US5088297A - Air conditioning apparatus - Google Patents
Air conditioning apparatus Download PDFInfo
- Publication number
- US5088297A US5088297A US07/587,740 US58774090A US5088297A US 5088297 A US5088297 A US 5088297A US 58774090 A US58774090 A US 58774090A US 5088297 A US5088297 A US 5088297A
- Authority
- US
- United States
- Prior art keywords
- inverter
- induction motor
- compressor
- air conditioning
- slip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/08—Controlling based on slip frequency, e.g. adding slip frequency and speed proportional frequency
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/025—Motor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to an air conditioning apparatus for use as a room cooler, a room heater, or a room cooler and heater in which use is made of a scroll compressor to compress a refrigerant and, more particularly, an air conditioning apparatus of this kind in which the scroll compressor is operated under the control of an inverter which is driven at a high carrier frequency to control the capacity of the scroll compressor.
- an air conditioning apparatus of the type in which an electric motor for driving a refrigerant compressor is operated under the control of an inverter of variable operating frequency
- the inverter is arranged to convert a DC current (usually produced from a commercial AC line by using rectifying and smoothing means) into an AC current (in general, a three-phase AC current) of an operating frequency, by means of a power switching element which is turned ON and OFF at a frequency corresponding to the operating frequency, and to feed the converted AC current to the electric motor.
- a system may be used in which the output of the inverter is varied by varying the DC voltage from which the AC voltage is converted, but an inverter of a voltage PWM (pulse width modulation) type has been frequently used which is arranged to hold the DC voltage at a constant value and to chop the output AC voltage by a frequency which is considerably higher than the operating frequency so as to increase ON-duty ratio, that is, to increase the time-averaged output voltage with the increase in the operating frequency.
- the pulse width modulation is effected by comparing the given time-averaged output voltage with the carrier voltage of high frequency and turning ON and OFF the switching element at a required ON-duty ratio at said carrier frequency on the basis of such comparison.
- the operating frequency of the inverter for driving the compressor has been 30 Hz to 90 Hz or 30 Hz to 115 Hz, while the carrier frequency of the inverter has been 1 KHz to 2 KHz
- the carrier frequency of the inverter for driving the motor is relatively low, such as 1-2 KHz, and consequently, an electromagnetic audible noise is generated from the motor owing to said carrier frequency and particularly in the case where the motor is operated at low frequency such electromagnetic noise forms an uncomfortable noise which may adversely affect the ambient comfort.
- an air conditioning apparatus including a refrigerating cycle in which a scroll compressor is used for compressing refrigerant, comprising: an induction motor for driving the scroll compressor, and an inverter for feeding an AC voltage to the induction motor, the inverter being a voltage PWM type to feed AC voltage of variable operating frequency which is pulse-width modulated by a high carrier frequency higher than 10 KHz.
- an air conditioning apparatus of the above kind in which the inverter includes control means for detecting the slip of the induction motor and for correcting the slip thus detected to a predetermined optimum value.
- an air conditioning apparatus of the above kind in which the control means is arranged to effect correction of the slip when the operating frequency of the inverter is at or near the minimum operating frequency.
- the scroll compressor is used as the compressor for compressing the refrigerant of the air conditioning apparatus
- the carrier frequency for the inverter of the voltage PWM type having variable operating frequency for driving the induction motor of the compressor is held at a value higher than 10 KHz and the control means is used to control the slip of the induction motor to an optimum value, thereby operating the apparatus in stable condition.
- the uncomfortable electro-magnetic noise generated by the motor can be reduced and the actual speed of the motor is stabilized even at a low frequency range, whereby the noise during operation can be reduced and the operable range of the apparatus can be increased.
- FIG. 1 is a block diagram illustrating a preferred embodiment of the air conditioning apparatus according to the present invention.
- FIG. 2 is a diagram showing an inverter portion of FIG. 1.
- FIG. 3 shows the change of room temperature owing to the difference in the minimum frequency of the air conditioning apparatus.
- FIG. 4 shows the change in torque of the air conditioning apparatus in accordance with an embodiment of the present invention.
- FIG. 5 is an explanatory diagram showing correction of slip in the induction motor in the embodiment of the present invention.
- FIG. 6 is a sectional view of the scroll compressor.
- FIG. 7 is a diagram showing torque characteristics of various types of compressors.
- FIG. 8 is a characteristic diagram showing carrier frequencies of the embodiment of the present invention and of the prior art.
- FIG. 9 is a diagram showing noise generated in the apparatus of the present invention and in prior art.
- the air conditioning apparatus includes an indoor heat exchanger unit 1, an outdoor heat exchanger unit 2 and a refrigerant conduit 3 which is connected with the indoor heat exchanger unit 1 and the outdoor heat exchanger unit 2, thereby constituting a refrigerating cycle.
- a four-way valve 4 is disposed in the refrigerating cycle constituting conduit to change over the flow direction of the refrigerant in the refrigerating cycle depending on the room cooling mode or heating mode.
- a scroll compressor 5 has an induction motor 6 contained therein and includes a mechanism for effecting suction, compression and discharge of the refrigerant under the action of the induction motor 6.
- a power supply source 7 is provided to feed power to the air conditioning apparatus.
- An inverter 8 is arranged to control the speed of the induction motor 6 contained in the scroll compressor 5 by using the power supplied from the power supply source.
- the scroll compressor 5 has a construction as shown in sectional view in FIG. 6, for example.
- this scroll compressor as the induction motor 6 is rotated, a gas at a low pressure is sucked through an inlet port 16 which is positioned outside of a fixed scroll 14 and confined in a compressing space formed between the fixed scroll 14 and an orbiting scroll 15 having spiral wraps.
- the gas confined in the compressing space is successively compressed toward the center of the spiral wrap of the scroll under the action of the orbiting motion of the orbiting scroll 15 which is driven by the induction motor 6 through a crankshaft connected with the induction motor 6.
- the compressing space is of a minimum volume at the center, so that the gas is compressed to maximum extent a the center and it is discharged through a discharging port 14' at the center of the fixed scroll 14 into an upper discharging chamber. Then, the gas passes through a motor chamber and is discharged to the outside of the compressor through a discharging port 17.
- the refrigerant gas is continuously subjected to repeated action of the suction-compression-discharging, and the discharged refrigerant is fed to the refrigerating cycle, whereby the room cooling or heating operation is performed.
- the inverter 8 consists of a rectifier element 9 for converting AC current fed from the power supply source 7 into DC current, a smoothing capacitor 10, a switching element 11 for converting the DC current into an AC current, a current sensor 12 for detecting current which passes to the induction motor, and a control unit 13 which receives current from the current sensor 12 and drives the switching element 11.
- the AC current fed from the power supply source 7 is converted into DC current under the action of the rectifier element 9 and then it is smoothed under the action of the smoothing capacitor 10 and fed to the switching element 11.
- the operating state of the indoor unit of the air conditioning apparatus is detected and the operating state thus detected is transmitted to the outdoor unit.
- the operating state transmitted from the indoor unit and the operating state of the outdoor unit are processed to form a command for operation of the compressor, which is transmitted to the control unit 13.
- the control unit 13 which receives the operation command, acts to switch the switching element 11, thereby generating an AC current, having the required operating frequency in accordance with the operation command, and to feed such AC current to the induction motor 6, which is driven thereby.
- the switching element 11 is formed of IGBT's (Insulated gate bipolar transistors).
- the inverter control unit 13 is arranged to effect PWM (pulse width modulation) which acts to increase the time-averaged value of the output voltage of the inverter fed to the motor 6 as the the operating frequency is increased, so that the motor 6 is rotated at a higher speed as the operating frequency becomes higher.
- PWM pulse width modulation
- the chopping frequency used in the PWM namely the carrier frequency, is higher than 10 KHz, so that the generation of electromagnetic noise within the audible range from the motor is avoided.
- the operating frequency of the inverter is lowered to decrease the speed of the motor 6, as the room temperature is lowered to come near a set temperature after starting operation in the room cooling mode, or as the room temperature is raised to come near a set temperature after starting operation in the room heating mode, that is, as the cooling load or the heating load decreases, whereby the motor 6 rotates at the minimum speed under a predetermined minimum cooling load or a predetermined minimum heating load.
- Such measure includes detecting the current passing to the induction motor 6 for driving the compressor 5 by means of the current sensor 12, separating the exciting component of the current of the induction motor 6 for driving the compressor from the detected current, thereby detecting only the torque component, and measuring the slip of the induction motor 6 from the torque component.
- the slip of the induction motor 6 increases, so that the actual speed decreases (the actual speed is indicated by a broken line in FIG. 4) and thus the oil feeding pressure becomes insufficient to lubricate the bearing part, owing to lowering of the actual motor speed in the low frequency range.
- the illustrated embodiment is arranged to measure the slip of the induction motor 6, as explained above, and to correct the slip, thereby preventing the actual speed from becoming lower than a predetermined speed for the particular operating frequency.
- satisfactory oil feeding can be assured.
- the correction of the slip can be effected in the manner as shown in FIG. 5, for example.
- the operating state of the induction motor 6 at an operating frequency f is located at a point b on the broken line S.
- a point of intersection d of said broken line S with the abscissa represents a synchronous speed at that frequency f (namely, speed at zero slip).
- the slip is measured from the detected output of the current sensor 12, as described above, and the control unit 13 acts, on this detected slip, to control the inverter to the frequency corresponding to the frequency f plus a frequency correction component .increment.f, so that slip at the same torque is corrected from the point b to a point a corresponding to a predetermined optimum slip on the same broken line S.
- the motor 6 is operated at a point c (corresponding to the point a) at the same torque on the operation curve (broken line S') at the corrected frequency.
- the slip of the induction motor 6 is adjusted to the optimum value.
- the correcting control of the slip as described above can be effected at any operating frequency but in practice it is preferable to effect such correcting control only at a low operating frequency (for example, at 60 Hz or lower) or at a frequency near the minimum operating frequency.
- the scroll compressor is used as the refrigerant compressor. Accordingly, a variation of work, namely, a variation of the compression torque per one revolution of the compressor, is lower than that of the compressor of the other types, as shown in FIG. 7, so that generation of vibration and noise is decreased. Accordingly, the scroll compressor is advantageously used in the low frequency range.
- the switching frequency (carrier frequency) of the switching element for effecting PWM is relatively low, such as 1-2 KHz, so that an electromagnetic noise within an audible range may be produced owing to the switching action of feeding of power to the induction motor 6 and, particularly an uncomfortable noise may be generated during operation at low frequency, while according to the present invention the influence of electromagnetic noise is minimized at a level higher than the audible range, by increasing the carrier frequency beyond 10 KHz, so that the present invention has the advantage that noise is decreased.
- the output current of the inverter comes near sinusoidal wave shape, with the result that the efficiency of the motor for driving the scroll compressor can be improved, so that the temperature (heat generation) of the motor winding can be lowered.
- the compressing efficiency of the compressor can be improved by using the scroll compressor of a high pressure chamber type in which the motor is positioned in a sealed chamber within a motor casing and the sealed chamber is held at a high pressure under the action of a gas discharged from the compressor.
- the present invention provides an air conditioning apparatus in which the generation of uncomfortable noise can be decreased by increasing the carrier frequency of the voltage PWM type inverter.
- the air conditioning apparatus according to the present invention can be applied to a low frequency range, owing to using the scroll compressor.
- an air conditioning apparatus of low noise type can be by the construction in which the motor for driving a scroll compressor is controlled by a voltage PWM type inverter using a high carrier frequency. That is, the use of the scroll compressor contributes to attaining the decreasing of the noise caused by the compressor.
- the generation of an uncomfortable audible noise which may result from the inverter is avoided by increasing the carrier frequency, and an air conditioning apparatus of low noise type, as a whole, can be obtained.
- it is possible to lower the lower limit of the operating frequency by controlling the slip of the induction motor for driving the compressor and, thus, the comfortability is considerably improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Air Conditioning Control Device (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
Claims (2)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24914589 | 1989-09-27 | ||
JP1-249145 | 1989-09-27 | ||
JP2-134314 | 1990-05-24 | ||
JP2134314A JP2755469B2 (en) | 1989-09-27 | 1990-05-24 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
US5088297A true US5088297A (en) | 1992-02-18 |
Family
ID=26468444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/587,740 Expired - Lifetime US5088297A (en) | 1989-09-27 | 1990-09-25 | Air conditioning apparatus |
Country Status (2)
Country | Link |
---|---|
US (1) | US5088297A (en) |
JP (1) | JP2755469B2 (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234319A (en) * | 1992-05-04 | 1993-08-10 | Wilder Richard W | Sump pump drive system |
US5253481A (en) * | 1991-08-29 | 1993-10-19 | Zexel Corporation | Control unit for activating compressor |
US5443587A (en) * | 1992-06-09 | 1995-08-22 | Nissei Plastic Industrial Co., Ltd. | Injection molding machine control having motor slip compensator |
EP0780960A1 (en) * | 1995-12-21 | 1997-06-25 | Mitsubishi Denki Kabushiki Kaisha | Electric leakage preventive apparatus and method |
US5650709A (en) * | 1995-03-31 | 1997-07-22 | Quinton Instrument Company | Variable speed AC motor drive for treadmill |
US5747955A (en) * | 1995-03-31 | 1998-05-05 | Quinton Instrument Company | Current sensing module for a variable speed AC motor drive for use with a treadmill |
US6047557A (en) * | 1995-06-07 | 2000-04-11 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
US6206643B1 (en) * | 1998-06-17 | 2001-03-27 | Samsung Electronics Co., Ltd. | Method for controlling reciprocating compressor having variable capacity |
US6236184B1 (en) * | 1998-12-23 | 2001-05-22 | Hamilton Sundstrand Corporation | Variable speed cooling fan control |
US6601397B2 (en) | 2001-03-16 | 2003-08-05 | Copeland Corporation | Digital scroll condensing unit controller |
US6762577B2 (en) | 2001-11-14 | 2004-07-13 | General Electric Company | DC motor speed control system |
US20050076659A1 (en) * | 2003-08-25 | 2005-04-14 | Wallace John G. | Refrigeration control system |
US20050189904A1 (en) * | 2004-02-27 | 2005-09-01 | York International Corporation | System and method for increasing output horsepower and efficiency in a motor |
US20050268631A1 (en) * | 2000-02-14 | 2005-12-08 | Mutsunori Matsunaga | Apparatus for driving a compressor and a refrigerating air conditioner |
US20060117766A1 (en) * | 2001-05-03 | 2006-06-08 | Abtar Singh | Model-based alarming |
US20060242200A1 (en) * | 2005-02-21 | 2006-10-26 | Horowitz Stephen A | Enterprise control and monitoring system and method |
US20060269428A1 (en) * | 2003-10-14 | 2006-11-30 | Hironai Akashi | Hermetic-type compressor |
US20070089439A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring a condenser in a refrigeration system |
US20070089437A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Proofing a refrigeration system operating state |
US20070089436A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring refrigerant in a refrigeration system |
US20070093732A1 (en) * | 2005-10-26 | 2007-04-26 | David Venturi | Vibroacoustic sound therapeutic system and method |
US20070089435A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Predicting maintenance in a refrigeration system |
US20070132330A1 (en) * | 2005-12-12 | 2007-06-14 | Fei Renyan W | Fan assemblies employing LSPM motors and LSPM motors having improved synchronization |
US20070150305A1 (en) * | 2004-02-18 | 2007-06-28 | Klaus Abraham-Fuchs | Method for selecting a potential participant for a medical study on the basis of a selection criterion |
CN100343592C (en) * | 2003-05-20 | 2007-10-17 | 乐金电子(天津)电器有限公司 | Running controlling apparatus and its method for variable frequency air conditioner |
US7594407B2 (en) | 2005-10-21 | 2009-09-29 | Emerson Climate Technologies, Inc. | Monitoring refrigerant in a refrigeration system |
US7596959B2 (en) | 2005-10-21 | 2009-10-06 | Emerson Retail Services, Inc. | Monitoring compressor performance in a refrigeration system |
US20090266091A1 (en) * | 2005-08-03 | 2009-10-29 | Bristol Compressors International, Inc. | System and method for compressor capacity modulation in a heat pump |
US20090308086A1 (en) * | 2006-10-06 | 2009-12-17 | Alexander Lifson | Refrigerant system with multi-speed pulse width modulated compressor |
US20090324426A1 (en) * | 2008-06-29 | 2009-12-31 | Moody Bruce A | Compressor speed control system for bearing reliability |
US7644591B2 (en) | 2001-05-03 | 2010-01-12 | Emerson Retail Services, Inc. | System for remote refrigeration monitoring and diagnostics |
US7752853B2 (en) | 2005-10-21 | 2010-07-13 | Emerson Retail Services, Inc. | Monitoring refrigerant in a refrigeration system |
US20100275628A1 (en) * | 2009-04-29 | 2010-11-04 | Bristol Compressors International, Inc. | Capacity control systems and methods for a compressor |
US8157538B2 (en) | 2007-07-23 | 2012-04-17 | Emerson Climate Technologies, Inc. | Capacity modulation system for compressor and method |
US8308455B2 (en) | 2009-01-27 | 2012-11-13 | Emerson Climate Technologies, Inc. | Unloader system and method for a compressor |
US20130076286A1 (en) * | 2011-09-23 | 2013-03-28 | Apple Inc. | Reducing tonal excitations in a computer system |
US8473106B2 (en) | 2009-05-29 | 2013-06-25 | Emerson Climate Technologies Retail Solutions, Inc. | System and method for monitoring and evaluating equipment operating parameter modifications |
USRE44636E1 (en) | 1997-09-29 | 2013-12-10 | Emerson Climate Technologies, Inc. | Compressor capacity modulation |
US8700444B2 (en) | 2002-10-31 | 2014-04-15 | Emerson Retail Services Inc. | System for monitoring optimal equipment operating parameters |
US8964338B2 (en) | 2012-01-11 | 2015-02-24 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
US8974573B2 (en) | 2004-08-11 | 2015-03-10 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
US9121407B2 (en) | 2004-04-27 | 2015-09-01 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
US9140728B2 (en) | 2007-11-02 | 2015-09-22 | Emerson Climate Technologies, Inc. | Compressor sensor module |
US9285802B2 (en) | 2011-02-28 | 2016-03-15 | Emerson Electric Co. | Residential solutions HVAC monitoring and diagnosis |
US9310094B2 (en) | 2007-07-30 | 2016-04-12 | Emerson Climate Technologies, Inc. | Portable method and apparatus for monitoring refrigerant-cycle systems |
US9310439B2 (en) | 2012-09-25 | 2016-04-12 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
US9551504B2 (en) | 2013-03-15 | 2017-01-24 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US9638436B2 (en) | 2013-03-15 | 2017-05-02 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US9765979B2 (en) | 2013-04-05 | 2017-09-19 | Emerson Climate Technologies, Inc. | Heat-pump system with refrigerant charge diagnostics |
US9803902B2 (en) | 2013-03-15 | 2017-10-31 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification using two condenser coil temperatures |
US9823632B2 (en) | 2006-09-07 | 2017-11-21 | Emerson Climate Technologies, Inc. | Compressor data module |
US9885507B2 (en) | 2006-07-19 | 2018-02-06 | Emerson Climate Technologies, Inc. | Protection and diagnostic module for a refrigeration system |
US10041713B1 (en) | 1999-08-20 | 2018-08-07 | Hudson Technologies, Inc. | Method and apparatus for measuring and improving efficiency in refrigeration systems |
US10135352B2 (en) | 2015-04-15 | 2018-11-20 | Fuji Electric Co., Ltd. | Controller for power converter with frequency modulated carrier |
US10240839B2 (en) | 2013-03-15 | 2019-03-26 | Trane International LLC. | Apparatuses, systems, and methods of variable frequency drive operation and control |
US20230071945A1 (en) * | 2021-09-08 | 2023-03-09 | Waterfurnace International, Inc. | Stepped staged control of a variable capacity compressor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352838B (en) * | 2013-07-30 | 2016-06-01 | 广东西屋康达空调有限公司 | Frequency conversion digital compressor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4636928A (en) * | 1983-09-30 | 1987-01-13 | Matsushita Electric Industrial Co., Ltd. | Inverter-drive controlling apparatus |
US4905135A (en) * | 1986-09-12 | 1990-02-27 | Matsushita Electric Industrial Co., Ltd. | Inverter apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5713989A (en) * | 1980-06-24 | 1982-01-25 | Toyo Electric Mfg Co Ltd | Motor controller |
-
1990
- 1990-05-24 JP JP2134314A patent/JP2755469B2/en not_active Expired - Lifetime
- 1990-09-25 US US07/587,740 patent/US5088297A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4636928A (en) * | 1983-09-30 | 1987-01-13 | Matsushita Electric Industrial Co., Ltd. | Inverter-drive controlling apparatus |
US4905135A (en) * | 1986-09-12 | 1990-02-27 | Matsushita Electric Industrial Co., Ltd. | Inverter apparatus |
Cited By (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5253481A (en) * | 1991-08-29 | 1993-10-19 | Zexel Corporation | Control unit for activating compressor |
US5234319A (en) * | 1992-05-04 | 1993-08-10 | Wilder Richard W | Sump pump drive system |
US5443587A (en) * | 1992-06-09 | 1995-08-22 | Nissei Plastic Industrial Co., Ltd. | Injection molding machine control having motor slip compensator |
US5747955A (en) * | 1995-03-31 | 1998-05-05 | Quinton Instrument Company | Current sensing module for a variable speed AC motor drive for use with a treadmill |
US5650709A (en) * | 1995-03-31 | 1997-07-22 | Quinton Instrument Company | Variable speed AC motor drive for treadmill |
US6662583B2 (en) | 1995-06-07 | 2003-12-16 | Copeland Corporation | Adaptive control for a cooling system |
US6467280B2 (en) | 1995-06-07 | 2002-10-22 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
US6047557A (en) * | 1995-06-07 | 2000-04-11 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
US7389649B2 (en) | 1995-06-07 | 2008-06-24 | Emerson Climate Technologies, Inc. | Cooling system with variable duty cycle capacity control |
US7419365B2 (en) | 1995-06-07 | 2008-09-02 | Emerson Climate Technologies, Inc. | Compressor with capacity control |
US6408635B1 (en) | 1995-06-07 | 2002-06-25 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
US6449972B2 (en) | 1995-06-07 | 2002-09-17 | Copeland Corporation | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
USRE42006E1 (en) | 1995-06-07 | 2010-12-28 | Emerson Climate Technologies, Inc. | Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor |
US20070022771A1 (en) * | 1995-06-07 | 2007-02-01 | Pham Hung M | Cooling system with variable capacity control |
US6662578B2 (en) | 1995-06-07 | 2003-12-16 | Copeland Corporation | Refrigeration system and method for controlling defrost |
US20040123612A1 (en) * | 1995-06-07 | 2004-07-01 | Pham Hung M. | Cooling system with variable duty cycle capacity control |
US6679072B2 (en) | 1995-06-07 | 2004-01-20 | Copeland Corporation | Diagnostic system and method for a cooling system |
US7654098B2 (en) | 1995-06-07 | 2010-02-02 | Emerson Climate Technologies, Inc. | Cooling system with variable capacity control |
EP0780960A1 (en) * | 1995-12-21 | 1997-06-25 | Mitsubishi Denki Kabushiki Kaisha | Electric leakage preventive apparatus and method |
US5748459A (en) * | 1995-12-21 | 1998-05-05 | Mitsubishi Denki Kabushiki Kaisha | Electric leakage current prevention using an equivalent impedance |
USRE44636E1 (en) | 1997-09-29 | 2013-12-10 | Emerson Climate Technologies, Inc. | Compressor capacity modulation |
US6206643B1 (en) * | 1998-06-17 | 2001-03-27 | Samsung Electronics Co., Ltd. | Method for controlling reciprocating compressor having variable capacity |
US6236184B1 (en) * | 1998-12-23 | 2001-05-22 | Hamilton Sundstrand Corporation | Variable speed cooling fan control |
US10041713B1 (en) | 1999-08-20 | 2018-08-07 | Hudson Technologies, Inc. | Method and apparatus for measuring and improving efficiency in refrigeration systems |
US20050268631A1 (en) * | 2000-02-14 | 2005-12-08 | Mutsunori Matsunaga | Apparatus for driving a compressor and a refrigerating air conditioner |
US7437882B2 (en) * | 2000-02-14 | 2008-10-21 | Hitachi Air Conditioning Systems Co., Ltd. | Apparatus for driving a compressor and a refrigerating air conditioner |
US6745584B2 (en) | 2001-03-16 | 2004-06-08 | Copeland Corporation | Digital scroll condensing unit controller |
US6601397B2 (en) | 2001-03-16 | 2003-08-05 | Copeland Corporation | Digital scroll condensing unit controller |
US20060117766A1 (en) * | 2001-05-03 | 2006-06-08 | Abtar Singh | Model-based alarming |
US8316658B2 (en) | 2001-05-03 | 2012-11-27 | Emerson Climate Technologies Retail Solutions, Inc. | Refrigeration system energy monitoring and diagnostics |
US8065886B2 (en) | 2001-05-03 | 2011-11-29 | Emerson Retail Services, Inc. | Refrigeration system energy monitoring and diagnostics |
US8495886B2 (en) | 2001-05-03 | 2013-07-30 | Emerson Climate Technologies Retail Solutions, Inc. | Model-based alarming |
US7644591B2 (en) | 2001-05-03 | 2010-01-12 | Emerson Retail Services, Inc. | System for remote refrigeration monitoring and diagnostics |
US6762577B2 (en) | 2001-11-14 | 2004-07-13 | General Electric Company | DC motor speed control system |
US8700444B2 (en) | 2002-10-31 | 2014-04-15 | Emerson Retail Services Inc. | System for monitoring optimal equipment operating parameters |
CN100343592C (en) * | 2003-05-20 | 2007-10-17 | 乐金电子(天津)电器有限公司 | Running controlling apparatus and its method for variable frequency air conditioner |
US7290398B2 (en) | 2003-08-25 | 2007-11-06 | Computer Process Controls, Inc. | Refrigeration control system |
US20050076659A1 (en) * | 2003-08-25 | 2005-04-14 | Wallace John G. | Refrigeration control system |
US20060269428A1 (en) * | 2003-10-14 | 2006-11-30 | Hironai Akashi | Hermetic-type compressor |
US7832994B2 (en) * | 2003-10-14 | 2010-11-16 | Panasonic Corporation | Hermetic-type compressor |
US20070150305A1 (en) * | 2004-02-18 | 2007-06-28 | Klaus Abraham-Fuchs | Method for selecting a potential participant for a medical study on the basis of a selection criterion |
US20050189904A1 (en) * | 2004-02-27 | 2005-09-01 | York International Corporation | System and method for increasing output horsepower and efficiency in a motor |
US7075268B2 (en) * | 2004-02-27 | 2006-07-11 | York International Corporation | System and method for increasing output horsepower and efficiency in a motor |
US10335906B2 (en) | 2004-04-27 | 2019-07-02 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
US9121407B2 (en) | 2004-04-27 | 2015-09-01 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
US9669498B2 (en) | 2004-04-27 | 2017-06-06 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
US9023136B2 (en) | 2004-08-11 | 2015-05-05 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
US9690307B2 (en) | 2004-08-11 | 2017-06-27 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
US9086704B2 (en) | 2004-08-11 | 2015-07-21 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
US9046900B2 (en) | 2004-08-11 | 2015-06-02 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
US9304521B2 (en) | 2004-08-11 | 2016-04-05 | Emerson Climate Technologies, Inc. | Air filter monitoring system |
US9081394B2 (en) | 2004-08-11 | 2015-07-14 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
US10558229B2 (en) | 2004-08-11 | 2020-02-11 | Emerson Climate Technologies Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
US9021819B2 (en) | 2004-08-11 | 2015-05-05 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
US8974573B2 (en) | 2004-08-11 | 2015-03-10 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
US9017461B2 (en) | 2004-08-11 | 2015-04-28 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
US7885959B2 (en) | 2005-02-21 | 2011-02-08 | Computer Process Controls, Inc. | Enterprise controller display method |
US20060271623A1 (en) * | 2005-02-21 | 2006-11-30 | Horowitz Stephen A | Enterprise control and monitoring system |
US20060242200A1 (en) * | 2005-02-21 | 2006-10-26 | Horowitz Stephen A | Enterprise control and monitoring system and method |
US20060271589A1 (en) * | 2005-02-21 | 2006-11-30 | Horowitz Stephen A | Enterprise controller display method |
US7885961B2 (en) | 2005-02-21 | 2011-02-08 | Computer Process Controls, Inc. | Enterprise control and monitoring system and method |
US8650894B2 (en) | 2005-08-03 | 2014-02-18 | Bristol Compressors International, Inc. | System and method for compressor capacity modulation in a heat pump |
US20090266091A1 (en) * | 2005-08-03 | 2009-10-29 | Bristol Compressors International, Inc. | System and method for compressor capacity modulation in a heat pump |
US20070089435A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Predicting maintenance in a refrigeration system |
US20070089437A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Proofing a refrigeration system operating state |
US7752854B2 (en) | 2005-10-21 | 2010-07-13 | Emerson Retail Services, Inc. | Monitoring a condenser in a refrigeration system |
US7594407B2 (en) | 2005-10-21 | 2009-09-29 | Emerson Climate Technologies, Inc. | Monitoring refrigerant in a refrigeration system |
US20070089436A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring refrigerant in a refrigeration system |
US20070089439A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring a condenser in a refrigeration system |
US7752853B2 (en) | 2005-10-21 | 2010-07-13 | Emerson Retail Services, Inc. | Monitoring refrigerant in a refrigeration system |
US7665315B2 (en) | 2005-10-21 | 2010-02-23 | Emerson Retail Services, Inc. | Proofing a refrigeration system operating state |
US7596959B2 (en) | 2005-10-21 | 2009-10-06 | Emerson Retail Services, Inc. | Monitoring compressor performance in a refrigeration system |
US20070093732A1 (en) * | 2005-10-26 | 2007-04-26 | David Venturi | Vibroacoustic sound therapeutic system and method |
US20070132330A1 (en) * | 2005-12-12 | 2007-06-14 | Fei Renyan W | Fan assemblies employing LSPM motors and LSPM motors having improved synchronization |
US9885507B2 (en) | 2006-07-19 | 2018-02-06 | Emerson Climate Technologies, Inc. | Protection and diagnostic module for a refrigeration system |
US9823632B2 (en) | 2006-09-07 | 2017-11-21 | Emerson Climate Technologies, Inc. | Compressor data module |
US20090308086A1 (en) * | 2006-10-06 | 2009-12-17 | Alexander Lifson | Refrigerant system with multi-speed pulse width modulated compressor |
US8157538B2 (en) | 2007-07-23 | 2012-04-17 | Emerson Climate Technologies, Inc. | Capacity modulation system for compressor and method |
US8807961B2 (en) | 2007-07-23 | 2014-08-19 | Emerson Climate Technologies, Inc. | Capacity modulation system for compressor and method |
US10352602B2 (en) | 2007-07-30 | 2019-07-16 | Emerson Climate Technologies, Inc. | Portable method and apparatus for monitoring refrigerant-cycle systems |
US9310094B2 (en) | 2007-07-30 | 2016-04-12 | Emerson Climate Technologies, Inc. | Portable method and apparatus for monitoring refrigerant-cycle systems |
US9194894B2 (en) | 2007-11-02 | 2015-11-24 | Emerson Climate Technologies, Inc. | Compressor sensor module |
US9140728B2 (en) | 2007-11-02 | 2015-09-22 | Emerson Climate Technologies, Inc. | Compressor sensor module |
US10458404B2 (en) | 2007-11-02 | 2019-10-29 | Emerson Climate Technologies, Inc. | Compressor sensor module |
US8904814B2 (en) | 2008-06-29 | 2014-12-09 | Bristol Compressors, International Inc. | System and method for detecting a fault condition in a compressor |
US8790089B2 (en) * | 2008-06-29 | 2014-07-29 | Bristol Compressors International, Inc. | Compressor speed control system for bearing reliability |
US20090324426A1 (en) * | 2008-06-29 | 2009-12-31 | Moody Bruce A | Compressor speed control system for bearing reliability |
US8672642B2 (en) | 2008-06-29 | 2014-03-18 | Bristol Compressors International, Inc. | System and method for starting a compressor |
US8308455B2 (en) | 2009-01-27 | 2012-11-13 | Emerson Climate Technologies, Inc. | Unloader system and method for a compressor |
US20100275628A1 (en) * | 2009-04-29 | 2010-11-04 | Bristol Compressors International, Inc. | Capacity control systems and methods for a compressor |
US8601828B2 (en) | 2009-04-29 | 2013-12-10 | Bristol Compressors International, Inc. | Capacity control systems and methods for a compressor |
US8473106B2 (en) | 2009-05-29 | 2013-06-25 | Emerson Climate Technologies Retail Solutions, Inc. | System and method for monitoring and evaluating equipment operating parameter modifications |
US8761908B2 (en) | 2009-05-29 | 2014-06-24 | Emerson Climate Technologies Retail Solutions, Inc. | System and method for monitoring and evaluating equipment operating parameter modifications |
US9395711B2 (en) | 2009-05-29 | 2016-07-19 | Emerson Climate Technologies Retail Solutions, Inc. | System and method for monitoring and evaluating equipment operating parameter modifications |
US9285802B2 (en) | 2011-02-28 | 2016-03-15 | Emerson Electric Co. | Residential solutions HVAC monitoring and diagnosis |
US9703287B2 (en) | 2011-02-28 | 2017-07-11 | Emerson Electric Co. | Remote HVAC monitoring and diagnosis |
US10884403B2 (en) | 2011-02-28 | 2021-01-05 | Emerson Electric Co. | Remote HVAC monitoring and diagnosis |
US10234854B2 (en) | 2011-02-28 | 2019-03-19 | Emerson Electric Co. | Remote HVAC monitoring and diagnosis |
US20130076286A1 (en) * | 2011-09-23 | 2013-03-28 | Apple Inc. | Reducing tonal excitations in a computer system |
US9590413B2 (en) | 2012-01-11 | 2017-03-07 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
US9876346B2 (en) | 2012-01-11 | 2018-01-23 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
US8964338B2 (en) | 2012-01-11 | 2015-02-24 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
US9762168B2 (en) | 2012-09-25 | 2017-09-12 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
US9310439B2 (en) | 2012-09-25 | 2016-04-12 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
US10240839B2 (en) | 2013-03-15 | 2019-03-26 | Trane International LLC. | Apparatuses, systems, and methods of variable frequency drive operation and control |
US10274945B2 (en) | 2013-03-15 | 2019-04-30 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US9803902B2 (en) | 2013-03-15 | 2017-10-31 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification using two condenser coil temperatures |
US10488090B2 (en) | 2013-03-15 | 2019-11-26 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification |
US9638436B2 (en) | 2013-03-15 | 2017-05-02 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US10775084B2 (en) | 2013-03-15 | 2020-09-15 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification |
US9551504B2 (en) | 2013-03-15 | 2017-01-24 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US10060636B2 (en) | 2013-04-05 | 2018-08-28 | Emerson Climate Technologies, Inc. | Heat pump system with refrigerant charge diagnostics |
US10443863B2 (en) | 2013-04-05 | 2019-10-15 | Emerson Climate Technologies, Inc. | Method of monitoring charge condition of heat pump system |
US9765979B2 (en) | 2013-04-05 | 2017-09-19 | Emerson Climate Technologies, Inc. | Heat-pump system with refrigerant charge diagnostics |
US10135352B2 (en) | 2015-04-15 | 2018-11-20 | Fuji Electric Co., Ltd. | Controller for power converter with frequency modulated carrier |
US20230071945A1 (en) * | 2021-09-08 | 2023-03-09 | Waterfurnace International, Inc. | Stepped staged control of a variable capacity compressor |
US11732921B2 (en) * | 2021-09-08 | 2023-08-22 | Waterfurnace International, Inc. | Stepped staged control of a variable capacity compressor |
Also Published As
Publication number | Publication date |
---|---|
JPH03178595A (en) | 1991-08-02 |
JP2755469B2 (en) | 1998-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5088297A (en) | Air conditioning apparatus | |
US8601828B2 (en) | Capacity control systems and methods for a compressor | |
US7946123B2 (en) | System for compressor capacity modulation | |
US8650894B2 (en) | System and method for compressor capacity modulation in a heat pump | |
US6065298A (en) | Air conditioner automatically controlling operation based on supply voltage or supply frequency | |
US20090056354A1 (en) | Refrigeration power system for a storage compartment in a vehicle | |
US20010005320A1 (en) | Linear compressor driving device, medium and information assembly | |
US20070022765A1 (en) | Controlling a voltage-to-frequency ratio for a variable speed drive in refrigerant systems | |
KR100301499B1 (en) | Lubricant mode setup method for compressor of inverter refrigerator | |
US20080260541A1 (en) | Induction Motor Control | |
JPH0835711A (en) | Air conditioner with inverter and control method thereof | |
JPS6349640Y2 (en) | ||
JP3296335B2 (en) | Air conditioner | |
JP3996404B2 (en) | Air conditioner | |
JP3297356B2 (en) | Air conditioner | |
JPH07167480A (en) | Air conditioner | |
KR19980043379A (en) | Compressor Frequency Transition Speed Control of Air Conditioner and Its Method | |
JP2532958B2 (en) | Variable speed compressor | |
KR0177691B1 (en) | Control method of compressor operation of inverter air conditioner | |
JPH0623879Y2 (en) | Air conditioner | |
JPS62108970A (en) | Refrigerator | |
KR0129498B1 (en) | Compressor Operation Control Method | |
JPH01312345A (en) | Air conditioner | |
JPH05203269A (en) | Controller for refrigerator | |
JP2983809B2 (en) | Compressor operation control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HITACHI, LTD. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MARUYAMA, HIROSHI;KATO, TAKASHI;TANIGUCHI, MASAYA;REEL/FRAME:005861/0617 Effective date: 19900917 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |