US6569896B2 - Selective androgen receptor modulators and methods of use thereof - Google Patents
Selective androgen receptor modulators and methods of use thereof Download PDFInfo
- Publication number
- US6569896B2 US6569896B2 US09/935,045 US93504501A US6569896B2 US 6569896 B2 US6569896 B2 US 6569896B2 US 93504501 A US93504501 A US 93504501A US 6569896 B2 US6569896 B2 US 6569896B2
- Authority
- US
- United States
- Prior art keywords
- compound
- androgen receptor
- another embodiment
- selective
- gtx
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000849 selective androgen receptor modulator Substances 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 68
- 150000001875 compounds Chemical class 0.000 claims abstract description 419
- 102000001307 androgen receptors Human genes 0.000 claims abstract description 94
- 108010080146 androgen receptors Proteins 0.000 claims abstract description 94
- 230000001195 anabolic effect Effects 0.000 claims abstract description 52
- 239000003098 androgen Substances 0.000 claims abstract description 52
- 230000001548 androgenic effect Effects 0.000 claims abstract description 52
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 239000003446 ligand Substances 0.000 claims abstract description 37
- 238000001727 in vivo Methods 0.000 claims abstract description 32
- 230000000694 effects Effects 0.000 claims abstract description 29
- 230000027455 binding Effects 0.000 claims abstract description 22
- 230000001419 dependent effect Effects 0.000 claims abstract description 18
- 238000001794 hormone therapy Methods 0.000 claims abstract description 11
- 230000021595 spermatogenesis Effects 0.000 claims abstract description 8
- 229940083324 Selective androgen receptor modulator Drugs 0.000 claims description 82
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 150000003839 salts Chemical class 0.000 claims description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 claims description 8
- 229940088597 hormone Drugs 0.000 claims description 8
- 239000005556 hormone Substances 0.000 claims description 8
- 239000003085 diluting agent Substances 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 239000000556 agonist Substances 0.000 abstract description 57
- 230000003637 steroidlike Effects 0.000 abstract description 54
- 210000001519 tissue Anatomy 0.000 abstract description 43
- 239000003795 chemical substances by application Substances 0.000 abstract description 25
- 206010060862 Prostate cancer Diseases 0.000 abstract description 20
- 208000000236 Prostatic Neoplasms Diseases 0.000 abstract description 19
- 239000000262 estrogen Substances 0.000 abstract description 9
- 229940011871 estrogen Drugs 0.000 abstract description 9
- 238000003384 imaging method Methods 0.000 abstract description 8
- 239000000583 progesterone congener Substances 0.000 abstract description 8
- 238000009165 androgen replacement therapy Methods 0.000 abstract description 5
- 230000035946 sexual desire Effects 0.000 abstract description 5
- 230000008685 targeting Effects 0.000 abstract description 4
- 241001465754 Metazoa Species 0.000 description 38
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 36
- YVXVTLGIDOACBJ-SFHVURJKSA-N (2S)-3-(4-acetamidophenoxy)-2-hydroxy-2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]propanamide Chemical compound C1=CC(NC(=O)C)=CC=C1OC[C@](C)(O)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 YVXVTLGIDOACBJ-SFHVURJKSA-N 0.000 description 26
- 239000000243 solution Substances 0.000 description 26
- FIWILGQIZHDAQG-UHFFFAOYSA-N NC1=C(C(=O)NCC2=CC=C(C=C2)OCC(F)(F)F)C=C(C(=N1)N)N1N=C(N=C1)C1(CC1)C(F)(F)F Chemical compound NC1=C(C(=O)NCC2=CC=C(C=C2)OCC(F)(F)F)C=C(C(=N1)N)N1N=C(N=C1)C1(CC1)C(F)(F)F FIWILGQIZHDAQG-UHFFFAOYSA-N 0.000 description 22
- PDMMFKSKQVNJMI-BLQWBTBKSA-N Testosterone propionate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CC)[C@@]1(C)CC2 PDMMFKSKQVNJMI-BLQWBTBKSA-N 0.000 description 22
- 229960001712 testosterone propionate Drugs 0.000 description 22
- 0 *C.CC.C[Y].[1*][C@]([3H])(C*C1=CC=CC=C1)C(=O)NC1=CC=CC=C1 Chemical compound *C.CC.C[Y].[1*][C@]([3H])(C*C1=CC=CC=C1)C(=O)NC1=CC=CC=C1 0.000 description 19
- 102000005962 receptors Human genes 0.000 description 19
- 108020003175 receptors Proteins 0.000 description 19
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 18
- 210000002307 prostate Anatomy 0.000 description 18
- 229960003604 testosterone Drugs 0.000 description 18
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 17
- 210000003205 muscle Anatomy 0.000 description 17
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 16
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 16
- 210000002381 plasma Anatomy 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 210000001625 seminal vesicle Anatomy 0.000 description 15
- 201000010653 vesiculitis Diseases 0.000 description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 14
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 13
- 241000700159 Rattus Species 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- -1 isocarporate Chemical compound 0.000 description 12
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 12
- 241000282472 Canis lupus familiaris Species 0.000 description 11
- 102000014914 Carrier Proteins Human genes 0.000 description 11
- 108091008324 binding proteins Proteins 0.000 description 11
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 10
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 125000003342 alkenyl group Chemical group 0.000 description 10
- 229940030486 androgens Drugs 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 125000001475 halogen functional group Chemical group 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 9
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 9
- 102000009151 Luteinizing Hormone Human genes 0.000 description 9
- 108010073521 Luteinizing Hormone Proteins 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229940028334 follicle stimulating hormone Drugs 0.000 description 9
- 125000000623 heterocyclic group Chemical group 0.000 description 9
- 229940040129 luteinizing hormone Drugs 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 230000001568 sexual effect Effects 0.000 description 9
- 238000013270 controlled release Methods 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 125000002837 carbocyclic group Chemical group 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 230000035558 fertility Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000036541 health Effects 0.000 description 7
- 230000037257 muscle growth Effects 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 230000003204 osmotic effect Effects 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 208000001132 Osteoporosis Diseases 0.000 description 6
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical class C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 206010003883 azoospermia Diseases 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000010437 erythropoiesis Effects 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical group 0.000 description 6
- HDCXQTPVTAIPNZ-UHFFFAOYSA-N n-({[4-(aminosulfonyl)phenyl]amino}carbonyl)-4-methylbenzenesulfonamide Chemical group C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NC1=CC=C(S(N)(=O)=O)C=C1 HDCXQTPVTAIPNZ-UHFFFAOYSA-N 0.000 description 6
- XSXHWVKGUXMUQE-UHFFFAOYSA-N osmium dioxide Inorganic materials O=[Os]=O XSXHWVKGUXMUQE-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 238000011088 calibration curve Methods 0.000 description 5
- 239000003433 contraceptive agent Substances 0.000 description 5
- 230000002254 contraceptive effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000008121 dextrose Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 235000019439 ethyl acetate Nutrition 0.000 description 5
- 208000000509 infertility Diseases 0.000 description 5
- 230000036512 infertility Effects 0.000 description 5
- 238000010255 intramuscular injection Methods 0.000 description 5
- 239000007927 intramuscular injection Substances 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 150000003431 steroids Chemical class 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VOCBWIIFXDYGNZ-IXKNJLPQSA-N testosterone enanthate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CCCCCC)[C@@]1(C)CC2 VOCBWIIFXDYGNZ-IXKNJLPQSA-N 0.000 description 5
- 229960003484 testosterone enanthate Drugs 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000003263 anabolic agent Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 230000005754 cellular signaling Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229940068886 polyethylene glycol 300 Drugs 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 102000035025 signaling receptors Human genes 0.000 description 4
- 108091005475 signaling receptors Proteins 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 210000001550 testis Anatomy 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- YSGQGNQWBLYHPE-CFUSNLFHSA-N (7r,8r,9s,10r,13s,14s,17s)-17-hydroxy-7,13-dimethyl-2,6,7,8,9,10,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-one Chemical compound C1C[C@]2(C)[C@@H](O)CC[C@H]2[C@@H]2[C@H](C)CC3=CC(=O)CC[C@@H]3[C@H]21 YSGQGNQWBLYHPE-CFUSNLFHSA-N 0.000 description 3
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- 206010058359 Hypogonadism Diseases 0.000 description 3
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 3
- 150000001204 N-oxides Chemical class 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000001994 activation Methods 0.000 description 3
- 230000007059 acute toxicity Effects 0.000 description 3
- 231100000403 acute toxicity Toxicity 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 229940064804 betadine Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 229940099112 cornstarch Drugs 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000003818 flash chromatography Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 208000021267 infertility disease Diseases 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229960003299 ketamine Drugs 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 230000036616 oligospermia Effects 0.000 description 3
- 208000008634 oligospermia Diseases 0.000 description 3
- 231100000528 oligospermia Toxicity 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 208000001076 sarcopenia Diseases 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000036299 sexual function Effects 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 102000005969 steroid hormone receptors Human genes 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000004809 thin layer chromatography Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 3
- 229960001600 xylazine Drugs 0.000 description 3
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 2
- 125000001054 5 membered carbocyclic group Chemical group 0.000 description 2
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 2
- 125000004008 6 membered carbocyclic group Chemical group 0.000 description 2
- 125000004070 6 membered heterocyclic group Chemical group 0.000 description 2
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 2
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LWNRPPUGFQLLEK-UHFFFAOYSA-N C1=CC2=C(C=C1)NC=C2.CC.CC.CC.O=C1C=CC2=C(C=CC=C2)N1.O=C1CCC2=C(C=CC=C2)N1 Chemical compound C1=CC2=C(C=C1)NC=C2.CC.CC.CC.O=C1C=CC2=C(C=CC=C2)N1.O=C1CCC2=C(C=CC=C2)N1 LWNRPPUGFQLLEK-UHFFFAOYSA-N 0.000 description 2
- UKCGLASUPBSBPB-IBGZPJMESA-N CC(=O)C1=CC=C(OC[C@](C)(O)C(=O)NC2=CC=C([N+](=O)[O-])C(C)=C2)C=C1 Chemical compound CC(=O)C1=CC=C(OC[C@](C)(O)C(=O)NC2=CC=C([N+](=O)[O-])C(C)=C2)C=C1 UKCGLASUPBSBPB-IBGZPJMESA-N 0.000 description 2
- HTZNHICMXHZGKZ-IBGZPJMESA-N CC(=O)NC1=CC=C(OC[C@](C)(O)C(=O)NC2=CC=C([N+](=O)[O-])C(C)=C2)C=C1 Chemical compound CC(=O)NC1=CC=C(OC[C@](C)(O)C(=O)NC2=CC=C([N+](=O)[O-])C(C)=C2)C=C1 HTZNHICMXHZGKZ-IBGZPJMESA-N 0.000 description 2
- LRYZRJNVDMFMFJ-KRWDZBQOSA-N CC1=CC(NC(=O)[C@@](C)(O)COC2=CC=C(F)C=C2)=CC=C1[N+](=O)[O-] Chemical compound CC1=CC(NC(=O)[C@@](C)(O)COC2=CC=C(F)C=C2)=CC=C1[N+](=O)[O-] LRYZRJNVDMFMFJ-KRWDZBQOSA-N 0.000 description 2
- KXSOQSQJHONMQA-FQEVSTJZSA-N CCC(=O)C1=CC=C(OC[C@](C)(O)C(=O)NC2=CC=C([N+](=O)[O-])C(C)=C2)C=C1 Chemical compound CCC(=O)C1=CC=C(OC[C@](C)(O)C(=O)NC2=CC=C([N+](=O)[O-])C(C)=C2)C=C1 KXSOQSQJHONMQA-FQEVSTJZSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-SCSAIBSYSA-N D-Proline Chemical compound OC(=O)[C@H]1CCCN1 ONIBWKKTOPOVIA-SCSAIBSYSA-N 0.000 description 2
- 229930182820 D-proline Natural products 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 108010053210 Phycocyanin Proteins 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- 108010004469 allophycocyanin Proteins 0.000 description 2
- 229940124325 anabolic agent Drugs 0.000 description 2
- 229960003473 androstanolone Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical group C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000008622 extracellular signaling Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 235000011167 hydrochloric acid Nutrition 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 231100000535 infertility Toxicity 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000001361 intraarterial administration Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 230000000155 isotopic effect Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001987 poloxamine Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000006215 rectal suppository Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000036301 sexual development Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 108020003113 steroid hormone receptors Proteins 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000006217 urethral suppository Substances 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 238000007879 vasectomy Methods 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- SJAYUJDJZUWFDO-SSDOTTSWSA-N (2r)-1-(2-methylprop-2-enoyl)pyrrolidine-2-carboxylic acid Chemical compound CC(=C)C(=O)N1CCC[C@@H]1C(O)=O SJAYUJDJZUWFDO-SSDOTTSWSA-N 0.000 description 1
- HBJAYXGUOOININ-BYPYZUCNSA-N (2r)-3-bromo-2-hydroxy-2-methylpropanoic acid Chemical compound BrC[C@@](O)(C)C(O)=O HBJAYXGUOOININ-BYPYZUCNSA-N 0.000 description 1
- YCJBMGQHPACRHJ-MUWHJKNJSA-N (3r,8ar)-3-(bromomethyl)-3-methyl-6,7,8,8a-tetrahydropyrrolo[2,1-c][1,4]oxazine-1,4-dione Chemical compound O=C1[C@](C)(CBr)OC(=O)[C@H]2CCCN21 YCJBMGQHPACRHJ-MUWHJKNJSA-N 0.000 description 1
- QDSWNDMHSBZXKX-JTQLQIEISA-N (r)-3-bromo-2-hydroxy-2-methyl-n-[4-nitro-3-(trifluoromethyl)phenyl]propanamide Chemical compound BrC[C@@](O)(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 QDSWNDMHSBZXKX-JTQLQIEISA-N 0.000 description 1
- OQJVXNHMUWQQEW-UHFFFAOYSA-N 1,2,3,4-tetrahydropyrazine Chemical compound C1CNC=CN1 OQJVXNHMUWQQEW-UHFFFAOYSA-N 0.000 description 1
- QYMGRIFMUQCAJW-UHFFFAOYSA-N 1,2-dihydropyrazine Chemical compound C1NC=CN=C1 QYMGRIFMUQCAJW-UHFFFAOYSA-N 0.000 description 1
- WCFAPJDPAPDDAQ-UHFFFAOYSA-N 1,2-dihydropyrimidine Chemical compound C1NC=CC=N1 WCFAPJDPAPDDAQ-UHFFFAOYSA-N 0.000 description 1
- NQPJDJVGBDHCAD-UHFFFAOYSA-N 1,3-diazinan-2-one Chemical compound OC1=NCCCN1 NQPJDJVGBDHCAD-UHFFFAOYSA-N 0.000 description 1
- YNGDWRXWKFWCJY-UHFFFAOYSA-N 1,4-Dihydropyridine Chemical compound C1C=CNC=C1 YNGDWRXWKFWCJY-UHFFFAOYSA-N 0.000 description 1
- OXBLVCZKDOZZOJ-UHFFFAOYSA-N 2,3-Dihydrothiophene Chemical compound C1CC=CS1 OXBLVCZKDOZZOJ-UHFFFAOYSA-N 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- VSWICNJIUPRZIK-UHFFFAOYSA-N 2-piperideine Chemical compound C1CNC=CC1 VSWICNJIUPRZIK-UHFFFAOYSA-N 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- HUDPLKWXRLNSPC-UHFFFAOYSA-N 4-aminophthalhydrazide Chemical compound O=C1NNC(=O)C=2C1=CC(N)=CC=2 HUDPLKWXRLNSPC-UHFFFAOYSA-N 0.000 description 1
- UTKUVRNVYFTEHF-UHFFFAOYSA-N 4-nitro-3-(trifluoromethyl)aniline Chemical compound NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 UTKUVRNVYFTEHF-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- MTQMKPLSGRIFHX-SFHVURJKSA-N C[C@](COc(cc1)ccc1C(C)=O)(C(Nc(cc1C(F)(F)F)ccc1[N+]([O-])=O)=O)O Chemical compound C[C@](COc(cc1)ccc1C(C)=O)(C(Nc(cc1C(F)(F)F)ccc1[N+]([O-])=O)=O)O MTQMKPLSGRIFHX-SFHVURJKSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 101000709520 Chlamydia trachomatis serovar L2 (strain 434/Bu / ATCC VR-902B) Atypical response regulator protein ChxR Proteins 0.000 description 1
- 108010066551 Cholestenone 5 alpha-Reductase Proteins 0.000 description 1
- 102000008169 Co-Repressor Proteins Human genes 0.000 description 1
- 108010060434 Co-Repressor Proteins Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical group C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 206010015719 Exsanguination Diseases 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 102000003676 Glucocorticoid Receptors Human genes 0.000 description 1
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 206010024264 Lethargy Diseases 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 206010024870 Loss of libido Diseases 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 102000016978 Orphan receptors Human genes 0.000 description 1
- 108070000031 Orphan receptors Proteins 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229920000037 Polyproline Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 240000005578 Rivina humilis Species 0.000 description 1
- 208000019802 Sexually transmitted disease Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010085012 Steroid Receptors Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- HPFVBGJFAYZEBE-XNBTXCQYSA-N [(8r,9s,10r,13s,14s)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl] 3-cyclopentylpropanoate Chemical compound C([C@H]1[C@H]2[C@@H]([C@]3(CCC(=O)C=C3CC2)C)CC[C@@]11C)CC1OC(=O)CCC1CCCC1 HPFVBGJFAYZEBE-XNBTXCQYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical class C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 210000000702 aorta abdominal Anatomy 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- VJGNLOIQCWLBJR-UHFFFAOYSA-M benzyl(tributyl)azanium;chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CC1=CC=CC=C1 VJGNLOIQCWLBJR-UHFFFAOYSA-M 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 108091005948 blue fluorescent proteins Proteins 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- MRKZAZMYXYSBDG-UHFFFAOYSA-N cyclopentyl propanoate Chemical compound CCC(=O)OC1CCCC1 MRKZAZMYXYSBDG-UHFFFAOYSA-N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical class CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000816 effect on animals Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000006274 endogenous ligand Substances 0.000 description 1
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- 230000009986 erectile function Effects 0.000 description 1
- 210000003617 erythrocyte membrane Anatomy 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000007489 histopathology method Methods 0.000 description 1
- 229940125697 hormonal agent Drugs 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 238000002657 hormone replacement therapy Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 102000027411 intracellular receptors Human genes 0.000 description 1
- 108091008582 intracellular receptors Proteins 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002583 male contraceptive agent Substances 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229960000270 methylestrenolone Drugs 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000002395 mineralocorticoid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229940100691 oral capsule Drugs 0.000 description 1
- 229940100688 oral solution Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000004783 oxidative metabolism Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000004031 partial agonist Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical compound CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 108010026466 polyproline Proteins 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 102000003998 progesterone receptors Human genes 0.000 description 1
- 108090000468 progesterone receptors Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- USPWKWBDZOARPV-UHFFFAOYSA-N pyrazolidine Chemical compound C1CNNC1 USPWKWBDZOARPV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 229940075993 receptor modulator Drugs 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000004706 scrotum Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000000920 spermatogeneic effect Effects 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003515 testosterones Chemical class 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 239000008181 tonicity modifier Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229940096973 urethral suppository Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/20—Oxygen atoms
- C07D215/22—Oxygen atoms attached in position 2 or 4
- C07D215/227—Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/403—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
- A61K31/404—Indoles, e.g. pindolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4706—4-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/661—Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/16—Masculine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/26—Androgens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/28—Antiandrogens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/04—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C235/18—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the singly-bound oxygen atoms further bound to a carbon atom of a six-membered aromatic ring, e.g. phenoxyacetamides
- C07C235/24—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the singly-bound oxygen atoms further bound to a carbon atom of a six-membered aromatic ring, e.g. phenoxyacetamides having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/08—Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D271/00—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
- C07D271/12—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
- G01N33/5438—Electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
Definitions
- the present invention relates to a novel class of tissue-selective androgen receptor targeting agents (ARTA) which demonstrate androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor.
- the agents define a new subclass of compounds which are tissue-selective androgen receptor modulators (SARM) which are useful for male hormone therapy such as oral testosterone replacement therapy, mate contraception, maintaining sexual desire in women, treating prostate cancer, and imaging prostate cancer.
- SARM tissue-selective androgen receptor modulators
- These agents are also administered to a subject for the treatment of sarcopenia, lack of sexual libido, osteoporosis, erythropoiesis, and fertility.
- the agents may be used alone or in combination with a progestin or estrogen.
- the androgen receptor (“AR”′′) is a ligand-activated transcriptional regulatory protein that mediates induction of male sexual development and function through its activity with endogenous androgens. Androgens are generally known as the male sex hormones. However, androgens also play a pivotal role in female physiology and reproduction.
- the androgenic hormones are steroids which are produced in the body by the testis and the cortex of the adrenal gland, or synthesized in the laboratory. Androgenic steroids play an important role in many physiologic processes, including the development and maintenance of male sexual characteristics such as muscle and bone mass, prostate growth, spermatogenesis, and the male hair pattern (Matsumoto, Endocrinol. Met. Clin. N. Am. 23:857-75 (1994).
- the endogenous steroidal androgens include testosterone and dihydrotestosterone (“DHT”).
- Testosterone is the principal steroid secreted by the testes and is the primary circulating androgen found in the plasma of males. Testosterone is converted to DHT by the enzyme 5 alpha-reductase in many peripheral tissues. DHT is thus thought to serve as the intracellular mediator for most androgen actions (Zhou, et al., Molec. Endocrinol. 9:208-18 (1995)).
- steroidal androgens include esters of testosterone, such as the cypionate, propionate, phenylpropionate, cyclopentylpropionate, isocarporate, enanthate, and decanoate esters, and other synthetic androgens such as 7-Methyl-Nortestosterone (“MENT′”) and its acetate ester (Sundaram et al., “7 Alpha-Methyl-Nortestosterone(MENT): The Optimal Androgen For Male Contraception,” Ann. Med., 25:199-205 (1993) (“Sundaram”)).
- Esters of testosterone such as the cypionate, propionate, phenylpropionate, cyclopentylpropionate, isocarporate, enanthate, and decanoate esters
- other synthetic androgens such as 7-Methyl-Nortestosterone (“MENT′”) and its acetate ester (Sund
- the AR is involved in male sexual development and function, the AR is a likely target for effecting male contraception or other forms of hormone replacement therapy.
- the AR also regulates female sexual function (i.e., libido), bone formation, and erythropoiesis.
- Contraception is a difficult subject under any circumstances. It is fraught with cultural and social stigma, religious implications, and, most certainly, significant health concerns. This situation is only exacerbated when the subject focuses on male contraception.
- society has looked to women to be responsible for contraceptive decisions and their consequences.
- health concerns over sexually transmitted diseases have made men more aware of the need to develop safe and responsible sexual habits, women still often bear the brunt of contraceptive choice. Women have a number of choices, from temporary mechanical devices such as sponges and diaphragms to temporary chemical devices such as spermicides.
- the only options available for men include the use of condoms or a vasectomy.
- Condom use is not favored by many men because of the reduced sexual sensitivity, the interruption in sexual spontaneity, and the significant possibility of pregnancy caused by breakage or misuse. Vasectomies are also not favored. If more convenient methods of birth control were available to men, particularly long term methods that require no preparative activity immediately prior to a sexual act, such methods could significantly increase the likelihood that men would take more responsibility for contraception.
- testosterone esters have been developed that are more slowly absorbed after intramuscular injection and, thus, result in greater androgenic effect.
- Testosterone enanthate is the most widely used of these esters. While testosterone enanthate has been valuable in terms of establishing the feasibility of hormonal agents for male contraception, it has several drawbacks, including the need for weekly injections and the presence of supraphysiologic peak levels of testosterone immediately following intramuscular injection (Wu, “Effects of Testosterone Enanthate in Normal Men: Experience From a Multicenter Contraceptive Efficacy Study,” Fertility and Sterility 65:626-36 (1996)).
- This invention provides a novel class of tissue-selective androgen receptor targeting agents (ARTA).
- the agents define a new subclass of compounds which are tissue-selective androgen receptor modulators (SARM), which are useful for oral testosterone replacement therapy, male contraception, maintaining sexual desire in women, osteoporosis, treating prostate cancer and imaging prostate cancer.
- SARM tissue-selective androgen receptor modulators
- These agents have an unexpected and tissue-selective in-vivo activity for al androgenic and anabolic activity of a nonsteroidal ligand for the AR.
- These agents selectively act as partial agonists in some tissues, while acting as full agonists in other tissues, providing a a novel and unexpected means for eliciting tissue-selective androgenic or anabolic effects.
- the invention further provides a novel class of non-steroidal agonist compounds.
- the invention further provides compositions containing the selective androgen modulator compounds or the non-steroidal agonist compounds and methods of binding an AR, modulating spermatogenesis, bone formation and/or resorption, treating and imaging prostate cancer, and providing hormonal therapy for androgen-dependent conditions.
- the present invention relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula I:
- X is a O, CH 2 , NH, Se, PR, or NR;
- Z is NO 2 , CN, COR, COOH or CONHR;
- Y is I, CF 3 , Br, Cl, or SnR 3 ;
- Q is alkyl, halogen, NR 2 , NHCOCH 3 , NHCOCF 3 , NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH 3 , NHCSCF 3 , NHCSR NHSO 2 CH 3 , NHSO 2 R, OR, COR, OCOR, OSO 2 R, SO 2 R or SR
- R is a alkyl, aryl, hydroxy, C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl;
- R 1 is CH 3 , CF 3 , CH 2 CH 3 , or CF 2 CF 3 ;
- T is OH, OR, —NHCOCH 3 , or NHCOR wherein R is a C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl.
- Q is in the para position.
- X is O.
- Q is in the para position and X is O.
- Q is para alkyl, halogen, NR 2 , NHCOCH 3 , NHCOCF 3, NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH 3 , NHCSCF 3 , NHCSR NHSO 2 CH 3 , NHSO 2 R, OR, COR, OCOR, OSO 2 R, SO 2 R or SR wherein R is a alkyl, aryl, hydroxy, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl.
- the present invention relates to a selective androgen receptor modulator compound having in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula II:
- X is a O, CH 2 , NH, Se, PR, or NR;
- Z is a hydrogen bond acceptor, NO 2 , CN, COR, CONHR;
- Y is a lipid soluble group, I, CF 3 , Br, Cl, SnR 3 ;
- R is an alkyl or alkyl group or OH
- Q is acetamido-, trifluroacetamido-, alkylamines, ether, alkyl, N-sulfonyl, O-sulfonyl, alkylsulfonyl, carbonyl, or a ketone.
- the present invention also relates to a selective androgen receptor modulator compound having in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor the, selective androgen receptor modulator compound represented by the structure of formula III:
- X is a O, CH 2 , NH, Se, PR, or NR;
- Z is NO 2 , CN, COR, CONHR;
- Y is a lipid soluble group, I, CF 3 , Br, Cl, SnR 3 ;
- R is an alkyl, or alkyl group or OH
- Q is acetamido or trifluroacetamido.
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula IV:
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula V:
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula VI:
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula VII:
- the present invention also relates to a method of binding a selective androgen receptor modulator compound to an androgen receptor, which includes contacting the androgen receptor with the selective androgen receptor modulator compound under conditions effective to bind the selective androgen receptor modulator compound to the androgen receptor.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- Another aspect of the present invention relates to a method of modulating spermatogenesis in a subject, which includes contacting an androgen receptor of the subject with a selective androgen receptor modulator compound under conditions effective to increase or decrease sperm production.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to a method of hormone therapy, comprising contacting an androgen receptor of a subject with a selective androgen receptor modulator compound under conditions effective to bind the selective androgen receptor modulator compound to the androgen receptor and effect a change in an androgen-dependent condition.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to a method of treating a subject having a hormone related condition which comprises contacting an androgen receptor of said subject with a selective androgen receptor modulator compound under conditions effective to bind the selective androgen receptor modulator compound to the androgen receptor and effect a change in an androgen-dependent condition.
- the selective androgen receptor modulator compound is selective for androgen or testosterone receptor.
- the present invention also relates to a method of oral administration of the selective androgen receptor modulator compound.
- the present invention also relates to a method of treating a subject having prostate cancer which comprises administering to a subject an effective amount of a selective androgen receptor modulator compound.
- the selective androgen receptor modulator compound is selective for androgen or testosterone receptor.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to compositions and a pharmaceutical compositions which comprises a selective androgen receptor modulator alone or in combination with a progestin or estrogen and a suitable carrier, diluent or salt.
- the composition comprises Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention relates to a non-steroidal agonist compound, the non-steroidal agonist compound represented by the structure of formula VIII:
- X is a O, CH 2 , NH, Se, PR, or NR;
- R 1 is CH 3 , CF 3 , CH 2 CH 3 , or CF 2 CF 3 ;
- T is OH, OR, —NHCOCH 3 , or NHCOR wherein R is a C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl;
- A is a 5 or 6 membered saturated, unsaturated or aromatic carbocyclic or heterocyclic ring represented by the structure:
- B is a 5 or 6 membered saturated, unsaturated or aromatic carbocyclic or heterocyclic ring represented by the structure:
- a 1 -A 11 are each C, O, S or N;
- B 1 -B 11 are each C, O, S or N;
- Z is NO 2 , CN, COOH COR, or CONHR;
- Y is I, CF 3 , Br, Cl, or SnR 3 ;
- Q 1 and Q 2 are independently of each other alkyl, halogen, NR 2 , NHCOCH 3 , NHCOCF 3 , NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH 3 , NHCSCF 3 , NHCSR NHSO 2 CH 3 , NHSO 2 R, OR, COR, OCOR, OSO 2 R, SO 2 R or SR wherein R is a C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl.
- the present invention also relates to a composition and pharmaceutical composition
- a composition and pharmaceutical composition comprising the non-steroidal agonist compound alone or in combination with a progestin or estrogen and a suitable carrier, diluent or salt.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to a method of binding a non-steroidal agonist compound to an androgen receptor comprising contacting the androgen receptor with the non-steroidal agonist compound under conditions effective to bind the non-steroidal agonist compound to the androgen receptor
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to a method of modulating spermatogenesis in a subject comprising contacting an androgen receptor of the subject with a non-steroidal agonist compound under conditions effective to increase or decrease sperm production.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to a method of hormone therapy comprising contacting an androgen receptor of a subject with a non-steroidal agonist under conditions effective to bind the non-steroidal agonist compound to the androgen receptor and effect a change in an androgen-dependent condition.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to a method of treating a subject having a hormone related condition which comprises contacting an androgen receptor of said subject with a non-steroidal agonist compound under conditions effective to bind the non-steroidal agonist compound to the androgen receptor and effect a change in an androgen-dependent condition.
- the non-steroidal agonist compound is selective for androgen or testosterone receptor.
- the present invention also relates to a method of oral administration of the non-steroidal agonist compound.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention also relates to a method of treating a subject having prostate cancer which comprises administrating to a subject an effective amount of a non-steroidal agonist compound.
- the non-steroidal agonist compound is selective for androgen or testosterone receptor.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- Still another aspect of the present relates to a method of producing a selective androgen receptor modulator or a non-steroidal AR agonist compound of the present invention.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the present invention further relates to a method of determining the presence of a selective androgen modulator compound and/or a non-steroidal agonist compound of the present invention in a sample.
- the method comprises the steps of obtaining the sample, and detecting the compound in the sample, thereby determining the presence of the compound in the sample.
- the sample is a blood serum, plasma, urine, or saliva sample.
- the detection step comprises measuring the absorbance of the compound.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- novel selective androgen receptor modulator compounds and the non-steroidal agonist compounds of the present invention are useful in males and females for the treatment of a variety of hormone-related conditions, such as hypogonadism, sarcopenia, erythropoiesis, erectile function, lack of libido, osteoporesis and fertility.
- the selective androgen receptor modulator compounds and the non-steroidal agonist compounds are useful for oral testosterone replacement therapy, treating prostate cancer, imaging prostate cancer, and maintaining sexual desire in women.
- the agents may be used alone or in combination with a progestin or estrogen.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the selective androgen i receptor modulator compounds and the non-steroidal agonist compounds of the present invention offer a significant advance over steroidal androgen treatment because the selective androgen receptor modulator compounds and the non-steroidal agonist compounds of the present invention have been shown in-vivo to have a tissue-selective androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor. Moreover, the selective androgen receptor modulator compounds and the non-steroidal agonist compounds of the present invention are not accompanied by serious side effects, lability to oxidative metabolism, inconvenient modes of administration, or high costs and still have the advantages of oral bioavailability, lack of cross-reactivity with other steroid receptors, and long biological half-lives.
- the compound is Compound I. In another embodiment the compound is Compound II. In another embodiment the compound is Compound III. In another embodiment the compound is Compound IV. In another embodiment the compound is Compound V. In another embodiment the compound is Compound VI. In another embodiment the compound is Compound VII. In another embodiment the compound is Compound VIII.
- FIG. 1 Androgenic and Anabolic activity of (S)-GTx-007 in rats. Rats were left untreated (intact control), castrated (castrated control), treated with testosterone propionate (TP), or treated with S-GTx-007, and the body weight gain as well as the weight of androgen-responsive tissues (prostate, seminal vesicles and levator ani muscle) was determined.
- FIG. 2 Androgenic and Anabolic activity of S-GTx-007 in rats. Rats were left untreated (intact control), castrated (castrated control), treated with 0.1, 0.3, 0.5, 0.75 and 1.0 mg/day testosterone propionate (TP), or treated with 0.1, 0.3, 0.5, 0.75 and 1.0 mg/day S-GTx-007, and the weight of androgen-responsive tissues (prostate, semimal vesicles and levator ani muscle) was determined.
- TP testosterone propionate
- FIG. 3 Androgenic and Anabolic activity of S-GTx-014 in rats. Rats were left untreated (intact control), castrated (castrated control), treated with 0.1, 0.3, 0.5, 0.75 and 1.0 mg/day testosterone propionate (TP), or treated with 0.1, 0.3, 0.5, 0.75 an d 1.0 mg/day S-GTx-014, and the weight of androgen-responsive tissues (prostate, semimal vesicles and levator ani muscle) was determined.
- FIG. 4 Average plasma concentration-time profiles of S-GTx-007 in beagle dogs after IV administration at 3 and 10 mg/kg.
- FIG. 5 Average plasma concentration-time profiles of S-GTx-007 in beagle dogs after PO administration as solution at 10 mg/kg.
- FIG. 6 Average plasma concentration-time profiles of S-GTx-007 in beagle dogs after IV administration as capsules at mg/kg.
- FIG. 7 Effects of GTx-014 and GTx-007 on LH Levels.
- FIG. 8 Effects of GTx-014 and GTx-007 on FSH Levels.
- FIG. 9 Synthesis scheme of GTx-007.
- This invention provides a novel class of androgen receptor targeting agents (ARTA).
- the agents define a new subclass of compounds which are tissue-selective androgen receptor modulators (SARM) which are useful for oral testosterone replacement therapy, male contraception, maintaining sexual desire in women, treating prostate cancer and imaging prostate cancer.
- SARM tissue-selective androgen receptor modulators
- These agents have an unexpected tissue-selective in-vivo activity for an androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor.
- These agents may be active alone or in combination with progestinis or estrogens.
- the invention further provides a novel class of non-steroidal agonist compounds.
- the invention further provides compositions containing the selective androgen modulator compounds or the non-steroidal agonist compounds and methods of binding an androgen receptor, modulating spermazogenesis, treating and imaging prostate cancer, and providing hormonal therapy for androgen-dependent conditions.
- the compounds described herein define a new class of selective androgen receptor modulators (SARMS) that demonstrate potent anabolic effects (e.g., muscle growth) with less androgenic activity (e.g., prostatic growth).
- SARMS selective androgen receptor modulators
- This new class of drugs has several advantages over non-selective androgens, including potential therapeutic applications in males and females for modulation of fertility, erythropoiesis, osteoporosis, sexual libido and in men with or at high risk for prostate cancer.
- the compound is Compound I.
- the compound is Compound II.
- the compound is Compound III.
- the compound is Compound IV.
- the compound is Compound V.
- the compound is Compound VI.
- the compound is Compound VII.
- the compound is Compound VIII.
- the compounds have tissue specific pharmacologic activity.
- GTx-007 does not suppress LH levels at doses that are capable of eliciting maximal stimulation of levator ani muscle growth and does not suppress FSH levels at doses that are capable of eliciting maximal stimulation of levator ani muscle growth.
- the present invention relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor selective androgen receptor modulator compound represented by the structure of formula I:
- X is a O, CH 2 , NH, Se, PR, or NR;
- Z is NO 2 , CN, COR, COOH or CONHR;
- Y is I, CF 3 , Br, Cl, or SnR 3 ;
- Q is alkyl, halogen, NR 2 , NHCOCH 3 , NHCOCF 3 , NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH 3 , NHCSCF 3 , NHCSR NHSO 2 CH 3 , NHSO 2 R, OR, COR, OCOR, OSO 2 R, SO 2 R or SR wherein R is an aryl, C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl; or Q together with the benzene ring to which it is attached is a fused ring system represented by structure A, B or C:
- R 1 is CH 3 , CF 3 , CH 2 CH 3 , or CF 2 CF 3 ;
- T is OH, OR, —NHCOCH 3 , or NHCOR wherein R is a C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl.
- Q is in the para position of the benzene ring to which it is attached. In another embodiment, Q is in the para position and X is O. In another embodiment, Q is in the para position and is alkyl, halogen, NR 2 , NHCOCH 3 , NHCOCF 3 , NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH 3 , NHCSCF 3 , NHCSR NHSO 2 CH 3 , NHSO 2 R, OR, COR, OCOR, OSO 2 R, SO 2 R or SR wherein R is a, aryl, C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl.
- the present invention relates to a selective androgen receptor modulator compound having in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula II:
- X is a O, CH 2 , NH, Se, PR, or NR;
- Z is a hydrogen bond acceptor, NO 2 , CN, COR, CONHR;
- Y is a lipid soluble group, I, CF 3 , Br, Cl, SnR 3 ;
- R is an alkyl or alkyl group or OH
- Q is acetamido-, trifluroacetamido-, alkylamines, ether, alkyl, N-sulfonyl, O-sulfonyl, alkylsulfonyl, carbonyl, or a ketone.
- the present invention also relates to a selective androgen receptor modulator compound having in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor the, selective androgen receptor modulator compound represented by the structure of formula III:
- X is a O, CH 2 , NH, Se, PR, or NR;
- Z is NO 2 , CN, COR, or CONHR;
- Y is I, CF 3 , Br, Cl, or SnR 3 ;
- R is an alkyl, or aryl group or OH
- Q is acetamido or trifluroacetamido.
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula IV:
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula V:
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula VI:
- the present invention also relates to a selective androgen receptor modulator compound having tissue-selective in-vivo androgenic and anabolic activity of a nonsteroidal ligand for the androgen receptor, the selective androgen receptor modulator compound represented by the structure of formula VII:
- the present invention relates to a non-steroidal agonist compound, the non-steroidal agonist compound represented by the structure of formula VIII:
- X is a O, CH 2 , NH, Se, PR, or NR;
- R 1 is CH 3 , CF 3 , CH 2 CH 3 , or CF 2 CF 3 ;
- T is OH, OR, —NHCOCH 3 , or NHCOR wherein R is a C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl;
- A is a 5 or 6 membered saturated, unsaturated or aromatic carbocyclic or heterocyclic ring represented by the structure:
- B is a 5 or 6 membered saturated, unsaturated or aromatic carbocyclic or heterocyclic ring represented by the structure:
- a 1 -A 11 are each C, O, S or N;
- B 1 -B 11 are each C, O, S or N;
- Z is NO 2 , CN, COOH COR, or CONHR;
- Y is I, CF 3 , Br, Cl, or SnR 3 ;
- Q 1 and Q 2 are independently of each other alkyl, halogen, NR 2 , NHCOCH 3 , NHCOCF 3 , NHCOR, NHCONHR, NHCOOR, OCONHR, CONHR, NHCSCH 3 , NHCSCF 3 , NHCSR NHSO 2 CH 3 , NHSO 2 R, OR, COR, OCOR, OSO 2 R, SO 2 R or SR wherein R is a C 1 -C 4 alkyl, a C 1 -C 4 haloalkyl, phenyl, halo, alkenyl or hydroxyl.
- the substitutents Z and Y can be in any position of the five or 6 membered ring carrying these substitutents (hereinafter “A ring”).
- the substituent Q can be in any position of the five or 6 membered ring carrying this substitutent (hereinafter “B ring”). It is understood that when any of the ring members A 1 -A 11 or B 1 -B 11 are O or S, then these ring members are unsubstituted. It is further understood that when any of the ring members A 1 -A 11 or B 1 -B 11 are O or S, then the dotted line between said ring members and other ring members represents a single bond.
- the A ring includes any type of saturated or unsaturated carbocyclic ring.
- the A ring is a 6 membered saturated carbocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the A ring is a 5 membered saturated carbocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the A ring is a 6 membered carbocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the A ring is a 5 membered carbocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the A ring includes any type of saturated, unsaturated or aromatic heterocyclic ring.
- the A ring is a 6 membered saturated heterocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substituents described hereinabove.
- the A ring is a 5 membered saturated heterocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substituents described hereinabove.
- the A ring is a 6 membered heterocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the A ring is a 5 membered heterocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the A ring is a 6 membered heteroaromatic ring which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the A ring is a 5 membered heteroaromatic ring which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring includes any type of saturated or unsaturated carbocyclic ring.
- the B ring is a 6 membered saturated carbocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring is a 5 membered saturated carbocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring is a 6 membered carbocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring is a 5 membered carbocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring includes any type of saturated, unsaturated or aromatic heterocyclic ring.
- the B ring is a 6 membered saturated heterocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring is a 5 membered saturated heterocyclic ring, which may be unsubstituted, monosubstituted or polysubstituted by any of the substituents described hereinabove.
- the B ring is a 6 membered heterocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring is a 5 membered heterocyclic ring containing one or more double bonds, which ring may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- the B ring is a 6 membered heteroaromatic ring which may be unsubstituted, monosubstituted or polysubstituted by any of the substituents described hereinabove.
- the B ring is a 5 membered heteroaromatic ring which may be unsubstituted, monosubstituted or polysubstituted by any of the substitutents described hereinabove.
- Nonlimiting examples of suitable A rings and/or B rings are carbocyclic rings such as cyclopentane, cyclopentene, cyclohexane, and cyclohexene rings, and heterocyclic rings such as pyran, dihydropyran, tetrahydropyran, pyrrole, dihydropyrrole, tetrahydropyrrole, pyrazine, dihydropyrazine, tetrahydropyrazine, pyrimidine, dihydropyrimidine, tetrahydropyrimidone, pyrazol, dihydropyrazol, tetrahydropyrazol, piperidine, piperazine, pyridine, dihydropyridine, tetrahydropyridine, morpholine, thiomorpholine, furan, dihydrofuran, tetrahydrofuran, thiophene, dihydrothiophene, tetrahydrothiophene, thiazo
- cell signaling receptors receptors for extracellular signaling molecules are collectively referred to as “cell signaling receptors”.
- Many cell signaling receptors are transmembrane proteins on a cell surface; when they bind an extracellular signaling molecule (i.e., a ligand), they become activated so as to generate a cascade of intracellular signals that alter the behavior of the cell.
- the receptors are Inside the cell and the signaling ligand has to enter the cell to activate them; these signaling molecules therefore must be sufficiently small and hydrophobic to diffuse across the plasma membrane of the cell.
- these receptors are collectively referred to as “intracellular cell signaling receptors”.
- Steroid hormones are one example of small hydrophobic molecules that diffuse directly across or are transported across the plasma membrane of target cells and bind to intracellular cell signaling receptors. These receptors are structurally related and constitute the intracellular receptor superfamily (or steroid-hormone receptor superfamily). Steroid hormone receptors include progesterone receptors, estrogen receptors, androgen receptors, glucocorticoid receptors, and mineralocorticoid, and numerous orphan receptors. The present invention is particularly directed to androgen receptors and all of its isoforms.
- the receptors can be blocked to prevent ligand binding.
- the receptors can be blocked to prevent ligand binding.
- the three-dimensional structure of the substance fits into a space created by the three-dimensional structure of the receptor in a ball and socket configuration.
- affinity The better the ball fits into the socket, the more tightly it is held. This phenomenon is called affinity. If the affinity of a substance is sufficiently high, it will compete with the hormone and bind the binding site more frequently. The binding of the ligand may also lead to tissue-selective recruitment of other important proteins to transduce the signal. These proteins are known as coactivators and corepressor, participate in signal transduction, and may be selectively induced or inhibited by ligand binding. Once bound, signals may be sent through the receptor into the cells, causing tie cell to respond in some fashion. This is called activation. On activation, the activated receptor then directly regulates the transcription of specific genes. But the substance and the receptor may have certain attributes, other than affinity, that activate the cell.
- the present invention is directed to selective androgen receptor modulator compounds which are agonist compounds, and are, therefore, useful in binding to and activating steroidal hormone receptors.
- the compounds are non-steroidal.
- the agonist compound of the present invention is an agonist that binds the androgen receptor.
- the compound has high affinity for the androgen receptor.
- the compound may bind either reversibly or irreversibly to the androgen receptor.
- the lo compound of the present invention may contain a functional group (affinity label) that allows alkylation of the androgen receptor (i.e. covalent bond formation).
- the compound binds irreversibly to the receptor and, accordingly, cannot be displaced by a steroid, such as the endogenous ligands dihydrotestosterone and testosterone. It is preferable, however, for the compounds of the present invention to reversibly bind the androgen receptor.
- a method for binding the selective androgen receptor modulator compounds of the present invention to an androgen receptor by contacting the receptor with a selective androgen receptor modulator compound under conditions effective to cause tie selective androgen receptor modulator compound to bind the androgen receptor.
- the binding of the selective androgen receptor modulator compounds to the androgen receptor enables the compounds of the present invention to be useful in males and in females in a number of hormone therapies.
- the agonist compounds bind to and activate the androgen receptor. Binding of the agonist compound is either reversible or irreversible, preferably reversible.
- a method for modulating spermatogenesis by contacting an androgen receptor of a patient with a selective androgen receptor modulator compound under conditions effective to bind the selective androgen receptor modulator compound to the androgen receptor and increase or decrease sperm production.
- a method for hormonal therapy in a patient which includes contacting an androgen receptor of a patient with a selective androgen receptor modulator compound under conditions effective to bind the selective androgen receptor modulator compound to the androgen receptor and effect a change in an androgen-dependent condition.
- Androgen-dependent conditions that may be treated according to the present invention include those conditions associated with aging, such as hypogonadism, sacorpenia, erythopoiesis, osteoporosis, and any other conditions later determined to be dependent upon low androgen (e.g., testosterone) levels.
- the selective androgen receptor modulator compound is administered alone.
- the selective androgen receptor modulator compound is administered in combination with progestin.
- the selective androgen receptor modulator compound is administered in combination with estrogen.
- a method for treating a subject having prostate cancer comprises administrating to a subject an effective amount of a selective androgen receptor modulator compound.
- the selective androgen receptor modulator compound is selective for androgen or testosterone receptor.
- a method for binding the non-steroidal agonist compounds of the present invention to an androgen receptor by contacting the receptor with a non-steroidal agonist compound under conditions effective to cause the non-steroidal agonist compound to bind the androgen receptor.
- the binding of the non-steroidal agonist compounds to the androgen receptor enables the compounds of the present invention to be useful in males and in females in a number of hormone therapies.
- the agonist compounds bind to and activate the androgen receptor. Binding of the agonist compound is either reversible or irreversible, preferably reversible.
- a method for modulating spermatogenesis by contacting an androgen receptor of a patient with a non-steroidal agonist compound under conditions effective to bind the selective androgen receptor modulator compound to the androgen receptor and increase or decrease sperm production.
- a method for hormonal therapy in a patient which includes contacting an androgen receptor of a patient with a non-steroidal agonist compound under conditions effective to bind the non-steroidal agonist compound to the androgen receptor and effect a change in an androgen-dependent condition.
- Androgen-dependent conditions that may be treated according to the present invention include those conditions associated with aging, such as hypogonadism, sarcopenia, erythropoiesis, osteoporosis, lack of sexual libido and any other conditions later determined to be dependent upon low androgen (e.g., testosterone) levels.
- the non-steroidal agonist compound is administered alone.
- the non-steroidal agonist compound is administered in combination with progestin.
- the non-steroidal agonist compound is administered in combination with estrogen.
- a method for treating a subject having prostate cancer comprises administrating to a subject an effective amount of a non-steroidal agonist compound.
- the non-steroidal agonist compound is selective for androgen or testosterone receptor.
- the compounds of the present invention have an assymetric center and can be the R or S isomer, or a mixture of both.
- the compounds racemic mixtures of the R and S enantiomers.
- the compounds are substantially pure R enantiomers.
- the compounds are substantially pure S enantiomers. “Substantially pure” is defined herein as greater than about 95% preponderance of one isomer. Where the above-described processes for the preparation of the compounds of use in the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques, such as preparative chromatography.
- the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution
- pharmaceutical composition means therapeutically effective amounts of the SARM or the non-steroidal agonist compound of the present invention, together with suitable diluents, preservatives, solubilizers, emulsifiers, adjuvant and/or carriers A.
- therapeutically effective amount refers to that amount which provides a therapeutic effect for a given condition and administration regimen.
- compositions are liquids or Lyophilized or otherwise dried formulations and include diluents of various buffer content (e.g., Tris-HCl., acetate, phosphate), pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), solubilizing agents (e.g., glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), bulking substances or tonicity modifiers (e.g., lactose, mannitol), covalent attachment of polymers such as polyethylene glycol to the protein, complexation with metal ions, or incorporation of the material into or onto particulate preparations of polymeric compounds such as polylactic acid, polglycolic acid,
- compositions coated with polymers e.g., poloxamers or poloxamines.
- Other embodiments of the compositions of the invention incorporate particulate forms, protective coatings, protease inhibitors or permeation enhancers for various routes of administration, including parenteral, pulmonary, nasal and oral.
- the pharmaceutical composition is administered parenterally, paracancerally, transmucosally, transdermally, intramuscularly, intravenously, intradermally, subcutaneously, intraperitonealy, intraventricularly, intracranially and intratumorally.
- pharmaceutically acceptable carriers are well known to those skilled in the art and include, but are not limited to, 0.01-0.1M and preferably 0.05M phosphate buffer or 0.8% saline. Additionally, such pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils.
- Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, collating agents, inert gases and the like.
- Controlled or sustained release compositions include formulation in lipophilic depots (e.g. fatty acids, waxes, oils). Also comprehended by the invention are particulate compositions coated with polymers (e.g. poloxamers or poloxamines) and the compound coupled to antibodies directed against tissue-specific receptors, ligands or antigens or coupled to ligands of tissue-specific receptors.
- lipophilic depots e.g. fatty acids, waxes, oils.
- particulate compositions coated with polymers e.g. poloxamers or poloxamines
- compositions of the invention incorporate particulate forms, protective coatings, protease inhibitors or permeation enhancers for various routes of administration, including parenteral, pulmonary, nasal and oral.
- the pharmaceutical composition can be delivered in a controlled release system.
- the agent may be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration.
- a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989).
- is polymeric materials can be used.
- a controlled release system can be placed in proximity to the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984).
- a controlled release device is introduced into a subject in proximity to the site of inappropriate immune activation or a tumor.
- Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990).
- the pharmaceutical preparation can comprise the selective androgen receptor modulator alone, or can farther include a pharmaceutically acceptable carrier, and can be in solid or liquid form such as tablets, powders, capsules, pellets, solutions, suspensions, elixirs, emulsions, gels, creams, or suppositories, including rectal and urethral suppositories.
- Pharmaceutically acceptable carriers include gums, starches, sugars, cellulosic materials, and mixtures thereof.
- the pharmaceutical preparation containing the selective androgen receptor modulator can be administered to a subject by, for example, subcutaneous implantation of a pellet; in a further embodiment, the pellet provides for controlled release of selective androgen receptor modulator over a period of time.
- the preparation can also be administered by intravenous, intraarterial, or intramuscular injection of a liquid preparation, oral administration of a liquid or solid preparation, or by topical application. Administration can also be accomplished by use of a rectal suppository or a urethral suppository.
- the pharmaceutical preparations of the invention can be prepared by known dissolving, mixing, granulating, or tablet-forming processes.
- the selective androgen receptor modulators or their physiologically tolerated derivatives such as salts, esters, N-oxides, and the like are mixed with additives customary for this purpose, such as vehicles, stabilizers, or inert diluents, and converted by customary methods into a suitable form for administration, such as tablets, coated tablets, hard or soft gelatin capsules, aqueous, alcoholic or oily solutions.
- suitable inert vehicles are conventional tablet bases such as lactose, sucrose, or cornstarch in combination with binders like acacia, cornstarch, gelatin, or with disintegrating agents such as cornstarch, potato starch, alginic acid, or with a lubricant like stearic acid or magnesium stearate.
- suitable oily vehicles or solvents are vegetable or animal oils such as sunflower oil or fish-liver oil. Preparations can be effected both as dry and as wet granules.
- the SARM agents or the non-steroidal agonist agents or their physiologically tolerated derivatives such as salts, esters, N-oxides, and the like are converted into a solution, suspension, or emulsion, if desired with the substances customary and suitable for this purpose, for example, solubilizers or other auxiliaries.
- sterile liquids such as water and oils, with or without the addition of a surfactant and other pharmaceutically acceptable adjuvants.
- Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil.
- water, saline, aqueous dextrose and related sugar solutions, and glycols such as propylene glycols or polyethylene glycol are preferred liquid carriers, particularly for injectable solutions.
- compositions which contain an active component are well understood in the art.
- such compositions are prepared as aerosols of the polypeptide delivered to the nasopharynx or as injectables, either as liquid solutions or suspensions, however, solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared.
- the preparation can also be emulsified.
- the active therapeutic ingredient is often mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof.
- composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, which enhance the effectiveness of the active ingredient.
- auxiliary substances such as wetting or emulsifying agents, pH buffering agents, which enhance the effectiveness of the active ingredient.
- compositions can be formulated into the composition as neutralized pharmaceutically acceptable salt forms.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide or antibody molecule), which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed from the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
- the SARM agents or the non-agonist steroidal compounds or their physiologically tolerated derivatives such as salts, esters, N-oxides, and the like are prepared and applied as solutions, suspensions, or emulsions in a physiologically acceptable diluent with or without a pharmaceutical carrier.
- the active compound can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, N.Y., pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid).
- a liposome see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, N.Y., pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid).
- the salts of the SARM or the non-steroidal agonist compounds will be pharmaceutically acceptable salts.
- Other salts may, however, be useful in the preparation of the compounds according to the invention or of their pharmaceutically acceptable salts.
- Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts, which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, oxalic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.
- a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, oxalic acid, citric acid, tartaric acid, carbonic acid or
- the present invention farther relates to a method of determining the presence of a selective androgen modulator compound and/or a non-steroidal agonist compound of the present invention in a sample.
- the method comprises the steps of obtaining the sample, and detecting the compound in the sample, thereby determining the presence of the compound in the sample.
- the sample is a blood serum sample. In another embodiment, the sample is a plasma sample. In another embodiment, the sample is a urine sample. In another embodiment, the sample is a saliva sample. In another embodiment, the sample is any other tissue sample.
- the detection step comprises measuring the absorbance of the compound at a predetermined wavelength.
- the compounds of the present invention absorb in the ultraviolet region of the spectrum, with an absorbency peak at 270 nm.
- the compound is detected by monitoring the UV absorbance of the sample at 270 nm.
- the present invention is not limited to UV absorption, and that any other spectrometric methods of identification are applicable.
- compounds can be detected by measuring their infra-red or visible absorbance.
- the present invention further provides a method of determining the concentration of a selective androgen receptor modulator compound and/or a non-steroidal agonist compound of the present invention in a sample.
- the method comprises the steps of obtaining a sample; determining the level of the compound in the sample, and calculating the concentration of the compound in the sample by comparing the level with a standard sample containing a known concentration of the compound. Calibration curves of known concentrations of the compound in the sample, can be obtained, and the concentration of the compound in the test sample is calculated therefrom.
- level it is meant the absorption level of the compound at the measured wavelength.
- the compound is detected in the sample by contacting the sample with a binding protein which specifically binds to the compound, and determining the amount of binding protein bound to the compound.
- concentration of the compound can be determined by measuring the amount of binding protein bound to the compound, and comparing that amount to a standard sample containing a known concentration of the compound—binding protein complex.
- Protein levels can be determined according to standard techniques, as described in Sambrook et al. Briefly, a sample obtained from a subject is contacted with a binding protein which specifically binds to a specific compound of the present invention, and the amount of complex formed between the binding protein and the compound is determined.
- the binding protein is an antibody which specifically binds to one or more compounds of the present invention.
- the binding protein has a detectable label bound thereto, and the complex between the binding protein-label compound is determined by visualizing the complex
- contacting means that the binding protein is introduced into the sample in a test tube, flask, tissue culture, chip, array, plate, microplate, capillary, or the like, and incubated at a temperature and time sufficient to permit the binding component to bind to a cell or a fraction thereof or plasma/serum or a fraction thereof containing the target.
- Methods for contacting the samples with the binding proteins, or other specific binding components are known to those skilled in the art and may be selected depending on the type of assay protocol to be run. Incubation methods are also standard and are known to those skilled in the art.
- “Visualizing” the complex may be carried out by any means known in the art, including, but not limited to, ELISA, radioimmunoassay, flow cytometry, dot blots, western immunoblotting combined with gel electrophoresis, immunohistochemistry at light and electron pe levels, HPLC and mass spectrometry.
- Either monoclonal or polyclonal antibodies (as well as any recombinant antibodies) specific for the selective androgen modulator compounds or the non-steroidal agonist compounds of the present invention can be used in the various immunoassays.
- the antibodies may be delectably labeled, utilizing conventional labeling techniques well-known to the art.
- label refers to a molecule, which may he conjugated or otherwise attached (i.e., covalently or non-covalently) to a binding protein as defined herein. Labels are known to those skilled in the art.
- the antibodies may be labeled with radioactive isotopes, non-radioactive isotopic labels, fluorescent labels, enzyme labels, chemiluminescent labels, bioluminescent labels, free radical labels, or bacteriophage labels, using techniques known in the art.
- radioisotopic labels are .sup.3H, .sup.125 I, sup.131 I, .sup.35 S, sup.14 C, etc.
- non-radioactive isotopic labels are .sup.55 Mn, .sup.56 Fe, etc.
- fluorescence labels are fluorescent labels which are directly labeled with the preferred fluorescence label, or fluorescent labels which are indirectly labeled with the preferred fluorescence label.
- the preferred fluorescence label is conjugated to a secondary antibody, which is directed against the first antibody, such as an anti species Ig antibody.
- Typical fluorescent labels include, but are not limited to a fluorescein label, an isothiocyanate label, a rhodamine label, a phycoerythrin label, etc., for example fluorescein isothiocyanate (FITC, International Biological Supplies, Melbourne, Fla.), rhodamine, phycoerythrin (P.E., Coulter Corp., Hialeah, Fla.), phycocyanin, allophycocyanin, phycoerythrin-cyanin dye 5 (PECy5, Coulter), label, a phycocyanin label, an allophycocyanin label, an O-phthaldehyde label, a fluorescamine and Texas Red.
- FITC Fluorescein isothiocyanate
- P.E. Coulter Corp., Hialeah,
- enzyme labels include alkaline phosphatase, beta-galactosidase, glucose-6-phosphate dehydrogenase, maleate dehydrogenase, and peroxidase.
- enzyme immunoassay Two principal types of enzyme immunoassay are the enzyme-linked immunosorbent assay (ELISA), and the homogeneous enzyme immunoassay, also known as enzyme-multiplied immunoassay (EMIT, Syva Corporation, Palo Alto, Calif.).
- ELISA enzyme-linked immunosorbent assay
- EMIT enzyme-multiplied immunoassay
- separation may be achieved, for example, by the use of antibodies coupled to a solid phase.
- the EMIT system depends on deactivation of the enzyme in the tracer-antibody complex; the activity can thus be measured without the need for a separation step.
- Particularly suitable labels include those, which permit analysis by flow cytometry, e.g., fluorochromes.
- Other suitable detectable labels include those useful in colorimetric enzyme systems, e.g., horseradish peroxidase (HRP) and alkaline phosphatase (AP).
- HRP horseradish peroxidase
- AP alkaline phosphatase
- Other proximal enzyme systems are known to those of skill in the art, including hexokinase in conjunction with glucose-6-phosphate dehydrogenase.
- chemiluminescent compounds may be used as labels.
- Chemiluminescent labels such as green fluorescent proteins, blue fluorescent proteins, and variants thereof are known.
- bioluminescence or chemiluminescence can be detected using, respectively, NAD oxidoreductase with luciferase and substrates NADH and FNIN or peroxidase with luminol and substrate peroxide.
- Typical chemiluminescent compounds include luminol, isoluminol, aromatic acridinium esters, imidazoles, acridinium salts, and oxalate esters.
- bioluminescent compounds may be utilized for labelling, the bioluminescent compounds including luciferin, luciferase, and aequorin.
- the antibody may be employed to identify and quantify immunologic counterparts (antibody or antigenic polypeptide) utilizing techniques well-known to the art.
- the SARM compounds provided herein were designed, synthesized and evaluated for in-vitro and in-vivo pharmacologic activity.
- the in-vitro androgen receptor binding affinity and ability to maintain androgen dependent tissue growth in castrated animals was studied Androgenic activity was monitored as the ability of the SARM compounds to maintain and/or stimulate the growth of the prostate and seminal vesicles, as measured by weight.
- Anabolic activity was monitored as the ability of the SARM compounds to maintain and/or stimulate the growth of the levator ani muscle, as measured by weight.
- Thionyl chloride (8.6 g, 72 mmol) was added dropwise under argon to a solution of bromoacid R-131 (11.0 g, 60 mmol) in 70 mL of DMA at ⁇ 5 to ⁇ 10° C. The resulting mixture was stirred for 2 h under the same conditions.
- a solution of 4-nitro-3-trifluoromethyl-aniline (12.4 g, 60 mmol) in 80 mL of DMA was added dropwise to the above solution, and the resulting mixture was stirred overnight at room temperature.
- the in-vitro activity of the SARM compounds, specifically compound VII, demonstrated high androgen receptor binding affinity (Ki 7.5 nM).
- Testosterone and compound VII were delivered at a constant rate for 14 days via subcutaneous osmotic pumps.
- Compound VII showed greater anabolic activity than testosterone propionate at the doses tested (i.e., the levator ani muscle maintained the same weight as intact control animals and was greater than that observed for testosterone).
- the experiments presented herein are the first in-vivo results which demonstrate tissue-selective androgenic and anabolic activity (i.e., differing androgenic and anabolic potency) of a nonsteroidal ligand for the androgen receptor.
- Rats were randomly distributed into twenty-nine (29) groups, with 5 animals per group. Treatment groups are described in Table 1.
- animals in groups 2 through 29 were individually removed from the cage, weighed and anesthetized with an intraperitoneal dose of ketamine/xylazine (87/13 mg/kg; approximately 1 mL per kg).
- ketamine/xylazine 87/13 mg/kg; approximately 1 mL per kg.
- the animals' ears were marked for identification purposes. Animals were then placed on a sterile pad and their abdomen and scrotum washed with betadine and 70% alcohol.
- testes were removed via a midline scrotal incision, with sterile suture being used to ligate supra-testicular tissue prior to surgical removal of each testis.
- the surgical wound site was closed with sterile stainless steel wound clips, and the site cleaned with betadine.
- the animals were allowed to recover on a sterile pad (until able to stand) and then returned to their cage.
- Osmotic pumps contained the appropriate treatment (designated in Table 1) dissolved in polyethylene glycol 300 (PEG300). Osmotic pumps were filled with the appropriate solution one day prior to implantation. Animals were monitored daily for signs of acute toxicity to drug treatment (e.g., lethargy, rough coat).
- the weights of all organs were normalized to body weight, and analyzed for any statistical significant difference by single-factor ANOVA.
- the weights of prostate and seminal vesicle were used as indexes for evaluation of androgenic activity, and the levator ani muscle weight was used to evaluate the anabolic activity.
- the weights of prostate, seminal vesicle, and levator ani muscle in castrated, vehicle-treated rats decreased significantly, due to the ablation of endogenous androgen production.
- Exogenous administration of testosterone propionate, an androgenic and anabolic steroid increased the weights of prostate, seminal vesicle, and levator and muscle in castrated rats in a dose-dependent manner
- the R-isomer of GTx-014, and S-isomers of GTx-015 and GTx-016 showed no effect on the weights of prostate, seminal vesicle, and levator ani muscle in castrated animals (data not shown).
- the S-isomers of GTx-007 (FIG.
- S-GTx-007 showed lower potency and intrinsic activity in increasing the weights of prostate and seminal vesicle, but a greater potency and intrinsic activity in increasing the weight of levator ani muscle.
- S-GTx-007 at a dose as low as 0.3 mg/day, was able to maintain the levator ani muscle weight of castrated animals in the same level as that of intact animals.
- S-GTx-007 is a potent nonsteroidal anabolic agent with less androgenic activity but more anabolic activity than testosterone propionate. This is a significant improvement over previous claims, in that this compound selectively stimulates muscle growth and other anabolic effects while having less effect on the prostate and seminal vesicles. This may be particularly relevant in aging men with concerns related to the development or progression of prostate cancer.
- GTx-014 was less potent than GTx-007, but showed greater tissue selectivity (compare effects on the prostate and seminal vesicles in FIGS. 2 and 3 ).
- GTx-014 significantly increased levator ani muscle weights, but showed little to no ability to stimulate prostate and seminal vesicle growth (i.e., the prostate and seminal vesicle weights were less than 20% of that observed in intact animals or in animals treated with testosterone propionate).
- results showed that none of the examined compounds produced significant effect on body weight or the weights of other organs (i.e., liver, kidneys, spleen, lungs and heart). Nor did any compound produce any signs of acute toxicity, as gauged by diagnostic hematology tests and visual examination of animals receiving treatments. Importantly, GTx-007 did not suppress the production of luteinizing hormone (LH) or follicle stimulating hormone (FSH) at a dose of 0.3 mg/day (i.e., a dose that exhibited maximal anabolic effects).
- LH luteinizing hormone
- FSH follicle stimulating hormone
- S-GTx-007 exhibited exceptional anabolic activity in animals by maintaining the weight of levator ani muscle after removal of endogenous androgen. This discovery represents major progress towards the development of therapeutically useful nonsteroidal androgens, and a major improvement (i.e., tissue selectivity and potency) over previous drugs in this class. S-GTx-014 and S-GTx-007 showed selective anabolic activity in comparison with testosterone propionate, an androgenic and anabolic steroid. The tissue-selective activity is actually one of the advantages of nonsteroidal androgens in terms of anabolic-related applications.
- FIGS. 7 and 8 demonstrate the effects of GTx-014 and GTx-007 on LH and FSH levels in rats. These results further demonstrate the novelty of these SARM, due to their differential effects on these reproductive hormones, thus demonstrating the tissue-specific pharmacologic activity.
- LH levels in castrated animals treated with TP and GTx-014 were significantly lower than those of untreated animals (i.e., castrated controls) at doses greater than or equal to 0.3 mg/day.
- higher doses (i.e., 0.5 mg/day or higher) of GTx-007 were required before significant decreases in LH levels were observed.
- GTx-007 does not suppress LH levels at doses that are capable of eliciting maximal stimulation of levator ani muscle growth.
- FSH levels in castrated animals treated with GTx-014 were significantly lower than those of untreated animals (i.e., castrated controls) at doses of 0.5 mg/day or higher. Similarly, lower FSH levels were observed in animals treated with TP. However, only this difference was only significant at a dose of 0.75 mg/day. FSH levels in animals treated with GTx-007 were not significantly different from those of untreated animals at any dose level tested. Thus, GTx-007 does not suppress FSH levels at doses that are capable of eliciting maximal stimulation of levator ani muscle growth.
- S-GTx-007 The pharmacokinetics of S-GTx-007, a novel selective androgen receptor modulator (SARM), were characterized in beagle dogs.
- SARM selective androgen receptor modulator
- Each animal received a 3 mg/kg IV dose, a 10 mg/kg IV dose, a 10 mg/kg PO dose in solution, and a 10 mg/kg PO dose in capsule, in a randomly assigned order.
- Plasma samples were collected for up to 72 hr after drug administration. Plasma S-GTx-007 concentrations were analyzed by a validated HPLC method.
- results showed that S-GTx-007 was cleared from dog plasma with a terminal T 1/2 of about 4 hr and a CL of 4.4 mL/min/kg after IV administration.
- FIGS. 4, 5 , and 6 show the plasma concentration-time profiles of S-GTx-007 after administration of an intravenous solution, oral solution, and oral capsule, respectively.
- the Pharmacokinetics were dose- and gender-independent.
- the oral bioavailability of S-GTx-007 varied with the dosage form, and averaged 38% and 19% for solution and capsule, respectively.
- S-GTx-007 demonstrated moderate half-life, slow clearance and moderate bioavailability in beagle dogs, identifying it as the first of a new class of orally bioavailable tissue-selective androgen receptor modulators.
- a reversed phase high pressure liquid chromatograph (HPLC) assay was developed to quantitate GTx-007 concentrations in dog plasma.
- Dog blood samples were obtained by venipuncture and centrifuged at 1000 g for 15 minutes. Samples were stored frozen at ⁇ 20° C. until analysis. Individual samples were rapidly thawed and an aliquot (0.5 ml) was spiked with internal standard (20 ⁇ l of a 200 ⁇ g/ml aqueous solution of CM-II-87). An aliquot of 1 ml of acetonitrile was added to the samples to precipitate plasma proteins. The samples were vortexed and then centrifuged at 1000 g for 15 minutes.
- the supernatant was decanted into glass extraction tubes and 7.5 ml of ethyl acetate was added.
- the extraction mixture was left at room temperature for 20 minutes, and vortexed several times during this interval.
- the samples were then centrifuged at 1000 g for 10 minutes, and the organic phase was removed and placed in conical-bottomed glass tubes. The organic phase was evaporated under nitrogen.
- the samples were reconstituted in 200 ⁇ l of mobile phase (35:65 acetonitrile:water) and transferred to an autosampler vial for HPLC injection (Waters 717 plus autosampler, Waters Corp., Milford, Mass.).
- the isocratic mobile phase of 35% (v/v) acetonitrile in water was pumped at a flow rate of 1 ml/min (Model 510, Waters Corp.).
- the stationary phase was a C18 reversed phase column (Novapac C18, 3.9 ⁇ 150 mm).
- Analytes were monitored with UV detection at 270 nm (Model 486 absorbance detector, Waters Corp.). Retention times for GTx-007 and CM-II-87 were 11.1 and 16.9 minutes, respectively.
- Chromatography data was collected and analyzed using Millennium software. Plasma concentrations of GTx-007 in each sample were determined by comparison to calibration curves. Calibration curves were constructed by adding known amounts of GTx-007 to dog plasma.
- Elemental analyses were performed by Atlantic Microlab Inc. (Norcross, Ga.), and found values were within 0.4% of the theoretical values. Routine thin-layer chromatography (TLC) was performed on silica gel on aluminum plates (silica gel 60 F 254, 20 ⁇ 20 cm, Aldrich Chemical Company Inc., Milwaukee, Wis.). Flash chromatography was performed on silica gel (Merck, grade 60, 230-400 mesh, 60). Tetrahydrofuran (THF) was dried by distillation over sodium metal. Acetonitrile (MeCN) and methylene chloride (CH 2 Cl 2 ) were dried by distillation from P 2 O 5 .
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Endocrinology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Reproductive Health (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Pain & Pain Management (AREA)
- Diabetes (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Gynecology & Obstetrics (AREA)
- Dermatology (AREA)
- Pregnancy & Childbirth (AREA)
Abstract
Description
TABLE 1 |
Animals Groups and Experimental Design |
Group # | Castrated? | Drug | Dose | # of animals |
1 | No | None | None | 5 |
2 | Yes | None | Vehicle only | 5 |
3 | Yes | Testosterone | 0.1 mg/day | 5 |
4 | Yes | Testosterone | 0.3 mg/day | 5 |
5 | Yes | Testosterone | 0.5 mg/day | 5 |
6 | Yes | Testosterone | 0.75 mg/day | 5 |
7 | Yes | Testosterone | 1.0 mg/day | 5 |
8 | Yes | R-GTx-014 | 1.0 mg/day | 5 |
9 | Yes | S-GTx-014 | 0.1 mg/day | 5 |
10 | Yes | S-GTx-014 | 0.3 mg/day | 5 |
11 | Yes | S-GTx-014 | 0.5 mg/day | 5 |
12 | Yes | S-GTx-014 | 0.75 mg/day | 5 |
13 | Yes | S-GTx-014 | 1.0 mg/day | 5 |
14 | Yes | S-GTx-015 | 0.1 mg/day | 5 |
15 | Yes | S-GTx-015 | 0.3 mg/day | 5 |
16 | Yes | S-GTx-015 | 0.5 mg/day | 5 |
17 | Yes | S-GTx-015 | 0.75 mg/day | 5 |
18 | Yes | S-GTx-015 | 1.0 mg/day | 5 |
19 | Yes | S-GTx-016 | 0.1 mg/day | 5 |
20 | Yes | S-GTx-016 | 0.3 mg/day | 5 |
21 | Yes | S-GTx-016 | 0.5 mg/day | 5 |
22 | Yes | S-GTx-016 | 0.75 mg/day | 5 |
23 | Yes | S-GTx-016 | 1.0 mg/day | 5 |
24 | Yes | S-GTx-007 | 0.1 mg/day | 5 |
25 | Yes | S-GTx-007 | 0.3 mg/day | 5 |
26 | Yes | S-GTx-007 | 0.5 mg/day | 5 |
27 | Yes | S-GTx-007 | 0.75 mg/day | 5 |
28 | Yes | S-GTx-007 | 1.0 mg/day | 5 |
29 | Yes | None | Vehicle only | 5 |
Claims (30)
Priority Applications (22)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/935,045 US6569896B2 (en) | 2000-08-24 | 2001-08-23 | Selective androgen receptor modulators and methods of use thereof |
US10/084,680 US20030022868A1 (en) | 2001-06-25 | 2002-02-28 | Selective androgen receptor modulators and methods of use thereof |
US10/084,678 US20020173495A1 (en) | 2000-08-24 | 2002-02-28 | Selective androgen receptor modulators and methods of use thereof |
US10/270,232 US6838484B2 (en) | 2000-08-24 | 2002-10-15 | Formulations comprising selective androgen receptor modulators |
US10/270,233 US20030232792A1 (en) | 2000-08-24 | 2002-10-15 | Selective androgen receptor modulators and methods of use thereof |
US10/270,732 US6998500B2 (en) | 2000-08-24 | 2002-10-16 | Selective androgen receptor modulators and methods of use thereof |
US10/277,108 US6995284B2 (en) | 2000-08-24 | 2002-10-22 | Synthesis of selective androgen receptor modulators |
US10/371,213 US7026500B2 (en) | 2000-08-24 | 2003-02-24 | Halogenated selective androgen receptor modulators and methods of use thereof |
US10/849,039 US20040260108A1 (en) | 2001-06-25 | 2004-05-20 | Metabolites of selective androgen receptor modulators and methods of use thereof |
US10/863,524 US20050038110A1 (en) | 2000-08-24 | 2004-06-09 | Selective androgen receptor modulators and methods of use thereof |
US11/003,938 US20060287282A1 (en) | 2001-06-25 | 2004-12-06 | Compositions comprising a SARM ad GnRH agonist or a GnRH antagonist, and methods of use thereof |
US11/062,752 US7759520B2 (en) | 1996-11-27 | 2005-02-23 | Synthesis of selective androgen receptor modulators |
US11/125,159 US7205437B2 (en) | 1996-11-27 | 2005-05-10 | Selective androgen receptor modulators |
US11/146,427 US7622503B2 (en) | 2000-08-24 | 2005-06-07 | Selective androgen receptor modulators and methods of use thereof |
US11/220,414 US7855229B2 (en) | 2000-08-24 | 2005-09-07 | Treating wasting disorders with selective androgen receptor modulators |
US11/353,225 US7518013B2 (en) | 2000-08-24 | 2006-02-14 | Selective androgen receptor modulators |
US11/355,187 US7919647B2 (en) | 2000-08-24 | 2006-02-16 | Selective androgen receptor modulators and methods of use thereof |
US11/505,363 US20070173546A1 (en) | 2000-08-24 | 2006-08-17 | Selective androgen receptor modulators and method of use thereof |
US11/505,499 US7645898B2 (en) | 2000-08-24 | 2006-08-17 | Selective androgen receptor modulators and method of use thereof |
US12/420,731 US20090264534A1 (en) | 1996-11-27 | 2009-04-08 | Selective androgen receptor modulators |
US12/632,619 US8445534B2 (en) | 2000-08-24 | 2009-12-07 | Treating androgen decline in aging male (ADAM)-associated conditions with SARMs |
US13/899,239 US9493403B2 (en) | 2000-08-24 | 2013-05-21 | Treating androgen decline in aging male (ADAM)-associated conditions with SARMs |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64497000A | 2000-08-24 | 2000-08-24 | |
US30008301P | 2001-06-25 | 2001-06-25 | |
US09/935,045 US6569896B2 (en) | 2000-08-24 | 2001-08-23 | Selective androgen receptor modulators and methods of use thereof |
Related Parent Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US36735500P Continuation-In-Part | 1996-11-27 | 2000-08-24 | |
US64497000A Continuation-In-Part | 1996-11-27 | 2000-08-24 | |
US10/298,229 Continuation-In-Part US7041844B2 (en) | 1996-11-27 | 2002-11-18 | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
US11/062,752 Continuation-In-Part US7759520B2 (en) | 1996-11-27 | 2005-02-23 | Synthesis of selective androgen receptor modulators |
Related Child Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/935,044 Continuation-In-Part US6492554B2 (en) | 1996-11-27 | 2001-08-23 | Selective androgen receptor modulators and methods of use thereof |
US10/084,680 Continuation-In-Part US20030022868A1 (en) | 2001-06-25 | 2002-02-28 | Selective androgen receptor modulators and methods of use thereof |
US10/084,678 Continuation-In-Part US20020173495A1 (en) | 2000-08-24 | 2002-02-28 | Selective androgen receptor modulators and methods of use thereof |
US10/270,232 Continuation-In-Part US6838484B2 (en) | 2000-08-24 | 2002-10-15 | Formulations comprising selective androgen receptor modulators |
US10/270,233 Continuation-In-Part US20030232792A1 (en) | 2000-08-24 | 2002-10-15 | Selective androgen receptor modulators and methods of use thereof |
US10/270,732 Continuation-In-Part US6998500B2 (en) | 2000-08-24 | 2002-10-16 | Selective androgen receptor modulators and methods of use thereof |
US10/277,108 Continuation-In-Part US6995284B2 (en) | 1996-11-27 | 2002-10-22 | Synthesis of selective androgen receptor modulators |
US10/371,213 Continuation-In-Part US7026500B2 (en) | 2000-08-24 | 2003-02-24 | Halogenated selective androgen receptor modulators and methods of use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020099096A1 US20020099096A1 (en) | 2002-07-25 |
US6569896B2 true US6569896B2 (en) | 2003-05-27 |
Family
ID=26971579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/935,045 Expired - Fee Related US6569896B2 (en) | 1996-11-27 | 2001-08-23 | Selective androgen receptor modulators and methods of use thereof |
Country Status (21)
Country | Link |
---|---|
US (1) | US6569896B2 (en) |
EP (4) | EP1401801B1 (en) |
JP (2) | JP2004518617A (en) |
KR (1) | KR20030061783A (en) |
CN (2) | CN1230418C (en) |
AT (2) | ATE423092T1 (en) |
AU (2) | AU2001285230C1 (en) |
BR (1) | BR0114801A (en) |
CA (1) | CA2420279C (en) |
CY (2) | CY1105956T1 (en) |
DE (2) | DE60124322T2 (en) |
DK (2) | DK1401801T3 (en) |
EA (2) | EA007101B1 (en) |
ES (2) | ES2275717T3 (en) |
GE (1) | GEP20053586B (en) |
HK (2) | HK1062011A1 (en) |
HR (1) | HRP20030118B1 (en) |
MX (1) | MXPA03001632A (en) |
PT (2) | PT1401801E (en) |
SI (1) | SI1401801T1 (en) |
WO (1) | WO2002016310A1 (en) |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030162761A1 (en) * | 2000-08-24 | 2003-08-28 | Steiner Mitchell S. | Formulations comprising selective androgen receptor modulators |
US20030232882A1 (en) * | 1996-11-27 | 2003-12-18 | Miller Duane D. | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
US20040029913A1 (en) * | 2000-08-24 | 2004-02-12 | Dalton James T. | Halogenated selective androgen receptor modulators and methods of use thereof |
US20040053897A1 (en) * | 2002-02-07 | 2004-03-18 | Dalton James T. | Treating benign prostate hyperplasia with SARMS |
US20040052727A1 (en) * | 2002-02-28 | 2004-03-18 | Dalton James T. | Radiolableled selective androgen receptor modulators andtheir use in prostate cancer imaging and therapy |
WO2003049675A3 (en) * | 2001-12-06 | 2004-04-01 | Gtx Inc | Treating muscle wasting with selective androgen receptor modulators |
US20040067979A1 (en) * | 2002-06-17 | 2004-04-08 | Dalton James T. | N-bridged selective androgen receptor modulators and methods of use thereof |
US20040087810A1 (en) * | 2002-10-23 | 2004-05-06 | Dalton James T. | Irreversible selective androgen receptor modulators and methods of use thereof |
US20040092602A1 (en) * | 1998-05-07 | 2004-05-13 | Steiner Mitchell S. | Method for treatment and chemoprevention of prostate cancer |
US20040147489A1 (en) * | 2002-02-28 | 2004-07-29 | Dalton James T. | Haloacetamide and azide substituted compounds and methods of use thereof |
US20040147550A1 (en) * | 2002-10-15 | 2004-07-29 | Dalton James T. | Methylene-bridged selective androgen receptor modulators and methods of use thereof |
US20040167103A1 (en) * | 2003-02-24 | 2004-08-26 | Dalton James T. | Haloacetamide and azide substituted compounds and methods of use thereof |
US20040186185A1 (en) * | 1998-05-07 | 2004-09-23 | Steiner Mitchell S. | Method for treatment and chemoprevention of prostate cancer |
US20040260108A1 (en) * | 2001-06-25 | 2004-12-23 | Dalton James T. | Metabolites of selective androgen receptor modulators and methods of use thereof |
US20040260092A1 (en) * | 2003-01-13 | 2004-12-23 | Miller Duane D. | Large-scale synthesis of selective androgen receptor modulators |
US20050004191A1 (en) * | 1999-12-16 | 2005-01-06 | Iiya Avrutov | Novel processes for making- and a new crystalline form of- leflunomide |
US20050033074A1 (en) * | 2002-02-28 | 2005-02-10 | Dalton James T. | Multi-substitued selective androgen receptor modulators and methods of use thereof |
US20050038110A1 (en) * | 2000-08-24 | 2005-02-17 | Steiner Mitchell S. | Selective androgen receptor modulators and methods of use thereof |
WO2005018573A2 (en) | 2003-08-22 | 2005-03-03 | Ligand Pharmaceuticals Incorporated | 6-cycloamino-2-quinolinone derivatives as androgen receptor modulator compounds |
US20050113345A1 (en) * | 2003-10-24 | 2005-05-26 | Jesse Chow | Compounds and methods for treating Toll-like receptor 2-related diseases and conditions |
WO2005060647A3 (en) * | 2003-12-16 | 2005-09-01 | Gtx Inc | Prodrugs of selective androgen receptor modulators and methods of use thereof |
US20050288350A1 (en) * | 1999-08-27 | 2005-12-29 | Lin Zhi | Bicyclic androgen and progesterone receptor modulator compounds and methods |
US20060004042A1 (en) * | 2001-08-23 | 2006-01-05 | Dalton James T | Formulations comprising selective androgen receptor modulators |
US20060009529A1 (en) * | 1996-11-27 | 2006-01-12 | Dalton James T | Synthesis of selective androgen receptor modulators |
US20060111441A1 (en) * | 2000-08-24 | 2006-05-25 | Dalton James T | Treating wasting disorders with selective androgen receptor modulators |
US20060128740A1 (en) * | 2001-02-23 | 2006-06-15 | Lin Zhi | Tricyclic androgen receptor modulator compounds and methods |
US20060183931A1 (en) * | 2002-02-28 | 2006-08-17 | Dalton James T | Multi-substituted selective androgen receptor modulators and methods of use thereof |
US20060229362A1 (en) * | 2000-08-24 | 2006-10-12 | Dalton James T | Selective androgen receptor modulators and methods of use thereof |
US20060241180A1 (en) * | 2002-06-17 | 2006-10-26 | Dalton James T | Selective androgen receptor modulators and methods of use thereof |
US20060270641A1 (en) * | 2005-05-31 | 2006-11-30 | Steiner Mitchell S | Method for chemoprevention of prostate cancer |
US20060276540A1 (en) * | 2000-08-24 | 2006-12-07 | Dalton James T | Selective androgen receptor modulators |
US20070123563A1 (en) * | 2000-08-24 | 2007-05-31 | Dalton James T | Selective androgen receptor modulators and method of use thereof |
US20070123512A1 (en) * | 2003-06-27 | 2007-05-31 | Jari Ratilainen | Propionamide derivatives useful as androgen receptor modulators |
US20070161608A1 (en) * | 2001-12-06 | 2007-07-12 | Dalton James T | Selective androgen receptor modulators for treating muscle wasting |
US20070173546A1 (en) * | 2000-08-24 | 2007-07-26 | Dalton James T | Selective androgen receptor modulators and method of use thereof |
WO2007027582A3 (en) * | 2005-08-31 | 2007-10-25 | Gtx Inc | Treating renal disease, burns, wounds and spinal cord injury with selective androgen receptor modulators |
US20070254875A1 (en) * | 2004-03-12 | 2007-11-01 | Lin Zhi | Androgen Receptor Modulator Compounds and Methods |
US20070281906A1 (en) * | 2001-12-06 | 2007-12-06 | Dalton James T | Selective androgen receptor modulators for treating diabetes |
US20080057068A1 (en) * | 2002-02-28 | 2008-03-06 | Dalton James T | SARMS and method of use thereof |
US20080076829A1 (en) * | 2006-08-24 | 2008-03-27 | Dalton James T | Substituted acylanilides and methods of use thereof |
US20080249183A1 (en) * | 2001-11-29 | 2008-10-09 | Steiner Mitchell S | Treatment of androgen-deprivation induced osteoporosis |
US20090030027A1 (en) * | 2005-06-17 | 2009-01-29 | Ligand Pharmaceuticals Incorporated | Androgen Receptor Modulator Compounds and Methods |
WO2007050554A3 (en) * | 2005-10-25 | 2009-04-30 | Univ Columbia | Methods for identifying compounds that modulate phb domain protein activity and compositions thereof |
US7622503B2 (en) | 2000-08-24 | 2009-11-24 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
US20090298710A1 (en) * | 2005-12-15 | 2009-12-03 | Farokhzad Omid C | System for Screening Particles |
US20100129439A1 (en) * | 2008-10-12 | 2010-05-27 | Frank Alexis | Adjuvant Incorporation in Immunonanotherapeutics |
US20100137430A1 (en) * | 2000-08-24 | 2010-06-03 | Dalton James T | Treating androgen decline in aging male (adam)-associated conditions with sarms |
US20100144871A1 (en) * | 2001-12-06 | 2010-06-10 | Steiner Mitchell S | Treating muscle wasting with selective androgen receptor modulators |
US20100183727A1 (en) * | 2008-10-12 | 2010-07-22 | Matteo Iannacone | Immunonanotherapeutics that Provide IgG Humoral Response Without T-Cell Antigen |
US20100249228A1 (en) * | 2004-06-07 | 2010-09-30 | Dalton James T | Sarms and method of use thereof |
US20100256129A1 (en) * | 2007-12-21 | 2010-10-07 | Lin Zhi | Selective androgen receptor modulators (sarms) and uses thereof |
US20100297233A1 (en) * | 2007-02-09 | 2010-11-25 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
US20110237664A1 (en) * | 2004-06-07 | 2011-09-29 | Dalton James T | Selective androgen receptor modulators for treating diabetes |
EP2436376A1 (en) | 2007-09-28 | 2012-04-04 | Bind Biosciences, Inc. | Cancer cell targeting using nanoparticles |
US8193334B2 (en) | 2007-04-04 | 2012-06-05 | The Brigham And Women's Hospital | Polymer-encapsulated reverse micelles |
US8323698B2 (en) | 2006-05-15 | 2012-12-04 | Massachusetts Institute Of Technology | Polymers for functional particles |
US8343497B2 (en) | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
US8395552B2 (en) | 2010-11-23 | 2013-03-12 | Metamagnetics, Inc. | Antenna module having reduced size, high gain, and increased power efficiency |
WO2013152170A1 (en) | 2012-04-04 | 2013-10-10 | Catylix, Inc. | Selective androgen receptor modulators |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US8709483B2 (en) | 2006-03-31 | 2014-04-29 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
EA019849B1 (en) * | 2006-08-28 | 2014-06-30 | Юниверсити Оф Теннесси Рисерч Фаундейшн | Method of treating, suppressing, inhibiting or reducing incidents of symptoms associated with kidney disease: hypogonadism and unvoluntary weight loss |
US9150501B2 (en) | 2007-09-11 | 2015-10-06 | Gtx, Inc. | Solid forms of selective androgen receptor modulators |
US20160106702A1 (en) * | 2014-10-16 | 2016-04-21 | Gtx, Inc. | METHODS OF TREATING UROLOGICAL DISORDERS USING SARMs |
US9333179B2 (en) | 2007-04-04 | 2016-05-10 | Massachusetts Institute Of Technology | Amphiphilic compound assisted nanoparticles for targeted delivery |
WO2016079522A1 (en) | 2014-11-20 | 2016-05-26 | University College Cardiff Consultants Limited | Androgen receptor modulators and their use as anti-cancer agents |
WO2016079521A1 (en) | 2014-11-20 | 2016-05-26 | University College Cardiff Consultants Limited | Androgen receptor modulators and their use as anti-cancer agents |
US9351977B2 (en) | 2014-10-22 | 2016-05-31 | Chavah Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
US9381477B2 (en) | 2006-06-23 | 2016-07-05 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
US9474717B2 (en) | 2007-10-12 | 2016-10-25 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US9492400B2 (en) | 2004-11-04 | 2016-11-15 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
US9604916B2 (en) | 2012-07-13 | 2017-03-28 | Gtx, Inc. | Method of treating androgen receptor (AR)-positive breast cancers with selective androgen receptor modulator (SARMs) |
US9616072B2 (en) | 2005-10-19 | 2017-04-11 | Chavah Pty Ltd. | Reduction of side effects from aromatase inhibitors used for treating breast cancer |
US9622992B2 (en) | 2012-07-13 | 2017-04-18 | Gtx, Inc. | Method of treating androgen receptor (AR)-positive breast cancers with selective androgen receptor modulator (SARMs) |
US9730908B2 (en) | 2006-08-24 | 2017-08-15 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US9744149B2 (en) | 2012-07-13 | 2017-08-29 | Gtx, Inc. | Method of treating androgen receptor (AR)-positive breast cancers with selective androgen receptor modulator (SARMs) |
US9844528B2 (en) | 2006-08-24 | 2017-12-19 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US9884038B2 (en) | 2004-06-07 | 2018-02-06 | University Of Tennessee Research Foundation | Selective androgen receptor modulator and methods of use thereof |
US9889110B2 (en) | 2004-06-07 | 2018-02-13 | University Of Tennessee Research Foundation | Selective androgen receptor modulator for treating hormone-related conditions |
US9969683B2 (en) | 2012-07-13 | 2018-05-15 | Gtx, Inc. | Method of treating estrogen receptor (ER)-positive breast cancers with selective androgen receptor modulator (SARMS) |
US10010521B2 (en) | 2006-08-24 | 2018-07-03 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US10258596B2 (en) | 2012-07-13 | 2019-04-16 | Gtx, Inc. | Method of treating HER2-positive breast cancers with selective androgen receptor modulators (SARMS) |
US10314807B2 (en) | 2012-07-13 | 2019-06-11 | Gtx, Inc. | Method of treating HER2-positive breast cancers with selective androgen receptor modulators (SARMS) |
US10471073B2 (en) | 2016-04-19 | 2019-11-12 | Havah Therapeutics Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
WO2019217780A1 (en) | 2018-05-11 | 2019-11-14 | Phosphorex, Inc. | Microparticles and nanoparticles having negative surface charges |
EP3613418A1 (en) | 2014-01-17 | 2020-02-26 | Ligand Pharmaceuticals, Inc. | Methods and compositions for modulating hormone levels |
US10849873B2 (en) | 2012-07-13 | 2020-12-01 | Oncternal Therapeutics, Inc | Non-invasive method of evaluating breast cancers for selective androgen receptor modulator (SARM) therapy |
WO2022074152A1 (en) | 2020-10-08 | 2022-04-14 | Targimmune Therapeutics Ag | Immunotherapy for the treatment of cancer |
US11524014B2 (en) | 2019-06-03 | 2022-12-13 | Havah Therapeutics Pty Ltd. | Pharmaceutical formulations and systems for delivery of an androgenic agent and an aromatase inhibitor with sustained multi-phasic release profiles and methods of use |
WO2023079142A2 (en) | 2021-11-05 | 2023-05-11 | Targimmune Therapeutics Ag | Targeted linear conjugates comprising polyethyleneimine and polyethylene glycol and polyplexes comprising the same |
WO2024100040A1 (en) | 2022-11-07 | 2024-05-16 | Targimmune Therapeutics Ag | Psma-targeting linear conjugates comprising polyethyleneimine and polyethylene glycol and polyplexes comprising the same |
WO2024100044A1 (en) | 2022-11-07 | 2024-05-16 | Targimmune Therapeutics Ag | Polyplexes of nucleic acids and targeted conjugates comprising polyethyleneimine and polyethylene glycol |
WO2024100046A1 (en) | 2022-11-07 | 2024-05-16 | Targimmune Therapeutics Ag | Targeted linear conjugates comprising polyethyleneimine and polyethylene glycol and polyplexes comprising the same |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6995284B2 (en) | 2000-08-24 | 2006-02-07 | The University Of Tennessee Research Foundation | Synthesis of selective androgen receptor modulators |
US6960474B2 (en) | 2000-06-28 | 2005-11-01 | Bristol-Myers Squibb Company | Method for the treatment of a condition remediable by administration of a selective androgen receptor modulator |
US6998500B2 (en) | 2000-08-24 | 2006-02-14 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
GEP20074209B (en) * | 2002-02-28 | 2007-10-10 | , | Multi-substitued selective androgen receptor modulators and methods of use thereof |
EA200401121A1 (en) * | 2002-02-28 | 2005-10-27 | Юниверсити Оф Теннесси Рисерч Фаундейшн | IRREVERSIBLE SELECTIVE MODULATORS OF THE ANDROGEN RECEPTOR AND METHODS OF THEIR APPLICATION |
EP2266577B8 (en) * | 2002-02-28 | 2015-01-21 | University Of Tennessee Research Foundation | Multi-substituted selective androgen receptor modulators and methods of use thereof |
CA2501867A1 (en) * | 2002-10-15 | 2004-04-29 | James T. Dalton | Heterocyclic selective androgen receptor modulators and methods of use thereof |
JP2006505564A (en) * | 2002-10-16 | 2006-02-16 | ジーティーエックス・インコーポレイテッド | Treatment of diseases related to androgen depletion in older men with SARM |
US20060276539A1 (en) * | 2002-10-16 | 2006-12-07 | Dalton James T | Treating Androgen Decline in Aging Male (ADAM)- associated conditions with SARMS |
AU2004206909A1 (en) * | 2003-01-22 | 2004-08-05 | Gtx Inc. | Treating androgen deficiency in female (ADIF)-associated conditions with sarms |
CN1835937B (en) * | 2003-06-13 | 2012-07-18 | 詹森药业有限公司 | Novel thiazoline derivatives as selective androgen receptor modulators (SARMS) |
CN100462353C (en) * | 2003-06-27 | 2009-02-18 | 奥赖恩公司 | Propionamide derivatives useful as androgen receptor modulators |
KR20060035629A (en) * | 2003-06-27 | 2006-04-26 | 오리온 코포레이션 | Propionamide derivatives useful as androgen receptor modulators |
AU2004281708B2 (en) * | 2003-10-14 | 2011-02-17 | University Of Tennessee Research Foundation | Treating bone-related disorders with selective androgen receptor modulators |
GB0324551D0 (en) * | 2003-10-21 | 2003-11-26 | Karobio Ab | Novel compounds |
RU2422450C2 (en) | 2003-11-19 | 2011-06-27 | Метабазис Терапеутикс, Инк. | New phosphorus-containing thymomimetic drugs |
WO2005085185A1 (en) * | 2004-03-03 | 2005-09-15 | Smithkline Beecham Corporation | Aniline derivatives as selective androgen receptor modulators |
ES2371170T3 (en) * | 2004-05-03 | 2011-12-28 | Janssen Pharmaceutica Nv | BENZOFURAN DERIVATIVES SELECTIVE COMMOMODULATORS OF ANDROGEN RECEPTORS (MSRA). |
EP1747193A1 (en) * | 2004-05-11 | 2007-01-31 | Pfizer Products Incorporated | Benzonitrile derivatives to treat musculoskeletal frailty |
DK1753417T3 (en) * | 2004-06-07 | 2012-07-23 | Univ Tennessee Res Foundation | SELECTIVE ANDROGEN RECEPTOR MODULATOR AND MEDICAL APPLICATIONS THEREOF |
WO2005120483A2 (en) * | 2004-06-07 | 2005-12-22 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
BRPI0513020A (en) * | 2004-07-08 | 2008-04-22 | Warner Lambert Co | androgen modulators, their uses, pharmaceutical composition, topical pharmaceutical formulation and article of manufacture |
MX2007008334A (en) | 2005-01-10 | 2007-09-11 | Acadia Pharm Inc | Aminophenyl derivatives as selective androgen receptor modulators. |
US7790745B2 (en) | 2005-10-21 | 2010-09-07 | Bristol-Myers Squibb Company | Tetrahydroisoquinoline LXR Modulators |
US7741317B2 (en) | 2005-10-21 | 2010-06-22 | Bristol-Myers Squibb Company | LXR modulators |
US7888376B2 (en) | 2005-11-23 | 2011-02-15 | Bristol-Myers Squibb Company | Heterocyclic CETP inhibitors |
ATE547394T1 (en) | 2006-12-01 | 2012-03-15 | Bristol Myers Squibb Co | N-((3-BENZYL)-2,2-(BIS-PHENYL)-PROPANE-1- AMINE DERIVATIVES AS CETP INHIBITORS FOR THE TREATMENT OF ATHEROSCLERosis AND CARDIOVASCULAR DISEASES |
CN101284795B (en) * | 2007-04-09 | 2012-04-25 | 中国科学院上海药物研究所 | Non-steroidal male hormone receptor regulating agent and medical uses thereof |
CN101855198B (en) * | 2007-09-11 | 2013-07-10 | 田纳西大学研究基金会 | Solid forms of selective androgen receptor modulators |
US8268872B2 (en) | 2008-02-22 | 2012-09-18 | Radius Health, Inc. | Selective androgen receptor modulators |
EP2260028B1 (en) | 2008-02-22 | 2014-05-07 | Radius Health, Inc. | Selective androgen receptor modulators |
JP2011519916A (en) * | 2008-07-02 | 2011-07-14 | ファーマコステック カンパニー リミテッド | Method for producing amide derivative |
US20120046364A1 (en) | 2009-02-10 | 2012-02-23 | Metabasis Therapeutics, Inc. | Novel Sulfonic Acid-Containing Thyromimetics, and Methods for Their Use |
CA2788907A1 (en) | 2010-02-04 | 2011-08-11 | Radius Health, Inc. | Selective androgen receptor modulators |
EP3106159A1 (en) | 2010-05-12 | 2016-12-21 | Radius Health, Inc. | Therapeutic regimens |
US8642632B2 (en) | 2010-07-02 | 2014-02-04 | Radius Health, Inc. | Selective androgen receptor modulators |
US9133182B2 (en) | 2010-09-28 | 2015-09-15 | Radius Health, Inc. | Selective androgen receptor modulators |
CA2861066C (en) * | 2012-01-12 | 2024-01-02 | Yale University | Compounds and methods for the enhanced degradation of targeted proteins and other polypeptides by an e3 ubiquitin ligase |
RU2510392C1 (en) * | 2012-12-21 | 2014-03-27 | Федеральное государственное бюджетное учреждение науки Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР РАН) | Co-crystalline form of bicalutamide |
US9421264B2 (en) | 2014-03-28 | 2016-08-23 | Duke University | Method of treating cancer using selective estrogen receptor modulators |
HUE061499T2 (en) | 2014-03-28 | 2023-07-28 | Univ Duke | Treating breast cancer using selective estrogen receptor modulators |
US10865184B2 (en) | 2015-04-21 | 2020-12-15 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
US9834507B2 (en) | 2015-04-21 | 2017-12-05 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
US10035763B2 (en) | 2015-04-21 | 2018-07-31 | Gtx, Inc. | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
US10654809B2 (en) | 2016-06-10 | 2020-05-19 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
US10806720B2 (en) | 2015-04-21 | 2020-10-20 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
US10441570B2 (en) | 2015-04-21 | 2019-10-15 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) Ligands and methods of use thereof |
US10017471B2 (en) | 2015-04-21 | 2018-07-10 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
MX2017013565A (en) | 2015-04-21 | 2018-02-19 | Gtx Inc | Selective androgen receptor degrader (sard) ligands and methods of use thereof. |
RU2019115778A (en) | 2015-04-21 | 2019-06-24 | Джи Ти Икс, ИНК. | SELECTIVE LIGANDS - DESTRUCTORS OF ANDROGEN RECEPTORS (SARD) AND METHODS OF THEIR APPLICATION |
US10093613B2 (en) | 2015-04-21 | 2018-10-09 | Gtx, Inc. | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
US11230523B2 (en) | 2016-06-10 | 2022-01-25 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
KR102397890B1 (en) | 2016-06-22 | 2022-05-12 | 일립시스 파마 리미티드 | AR+ Breast Cancer Treatment Method |
EP3565542B1 (en) | 2017-01-05 | 2024-04-10 | Radius Pharmaceuticals, Inc. | Polymorphic forms of rad1901-2hcl |
US12202815B2 (en) | 2018-09-05 | 2025-01-21 | University Of Tennessee Research Foundation | Selective androgen receptor degrader (SARD) ligands and methods of use thereof |
EP4001293A1 (en) * | 2020-11-23 | 2022-05-25 | Justus-Liebig-Universität Gießen | Tetrapeptide and its use |
US20240150301A1 (en) * | 2021-02-10 | 2024-05-09 | Etern Biopharma (Shanghai) Co., Ltd. | Methods of modulating androgen receptor condensates |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3875229A (en) | 1972-11-24 | 1975-04-01 | Schering Corp | Substituted carboxanilides |
US4139638A (en) | 1976-09-23 | 1979-02-13 | Schering Corporation | Methods for the treatment of hirsutism |
US4191775A (en) | 1977-12-15 | 1980-03-04 | Imperial Chemical Industries Limited | Amide derivatives |
US4239776A (en) | 1977-10-12 | 1980-12-16 | Imperial Chemical Industries Limited | Anti-androgenic amides |
EP0040932A1 (en) | 1980-05-22 | 1981-12-02 | Imperial Chemical Industries Plc | Amide derivatives, process for their manufacture and pharmaceutical or veterinary compositions containing them |
EP0100172A1 (en) | 1982-07-23 | 1984-02-08 | Imperial Chemical Industries Plc | Amide derivatives |
US4465507A (en) | 1981-04-15 | 1984-08-14 | Mitsubishi Petrochemical Co., Ltd. | Herbicidal acetanilides |
US4880839A (en) | 1986-07-18 | 1989-11-14 | Imperial Chemical Industries Plc | Acyanilide derivatives |
US5162504A (en) | 1988-06-03 | 1992-11-10 | Cytogen Corporation | Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients |
WO1995019770A1 (en) | 1994-01-21 | 1995-07-27 | Sepracor, Inc. | Methods and compositions for treating androgen-dependent diseases using optically pure r-(-)-casodex |
US5609849A (en) | 1994-03-11 | 1997-03-11 | The Trustees Of The University Of Pennsylvania | Serotonin (5-HT1A) receptor ligands and imaging agents |
US5656651A (en) | 1995-06-16 | 1997-08-12 | Biophysica Inc. | Androgenic directed compositions |
WO1998053826A1 (en) | 1997-05-30 | 1998-12-03 | The University Of Tennessee Research Corporation | Non-steroidal agonist compounds and their use in male hormone therapy |
US6019957A (en) | 1997-06-04 | 2000-02-01 | The University Of Tennessee Research Corporation | Non-steroidal radiolabeled agonist/antagonist compounds and their use in prostate cancer imaging |
US6071957A (en) | 1996-11-27 | 2000-06-06 | The University Of Tennessee Research Corporation | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8617653D0 (en) * | 1986-07-18 | 1986-08-28 | Ici Plc | Amide derivatives |
TW397821B (en) * | 1996-04-19 | 2000-07-11 | American Home Produits Corp | 3-[4-(2-phenyl-indole-1-ylmethyl)-phenyl]-acrylamides and 2-phenyl-1-[4-(amino-1-yl-alk-1-ynyl)-benzyl]-1H-indol-5-ol as well as pharmaceutical compositions of estrogenic agents thereof |
-
2001
- 2001-08-23 AT AT04019299T patent/ATE423092T1/en active
- 2001-08-23 DK DK01964368T patent/DK1401801T3/en active
- 2001-08-23 EP EP01964368A patent/EP1401801B1/en not_active Expired - Lifetime
- 2001-08-23 EP EP06014580A patent/EP1705174A1/en not_active Withdrawn
- 2001-08-23 MX MXPA03001632A patent/MXPA03001632A/en active IP Right Grant
- 2001-08-23 JP JP2002521186A patent/JP2004518617A/en active Pending
- 2001-08-23 EA EA200300283A patent/EA007101B1/en not_active IP Right Cessation
- 2001-08-23 AU AU2001285230A patent/AU2001285230C1/en not_active Ceased
- 2001-08-23 BR BR0114801-0A patent/BR0114801A/en not_active IP Right Cessation
- 2001-08-23 AU AU8523001A patent/AU8523001A/en active Pending
- 2001-08-23 AT AT01964368T patent/ATE344233T1/en active
- 2001-08-23 CN CNB018178898A patent/CN1230418C/en not_active Expired - Fee Related
- 2001-08-23 PT PT01964368T patent/PT1401801E/en unknown
- 2001-08-23 SI SI200130685T patent/SI1401801T1/en unknown
- 2001-08-23 GE GE5108A patent/GEP20053586B/en unknown
- 2001-08-23 CA CA2420279A patent/CA2420279C/en not_active Expired - Lifetime
- 2001-08-23 EP EP04019299A patent/EP1491524B1/en not_active Expired - Lifetime
- 2001-08-23 US US09/935,045 patent/US6569896B2/en not_active Expired - Fee Related
- 2001-08-23 DE DE60124322T patent/DE60124322T2/en not_active Expired - Lifetime
- 2001-08-23 PT PT04019299T patent/PT1491524E/en unknown
- 2001-08-23 EA EA200501269A patent/EA014224B1/en not_active IP Right Cessation
- 2001-08-23 WO PCT/US2001/026328 patent/WO2002016310A1/en active Application Filing
- 2001-08-23 KR KR10-2003-7002652A patent/KR20030061783A/en not_active Ceased
- 2001-08-23 ES ES01964368T patent/ES2275717T3/en not_active Expired - Lifetime
- 2001-08-23 DE DE60137728T patent/DE60137728D1/en not_active Expired - Lifetime
- 2001-08-23 ES ES04019299T patent/ES2321933T3/en not_active Expired - Lifetime
- 2001-08-23 EP EP10182881A patent/EP2284149A1/en not_active Withdrawn
- 2001-08-23 CN CN2005100674946A patent/CN1736371B/en not_active Expired - Fee Related
- 2001-08-23 DK DK04019299T patent/DK1491524T3/en active
-
2003
- 2003-02-19 HR HR20030118A patent/HRP20030118B1/en not_active IP Right Cessation
-
2004
- 2004-07-08 HK HK04104977A patent/HK1062011A1/en not_active IP Right Cessation
-
2005
- 2005-05-12 HK HK05103982.9A patent/HK1072243A1/en not_active IP Right Cessation
-
2006
- 2006-05-29 JP JP2006147596A patent/JP2006306880A/en active Pending
-
2007
- 2007-01-26 CY CY20071100104T patent/CY1105956T1/en unknown
-
2009
- 2009-05-08 CY CY20091100497T patent/CY1110459T1/en unknown
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3875229A (en) | 1972-11-24 | 1975-04-01 | Schering Corp | Substituted carboxanilides |
US4139638A (en) | 1976-09-23 | 1979-02-13 | Schering Corporation | Methods for the treatment of hirsutism |
US4239776A (en) | 1977-10-12 | 1980-12-16 | Imperial Chemical Industries Limited | Anti-androgenic amides |
US4282218A (en) | 1977-10-12 | 1981-08-04 | Imperial Chemical Industries Limited | Amides |
US4191775A (en) | 1977-12-15 | 1980-03-04 | Imperial Chemical Industries Limited | Amide derivatives |
EP0040932A1 (en) | 1980-05-22 | 1981-12-02 | Imperial Chemical Industries Plc | Amide derivatives, process for their manufacture and pharmaceutical or veterinary compositions containing them |
US4386080A (en) | 1980-05-22 | 1983-05-31 | Imperial Chemical Industries Limited | Anti-androgenic amide derivative |
US4465507A (en) | 1981-04-15 | 1984-08-14 | Mitsubishi Petrochemical Co., Ltd. | Herbicidal acetanilides |
EP0100172A1 (en) | 1982-07-23 | 1984-02-08 | Imperial Chemical Industries Plc | Amide derivatives |
US4636505A (en) | 1982-07-23 | 1987-01-13 | Imperial Chemical Industries Plc | Amide derivatives |
US4880839A (en) | 1986-07-18 | 1989-11-14 | Imperial Chemical Industries Plc | Acyanilide derivatives |
US5162504A (en) | 1988-06-03 | 1992-11-10 | Cytogen Corporation | Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients |
WO1995019770A1 (en) | 1994-01-21 | 1995-07-27 | Sepracor, Inc. | Methods and compositions for treating androgen-dependent diseases using optically pure r-(-)-casodex |
US5609849A (en) | 1994-03-11 | 1997-03-11 | The Trustees Of The University Of Pennsylvania | Serotonin (5-HT1A) receptor ligands and imaging agents |
US5656651A (en) | 1995-06-16 | 1997-08-12 | Biophysica Inc. | Androgenic directed compositions |
US6071957A (en) | 1996-11-27 | 2000-06-06 | The University Of Tennessee Research Corporation | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
US20010012839A1 (en) | 1996-11-27 | 2001-08-09 | Miller Duane D | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
WO1998053826A1 (en) | 1997-05-30 | 1998-12-03 | The University Of Tennessee Research Corporation | Non-steroidal agonist compounds and their use in male hormone therapy |
US6160011A (en) | 1997-05-30 | 2000-12-12 | The University Of Tennessee Research Corporation | Non-steroidal agonist compounds and their use in male hormone therapy |
US6019957A (en) | 1997-06-04 | 2000-02-01 | The University Of Tennessee Research Corporation | Non-steroidal radiolabeled agonist/antagonist compounds and their use in prostate cancer imaging |
Non-Patent Citations (21)
Title |
---|
C. G. Francisco, et al., "Long-acting contraceptive agents: testosterone esters of unsaturated acids", Steroids, Jan. 1990, vol. 55, Butterworths. |
Carl Djerassi and S.P. Leibo, "A new look at male contraception", Nature, vol. 370, pp. 11-12. |
D. McKillop, et al., "Enantioselective metabolism and pharmacokinetics of Casodex in the male rat", Xenobiotica, 1995, vol. 25, No. 6, 623-634. |
Dalton JT, Mukherjee A, Zhu Z, Kirkovsky L, and Miller DD. Discovery of Nonsteroidal Androgens. Biochem. Biophys. Res. Commun., 244(1):1-4, 1998. |
David J. Handelsman, "Bridging the gender gap in contraception: another hurdle cleared" The Medical Journal of Australia, vol. 154, Feb. 18, 1996, pp. 230-233. |
David T. Baird and Anna F. Glasier, "Hormonal Contraception-Drug Therapy", The New England Journal of Medicine, May 27, 1993, pp. 1543-1549. |
Edwards JP, Higuchi RI, Winn D T, Pooley CLF, Caferro TR, Hamann LG, Zhi L, Marschke KB, Goldman ME, and Jones TK. Nonsteroidal androgen receptor agonists based on 4-(trifluoromethyl)-2H-pyrano[3,2-g]quinolin-2-one. Bioorg. Med. Chem. Lett., 9: 1003, 1999. |
Edwards JP, West SJ, Pooley CLF, Marschke KB, Farmer LJ, and Jones TK. New nonsteroidal androgen receptor modulators based on 4-(trifluoromethyl)-2-(1H)-Pyrololidinol[3,2-g]quinolone. Bioorg. Med. Chem. Lett., 8: 745, 1998. |
F.C. W. Wu, "Male Contraception: Current Status and Future Prospects", Clinical Endocrinology, (1988), 29, pp. 443-465. |
Hamann LG, Mani NS, Davis RL, Wang XN, Marschke KB, and Jones TK. Discovery of a potent, orally active nonsteroidal androgen receptor agonist: 4-ethyl-1,2,3,4-tetrahydro-6-(trifluoromethyl)-8-pyridono[5,6-g]-quinoline (LG121071). J. Med. Chem., 42: 210, 1999. |
Higuchi RI, Edwards JP, Caferro TR, Ringgenberg JD, Kong JW, Hamann LG, Arienti KL, Marschke KB, Davis RL, Farmer LJ, and Jones TK. 4-Alkyl-and 3,4-diaklyl-1,2,3,4-tetrahydro-8-pyridono[5,6-g]quinolines: potent, nonsteroidal androgen receptor agonists. Bioorg. Med. Chem. Lett., 9:1335, 1999. |
Howard Tucker and Glynne J. Chesterson, J. Med Chem. 1988, 31, pp. 885-887, "Resolution of the Nonsteroidal Antiandrogem—4′-Cyano-3-[4-fluorophenyl)sulfonyl]-2-hydroxy-2-methyl-3′-(trifluoromethyl)-propionanilide and the Determination of the Absolute Configuration of the Active Enantiomer". |
Howard Tucker and Glynne J. Chesterson, J. Med Chem. 1988, 31, pp. 885-887, "Resolution of the Nonsteroidal Antiandrogem-4'-Cyano-3-[4-fluorophenyl)sulfonyl]-2-hydroxy-2-methyl-3'-(trifluoromethyl)-propionanilide and the Determination of the Absolute Configuration of the Active Enantiomer". |
John M. Hoberman and Charles E. Yesalis, "The History of Synthetic Testosterone", Scientific American, Feb. 1995, pp. 76-81. |
Leonid Kirkovsky, et al., "[125I]-Radionated Bicalutamide Analogs as Potential Imaging Agents for Prostate Cancer", Poster Presentation MEDI 155, 214th ACS National Meeting, Las Vegas, NV, Sep. 7-11, 1997, Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163. |
Leonid Kirkovsky, et al., "Approaches to Irreversible non-steroidal chiral antiandrogens", Department of Pharmaceutical Sciences, University of Tennessee, 47th Southeast/51st Southwest Joint Regional Meeting of the American Chemical Society, Memphis, TM, Nov. 29-Dec. 1, 1995. |
Rosen J, Day A, Jones TK, Jones ET, Nadzan AM, and Stein RB. Intracellular receptors and signal transducers and activators of transcription superfamilies: novel targets for small-molecule drug discovery. J. Med. Chem., 38: 4855, 1995. |
U.S. patent application Ser. No. 09/644,970, Dalton et al., filed Aug. 24, 2000. |
U.S. patent application Ser. No. 09/935,044, Dalton et al., filed Aug. 23, 2001. |
World Health Organisation Task Force on Methods for the Regulation of Male Fertility, "Contraceptive efficacy of testosterone-induced azoospermia in normal men", The Lancet, vol. 336, Oct. 20, 1990, pp. 955-959and 1517-1518. |
Zhi L, Tegley CM, Marschke KB, and Jones TK. Switching androgen receptor antagonists to agonists by modifying C-ring substituents on piperidino[3,2-g]quinolone. Bioorg. Med. Chem. Lett. 9: 1009, 1999. |
Cited By (197)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7041844B2 (en) * | 1996-11-27 | 2006-05-09 | The University Of Tennessee Research Corporation | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
US20030232882A1 (en) * | 1996-11-27 | 2003-12-18 | Miller Duane D. | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
US7759520B2 (en) * | 1996-11-27 | 2010-07-20 | University Of Tennessee Research Foundation | Synthesis of selective androgen receptor modulators |
US7129377B2 (en) | 1996-11-27 | 2006-10-31 | University Of Tennessee Research Foundation | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
US20060009529A1 (en) * | 1996-11-27 | 2006-01-12 | Dalton James T | Synthesis of selective androgen receptor modulators |
US20040248862A1 (en) * | 1996-11-27 | 2004-12-09 | Miller Duane D. | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
US20060287400A1 (en) * | 1998-05-07 | 2006-12-21 | Steiner Mitchell S | Method for treatment and chemoprevention of prostate cancer |
US20040186185A1 (en) * | 1998-05-07 | 2004-09-23 | Steiner Mitchell S. | Method for treatment and chemoprevention of prostate cancer |
US20040092602A1 (en) * | 1998-05-07 | 2004-05-13 | Steiner Mitchell S. | Method for treatment and chemoprevention of prostate cancer |
US20050171073A1 (en) * | 1998-05-07 | 2005-08-04 | Steiner Mitchell S. | Composition and method for treatment and chemoprevention of prostate cancer |
US7696246B2 (en) | 1999-08-27 | 2010-04-13 | Ligand Pharmaceuticals Incorporated | Bicyclic androgen and progesterone receptor modulator compounds and methods |
US20050288350A1 (en) * | 1999-08-27 | 2005-12-29 | Lin Zhi | Bicyclic androgen and progesterone receptor modulator compounds and methods |
US20050004191A1 (en) * | 1999-12-16 | 2005-01-06 | Iiya Avrutov | Novel processes for making- and a new crystalline form of- leflunomide |
US9493403B2 (en) | 2000-08-24 | 2016-11-15 | University Of Tennessee Research Foundation | Treating androgen decline in aging male (ADAM)-associated conditions with SARMs |
US20060229362A1 (en) * | 2000-08-24 | 2006-10-12 | Dalton James T | Selective androgen receptor modulators and methods of use thereof |
US7518013B2 (en) | 2000-08-24 | 2009-04-14 | University Of Tennessee Research Foundation | Selective androgen receptor modulators |
US20070173546A1 (en) * | 2000-08-24 | 2007-07-26 | Dalton James T | Selective androgen receptor modulators and method of use thereof |
US6838484B2 (en) * | 2000-08-24 | 2005-01-04 | University Of Tennessee Research Foundation | Formulations comprising selective androgen receptor modulators |
US8445534B2 (en) | 2000-08-24 | 2013-05-21 | University Of Tennessee Research Foundation | Treating androgen decline in aging male (ADAM)-associated conditions with SARMs |
US20070123563A1 (en) * | 2000-08-24 | 2007-05-31 | Dalton James T | Selective androgen receptor modulators and method of use thereof |
US20050038110A1 (en) * | 2000-08-24 | 2005-02-17 | Steiner Mitchell S. | Selective androgen receptor modulators and methods of use thereof |
US20040029913A1 (en) * | 2000-08-24 | 2004-02-12 | Dalton James T. | Halogenated selective androgen receptor modulators and methods of use thereof |
US7855229B2 (en) | 2000-08-24 | 2010-12-21 | University Of Tennessee Research Foundation | Treating wasting disorders with selective androgen receptor modulators |
US20060276540A1 (en) * | 2000-08-24 | 2006-12-07 | Dalton James T | Selective androgen receptor modulators |
US20100137430A1 (en) * | 2000-08-24 | 2010-06-03 | Dalton James T | Treating androgen decline in aging male (adam)-associated conditions with sarms |
US7645898B2 (en) | 2000-08-24 | 2010-01-12 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and method of use thereof |
US20060111441A1 (en) * | 2000-08-24 | 2006-05-25 | Dalton James T | Treating wasting disorders with selective androgen receptor modulators |
US7026500B2 (en) | 2000-08-24 | 2006-04-11 | University Of Tennessee Research Foundation | Halogenated selective androgen receptor modulators and methods of use thereof |
US7919647B2 (en) | 2000-08-24 | 2011-04-05 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
US20030162761A1 (en) * | 2000-08-24 | 2003-08-28 | Steiner Mitchell S. | Formulations comprising selective androgen receptor modulators |
US7622503B2 (en) | 2000-08-24 | 2009-11-24 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
US7727980B2 (en) | 2001-02-23 | 2010-06-01 | Ligand Pharmaceuticals Incorporated | Tricyclic androgen receptor modulator compounds and methods |
US20100210678A1 (en) * | 2001-02-23 | 2010-08-19 | Lin Zhi | Tricyclic androgen receptor modulator compounds and methods |
US20060128740A1 (en) * | 2001-02-23 | 2006-06-15 | Lin Zhi | Tricyclic androgen receptor modulator compounds and methods |
US20070293528A9 (en) * | 2001-02-23 | 2007-12-20 | Lin Zhi | Tricyclic androgen receptor modulator compounds and methods |
US20040260108A1 (en) * | 2001-06-25 | 2004-12-23 | Dalton James T. | Metabolites of selective androgen receptor modulators and methods of use thereof |
US20060004042A1 (en) * | 2001-08-23 | 2006-01-05 | Dalton James T | Formulations comprising selective androgen receptor modulators |
US20080249183A1 (en) * | 2001-11-29 | 2008-10-09 | Steiner Mitchell S | Treatment of androgen-deprivation induced osteoporosis |
US20070281906A1 (en) * | 2001-12-06 | 2007-12-06 | Dalton James T | Selective androgen receptor modulators for treating diabetes |
WO2003049675A3 (en) * | 2001-12-06 | 2004-04-01 | Gtx Inc | Treating muscle wasting with selective androgen receptor modulators |
EA007921B1 (en) * | 2001-12-06 | 2007-02-27 | Джи Ти Икс, ИНК. | Treating muscle wasting with selective androgen receptor modulators |
US20100144871A1 (en) * | 2001-12-06 | 2010-06-10 | Steiner Mitchell S | Treating muscle wasting with selective androgen receptor modulators |
US8853266B2 (en) | 2001-12-06 | 2014-10-07 | University Of Tennessee Research Foundation | Selective androgen receptor modulators for treating diabetes |
US20040087557A1 (en) * | 2001-12-06 | 2004-05-06 | Steiner Mitchell S. | Treating muscle wasting with selective androgen receptor modulators |
US20070161608A1 (en) * | 2001-12-06 | 2007-07-12 | Dalton James T | Selective androgen receptor modulators for treating muscle wasting |
US8008348B2 (en) | 2001-12-06 | 2011-08-30 | University Of Tennessee Research Foundation | Treating muscle wasting with selective androgen receptor modulators |
US7547728B2 (en) | 2001-12-06 | 2009-06-16 | University Of Tennessee Research Foundation | Treating muscle wasting with selective androgen receptor modulators |
US20100280107A1 (en) * | 2002-02-07 | 2010-11-04 | Dalton James T | Treating benign prostate hyperplasia with sarms |
US20040053897A1 (en) * | 2002-02-07 | 2004-03-18 | Dalton James T. | Treating benign prostate hyperplasia with SARMS |
US7776921B2 (en) * | 2002-02-07 | 2010-08-17 | University Of Tennessee Research Foundation | Treating benign prostate hyperplasia with SARMS |
US8088828B2 (en) * | 2002-02-07 | 2012-01-03 | University Of Tennessee Research Foundation | Treating benign prostate hyperplasia with SARMS |
US20050033074A1 (en) * | 2002-02-28 | 2005-02-10 | Dalton James T. | Multi-substitued selective androgen receptor modulators and methods of use thereof |
US7772433B2 (en) | 2002-02-28 | 2010-08-10 | University Of Tennessee Research Foundation | SARMS and method of use thereof |
US7705182B2 (en) | 2002-02-28 | 2010-04-27 | University Of Tennessee Research Foundation | Multi-substituted selective androgen receptor modulators and methods of use thereof |
US7803970B2 (en) | 2002-02-28 | 2010-09-28 | University Of Tennessee Research Foundation | Multi-substitued selective androgen receptor modulators and methods of use thereof |
US20080057068A1 (en) * | 2002-02-28 | 2008-03-06 | Dalton James T | SARMS and method of use thereof |
US7344700B2 (en) | 2002-02-28 | 2008-03-18 | University Of Tennessee Research Corporation | Radiolabeled selective androgen receptor modulators and their use in prostate cancer imaging and therapy |
US20040052727A1 (en) * | 2002-02-28 | 2004-03-18 | Dalton James T. | Radiolableled selective androgen receptor modulators andtheir use in prostate cancer imaging and therapy |
US20040147489A1 (en) * | 2002-02-28 | 2004-07-29 | Dalton James T. | Haloacetamide and azide substituted compounds and methods of use thereof |
US20060183931A1 (en) * | 2002-02-28 | 2006-08-17 | Dalton James T | Multi-substituted selective androgen receptor modulators and methods of use thereof |
US7022870B2 (en) | 2002-06-17 | 2006-04-04 | University Of Tennessee Research Foundation | N-bridged selective androgen receptor modulators and methods of use thereof |
US7741371B2 (en) | 2002-06-17 | 2010-06-22 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
US20040067979A1 (en) * | 2002-06-17 | 2004-04-08 | Dalton James T. | N-bridged selective androgen receptor modulators and methods of use thereof |
US20060241180A1 (en) * | 2002-06-17 | 2006-10-26 | Dalton James T | Selective androgen receptor modulators and methods of use thereof |
US7253210B2 (en) | 2002-10-15 | 2007-08-07 | University Of Tennessee Research Foundation | Methylene-bridged selective androgen receptor modulators and methods of use thereof |
US20080319009A1 (en) * | 2002-10-15 | 2008-12-25 | Dalton James T | Methylene-bridged selective androgen receptor modulators and methods of use thereof |
US20040147550A1 (en) * | 2002-10-15 | 2004-07-29 | Dalton James T. | Methylene-bridged selective androgen receptor modulators and methods of use thereof |
US20040087810A1 (en) * | 2002-10-23 | 2004-05-06 | Dalton James T. | Irreversible selective androgen receptor modulators and methods of use thereof |
US7968721B2 (en) * | 2003-01-13 | 2011-06-28 | University Of Tennessee Research Foundation | Large-scale synthesis of selective androgen receptor modulators |
US20040260092A1 (en) * | 2003-01-13 | 2004-12-23 | Miller Duane D. | Large-scale synthesis of selective androgen receptor modulators |
US20040167103A1 (en) * | 2003-02-24 | 2004-08-26 | Dalton James T. | Haloacetamide and azide substituted compounds and methods of use thereof |
US20070123512A1 (en) * | 2003-06-27 | 2007-05-31 | Jari Ratilainen | Propionamide derivatives useful as androgen receptor modulators |
US7390923B2 (en) * | 2003-06-27 | 2008-06-24 | Orion Corporation | Propionamide derivatives useful as androgen receptor modulators |
US20070066650A1 (en) * | 2003-08-22 | 2007-03-22 | Lin Zhi | 6-Cycloamino-2-quinolinone derivatives as androgen receptor modulator compounds |
US20080227810A9 (en) * | 2003-08-22 | 2008-09-18 | Lin Zhi | 6-Cycloamino-2-quinolinone derivatives as androgen receptor modulator compounds |
US7816372B2 (en) | 2003-08-22 | 2010-10-19 | Ligand Pharmaceuticals Incorporated | 6-cycloamino-2-quinolinone derivatives as androgen receptor modulator compounds |
WO2005018573A2 (en) | 2003-08-22 | 2005-03-03 | Ligand Pharmaceuticals Incorporated | 6-cycloamino-2-quinolinone derivatives as androgen receptor modulator compounds |
US20050113345A1 (en) * | 2003-10-24 | 2005-05-26 | Jesse Chow | Compounds and methods for treating Toll-like receptor 2-related diseases and conditions |
US20090186855A1 (en) * | 2003-10-24 | 2009-07-23 | Eisai R&D Management Co., Ltd. | Compounds and methods for treating toll-like receptor 2-related diseases and conditions |
US7550501B2 (en) | 2003-10-24 | 2009-06-23 | Eisai R&D Management Co., Ltd. | Compounds and methods for treating toll-like receptor 2-related diseases and conditions |
US7838548B2 (en) | 2003-10-24 | 2010-11-23 | Eisai R&D Management Co., Ltd. | Compounds and methods for treating toll-like receptor 2-related diseases and conditions |
WO2005039504A3 (en) * | 2003-10-24 | 2005-08-11 | Eisai Co Ltd | Compounds and methods for treating toll-like receptor 2-related diseases and conditions |
US20070167409A1 (en) * | 2003-10-24 | 2007-07-19 | Eisai Co., Ltd. | Compounds and Methods for Treating Toll-Like Receptor 2-Related Diseases and Conditions |
US7202234B2 (en) | 2003-10-24 | 2007-04-10 | Eisai Co., Ltd. | Compounds and methods for treating Toll-like receptor 2-related diseases and conditions |
US20110130349A1 (en) * | 2003-10-24 | 2011-06-02 | Eisai R&D Management Co., Ltd. | Compounds and Methods for Treating Toll-Like Receptor 2-Related Diseases and Conditions |
US20060009488A1 (en) * | 2003-12-16 | 2006-01-12 | Miller Duane D | Prodrugs of selective androgen receptor modulators and methods of use thereof |
US7595402B2 (en) | 2003-12-16 | 2009-09-29 | Gtx, Inc. | Prodrugs of selective androgen receptor modulators and methods of use thereof |
WO2005060647A3 (en) * | 2003-12-16 | 2005-09-01 | Gtx Inc | Prodrugs of selective androgen receptor modulators and methods of use thereof |
US8519158B2 (en) | 2004-03-12 | 2013-08-27 | Ligand Pharmaceuticals Incorporated | Androgen receptor modulator compounds and methods |
US9359285B2 (en) | 2004-03-12 | 2016-06-07 | Ligand Pharmaceuticals Incorporated | Androgen receptor modulator compounds and methods |
US20070254875A1 (en) * | 2004-03-12 | 2007-11-01 | Lin Zhi | Androgen Receptor Modulator Compounds and Methods |
US8865918B2 (en) | 2004-03-12 | 2014-10-21 | Ligand Pharmaceuticals Incorporated | Androgen receptor modulator compounds and methods |
US20110237664A1 (en) * | 2004-06-07 | 2011-09-29 | Dalton James T | Selective androgen receptor modulators for treating diabetes |
US10662148B2 (en) | 2004-06-07 | 2020-05-26 | University Of Tennessee Research Foundation | Selective androgen receptor modulator and methods of use thereof |
US9278914B2 (en) | 2004-06-07 | 2016-03-08 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US20100249228A1 (en) * | 2004-06-07 | 2010-09-30 | Dalton James T | Sarms and method of use thereof |
US10053418B2 (en) | 2004-06-07 | 2018-08-21 | University Of Tennessee Research Foundation | Selective androgen receptor modulator and methods of use thereof |
US8669286B2 (en) | 2004-06-07 | 2014-03-11 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US9884038B2 (en) | 2004-06-07 | 2018-02-06 | University Of Tennessee Research Foundation | Selective androgen receptor modulator and methods of use thereof |
US8309603B2 (en) | 2004-06-07 | 2012-11-13 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US9889110B2 (en) | 2004-06-07 | 2018-02-13 | University Of Tennessee Research Foundation | Selective androgen receptor modulator for treating hormone-related conditions |
US9492400B2 (en) | 2004-11-04 | 2016-11-15 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
US20060270641A1 (en) * | 2005-05-31 | 2006-11-30 | Steiner Mitchell S | Method for chemoprevention of prostate cancer |
US20090264455A9 (en) * | 2005-06-17 | 2009-10-22 | Ligand Pharmaceuticals Incorporated | Androgen Receptor Modulator Compounds and Methods |
US20090030027A1 (en) * | 2005-06-17 | 2009-01-29 | Ligand Pharmaceuticals Incorporated | Androgen Receptor Modulator Compounds and Methods |
US8193357B2 (en) | 2005-06-17 | 2012-06-05 | Ligand Pharmaceuticals Incorporated | Androgen receptor modulator compounds |
US8580811B2 (en) | 2005-06-17 | 2013-11-12 | Ligand Pharmaceuticals Incorporated | Androgen receptor modulator methods |
WO2007027582A3 (en) * | 2005-08-31 | 2007-10-25 | Gtx Inc | Treating renal disease, burns, wounds and spinal cord injury with selective androgen receptor modulators |
AU2006285026B2 (en) * | 2005-08-31 | 2012-08-09 | University Of Tennessee Research Foundation | Treating renal disease, burns, wounds and spinal cord injury with selective androgen receptor modulators |
US10765684B2 (en) | 2005-10-19 | 2020-09-08 | Havah Therapeutics Pty Ltd. | Reduction of side effects from aromatase inhibitors used for treating breast cancer |
US9616072B2 (en) | 2005-10-19 | 2017-04-11 | Chavah Pty Ltd. | Reduction of side effects from aromatase inhibitors used for treating breast cancer |
US20090175845A1 (en) * | 2005-10-25 | 2009-07-09 | The Trustees Of Columbia University In The City Of New York | Methods for identifying compounds that modulate phb domain protein activity and compositions thereof |
WO2007050554A3 (en) * | 2005-10-25 | 2009-04-30 | Univ Columbia | Methods for identifying compounds that modulate phb domain protein activity and compositions thereof |
US20090298710A1 (en) * | 2005-12-15 | 2009-12-03 | Farokhzad Omid C | System for Screening Particles |
US9267937B2 (en) | 2005-12-15 | 2016-02-23 | Massachusetts Institute Of Technology | System for screening particles |
US8802153B2 (en) | 2006-03-31 | 2014-08-12 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
US8709483B2 (en) | 2006-03-31 | 2014-04-29 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
US8323698B2 (en) | 2006-05-15 | 2012-12-04 | Massachusetts Institute Of Technology | Polymers for functional particles |
US9688812B2 (en) | 2006-05-15 | 2017-06-27 | Massachusetts Institute Of Technology | Polymers for functional particles |
US8367113B2 (en) | 2006-05-15 | 2013-02-05 | Massachusetts Institute Of Technology | Polymers for functional particles |
US9080014B2 (en) | 2006-05-15 | 2015-07-14 | Massachusetts Institute Of Technology | Polymers for functional particles |
US9381477B2 (en) | 2006-06-23 | 2016-07-05 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
US8846756B2 (en) | 2006-08-24 | 2014-09-30 | University Of Tennessee Research Foundation | Substituted acylanilides and methods of use thereof |
US9844528B2 (en) | 2006-08-24 | 2017-12-19 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US10300037B2 (en) | 2006-08-24 | 2019-05-28 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US8426465B2 (en) | 2006-08-24 | 2013-04-23 | University Of Tennesse Research Foundation | Substituted acylanilides and methods of use thereof |
US10010521B2 (en) | 2006-08-24 | 2018-07-03 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US8080682B2 (en) | 2006-08-24 | 2011-12-20 | University Of Tennessee Research Foundation | Substituted acylanilides and methods of use thereof |
US9730908B2 (en) | 2006-08-24 | 2017-08-15 | University Of Tennessee Research Foundation | SARMs and method of use thereof |
US20080076829A1 (en) * | 2006-08-24 | 2008-03-27 | Dalton James T | Substituted acylanilides and methods of use thereof |
EA019849B1 (en) * | 2006-08-28 | 2014-06-30 | Юниверсити Оф Теннесси Рисерч Фаундейшн | Method of treating, suppressing, inhibiting or reducing incidents of symptoms associated with kidney disease: hypogonadism and unvoluntary weight loss |
US9217129B2 (en) | 2007-02-09 | 2015-12-22 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
US20100297233A1 (en) * | 2007-02-09 | 2010-11-25 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
US8193334B2 (en) | 2007-04-04 | 2012-06-05 | The Brigham And Women's Hospital | Polymer-encapsulated reverse micelles |
US9333179B2 (en) | 2007-04-04 | 2016-05-10 | Massachusetts Institute Of Technology | Amphiphilic compound assisted nanoparticles for targeted delivery |
US12053448B2 (en) | 2007-09-11 | 2024-08-06 | University Of Tennessee Research Foundation | Solid forms of selective androgen receptor modulators |
US11090283B2 (en) | 2007-09-11 | 2021-08-17 | University Of Tennessee Research Foundation | Solid forms of selective androgen receptor modulators |
US9150501B2 (en) | 2007-09-11 | 2015-10-06 | Gtx, Inc. | Solid forms of selective androgen receptor modulators |
EP2436376A1 (en) | 2007-09-28 | 2012-04-04 | Bind Biosciences, Inc. | Cancer cell targeting using nanoparticles |
EP2644594A1 (en) | 2007-09-28 | 2013-10-02 | Bind Therapeutics, Inc. | Cancer Cell Targeting Using Nanoparticles |
EP2644192A1 (en) | 2007-09-28 | 2013-10-02 | Bind Therapeutics, Inc. | Cancer Cell Targeting Using Nanoparticles |
US9474717B2 (en) | 2007-10-12 | 2016-10-25 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US10736848B2 (en) | 2007-10-12 | 2020-08-11 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US9539210B2 (en) | 2007-10-12 | 2017-01-10 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US11547667B2 (en) | 2007-10-12 | 2023-01-10 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US9526702B2 (en) | 2007-10-12 | 2016-12-27 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
EP2489656A1 (en) | 2007-12-21 | 2012-08-22 | Ligand Pharmaceuticals Inc. | Selective androgen receptor modulators (sarms) and uses thereof |
US20100256129A1 (en) * | 2007-12-21 | 2010-10-07 | Lin Zhi | Selective androgen receptor modulators (sarms) and uses thereof |
US9139520B2 (en) | 2007-12-21 | 2015-09-22 | Ligand Pharmaceuticals Incorporated | Selective androgen receptor modulators (SARMs) and uses thereof |
US10730831B2 (en) | 2007-12-21 | 2020-08-04 | Ligand Pharmaceuticals Incorporated | Selective androgen receptor modulators (SARMs) and uses thereof |
US8748633B2 (en) | 2007-12-21 | 2014-06-10 | Ligand Pharmaceuticals Incorporated | Selective androgen receptor modulators (SARMs) and uses thereof |
US8354446B2 (en) | 2007-12-21 | 2013-01-15 | Ligand Pharmaceuticals Incorporated | Selective androgen receptor modulators (SARMs) and uses thereof |
US9675583B2 (en) | 2007-12-21 | 2017-06-13 | Ligand Pharmaceuticals Incorporated | Selective androgen receptor modulators (SARMS) and uses thereof |
US11358931B2 (en) | 2007-12-21 | 2022-06-14 | Ligand Pharmaceuticals Incorporated | Selective androgen receptor modulators (SARMs) and uses thereof |
US10106500B2 (en) | 2007-12-21 | 2018-10-23 | Ligand Pharmaceuticals Incorporated | Selective androgen receptor modulators (SARMs) and uses thereof |
US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8906381B2 (en) | 2008-10-12 | 2014-12-09 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IGG humoral response without T-cell antigen |
US8562998B2 (en) | 2008-10-12 | 2013-10-22 | President And Fellows Of Harvard College | Targeting of antigen presenting cells with immunonanotherapeutics |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US9233072B2 (en) | 2008-10-12 | 2016-01-12 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8637028B2 (en) | 2008-10-12 | 2014-01-28 | President And Fellows Of Harvard College | Adjuvant incorporation in immunonanotherapeutics |
US9439859B2 (en) | 2008-10-12 | 2016-09-13 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunoanotherapeutics |
US8343497B2 (en) | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
US9308280B2 (en) | 2008-10-12 | 2016-04-12 | Massachusetts Institute Of Technology | Targeting of antigen presenting cells with immunonanotherapeutics |
US8277812B2 (en) | 2008-10-12 | 2012-10-02 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IgG humoral response without T-cell antigen |
US8932595B2 (en) | 2008-10-12 | 2015-01-13 | Massachusetts Institute Of Technology | Nicotine immunonanotherapeutics |
US20100129439A1 (en) * | 2008-10-12 | 2010-05-27 | Frank Alexis | Adjuvant Incorporation in Immunonanotherapeutics |
US20100183727A1 (en) * | 2008-10-12 | 2010-07-22 | Matteo Iannacone | Immunonanotherapeutics that Provide IgG Humoral Response Without T-Cell Antigen |
US8395552B2 (en) | 2010-11-23 | 2013-03-12 | Metamagnetics, Inc. | Antenna module having reduced size, high gain, and increased power efficiency |
WO2013152170A1 (en) | 2012-04-04 | 2013-10-10 | Catylix, Inc. | Selective androgen receptor modulators |
US10258596B2 (en) | 2012-07-13 | 2019-04-16 | Gtx, Inc. | Method of treating HER2-positive breast cancers with selective androgen receptor modulators (SARMS) |
US10849873B2 (en) | 2012-07-13 | 2020-12-01 | Oncternal Therapeutics, Inc | Non-invasive method of evaluating breast cancers for selective androgen receptor modulator (SARM) therapy |
US12115146B2 (en) | 2012-07-13 | 2024-10-15 | University Of Tennessee Research Foundation | Treatment of skeletal-related events for breast cancer patients |
US10314807B2 (en) | 2012-07-13 | 2019-06-11 | Gtx, Inc. | Method of treating HER2-positive breast cancers with selective androgen receptor modulators (SARMS) |
US10987334B2 (en) | 2012-07-13 | 2021-04-27 | University Of Tennessee Research Foundation | Method of treating ER mutant expressing breast cancers with selective androgen receptor modulators (SARMs) |
US9969683B2 (en) | 2012-07-13 | 2018-05-15 | Gtx, Inc. | Method of treating estrogen receptor (ER)-positive breast cancers with selective androgen receptor modulator (SARMS) |
US9744149B2 (en) | 2012-07-13 | 2017-08-29 | Gtx, Inc. | Method of treating androgen receptor (AR)-positive breast cancers with selective androgen receptor modulator (SARMs) |
US9622992B2 (en) | 2012-07-13 | 2017-04-18 | Gtx, Inc. | Method of treating androgen receptor (AR)-positive breast cancers with selective androgen receptor modulator (SARMs) |
US9604916B2 (en) | 2012-07-13 | 2017-03-28 | Gtx, Inc. | Method of treating androgen receptor (AR)-positive breast cancers with selective androgen receptor modulator (SARMs) |
EP3613418A1 (en) | 2014-01-17 | 2020-02-26 | Ligand Pharmaceuticals, Inc. | Methods and compositions for modulating hormone levels |
US20160106702A1 (en) * | 2014-10-16 | 2016-04-21 | Gtx, Inc. | METHODS OF TREATING UROLOGICAL DISORDERS USING SARMs |
US11040044B2 (en) | 2014-10-22 | 2021-06-22 | Havah Therapeutics Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
US10155005B2 (en) | 2014-10-22 | 2018-12-18 | Havah Therapeutics Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
US9351977B2 (en) | 2014-10-22 | 2016-05-31 | Chavah Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
US11883414B2 (en) | 2014-10-22 | 2024-01-30 | Havah Therapeutics Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
US10064874B2 (en) | 2014-10-22 | 2018-09-04 | Havah Therapeutics Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
WO2016079521A1 (en) | 2014-11-20 | 2016-05-26 | University College Cardiff Consultants Limited | Androgen receptor modulators and their use as anti-cancer agents |
WO2016079522A1 (en) | 2014-11-20 | 2016-05-26 | University College Cardiff Consultants Limited | Androgen receptor modulators and their use as anti-cancer agents |
US10471073B2 (en) | 2016-04-19 | 2019-11-12 | Havah Therapeutics Pty Ltd. | Methods of reducing mammographic breast density and/or breast cancer risk |
WO2019217780A1 (en) | 2018-05-11 | 2019-11-14 | Phosphorex, Inc. | Microparticles and nanoparticles having negative surface charges |
US11524014B2 (en) | 2019-06-03 | 2022-12-13 | Havah Therapeutics Pty Ltd. | Pharmaceutical formulations and systems for delivery of an androgenic agent and an aromatase inhibitor with sustained multi-phasic release profiles and methods of use |
US12128055B2 (en) | 2019-06-03 | 2024-10-29 | Havah Therapeutics Pty Ltd. | Pharmaceutical formulations and systems for delivery of an androgenic agent and an aromatase inhibitor with sustained multi-phasic release profiles and methods of use |
WO2022074152A1 (en) | 2020-10-08 | 2022-04-14 | Targimmune Therapeutics Ag | Immunotherapy for the treatment of cancer |
WO2023079142A2 (en) | 2021-11-05 | 2023-05-11 | Targimmune Therapeutics Ag | Targeted linear conjugates comprising polyethyleneimine and polyethylene glycol and polyplexes comprising the same |
WO2024100046A1 (en) | 2022-11-07 | 2024-05-16 | Targimmune Therapeutics Ag | Targeted linear conjugates comprising polyethyleneimine and polyethylene glycol and polyplexes comprising the same |
WO2024100044A1 (en) | 2022-11-07 | 2024-05-16 | Targimmune Therapeutics Ag | Polyplexes of nucleic acids and targeted conjugates comprising polyethyleneimine and polyethylene glycol |
WO2024100040A1 (en) | 2022-11-07 | 2024-05-16 | Targimmune Therapeutics Ag | Psma-targeting linear conjugates comprising polyethyleneimine and polyethylene glycol and polyplexes comprising the same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6569896B2 (en) | Selective androgen receptor modulators and methods of use thereof | |
US6492554B2 (en) | Selective androgen receptor modulators and methods of use thereof | |
AU2001285230A1 (en) | Selective androgen receptor modulators and methods of use thereof | |
US6998500B2 (en) | Selective androgen receptor modulators and methods of use thereof | |
US7741371B2 (en) | Selective androgen receptor modulators and methods of use thereof | |
US7645898B2 (en) | Selective androgen receptor modulators and method of use thereof | |
US20030232792A1 (en) | Selective androgen receptor modulators and methods of use thereof | |
EP1558565B1 (en) | Halogenated selective androgen receptor modulators and methods of use thereof | |
US20030022868A1 (en) | Selective androgen receptor modulators and methods of use thereof | |
US20020173495A1 (en) | Selective androgen receptor modulators and methods of use thereof | |
US20070173546A1 (en) | Selective androgen receptor modulators and method of use thereof | |
US20040260108A1 (en) | Metabolites of selective androgen receptor modulators and methods of use thereof | |
US7595402B2 (en) | Prodrugs of selective androgen receptor modulators and methods of use thereof | |
AU2006201538B2 (en) | Selective androgen receptor modulators and methods of use thereof | |
CA2541871A1 (en) | Selective androgen receptor modulators and methods of use thereof | |
AU2008202236A1 (en) | Selective androgen receptor modulators and methods of use thereof | |
CN1736981A (en) | Selective androgen receptor modulators and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GTX, INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DALTON, JAMES T.;MILLER, DUANE D.;YIN, DONGHUA;AND OTHERS;REEL/FRAME:012430/0838;SIGNING DATES FROM 20011012 TO 20011128 |
|
AS | Assignment |
Owner name: UNIVERSITY OF TENNESSEE RESEARCH CORPORATION, THE, Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE THIRD ASSIGNOR'S NAME AND ASSIGNEE'S NAME AND ADDRESS PREVIOUSLY RECORDED AT REEL 012430 FRAME 0838;ASSIGNORS:DALTON, JAMES T.;MILLER, DUANE D.;YIN, DONGHUA;AND OTHERS;REEL/FRAME:013113/0537 Effective date: 20011128 |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150527 |