US5693018A - Subdermal delivery device - Google Patents
Subdermal delivery device Download PDFInfo
- Publication number
- US5693018A US5693018A US08/541,030 US54103095A US5693018A US 5693018 A US5693018 A US 5693018A US 54103095 A US54103095 A US 54103095A US 5693018 A US5693018 A US 5693018A
- Authority
- US
- United States
- Prior art keywords
- base
- reservoir
- fluid
- cannula
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 claims abstract description 93
- 239000012528 membrane Substances 0.000 claims abstract description 76
- 238000001802 infusion Methods 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000005538 encapsulation Methods 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims 4
- 230000037431 insertion Effects 0.000 claims 4
- 238000001914 filtration Methods 0.000 claims 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims 1
- 230000009969 flowable effect Effects 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract description 23
- 239000000463 material Substances 0.000 abstract description 10
- 210000003205 muscle Anatomy 0.000 abstract description 6
- 210000001519 tissue Anatomy 0.000 abstract description 6
- 230000004044 response Effects 0.000 abstract description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 18
- 230000004888 barrier function Effects 0.000 description 12
- 102000004877 Insulin Human genes 0.000 description 9
- 108090001061 Insulin Proteins 0.000 description 9
- 229940125396 insulin Drugs 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 239000010410 layer Substances 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000011285 therapeutic regimen Methods 0.000 description 3
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000002266 amputation Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14248—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/148—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
- A61M5/152—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags pressurised by contraction of elastic reservoirs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/158—Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
- A61M2005/1581—Right-angle needle-type devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/12—Pressure infusion
Definitions
- the present invention relates generally to fluid delivery devices. More particularly, the invention concerns an improved device for subdermal infusion of agents into an ambulatory patient at specific rates over extended periods of time.
- liquid dispensers for dispensing medicaments to ambulatory patients have been suggested. Many of the devices seek either to improve or to replace the traditional hypodermic syringe which has long been the standard for delivery of liquid medicaments such as insulin solution.
- One example of the urgent need for an improved liquid delivery device for ambulatory patients can be found in the stringent therapeutic regimens used by insulin-dependent diabetics.
- the therapeutic objective for diabetics is to consistently maintain blood glucose levels within a normal range.
- Conventional therapy involves injecting insulin by syringe several times a day, often coinciding with meals. The dose must be calculated based on glucose levels present in the blood. If the dosage is off, the bolus administered may lead to acute levels of either glucose or insulin resulting in complications, including unconsciousness or coma. Over time, high concentrations of glucose in the blood can also lead to a variety of chronic health problems, such as vision loss, kidney failure, heart disease, nerve damage, and amputations.
- Basal rate delivery of insulin by means of a convenient and reliable delivery device over an extended period of time represents one means of improving insulin management.
- Basal rate delivery involves the delivery of very small volumes of fluid (for example, 0.3-3 mL depending on body mass) over comparatively long periods of time (18-24) hours).
- the apparatus of the present invention is uniquely suited to provide precise fluid delivery management at a low cost in those cases where a variety of precise dosage schemes are of utmost importance.
- the components of this novel fluid delivery apparatus generally include: a base assembly, an elastomeric membrane serving as a stored energy means, fluid flow channels for filling and delivery, flow control means, a cover, and an ullage which comprises a part of the base assembly.
- the ullage in these devices is provided in the form of a semi-rigid structure having flow channels leading from the top of the structure through the base to inlet or outlet ports of the device. Since the inventions described herein represent improvements over those described in U.S. Pat. No. 5,205,820, this patent is hereby incorporated by reference as though fully set forth herein.
- the stored energy means of the device In the rigid ullage configuration described in U.S. Pat. No. 5,205,820, the stored energy means of the device must be superimposed over the ullage to form the fluid-containing reservoir from which fluids are expelled at a controlled rate by the elastomeric membrane of the stored energy means tending to return to a less distended configuration in the direction toward the ullage.
- the stored energy membrane is typically used at high extensions over a significantly large portion of the pressure-deformation curve.
- the elastomeric membrane materials selected for construction of the stored energy membrane must have good memory characteristics under conditions of high extension; good resistance to chemical and radiological degradation; and appropriate gas permeation characteristics depending upon the end application to be made of the device.
- the tail-off volume represents a smaller portion of the fluid amount delivered and therefore exhibits must less effect on the total fluid delivery profile, but in very small dosages, the tail-off volume becomes a larger portion of the total volume. This sometimes places severe physical limits on the range of delivery profiles that may easily be accommodated using the rigid ullage configuration.
- the apparatus of the present invention provides a unique and novel improvement for a disposable dispenser of simple but highly reliable construction that may be adapted to many applications of use.
- a particularly important aspect of the improved apparatus is the incorporation of conformable ullages made of yieldable materials which uniquely conform to the shape of the stored energy membrane as the membrane distends and then returns to a less distended configuration.
- This novel construction will satisfy even the most stringent delivery tolerance requirements and elegantly overcomes the limitation of materials selection.
- Another useful liquid delivery device is that described in U.S. Pat. No. 5,226,896 issued to Harris.
- This device comprises a multidose syringe having the same general appearance as a pen or mechanical pencil. the device is specifically adapted to provide for multiple measured injections of materials such as insulin or human growth hormones.
- Still another type of liquid delivery device is disclosed in U.S. Pat. No. 4,592,745 issued to Rex et al.
- This device is, in principle, constructed as a hypodermic syringe, but differs in that it enables dispensing of a predetermined portion from the available medicine and in that it dispenses very accurate doses.
- the present invention seeks to significantly improve over the prior art by providing a novel fluid delivery device which is compact, is easy to use by ambulatory patients, and is eminently capable of meeting the most stringent of fluid delivery tolerance requirements.
- the apparatus includes a novel and unique delivery cannula having a body portion disposed within a circuitous channel formed within the base superstructure of the apparatus and a pierceable portion which extends outwardly from the base of the apparatus.
- the cannula is mounted within the circuitous channel in a manner such that the pierceable portion is free to move in three axes thereby permitting the outwardly extending end portion to move relative to the base in response to forces exerted thereon due to normal movements by the patient which cause flexing of the muscle and tissue in the area of the cannula.
- Another object of the invention is to provide an apparatus which embodies a soft, pliable, conformable mass which defines an ullage within the reservoir of the device which will closely conform to the shape of the stored energy membrane thereby effectively avoiding extended flow delivery rate tail-off at the end of the fluid delivery period.
- a further object of the invention is to provide a low profile, fluid delivery device of laminate construction which can meet even the most stringent fluid delivery tolerance requirements.
- Another object of the invention is to provide an apparatus of the character described which, due to its unique construction, can be manufactured inexpensively in large volume by automated machinery.
- FIG. 1 is a generally perspective exploded view of one embodiment of the subdermal delivery device of the present invention.
- FIG. 2 is a top plan view of the invention shown in FIG. 1 and is broken away to show internal construction.
- FIG. 3 is a bottom view of the apparatus shown in FIG. 1, again partly broken away to show internal construction.
- FIG. 4 is a cross-sectional view taken along lines 4--4 of FIG. 3.
- FIG. 5 is a cross-sectional view taken along lines 5--5 of FIG. 3.
- FIG. 5A is a greatly enlarged, cross-sectional view of the protective shield assembly of the invention which surrounds and protects the pierceable end portion of the cannula.
- FIG. 6 is an enlarged, cross-sectional view taken along lines 6--6 of FIG. 2.
- FIG. 7 is a greatly enlarged, cross-sectional view taken along lines 7--7 of FIG. 2.
- FIG. 8 is a bottom plan view of another form of the invention partly broken away to show internal construction.
- FIG. 9 is a cross-sectional view taken along lines 9--9 of FIG. 8.
- FIG. 10 is a generally perspective, exploded view of the apparatus shown in FIG. 8.
- FIG. 11 is a cross-sectional view taken along lines 11--11 of FIG. 8.
- FIG. 12 is a generally perspective view of yet another form of low profile fluid delivery apparatus of the present invention.
- FIG. 13 is a top view of the embodiment shown in FIG. 12 partly broken away to show internal construction.
- FIG. 14 is a cross-sectional view taken along lines 14--14 of FIG. 13.
- FIG. 14A is a cross-sectional view taken along lines 14A--14A of FIG. 14.
- FIG. 15 is a greatly enlarged, fragmentary cross-sectional view illustrating the construction of the filling subassembly of this embodiment of the invention.
- FIG. 16 is a right-side elevational view of the apparatus of FIG. 12.
- FIG. 17 is an enlarged, cross-sectional view taken along lines 17--17 of FIG. 16.
- FIG. 18 is a cross-sectional view similar to FIG. 17, but showing the stored energy means having moved into a less distended configuration.
- FIG. 19 is an enlarged, generally perspective view of the hollow cannula subassembly of this latest form of the invention.
- the device comprises a base 12, having an upper surface 14 including a central portion 14a and a peripheral portion 14b circumscribing central portion 14a.
- base 12 is provided with a lower surface 16 to which a patient interconnection means or member 19 is connected.
- Member 19 functions to releasably interconnect the device to the patient and includes an aperture 19a.
- an adhesive layer "A" Provided on both sides of member 19 is an adhesive layer "A" the purpose of which will presently be described.
- a sheath subassembly 20 having a generally circular base 20a which is receivable within aperture 19a of member 19 in the manner shown in FIGS. 4 and 5.
- Subassembly 20 also includes an upstanding rim 20c which is receivable within an opening 12a formed in base 12 (FIG. 4).
- a tear-away needle cover 20b which can be separated from base 20a along a serration 20d (FIG. 4).
- a circuitous channel 24 (FIG. 1) within which a novel spiral-like hollow cannula or capillary 26 is uniquely mounted in a manner presently to be described.
- a stored energy means cooperates with the upper surface 14 of base 12 to form a fluid reservoir 28 having an inlet port 29 and an outlet port 31 (FIG. 7) which is disposed proximate channel 24 in the manner shown in FIGS. 1 and 7.
- the stored energy means is here provided in the form of at least one distendable membrane 32 which is superimposed over base 12. Membrane 32 is distendable as a result of pressure imparted on the membrane by fluids "F" introduced into fluid reservoir 28 through port 29 (FIGS. 6 and 7).
- the reservoir or chamber 36 which includes fluid reservoir 28, is generally toroidal in shape with the outer boundary thereof being defined by a surface 36a formed in a cover member 40.
- ullage defining means for providing ullage within reservoir 36.
- this ullage defining means comprises a conformable mass which substantially conforms to the shape of the distendable membrane as the membrane is distended and as it returns toward its less distended original configuration. More particularly, as the distendable membrane returns toward its less distended configuration, the conformable ullage will conformably follow its movement toward engagement with the upper surface 14 of base 12 and fluid contained within the reservoir will flow uniformly outwardly of the device through port 31 in the direction of the arrow 42 of FIG. 7.
- the stored energy means while shown in the drawings as a single distendable membrane 32, can comprise a laminate construction made up of a plurality of layers of elastomeric materials.
- the conformable ullage which is identified in the drawings by the numeral 44, can be constructed from a number of materials such as various types of gels, fluids, gases, foams, and soft elastomers.
- the conformable ullage comprises a gel which is encapsulated between a barrier membrane 46 and distendable membrane 32 in the manner best seen in FIG. 4. Materials suitable for use in constructing the base, the cover, and the distendable membrane are discussed in detail in U.S. Pat. No. 5,205,802 which is incorporated herein by reference.
- the infusion means for infusing medicinal fluids from reservoir 28 into the patient comprises the previously identified circuitously shaped hollow cannula 26, which includes a body portion 26a which is mounted within circuitous channel 24 in a highly novel manner presently to be described.
- Flow control means including filter means, here provided as a porous filter 25 having a fluid impermeable layer 25a, is disposed between the outlet 31 of reservoir 28 and an inlet 47 formed in the enlarged diameter portion 26d of cannula 26.
- Also formed in the enlarged diameter portion 26d of cannula 26 is an outlet port 49 which communicates with inlet 29 of reservoir 28.
- Cannula 26 also includes an outlet end 26b, here provided in the form of a needle-like segment, which extends generally perpendicularly downward from surface 16 of base 12 for subdermal infusion of medicinal fluids into the patient.
- segment 26b is provided with a sharp, pointed extremity 26c (see also FIG. 6).
- sheath 20b surrounds and protects portions 26b and 26c of the cannula (FIG. 4).
- a septum assembly 50 mounted in base 12 (FIGS. 3 and 7).
- fluid can be introduced into the enlarged diameter portion 26d of cannula 26 via the septum assembly 50.
- a barrier membrane 46 is distended outwardly against the conformable ullage 44 controllably moving it along with a distendable membrane 32 toward surface 36a of cover 40.
- distendable membrane 32 will engage surface 36a and the ullage defining means will uniquely conform to the geometry of surface 36a as well as to the continuously varying geometry of distendable membrane 32.
- the conformable ullage will permit the distendable membrane to provide a constant fluid expelling pressure on the fluid contained within the reservoir throughout the fluid delivery cycle, thereby avoiding undesirable delivery rate tail off at the end of the delivery period which is sometimes found in rigid ullage type devices of the character described in U.S. Pat. No. 5,205,820.
- This novel, substantially linear performance permits the device to meet even the most stringent medicinal fluid delivery requirements.
- the flow control means here comprises the previously identified filter means, or filter 25, which can be constructed from various porous materials including a porous polycarbonate material available from Corning Costar Corporation and like suppliers. After flowing through the flow control assembly, the fluid will flow outwardly of the device via the hollow cannula 26 in the manner shown in FIG. 6.
- Distendable member 32, along with barrier membrane 46 are secured to base 12 in any suitable manner such as by clamping the members between base 12 and cover 40.
- the peripheral portion of base 12 is provided with an upstanding, generally circularly shaped tongue 57 which is received within a groove 59 provided in cover assembly 40 as the cover assembly mateably engages base 12.
- Base 12 is also provided with an upstanding, circumferentially extending membrane cutting means or protuberance 61 (FIG. 7), which is crushed in the manner shown in FIG. 7 as the cover and base are joined.
- Protuberance 61 functions to cleanly cut both distendable membrane 32 and barrier membrane 46 upon the cover assembly being brought into pressural engagement with the base.
- Protuberance 61 also uniquely functions as a sonic energy director for the sonic weldment of base 12 and cover 40.
- the cover can be sonically welded to the base in the proximity of the upstanding tongue of the base and the mating groove in the cover by techniques well understood by those skilled in the art. After the sonic welding step, the cover, the distendable membrane, and the barrier membrane are all interconnected with the base in a manner to provide a tightly sealed enclosure.
- a cannula encapsulation means shown here as a standard potting compound "P".
- Compound "P” rigidly supports the body portion of the cannula within channel 24 and dynamically supports the outer extremity of the cannula body so that the spring-like portion 26i thereof (FIGS. 3 and 5) is free to move three dimensionally within channel 24.
- the reservoir of the device can be filled with the beneficial agent to be infused through use of a standard syringe assembly "S" having a needle “N” adapted to penetrate the septum 50a of the septum assembly 50 (FIG. 7). Fluid flowing under pressure from the syringe will enter the enlarged diameter portion 26d of cannula 26 and flow in the direction of the arrow 69 in FIG. 7 inwardly of port 29 and toward the fluid reservoir of the device.
- barrier membrane 46 will be distended outwardly against the conformable ullage 44 in a manner to cause distendable membrane 32 to move into engagement with the inner surface 36a of the toroidal-shaped chamber formed in cover 40.
- the needle cap or covering 20b can be separated from the assemblage 20 by breaking it along the serration 20d (FIG. 4).
- the device can be readily interconnected with the patient by penetrating the patient's skin with the sharp point 26c of the infusion cannula 26.
- the adhesive pad "A" provided on the lower surface of member 19 will cause the base of the device to securely adhere to the patient's skin.
- the adhesive layer formed on the upper surface of member 19 will securely bond member 19 to the lower surface of the base.
- the highly novel manner in which the very small diameter cannula 26 is mounted within channel 24 formed in base 12 permits the central portion 26i of the infusion cannula to move three dimensionally relative to the base within the limits of channel 24.
- This important feature enables the base of the device to remain stationary even though movement of the patient's extremities, which cause flexing of the muscles, skin, and tissue, tend to impart forces on the needle portion of the cannula, which, but for its ability to free float within channel 24, would cause loosening of the device relative to the patient's skin.
- distendable membrane 32 With the device securely interconnected with the patient, and with sheath 20b separated from base 20a of assembly 20, distendable membrane 32 will tend to return to its less distended configuration. As the distendable membrane moves toward base 12, the conformable ullage 44 will closely conform to its inner surface geometry thereby assuring a complete and substantially linear flow of fluid from the chamber, through the cannula 26, and into the patient.
- a protective sheath assembly further includes a closure means or cap 70 having an inner bore 70a within which cannula portion 26b is sealably received.
- the outer surface 70b of cap 70 is telescopically received within a central bore 72 provided in the downwardly protruding stem-like extremity 74 of the sheath assembly in the manner shown in FIG. 5A.
- the sheath assembly of this form of the invention also includes a portion 76 which is receivable within aperture 19a provided in base portion 19.
- cap 70 prevents fluid flow from the hollow cannula until the sheath is broken away along a serration 77 and cap 70 is removed from extremity 26b of the infusion cannula.
- An upstanding rim 76a is, as before, receivable within opening 12a of base 12.
- FIGS. 8, 9, and 11 still a further form of the ultra low profile subdermal infusion device of the invention is there illustrated and generally designated by the numeral 80.
- This embodiment of the invention is similar in many respects to that shown in FIGS. 1 through 7 and, therefore, like numbers are used in these figures to identify like components.
- This apparatus is unique in that the microbore tubing used to form the body portion of the hollow cannula functions not only as a fluid delivery means, but also as a flow rate control means for controlling the rate of fluid flow from the device. Additionally, the inner body portion of the cannula is coiled in a unique manner to enhance the ability of a portion of the cannula body to move relative to the base of the device.
- the bore of the microbore tubing preferable is of a diameter of between about 0.005 and about 0.0002 inches.
- the apparatus of this latest form of the invention includes a base 82 which cooperates with a distendable membrane 32, a barrier membrane 46, a conformable ullage 44 and a cover 84 to form a generally toroidal-shaped fluid reservoir 28, having an inlet 86 and an outlet 87 both of which communicate with a delivery cannula 88.
- a portion of cannula 88 is receivable within a circuitous channel 90 formed in base 82.
- Cannula 88 has an outer segment 88o, an inner coiled portion 88i, and an enlarged diameter end portion 88a.
- Filter means here provided as a porous filter 92 with fluid impermeable layer 92a (FIG.
- the portion 88o of the cannula is secured in place within channel 90 by a suitable encapsulation means, such as the previously described potting compound "P".
- a suitable encapsulation means such as the previously described potting compound "P"
- the coiled inner portion 88i of the cannula is free to move within the portion of channel 90 designated as 90a in FIGS. 9 and 10.
- the rate of fluid flow from the device is closely controlled by controlling the size of the microbore portion 88o of the cannula which communicates with passageway 100.
- the diameter of the bore of the microbore tubing used to construct cannula portion 88o can range from between about 0.0002 and about 0.005 inches so that the beneficial agent can be controllably diffused over relatively long periods of time up to 24 hours or longer.
- FIGS. 12 through 18 yet another form of the ultra low profile device of the invention is there shown and generally designated by the numeral 110.
- This latest embodiment of the invention is quite similar to the embodiment shown in FIGS. 1 through 7 in that it also includes a generally toroidal-shaped, conformable ullage and reservoir (see FIG. 12). Because of the similarity of this latest form of the invention to that shown in FIGS. 1 through 7, like numerals will be used to identify like components.
- the device here comprises a base 112, having an upper surface 114 including a central portion 114a and a peripheral portion 114b circumscribing central portion 114a.
- base 112 is provided with a lower surface to which a patient interconnection means or member 116 is connected.
- Member 116 functions to releasably interconnect the device to the patient by means of an adhesive layer "A" provided on its lower surface.
- a protective cover means including a needle cap or sheath subassembly 119 of a construction similar to that shown in FIG. 5A.
- Subassembly 119 includes a protective sheath 120 within which a closure means or cap 122 is telescopically received.
- Cap 122 has an inner bore within which penetrable cannula portion 124c is sealably received.
- the upper portion of sheath 120 is provided with a serration 120a so that the sheath, along with cap 122, can be separated from the cannula at time of use.
- the hollow cannula or capillary 124 of this embodiment of the invention is insert molded within base 112 in the manner shown in FIG. 14.
- a stored energy means or distendable membrane 126, an ullage defining means and an elastomeric barrier membrane 127 cooperate with the upper surface of base 112 to form a reservoir 130 having an inlet port 132 and an outlet port 132a (FIG. 14) which are superimposed over enlarged diameter portion 124b of cannula 124 in the manner shown in FIG. 14.
- the stored energy means, or distendable membrane 126 and the barrier membrane 127 both function in the same manner to accomplish the same result as previously described herein.
- the chamber or reservoir which includes fluid reservoir 130, is generally toroidal in shape with the outer boundary thereof being defined by a surface 129a formed in a cover member 133 (FIG. 18).
- the ullage defining means in the present embodiment shown here as conformable mass 135, also operates in the same manner to accomplish the same result as previously described.
- the infusion means for infusing medicinal fluids from reservoir 130 into the patient comprises the previously identified circuitously shaped hollow cannula 124.
- Cannula 124 includes a body portion 124a which is molded in base 112 in a manner well known by those skilled in the art.
- Filter means, here provided as a porous filter 55 with fluid impermeable layer 55a is disposed between the outlet of reservoir 130 and on inlet 137 formed in enlarged diameter portion 124b of cannula 124.
- Also formed in the enlarged diameter portion 124b of the cannula is an outlet port 138 which communicates with inlet 132 of reservoir 130.
- Cannula 124 also includes an outlet end, here provided in the form of the needle-like segment 124c, which extends generally perpendicularly downward from base 112 for subdermal infusion of medicinal fluids into the patient.
- the protective sheath assembly 120 surrounds and protects segment 124c of the cannula (FIG. 14).
- Filling of reservoir 130 is accomplished in the manner previously described by introducing fluid into the reservoir under pressure via a septum assembly 167 mounted in base 112 (FIGS. 14 and 15).
- a septum assembly 167 mounted in base 112 (FIGS. 14 and 15).
- fluid can be introduced into the enlarged diameter portion 124b of cannula 124 via the septum assembly 167.
- barrier membrane 127 is distended outwardly against the conformable ullage 135 controllably moving it, along with distendable membrane 126 toward a cover 133.
- the distendable membrane 126 engages the upper wall of channel 129, it will conform to the channel surface as will the upper surface of ullage 135.
- the conformable ullage will permit the distendable membrane to provide a constant fluid expelling pressure on the fluid contained within the reservoir throughout the fluid delivery cycle, thereby avoiding undesirable delivery rate tail off at the end of the delivery period.
- flow control assembly 55 As best seen in FIG. 14, during the fluid delivery step, fluid will flow from reservoir 130, through port 132a through a flow control means shown here as flow control assembly 55 then into the enlarged diameter portion 124b of cannula 124.
- Flow control assembly 55 is identical to that shown in FIG. 1 and functions as described herein.
- Distendable member 126 along with barrier membrane 127, is secured to base 112 in the manner previously described as is cover member 133.
- protuberance 61 also uniquely functions as a sonic energy director for the sonic weldment of base 112 and cover 133.
- the distendable membrane 126 can comprise a laminate construction comprising first, second and third layers, or submembranes 126a, 126b, and 126c.
- the laminate construction provides several operational advantages as described in detail in U.S. Pat. No. 5,205,820 (see, for example, Column 17).
- the device of this latest form of the invention is used in a manner similar to the apparatus shown in FIGS. 1 through 7 and, therefore, the details of operation of the device will not here be discussed.
Landscapes
- Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/541,030 US5693018A (en) | 1995-10-11 | 1995-10-11 | Subdermal delivery device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/541,030 US5693018A (en) | 1995-10-11 | 1995-10-11 | Subdermal delivery device |
Publications (1)
Publication Number | Publication Date |
---|---|
US5693018A true US5693018A (en) | 1997-12-02 |
Family
ID=24157906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/541,030 Expired - Fee Related US5693018A (en) | 1995-10-11 | 1995-10-11 | Subdermal delivery device |
Country Status (1)
Country | Link |
---|---|
US (1) | US5693018A (en) |
Cited By (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010040A1 (en) * | 1997-08-27 | 1999-03-04 | Science Incorporated | Fluid delivery device with temperature controlled energy source |
EP0923956A1 (en) * | 1997-12-19 | 1999-06-23 | Clinico GmbH & Co. Verwaltungs- und Beteiligungs-KG | Infusion catheter |
US5925017A (en) * | 1995-10-11 | 1999-07-20 | Science Incorporated | Fluid delivery device with bolus injection site |
US5957895A (en) | 1998-02-20 | 1999-09-28 | Becton Dickinson And Company | Low-profile automatic injection device with self-emptying reservoir |
WO1999052509A1 (en) * | 1998-04-15 | 1999-10-21 | Science Incorporated | Fluid delivery device with collapsible needle cover |
US6007518A (en) * | 1995-12-22 | 1999-12-28 | Science Incorporated | Fluid delivery device with conformable ullage and fill assembly |
EP1049513A1 (en) * | 1997-12-16 | 2000-11-08 | Science Incorporated | Fluid delivery device with fill adapter |
US6186982B1 (en) * | 1998-05-05 | 2001-02-13 | Elan Corporation, Plc | Subcutaneous drug delivery device with improved filling system |
WO2001052918A2 (en) * | 2000-01-21 | 2001-07-26 | Science Incorporated | Fluid delivery device with temperature controlled energy source |
US20020169416A1 (en) * | 2000-11-30 | 2002-11-14 | Gonnelli Robert R. | Fluid delivery and measurement systems and methods |
US20030187394A1 (en) * | 2002-04-02 | 2003-10-02 | Wilkinson Bradley M | Method and device for intradermally delivering a substance |
US20030216684A1 (en) * | 2002-03-26 | 2003-11-20 | Fentress James K. | Multi-stage fluid delivery device and method |
US6669669B2 (en) * | 2001-10-12 | 2003-12-30 | Insulet Corporation | Laminated patient infusion device |
US20040034338A1 (en) * | 2002-08-07 | 2004-02-19 | Ams Research Corporation | Drug delivery devices and methods |
US20040092875A1 (en) * | 2002-11-08 | 2004-05-13 | Kochamba Gary Steven | Cutaneous injection delivery under suction |
WO2004039327A2 (en) | 2002-10-29 | 2004-05-13 | Colorado State University Research Foundation | Use of equol for treating androgen mediated diseases |
US20040138612A1 (en) * | 2002-07-22 | 2004-07-15 | Shermer Charles D. | Patch-like infusion device |
US20040144799A1 (en) * | 2003-01-24 | 2004-07-29 | Baxter International Inc. | Liquid dispenser and flexible bag therefor |
US6769231B2 (en) | 2001-07-19 | 2004-08-03 | Baxter International, Inc. | Apparatus, method and flexible bag for use in manufacturing |
US20050033232A1 (en) * | 2003-08-05 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with modulated flow control |
US20050033233A1 (en) * | 2003-08-04 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with constant force spring energy source |
US20050038379A1 (en) * | 2003-08-13 | 2005-02-17 | Beebe David J. | Microfluidic device for drug delivery |
US20050065472A1 (en) * | 2003-07-22 | 2005-03-24 | Cindrich Chris N. | Patch-like infusion device |
US6905314B2 (en) | 2001-10-16 | 2005-06-14 | Baxter International Inc. | Pump having flexible liner and compounding apparatus having such a pump |
US20050131388A1 (en) * | 2003-12-16 | 2005-06-16 | Henrich Cheng | Embedded spinal injector |
US20050137672A1 (en) * | 2003-10-24 | 2005-06-23 | Cardiac Pacemakers, Inc. | Myocardial lead |
US20050263615A1 (en) * | 2004-05-26 | 2005-12-01 | Kriesel Marshall S | Fluid delivery apparatus with adjustable flow rate control |
US20050277883A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery device |
US20050277882A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Infusion apparatus |
US20050277884A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery apparatus with bellows reservoir |
US6979316B1 (en) | 2002-05-23 | 2005-12-27 | Seedlings Life Science Ventures Llc | Apparatus and method for rapid auto-injection of medication |
US7007824B2 (en) | 2003-01-24 | 2006-03-07 | Baxter International Inc. | Liquid dispenser and flexible bag therefor |
US20060195057A1 (en) * | 2005-02-18 | 2006-08-31 | Kriesel Marshall S | Fluid delivery apparatus with vial fill |
US20060196552A1 (en) * | 2005-02-17 | 2006-09-07 | Kriesel Marshall S | Distal rate control device |
US20060206052A1 (en) * | 2005-02-15 | 2006-09-14 | Kriesel Marshall S | Fluid delivery and mixing apparatus with flow rate control |
US20060264926A1 (en) * | 2002-11-08 | 2006-11-23 | Kochamba Gary S | Cutaneous stabilization by vacuum for delivery of micro-needle array |
US7169128B2 (en) | 2003-08-04 | 2007-01-30 | Bioquiddity, Inc. | Multichannel fluid delivery device |
US20070219501A1 (en) * | 2006-03-15 | 2007-09-20 | Kriesel Marshall S | Fluid dispensing apparatus |
US20080009835A1 (en) * | 2005-02-17 | 2008-01-10 | Kriesel Marshall S | Fluid dispensing apparatus with flow rate control |
US20080027376A1 (en) * | 2006-07-31 | 2008-01-31 | Kriesel Marshall S | Fluid dispensing device with additive |
US20080243077A1 (en) * | 2007-04-02 | 2008-10-02 | Bivin Donald B | Fluid dispenser with uniformly collapsible reservoir |
US20080319385A1 (en) * | 2007-06-25 | 2008-12-25 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20090024083A1 (en) * | 2007-06-25 | 2009-01-22 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20090157005A1 (en) * | 2003-04-23 | 2009-06-18 | Gonnelli Robert R | Hydraulically actuated pump for long duration medicament administration |
US20090240232A1 (en) * | 2006-03-30 | 2009-09-24 | Vakerutas,Llc | Multi-cartridge fluid delivery device |
US7637891B2 (en) | 2002-09-12 | 2009-12-29 | Children's Hospital Medical Center | Method and device for painless injection of medication |
US20100030198A1 (en) * | 2008-08-01 | 2010-02-04 | Beebe David J | Drug delivery platform utilizing hydrogel pumping mechanism |
US20100030156A1 (en) * | 2008-08-01 | 2010-02-04 | Beebe David J | Drug delivery platform incorporating hydrogel pumping mechanism with guided fluid flow |
US7670314B2 (en) | 2004-02-17 | 2010-03-02 | Children's Hospital Medical Center | Injection device for administering a vaccine |
US20100160861A1 (en) * | 2000-03-23 | 2010-06-24 | Medtronic Minimed, Inc. | Control Tabs for Infusion Devices and Methods of Using the Same |
US7828772B2 (en) | 2006-03-15 | 2010-11-09 | Bioquiddity, Inc. | Fluid dispensing device |
WO2011014417A2 (en) | 2009-07-31 | 2011-02-03 | Brigham Young University | Use of equol for treating skin diseases |
EP2305272A1 (en) | 2004-04-28 | 2011-04-06 | Brigham Young University | Use of equol for treating skin diseases |
US20110172601A1 (en) * | 2010-01-08 | 2011-07-14 | Beebe David J | Bladder Arrangement For Microneedle-Based Drug Delivery Device |
US8057435B2 (en) | 2006-07-31 | 2011-11-15 | Kriesel Joshua W | Fluid dispenser |
US20120010651A1 (en) * | 2010-07-07 | 2012-01-12 | ProNerve, LLC | Garment to facilitate needle electrode placement for intraoperative monitoring |
US8282601B2 (en) | 2005-09-26 | 2012-10-09 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8287495B2 (en) | 2009-07-30 | 2012-10-16 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8372039B2 (en) | 2005-11-08 | 2013-02-12 | Asante Solutions, Inc. | Infusion pump system |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
US8430848B1 (en) | 2010-08-13 | 2013-04-30 | Jonathan Dawrant | Reservoir and administration device with ratcheting mechanism |
US8551046B2 (en) | 2006-09-18 | 2013-10-08 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US8573027B2 (en) | 2009-02-27 | 2013-11-05 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US8650937B2 (en) | 2008-09-19 | 2014-02-18 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods |
US8945071B2 (en) | 2010-09-02 | 2015-02-03 | Becton, Dickinson And Company | Self-injection device having needle cover with activation preventer |
US8961469B2 (en) | 2009-12-16 | 2015-02-24 | Becton, Dickinson And Company | Self-injection device |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US9089636B2 (en) | 2004-07-02 | 2015-07-28 | Valeritas, Inc. | Methods and devices for delivering GLP-1 and uses thereof |
US9250106B2 (en) | 2009-02-27 | 2016-02-02 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
WO2016048878A1 (en) * | 2014-09-22 | 2016-03-31 | Becton, Dickinson And Company | Plate with integral fluid path channels |
US9555187B2 (en) | 2009-12-16 | 2017-01-31 | Becton, Dickinson And Company | Self-injection device |
US9579461B2 (en) | 2009-12-16 | 2017-02-28 | Becton, Dickinson And Company | Self-injection device |
US9717850B2 (en) | 2009-12-16 | 2017-08-01 | Becton, Dickinson And Company | Self-injection device |
US9833562B2 (en) | 2009-12-16 | 2017-12-05 | Becton, Dickinson And Company | Self-injection device |
US9907904B2 (en) | 2016-05-10 | 2018-03-06 | Burton H. Sage, Jr. | Spring-driven drug delivery device |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US9987428B2 (en) | 2011-10-14 | 2018-06-05 | Amgen Inc. | Injector and method of assembly |
JPWO2017104432A1 (en) * | 2015-12-15 | 2018-08-30 | 久光製薬株式会社 | Liquid bag |
US10195340B2 (en) | 2009-12-16 | 2019-02-05 | Becton, Dickinson And Company | Self-injection device |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US10363342B2 (en) | 2016-02-04 | 2019-07-30 | Insulet Corporation | Anti-inflammatory cannula |
EP3656417A1 (en) * | 2018-11-20 | 2020-05-27 | Becton, Dickinson and Company | Fluid path channel and adsorbent |
US20200188580A1 (en) * | 2013-05-31 | 2020-06-18 | Valeritas, Inc. | Fluid Delivery Device Having an Insertable Prefilled Cartridge |
US10777319B2 (en) | 2014-01-30 | 2020-09-15 | Insulet Netherlands B.V. | Therapeutic product delivery system and method of pairing |
US10850037B2 (en) | 2013-03-22 | 2020-12-01 | Amgen Inc. | Injector and method of assembly |
US10898656B2 (en) | 2017-09-26 | 2021-01-26 | Insulet Corporation | Needle mechanism module for drug delivery device |
US10987468B2 (en) | 2016-01-05 | 2021-04-27 | Bigfoot Biomedical, Inc. | Operating multi-modal medicine delivery systems |
US11045603B2 (en) | 2017-02-22 | 2021-06-29 | Insulet Corporation | Needle insertion mechanisms for drug containers |
JP2021098082A (en) * | 2009-01-12 | 2021-07-01 | ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company | Infusion device with catheter and method of making catheter |
US11097055B2 (en) | 2013-10-24 | 2021-08-24 | Amgen Inc. | Injector and method of assembly |
US11147914B2 (en) | 2013-07-19 | 2021-10-19 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US11147931B2 (en) | 2017-11-17 | 2021-10-19 | Insulet Corporation | Drug delivery device with air and backflow elimination |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
US11364341B2 (en) | 2015-11-25 | 2022-06-21 | Insulet Corporation | Wearable medication delivery device |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
US11464906B2 (en) | 2013-12-02 | 2022-10-11 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US11471598B2 (en) | 2015-04-29 | 2022-10-18 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11547800B2 (en) | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11565039B2 (en) | 2018-10-11 | 2023-01-31 | Insulet Corporation | Event detection for drug delivery system |
US11565043B2 (en) | 2018-05-04 | 2023-01-31 | Insulet Corporation | Safety constraints for a control algorithm based drug delivery system |
US11596740B2 (en) | 2015-02-18 | 2023-03-07 | Insulet Corporation | Fluid delivery and infusion devices, and methods of use thereof |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
US11628251B2 (en) | 2018-09-28 | 2023-04-18 | Insulet Corporation | Activity mode for artificial pancreas system |
US11660389B2 (en) * | 2018-07-17 | 2023-05-30 | Insulet Corporation | Semi-rigid and flexible elements for wearable drug delivery device reservoir |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
US11684713B2 (en) | 2012-03-30 | 2023-06-27 | Insulet Corporation | Fluid delivery device, transcutaneous access tool and insertion mechanism for use therewith |
US11724027B2 (en) | 2016-09-23 | 2023-08-15 | Insulet Corporation | Fluid delivery device with sensor |
US11738144B2 (en) | 2021-09-27 | 2023-08-29 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
US11857763B2 (en) | 2016-01-14 | 2024-01-02 | Insulet Corporation | Adjusting insulin delivery rates |
US11865299B2 (en) | 2008-08-20 | 2024-01-09 | Insulet Corporation | Infusion pump systems and methods |
US11904140B2 (en) | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
US11929158B2 (en) | 2016-01-13 | 2024-03-12 | Insulet Corporation | User interface for diabetes management system |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
USD1020794S1 (en) | 2018-04-02 | 2024-04-02 | Bigfoot Biomedical, Inc. | Medication delivery device with icons |
US11957875B2 (en) | 2019-12-06 | 2024-04-16 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
USD1024090S1 (en) | 2019-01-09 | 2024-04-23 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11969579B2 (en) | 2017-01-13 | 2024-04-30 | Insulet Corporation | Insulin delivery methods, systems and devices |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US12036389B2 (en) | 2020-01-06 | 2024-07-16 | Insulet Corporation | Prediction of meal and/or exercise events based on persistent residuals |
US12042630B2 (en) | 2017-01-13 | 2024-07-23 | Insulet Corporation | System and method for adjusting insulin delivery |
US12076160B2 (en) | 2016-12-12 | 2024-09-03 | Insulet Corporation | Alarms and alerts for medication delivery devices and systems |
US12097355B2 (en) | 2023-01-06 | 2024-09-24 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
US12106837B2 (en) | 2016-01-14 | 2024-10-01 | Insulet Corporation | Occlusion resolution in medication delivery devices, systems, and methods |
US12115351B2 (en) | 2020-09-30 | 2024-10-15 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
US12121701B2 (en) | 2021-01-29 | 2024-10-22 | Insulet Corporation | Systems and methods for incorporating co-formulations of insulin in an automatic insulin delivery system |
US12121700B2 (en) | 2020-07-22 | 2024-10-22 | Insulet Corporation | Open-loop insulin delivery basal parameters based on insulin delivery records |
US12128215B2 (en) | 2020-09-30 | 2024-10-29 | Insulet Corporation | Drug delivery device with integrated optical-based glucose monitor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918446A (en) * | 1974-05-03 | 1975-11-11 | E Med Corp | Securement device for intravenous catheter and its tubing |
US4380234A (en) * | 1979-08-16 | 1983-04-19 | Baxter Travenol Laboratories, Inc. | Infusion needle attachment |
US4505702A (en) * | 1982-12-23 | 1985-03-19 | Alza Corporation | Manually operable rotary syringe |
US4619652A (en) * | 1982-12-23 | 1986-10-28 | Alza Corporation | Dosage form for use in a body mounted pump |
US4753651A (en) * | 1982-08-30 | 1988-06-28 | Alza Corporation | Self-driven pump |
US4886499A (en) * | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
US5176662A (en) * | 1990-08-23 | 1993-01-05 | Minimed Technologies, Ltd. | Subcutaneous injection set with improved cannula mounting arrangement |
US5257980A (en) * | 1993-04-05 | 1993-11-02 | Minimed Technologies, Ltd. | Subcutaneous injection set with crimp-free soft cannula |
US5390671A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
WO1995013838A1 (en) * | 1993-11-18 | 1995-05-26 | Elan Medical Technologies Limited | Intradermal drug delivery device |
-
1995
- 1995-10-11 US US08/541,030 patent/US5693018A/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918446A (en) * | 1974-05-03 | 1975-11-11 | E Med Corp | Securement device for intravenous catheter and its tubing |
US4380234A (en) * | 1979-08-16 | 1983-04-19 | Baxter Travenol Laboratories, Inc. | Infusion needle attachment |
US4753651A (en) * | 1982-08-30 | 1988-06-28 | Alza Corporation | Self-driven pump |
US4505702A (en) * | 1982-12-23 | 1985-03-19 | Alza Corporation | Manually operable rotary syringe |
US4619652A (en) * | 1982-12-23 | 1986-10-28 | Alza Corporation | Dosage form for use in a body mounted pump |
US4886499A (en) * | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
US5176662A (en) * | 1990-08-23 | 1993-01-05 | Minimed Technologies, Ltd. | Subcutaneous injection set with improved cannula mounting arrangement |
US5257980A (en) * | 1993-04-05 | 1993-11-02 | Minimed Technologies, Ltd. | Subcutaneous injection set with crimp-free soft cannula |
WO1995013838A1 (en) * | 1993-11-18 | 1995-05-26 | Elan Medical Technologies Limited | Intradermal drug delivery device |
US5390671A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
Cited By (251)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5925017A (en) * | 1995-10-11 | 1999-07-20 | Science Incorporated | Fluid delivery device with bolus injection site |
US6007518A (en) * | 1995-12-22 | 1999-12-28 | Science Incorporated | Fluid delivery device with conformable ullage and fill assembly |
US5961492A (en) * | 1997-08-27 | 1999-10-05 | Science Incorporated | Fluid delivery device with temperature controlled energy source |
WO1999010040A1 (en) * | 1997-08-27 | 1999-03-04 | Science Incorporated | Fluid delivery device with temperature controlled energy source |
EP1049513A4 (en) * | 1997-12-16 | 2001-04-25 | Science Inc | Fluid delivery device with fill adapter |
EP1049513A1 (en) * | 1997-12-16 | 2000-11-08 | Science Incorporated | Fluid delivery device with fill adapter |
US6099507A (en) * | 1997-12-19 | 2000-08-08 | Clinicomed Ag | Infusion catheter |
EP0923956A1 (en) * | 1997-12-19 | 1999-06-23 | Clinico GmbH & Co. Verwaltungs- und Beteiligungs-KG | Infusion catheter |
US5957895A (en) | 1998-02-20 | 1999-09-28 | Becton Dickinson And Company | Low-profile automatic injection device with self-emptying reservoir |
US6074369A (en) * | 1998-02-20 | 2000-06-13 | Becton, Dickinson And Company | Low-profile automatic injection device with self-emptying reservoir |
WO1999052509A1 (en) * | 1998-04-15 | 1999-10-21 | Science Incorporated | Fluid delivery device with collapsible needle cover |
US6126637A (en) * | 1998-04-15 | 2000-10-03 | Science Incorporated | Fluid delivery device with collapsible needle cover |
US6186982B1 (en) * | 1998-05-05 | 2001-02-13 | Elan Corporation, Plc | Subcutaneous drug delivery device with improved filling system |
WO2001052918A2 (en) * | 2000-01-21 | 2001-07-26 | Science Incorporated | Fluid delivery device with temperature controlled energy source |
WO2001052918A3 (en) * | 2000-01-21 | 2002-04-18 | Science Inc | Fluid delivery device with temperature controlled energy source |
US20100160861A1 (en) * | 2000-03-23 | 2010-06-24 | Medtronic Minimed, Inc. | Control Tabs for Infusion Devices and Methods of Using the Same |
US8613726B2 (en) * | 2000-03-23 | 2013-12-24 | Medtronic Minimed, Inc. | Control tabs for infusion devices and methods of using the same |
US10610640B2 (en) | 2000-11-30 | 2020-04-07 | Valeritas, Inc. | Fluid delivery and measurement systems and methods |
US9981083B2 (en) | 2000-11-30 | 2018-05-29 | Valeritas, Inc. | Fluid delivery and measurement systems and methods |
US20060189939A1 (en) * | 2000-11-30 | 2006-08-24 | Biovalve Technologies, Inc. | Fluid delivery and measurement systems and methods |
US8992478B2 (en) | 2000-11-30 | 2015-03-31 | Valeritas, Inc. | Fluid delivery and measurement systems and methods |
US8858511B2 (en) | 2000-11-30 | 2014-10-14 | Valeritas, Inc. | Fluid delivery and measurement systems and methods |
US7481792B2 (en) | 2000-11-30 | 2009-01-27 | Valeritas, Inc. | Fluid delivery and measurement systems and methods |
US20090093763A1 (en) * | 2000-11-30 | 2009-04-09 | Gonnelli Robert R | Fluid delivery and measurement systems and methods |
US6939324B2 (en) * | 2000-11-30 | 2005-09-06 | Biovalve Technologies, Inc. | Fluid delivery and measurement systems and methods |
US20020169416A1 (en) * | 2000-11-30 | 2002-11-14 | Gonnelli Robert R. | Fluid delivery and measurement systems and methods |
US9636451B2 (en) | 2000-11-30 | 2017-05-02 | Valeritas, Inc. | Fluid delivery and measurement systems and methods |
US6769231B2 (en) | 2001-07-19 | 2004-08-03 | Baxter International, Inc. | Apparatus, method and flexible bag for use in manufacturing |
US6669669B2 (en) * | 2001-10-12 | 2003-12-30 | Insulet Corporation | Laminated patient infusion device |
CN100435862C (en) * | 2001-10-12 | 2008-11-26 | 因苏雷特公司 | Laminated patient infusion device |
US6905314B2 (en) | 2001-10-16 | 2005-06-14 | Baxter International Inc. | Pump having flexible liner and compounding apparatus having such a pump |
US7214221B2 (en) | 2002-03-26 | 2007-05-08 | Becton, Dickinson And Company | Multi-stage fluid delivery device and method |
US20030216684A1 (en) * | 2002-03-26 | 2003-11-20 | Fentress James K. | Multi-stage fluid delivery device and method |
US20080287871A1 (en) * | 2002-04-02 | 2008-11-20 | Wilkinson Bradley M | Method and Device for Intradermally Delivering a Substance |
US7115108B2 (en) | 2002-04-02 | 2006-10-03 | Becton, Dickinson And Company | Method and device for intradermally delivering a substance |
US7896837B2 (en) * | 2002-04-02 | 2011-03-01 | Becton, Dickinson And Company | Method and device for intradermally delivering a substance |
US20030187394A1 (en) * | 2002-04-02 | 2003-10-02 | Wilkinson Bradley M | Method and device for intradermally delivering a substance |
US7658724B2 (en) | 2002-05-23 | 2010-02-09 | Seedings Life Science Ventures LLC | Apparatus and method for rapid auto-injection of medication |
US6979316B1 (en) | 2002-05-23 | 2005-12-27 | Seedlings Life Science Ventures Llc | Apparatus and method for rapid auto-injection of medication |
US20040138612A1 (en) * | 2002-07-22 | 2004-07-15 | Shermer Charles D. | Patch-like infusion device |
US7678079B2 (en) | 2002-07-22 | 2010-03-16 | Becton, Dickinson And Company | Patch-like infusion device |
US20070203454A1 (en) * | 2002-07-22 | 2007-08-30 | Shermer Charles D | Patch-Like Infusion Device |
US7250037B2 (en) | 2002-07-22 | 2007-07-31 | Becton, Dickinson And Company | Patch-like infusion device |
US20040034338A1 (en) * | 2002-08-07 | 2004-02-19 | Ams Research Corporation | Drug delivery devices and methods |
US7637891B2 (en) | 2002-09-12 | 2009-12-29 | Children's Hospital Medical Center | Method and device for painless injection of medication |
US10111855B2 (en) | 2002-10-29 | 2018-10-30 | Brigham Young University | Use of equol for treating androgen mediated diseases |
WO2004039327A2 (en) | 2002-10-29 | 2004-05-13 | Colorado State University Research Foundation | Use of equol for treating androgen mediated diseases |
US20100087519A1 (en) * | 2002-10-29 | 2010-04-08 | Brigham Young University | Use of equol for treating androgen mediated diseases |
US9889116B2 (en) | 2002-10-29 | 2018-02-13 | Bringham Young University | Use of equol for treating androgen mediated diseases |
US8153684B2 (en) | 2002-10-29 | 2012-04-10 | Colorado State University Research Foundation | Use of equol for treating androgen mediated diseases |
US8450364B2 (en) | 2002-10-29 | 2013-05-28 | Brigham Young University | Use of equol for treating androgen mediated diseases |
US9089547B2 (en) | 2002-10-29 | 2015-07-28 | Brigham Young University | Use of equol for treating androgen mediated diseases |
US9408825B2 (en) | 2002-10-29 | 2016-08-09 | Brigham Young University | Use of equol for treating androgen mediated diseases |
US20060264926A1 (en) * | 2002-11-08 | 2006-11-23 | Kochamba Gary S | Cutaneous stabilization by vacuum for delivery of micro-needle array |
US20070088348A1 (en) * | 2002-11-08 | 2007-04-19 | Medical Microdevices, Inc. | Stabilization by suction using micro-needles |
US20040092875A1 (en) * | 2002-11-08 | 2004-05-13 | Kochamba Gary Steven | Cutaneous injection delivery under suction |
US6896666B2 (en) | 2002-11-08 | 2005-05-24 | Kochamba Family Trust | Cutaneous injection delivery under suction |
US20070010810A1 (en) * | 2002-11-08 | 2007-01-11 | Kochamba Gary S | Ablation and micro-needles |
US7007824B2 (en) | 2003-01-24 | 2006-03-07 | Baxter International Inc. | Liquid dispenser and flexible bag therefor |
US20040144799A1 (en) * | 2003-01-24 | 2004-07-29 | Baxter International Inc. | Liquid dispenser and flexible bag therefor |
US9072828B2 (en) | 2003-04-23 | 2015-07-07 | Valeritas, Inc. | Hydraulically actuated pump for long duration medicament administration |
US8070726B2 (en) | 2003-04-23 | 2011-12-06 | Valeritas, Inc. | Hydraulically actuated pump for long duration medicament administration |
US20090157005A1 (en) * | 2003-04-23 | 2009-06-18 | Gonnelli Robert R | Hydraulically actuated pump for long duration medicament administration |
US10525194B2 (en) | 2003-04-23 | 2020-01-07 | Valeritas, Inc. | Hydraulically actuated pump for fluid administration |
US11642456B2 (en) | 2003-04-23 | 2023-05-09 | Mannkind Corporation | Hydraulically actuated pump for fluid administration |
US9511187B2 (en) | 2003-04-23 | 2016-12-06 | Valeritas, Inc. | Hydraulically actuated pump for fluid administration |
US20090198185A1 (en) * | 2003-04-23 | 2009-08-06 | Gonnelli Robert R | Hydraulically actuated pump for long duration medicament administration |
US9125983B2 (en) | 2003-04-23 | 2015-09-08 | Valeritas, Inc. | Hydraulically actuated pump for fluid administration |
US9597450B2 (en) | 2003-07-22 | 2017-03-21 | Becton, Dickinson And Company | Patch-like infusion device |
US8512287B2 (en) | 2003-07-22 | 2013-08-20 | Becton, Dickinson And Company | Patch-like infusion device |
US20050065472A1 (en) * | 2003-07-22 | 2005-03-24 | Cindrich Chris N. | Patch-like infusion device |
US10589023B2 (en) | 2003-07-22 | 2020-03-17 | Becton, Dickinson And Company | Patch-like infusion device |
US9364606B2 (en) | 2003-07-22 | 2016-06-14 | Becton, Dickinson And Company | Patch-like infusion device |
US9999724B2 (en) | 2003-07-22 | 2018-06-19 | Becton, Dickinson And Company | Patch-like infusion device |
US7789853B2 (en) | 2003-08-04 | 2010-09-07 | Bioquiddity, Inc. | Infusion apparatus with constant force spring energy source |
US20050033233A1 (en) * | 2003-08-04 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with constant force spring energy source |
US7220244B2 (en) | 2003-08-04 | 2007-05-22 | Bioquiddity, Inc. | Infusion apparatus with constant force spring energy source |
US7169128B2 (en) | 2003-08-04 | 2007-01-30 | Bioquiddity, Inc. | Multichannel fluid delivery device |
US20080051701A1 (en) * | 2003-08-04 | 2008-02-28 | Kriesel Marshall S | Infusion apparatus with constant force spring energy source |
US20050033232A1 (en) * | 2003-08-05 | 2005-02-10 | Kriesel Marshall S. | Infusion apparatus with modulated flow control |
EP2609947A3 (en) * | 2003-08-12 | 2014-05-21 | Becton, Dickinson and Company | Patch-like infusion device |
US20050065466A1 (en) * | 2003-08-12 | 2005-03-24 | Becton, Dickinson And Company | Patch-like infusion device |
US7857131B2 (en) | 2003-08-12 | 2010-12-28 | Becton, Dickinson And Company | Patch-like infusion device |
US8444604B2 (en) | 2003-08-12 | 2013-05-21 | Becton, Dickinson And Company | Patch-like infusion device |
US20080215015A1 (en) * | 2003-08-12 | 2008-09-04 | Chris Cindrich | Patch-Like Infusion Device |
US7766902B2 (en) * | 2003-08-13 | 2010-08-03 | Wisconsin Alumni Research Foundation | Microfluidic device for drug delivery |
US20100262077A1 (en) * | 2003-08-13 | 2010-10-14 | Wisconsin Alumni Research Foundation | Micro-Fluidic Device For Drug Delivery |
US20050038379A1 (en) * | 2003-08-13 | 2005-02-17 | Beebe David J. | Microfluidic device for drug delivery |
US8628517B2 (en) | 2003-08-13 | 2014-01-14 | Wisconsin Alumni Research Foundation | Micro-fluidic device for drug delivery |
US20050137672A1 (en) * | 2003-10-24 | 2005-06-23 | Cardiac Pacemakers, Inc. | Myocardial lead |
US20050131388A1 (en) * | 2003-12-16 | 2005-06-16 | Henrich Cheng | Embedded spinal injector |
US7896841B2 (en) | 2004-02-17 | 2011-03-01 | Children's Hospital Medical Center | Injection device for administering a vaccine |
US7670314B2 (en) | 2004-02-17 | 2010-03-02 | Children's Hospital Medical Center | Injection device for administering a vaccine |
EP2305272A1 (en) | 2004-04-28 | 2011-04-06 | Brigham Young University | Use of equol for treating skin diseases |
US20050277883A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery device |
US7220245B2 (en) | 2004-05-26 | 2007-05-22 | Kriesel Marshall S | Infusion apparatus |
US20050263615A1 (en) * | 2004-05-26 | 2005-12-01 | Kriesel Marshall S | Fluid delivery apparatus with adjustable flow rate control |
US7470253B2 (en) | 2004-05-26 | 2008-12-30 | Bioquiddity, Inc. | Fluid delivery apparatus with adjustable flow rate control |
US20050277884A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Fluid delivery apparatus with bellows reservoir |
US20050277882A1 (en) * | 2004-05-26 | 2005-12-15 | Kriesel Marshall S | Infusion apparatus |
US9089636B2 (en) | 2004-07-02 | 2015-07-28 | Valeritas, Inc. | Methods and devices for delivering GLP-1 and uses thereof |
US20060206052A1 (en) * | 2005-02-15 | 2006-09-14 | Kriesel Marshall S | Fluid delivery and mixing apparatus with flow rate control |
US20060196552A1 (en) * | 2005-02-17 | 2006-09-07 | Kriesel Marshall S | Distal rate control device |
US20080009835A1 (en) * | 2005-02-17 | 2008-01-10 | Kriesel Marshall S | Fluid dispensing apparatus with flow rate control |
US7694938B2 (en) | 2005-02-17 | 2010-04-13 | Bioquiddity, Inc. | Distal rate control device |
US20060195057A1 (en) * | 2005-02-18 | 2006-08-31 | Kriesel Marshall S | Fluid delivery apparatus with vial fill |
US7837653B2 (en) | 2005-02-18 | 2010-11-23 | Bioquiddity, Inc. | Fluid delivery apparatus with vial fill |
US8282601B2 (en) | 2005-09-26 | 2012-10-09 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US9814830B2 (en) | 2005-09-26 | 2017-11-14 | Bigfoot Biomedical, Inc. | Dispensing fluid from an infusion pump system |
US9314569B2 (en) | 2005-09-26 | 2016-04-19 | Bigfoot Biomedical, Inc. | Dispensing fluid from an infusion pump system |
US8480623B2 (en) | 2005-09-26 | 2013-07-09 | Asante Solutions, Inc. | Method for dispensing fluid from an infusion pump system |
US10603431B2 (en) | 2005-09-26 | 2020-03-31 | Bigfoot Biomedical, Inc. | Dispensing fluid from an infusion pump system |
US8679060B2 (en) | 2005-11-08 | 2014-03-25 | Asante Solutions, Inc. | Infusion pump system |
US8430847B2 (en) | 2005-11-08 | 2013-04-30 | Asante Solutions, Inc. | Infusion pump system |
US8372039B2 (en) | 2005-11-08 | 2013-02-12 | Asante Solutions, Inc. | Infusion pump system |
US8475408B2 (en) * | 2005-11-08 | 2013-07-02 | Asante Solutions, Inc. | Infusion pump system |
US20070219501A1 (en) * | 2006-03-15 | 2007-09-20 | Kriesel Marshall S | Fluid dispensing apparatus |
US7993304B2 (en) | 2006-03-15 | 2011-08-09 | Bioquiddity, Inc. | Fluid dispensing apparatus |
US20110282284A1 (en) * | 2006-03-15 | 2011-11-17 | Kriesel Marshall S | Fluid dispensing apparatus |
US7828772B2 (en) | 2006-03-15 | 2010-11-09 | Bioquiddity, Inc. | Fluid dispensing device |
US8672885B2 (en) * | 2006-03-15 | 2014-03-18 | Marshall S. Kriesel | Fluid dispensing device |
US20110092904A1 (en) * | 2006-03-15 | 2011-04-21 | Kriesel Marshall S | Fluid dispensing device |
US20090240232A1 (en) * | 2006-03-30 | 2009-09-24 | Vakerutas,Llc | Multi-cartridge fluid delivery device |
US7914499B2 (en) * | 2006-03-30 | 2011-03-29 | Valeritas, Inc. | Multi-cartridge fluid delivery device |
US20080027376A1 (en) * | 2006-07-31 | 2008-01-31 | Kriesel Marshall S | Fluid dispensing device with additive |
US8292848B2 (en) | 2006-07-31 | 2012-10-23 | Bio Quiddity, Inc. | Fluid dispensing device with additive |
US8057435B2 (en) | 2006-07-31 | 2011-11-15 | Kriesel Joshua W | Fluid dispenser |
US8551046B2 (en) | 2006-09-18 | 2013-10-08 | Asante Solutions, Inc. | Dispensing fluid from an infusion pump system |
US20080243077A1 (en) * | 2007-04-02 | 2008-10-02 | Bivin Donald B | Fluid dispenser with uniformly collapsible reservoir |
US8211059B2 (en) | 2007-06-25 | 2012-07-03 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20080319385A1 (en) * | 2007-06-25 | 2008-12-25 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US20090024083A1 (en) * | 2007-06-25 | 2009-01-22 | Kriesel Marshall S | Fluid dispenser with additive sub-system |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US8795259B2 (en) | 2008-08-01 | 2014-08-05 | Wisconsin Alumni Research Foundation | Drug delivery platform incorporating hydrogel pumping mechanism with guided fluid flow |
US20100030156A1 (en) * | 2008-08-01 | 2010-02-04 | Beebe David J | Drug delivery platform incorporating hydrogel pumping mechanism with guided fluid flow |
US8986250B2 (en) | 2008-08-01 | 2015-03-24 | Wisconsin Alumni Research Foundation | Drug delivery platform utilizing hydrogel pumping mechanism |
US20100030198A1 (en) * | 2008-08-01 | 2010-02-04 | Beebe David J | Drug delivery platform utilizing hydrogel pumping mechanism |
US11865299B2 (en) | 2008-08-20 | 2024-01-09 | Insulet Corporation | Infusion pump systems and methods |
US8448824B2 (en) | 2008-09-16 | 2013-05-28 | Tandem Diabetes Care, Inc. | Slideable flow metering devices and related methods |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
US8650937B2 (en) | 2008-09-19 | 2014-02-18 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods |
JP2021098082A (en) * | 2009-01-12 | 2021-07-01 | ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company | Infusion device with catheter and method of making catheter |
JP7401477B2 (en) | 2009-01-12 | 2023-12-19 | ベクトン・ディキンソン・アンド・カンパニー | Injection device with a catheter and method of making a catheter |
US9250106B2 (en) | 2009-02-27 | 2016-02-02 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US8573027B2 (en) | 2009-02-27 | 2013-11-05 | Tandem Diabetes Care, Inc. | Methods and devices for determination of flow reservoir volume |
US11135362B2 (en) | 2009-07-30 | 2021-10-05 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8926561B2 (en) | 2009-07-30 | 2015-01-06 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US9211377B2 (en) | 2009-07-30 | 2015-12-15 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US11285263B2 (en) | 2009-07-30 | 2022-03-29 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8287495B2 (en) | 2009-07-30 | 2012-10-16 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US12042627B2 (en) | 2009-07-30 | 2024-07-23 | Tandem Diabetes Care, Inc. | Infusion pump systems and methods |
US8758323B2 (en) | 2009-07-30 | 2014-06-24 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US8298184B2 (en) | 2009-07-30 | 2012-10-30 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US12144964B2 (en) | 2009-07-30 | 2024-11-19 | Tandem Diabetes Care, Inc | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
WO2011014417A2 (en) | 2009-07-31 | 2011-02-03 | Brigham Young University | Use of equol for treating skin diseases |
US9833562B2 (en) | 2009-12-16 | 2017-12-05 | Becton, Dickinson And Company | Self-injection device |
US10357610B2 (en) | 2009-12-16 | 2019-07-23 | Becton, Dickinson And Company | Self-injection device |
US9555187B2 (en) | 2009-12-16 | 2017-01-31 | Becton, Dickinson And Company | Self-injection device |
US9579461B2 (en) | 2009-12-16 | 2017-02-28 | Becton, Dickinson And Company | Self-injection device |
US8961469B2 (en) | 2009-12-16 | 2015-02-24 | Becton, Dickinson And Company | Self-injection device |
US9717850B2 (en) | 2009-12-16 | 2017-08-01 | Becton, Dickinson And Company | Self-injection device |
US10967123B2 (en) | 2009-12-16 | 2021-04-06 | Becton, Dickinson And Company | Self-injection device |
US10080846B2 (en) | 2009-12-16 | 2018-09-25 | Becton, Dickinson And Company | Self-injection device |
US10420881B2 (en) | 2009-12-16 | 2019-09-24 | Becton, Dickinson And Company | Self-injection device |
US11007316B2 (en) | 2009-12-16 | 2021-05-18 | Becton, Dickinson And Company | Self-injection device |
US10195340B2 (en) | 2009-12-16 | 2019-02-05 | Becton, Dickinson And Company | Self-injection device |
US9919097B2 (en) | 2009-12-16 | 2018-03-20 | Becton, Dickinson And Company | Self-injection device |
US20110172601A1 (en) * | 2010-01-08 | 2011-07-14 | Beebe David J | Bladder Arrangement For Microneedle-Based Drug Delivery Device |
US8328757B2 (en) * | 2010-01-08 | 2012-12-11 | Wisconsin Alumni Research Foundation | Bladder arrangement for microneedle-based drug delivery device |
US8260427B2 (en) * | 2010-07-07 | 2012-09-04 | ProNerve, LLC | Garment to facilitate needle electrode placement for intraoperative monitoring |
US20120010651A1 (en) * | 2010-07-07 | 2012-01-12 | ProNerve, LLC | Garment to facilitate needle electrode placement for intraoperative monitoring |
US9226535B1 (en) | 2010-07-07 | 2016-01-05 | Specialtycare Iom Services, Llc | Garment to facilitate needle electrode placement for intraoperative monitoring |
US8430848B1 (en) | 2010-08-13 | 2013-04-30 | Jonathan Dawrant | Reservoir and administration device with ratcheting mechanism |
US8945071B2 (en) | 2010-09-02 | 2015-02-03 | Becton, Dickinson And Company | Self-injection device having needle cover with activation preventer |
US9675752B2 (en) | 2010-09-02 | 2017-06-13 | Becton, Dickinson And Company | Self-injection device having needle cover with activation preventer |
US11110225B2 (en) | 2011-10-14 | 2021-09-07 | Amgen Inc. | Injector and method of assembly |
US10314976B2 (en) | 2011-10-14 | 2019-06-11 | Amgen Inc. | Method of assembling and filling a drug delivery device |
US10537681B2 (en) | 2011-10-14 | 2020-01-21 | Amgen Inc. | Injector and method of assembly |
US11160931B2 (en) | 2011-10-14 | 2021-11-02 | Amgen Inc. | Method of assembling and filling a drug delivery device |
US11129941B2 (en) | 2011-10-14 | 2021-09-28 | Amgen Inc. | Method of assembling and filling a drug delivery device |
US11298463B2 (en) | 2011-10-14 | 2022-04-12 | Amgen Inc. | Method of assembling and filling a drug delivery device |
US11058821B2 (en) | 2011-10-14 | 2021-07-13 | Amgen Inc. | Injector and method of assembly |
US11273260B2 (en) | 2011-10-14 | 2022-03-15 | Amgen Inc. | Injector and method of assembly |
US10537682B2 (en) | 2011-10-14 | 2020-01-21 | Amgen Inc. | Injector and method of assembly |
US9987428B2 (en) | 2011-10-14 | 2018-06-05 | Amgen Inc. | Injector and method of assembly |
US11684713B2 (en) | 2012-03-30 | 2023-06-27 | Insulet Corporation | Fluid delivery device, transcutaneous access tool and insertion mechanism for use therewith |
US10258736B2 (en) | 2012-05-17 | 2019-04-16 | Tandem Diabetes Care, Inc. | Systems including vial adapter for fluid transfer |
US9962486B2 (en) | 2013-03-14 | 2018-05-08 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US10850037B2 (en) | 2013-03-22 | 2020-12-01 | Amgen Inc. | Injector and method of assembly |
US11759571B2 (en) | 2013-03-22 | 2023-09-19 | Amgen Inc. | Injector and method of assembly |
US11660387B2 (en) * | 2013-05-31 | 2023-05-30 | Mannkind Corporation | Fluid delivery device having an insertable prefilled cartridge |
US20200188580A1 (en) * | 2013-05-31 | 2020-06-18 | Valeritas, Inc. | Fluid Delivery Device Having an Insertable Prefilled Cartridge |
US11147914B2 (en) | 2013-07-19 | 2021-10-19 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US12064591B2 (en) | 2013-07-19 | 2024-08-20 | Insulet Corporation | Infusion pump system and method |
US11097055B2 (en) | 2013-10-24 | 2021-08-24 | Amgen Inc. | Injector and method of assembly |
US11464906B2 (en) | 2013-12-02 | 2022-10-11 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10777319B2 (en) | 2014-01-30 | 2020-09-15 | Insulet Netherlands B.V. | Therapeutic product delivery system and method of pairing |
US11386996B2 (en) | 2014-01-30 | 2022-07-12 | Insulet Netherlands B.V. | Therapeutic product delivery system and method of pairing |
EP3197524A4 (en) * | 2014-09-22 | 2018-11-07 | Becton Dickinson and Company | Plate with integral fluid path channels |
US12036386B2 (en) | 2014-09-22 | 2024-07-16 | Becton, Dickinson And Company | Plate with integral fluid path channels |
US10449292B2 (en) * | 2014-09-22 | 2019-10-22 | Becton, Dickinson And Company | Plate with integral fluid path channels |
WO2016048878A1 (en) * | 2014-09-22 | 2016-03-31 | Becton, Dickinson And Company | Plate with integral fluid path channels |
US11383028B2 (en) | 2014-09-22 | 2022-07-12 | Becton, Dickinson And Company | Plate with integral fluid path channels |
US20170246384A1 (en) * | 2014-09-22 | 2017-08-31 | Becton, Dickinson And Company | Plate with integral fluid path channels |
US11596740B2 (en) | 2015-02-18 | 2023-03-07 | Insulet Corporation | Fluid delivery and infusion devices, and methods of use thereof |
US11471598B2 (en) | 2015-04-29 | 2022-10-18 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
US11364341B2 (en) | 2015-11-25 | 2022-06-21 | Insulet Corporation | Wearable medication delivery device |
JPWO2017104432A1 (en) * | 2015-12-15 | 2018-08-30 | 久光製薬株式会社 | Liquid bag |
US11033458B2 (en) | 2015-12-15 | 2021-06-15 | Hisamitsu Pharmaceutical Co., Inc. | Bag for liquids |
US10987468B2 (en) | 2016-01-05 | 2021-04-27 | Bigfoot Biomedical, Inc. | Operating multi-modal medicine delivery systems |
US11929158B2 (en) | 2016-01-13 | 2024-03-12 | Insulet Corporation | User interface for diabetes management system |
US11857763B2 (en) | 2016-01-14 | 2024-01-02 | Insulet Corporation | Adjusting insulin delivery rates |
US12106837B2 (en) | 2016-01-14 | 2024-10-01 | Insulet Corporation | Occlusion resolution in medication delivery devices, systems, and methods |
US10363342B2 (en) | 2016-02-04 | 2019-07-30 | Insulet Corporation | Anti-inflammatory cannula |
US9907904B2 (en) | 2016-05-10 | 2018-03-06 | Burton H. Sage, Jr. | Spring-driven drug delivery device |
US11724027B2 (en) | 2016-09-23 | 2023-08-15 | Insulet Corporation | Fluid delivery device with sensor |
US12076160B2 (en) | 2016-12-12 | 2024-09-03 | Insulet Corporation | Alarms and alerts for medication delivery devices and systems |
US11969579B2 (en) | 2017-01-13 | 2024-04-30 | Insulet Corporation | Insulin delivery methods, systems and devices |
US12042630B2 (en) | 2017-01-13 | 2024-07-23 | Insulet Corporation | System and method for adjusting insulin delivery |
US12161841B2 (en) | 2017-01-13 | 2024-12-10 | Insulet Corporation | Insulin delivery methods, systems and devices |
US11045603B2 (en) | 2017-02-22 | 2021-06-29 | Insulet Corporation | Needle insertion mechanisms for drug containers |
US10898656B2 (en) | 2017-09-26 | 2021-01-26 | Insulet Corporation | Needle mechanism module for drug delivery device |
US11147931B2 (en) | 2017-11-17 | 2021-10-19 | Insulet Corporation | Drug delivery device with air and backflow elimination |
USD1020794S1 (en) | 2018-04-02 | 2024-04-02 | Bigfoot Biomedical, Inc. | Medication delivery device with icons |
US12090301B2 (en) | 2018-05-04 | 2024-09-17 | Insulet Corporation | Safety constraints for a control algorithm based drug delivery system |
US11565043B2 (en) | 2018-05-04 | 2023-01-31 | Insulet Corporation | Safety constraints for a control algorithm based drug delivery system |
US11660389B2 (en) * | 2018-07-17 | 2023-05-30 | Insulet Corporation | Semi-rigid and flexible elements for wearable drug delivery device reservoir |
US11628251B2 (en) | 2018-09-28 | 2023-04-18 | Insulet Corporation | Activity mode for artificial pancreas system |
US11565039B2 (en) | 2018-10-11 | 2023-01-31 | Insulet Corporation | Event detection for drug delivery system |
EP3656417A1 (en) * | 2018-11-20 | 2020-05-27 | Becton, Dickinson and Company | Fluid path channel and adsorbent |
US11617825B2 (en) | 2018-11-20 | 2023-04-04 | Becton, Dickinson And Company | Fluid path channel and adsorbent |
USD1024090S1 (en) | 2019-01-09 | 2024-04-23 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
US11957875B2 (en) | 2019-12-06 | 2024-04-16 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
US12036389B2 (en) | 2020-01-06 | 2024-07-16 | Insulet Corporation | Prediction of meal and/or exercise events based on persistent residuals |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US11547800B2 (en) | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
US12121700B2 (en) | 2020-07-22 | 2024-10-22 | Insulet Corporation | Open-loop insulin delivery basal parameters based on insulin delivery records |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
US12115351B2 (en) | 2020-09-30 | 2024-10-15 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
US12128215B2 (en) | 2020-09-30 | 2024-10-29 | Insulet Corporation | Drug delivery device with integrated optical-based glucose monitor |
US12121701B2 (en) | 2021-01-29 | 2024-10-22 | Insulet Corporation | Systems and methods for incorporating co-formulations of insulin in an automatic insulin delivery system |
US11904140B2 (en) | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
US11738144B2 (en) | 2021-09-27 | 2023-08-29 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
US12097355B2 (en) | 2023-01-06 | 2024-09-24 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5693018A (en) | Subdermal delivery device | |
US5957891A (en) | Fluid delivery device with fill adapter | |
US5885250A (en) | Fluid delivery device with conformable ullage | |
US5925017A (en) | Fluid delivery device with bolus injection site | |
US5716343A (en) | Fluid delivery apparatus | |
US5779676A (en) | Fluid delivery device with bolus injection site | |
US5921962A (en) | Fluid delivery device with flow indicator and rate control | |
US5656032A (en) | Fluid delivery apparatus and method of making same | |
CA2420048C (en) | Constant rate fluid delivery device with selectable flow rate and titratable bolus button | |
US5830187A (en) | Fluid delivery device with conformable ullage and fill assembly | |
US6537249B2 (en) | Multiple canopy | |
US6126637A (en) | Fluid delivery device with collapsible needle cover | |
US6200293B1 (en) | Fluid delivery device with temperature controlled energy source | |
EP1464351B1 (en) | Low-profile automatic injection device with self-emptying reservoir | |
US7018360B2 (en) | Flow restriction system and method for patient infusion device | |
AU5198100A (en) | Fluid delivery apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCIENCE INCORPORATED, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRIESEL, MARSHALL S.;KAZEMZADEH, FARHAD;KRIESEL, MATTHEW B.;AND OTHERS;REEL/FRAME:008596/0621;SIGNING DATES FROM 19951212 TO 19951213 |
|
AS | Assignment |
Owner name: WALLIN R. WALLIN D/B/A WALLIN FAMILY FOUNDATION, M Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: WILLIAM F. FARLEY D/B/A LIVINGSTON CAPITAL, MINNES Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: HODDER, WILLIAM A., MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: BRATTAIN, DONALD, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: BEDNARCZYK, W. WILLIAM, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: SIT INVESTMENT ASSOCIATES, INC., BY EUGENE C. SIT, Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: DAVID E. KELBY AND VIRGINIA H. KELBY, AS JOINT TEN Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: GROSSMAN INVESTMENTS D/B/A N. BUD GROSSMAN, MANAGI Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 Owner name: OKABENA PARTNERSHIP V-8 BY OKABENA INVESTMENT SERV Free format text: SECURITY INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:011958/0404 Effective date: 20001106 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20051202 |
|
AS | Assignment |
Owner name: SCIENCE INCORPORATED, MINNESOTA Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNORS:OKABENA PARTNERSIP V-8 BY OKABENA INVESTMENT SERVICES, INC. MANAGER;WINSTON R. WALLIN/WALLIN FAMILY FOUNDATION;WILLIAM F. FARLEY D/B/A LIVINGSTON CAPITAL;AND OTHERS;REEL/FRAME:019704/0733 Effective date: 20070628 Owner name: PESCADERO BEACH HOLDINGS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCIENCO INCORPORATED;REEL/FRAME:019733/0235 Effective date: 20070710 |
|
AS | Assignment |
Owner name: PESCADERO BEACH HOLDINGS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCIENCE INCORPORATED;REEL/FRAME:019733/0298 Effective date: 20070710 |