US5916178A - Steerable high support guidewire with thin wall nitinol tube - Google Patents
Steerable high support guidewire with thin wall nitinol tube Download PDFInfo
- Publication number
- US5916178A US5916178A US08/851,392 US85139297A US5916178A US 5916178 A US5916178 A US 5916178A US 85139297 A US85139297 A US 85139297A US 5916178 A US5916178 A US 5916178A
- Authority
- US
- United States
- Prior art keywords
- segment
- guidewire
- tube
- outer diameter
- distal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001000 nickel titanium Inorganic materials 0.000 title claims description 11
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 title description 3
- 230000007704 transition Effects 0.000 claims abstract description 70
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 6
- 239000000057 synthetic resin Substances 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- -1 polyethylene Polymers 0.000 claims description 11
- 229920001971 elastomer Polymers 0.000 claims description 9
- 239000000806 elastomer Substances 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 239000003550 marker Substances 0.000 claims description 5
- 229910002535 CuZn Inorganic materials 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 4
- 239000004800 polyvinyl chloride Substances 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 229910003172 MnCu Inorganic materials 0.000 claims description 3
- 229910000943 NiAl Inorganic materials 0.000 claims description 3
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 14
- 238000000034 method Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 229910005335 FePt Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 229910004337 Ti-Ni Inorganic materials 0.000 description 1
- 229910011209 Ti—Ni Inorganic materials 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012781 shape memory material Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09175—Guide wires having specific characteristics at the distal tip
Definitions
- the present invention relates to guidewires, and more particularly, to high support guidewires with a flexible tube at the distal end.
- a guidewire can be used in PTCA procedures such as balloon angioplasty, atherectomy, stent implantation procedures, or radiology procedures.
- PTCA percutaneous transluminal coronary angioplasty
- This procedure can be used, for example, to reduce arterial build-up of cholesterol fats or atherosclerotic plaque.
- a guidewire is steered through vascular system to the site of therapy.
- a guiding catheter for example, can then be advanced over the guidewire and a balloon catheter advanced within the guiding catheter over the guidewire.
- the balloon at the distal end of the catheter is inflated causing the site of the stenosis to widen.
- the original catheter can then be withdrawn and a catheter of a different size or another device such as an atherectomy device can be inserted.
- a tapered stainless steel core wire has a platinum spring coil wound around the tapered distal end of the core wire.
- the tapered area of the core wire is called the transition segment. The longer the tapered transition segment, the more flexible the guidewire.
- a blunt tip is typically welded to the distal end of the guidewire to reduce trauma to the blood vessel.
- Support refers to a guidewire's ability to provide a strong "platform" or track for the catheter to move over as it is crossing the lesion. Support becomes crucial when the lesion is tight. Catheters are soft and rely heavily on the support provided by the guidewire.
- the spring coil is typically used to provide device support and maintain a consistent guidewire outer diameter. If the outer diameter of the guidewire is reduced, it will exert more force per unit area and may result in cutting through the blood vessel rather than tracking through the bends in the vessels. Increasing core wire diameter also assists in providing enhanced support.
- the spring coil wire is wound into a coil and placed over the core wire. The spring coil proximal end is difficult to attach to the core wire.
- a typical spring coil is approximately 0.002 inches in diameter thereby providing a very small area with which to attach to the core wire.
- Spring coil guidewire construction has been known in the art for many years. An early example of such guidewire construction includes U.S. Pat. No. 3,789,841 for a "Disposable Guide Wire" to Antoshkiw.
- Transition refers to areas of changing diameter along the guidewire.
- a smooth transition gives the guidewire the ability to follow itself smoothly around vascular bends. If a stiffer portion of the guidewire behind the flexible tip does not follow the tip around vascular bends, the tip position may be lost.
- a guidewire with poor or rough transition will show elbows or bends in the vascular curves. Without smooth transitions a guidewire will not corner smoothly. Smooth transitions also facilitate the tracking of the balloon catheter over the wire when crossing the lesion.
- U.S. Pat. No. 4,884,579 to Engelson for "Catheter Guidewire” discloses a guidewire with proximal, intermediate and distal sections.
- the intermediate section has greater lubricity than the adjacent proximal and distal sections.
- the greater frictional coefficient in the distal end segment acts to anchor the end of the wire in a branch vessel when the guide wire has been advanced across the sharp-bend vessel junction.
- the distal segment of the core wire is incased in a polymer tube having a series of annular grooves to provide increased tube flexibility as well as greater frictional coefficient.
- Elastomers and shape memory materials have been used in the catheter industry to promote elasticity and to promote tips that will return to a preformed curve after flexing.
- Super-elastic guidewires are known in the art, as for example, U.S. Pat. No. 4,925,445, to Sakamoto et al. for "Guide Wire for Catheter” which discloses a guidewire with at least portions of the inner core formed of the super-elastic metallic member.
- U.S. Pat. No. 5,067,489 to Lind for "Flexible Guide with Safety Tip” discloses an elongated, helically wound coil and an elongated flexible metal core of shape memory alloy.
- Catheter Guidewire with Pseudo Elastic Shape Memory Alloy discloses a catheter guide wire comprising a solid core wire of Ti-Ni shape memory alloy and an outer jacket covering the core wire.
- the jacket is made of any one of synthetic resins such as polyethylene, polyvinyl chloride, polyester, polypropylene, polyamide, polyurethane, polystyrene, fluoride resin, silicone rubber, and other elastomers.
- synthetic resins such as polyethylene, polyvinyl chloride, polyester, polypropylene, polyamide, polyurethane, polystyrene, fluoride resin, silicone rubber, and other elastomers.
- 5,243,996 to Hall for "Small-Diameter Superelastic Wire Guide” discloses a mandrel of metallic superelastic material, such as nitinol having a smoothly rounded tip attached to the distal tip of the mandrel and a coil attached at the distal region of the mandrel, the coil coaxially surrounding a portion of the distal region.
- a drawback of spring coils as currently used in guidewires is that their indented surface may not pass through tight lesions effectively and may catch on devices being passed over them such as devices with cutting mechanisms. Another disadvantage is that they may provide too much flexibility for some devices to properly track over. Additionally, the spring coil is difficult to manufacture because it requires the wire to be helically wound with a uniform outer diameter, then placed over the core wire and welded thereto. The spring coil is also prone to separation where it attaches.
- An object of the invention is to eliminate the need of a guidewire spring coil while maintaining a uniform shaft outer diameter and providing sufficient support for more difficult PTCA procedures such as total occlusions, atherectomy, Rotoblator ® (a registered trademark of Heart Technology, Inc.) and stent delivery. Another object of the invention is to provide steerability for wire placement. Yet another object of the invention is to avoid attachment weakness at the location where the spring coil would have attached to the core wire.
- a guidewire for use in a catheter comprising a unitary core wire, a distal tip and an elongate tube.
- the core wire has a body segment and a transition segment, the body segment being of substantially uniform outer diameter with a distal end serially disposed proximal to the transition segment proximal end, the transition segment being more flexible than the body segment, and progressively reduced in cross-section from the body segment.
- the smoothly rounded distal tip is affixed to the distal end of the transition segment.
- the elongate tube defines a tube lumen, the core wire transition segment extends longitudinally through the tube, the tube having a uniform outer diameter equal to the outer diameter of the body segment, the proximal end of the tube being affixed to the proximal end of the transition segment, the distal end of the tube being affixed to the distal tip.
- the tube may be formed of a super-elastic metallic member or formed from a synthetic resin.
- the tube wall thickness is preferably between 0.002 inches and 0.005 inches.
- FIG. 1 is an enlarged sectional view of a catheter guidewire according to the invention.
- FIG. 2 is an enlarged sectional view of a catheter guidewire according to the invention showing orifices in the tube.
- Prior art guidewires are currently constructed with a spring coil over the tapered distal end of the core wire to increase flexibility while maintaining a constant shaft outer diameter.
- a radiused blunt tip is soldered to the distal end of the core wire and spring coil.
- Applicant's guidewire 20 is a standard length of 175-310 cm long. Instead of a spring coil, however, applicant's guidewire 20 is constructed using a tube 30 which can be made of an elastomer or an alloy which is highly flexible without permanent deformation such as a shape memory alloy.
- the tube 30 can be approximately 10 cm to 40 cm long, preferably 0 cm which is the average length from the coronary vessel to the aortic arch.
- the tube 30 can preferably be made of a shape memory alloy such as nitinol manufactured by Raychem or Forukawa.
- a preferred embodiment uses NiTi 49-51 atom % Ni.
- Shape memory alloys allow one to deform the alloy at a lower temperature with fairly low force and then with merely the application of heat, the material will exert a very strong force as it attempts to regain its previous shape.
- a useful shape memory alloy property includes an exceptional superelastic springiness if one deforms it at a temperature slightly above the transformation temperature. Shape memory alloys exhibit a very soft, energy absorbing behavior if used just below that temperature.
- NiTi has a much lower effective modulus than stainless steel.
- the Ni Ti family is the most commercially attractive system.
- the NiTi alloy has constituents which are not prohibitively expensive, can be fabricated with existing metalworking techniques and have greater shape memory strain (up to 8%) than other alloys. As seen from the shape memory alloy list supra, many contain expensive or exotic elements which are less commercially attractive than NiTi.
- Tube 30 can also be made of a synthetic resin elastomer such as any one of polyethylene, polyvinyl chloride, polyester, polypropylene, polyamide, polyurethane, polystyrene, and other elastomers.
- a fluoropolymer can also be used such as TEFLON® from E.I. Du Pont de Nemours & Company, Wilmington, Del.
- TEFLON® is a form of polytetrafluoroethylene (PTFE).
- Elastomers are lower cost then shape memory alloys. Shape memory alloys, however, provide more rigidity for better support than most of the elastomers.
- the tube 30 is supported by a distally tapering core wire 25.
- the core wire 25 can be constructed of stainless steel. Variable stiffness in the core wire 25 can be achieved by step grinding tapers of differing diameters.
- the first core wire taper 60 from the proximal end of the core wire 25 would be a diameter reduction equal to the thickness of the tube and for a length of 1-5 mm toward the distal end of the tube.
- the proximal end of tube 30 has a complimentary taper which mates with the taper of the first core wire taper 60.
- the tube 30 wall thickness varies depending of the size guidewire 20 used. The bigger the guidewire 20, the thicker the tube 30 must be to provide support.
- a tube 30 wall thickness of 0.002 inches could be used for 0.010 inch diameter guidewires.
- a tube 30 wall thickness of 0.005 inches could be used for 0.040 inch diameter guidewires.
- the preferred tube 30 wall thickness is 0.0025 inches.
- a constant shaft outer diameter is maintained throughout tube 30 by step grinding the distal end of the tube to coincide with the first core wire taper.
- the remaining core wire is step ground at appropriate intervals suitable for standard guidewires such as 0.010 inch to 0.040 inch diameters.
- the first straight segment 65 could have a length of 10-30 cm and would have a diameter of 0.004-0.007 inches.
- the second taper 70 could have a length of 2-20 mm.
- the second straight segment 75 could have a length of 2-10 cm and would have a diameter of 0.002-0.005 inches.
- the proximal end of the guidewire body would have a substantially uniform diameter of 0.014 inches.
- the guidewire core wire body segment 90 and transition segment 85 are made from a unitary piece of material.
- the first core wire taper 60 would have a length of 1-5 mm tapering down from a diameter of 0.014 inches to a diameter of 0.006 inches.
- the first straight segment 65 would have a length of 24 cm and a substantially uniform diameter of 0.006 inches.
- the second core wire taper 70 would have a length of 4 mm and taper down from a diameter of 0.006 inches to a diameter of 0.004 inches.
- the second straight segment 75 would have a length of 8 cm and a substantially uniform diameter of 0.004 inches.
- the preferred tube 30 wall thickness would be about 0.0025 inches. This embodiment's dimensions are preferred because they offer the best combination of flexibility and handling properties for the vascular anatomy.
- the flexible distal section allows the guidewire to bend through tortuous vessels.
- the first straight segment 65 has a greater diameter than the second straight segment 75.
- the tapered segments in conjunction with the tube 30 better transmit torque and also provide a firm platform with high support for devices which are tracked over the guidewire.
- the proximal end of the tube 30 is attached to the core wire 25 with an adhesive 35 at the first taper 60 along the interface of the tube 30 proximal taper but not within the tube lumen 55.
- Adhesives such as cyanoacrylates or epoxy may be used for joining the tube 30 to the core wire 25.
- cyanoacrylates or epoxy may be used for joining the tube 30 to the core wire 25.
- any biocompatible adhesive would be satisfactory.
- the present invention avoids the spring coil proximal end attachment problems of the prior art.
- a typical spring coil is approximately 0.002 inches in diameter thereby providing a very small area with which to attach to the core wire.
- the tube 30 of the present invention provides a 360 degree area of attachment to the core wire 25. The larger surface area provides for a more reliable attachment.
- a tip 40 is brazed or welded to the distal end of the core wire 25.
- the tip 40 can be made of radiopaque materials such as epoxy loaded with tantalum so that the physician can visualize the distal portion under fluoroscopy.
- a second radiopaque marker band 45 can be placed in the distal inner lumen of the tube 30 approximately 1-2 cm from the radiopaque tip 40.
- the marker band 45 can be attached by heat bonding or with an adhesive such as epoxy. Having two radiopaque areas 40 and 45 gives the physician a sense of scale.
- the guidewire 20 is coated with a lubricous coating 95 to enhance the movement of devices over it.
- the guidewire can be coated with a silicone oil or a hydrophilic coating.
- Silicone is that it is inexpensive and easy to apply.
- the advantage of a hydrophilic coating is that it absorbs moisture and becomes slippery when inserted into the blood stream.
- the tube 30 may be cut, indented, grooved or punctured with holes in order to increase its flexibility.
- Such orifices 50 could occur along the distal portion of the tube including from the distal 5 cm to the entire length of the tube 30.
- the distal 2-3 cm usually requires the greatest flexibility and should have the greatest density of orifices 50.
- An additional 2 cm would provide a transition to the full rigidity of the tube by having a lower density of orifices 50. Flexibility is achieved through a combination of orifice 50 size and density. Many small orifices 50 would be better than a few large orifices 50. A few large orifices 50 could act as a stress point or a propagation point for a fracture.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A guidewire for use in a catheter comprising a unitary core wire, a distal tip and an elongate tube. The core wire has a body segment and a transition segment, the body segment being of substantially uniform outer diameter with a distal end serially disposed proximal to the transition segment proximal end, the transition segment being more flexible than the body segment, and progressively reduced in cross-section from the body segment. The smoothly rounded distal tip is affixed to the distal end of the transition segment. The elongate tube defines a tube lumen, the core wire transition segment extends longitudinally through the tube, the tube having a uniform outer diameter equal to the outer diameter of the body segment, the proximal end of the tube being affixed to the proximal end of the transition segment, the distal end of the tube being affixed to the distal tip. The tube may be formed of a super-elastic metallic member or formed from a synthetic resin. The tube wall thickness is preferably between 0.002 inches and 0.005 inches.
Description
This application is a continuation of application Ser. No. 08/414,669 filed on Mar. 30, 1995 now abandoned.
The present invention relates to guidewires, and more particularly, to high support guidewires with a flexible tube at the distal end. Such a guidewire can be used in PTCA procedures such as balloon angioplasty, atherectomy, stent implantation procedures, or radiology procedures.
One of the therapeutic procedures applicable to the present invention is known as percutaneous transluminal coronary angioplasty (PTCA). This procedure can be used, for example, to reduce arterial build-up of cholesterol fats or atherosclerotic plaque. Typically a guidewire is steered through vascular system to the site of therapy. A guiding catheter, for example, can then be advanced over the guidewire and a balloon catheter advanced within the guiding catheter over the guidewire. The balloon at the distal end of the catheter is inflated causing the site of the stenosis to widen. The original catheter can then be withdrawn and a catheter of a different size or another device such as an atherectomy device can be inserted.
The major considerations in guidewire design include steerability, flexibility, medial stiffness or support, bending in transition areas, tip formability and radiopacity. In a typical guidewire construction a tapered stainless steel core wire has a platinum spring coil wound around the tapered distal end of the core wire. The tapered area of the core wire is called the transition segment. The longer the tapered transition segment, the more flexible the guidewire. A blunt tip is typically welded to the distal end of the guidewire to reduce trauma to the blood vessel.
Support refers to a guidewire's ability to provide a strong "platform" or track for the catheter to move over as it is crossing the lesion. Support becomes crucial when the lesion is tight. Catheters are soft and rely heavily on the support provided by the guidewire. The spring coil is typically used to provide device support and maintain a consistent guidewire outer diameter. If the outer diameter of the guidewire is reduced, it will exert more force per unit area and may result in cutting through the blood vessel rather than tracking through the bends in the vessels. Increasing core wire diameter also assists in providing enhanced support. The spring coil wire is wound into a coil and placed over the core wire. The spring coil proximal end is difficult to attach to the core wire. A typical spring coil is approximately 0.002 inches in diameter thereby providing a very small area with which to attach to the core wire. Spring coil guidewire construction has been known in the art for many years. An early example of such guidewire construction includes U.S. Pat. No. 3,789,841 for a "Disposable Guide Wire" to Antoshkiw.
Transition refers to areas of changing diameter along the guidewire. A smooth transition gives the guidewire the ability to follow itself smoothly around vascular bends. If a stiffer portion of the guidewire behind the flexible tip does not follow the tip around vascular bends, the tip position may be lost. A guidewire with poor or rough transition will show elbows or bends in the vascular curves. Without smooth transitions a guidewire will not corner smoothly. Smooth transitions also facilitate the tracking of the balloon catheter over the wire when crossing the lesion.
U.S. Pat. No. 4,884,579 to Engelson for "Catheter Guidewire" discloses a guidewire with proximal, intermediate and distal sections. The intermediate section has greater lubricity than the adjacent proximal and distal sections. The greater frictional coefficient in the distal end segment acts to anchor the end of the wire in a branch vessel when the guide wire has been advanced across the sharp-bend vessel junction. In FIG. 6, the distal segment of the core wire is incased in a polymer tube having a series of annular grooves to provide increased tube flexibility as well as greater frictional coefficient.
Elastomers and shape memory materials have been used in the catheter industry to promote elasticity and to promote tips that will return to a preformed curve after flexing. Super-elastic guidewires are known in the art, as for example, U.S. Pat. No. 4,925,445, to Sakamoto et al. for "Guide Wire for Catheter" which discloses a guidewire with at least portions of the inner core formed of the super-elastic metallic member. U.S. Pat. No. 5,067,489 to Lind for "Flexible Guide with Safety Tip" discloses an elongated, helically wound coil and an elongated flexible metal core of shape memory alloy. U.S. Pat. No. 5,069,226 to Yamauchi et al. for "Catheter Guidewire with Pseudo Elastic Shape Memory Alloy" discloses a catheter guide wire comprising a solid core wire of Ti-Ni shape memory alloy and an outer jacket covering the core wire. The jacket is made of any one of synthetic resins such as polyethylene, polyvinyl chloride, polyester, polypropylene, polyamide, polyurethane, polystyrene, fluoride resin, silicone rubber, and other elastomers. U.S. Pat. No. 5,243,996 to Hall for "Small-Diameter Superelastic Wire Guide" discloses a mandrel of metallic superelastic material, such as nitinol having a smoothly rounded tip attached to the distal tip of the mandrel and a coil attached at the distal region of the mandrel, the coil coaxially surrounding a portion of the distal region.
A drawback of spring coils as currently used in guidewires is that their indented surface may not pass through tight lesions effectively and may catch on devices being passed over them such as devices with cutting mechanisms. Another disadvantage is that they may provide too much flexibility for some devices to properly track over. Additionally, the spring coil is difficult to manufacture because it requires the wire to be helically wound with a uniform outer diameter, then placed over the core wire and welded thereto. The spring coil is also prone to separation where it attaches. An object of the invention is to eliminate the need of a guidewire spring coil while maintaining a uniform shaft outer diameter and providing sufficient support for more difficult PTCA procedures such as total occlusions, atherectomy, Rotoblator ® (a registered trademark of Heart Technology, Inc.) and stent delivery. Another object of the invention is to provide steerability for wire placement. Yet another object of the invention is to avoid attachment weakness at the location where the spring coil would have attached to the core wire.
The above objects and advantages of the present invention, as well as others, are accomplished by providing a guidewire for use in a catheter comprising a unitary core wire, a distal tip and an elongate tube. The core wire has a body segment and a transition segment, the body segment being of substantially uniform outer diameter with a distal end serially disposed proximal to the transition segment proximal end, the transition segment being more flexible than the body segment, and progressively reduced in cross-section from the body segment. The smoothly rounded distal tip is affixed to the distal end of the transition segment. The elongate tube defines a tube lumen, the core wire transition segment extends longitudinally through the tube, the tube having a uniform outer diameter equal to the outer diameter of the body segment, the proximal end of the tube being affixed to the proximal end of the transition segment, the distal end of the tube being affixed to the distal tip. The tube may be formed of a super-elastic metallic member or formed from a synthetic resin. The tube wall thickness is preferably between 0.002 inches and 0.005 inches.
FIG. 1 is an enlarged sectional view of a catheter guidewire according to the invention; and
FIG. 2 is an enlarged sectional view of a catheter guidewire according to the invention showing orifices in the tube.
Prior art guidewires are currently constructed with a spring coil over the tapered distal end of the core wire to increase flexibility while maintaining a constant shaft outer diameter. A radiused blunt tip is soldered to the distal end of the core wire and spring coil. Applicant's guidewire 20 is a standard length of 175-310 cm long. Instead of a spring coil, however, applicant's guidewire 20 is constructed using a tube 30 which can be made of an elastomer or an alloy which is highly flexible without permanent deformation such as a shape memory alloy. The tube 30 can be approximately 10 cm to 40 cm long, preferably 0 cm which is the average length from the coronary vessel to the aortic arch. The tube 30 can preferably be made of a shape memory alloy such as nitinol manufactured by Raychem or Forukawa. A preferred embodiment uses NiTi 49-51 atom % Ni.
Shape memory alloys allow one to deform the alloy at a lower temperature with fairly low force and then with merely the application of heat, the material will exert a very strong force as it attempts to regain its previous shape. A useful shape memory alloy property includes an exceptional superelastic springiness if one deforms it at a temperature slightly above the transformation temperature. Shape memory alloys exhibit a very soft, energy absorbing behavior if used just below that temperature.
Examples of shape memory alloys which have a superelastic effect include AgCd 44-49 atom % Cd; AuCd 46.5-50 atom % Cd; CuAlNi 14-14.5 weight % Al, 3-4.5 weight % Ni; CuZn 38.5-41.5 weight % Zn; CuZn X few Weight % X, (X=Si, Sn, Al); InTi 18-23 atom % Ti; NiAl 36-38 atom % Al; NiTi 49-58 atom % Ni; FePt 25 atom % Pt; MnCu 5-35 atom % Cu; FeMnSi 32 weight % Mn, 6 weight % Si.
The use of superelastic NiTi wire has significant advantages over more conventional materials as well as other shape memory alloys. NiTi has a much lower effective modulus than stainless steel. Of the shape memory alloys, the Ni Ti family is the most commercially attractive system. The NiTi alloy has constituents which are not prohibitively expensive, can be fabricated with existing metalworking techniques and have greater shape memory strain (up to 8%) than other alloys. As seen from the shape memory alloy list supra, many contain expensive or exotic elements which are less commercially attractive than NiTi.
The tube 30 is supported by a distally tapering core wire 25. The core wire 25 can be constructed of stainless steel. Variable stiffness in the core wire 25 can be achieved by step grinding tapers of differing diameters. The first core wire taper 60 from the proximal end of the core wire 25 would be a diameter reduction equal to the thickness of the tube and for a length of 1-5 mm toward the distal end of the tube. The proximal end of tube 30 has a complimentary taper which mates with the taper of the first core wire taper 60. The tube 30 wall thickness varies depending of the size guidewire 20 used. The bigger the guidewire 20, the thicker the tube 30 must be to provide support. For example, a tube 30 wall thickness of 0.002 inches could be used for 0.010 inch diameter guidewires. A tube 30 wall thickness of 0.005 inches could be used for 0.040 inch diameter guidewires. The preferred tube 30 wall thickness is 0.0025 inches. A constant shaft outer diameter is maintained throughout tube 30 by step grinding the distal end of the tube to coincide with the first core wire taper. The remaining core wire is step ground at appropriate intervals suitable for standard guidewires such as 0.010 inch to 0.040 inch diameters. For example, assume a standard 0.014 inch guidewire with a 30 cm tube 30. The first straight segment 65 could have a length of 10-30 cm and would have a diameter of 0.004-0.007 inches. The second taper 70 could have a length of 2-20 mm. The second straight segment 75 could have a length of 2-10 cm and would have a diameter of 0.002-0.005 inches. There can be an optional 50% increased diameter final grind attachment taper 80 at the most distal end of the core wire 25 to allow greater surface area for attaching the distal end of tube 30.
An example of a preferred embodiment would contain the following dimensions. The proximal end of the guidewire body would have a substantially uniform diameter of 0.014 inches. The guidewire core wire body segment 90 and transition segment 85 are made from a unitary piece of material. The first core wire taper 60 would have a length of 1-5 mm tapering down from a diameter of 0.014 inches to a diameter of 0.006 inches. The first straight segment 65 would have a length of 24 cm and a substantially uniform diameter of 0.006 inches. The second core wire taper 70 would have a length of 4 mm and taper down from a diameter of 0.006 inches to a diameter of 0.004 inches. The second straight segment 75 would have a length of 8 cm and a substantially uniform diameter of 0.004 inches. The preferred tube 30 wall thickness would be about 0.0025 inches. This embodiment's dimensions are preferred because they offer the best combination of flexibility and handling properties for the vascular anatomy. The flexible distal section allows the guidewire to bend through tortuous vessels. The first straight segment 65 has a greater diameter than the second straight segment 75. The tapered segments in conjunction with the tube 30 better transmit torque and also provide a firm platform with high support for devices which are tracked over the guidewire.
The proximal end of the tube 30 is attached to the core wire 25 with an adhesive 35 at the first taper 60 along the interface of the tube 30 proximal taper but not within the tube lumen 55. Adhesives such as cyanoacrylates or epoxy may be used for joining the tube 30 to the core wire 25. Those skilled in the art would recognize that any biocompatible adhesive would be satisfactory. The present invention avoids the spring coil proximal end attachment problems of the prior art. A typical spring coil is approximately 0.002 inches in diameter thereby providing a very small area with which to attach to the core wire. The tube 30 of the present invention provides a 360 degree area of attachment to the core wire 25. The larger surface area provides for a more reliable attachment.
A tip 40 is brazed or welded to the distal end of the core wire 25. The tip 40 can be made of radiopaque materials such as epoxy loaded with tantalum so that the physician can visualize the distal portion under fluoroscopy. A second radiopaque marker band 45 can be placed in the distal inner lumen of the tube 30 approximately 1-2 cm from the radiopaque tip 40. The marker band 45 can be attached by heat bonding or with an adhesive such as epoxy. Having two radiopaque areas 40 and 45 gives the physician a sense of scale.
After attaching the tube 30 to the core wire 25, the guidewire 20 is coated with a lubricous coating 95 to enhance the movement of devices over it. The guidewire can be coated with a silicone oil or a hydrophilic coating. The advantage of Silicone is that it is inexpensive and easy to apply. The advantage of a hydrophilic coating is that it absorbs moisture and becomes slippery when inserted into the blood stream.
The tube 30 may be cut, indented, grooved or punctured with holes in order to increase its flexibility. Such orifices 50 could occur along the distal portion of the tube including from the distal 5 cm to the entire length of the tube 30. The distal 2-3 cm usually requires the greatest flexibility and should have the greatest density of orifices 50. An additional 2 cm would provide a transition to the full rigidity of the tube by having a lower density of orifices 50. Flexibility is achieved through a combination of orifice 50 size and density. Many small orifices 50 would be better than a few large orifices 50. A few large orifices 50 could act as a stress point or a propagation point for a fracture.
The preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, however, that other expedients known to those skilled in the art or disclosed herein, may be employed without departing from the spirit of the invention or the scope of the appended claims.
______________________________________ No. Component ______________________________________ 20Guidewire 25Core Wire 30Flexible Tube 35 Adhesive 40Tip 45Radiopaque Marker Band 50Orifice 55Tube Lumen 60First taper 65First Straight Segment 70Second Taper 75Second Straight Segment 80Attachment Taper 85Transition Segment 90 CoreWire Body Segment 95 Lubricous Coating ______________________________________
Claims (45)
1. A guidewire for use in a catheter, comprising:
an elongate unitary core wire having a body segment and a transition segment, the body segment being of substantially uniform outer diameter, the body segment having a proximal end and a distal end, the transition segment having an outer diameter, a proximal end and a distal end, the body segment distal end being serially disposed proximal to the transition segment proximal end, the transition segment being more flexible than the body segment, the transition segment being progressively reduced in cross-section from the body segment;
a smoothly rounded distal tip affixed to the distal end of the transition segment; and
an elongate tube having an inner diameter, the elongate tube defining a hollow tube lumen, the transition segment extending longitudinally through the tube lumen, the outer diameter of the transition segment being spaced apart from the inner diameter of the elongate tube to define a hollow area having no structure therebetween over at least a major portion of the transition segment for increased flexibility, the tube having a proximal end and a distal end, the tube having a uniform outer diameter equal to the outer diameter of the core wire body segment, the proximal end of the tube being affixed to the proximal end of the transition segment, the distal end of the tube being affixed to the distal tip, the tube being of a unitary, non-coiled construction.
2. The guidewire of claim 1 wherein the transition segment further comprises at least one tapered segment and at least one straight segment, the tapered and straight segments being serially disposed and alternating with each other beginning with a first tapered segment, the first tapered segment having a distal end and a proximal end, the first tapered segment tapering down in outer diameter from the outer diameter of the distal end of the body segment to the outer diameter of the proximal end of the first straight segment.
3. The guidewire of claim 2 wherein the transition segment further comprises a second tapered segment and a second straight segment, the second tapered segment having a proximal end and a distal end, the proximal end being serially disposed distal to the distal end of the first straight segment, the second tapered segment proximal end having an outer diameter equal to the outer diameter of the distal end of the first straight segment, the second straight segment having a proximal end and a distal end, the second straight segment having a substantially uniform outer diameter equal to the outer diameter of the distal end of the second tapered segment.
4. The guidewire of claim 3 wherein the transition segment further comprises an attachment segment having a proximal end and a distal end, the proximal end of the attachment segment being serially disposed distal to the distal end of the second straight segment, the attachment segment proximal end outer diameter being substantially equal to the outer diameter of the distal end of the second straight segment.
5. The guidewire of claim 3 wherein the transition segment further comprises a first tapered segment having a length of about 1-5 mm.
6. The guidewire of claim 3 wherein the transition segment further comprises a first straight segment having a length of about 10-30 cm.
7. The guidewire of claim 3 wherein the transition segment further comprises a first straight segment having an outer diameter of about 0.004-0.007 inches.
8. The guidewire of claim 3 wherein the transition segment further comprises a second tapered segment having a length of about 2-20 mm.
9. The guidewire of claim 3 wherein the transition segment further comprises a second straight segment having a length of about 2-10 cm.
10. The guidewire of claim 3 wherein the transition segment further comprises a second straight segment having an outer diameter of about 0.002-0.005 inches.
11. The guidewire of claim 3 wherein the attachment segment outer diameter is larger at the distal end than at the proximal end.
12. The guidewire of claim 1 wherein tube is formed of an elastomer selected from a group of synthetic resins consisting of polyethylene, polyvinyl chloride, polyester, polypropylene, polyamide, polyurethane, polystyrene and polytetrafluoroethylene.
13. The guidewire of claim 1 wherein the tube is formed of a super-elastic metallic material.
14. The guidewire of claim 1 wherein the tube is formed of a super-elastic metallic member including an alloy selected from the groups consisting of NiTi alloy consisting essentially of 49-58 atom % Ni and the balance substantially Ti, CuZn alloy consisting essentially of 38.5-41.5 weight % Zn and the balance substantially Cu, CuZnX, consisting essentially of few weight % X, (X=Si, Sn, Al), NiAl alloy consisting essentially of 36-38 atom % Al and the balance substantially Ni, CuAlNi 14-14.5 weight % Al, 3-4.5 weight % Ni, MnCu 5-35 atom % Cu, FeMnSi 32 weight % Mn, 6 weight % Si.
15. The guidewire of claim 1 wherein the tube has a plurality of orifices along the tube to cause progressively increasing flexibility towards the distal end of the tube.
16. The guidewire of claim 1 wherein the tube has the same length as the transition segment.
17. The guidewire of claim 1 wherein the tube has a length of about 10-40 cm.
18. The guidewire of claim 1 wherein the proximal end of the tube is adhesively bonded to the proximal end of the transition segment.
19. The guidewire of claim 1 wherein the transition segment has at least one radiopaque marker.
20. The guidewire of claim 1 having an outer surface with a lubricous coating applied thereto.
21. The guidewire of claim 1 wherein the tube of has a wall thickness of between about 0.002 and 0.005 inches.
22. The guidewire of claim 1 wherein the transition segment forms with the elongate tube a tip segment, the tip segment having a curved shape, the tip segment being substantially elastic to flexing of the curved shape,
so that, after a flexing of the curved shape, the tip segment returns to the curved shape.
23. A guidewire for use in a catheter, comprising:
an elongate unitary core wire having a body segment and a transition segment, the body segment being of substantially uniform outer diameter, the body segment having a proximal end and a distal end, the transition segment having an outer diameter, a proximal end and a distal end, the body segment distal end being serially disposed proximal to the transition segment proximal end, the transition segment being more flexible than the body segment, the transition segment being progressively reduced in cross-section from the body segment;
a smoothly rounded distal tip affixed to the distal end of the transition segment; and
an elongate tube having an inner diameter, the elongate tube defining a hollow tube lumen, the transition segment extending longitudinally through the tube lumen, the outer diameter of the transition segment being spaced apart from the inner diameter of the elongate tube to define a hollow area having no structure therebetween over at least a major portion of the transition segment for increased flexibility, the tube having a proximal end and a distal end, the tube having a uniform outer diameter equal to the outer diameter of the core wire body segment, the proximal end of the tube being affixed to the proximal end of the transition segment, the distal end of the tube being affixed to the distal tip, the tube being of a unitary, non-coiled construction;
the transition segment forming with the elongate tube a tip segment, the tip segment having a curved shape, the tip segment being substantially elastic for flexing of the curved shape,
so that, after a flexing of the curved shape, the tip segment returns to the curved shape.
24. The guidewire according to claim 23 wherein the transition segment further comprises at least one tapered segment and at least one straight segment, the tapered and straight segments being serially disposed and alternating with each other beginning with a first tapered segment, the first tapered segment having a distal end and a proximal end, the first tapered segment tapering down in outer diameter from the outer diameter of the distal end of the body segment to the outer diameter of the proximal end of the first straight segment.
25. The guidewire of claim 24 wherein the transition segment further comprises a second tapered segment and a second straight segment, the second tapered segment having a proximal end and a distal end, the proximal end being serially disposed distal to the distal end of the first straight segment, the second tapered segment proximal end having an outer diameter equal to the outer diameter of the distal end of the first straight segment, the second straight segment having a proximal end and a distal end, the second straight segment having a substantially uniform outer diameter equal to the outer diameter of the distal end of the second tapered segment.
26. The guidewire of claim 25 wherein the transition segment further comprises an attachment segment having a proximal end and a distal end, the proximal end of the attachment segment being serially disposed distal to the distal end of the second straight segment, the attachment segment proximal end outer diameter being substantially equal to the outer diameter of the distal end of the second straight segment.
27. The guidewire of claim 25 wherein the transition segment further comprises a first tapered segment having a length of about 1-5 mm.
28. The guidewire of claim 25 wherein the transition segment further comprises a first straight segment having a length of about 10-30 cm.
29. The guidewire of claim 25 wherein the transition segment further comprises a first straight segment having an outer diameter of about 0.004-0.007 inches.
30. The guidewire of claim 25 wherein the transition segment further comprises a second tapered segment having a length of about 2-20 mm.
31. The guidewire of claim 25 wherein the transition segment further comprises a second straight segment having a length of about 2-10 cm.
32. The guidewire of claim 25 wherein the transition segment further comprises a second straight segment having an outer diameter of about 0.002-0.005 inches.
33. The guidewire of claim 25 wherein the attachment segment outer diameter is larger at the distal end than at the proximal end.
34. The guidewire of claim 23 wherein tube is formed of an elastomer selected from a group of synthetic resins consisting of polyethylene, polyvinyl chloride, polyester, polypropylene, polyamide, polyurethane, polystyrene and polytetrafluoroethylene.
35. The guidewire of claim 23 wherein the tube is formed of a super-elastic metallic material.
36. The guidewire of claim 23 wherein the tube is formed of a super-elastic metallic member including an alloy selected from the groups consisting of NiTi alloy consisting essentially of 49-58 atom % Ni and the balance substantially Ti, CuZn alloy consisting essentially of 38.5-41.5 weight % Zn and the balance substantially Cu, CuZnX, consisting essentially of few weight % X, (X=Si, Sn, Al), NiAl alloy consisting essentially of 36-38 atom % Al and the balance substantially Ni, CuAlNi 14-14.5 weight % Al, 3-4.5 weight % Ni, MnCu 5-35 atom % Cu, FeMnSi 32 weight % Mn, 6 weight % Si.
37. The guidewire of claim 23 wherein the tube has a plurality of orifices along the tube to cause progressively increasing flexibility towards the distal end of the tube.
38. The guidewire of claim 23 wherein the tube has the same length as the transition segment.
39. The guidewire of claim 23 wherein the tube has a length of about 10-40 cm.
40. The guidewire of claim 23 wherein the proximal end of the tube is adhesively bonded to the proximal end of the transition segment.
41. The guidewire of claim 23 wherein the transition segment has at least one radiopaque marker.
42. The guidewire of claim 23 having an outer surface with a lubricious coating applied thereto.
43. The guidewire of claim 23 wherein the tube has a wall thickness of between about 0.002 and 0.005 inches.
44. The guidewire of claim 23 wherein the elongate unitary core wire is formed of a stainless steel.
45. The guidewire of claim 23 wherein the elongate tube has a lower modulus than the transition segment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/851,392 US5916178A (en) | 1995-03-30 | 1997-05-05 | Steerable high support guidewire with thin wall nitinol tube |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41466995A | 1995-03-30 | 1995-03-30 | |
US08/851,392 US5916178A (en) | 1995-03-30 | 1997-05-05 | Steerable high support guidewire with thin wall nitinol tube |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US41466995A Continuation | 1995-03-30 | 1995-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5916178A true US5916178A (en) | 1999-06-29 |
Family
ID=23642433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/851,392 Expired - Lifetime US5916178A (en) | 1995-03-30 | 1997-05-05 | Steerable high support guidewire with thin wall nitinol tube |
Country Status (1)
Country | Link |
---|---|
US (1) | US5916178A (en) |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001068176A1 (en) * | 2000-03-13 | 2001-09-20 | Boston Scientific Limited | Intravascular guidewire with perfusion lumen |
US6493591B1 (en) | 2000-07-19 | 2002-12-10 | Medtronic, Inc. | Implantable active fixation lead with guidewire tip |
US6575920B2 (en) * | 2001-05-30 | 2003-06-10 | Scimed Life Systems, Inc. | Distal tip portion for a guide wire |
US20030114777A1 (en) * | 2001-12-18 | 2003-06-19 | Scimed Life Systems, Inc. | Super elastic guidewire with shape retention tip |
US6585717B1 (en) | 1999-06-15 | 2003-07-01 | Cryocath Technologies Inc. | Deflection structure |
US20030139689A1 (en) * | 2001-11-19 | 2003-07-24 | Leonid Shturman | High torque, low profile intravascular guidewire system |
US20030191450A1 (en) * | 2000-04-11 | 2003-10-09 | Scimed Life Systems, Inc. | Reinforced retention structures |
US6652508B2 (en) | 2001-11-09 | 2003-11-25 | Scimed Life Systems, Inc. | Intravascular microcatheter having hypotube proximal shaft with transition |
US20040015151A1 (en) * | 2002-07-22 | 2004-01-22 | Chambers Technologies, Llc | Catheter with flexible tip and shape retention |
US6755794B2 (en) | 2000-04-25 | 2004-06-29 | Synovis Life Technologies, Inc. | Adjustable stylet |
US20040124680A1 (en) * | 2002-08-05 | 2004-07-01 | Harris Robert D. | Portable lumbar support and variable resistance exercise device |
US20040143197A1 (en) * | 2001-08-21 | 2004-07-22 | Synovis Interventional Solutions | Steerable stylet |
US20040193239A1 (en) * | 2001-04-27 | 2004-09-30 | Falwell Gary S | Electrophysiology catheter for mapping and/or ablation |
US20050065456A1 (en) * | 2003-09-22 | 2005-03-24 | Scimed Life Systems, Inc. | Guidewire with reinforcing member |
US6934589B2 (en) | 2000-12-29 | 2005-08-23 | Medtronic, Inc. | System and method for placing endocardial leads |
US20050197597A1 (en) * | 2004-03-05 | 2005-09-08 | Medtronic Vascular, Inc. | Guidewire with hollow distal section |
EP1607035A1 (en) * | 2003-03-25 | 2005-12-21 | Olympus Corporation | Guide wire |
US7022086B2 (en) | 2002-05-21 | 2006-04-04 | Scimed Life Systems, Inc. | Guidewire with encapsulated marker |
US20060074308A1 (en) * | 2004-09-28 | 2006-04-06 | Nasser Rafiee | Catheter with curved distal section having reinforcing strip and method of making same |
US20060089569A1 (en) * | 2004-10-26 | 2006-04-27 | Soukup Thomas M | Articulator with adjustable stiffness distal portion |
US20060118210A1 (en) * | 2004-10-04 | 2006-06-08 | Johnson A D | Portable energy storage devices and methods |
US20060206184A1 (en) * | 2003-09-30 | 2006-09-14 | Cardiac Pacemakers, Inc. | Methods of using a guide wire stylet |
US20060241366A1 (en) * | 2002-10-31 | 2006-10-26 | Gary Falwell | Electrophysiology loop catheter |
US7169118B2 (en) | 2003-02-26 | 2007-01-30 | Scimed Life Systems, Inc. | Elongate medical device with distal cap |
EP1747299A2 (en) * | 2004-05-06 | 2007-01-31 | Tini Alloy Company | Single crystal shape memory alloy devices and methods |
US20070106260A1 (en) * | 2002-02-27 | 2007-05-10 | Terumo Kabushiki Kaisha | Catheter |
US20080015471A1 (en) * | 2003-12-05 | 2008-01-17 | Boston Scientific Scimed, Inc. | Elongated medical device for intracorporal use |
US20080173391A1 (en) * | 2000-12-28 | 2008-07-24 | Boston Scientific Scimed, Inc. | Method of manufacturing a guidewire with an extrusion jacket |
US20080306453A1 (en) * | 2007-06-06 | 2008-12-11 | Cook Incorporated | Coupling wire guide and method for making same |
US20090035859A1 (en) * | 2007-07-30 | 2009-02-05 | Alfred David Johnson | Method and devices for preventing restenosis in cardiovascular stents |
US7488338B2 (en) | 2001-12-27 | 2009-02-10 | Boston Scientific Scimed, Inc. | Catheter having an improved torque transmitting shaft |
US20090076416A1 (en) * | 2007-09-17 | 2009-03-19 | Medtronic Vascular, Inc. | Guidewire with Adjustable Core |
US20090118675A1 (en) * | 2007-11-02 | 2009-05-07 | Boston Scientific Scimed, Inc. | Elongate medical device with a shapeable tip |
US7540865B2 (en) | 2003-03-27 | 2009-06-02 | Boston Scientific Scimed, Inc. | Medical device |
US20090139613A1 (en) * | 2007-12-03 | 2009-06-04 | Tini Alloy Company | Hyperelastic shape setting devices and fabrication methods |
US7632242B2 (en) | 2004-12-09 | 2009-12-15 | Boston Scientific Scimed, Inc. | Catheter including a compliant balloon |
US20100137884A1 (en) * | 2005-03-08 | 2010-06-03 | Eva Bica-Winterling | Method and device for the controlled delivery and placement of securing elements in a body |
US20100198327A1 (en) * | 2009-02-04 | 2010-08-05 | Pacesetter, Inc. | Active Fixation Implantable Medical Lead Configured to Indicate via Fluoroscopy Embedment of Helical Anchor in Cardiac Tissue |
US7803142B2 (en) | 2005-02-02 | 2010-09-28 | Summit Access Llc | Microtaper needle and method of use |
US7824345B2 (en) | 2003-12-22 | 2010-11-02 | Boston Scientific Scimed, Inc. | Medical device with push force limiter |
EP2248543A1 (en) | 2000-08-24 | 2010-11-10 | Cordis Corporation | Fluid delivery systems for delivering fluids to multi-lumen catheters |
US7841994B2 (en) | 2007-11-02 | 2010-11-30 | Boston Scientific Scimed, Inc. | Medical device for crossing an occlusion in a vessel |
US7850623B2 (en) | 2005-10-27 | 2010-12-14 | Boston Scientific Scimed, Inc. | Elongate medical device with continuous reinforcement member |
US7878984B2 (en) | 2002-07-25 | 2011-02-01 | Boston Scientific Scimed, Inc. | Medical device for navigation through anatomy and method of making same |
EP2283891A2 (en) | 2004-01-09 | 2011-02-16 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
US7892186B2 (en) | 2005-12-09 | 2011-02-22 | Heraeus Materials S.A. | Handle and articulator system and method |
US7914466B2 (en) | 1995-12-07 | 2011-03-29 | Precision Vascular Systems, Inc. | Medical device with collapse-resistant liner and method of making same |
US7914467B2 (en) | 2002-07-25 | 2011-03-29 | Boston Scientific Scimed, Inc. | Tubular member having tapered transition for use in a medical device |
US20110083767A1 (en) * | 2007-12-03 | 2011-04-14 | Alfred David Johnson | Hyperelastic shape setting devices and fabrication methods |
US7953497B1 (en) * | 2002-08-06 | 2011-05-31 | Boston Scientific Neuromodulation Corporation | Insertion stylet |
US8105246B2 (en) | 2007-08-03 | 2012-01-31 | Boston Scientific Scimed, Inc. | Elongate medical device having enhanced torque and methods thereof |
EP2415497A1 (en) * | 2010-08-02 | 2012-02-08 | Asahi Intecc Co., Ltd. | Guidewire |
US8137293B2 (en) | 2009-11-17 | 2012-03-20 | Boston Scientific Scimed, Inc. | Guidewires including a porous nickel-titanium alloy |
US8157766B2 (en) | 2005-09-01 | 2012-04-17 | Medrad, Inc. | Torqueable kink-resistant guidewire |
US20120197159A1 (en) * | 2011-01-28 | 2012-08-02 | Asahi Intecc Co., Ltd. | Guidewire |
US20120226103A1 (en) * | 2011-03-01 | 2012-09-06 | Gunday Erhan H | Steerable Catheter |
US20130006149A1 (en) * | 2011-06-29 | 2013-01-03 | Abbott Cardiovascular Systems | Guide Wire Device Including a Solderable Linear Elastic Nickel-Titanium Distal End Section and Methods Of Preparation Therefor |
US8349099B1 (en) | 2006-12-01 | 2013-01-08 | Ormco Corporation | Method of alloying reactive components |
US8376961B2 (en) | 2008-04-07 | 2013-02-19 | Boston Scientific Scimed, Inc. | Micromachined composite guidewire structure with anisotropic bending properties |
US8409114B2 (en) | 2007-08-02 | 2013-04-02 | Boston Scientific Scimed, Inc. | Composite elongate medical device including distal tubular member |
US8449526B2 (en) | 2001-07-05 | 2013-05-28 | Boston Scientific Scimed, Inc. | Torqueable soft tip medical device and method of usage |
US20130211324A1 (en) * | 2006-06-28 | 2013-08-15 | Laveille Kao Voss | Expandable introducer sheath to preserve guidewire access |
US8535243B2 (en) | 2008-09-10 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices and tapered tubular members for use in medical devices |
US8551020B2 (en) | 2006-09-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Crossing guidewire |
US8551021B2 (en) | 2010-03-31 | 2013-10-08 | Boston Scientific Scimed, Inc. | Guidewire with an improved flexural rigidity profile |
US8556969B2 (en) | 2007-11-30 | 2013-10-15 | Ormco Corporation | Biocompatible copper-based single-crystal shape memory alloys |
US8556914B2 (en) | 2006-12-15 | 2013-10-15 | Boston Scientific Scimed, Inc. | Medical device including structure for crossing an occlusion in a vessel |
US8584767B2 (en) | 2007-01-25 | 2013-11-19 | Tini Alloy Company | Sprinkler valve with active actuation |
US8652129B2 (en) | 2008-12-31 | 2014-02-18 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation |
US8684101B2 (en) | 2007-01-25 | 2014-04-01 | Tini Alloy Company | Frangible shape memory alloy fire sprinkler valve actuator |
US8728075B2 (en) | 2010-04-26 | 2014-05-20 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-directional deflectable catheter apparatuses, systems, and methods for renal neuromodulation |
US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
US8795202B2 (en) | 2011-02-04 | 2014-08-05 | Boston Scientific Scimed, Inc. | Guidewires and methods for making and using the same |
US8795254B2 (en) | 2008-12-10 | 2014-08-05 | Boston Scientific Scimed, Inc. | Medical devices with a slotted tubular member having improved stress distribution |
US8821477B2 (en) | 2007-08-06 | 2014-09-02 | Boston Scientific Scimed, Inc. | Alternative micromachined structures |
US9044575B2 (en) | 2012-10-22 | 2015-06-02 | Medtronic Adrian Luxembourg S.a.r.l. | Catheters with enhanced flexibility and associated devices, systems, and methods |
WO2015080948A1 (en) * | 2013-11-26 | 2015-06-04 | Boston Scientific Scimed, Inc. | Medical devices for accessing body lumens |
US9072874B2 (en) | 2011-05-13 | 2015-07-07 | Boston Scientific Scimed, Inc. | Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices |
US20150231370A1 (en) * | 2012-02-02 | 2015-08-20 | Abbott Cardiovascular Systems, Inc. | Guide wire core wire made from a substantially titanium-free alloy for enhanced guide wire steering response |
US9125661B2 (en) | 2002-04-08 | 2015-09-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US9131978B2 (en) | 2002-04-08 | 2015-09-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for bilateral renal neuromodulation |
US9399115B2 (en) | 2012-10-22 | 2016-07-26 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US9445784B2 (en) | 2005-09-22 | 2016-09-20 | Boston Scientific Scimed, Inc | Intravascular ultrasound catheter |
US9459791B2 (en) | 2008-06-28 | 2016-10-04 | Apple Inc. | Radial menu selection |
US9597063B2 (en) | 2006-06-28 | 2017-03-21 | Abbott Laboratories | Expandable introducer sheath to preserve guidewire access |
US9733796B2 (en) | 2009-05-29 | 2017-08-15 | Apple Inc. | Radial menus |
US9808595B2 (en) | 2007-08-07 | 2017-11-07 | Boston Scientific Scimed, Inc | Microfabricated catheter with improved bonding structure |
US9901706B2 (en) | 2014-04-11 | 2018-02-27 | Boston Scientific Scimed, Inc. | Catheters and catheter shafts |
US10029076B2 (en) | 2012-02-28 | 2018-07-24 | Covidien Lp | Intravascular guidewire |
US10124197B2 (en) | 2012-08-31 | 2018-11-13 | TiNi Allot Company | Fire sprinkler valve actuator |
US10349821B2 (en) | 2011-03-01 | 2019-07-16 | Sanovas Intellectual Property, Llc | Cleaning system for medical imaging device |
US10433905B2 (en) | 2013-03-15 | 2019-10-08 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-electrode apposition judgment using pressure elements |
US10548663B2 (en) | 2013-05-18 | 2020-02-04 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods |
US10717145B2 (en) | 2013-01-17 | 2020-07-21 | Abbott Cardiovascular Systems, Inc. | Methods for counteracting rebounding effects during solid state resistance welding of dissimilar materials |
US11040230B2 (en) | 2012-08-31 | 2021-06-22 | Tini Alloy Company | Fire sprinkler valve actuator |
US20210220621A1 (en) * | 2020-01-22 | 2021-07-22 | Abbott Cardiovascular Systems Inc. | Guidewire having varying diameters and method of making |
CN113274621A (en) * | 2021-06-25 | 2021-08-20 | 苏州中天医疗器械科技有限公司 | Medical micro guide wire |
US11351048B2 (en) | 2015-11-16 | 2022-06-07 | Boston Scientific Scimed, Inc. | Stent delivery systems with a reinforced deployment sheath |
US11672957B2 (en) | 2017-07-26 | 2023-06-13 | Heraeus Medical Components Llc | Resilient tip and method |
CN116637275A (en) * | 2023-06-07 | 2023-08-25 | 南京纽诺英特医疗科技有限公司 | Controllable guide wire |
US11779477B2 (en) | 2010-11-17 | 2023-10-10 | Abbott Cardiovascular Systems, Inc. | Radiopaque intraluminal stents |
US12151049B2 (en) | 2019-10-14 | 2024-11-26 | Abbott Cardiovascular Systems, Inc. | Methods for manufacturing radiopaque intraluminal stents comprising cobalt-based alloys with supersaturated tungsten content |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3789841A (en) * | 1971-09-15 | 1974-02-05 | Becton Dickinson Co | Disposable guide wire |
US4841976A (en) * | 1987-12-17 | 1989-06-27 | Schneider-Shiley (Usa) Inc. | Steerable catheter guide |
US4854330A (en) * | 1986-07-10 | 1989-08-08 | Medrad, Inc. | Formed core catheter guide wire assembly |
US4884579A (en) * | 1988-04-18 | 1989-12-05 | Target Therapeutics | Catheter guide wire |
US4911148A (en) * | 1989-03-14 | 1990-03-27 | Intramed Laboratories, Inc. | Deflectable-end endoscope with detachable flexible shaft assembly |
US4925445A (en) * | 1983-09-16 | 1990-05-15 | Fuji Terumo Co., Ltd. | Guide wire for catheter |
US5067489A (en) * | 1988-08-16 | 1991-11-26 | Flexmedics Corporation | Flexible guide with safety tip |
US5069226A (en) * | 1989-04-28 | 1991-12-03 | Tokin Corporation | Catheter guidewire with pseudo elastic shape memory alloy |
US5230348A (en) * | 1990-10-12 | 1993-07-27 | Nippon Seisen Co., Ltd. | Guide wire for a catheter |
US5243996A (en) * | 1992-01-03 | 1993-09-14 | Cook, Incorporated | Small-diameter superelastic wire guide |
US5433200A (en) * | 1990-07-09 | 1995-07-18 | Lake Region Manufacturing, Inc. | Low profile, coated, steerable guide wire |
US5437288A (en) * | 1992-09-04 | 1995-08-01 | Mayo Foundation For Medical Education And Research | Flexible catheter guidewire |
US5479938A (en) * | 1994-02-07 | 1996-01-02 | Cordis Corporation | Lumen diameter reference guidewire |
US5505699A (en) * | 1994-03-24 | 1996-04-09 | Schneider (Usa) Inc. | Angioplasty device |
US5606981A (en) * | 1994-03-11 | 1997-03-04 | C. R. Bard, Inc. | Catheter guidewire with radiopaque markers |
-
1997
- 1997-05-05 US US08/851,392 patent/US5916178A/en not_active Expired - Lifetime
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3789841A (en) * | 1971-09-15 | 1974-02-05 | Becton Dickinson Co | Disposable guide wire |
US4925445A (en) * | 1983-09-16 | 1990-05-15 | Fuji Terumo Co., Ltd. | Guide wire for catheter |
US4854330A (en) * | 1986-07-10 | 1989-08-08 | Medrad, Inc. | Formed core catheter guide wire assembly |
US4841976A (en) * | 1987-12-17 | 1989-06-27 | Schneider-Shiley (Usa) Inc. | Steerable catheter guide |
US4884579A (en) * | 1988-04-18 | 1989-12-05 | Target Therapeutics | Catheter guide wire |
US5067489A (en) * | 1988-08-16 | 1991-11-26 | Flexmedics Corporation | Flexible guide with safety tip |
US4911148A (en) * | 1989-03-14 | 1990-03-27 | Intramed Laboratories, Inc. | Deflectable-end endoscope with detachable flexible shaft assembly |
US5069226A (en) * | 1989-04-28 | 1991-12-03 | Tokin Corporation | Catheter guidewire with pseudo elastic shape memory alloy |
US5433200A (en) * | 1990-07-09 | 1995-07-18 | Lake Region Manufacturing, Inc. | Low profile, coated, steerable guide wire |
US5230348A (en) * | 1990-10-12 | 1993-07-27 | Nippon Seisen Co., Ltd. | Guide wire for a catheter |
US5243996A (en) * | 1992-01-03 | 1993-09-14 | Cook, Incorporated | Small-diameter superelastic wire guide |
US5437288A (en) * | 1992-09-04 | 1995-08-01 | Mayo Foundation For Medical Education And Research | Flexible catheter guidewire |
US5479938A (en) * | 1994-02-07 | 1996-01-02 | Cordis Corporation | Lumen diameter reference guidewire |
US5606981A (en) * | 1994-03-11 | 1997-03-04 | C. R. Bard, Inc. | Catheter guidewire with radiopaque markers |
US5505699A (en) * | 1994-03-24 | 1996-04-09 | Schneider (Usa) Inc. | Angioplasty device |
Non-Patent Citations (4)
Title |
---|
55 Nitinol The Alloy with a Memory: Its Physical Metallurgy, Properties, And Applications , by Jackson et al., 1972, Prepared under contract for NASA. Foreword, pp. 1 2, p. 1037. * |
55-Nitinol-The Alloy with a Memory: Its Physical Metallurgy, Properties, And Applications, by Jackson et al., 1972, Prepared under contract for NASA. Foreword, pp. 1-2, p. 1037. |
Boyer, Rodney; Welsch, Gerhard; and Collings, E.W.; Materials Properties Handbook: Titanium Alloys ; Jun. 1994; pp. 1035 1036. * |
Boyer, Rodney; Welsch, Gerhard; and Collings, E.W.; Materials Properties Handbook: Titanium Alloys; Jun. 1994; pp. 1035-1036. |
Cited By (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7914466B2 (en) | 1995-12-07 | 2011-03-29 | Precision Vascular Systems, Inc. | Medical device with collapse-resistant liner and method of making same |
US6585717B1 (en) | 1999-06-15 | 2003-07-01 | Cryocath Technologies Inc. | Deflection structure |
US6302865B1 (en) | 2000-03-13 | 2001-10-16 | Scimed Life Systems, Inc. | Intravascular guidewire with perfusion lumen |
WO2001068176A1 (en) * | 2000-03-13 | 2001-09-20 | Boston Scientific Limited | Intravascular guidewire with perfusion lumen |
US7169139B2 (en) * | 2000-04-11 | 2007-01-30 | Boston Scientific Scimed, Inc. | Reinforced retention structures |
US20030191450A1 (en) * | 2000-04-11 | 2003-10-09 | Scimed Life Systems, Inc. | Reinforced retention structures |
US7914516B2 (en) | 2000-04-11 | 2011-03-29 | Boston Scientific Scimed, Inc. | Reinforced retention structures |
US6755794B2 (en) | 2000-04-25 | 2004-06-29 | Synovis Life Technologies, Inc. | Adjustable stylet |
US6493591B1 (en) | 2000-07-19 | 2002-12-10 | Medtronic, Inc. | Implantable active fixation lead with guidewire tip |
EP3006057A1 (en) | 2000-08-24 | 2016-04-13 | Cordis Corporation | Fluid delivery systems for delivering fluids to multi-lumen catheters |
EP2253340A1 (en) | 2000-08-24 | 2010-11-24 | Cordis Corporation | Fluid delivery systems for delivering fluids to multi-lumen catheters |
EP2248543A1 (en) | 2000-08-24 | 2010-11-10 | Cordis Corporation | Fluid delivery systems for delivering fluids to multi-lumen catheters |
US8668657B2 (en) * | 2000-12-28 | 2014-03-11 | Boston Scientific Scimed, Inc. | Method of manufacturing a guidewire with an extrusion jacket |
US20080173391A1 (en) * | 2000-12-28 | 2008-07-24 | Boston Scientific Scimed, Inc. | Method of manufacturing a guidewire with an extrusion jacket |
US20130344230A1 (en) * | 2000-12-28 | 2013-12-26 | Boston Scientific Scimed, Inc. | Method of manufacturing a guidewire with an extrusion jacket |
US8535242B2 (en) * | 2000-12-28 | 2013-09-17 | Boston Scientific Scimed, Inc. | Method of manufacturing a guidewire with an extrusion jacket |
US6934589B2 (en) | 2000-12-29 | 2005-08-23 | Medtronic, Inc. | System and method for placing endocardial leads |
US20080039918A1 (en) * | 2001-04-27 | 2008-02-14 | C.R. Bard, Inc. | Electrophysiology catheter for mapping and/or ablation |
US20040193239A1 (en) * | 2001-04-27 | 2004-09-30 | Falwell Gary S | Electrophysiology catheter for mapping and/or ablation |
US8636731B2 (en) | 2001-04-27 | 2014-01-28 | Boston Scientific Scimed, Inc. | Electrophysiology catheter for mapping and/or ablation |
US9750567B2 (en) | 2001-04-27 | 2017-09-05 | Boston Scientific Scimed Inc. | Electrophysiology catheter for mapping and/or ablation |
US7300438B2 (en) | 2001-04-27 | 2007-11-27 | C.R. Bard, Inc. | Electrophysiology catheter for mapping and/or ablation |
US8206384B2 (en) | 2001-04-27 | 2012-06-26 | C. R. Bard, Inc. | Electrophysiology catheter for mapping and/or ablation |
US6575920B2 (en) * | 2001-05-30 | 2003-06-10 | Scimed Life Systems, Inc. | Distal tip portion for a guide wire |
US8449526B2 (en) | 2001-07-05 | 2013-05-28 | Boston Scientific Scimed, Inc. | Torqueable soft tip medical device and method of usage |
US6776765B2 (en) | 2001-08-21 | 2004-08-17 | Synovis Life Technologies, Inc. | Steerable stylet |
US20040143197A1 (en) * | 2001-08-21 | 2004-07-22 | Synovis Interventional Solutions | Steerable stylet |
US6652508B2 (en) | 2001-11-09 | 2003-11-25 | Scimed Life Systems, Inc. | Intravascular microcatheter having hypotube proximal shaft with transition |
US20030139689A1 (en) * | 2001-11-19 | 2003-07-24 | Leonid Shturman | High torque, low profile intravascular guidewire system |
US7670302B2 (en) | 2001-12-18 | 2010-03-02 | Boston Scientific Scimed, Inc. | Super elastic guidewire with shape retention tip |
US20100159117A1 (en) * | 2001-12-18 | 2010-06-24 | Boston Scientific Scimed, Inc. | Super Elastic Guidewire With Shape Retention Tip |
US20030114777A1 (en) * | 2001-12-18 | 2003-06-19 | Scimed Life Systems, Inc. | Super elastic guidewire with shape retention tip |
US8231647B2 (en) | 2001-12-27 | 2012-07-31 | Boston Scientific Scimed, Inc. | Catheter having an improved torque transmitting shaft |
US7488338B2 (en) | 2001-12-27 | 2009-02-10 | Boston Scientific Scimed, Inc. | Catheter having an improved torque transmitting shaft |
US20090118759A1 (en) * | 2001-12-27 | 2009-05-07 | Boston Scientific Scimed, Inc. | Catheter Having an Improved Torque Transmitting Shaft |
US20070106260A1 (en) * | 2002-02-27 | 2007-05-10 | Terumo Kabushiki Kaisha | Catheter |
US9125661B2 (en) | 2002-04-08 | 2015-09-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US9131978B2 (en) | 2002-04-08 | 2015-09-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for bilateral renal neuromodulation |
US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
US7022086B2 (en) | 2002-05-21 | 2006-04-04 | Scimed Life Systems, Inc. | Guidewire with encapsulated marker |
US20040015151A1 (en) * | 2002-07-22 | 2004-01-22 | Chambers Technologies, Llc | Catheter with flexible tip and shape retention |
US9168353B2 (en) | 2002-07-22 | 2015-10-27 | Jeffrey W. Chambers | Catheter with flexible tip and shape retention |
US7115134B2 (en) | 2002-07-22 | 2006-10-03 | Chambers Technology, Llc. | Catheter with flexible tip and shape retention |
US8900163B2 (en) | 2002-07-25 | 2014-12-02 | Precision Vascular Systems, Inc. | Medical device for navigation through anatomy and method of making same |
US7914467B2 (en) | 2002-07-25 | 2011-03-29 | Boston Scientific Scimed, Inc. | Tubular member having tapered transition for use in a medical device |
US8048004B2 (en) | 2002-07-25 | 2011-11-01 | Precision Vascular Systems, Inc. | Medical device for navigation through anatomy and method of making same |
US8870790B2 (en) | 2002-07-25 | 2014-10-28 | Boston Scientific Scimed, Inc. | Medical device for navigation through anatomy and method of making same |
US8932235B2 (en) | 2002-07-25 | 2015-01-13 | Precision Vascular Systems, Inc. | Medical device for navigation through anatomy and method of making same |
US8936558B2 (en) | 2002-07-25 | 2015-01-20 | Precision Vascular Systems, Inc. | Medical device for navigation through anatomy and method of making same |
US8257279B2 (en) | 2002-07-25 | 2012-09-04 | Boston Scientific Scimed, Inc. | Medical device for navigation through anatomy and method of making same |
US8915865B2 (en) | 2002-07-25 | 2014-12-23 | Precision Vascular Systems, Inc. | Medical device for navigation through anatomy and method of making same |
US8939916B2 (en) | 2002-07-25 | 2015-01-27 | Precision Vascular Systems, Inc. | Medical device for navigation through anatomy and method of making same |
US7878984B2 (en) | 2002-07-25 | 2011-02-01 | Boston Scientific Scimed, Inc. | Medical device for navigation through anatomy and method of making same |
US20040124680A1 (en) * | 2002-08-05 | 2004-07-01 | Harris Robert D. | Portable lumbar support and variable resistance exercise device |
US7953497B1 (en) * | 2002-08-06 | 2011-05-31 | Boston Scientific Neuromodulation Corporation | Insertion stylet |
US20060241366A1 (en) * | 2002-10-31 | 2006-10-26 | Gary Falwell | Electrophysiology loop catheter |
US8961509B2 (en) | 2002-10-31 | 2015-02-24 | Boston Scientific Scimed, Inc. | Electrophysiology loop catheter |
US8022331B2 (en) | 2003-02-26 | 2011-09-20 | Boston Scientific Scimed, Inc. | Method of making elongated medical devices |
US7169118B2 (en) | 2003-02-26 | 2007-01-30 | Scimed Life Systems, Inc. | Elongate medical device with distal cap |
US20060015040A1 (en) * | 2003-03-25 | 2006-01-19 | Olympus Corporation | Guide wire |
US8303519B2 (en) | 2003-03-25 | 2012-11-06 | Olympus Corporation | Guide wire having markings to indicate changes in structural features |
EP1607035A4 (en) * | 2003-03-25 | 2009-03-11 | Olympus Corp | Guide wire |
EP1607035A1 (en) * | 2003-03-25 | 2005-12-21 | Olympus Corporation | Guide wire |
US8636716B2 (en) | 2003-03-27 | 2014-01-28 | Boston Scientific Scimed, Inc. | Medical device |
US7540865B2 (en) | 2003-03-27 | 2009-06-02 | Boston Scientific Scimed, Inc. | Medical device |
US8182465B2 (en) | 2003-03-27 | 2012-05-22 | Boston Scientific Scimed, Inc. | Medical device |
US8048060B2 (en) | 2003-03-27 | 2011-11-01 | Boston Scientific Scimed, Inc. | Medical device |
US9023011B2 (en) | 2003-03-27 | 2015-05-05 | Boston Scientific Scimed, Inc. | Medical device |
US9592363B2 (en) | 2003-03-27 | 2017-03-14 | Boston Scientific Scimed, Inc. | Medical device |
US10207077B2 (en) | 2003-03-27 | 2019-02-19 | Boston Scientific Scimed, Inc. | Medical device |
US7785273B2 (en) * | 2003-09-22 | 2010-08-31 | Boston Scientific Scimed, Inc. | Guidewire with reinforcing member |
US20050065456A1 (en) * | 2003-09-22 | 2005-03-24 | Scimed Life Systems, Inc. | Guidewire with reinforcing member |
US20100010608A1 (en) * | 2003-09-30 | 2010-01-14 | Tockman Bruce A | Guide Wire Stylet |
US7174222B2 (en) | 2003-09-30 | 2007-02-06 | Cardiac Pacemakers, Inc. | Guide wire stylet |
US7610105B2 (en) | 2003-09-30 | 2009-10-27 | Cardiac Pacemakers, Inc. | Methods of using a guide wire stylet |
US7974709B2 (en) | 2003-09-30 | 2011-07-05 | Cardiac Pacemakers, Inc. | Guide wire stylet |
US20060206184A1 (en) * | 2003-09-30 | 2006-09-14 | Cardiac Pacemakers, Inc. | Methods of using a guide wire stylet |
US20080015471A1 (en) * | 2003-12-05 | 2008-01-17 | Boston Scientific Scimed, Inc. | Elongated medical device for intracorporal use |
US8137292B2 (en) * | 2003-12-05 | 2012-03-20 | Boston Scientific Scimed, Inc. | Elongated medical device for intracorporal use |
US7824345B2 (en) | 2003-12-22 | 2010-11-02 | Boston Scientific Scimed, Inc. | Medical device with push force limiter |
EP2286863A2 (en) | 2004-01-09 | 2011-02-23 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
EP2286864A2 (en) | 2004-01-09 | 2011-02-23 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
EP2283891A2 (en) | 2004-01-09 | 2011-02-16 | Corazon Technologies, Inc. | Multilumen catheters and methods for their use |
US20050197597A1 (en) * | 2004-03-05 | 2005-09-08 | Medtronic Vascular, Inc. | Guidewire with hollow distal section |
EP1747299A2 (en) * | 2004-05-06 | 2007-01-31 | Tini Alloy Company | Single crystal shape memory alloy devices and methods |
EP1747299A4 (en) * | 2004-05-06 | 2010-08-11 | Tini Alloy Co | Single crystal shape memory alloy devices and methods |
US7682352B2 (en) | 2004-09-28 | 2010-03-23 | Medtronic Vascular, Inc. | Catheter with curved distal section having reinforcing strip and method of making same |
US20060074308A1 (en) * | 2004-09-28 | 2006-04-06 | Nasser Rafiee | Catheter with curved distal section having reinforcing strip and method of making same |
US20060118210A1 (en) * | 2004-10-04 | 2006-06-08 | Johnson A D | Portable energy storage devices and methods |
US20060089569A1 (en) * | 2004-10-26 | 2006-04-27 | Soukup Thomas M | Articulator with adjustable stiffness distal portion |
US8540668B2 (en) | 2004-12-09 | 2013-09-24 | Boston Scientific Scimed, Inc. | Catheter including a compliant balloon |
US9433762B2 (en) | 2004-12-09 | 2016-09-06 | Boston Scientific Scimed, Inc. | Catheter including a compliant balloon |
US7632242B2 (en) | 2004-12-09 | 2009-12-15 | Boston Scientific Scimed, Inc. | Catheter including a compliant balloon |
US8021329B2 (en) | 2004-12-09 | 2011-09-20 | Boston Scientific Scimed, Inc., | Catheter including a compliant balloon |
US7803142B2 (en) | 2005-02-02 | 2010-09-28 | Summit Access Llc | Microtaper needle and method of use |
US20100137884A1 (en) * | 2005-03-08 | 2010-06-03 | Eva Bica-Winterling | Method and device for the controlled delivery and placement of securing elements in a body |
US8021374B2 (en) | 2005-03-08 | 2011-09-20 | The Trustees Of Stevens Institute Of Technology | Method and device for the controlled delivery and placement of securing elements in a body |
US8157766B2 (en) | 2005-09-01 | 2012-04-17 | Medrad, Inc. | Torqueable kink-resistant guidewire |
US9445784B2 (en) | 2005-09-22 | 2016-09-20 | Boston Scientific Scimed, Inc | Intravascular ultrasound catheter |
US8231551B2 (en) | 2005-10-27 | 2012-07-31 | Boston Scientific Scimed, Inc. | Elongate medical device with continuous reinforcement member |
US7850623B2 (en) | 2005-10-27 | 2010-12-14 | Boston Scientific Scimed, Inc. | Elongate medical device with continuous reinforcement member |
US7892186B2 (en) | 2005-12-09 | 2011-02-22 | Heraeus Materials S.A. | Handle and articulator system and method |
US9597063B2 (en) | 2006-06-28 | 2017-03-21 | Abbott Laboratories | Expandable introducer sheath to preserve guidewire access |
US9889275B2 (en) * | 2006-06-28 | 2018-02-13 | Abbott Laboratories | Expandable introducer sheath to preserve guidewire access |
US20130211324A1 (en) * | 2006-06-28 | 2013-08-15 | Laveille Kao Voss | Expandable introducer sheath to preserve guidewire access |
US11690979B2 (en) | 2006-06-28 | 2023-07-04 | Abbott Laboratories | Expandable introducer sheath to preserve guidewire access |
US8551020B2 (en) | 2006-09-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Crossing guidewire |
US8349099B1 (en) | 2006-12-01 | 2013-01-08 | Ormco Corporation | Method of alloying reactive components |
US9340858B2 (en) | 2006-12-01 | 2016-05-17 | Ormco Corporation | Method of alloying reactive components |
US10190199B2 (en) | 2006-12-01 | 2019-01-29 | Ormco Corporation | Method of alloying reactive components |
US8685183B1 (en) | 2006-12-01 | 2014-04-01 | Ormco Corporation | Method of alloying reactive components |
US8556914B2 (en) | 2006-12-15 | 2013-10-15 | Boston Scientific Scimed, Inc. | Medical device including structure for crossing an occlusion in a vessel |
US9375234B2 (en) | 2006-12-15 | 2016-06-28 | Boston Scientific Scimed, Inc. | Medical device including structure for crossing an occlusion in a vessel |
US8584767B2 (en) | 2007-01-25 | 2013-11-19 | Tini Alloy Company | Sprinkler valve with active actuation |
US8684101B2 (en) | 2007-01-25 | 2014-04-01 | Tini Alloy Company | Frangible shape memory alloy fire sprinkler valve actuator |
US20080306453A1 (en) * | 2007-06-06 | 2008-12-11 | Cook Incorporated | Coupling wire guide and method for making same |
US20090035859A1 (en) * | 2007-07-30 | 2009-02-05 | Alfred David Johnson | Method and devices for preventing restenosis in cardiovascular stents |
US10610620B2 (en) | 2007-07-30 | 2020-04-07 | Monarch Biosciences, Inc. | Method and devices for preventing restenosis in cardiovascular stents |
US8007674B2 (en) | 2007-07-30 | 2011-08-30 | Tini Alloy Company | Method and devices for preventing restenosis in cardiovascular stents |
US8409114B2 (en) | 2007-08-02 | 2013-04-02 | Boston Scientific Scimed, Inc. | Composite elongate medical device including distal tubular member |
US8105246B2 (en) | 2007-08-03 | 2012-01-31 | Boston Scientific Scimed, Inc. | Elongate medical device having enhanced torque and methods thereof |
US8821477B2 (en) | 2007-08-06 | 2014-09-02 | Boston Scientific Scimed, Inc. | Alternative micromachined structures |
US9808595B2 (en) | 2007-08-07 | 2017-11-07 | Boston Scientific Scimed, Inc | Microfabricated catheter with improved bonding structure |
US20090076416A1 (en) * | 2007-09-17 | 2009-03-19 | Medtronic Vascular, Inc. | Guidewire with Adjustable Core |
US20090118675A1 (en) * | 2007-11-02 | 2009-05-07 | Boston Scientific Scimed, Inc. | Elongate medical device with a shapeable tip |
US7841994B2 (en) | 2007-11-02 | 2010-11-30 | Boston Scientific Scimed, Inc. | Medical device for crossing an occlusion in a vessel |
US9539372B2 (en) | 2007-11-30 | 2017-01-10 | Ormco Corporation | Biocompatible copper-based single-crystal shape memory alloys |
US8556969B2 (en) | 2007-11-30 | 2013-10-15 | Ormco Corporation | Biocompatible copper-based single-crystal shape memory alloys |
US20110083767A1 (en) * | 2007-12-03 | 2011-04-14 | Alfred David Johnson | Hyperelastic shape setting devices and fabrication methods |
US9127338B2 (en) | 2007-12-03 | 2015-09-08 | Ormco Corporation | Hyperelastic shape setting devices and fabrication methods |
US20090139613A1 (en) * | 2007-12-03 | 2009-06-04 | Tini Alloy Company | Hyperelastic shape setting devices and fabrication methods |
US7842143B2 (en) | 2007-12-03 | 2010-11-30 | Tini Alloy Company | Hyperelastic shape setting devices and fabrication methods |
US20110226379A2 (en) * | 2007-12-03 | 2011-09-22 | Alfred Johnson | Hyperelastic shape setting devices and fabrication methods |
US8382917B2 (en) | 2007-12-03 | 2013-02-26 | Ormco Corporation | Hyperelastic shape setting devices and fabrication methods |
US8376961B2 (en) | 2008-04-07 | 2013-02-19 | Boston Scientific Scimed, Inc. | Micromachined composite guidewire structure with anisotropic bending properties |
US9459791B2 (en) | 2008-06-28 | 2016-10-04 | Apple Inc. | Radial menu selection |
US8535243B2 (en) | 2008-09-10 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices and tapered tubular members for use in medical devices |
US8795254B2 (en) | 2008-12-10 | 2014-08-05 | Boston Scientific Scimed, Inc. | Medical devices with a slotted tubular member having improved stress distribution |
US10537385B2 (en) | 2008-12-31 | 2020-01-21 | Medtronic Ardian Luxembourg S.A.R.L. | Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility |
US10561460B2 (en) | 2008-12-31 | 2020-02-18 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation systems and methods for treatment of sexual dysfunction |
US8777942B2 (en) | 2008-12-31 | 2014-07-15 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation |
US8652129B2 (en) | 2008-12-31 | 2014-02-18 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation |
US8108054B2 (en) * | 2009-02-04 | 2012-01-31 | Pacesetter, Inc. | Active fixation implantable medical lead configured to indicate via fluoroscopy embedment of helical anchor in cardiac tissue |
US20100198327A1 (en) * | 2009-02-04 | 2010-08-05 | Pacesetter, Inc. | Active Fixation Implantable Medical Lead Configured to Indicate via Fluoroscopy Embedment of Helical Anchor in Cardiac Tissue |
US8718794B2 (en) | 2009-02-04 | 2014-05-06 | Pacesetter, Inc. | Method for indicating embedment of a helical anchor in cardiac tissue via fluoroscopy |
US9733796B2 (en) | 2009-05-29 | 2017-08-15 | Apple Inc. | Radial menus |
US8137293B2 (en) | 2009-11-17 | 2012-03-20 | Boston Scientific Scimed, Inc. | Guidewires including a porous nickel-titanium alloy |
US8784337B2 (en) | 2010-03-31 | 2014-07-22 | Boston Scientific Scimed, Inc. | Catheter with an improved flexural rigidity profile |
US8551021B2 (en) | 2010-03-31 | 2013-10-08 | Boston Scientific Scimed, Inc. | Guidewire with an improved flexural rigidity profile |
US8870863B2 (en) | 2010-04-26 | 2014-10-28 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses, systems, and methods for renal neuromodulation |
US8728075B2 (en) | 2010-04-26 | 2014-05-20 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-directional deflectable catheter apparatuses, systems, and methods for renal neuromodulation |
EP2415497A1 (en) * | 2010-08-02 | 2012-02-08 | Asahi Intecc Co., Ltd. | Guidewire |
US11779477B2 (en) | 2010-11-17 | 2023-10-10 | Abbott Cardiovascular Systems, Inc. | Radiopaque intraluminal stents |
US12150872B2 (en) | 2010-11-17 | 2024-11-26 | Abbott Cardiovascular Systems, Inc. | Radiopaque intraluminal stents |
US20120197159A1 (en) * | 2011-01-28 | 2012-08-02 | Asahi Intecc Co., Ltd. | Guidewire |
US8758269B2 (en) * | 2011-01-28 | 2014-06-24 | Asahi Intecc Co., Ltd. | Guidewire |
US8795202B2 (en) | 2011-02-04 | 2014-08-05 | Boston Scientific Scimed, Inc. | Guidewires and methods for making and using the same |
US20120226103A1 (en) * | 2011-03-01 | 2012-09-06 | Gunday Erhan H | Steerable Catheter |
US10058235B2 (en) * | 2011-03-01 | 2018-08-28 | Sanovas Intellectual Property, Llc | Steerable catheter |
US10349821B2 (en) | 2011-03-01 | 2019-07-16 | Sanovas Intellectual Property, Llc | Cleaning system for medical imaging device |
US9072874B2 (en) | 2011-05-13 | 2015-07-07 | Boston Scientific Scimed, Inc. | Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices |
US20130006149A1 (en) * | 2011-06-29 | 2013-01-03 | Abbott Cardiovascular Systems | Guide Wire Device Including a Solderable Linear Elastic Nickel-Titanium Distal End Section and Methods Of Preparation Therefor |
US11806488B2 (en) | 2011-06-29 | 2023-11-07 | Abbott Cardiovascular Systems, Inc. | Medical device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor |
US9724494B2 (en) * | 2011-06-29 | 2017-08-08 | Abbott Cardiovascular Systems, Inc. | Guide wire device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor |
US20150231370A1 (en) * | 2012-02-02 | 2015-08-20 | Abbott Cardiovascular Systems, Inc. | Guide wire core wire made from a substantially titanium-free alloy for enhanced guide wire steering response |
US10029076B2 (en) | 2012-02-28 | 2018-07-24 | Covidien Lp | Intravascular guidewire |
US10124197B2 (en) | 2012-08-31 | 2018-11-13 | TiNi Allot Company | Fire sprinkler valve actuator |
US11040230B2 (en) | 2012-08-31 | 2021-06-22 | Tini Alloy Company | Fire sprinkler valve actuator |
US9044575B2 (en) | 2012-10-22 | 2015-06-02 | Medtronic Adrian Luxembourg S.a.r.l. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US9399115B2 (en) | 2012-10-22 | 2016-07-26 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US9492635B2 (en) | 2012-10-22 | 2016-11-15 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US10188829B2 (en) | 2012-10-22 | 2019-01-29 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US11147948B2 (en) | 2012-10-22 | 2021-10-19 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US11440127B2 (en) | 2013-01-17 | 2022-09-13 | Abbott Cardiovascular Systems, Inc. | Methods for counteracting rebounding effects during solid state resistance welding of dissimilar materials |
US11931817B2 (en) | 2013-01-17 | 2024-03-19 | Abbott Cardiovascular Systems, Inc. | Methods for counteracting rebounding effects during solid state resistance welding of dissimilar materials |
US10717145B2 (en) | 2013-01-17 | 2020-07-21 | Abbott Cardiovascular Systems, Inc. | Methods for counteracting rebounding effects during solid state resistance welding of dissimilar materials |
US10433905B2 (en) | 2013-03-15 | 2019-10-08 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-electrode apposition judgment using pressure elements |
US10548663B2 (en) | 2013-05-18 | 2020-02-04 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods |
CN106413794A (en) * | 2013-11-26 | 2017-02-15 | 波士顿科学国际有限公司 | Medical devices for accessing body lumens |
JP2017500925A (en) * | 2013-11-26 | 2017-01-12 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device for accessing a body lumen |
WO2015080948A1 (en) * | 2013-11-26 | 2015-06-04 | Boston Scientific Scimed, Inc. | Medical devices for accessing body lumens |
US9901706B2 (en) | 2014-04-11 | 2018-02-27 | Boston Scientific Scimed, Inc. | Catheters and catheter shafts |
US11351048B2 (en) | 2015-11-16 | 2022-06-07 | Boston Scientific Scimed, Inc. | Stent delivery systems with a reinforced deployment sheath |
US11672957B2 (en) | 2017-07-26 | 2023-06-13 | Heraeus Medical Components Llc | Resilient tip and method |
US12151049B2 (en) | 2019-10-14 | 2024-11-26 | Abbott Cardiovascular Systems, Inc. | Methods for manufacturing radiopaque intraluminal stents comprising cobalt-based alloys with supersaturated tungsten content |
US11684759B2 (en) * | 2020-01-22 | 2023-06-27 | Abbott Cardiovascular Systems Inc. | Guidewire having varying diameters and method of making |
US20210220621A1 (en) * | 2020-01-22 | 2021-07-22 | Abbott Cardiovascular Systems Inc. | Guidewire having varying diameters and method of making |
CN113274621A (en) * | 2021-06-25 | 2021-08-20 | 苏州中天医疗器械科技有限公司 | Medical micro guide wire |
CN116637275A (en) * | 2023-06-07 | 2023-08-25 | 南京纽诺英特医疗科技有限公司 | Controllable guide wire |
CN116637275B (en) * | 2023-06-07 | 2023-12-12 | 南京纽诺英特医疗科技有限公司 | Controllable guide wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5916178A (en) | Steerable high support guidewire with thin wall nitinol tube | |
US5596996A (en) | High support nitinol tube guidewire with plastic plug transition | |
US5365943A (en) | Anatomically matched steerable PTCA guidewire | |
EP0868924B1 (en) | Superelastic guidewire with a shapeable tip | |
US6719748B2 (en) | Low profile metal/polymer tubes | |
US6132389A (en) | Proximally tapered guidewire tip coil | |
EP1135185B1 (en) | Guidewire having linear change in stiffness | |
US6666829B2 (en) | Guidewire having linear change in stiffness | |
JP3723451B2 (en) | Radiopaque composite intracorporeal device | |
US6106485A (en) | Guidewire with shaped intermediate portion | |
US5458613A (en) | Rapid exchange type intraluminal catheter with guiding element | |
US6652472B2 (en) | Guidewire with smoothly tapered segment | |
US8360995B2 (en) | Wire guide | |
US20050131316A1 (en) | Guidewire with flexible tip | |
US20080269641A1 (en) | Method of using a guidewire with stiffened distal section | |
EP0749334A1 (en) | Catheter guidewire with radiopaque markers | |
WO2001045787A1 (en) | Composite guidewire with drawn and filled tube construction | |
WO2004093655A2 (en) | Helical guidewire | |
WO2002096492A2 (en) | Distal tip portion for a guide wire | |
JP2023010683A (en) | Intermediate catheter access assistance to the cerebral artery | |
CA2617284C (en) | Guidewire having linear change in stiffness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |