US5193934A - In-situ thermal desorption of contaminated surface soil - Google Patents
In-situ thermal desorption of contaminated surface soil Download PDFInfo
- Publication number
- US5193934A US5193934A US07/705,712 US70571291A US5193934A US 5193934 A US5193934 A US 5193934A US 70571291 A US70571291 A US 70571291A US 5193934 A US5193934 A US 5193934A
- Authority
- US
- United States
- Prior art keywords
- soil
- vapor
- contaminated
- pipe
- contaminants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/295—Gasification of minerals, e.g. for producing mixtures of combustible gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/06—Reclamation of contaminated soil thermally
- B09C1/065—Reclamation of contaminated soil thermally by pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C2101/00—In situ
Definitions
- This invention relates to an improved in-situ method for the remediation of soil containing organic or semi-volatile inorganic contaminants. More particularly, the invention relates to a method for the decontamination of soil containing environmentally undesirable organic contaminants, which process employs a more effective removal of such contaminants by thermal desorption. This process is especially useful for the remediation of soils contaminated with non-volatile and semi-volatile organics, such as diesel fuel, aviation and jet fuel, crude oil, PCB's and pesticides and semi-volatile inorganics such as metallic mercury.
- non-volatile and semi-volatile organics such as diesel fuel, aviation and jet fuel, crude oil, PCB's and pesticides and semi-volatile inorganics such as metallic mercury.
- Such problems may be present at refineries, fuel marketing locations, or chemical plants.
- Brouns et al. U.S. Pat. No. 4,376,598 disclose a vitrification process in which the soil is heated to approximately 1500° C. At or about this temperature the soil forms a glass-like mass which traps the contaminants therein. This process, in reality, is a stabilization process rather than a decontamination process since the soil undergoing treatment has lost its physical and chemical identity.
- Both an auger system for injecting steam or hot air and a process for steam injection through stationary pipes have been practiced commercially. These methods have a limited use, primarily in the decontamination of soil containing small areas of deep contamination such as localized spills or leakages at service stations. These methods are not as useful when applied to large areas of contaminated soil.
- Bridges et al, U.S. Pat. No. 4,670,634 disclose an in-situ thermal process where the thermal energy is supplied by radio-frequency heating. This process is particularly applicable to water-containing soils where the steam generated in the soil serves to strip the organic comtaminants from the soil.
- a somewhat related process is disclosed by Assignee's U.S. patent application Ser. No. 427,418, filed Oct. 27, 1989, now U.S. Pat. No. 4,984,594 wherein the thermal energy is supplied by a relatively flat heater deployed at the surface of the soil. In this latter process, a lowered pressure is applied at the surface of the soil to remove vapors generated within the soil.
- U.S. Pat. No. 4,842,448 issued to Robert M. Koerner et al on Jun. 27, 1989 discloses a method and apparatus for in-situ removal of contaminants from soil comprising a barrier having a permeable inner layer and an impermeable outer layer overlying the contaminated soil and a vacuum system for reducing pressure under the barrier and withdrawing contaminants from the contaminated soil.
- the electrodes are hollow and perforated below the surface to allow application of a vacuum to the soil through the electrodes.
- the electrodes are also equipped with provision for electrical connection and vacuum line connection, and also with the capability to be sealed to a barrier that is impermeable to gases, such as a flexible sheet.
- U.S. Pat. No. 4,435,292 discloses a portable system which can be installed at an area where a contaminating spill has occurred. After the area of the contamination has been determined, perforated pipes are inserted into the ground. Some of the wells are pressurized and others are evacuated simultaneously so as to increase the transfer of a flushing fluid through the soil thereby accelerating the decontamination process and preventing migration of the contaminant into other areas. Since the system is a closed system, the contaminated liquid taken off in the evacuation side of the circulating system is bypassed in whole or in part to a portable processing plant wherein the contaminants are removed.
- a microwave/radio frequency (MW/RF) heating system heats the earth's surface and the contaminated soil, thereby enhancing volatilization of the contaminants and their removal via the vapor flushing system.
- a heat front moves away from the heater wells through the soil by thermal conduction, and the superposition of heat from a plurality of heater wells results in a more uniform temperature rise throughout the well pattern.
- Soil contaminants are removed by vaporization, in-situ thermal decomposition, oxidation, combustion, and by steam distillation.
- the heater wells and the nearby soil are extremely hot and many contaminants drawn into the wells will decompose with a residence time on the order of seconds.
- the heater well can also be packed with a catalyst that accelerates high temperature decomposition into smaller molecules. Water vapor and remaining contaminants may be incinerated in line or may be collected in a cold trap upstream from the vacuum pump.
- a vapor recovery/treatment system is connected to the buried pipe network and includes a method of inducing a vacuum on the buried pipe network and a treatment system for the contaminated vapor. Heat is applied to the soil surface by a relatively flat, surface-conforming, resistance heater.
- An in-situ thermal desorption system utilizes perforated or slotted pipe buried in the soil below the depth of contamination in the soil.
- the surface of the soil is covered with a layer of permeable insulation (to conserve heat and to provide a gas migration path on top of the soil) and a layer of impermeable material above the insulation.
- a vapor recovery/treatment system consists of a method of inducing a vacuum between the impermeable layer and the soil surface (e.g., a vacuum pump or an induced draft fan) and a treatment system for the contaminated vapor (e.g., a cold trap, carbon adsorption, or incineration).
- Fuel and compressed air are fed to a pressurized combustion chamber (5-50 psig) and combusted, the combustion products flow into the buried pipe and are distributed through the contaminated soil.
- the combustion chamber may use natural gas, gasoline, diesel fuel, etc. and may be operated with excess oxygen, stoichiometric oxygen or sub-stoichiometric oxygen. In a preferred embodiment, excess oxygen is used so that the outlet temperature is in the range of 200°-600° C.
- Combustion may also be accomplished by a catalytic process. Heat from the pressurized combustion products causes the organic contaminants within the soil to vaporize, pyrolyze, decompose, or react with oxygen. Contaminants and their by-products are swept away by the combustion products into the vapor recovery/treatment system.
- FIG. 1 depicts a copending system for soil remediation.
- FIG. 2 depicts in sectional view the apparatus and process of the invention.
- FIG. 3 depicts a plan view of the preferred embodiment of the invention.
- FIGS. 2 and 3 are schematic sectional and plan views of the in-situ soil heating process with sub-surface vapor recovery.
- Perforated or slotted pipe is buried in the soil preferably below the depth of contamination.
- the pipe may be buried in a manifold arrangement to minimize the distance from the contaminated soil to the pipe.
- a pattern of trenches is dug in the contaminated area to the desired depth, such as by a back-hoe, the pipe is laid and connected as desired, then the pipe is buried by back-filling the trenches.
- the pipe may contain thermocouples to monitor temperature.
- a vapor recovery/treatment system is fluidly connected to the buried pipe network.
- the vapor recovery/treatment system consists of a means of inducing a vacuum between the soil surface and an impermeable sheet (e.g. a vacuum pump or an induced draft fan) and a treatment system for the contaminated vapor (e.g. a cold trap, carbon adsorption, or incineration).
- an impermeable sheet e.g. a vacuum pump or an induced draft fan
- a treatment system for the contaminated vapor e.g. a cold trap, carbon adsorption, or incineration.
- a flexible insulation which is permeable to gases, is placed on top of the soil.
- An impermeable sheet with air collection vents is placed on top of the insulation to protect the insulation from the weather and to direct the inlet air vapors to a treatment system.
- the impermeable sheet is preferably flexible, but may be rigid, and may be silicone rubber, or equivalent, or thin (e.g., 1/16") stainless steel, aluminum, carbon steel, etc.
- Heat causes the organic contaminants within the soil to vaporize, pyrolyze, decompose, or react with oxygen.
- the contaminants and their by-products are swept away by the combustion products from the buried pipe network for further treatment or disposal in the vapor recovery/treatment system.
- the spacing between the buried pipes depends on the permeability of the soil being treated. Although the final temperature required to decontaminate the soil must be determined on a case-by-case basis, it is expected that a soil temperature in the range of 200°-300° C. would be sufficient to decontaminate many contaminated soils.
- This invention is especially useful for the remediation of contaminated surficial soils (0-4 ft below ground surface).
- the heat generated in the pressurized combustor is both convected and conducted into the soil.
- This device is especially suited for the treatment of non-volatile and semi-volatile organic contaminants, such as pesticides, PC8's, diesel fuels, jet fuels, and crude oil. however it is applicable for soil contaminated with a substance that can be oxidized or vaporized at moderate temperatures.
- the collected vapors are treated in vapor separation means to remove from the vapors collected any environmentally undesirable vapors prior to release of the remaining vapor to the environment.
- a vapor-permeable insulating means employed to reduce heat loss from the pressurized combustor to the air above the soil undergoing decontamination.
- This soil insulating means comprises a vapor-permeable sheet or mat and is constructed of suitable materials which are insulating and yet permit the passage of vapors. Light weight and durability are also desirable characteristics of the soil insulating means.
- the required thickness of the sheet will depend upon the temperature at which the soil heating is conducted as well as the nature of the surface of the soil. For ease of positioning, a thin sheet is preferred although thicker sheets provide greater strength and better insulation which may compensate for the greater cost. The temperature limits of the impermeable sheet will also affect the choice of insulation thickness.
- the temperature to which the soil is heated by transfer of thermal energy from the pressurized combustor through the soil will depend largely upon the operating temperature of the combustor, the treatment time and the moisture content of the soil and the nature of the particular soil contaminants.
- the treatment mechanism is heated vapor stripping.
- Soil temperatures are limited, in theory, by the flame temperature of the combustor. Practical concerns, such as temperature limits of materials, will limit the maximum temperature to about 800° C. From an economic standpoint a final temperature of approximately 500° C. is more realistic.
- Many contaminants can be removed by temperatures of from 150°-300° C. In the case of some soil contaminants, the contaminant will not readily vaporize under the applied thermal energy but will decompose to form gaseous products such as carbon dioxide and water which, in effect, "removes" the contamination by means of its destruction.
- the sub-surface vapors flow upwardly through the earth and are drawn to the vapor collection means.
- a series of horizontal perforated pipes extends through the earth below the contaminated soil and terminates in a manifold which connects to the pressured combustor.
- This flow of vapor through the contaminated soil in a generally vertical direction to the surface serves to promote even heating throughout the soil and provides for more uniform and more efficient decontamination of the soil.
- the flow of vapor vertically through the contaminated soil is encouraged by pressure reducing means, typically a vacuum pump, acting in cooperation with the vapor collection manifold means to lower the pressure between the soil surface and the impermeable sheet. The reduced pressure serves to facilitate the desired flow of vapors.
- the vapor collection means is operated without external heating means; however its temperature will increase as the high temperature gases come through.
- the number and location of the vapor collection vents can be varied but there must be at least one vapor collection vent and generally there will be a plurality of vapor collection vents.
- the pressure reducing means is typically a vacuum pump or aspirator connected to the manifold of one or more of the vapor collection vents.
- the pressure reduction means is positioned at a location external to the impermeable sheet and is connected to the vapor collection means by at least one conduit which is typically flexible.
- the precise pressure to which the pressure reducing means lowers the ambient pressure at or near the vapor collection means is not critical and pressures from about 2 psia to about 14.5 psia may be satisfactory.
- vapor separation means which serve to separate the environmentally undesirable vapors from those vapors which may be released into the atmosphere without substantial adverse environmental consequences. This may be accomplished by thermal incineration.
- the vapor separation means is a scrubber or an adsorber which serves to remove by physical methods the undesirable vapor components.
- the vapor separation means comprises a catalyst bed which serves to decompose the contaminant vapors passing through the bed into vapors which can be released into the atmosphere without adverse effect.
- the scrubber usually a recirculating liquid scrubber, or the adsorber, which is often a bed of activated carbon, is located at a position such that the vapors from the vapor collection means pass through this embodiment of the vapor separation means after collection by the vapor collection means and before or after passage through the pressure reduction means.
- the scrubber or adsorber is operated at a moderate temperature e.g., from about 0° C. to about 70° C., and it may be necessary to cool the vapors leaving the vapor collection means before entering either of these illustrative vapor separation means.
- the vapor separation means is a catalytic degrader serving to remove by chemical degradation the undesirable components of the collected vapors.
- Such a catalytic unit is operated at an elevated temperature, e.g., from about 200° C. to about 400° C.
- the catalytic bed is typically an inorganic oxide such as aluminum oxide or an iron oxide or one of the class of inorganic oxides commonly referred to as clay.
- the catalytic degrader is suitably located such that the contact with the vapors undergoing separation will occur after exiting the vapor collection means and before or after passing through the pressure reduction means.
- the catalytic degradation bed may be positioned within the vapor collection means by placing a catalytic bed in the vertical passage of the vapor collection means to chemically degrade the contaminant vapors as collected at a sub-surface location.
- the vapor separation means may be a combination of any of these devices. By any embodiment of the vapor separation means, an environmentally acceptable vapor is obtained which may then be released to the atmosphere.
- FIG. 1 illustrates the process of the invention of Assignee's copending application Ser. No. 675,377, filed Mar. 26, 1991, now U.S. Pat. No. 5,114,497.
- the soil is covered by vapor-impermeable insulation 30 and a relatively flat heater 32. Heat passes into the soil from the heater but heat is also transferred, to a major extent, to locations below the surface of the soil through vertical soil-free passages 34. The heat serves to vaporize and/or decompose soil contaminants, initially at or near the passages 34.
- the gaseous contaminants or decomposition products thereof pass horizontally through the soil in the direction indicated by the arrows 38 toward a vapor collector 36 where the pressure has been reduced by a vacuum pump (not shown) attached to the upward end of the collector 36.
- a vacuum pump (not shown) attached to the upward end of the collector 36.
- the vapors collected flow upwardly through the vertical passage 36 and through the openings in the heater 32 and insulation 30.
- the vapors are treated, physically or chemically, to remove the environmentally undesirable vapors by a vapor separator (not shown).
- FIGS. 2 and 3 a schematic of the present invention of an in-situ thermal desorption system is shown generally at 10.
- Perforated or slotted pipe 12 is buried in the clean soil 16 below the depth of contaminated soil 14.
- the pipes 12 may be buried in a manifold arrangement to minimize the distance from the contaminated soil 14 to the pipes 12.
- the spacing between the buried pipes 12 depends upon the permeability of the soil 14 being treated.
- the surface of the soil 14 is covered with a layer of permeable insulation 20 (to conserve heat and to provide a gas migration path on top of the soil) and a layer of impermeable material 22.
- the vapor recovery/treatment system consists of a means 13 for inducing a vacuum under the impermeable layer 22 (e.g.
- a vacuum pump or an induced draft fan and a treatment system 15 for treating the contaminated vapor (e.g. a cold trap, carbon adsorption, or incineration).
- Fuel and compressed air are fed to a pressurized combustion chamber 18 and combusted.
- the combustion products flow into the buried pipe 12 at pressures of about 5 to 50 psig and temperatures of about 200° to 500 ° C. and are distributed through the contaminated soil 14.
- Heat causes the organic contaminants within the soil 14 to vaporize, pyrolyze, decompose, or react with oxygen.
- the contaminants and their by-products are swept away by the combustion products into the vapor recovery/treatment system 13, 15.
- the final temperature required to decontaminate the soil 14 must be determined on a case by case basis, it is expected that soil temperatures of about 200°-300° C. would be sufficient to decontaminate many contaminated soils.
- compressed air may be distributed through the pipe system 12 to flush out any remaining combustion products and to aid in cooling. The direction of flow may be reversed in an optional cooling step.
- This invention is superior to that taught by the prior art because convection aids in the transfer of heat to the soil because gas flow is parallel to heat flow. Thus, decontamination of a given site could proceed in less time with less energy required since convection will aid in homogenizing the temperatures throughout the soil.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Thermal Sciences (AREA)
- Soil Sciences (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/705,712 US5193934A (en) | 1991-05-23 | 1991-05-23 | In-situ thermal desorption of contaminated surface soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/705,712 US5193934A (en) | 1991-05-23 | 1991-05-23 | In-situ thermal desorption of contaminated surface soil |
Publications (1)
Publication Number | Publication Date |
---|---|
US5193934A true US5193934A (en) | 1993-03-16 |
Family
ID=24834620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/705,712 Expired - Fee Related US5193934A (en) | 1991-05-23 | 1991-05-23 | In-situ thermal desorption of contaminated surface soil |
Country Status (1)
Country | Link |
---|---|
US (1) | US5193934A (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5342147A (en) * | 1993-09-24 | 1994-08-30 | Etg Environmental, Inc.-Mwr Division | Method of recovering subsurface contaminants |
US5356240A (en) * | 1992-12-23 | 1994-10-18 | Schuler Joseph A | Soil gas and moisture removal |
EP0638372A1 (en) * | 1993-08-11 | 1995-02-15 | IWM GmbH | Device for injecting gases in the ground |
US5398756A (en) * | 1992-12-14 | 1995-03-21 | Monsanto Company | In-situ remediation of contaminated soils |
US5476992A (en) * | 1993-07-02 | 1995-12-19 | Monsanto Company | In-situ remediation of contaminated heterogeneous soils |
US5509760A (en) * | 1994-04-12 | 1996-04-23 | Integrated Environmental Solutions, Inc. | Method of rapid purging of contaminants from a contaminated area of soil or ground water |
US5545804A (en) * | 1995-02-28 | 1996-08-13 | Exxon Research And Engineering Company | Metal fixation in oily waste contaminated soil using microwave radiation acting on in-situ produced coupling agent |
US5553189A (en) * | 1994-10-18 | 1996-09-03 | Shell Oil Company | Radiant plate heater for treatment of contaminated surfaces |
US5601382A (en) * | 1994-03-14 | 1997-02-11 | K N Energy, Inc. | Solar energy in-situ soil desorption apparatus |
US5622641A (en) * | 1994-07-05 | 1997-04-22 | General Electriccompany | Method for in-situ reduction of PCB-like contaminants from concrete |
US5639936A (en) * | 1994-03-14 | 1997-06-17 | K N Energy, Inc. | Solar energy in-situ soil desorption apparatus and method including controlled air intake |
US5674424A (en) * | 1995-02-16 | 1997-10-07 | General Electric Company | Thermal heating blanket in-situ thermal desorption for remediation of hydrocarbon-contaminated soil |
US5681130A (en) * | 1996-02-20 | 1997-10-28 | Regents Of The University Of California | Active cooling-based surface confinement system for thermal soil treatment |
US5765964A (en) * | 1996-07-22 | 1998-06-16 | Aerochem Research Laboratories, Inc. | Submerged combustion process and apparatus for removing volatile contaminants from groundwater or subsurface soil |
US5769569A (en) * | 1996-06-18 | 1998-06-23 | Southern California Gas Company | In-situ thermal desorption of heavy hydrocarbons in vadose zone |
US5813799A (en) * | 1996-07-22 | 1998-09-29 | Aerochem Research Laboratories, Inc. | Combustion process and apparatus for removing volatile contaminants from groundwater or subsurface soil |
US5836718A (en) * | 1997-01-13 | 1998-11-17 | Price; Philip A. | Method and apparatus for ex situ cleaning of contaminated soil |
WO1998052704A1 (en) * | 1997-05-20 | 1998-11-26 | Shell Internationale Research Maatschappij B.V. | Remediation method |
US5885203A (en) * | 1994-06-28 | 1999-03-23 | Les Expertises Environmentales Soconag Inc. | Method of decontaminating soils and/or residues in situ and ex situ combining horizontal radial flow technique and depolluting agents |
WO1999028560A1 (en) * | 1997-12-01 | 1999-06-10 | Seec, Inc. | Ground thawing apparatus and method |
US5997214A (en) * | 1997-06-05 | 1999-12-07 | Shell Oil Company | Remediation method |
US6000882A (en) * | 1997-12-03 | 1999-12-14 | United Soil Recycling | Methods and systems for remediating contaminated soil |
US6102622A (en) * | 1997-05-07 | 2000-08-15 | Board Of Regents Of The University Of Texas System | Remediation method |
US6116815A (en) * | 1996-01-05 | 2000-09-12 | Chen; Youzhi | Process for preventing release of contamination from an underground storage tank field |
WO2002013983A1 (en) * | 2000-08-17 | 2002-02-21 | Kerr-Mcgee Corporation | Methods of extracting liquid hydrocarbon contaminants from underground zones |
US6419423B1 (en) * | 1998-10-08 | 2002-07-16 | University Of Texas System | Method for remediating near-surface contaminated soil |
US6485232B1 (en) | 2000-04-14 | 2002-11-26 | Board Of Regents, The University Of Texas System | Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system |
US6632047B2 (en) | 2000-04-14 | 2003-10-14 | Board Of Regents, The University Of Texas System | Heater element for use in an in situ thermal desorption soil remediation system |
US6684948B1 (en) | 2002-01-15 | 2004-02-03 | Marshall T. Savage | Apparatus and method for heating subterranean formations using fuel cells |
US20040120771A1 (en) * | 2001-10-24 | 2004-06-24 | Vinegar Harold J. | Soil remediation of mercury contamination |
US20040120772A1 (en) * | 2001-10-24 | 2004-06-24 | Vinegar Harold J. | Isolation of soil with a low temperature barrier prior to conductive thermal treatment of the soil |
US20040126190A1 (en) * | 2001-10-24 | 2004-07-01 | Stegemeier George L | Thermally enhanced soil decontamination method |
US20040228688A1 (en) * | 2003-05-15 | 2004-11-18 | Stegemeier George L. | Remediation of soil piles using central equipment |
US20040228690A1 (en) * | 2003-05-15 | 2004-11-18 | Stegemeier George L. | Soil remediation using heated vapors |
US20040228689A1 (en) * | 2003-05-15 | 2004-11-18 | Stegemeier George L. | Soil remediation with heated soil |
US6824328B1 (en) | 2000-04-14 | 2004-11-30 | Board Of Regents, The University Of Texas System | Vapor collection and treatment of off-gas from an in-situ thermal desorption soil remediation |
US20050016729A1 (en) * | 2002-01-15 | 2005-01-27 | Savage Marshall T. | Linearly scalable geothermic fuel cells |
US20060242900A1 (en) * | 2005-01-05 | 2006-11-02 | Lovelace Reginald B | Nematode extermination in place using heat blankets |
US20080190813A1 (en) * | 2007-02-09 | 2008-08-14 | Todd Dana | Methods of recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure and associated systems |
US20080190818A1 (en) * | 2007-02-09 | 2008-08-14 | Todd Dana | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems |
US20090250380A1 (en) * | 2008-02-08 | 2009-10-08 | Todd Dana | Methods of transporting heavy hydrocarbons |
US20100200464A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Vapor collection and barrier systems for encapsulated control infrastructures |
US20100200466A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems |
US20100200468A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Convective heat systems for recovery of hydrocarbons from encapsulated permeability control infrastructures |
US20100200465A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Carbon management and sequestration from encapsulated control infrastructures |
US20100200467A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure |
US20100206518A1 (en) * | 2009-02-12 | 2010-08-19 | Patten James W | Corrugated heating conduit and method of using in thermal expansion and subsidence mitigation |
US20100206410A1 (en) * | 2009-02-12 | 2010-08-19 | Patten James W | Articulated conduit linkage system |
US20110138649A1 (en) * | 2009-12-16 | 2011-06-16 | Red Leaf Resources, Inc. | Method For The Removal And Condensation Of Vapors |
US8365478B2 (en) | 2009-02-12 | 2013-02-05 | Red Leaf Resources, Inc. | Intermediate vapor collection within encapsulated control infrastructures |
WO2014093469A2 (en) | 2012-12-13 | 2014-06-19 | Exxonmobil Research And Engineering Company | Remediation of contaminated particulate materials |
EP2817106A4 (en) * | 2012-02-24 | 2015-08-19 | Grant Geckeler | Advanced thermal conductive heater system for environmental remediation and the destruction of pollutants |
US9242190B2 (en) | 2009-12-03 | 2016-01-26 | Red Leaf Resources, Inc. | Methods and systems for removing fines from hydrocarbon-containing fluids |
CN108746178A (en) * | 2018-07-13 | 2018-11-06 | 新疆维吾尔自治区固体废物管理中心 | A kind of energy saving thermal desorption processing unit in situ and processing method of oil pollution soil |
US10137486B1 (en) * | 2018-02-27 | 2018-11-27 | Chevron U.S.A. Inc. | Systems and methods for thermal treatment of contaminated material |
US10201042B1 (en) | 2018-01-19 | 2019-02-05 | Trs Group, Inc. | Flexible helical heater |
CN109304357A (en) * | 2018-11-27 | 2019-02-05 | 森特士兴集团股份有限公司 | A cover structure for thermal desorption remediation of contaminated soil |
CN110586639A (en) * | 2019-10-14 | 2019-12-20 | 森特士兴集团股份有限公司 | Servo energy-saving control system of natural gas soil heating device and control method thereof |
CN110918629A (en) * | 2019-09-20 | 2020-03-27 | 河北工业大学 | Device for in-situ remediation of organic contaminated site by solubilizing and strengthening thermal desorption |
US10675664B2 (en) | 2018-01-19 | 2020-06-09 | Trs Group, Inc. | PFAS remediation method and system |
US10835939B2 (en) * | 2017-05-30 | 2020-11-17 | Chevron U.S.A. Inc. | Systems and methods for thermal destruction of undesired substances by smoldering combustion |
US11642709B1 (en) | 2021-03-04 | 2023-05-09 | Trs Group, Inc. | Optimized flux ERH electrode |
US11979950B2 (en) | 2020-02-18 | 2024-05-07 | Trs Group, Inc. | Heater for contaminant remediation |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4376598A (en) * | 1981-04-06 | 1983-03-15 | The United States Of America As Represented By The United States Department Of Energy | In-situ vitrification of soil |
US4435292A (en) * | 1980-01-28 | 1984-03-06 | Kbi Corp. | Portable method for decontaminating earth |
US4670634A (en) * | 1985-04-05 | 1987-06-02 | Iit Research Institute | In situ decontamination of spills and landfills by radio frequency heating |
US4842484A (en) * | 1983-08-29 | 1989-06-27 | General Electric Company | Blade gearing and pitch changing mechanisms for coaxial counterrotating propellers |
US4982788A (en) * | 1989-03-10 | 1991-01-08 | Donnelly Lawrence A | Apparatus and method for removing volatile contaminants from the ground |
US4984594A (en) * | 1989-10-27 | 1991-01-15 | Shell Oil Company | Vacuum method for removing soil contamination utilizing surface electrical heating |
US5011329A (en) * | 1990-02-05 | 1991-04-30 | Hrubetz Exploration Company | In situ soil decontamination method and apparatus |
US5067852A (en) * | 1990-05-24 | 1991-11-26 | J. B. Plunkett Associates, Inc. | Method and apparatus for removing volatile contaminants from contaminated soil |
-
1991
- 1991-05-23 US US07/705,712 patent/US5193934A/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4435292A (en) * | 1980-01-28 | 1984-03-06 | Kbi Corp. | Portable method for decontaminating earth |
US4376598A (en) * | 1981-04-06 | 1983-03-15 | The United States Of America As Represented By The United States Department Of Energy | In-situ vitrification of soil |
US4376598B1 (en) * | 1981-04-06 | 1989-10-17 | ||
US4842484A (en) * | 1983-08-29 | 1989-06-27 | General Electric Company | Blade gearing and pitch changing mechanisms for coaxial counterrotating propellers |
US4670634A (en) * | 1985-04-05 | 1987-06-02 | Iit Research Institute | In situ decontamination of spills and landfills by radio frequency heating |
US4982788A (en) * | 1989-03-10 | 1991-01-08 | Donnelly Lawrence A | Apparatus and method for removing volatile contaminants from the ground |
US4984594A (en) * | 1989-10-27 | 1991-01-15 | Shell Oil Company | Vacuum method for removing soil contamination utilizing surface electrical heating |
US5011329A (en) * | 1990-02-05 | 1991-04-30 | Hrubetz Exploration Company | In situ soil decontamination method and apparatus |
US5067852A (en) * | 1990-05-24 | 1991-11-26 | J. B. Plunkett Associates, Inc. | Method and apparatus for removing volatile contaminants from contaminated soil |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5398756A (en) * | 1992-12-14 | 1995-03-21 | Monsanto Company | In-situ remediation of contaminated soils |
US5356240A (en) * | 1992-12-23 | 1994-10-18 | Schuler Joseph A | Soil gas and moisture removal |
US5476992A (en) * | 1993-07-02 | 1995-12-19 | Monsanto Company | In-situ remediation of contaminated heterogeneous soils |
EP0638372A1 (en) * | 1993-08-11 | 1995-02-15 | IWM GmbH | Device for injecting gases in the ground |
US5342147A (en) * | 1993-09-24 | 1994-08-30 | Etg Environmental, Inc.-Mwr Division | Method of recovering subsurface contaminants |
US5601382A (en) * | 1994-03-14 | 1997-02-11 | K N Energy, Inc. | Solar energy in-situ soil desorption apparatus |
US5639936A (en) * | 1994-03-14 | 1997-06-17 | K N Energy, Inc. | Solar energy in-situ soil desorption apparatus and method including controlled air intake |
US5509760A (en) * | 1994-04-12 | 1996-04-23 | Integrated Environmental Solutions, Inc. | Method of rapid purging of contaminants from a contaminated area of soil or ground water |
US5885203A (en) * | 1994-06-28 | 1999-03-23 | Les Expertises Environmentales Soconag Inc. | Method of decontaminating soils and/or residues in situ and ex situ combining horizontal radial flow technique and depolluting agents |
US5622641A (en) * | 1994-07-05 | 1997-04-22 | General Electriccompany | Method for in-situ reduction of PCB-like contaminants from concrete |
US5553189A (en) * | 1994-10-18 | 1996-09-03 | Shell Oil Company | Radiant plate heater for treatment of contaminated surfaces |
US5674424A (en) * | 1995-02-16 | 1997-10-07 | General Electric Company | Thermal heating blanket in-situ thermal desorption for remediation of hydrocarbon-contaminated soil |
US5545804A (en) * | 1995-02-28 | 1996-08-13 | Exxon Research And Engineering Company | Metal fixation in oily waste contaminated soil using microwave radiation acting on in-situ produced coupling agent |
US6116815A (en) * | 1996-01-05 | 2000-09-12 | Chen; Youzhi | Process for preventing release of contamination from an underground storage tank field |
US5681130A (en) * | 1996-02-20 | 1997-10-28 | Regents Of The University Of California | Active cooling-based surface confinement system for thermal soil treatment |
US5769569A (en) * | 1996-06-18 | 1998-06-23 | Southern California Gas Company | In-situ thermal desorption of heavy hydrocarbons in vadose zone |
US5765964A (en) * | 1996-07-22 | 1998-06-16 | Aerochem Research Laboratories, Inc. | Submerged combustion process and apparatus for removing volatile contaminants from groundwater or subsurface soil |
US5813799A (en) * | 1996-07-22 | 1998-09-29 | Aerochem Research Laboratories, Inc. | Combustion process and apparatus for removing volatile contaminants from groundwater or subsurface soil |
US5836718A (en) * | 1997-01-13 | 1998-11-17 | Price; Philip A. | Method and apparatus for ex situ cleaning of contaminated soil |
US6102622A (en) * | 1997-05-07 | 2000-08-15 | Board Of Regents Of The University Of Texas System | Remediation method |
US20020003988A1 (en) * | 1997-05-20 | 2002-01-10 | Thomas Mikus | Remediation method |
WO1998052704A1 (en) * | 1997-05-20 | 1998-11-26 | Shell Internationale Research Maatschappij B.V. | Remediation method |
US5997214A (en) * | 1997-06-05 | 1999-12-07 | Shell Oil Company | Remediation method |
WO1999028560A1 (en) * | 1997-12-01 | 1999-06-10 | Seec, Inc. | Ground thawing apparatus and method |
US6000882A (en) * | 1997-12-03 | 1999-12-14 | United Soil Recycling | Methods and systems for remediating contaminated soil |
US6419423B1 (en) * | 1998-10-08 | 2002-07-16 | University Of Texas System | Method for remediating near-surface contaminated soil |
US6485232B1 (en) | 2000-04-14 | 2002-11-26 | Board Of Regents, The University Of Texas System | Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system |
US6632047B2 (en) | 2000-04-14 | 2003-10-14 | Board Of Regents, The University Of Texas System | Heater element for use in an in situ thermal desorption soil remediation system |
US6824328B1 (en) | 2000-04-14 | 2004-11-30 | Board Of Regents, The University Of Texas System | Vapor collection and treatment of off-gas from an in-situ thermal desorption soil remediation |
WO2002013983A1 (en) * | 2000-08-17 | 2002-02-21 | Kerr-Mcgee Corporation | Methods of extracting liquid hydrocarbon contaminants from underground zones |
US6413016B1 (en) | 2000-08-17 | 2002-07-02 | Kerr-Mcgee Corporation | Methods of extracting liquid hydrocardon contaminants from underground zones |
US20040126190A1 (en) * | 2001-10-24 | 2004-07-01 | Stegemeier George L | Thermally enhanced soil decontamination method |
US20040120772A1 (en) * | 2001-10-24 | 2004-06-24 | Vinegar Harold J. | Isolation of soil with a low temperature barrier prior to conductive thermal treatment of the soil |
US20040120771A1 (en) * | 2001-10-24 | 2004-06-24 | Vinegar Harold J. | Soil remediation of mercury contamination |
US6962466B2 (en) | 2001-10-24 | 2005-11-08 | Board Of Regents, The University Of Texas System | Soil remediation of mercury contamination |
US6951436B2 (en) | 2001-10-24 | 2005-10-04 | Board Of Regents, The University Of Texas System | Thermally enhanced soil decontamination method |
US6854929B2 (en) | 2001-10-24 | 2005-02-15 | Board Of Regents, The University Of Texas System | Isolation of soil with a low temperature barrier prior to conductive thermal treatment of the soil |
US7182132B2 (en) | 2002-01-15 | 2007-02-27 | Independant Energy Partners, Inc. | Linearly scalable geothermic fuel cells |
US6684948B1 (en) | 2002-01-15 | 2004-02-03 | Marshall T. Savage | Apparatus and method for heating subterranean formations using fuel cells |
US20050016729A1 (en) * | 2002-01-15 | 2005-01-27 | Savage Marshall T. | Linearly scalable geothermic fuel cells |
US6881009B2 (en) | 2003-05-15 | 2005-04-19 | Board Of Regents , The University Of Texas System | Remediation of soil piles using central equipment |
US20040228689A1 (en) * | 2003-05-15 | 2004-11-18 | Stegemeier George L. | Soil remediation with heated soil |
US20040228690A1 (en) * | 2003-05-15 | 2004-11-18 | Stegemeier George L. | Soil remediation using heated vapors |
US7004678B2 (en) | 2003-05-15 | 2006-02-28 | Board Of Regents, The University Of Texas System | Soil remediation with heated soil |
US20040228688A1 (en) * | 2003-05-15 | 2004-11-18 | Stegemeier George L. | Remediation of soil piles using central equipment |
US7534926B2 (en) | 2003-05-15 | 2009-05-19 | Board Of Regents, The University Of Texas System | Soil remediation using heated vapors |
US20060242900A1 (en) * | 2005-01-05 | 2006-11-02 | Lovelace Reginald B | Nematode extermination in place using heat blankets |
US7469500B2 (en) * | 2005-01-05 | 2008-12-30 | Lovelace Reginald B | Nematode extermination in place using heat blankets |
US20080190813A1 (en) * | 2007-02-09 | 2008-08-14 | Todd Dana | Methods of recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure and associated systems |
US7862705B2 (en) | 2007-02-09 | 2011-01-04 | Red Leaf Resources, Inc. | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems |
US20080190815A1 (en) * | 2007-02-09 | 2008-08-14 | Todd Dana | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure having permeable walls and associated systems |
US20080190818A1 (en) * | 2007-02-09 | 2008-08-14 | Todd Dana | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems |
US20080190816A1 (en) * | 2007-02-09 | 2008-08-14 | Todd Dana | Methods of recovering hydrocarbons from hydrocarbonaceous material with reduced non-carbonaceous leachate and co2 and associated systems |
US8109047B2 (en) | 2007-02-09 | 2012-02-07 | Red Leaf Resources, Inc. | System for recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure |
US7967974B2 (en) | 2007-02-09 | 2011-06-28 | Red Leaf Resources, Inc. | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure having permeable walls and associated systems |
US20110094952A1 (en) * | 2007-02-09 | 2011-04-28 | Red Leaf Resources, Inc. | System For Recovering Hydrocarbons From Water-Containing Hydrocarbonaceous Material Using a Constructed Infrastructure |
US7906014B2 (en) | 2007-02-09 | 2011-03-15 | Red Leaf Resources, Inc. | Methods of recovering hydrocarbons from hydrocarbonaceous material with reduced non-carbonaceous leachate and CO2 and associated systems |
US7862706B2 (en) | 2007-02-09 | 2011-01-04 | Red Leaf Resources, Inc. | Methods of recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure and associated systems |
US20090250380A1 (en) * | 2008-02-08 | 2009-10-08 | Todd Dana | Methods of transporting heavy hydrocarbons |
US8003844B2 (en) | 2008-02-08 | 2011-08-23 | Red Leaf Resources, Inc. | Methods of transporting heavy hydrocarbons |
US8365478B2 (en) | 2009-02-12 | 2013-02-05 | Red Leaf Resources, Inc. | Intermediate vapor collection within encapsulated control infrastructures |
US8349171B2 (en) | 2009-02-12 | 2013-01-08 | Red Leaf Resources, Inc. | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure |
US20100206518A1 (en) * | 2009-02-12 | 2010-08-19 | Patten James W | Corrugated heating conduit and method of using in thermal expansion and subsidence mitigation |
US20100200467A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure |
US20100206410A1 (en) * | 2009-02-12 | 2010-08-19 | Patten James W | Articulated conduit linkage system |
US20100200465A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Carbon management and sequestration from encapsulated control infrastructures |
US20100200468A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Convective heat systems for recovery of hydrocarbons from encapsulated permeability control infrastructures |
US20100200466A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems |
US8267481B2 (en) | 2009-02-12 | 2012-09-18 | Red Leaf Resources, Inc. | Convective heat systems for recovery of hydrocarbons from encapsulated permeability control infrastructures |
US8323481B2 (en) | 2009-02-12 | 2012-12-04 | Red Leaf Resources, Inc. | Carbon management and sequestration from encapsulated control infrastructures |
US8875371B2 (en) | 2009-02-12 | 2014-11-04 | Red Leaf Resources, Inc. | Articulated conduit linkage system |
US20100200464A1 (en) * | 2009-02-12 | 2010-08-12 | Todd Dana | Vapor collection and barrier systems for encapsulated control infrastructures |
US8366918B2 (en) | 2009-02-12 | 2013-02-05 | Red Leaf Resources, Inc. | Vapor collection and barrier systems for encapsulated control infrastructures |
US8366917B2 (en) | 2009-02-12 | 2013-02-05 | Red Leaf Resources, Inc | Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems |
US8490703B2 (en) | 2009-02-12 | 2013-07-23 | Red Leaf Resources, Inc | Corrugated heating conduit and method of using in thermal expansion and subsidence mitigation |
US9242190B2 (en) | 2009-12-03 | 2016-01-26 | Red Leaf Resources, Inc. | Methods and systems for removing fines from hydrocarbon-containing fluids |
US8961652B2 (en) | 2009-12-16 | 2015-02-24 | Red Leaf Resources, Inc. | Method for the removal and condensation of vapors |
US9482467B2 (en) | 2009-12-16 | 2016-11-01 | Red Leaf Resources, Inc. | Method for the removal and condensation of vapors |
US20110138649A1 (en) * | 2009-12-16 | 2011-06-16 | Red Leaf Resources, Inc. | Method For The Removal And Condensation Of Vapors |
EP2817106A4 (en) * | 2012-02-24 | 2015-08-19 | Grant Geckeler | Advanced thermal conductive heater system for environmental remediation and the destruction of pollutants |
US10682679B2 (en) | 2012-12-13 | 2020-06-16 | Exxonmobil Research And Engineering Company | Remediation of contaminated particulate materials |
US10016795B2 (en) | 2012-12-13 | 2018-07-10 | Exxonmobil Research And Engineering Company | Remediation of contaminated particulate materials |
WO2014093469A2 (en) | 2012-12-13 | 2014-06-19 | Exxonmobil Research And Engineering Company | Remediation of contaminated particulate materials |
US10835939B2 (en) * | 2017-05-30 | 2020-11-17 | Chevron U.S.A. Inc. | Systems and methods for thermal destruction of undesired substances by smoldering combustion |
US10201042B1 (en) | 2018-01-19 | 2019-02-05 | Trs Group, Inc. | Flexible helical heater |
US10675664B2 (en) | 2018-01-19 | 2020-06-09 | Trs Group, Inc. | PFAS remediation method and system |
US10137486B1 (en) * | 2018-02-27 | 2018-11-27 | Chevron U.S.A. Inc. | Systems and methods for thermal treatment of contaminated material |
CN108746178A (en) * | 2018-07-13 | 2018-11-06 | 新疆维吾尔自治区固体废物管理中心 | A kind of energy saving thermal desorption processing unit in situ and processing method of oil pollution soil |
CN109304357A (en) * | 2018-11-27 | 2019-02-05 | 森特士兴集团股份有限公司 | A cover structure for thermal desorption remediation of contaminated soil |
CN110918629A (en) * | 2019-09-20 | 2020-03-27 | 河北工业大学 | Device for in-situ remediation of organic contaminated site by solubilizing and strengthening thermal desorption |
CN110586639A (en) * | 2019-10-14 | 2019-12-20 | 森特士兴集团股份有限公司 | Servo energy-saving control system of natural gas soil heating device and control method thereof |
US11979950B2 (en) | 2020-02-18 | 2024-05-07 | Trs Group, Inc. | Heater for contaminant remediation |
US11642709B1 (en) | 2021-03-04 | 2023-05-09 | Trs Group, Inc. | Optimized flux ERH electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5193934A (en) | In-situ thermal desorption of contaminated surface soil | |
US5169263A (en) | In-situ soil decontamination process with sub-surface vapor recovery | |
US5271693A (en) | Enhanced deep soil vapor extraction process and apparatus for removing contaminants trapped in or below the water table | |
US5244310A (en) | In-situ soil heating press/vapor extraction system | |
US5114497A (en) | Soil decontamination | |
US5769569A (en) | In-situ thermal desorption of heavy hydrocarbons in vadose zone | |
US5660500A (en) | Enhanced deep soil vapor extraction process and apparatus utilizing sheet metal pilings | |
EP1604749B1 (en) | Method and system for cleaning a soil containing contaminants | |
US5076727A (en) | In situ decontamination of spills and landfills by focussed microwave/radio frequency heating and a closed-loop vapor flushing and vacuum recovery system | |
WO1997048504A9 (en) | In-situ thermal desorption of heavy hydrocarbons in vadose zone | |
US5664911A (en) | Method and apparatus for in situ decontamination of a site contaminated with a volatile material | |
US5656239A (en) | Method for recovering contaminants from soil utilizing electrical heating | |
US4984594A (en) | Vacuum method for removing soil contamination utilizing surface electrical heating | |
EP0441464B1 (en) | In situ soil decontamination method and apparatus | |
US5190405A (en) | Vacuum method for removing soil contaminants utilizing thermal conduction heating | |
KR100925129B1 (en) | Thermally Enhanced Soil Cleaning Methods | |
US5251700A (en) | Well casing providing directional flow of injection fluids | |
US5011329A (en) | In situ soil decontamination method and apparatus | |
US6419423B1 (en) | Method for remediating near-surface contaminated soil | |
SK162499A3 (en) | Remediation method | |
US20020003988A1 (en) | Remediation method | |
WO2003051546A2 (en) | Soil remediation well positioning in relation to curved obstructions | |
US20040240942A1 (en) | Method and system for remediating contaminated soil | |
AU657174B2 (en) | Method and apparatus for heating subsurface soil for decontamination | |
WO2002094464A2 (en) | Method and system for remediating contaminated soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:JOHNSON, PAUL C.;WEINGAERTNER, DAVID A.;REEL/FRAME:006375/0177 Effective date: 19910520 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELL OIL COMPANY;REEL/FRAME:010881/0345 Effective date: 20000410 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20050316 |