1 (en) | 2017-09-07 | 2019-03-14 | Ossio Ltd. | Fiber reinforced biocomposite threaded implants |
WO2019123462A1 (en) | 2017-12-20 | 2019-06-27 | Ossio Ltd. | Fiber bundle reinforced biocomposite medical implants |
EP3628249A1 (en) | 2014-12-26 | 2020-04-01 | Ossio Ltd | Continuous-fiber reinforced biocomposite medical implants |
US10617458B2 (en) | 2015-12-23 | 2020-04-14 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
US11246638B2 (en) | 2006-05-03 | 2022-02-15 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US11253296B2 (en) | 2006-02-07 | 2022-02-22 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11278331B2 (en) | 2006-02-07 | 2022-03-22 | P Tech Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5108398A (en) * | 1990-10-16 | 1992-04-28 | Orthopaedic Research Institute | Orthopaedic knee fusion apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2537070A (en) * | 1948-12-27 | 1951-01-09 | Puy Mfg Company Inc De | Surgical appliance and method for fixation of bone fragments |
US2602445A (en) * | 1950-03-16 | 1952-07-08 | Alfred E Gallant | Fracture nail |
DE913228C (en) * | 1943-12-14 | 1954-06-10 | Dr Med H C Ernst Pohl | Cross elastic inner splint for tubular bones |
US3893196A (en) * | 1970-08-06 | 1975-07-08 | Robert F Hochman | Body implant material |
US3977398A (en) * | 1976-01-12 | 1976-08-31 | The Sampson Corporation | Fluted sub-trochanteric nail system |
US4446857A (en) * | 1978-09-04 | 1984-05-08 | Schwarzkopf Development Corporation | Medullary nail and process for the production thereof |
US4459708A (en) * | 1979-07-10 | 1984-07-17 | Bernard Buttazzoni | Joint prosthesis |
US4522202A (en) * | 1981-01-12 | 1985-06-11 | Schwarzkopf Development Corporation | Curved intramedullary lower leg spike |
US4662887A (en) * | 1984-06-15 | 1987-05-05 | Imperial Chemical Industries | Prosthetic devices |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1054659B (en) * | 1955-02-19 | 1959-04-09 | Dr Med Kurt Herzog | Tubular bone nail |
DE2621122A1 (en) * | 1976-05-13 | 1977-11-24 | Sigri Elektrographit Gmbh | Osteosynthesis implant part - reinforced with carbon fibres in resin or pref. carbon matrix |
AT384359B (en) * | 1981-12-01 | 1987-11-10 | Ender Hans Georg | BONE NAIL |
GB8400932D0 (en) * | 1984-01-13 | 1984-02-15 | Geistlich Soehne Ag | Bone fracture fixation plates |
DD235026A1 (en) * | 1985-03-04 | 1986-04-23 | Bezirkskrankenhaus Karl Marx S | SLIDING SLAG FOR LOCKING BONE BRIDGES |
-
1987
- 1987-10-06 DE DE19873734108 patent/DE3734108A1/en not_active Withdrawn
-
1988
- 1988-10-05 EP EP88730225A patent/EP0311555A3/en not_active Withdrawn
- 1988-10-06 US US07/254,086 patent/US5009664A/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE913228C (en) * | 1943-12-14 | 1954-06-10 | Dr Med H C Ernst Pohl | Cross elastic inner splint for tubular bones |
US2537070A (en) * | 1948-12-27 | 1951-01-09 | Puy Mfg Company Inc De | Surgical appliance and method for fixation of bone fragments |
US2602445A (en) * | 1950-03-16 | 1952-07-08 | Alfred E Gallant | Fracture nail |
US3893196A (en) * | 1970-08-06 | 1975-07-08 | Robert F Hochman | Body implant material |
US3977398A (en) * | 1976-01-12 | 1976-08-31 | The Sampson Corporation | Fluted sub-trochanteric nail system |
US4446857A (en) * | 1978-09-04 | 1984-05-08 | Schwarzkopf Development Corporation | Medullary nail and process for the production thereof |
US4459708A (en) * | 1979-07-10 | 1984-07-17 | Bernard Buttazzoni | Joint prosthesis |
US4522202A (en) * | 1981-01-12 | 1985-06-11 | Schwarzkopf Development Corporation | Curved intramedullary lower leg spike |
US4662887A (en) * | 1984-06-15 | 1987-05-05 | Imperial Chemical Industries | Prosthetic devices |
Non-Patent Citations (4)
Title |
---|
"Die Bundel-Nagelung" (Bundle Nailing) Published by Springer-Verlag, Berlin, Gottingen, Heidelberg, 1961, pp. 3-26 and 56-58. |
Die Bundel Nagelung (Bundle Nailing) Published by Springer Verlag, Berlin, Gottingen, Heidelberg, 1961, pp. 3 26 and 56 58. * |
Hansj rgen Saechtling, Kunststoff Taschenbuch 23rd Edition, Carl Hanser Verlag, Munich, 1986 pp. 1, 316. * |
Hansjurgen Saechtling, Kunststoff Taschenbuch 23rd Edition, Carl Hanser Verlag, Munich, 1986 pp. 1, 316. |
Cited By (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7896880B2 (en) | 1990-06-28 | 2011-03-01 | P Tech, Llc | Apparatus and method for tissue removal |
US20030009147A1 (en) * | 1990-06-28 | 2003-01-09 | Bonutti Peter M. | Biodegradable sac and method of using same |
US20040172033A1 (en) * | 1991-08-12 | 2004-09-02 | Bonutti Peter M. | Tissue stabilization device and method |
US7727283B2 (en) | 1991-08-12 | 2010-06-01 | P Tech, Llc. | Tissue stabilizing implant method |
US7462200B2 (en) | 1991-08-12 | 2008-12-09 | Marctec, Llc | Method for tissue grafting |
US20060106464A1 (en) * | 1991-08-12 | 2006-05-18 | Bonutti Peter M | Method for tissue grafting |
US5454815A (en) * | 1992-04-01 | 1995-10-03 | Imt Integral Medizintechnik Trading Ag | Bone rasp made of plastics |
US5429640A (en) * | 1992-11-27 | 1995-07-04 | Clemson University | Intramedullary rod for fracture fixation of femoral shaft independent of ipsilateral femoral neck fracture fixation |
US5562667A (en) * | 1992-11-27 | 1996-10-08 | Shuler; Thomas E. | Intramedullary rod for fracture fixation of femoral shaft independent of ipsilateral femoral neck fracture fixation |
WO1994012126A1 (en) * | 1992-11-27 | 1994-06-09 | Clemson University | Intramedullary rod for fixation of femoral fractures |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US6602293B1 (en) | 1996-11-01 | 2003-08-05 | The Johns Hopkins University | Polymeric composite orthopedic implant |
US7879072B2 (en) | 1997-08-01 | 2011-02-01 | P Tech, Llc. | Method for implanting a flowable fastener |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US6010506A (en) * | 1998-09-14 | 2000-01-04 | Smith & Nephew, Inc. | Intramedullary nail hybrid bow |
US6607531B2 (en) | 1998-11-17 | 2003-08-19 | Synthes (Usa) | Medullary nail for the surgical treatment of forearm fractures |
WO2000028906A1 (en) * | 1998-11-17 | 2000-05-25 | Synthes Ag Chur | Intramedullary nail for the operative treatment of fractures of the lower arm |
US20020173792A1 (en) * | 1999-04-09 | 2002-11-21 | Depuy Orthopaedics, Inc. | Non-metal inserts for bone support assembly |
US6783529B2 (en) * | 1999-04-09 | 2004-08-31 | Depuy Orthopaedics, Inc. | Non-metal inserts for bone support assembly |
US8845699B2 (en) | 1999-08-09 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Method of securing tissue |
US20080140116A1 (en) * | 1999-08-09 | 2008-06-12 | Bonutti Peter M | Method and apparatus for securing tissue |
US9986994B2 (en) | 2000-03-13 | 2018-06-05 | P Tech, Llc | Method and device for securing body tissue |
US8932330B2 (en) | 2000-03-13 | 2015-01-13 | P Tech, Llc | Method and device for securing body tissue |
US9067362B2 (en) | 2000-03-13 | 2015-06-30 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US20060241695A1 (en) * | 2000-03-13 | 2006-10-26 | Bonutti Peter M | Method of using ultrasonic vibration to secure body tissue with fastening element |
US7429266B2 (en) | 2000-03-13 | 2008-09-30 | Marctec, Llc | Method of using ultrasonic vibration to secure body tissue |
US9138222B2 (en) | 2000-03-13 | 2015-09-22 | P Tech, Llc | Method and device for securing body tissue |
US20040220616A1 (en) * | 2000-03-13 | 2004-11-04 | Bonutti Peter M. | Method and device for securing body tissue |
US8747439B2 (en) | 2000-03-13 | 2014-06-10 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US20060235470A1 (en) * | 2000-03-13 | 2006-10-19 | Bonutti Peter M | Method of using ultrasonic vibration to secure implantable member to body tissue |
US9884451B2 (en) | 2000-03-13 | 2018-02-06 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue |
US20030225438A1 (en) * | 2000-03-13 | 2003-12-04 | Bonutti Peter M. | Method of using ultrasonic vibration to secure body tissue |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
US10368953B2 (en) | 2002-03-20 | 2019-08-06 | P Tech, Llc | Robotic system for fastening layers of body tissue together and method thereof |
US9808318B2 (en) | 2002-03-20 | 2017-11-07 | P Tech, Llc | Robotic arthroplasty system |
US9877793B2 (en) | 2002-03-20 | 2018-01-30 | P Tech, Llc | Robotic arthroplasty system |
US10959791B2 (en) | 2002-03-20 | 2021-03-30 | P Tech, Llc | Robotic surgery |
US10932869B2 (en) | 2002-03-20 | 2021-03-02 | P Tech, Llc | Robotic surgery |
US10869728B2 (en) | 2002-03-20 | 2020-12-22 | P Tech, Llc | Robotic surgery |
US9149281B2 (en) | 2002-03-20 | 2015-10-06 | P Tech, Llc | Robotic system for engaging a fastener with body tissue |
US9192395B2 (en) | 2002-03-20 | 2015-11-24 | P Tech, Llc | Robotic fastening system |
US9629687B2 (en) | 2002-03-20 | 2017-04-25 | P Tech, Llc | Robotic arthroplasty system |
US9585725B2 (en) | 2002-03-20 | 2017-03-07 | P Tech, Llc | Robotic arthroplasty system |
US9271779B2 (en) | 2002-03-20 | 2016-03-01 | P Tech, Llc | Methods of using a robotic spine system |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US10265128B2 (en) | 2002-03-20 | 2019-04-23 | P Tech, Llc | Methods of using a robotic spine system |
US9271741B2 (en) | 2002-03-20 | 2016-03-01 | P Tech, Llc | Robotic ultrasonic energy system |
US9486227B2 (en) | 2002-03-20 | 2016-11-08 | P Tech, Llc | Robotic retractor system |
US7854750B2 (en) | 2002-08-27 | 2010-12-21 | P Tech, Llc. | Apparatus and method for securing a suture |
US9750496B2 (en) | 2002-08-27 | 2017-09-05 | P Tech, Llc | System for securing a portion of a body |
US8162977B2 (en) | 2002-08-27 | 2012-04-24 | P Tech, Llc. | Method for joining implants |
US20090163938A1 (en) * | 2003-04-30 | 2009-06-25 | Bonutti Peter M | Tissue fastener and methods for using same |
US9962162B2 (en) | 2003-04-30 | 2018-05-08 | P Tech, Llc | Tissue fastener and methods for using same |
US9060767B2 (en) | 2003-04-30 | 2015-06-23 | P Tech, Llc | Tissue fastener and methods for using same |
US7655009B2 (en) | 2003-12-01 | 2010-02-02 | Smith & Nephew, Inc. | Humeral nail |
US20050187550A1 (en) * | 2003-12-01 | 2005-08-25 | Grusin N. K. | Humeral nail |
US7464508B2 (en) * | 2003-12-04 | 2008-12-16 | Airbus France | Self-stiffened panels of preimpregnated composite and manufacturing process for components of such panels |
US20050178083A1 (en) * | 2003-12-04 | 2005-08-18 | Ludovic Fournie | Self-stiffened panels of preimpregnated composite and manufacturing process for components of such panels |
US20080039873A1 (en) * | 2004-03-09 | 2008-02-14 | Marctec, Llc. | Method and device for securing body tissue |
US9888916B2 (en) | 2004-03-09 | 2018-02-13 | P Tech, Llc | Method and device for securing body tissue |
US9980761B2 (en) | 2004-10-26 | 2018-05-29 | P Tech, Llc | Tissue fixation system and method |
US11992205B2 (en) | 2004-10-26 | 2024-05-28 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9999449B2 (en) | 2004-10-26 | 2018-06-19 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US10238378B2 (en) | 2004-10-26 | 2019-03-26 | P Tech, Llc | Tissue fixation system and method |
US9226828B2 (en) | 2004-10-26 | 2016-01-05 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9579129B2 (en) | 2004-10-26 | 2017-02-28 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US9545268B2 (en) | 2004-10-26 | 2017-01-17 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9814453B2 (en) | 2004-10-26 | 2017-11-14 | P Tech, Llc | Deformable fastener system |
US9867706B2 (en) | 2004-10-26 | 2018-01-16 | P Tech, Llc | Tissue fastening system |
US11457958B2 (en) | 2004-10-26 | 2022-10-04 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US11013542B2 (en) | 2004-10-26 | 2021-05-25 | P Tech, Llc | Tissue fixation system and method |
US10813764B2 (en) | 2004-10-26 | 2020-10-27 | P Tech, Llc | Expandable introducer system and methods |
US7410488B2 (en) | 2005-02-18 | 2008-08-12 | Smith & Nephew, Inc. | Hindfoot nail |
USRE46078E1 (en) | 2005-02-18 | 2016-07-26 | Smith & Nephew, Inc. | Hindfoot nail |
US20060200141A1 (en) * | 2005-02-18 | 2006-09-07 | Si Janna | Hindfoot nail |
USRE46008E1 (en) | 2005-02-18 | 2016-05-24 | Smith & Nephew, Inc. | Hindfoot nail |
USRE44501E1 (en) | 2005-02-18 | 2013-09-17 | Smith & Nephew, Inc. | Hindfoot nail |
US9980717B2 (en) | 2005-02-22 | 2018-05-29 | P Tech, Llc | Device and method for securing body tissue |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
GB2427195A (en) * | 2005-06-13 | 2006-12-20 | Veterinary Innovations Ltd | Biocompatible thermoplastics containing carbon fibre and devices for treating bone fractures |
US8721643B2 (en) | 2005-08-23 | 2014-05-13 | Smith & Nephew, Inc. | Telemetric orthopaedic implant |
US11219446B2 (en) | 2005-10-05 | 2022-01-11 | P Tech, Llc | Deformable fastener system |
US10441269B1 (en) | 2005-10-05 | 2019-10-15 | P Tech, Llc | Deformable fastener system |
US10376259B2 (en) | 2005-10-05 | 2019-08-13 | P Tech, Llc | Deformable fastener system |
US9421005B2 (en) | 2006-02-07 | 2016-08-23 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US9439642B2 (en) | 2006-02-07 | 2016-09-13 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US9610073B2 (en) | 2006-02-07 | 2017-04-04 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US8496657B2 (en) | 2006-02-07 | 2013-07-30 | P Tech, Llc. | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
US11998251B2 (en) | 2006-02-07 | 2024-06-04 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US20070270833A1 (en) * | 2006-02-07 | 2007-11-22 | Bonutti Peter M | Methods and devices for trauma welding |
US11278331B2 (en) | 2006-02-07 | 2022-03-22 | P Tech Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US9173650B2 (en) | 2006-02-07 | 2015-11-03 | P Tech, Llc | Methods and devices for trauma welding |
US11253296B2 (en) | 2006-02-07 | 2022-02-22 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US10368924B2 (en) | 2006-02-07 | 2019-08-06 | P Tech, Llc | Methods and devices for trauma welding |
US11134995B2 (en) | 2006-02-07 | 2021-10-05 | P Tech, Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US11129645B2 (en) | 2006-02-07 | 2021-09-28 | P Tech, Llc | Methods of securing a fastener |
US7967820B2 (en) | 2006-02-07 | 2011-06-28 | P Tech, Llc. | Methods and devices for trauma welding |
US9743963B2 (en) | 2006-02-07 | 2017-08-29 | P Tech, Llc | Methods and devices for trauma welding |
US11246638B2 (en) | 2006-05-03 | 2022-02-15 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US12232789B2 (en) | 2006-05-03 | 2025-02-25 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US20110196369A1 (en) * | 2006-09-27 | 2011-08-11 | Osman Said G | Biologic Intramedullary Fixation Device and Methods of Use |
US10517584B1 (en) | 2007-02-13 | 2019-12-31 | P Tech, Llc | Tissue fixation system and method |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
US12137898B2 (en) | 2007-02-13 | 2024-11-12 | P Tech, Llc | Tissue fixation system and method |
US11801044B2 (en) | 2007-02-13 | 2023-10-31 | P Tech, Llc | Tissue fixation system and method |
US9402668B2 (en) | 2007-02-13 | 2016-08-02 | P Tech, Llc | Tissue fixation system and method |
US10390817B2 (en) | 2007-02-13 | 2019-08-27 | P Tech, Llc | Tissue fixation system and method |
US20100010490A1 (en) * | 2008-07-09 | 2010-01-14 | Amei Technologies, Inc. | Ankle arthrodesis nail and outrigger assembly |
US8414584B2 (en) | 2008-07-09 | 2013-04-09 | Icon Orthopaedic Concepts, Llc | Ankle arthrodesis nail and outrigger assembly |
US9226783B2 (en) | 2008-07-09 | 2016-01-05 | Icon Orthopaedic Concepts, Llc | Ankle arthrodesis nail and outrigger assembly |
US20110054473A1 (en) * | 2008-07-09 | 2011-03-03 | Amei Technologies, Inc. | Ankle arthrodesis nail and outrigger assembly |
US8328807B2 (en) | 2008-07-09 | 2012-12-11 | Icon Orthopaedic Concepts, Llc | Ankle arthrodesis nail and outrigger assembly |
US10357292B2 (en) | 2008-10-15 | 2019-07-23 | Smith & Nephew, Inc. | Composite internal fixators |
US9492210B2 (en) | 2008-10-15 | 2016-11-15 | Smith & Nephew, Inc. | Composite internal fixators |
US11096726B2 (en) | 2008-10-15 | 2021-08-24 | Smith & Nephew, Inc. | Composite internal fixators |
EP3251618A1 (en) | 2009-01-16 | 2017-12-06 | Carbofix Orthopedics Ltd. | Composite material bone implant |
WO2010082183A2 (en) | 2009-01-16 | 2010-07-22 | N.M.B. Medical Applications Ltd. | Composite material bone implant |
US8709055B2 (en) | 2009-01-16 | 2014-04-29 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US10028777B2 (en) | 2009-01-16 | 2018-07-24 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US9101417B2 (en) | 2009-01-16 | 2015-08-11 | Carbofix Orthopedics Ltd. | Composite material bone implant |
EP3042621A1 (en) | 2009-01-16 | 2016-07-13 | Carbofix Orthopedics Ltd. | Composite material bone implant |
CN105877829B (en) * | 2010-06-07 | 2018-06-22 | 卡波菲克斯整形有限公司 | Composite material bone implant |
US10849668B2 (en) | 2010-06-07 | 2020-12-01 | Carbofix Orthopedics Ltd. | Composite material bone implant |
WO2011154891A2 (en) | 2010-06-07 | 2011-12-15 | Carbofix Orthopedics Ltd. | Composite material bone implant and methods |
US10154867B2 (en) | 2010-06-07 | 2018-12-18 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
US9370388B2 (en) | 2010-06-07 | 2016-06-21 | Carbofix Orthopedics Ltd. | Composite material bone implant |
CN105877829A (en) * | 2010-06-07 | 2016-08-24 | 卡波菲克斯整形有限公司 | Composite material bone implant |
US9101427B2 (en) | 2010-06-07 | 2015-08-11 | Carbofix Orthopedics Ltd. | Self tapping insert |
US9974586B2 (en) | 2010-06-07 | 2018-05-22 | Carbofix Orthopedics Ltd. | Composite material bone implant |
US9526549B2 (en) | 2012-01-16 | 2016-12-27 | Carbofix Orthopedics Ltd. | Bone screw with insert |
US10045798B2 (en) | 2012-11-11 | 2018-08-14 | Carbofix Orthopedics Ltd. | Composite implant coating |
US10687864B2 (en) | 2012-11-11 | 2020-06-23 | Carbofix In Orthopedics Llc | Composite implant coating |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
EP3628249A1 (en) | 2014-12-26 | 2020-04-01 | Ossio Ltd | Continuous-fiber reinforced biocomposite medical implants |
US11744651B2 (en) | 2015-10-21 | 2023-09-05 | P Tech, Llc | Systems and methods for navigation and visualization |
US11317974B2 (en) | 2015-10-21 | 2022-05-03 | P Tech, Llc | Systems and methods for navigation and visualization |
US11684430B2 (en) | 2015-10-21 | 2023-06-27 | P Tech, Llc | Systems and methods for navigation and visualization |
US10765484B2 (en) | 2015-10-21 | 2020-09-08 | P Tech, Llc | Systems and methods for navigation and visualization |
US12023111B2 (en) | 2015-10-21 | 2024-07-02 | P Tech, Llc | Systems and methods for navigation and visualization |
US12096995B2 (en) | 2015-10-21 | 2024-09-24 | P Tech, Llc | Systems and methods for navigation and visualization |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
US12268455B2 (en) | 2015-10-21 | 2025-04-08 | P Tech, Llc | Systems and methods for navigation and visualization |
US10617458B2 (en) | 2015-12-23 | 2020-04-14 | Carbofix In Orthopedics Llc | Multi-layer composite material bone screw |
WO2018002917A1 (en) | 2016-06-27 | 2018-01-04 | Ossio Ltd. | Fiber reinforced biocomposite medical implants with high mineral content |
WO2019049062A1 (en) | 2017-09-07 | 2019-03-14 | Ossio Ltd. | Fiber reinforced biocomposite threaded implants |
WO2019123462A1 (en) | 2017-12-20 | 2019-06-27 | Ossio Ltd. | Fiber bundle reinforced biocomposite medical implants |
Also Published As
Publication number | Publication date |
---|---|
DE3734108A1 (en) | 1989-04-20 |
EP0311555A2 (en) | 1989-04-12 |
EP0311555A3 (en) | 1990-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5009664A (en) | Marrow nail for the treatment of bone fractures | |
US4981481A (en) | Marrow nail for the treatment of bone fractures according to the marrow cavity nailing procedure and marrow nail tool | |
JP3165067B2 (en) | Oral surgery instrument | |
US5919193A (en) | Method and kit for surgically correcting malformations in digits of a finger or toe | |
US4976712A (en) | Retaining sleeve for surgical pin | |
US8435272B2 (en) | Clavicle nail with locking end cap | |
US8979846B2 (en) | Flexible nail assembly for fractures of long bones | |
US8672986B2 (en) | Device for temporarily splinting toes | |
KR101926339B1 (en) | Surgical nail | |
US6238417B1 (en) | Method for fixing at least two bone segments | |
US4875474A (en) | Variable wall thickness interlocking intramedullary nail | |
CA2535296C (en) | Clamping device | |
US6203544B1 (en) | Fixation element | |
US20070005070A1 (en) | Self-centering screw and retaining screw driver for use in surgery | |
RU2175855C1 (en) | Device for guiding ligature | |
JP2008284360A (en) | Intramedullary nail and implant system configured to mount intramedullary nail | |
JPH037145A (en) | Screw implantation tissue of lower jaw | |
JP2012527285A (en) | Device for inserting arcuate nails into bone | |
EP0551588A1 (en) | Intramedullary nail for treating fractures of the proximal femur | |
US5139514A (en) | Combined needle-suture device | |
US9456857B2 (en) | Apparatus for stabilizing long bone fractures | |
KR20220041571A (en) | Hybrid Type Fracture Fixation Device for Fracture Treatment | |
WO2020176768A1 (en) | Fastening device for acquiring bone marrow aspirate | |
CN117398165A (en) | Reset fixing device for thumb eversion orthopedic operation | |
JPH1052439A (en) | Anchor nail and anchor screw and driver therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MECRON, MEDIZINISCHE PRODUKTE GMBH, NUNSDORFER RIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SIEVERS, UVE;REEL/FRAME:004949/0464 Effective date: 19880922 Owner name: MECRON, MEDIZINISCHE PRODUKTE GMBH, NUNSDORFER RIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEVERS, UVE;REEL/FRAME:004949/0464 Effective date: 19880922 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Expired due to failure to pay maintenance fee |
Effective date: 19950426 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |