US7149691B2 - System and method for remotely experiencing a virtual environment - Google Patents
System and method for remotely experiencing a virtual environment Download PDFInfo
- Publication number
- US7149691B2 US7149691B2 US09/916,918 US91691801A US7149691B2 US 7149691 B2 US7149691 B2 US 7149691B2 US 91691801 A US91691801 A US 91691801A US 7149691 B2 US7149691 B2 US 7149691B2
- Authority
- US
- United States
- Prior art keywords
- data
- user
- remote
- world
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000000034 method Methods 0.000 title claims description 24
- 230000033001 locomotion Effects 0.000 claims abstract description 12
- 238000004891 communication Methods 0.000 claims abstract description 10
- 230000004044 response Effects 0.000 claims abstract description 8
- 230000005236 sound signal Effects 0.000 claims description 14
- 230000003190 augmentative effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 6
- 230000003993 interaction Effects 0.000 description 10
- 230000004807 localization Effects 0.000 description 9
- 230000001934 delay Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000004434 saccadic eye movement Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000001755 vocal effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 229920001821 foam rubber Polymers 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
- G01S5/22—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/802—Systems for determining direction or deviation from predetermined direction
- G01S3/808—Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/40—Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
- H04R2201/401—2D or 3D arrays of transducers
Definitions
- This invention relates to a system of virtual or artificial reality that permits a user to remotely experience another environment, whether virtual or real.
- the system may also be adapted to utilize methods of augmented reality.
- virtual environments may be divided into two broad categories, virtual reality and artificial reality, each of which may be enhanced with a system of augmented reality.
- Virtual reality is a known process of actively stepping inside (to see, hear, act upon) a computer generated, virtual environment. It usually assumes the use of a head-mounted audio/video display, and position and orientation sensors, such as are described in A. Wexelblat (editor), Virtual reality applications and explorations , Academic Press, 1993; and B. MacIntyre and S. Feiner, Future of multimedia user interfaces , Multimedia Systems, (4): 250–268, 1996.
- Artificial reality is a known process of describing virtual environments such that the user's body and actions combine with the computer generated sensory information to forge a single presence.
- the human perceives his actions in terms of the body's relationship to the simulated world, such as is described in M. Hein, The metaphysics of virtual reality , Oxford University Press, 1993, and M. W. Krueger, Artificial Reality II , Addison-Wesly Publishing Co., Reading, Mass., 1991.
- Augmented reality is a known technology where the user's display shows a superposition of the real world and computer generated graphics (to augment the presentation of the real world objects) by means of a see-through display, such as is described in T. P. Caudell, Introduction to Augmented Reality , SPIE Proceedings, vol. 2351: Telemanipulator and Telepresence Technologies, pp. 271–281, Boston, Mass., 1994.
- Electromagnetic systems e.g., Flock products from Ascension Technology
- the audio tracking system produced by Logitech uses three fixed ultrasonic speakers and three mobile microphones, thus detecting all possible 9 distances.
- Computer vision-based systems use either fixed cameras that track objects with markings (e.g., Northern Digital's Polaris product), or mobile cameras attached to objects that watch how the world moves around (see MacIntyre, supra).
- Global Positioning System (GPS) based systems receive signals from positioning satellites either directly, or in conjunction with an additional ground-located receiver and transmitter in a precisely known position. Small sized receivers with a small price also make their way into mobile devices (e.g., The Pocket CoPilot from TravRoute).
- What is needed is a way to localize and receive commands from a user in a virtual environment system without need for the user to have special localizing equipment attached to him nor to input commands into a manual input device, such as a keyboard or mouse.
- a virtual environment system comprising an acoustic localizer adapted to determine the location of sound sources in a local environment, a user data I/O device, a remote data I/O device in a remote world, a system controller in data communication with said acoustic localizer, user data I/O device, and remote data I/O device, wherein control of said remote data I/O device within said remote world are commanded by said system controller in response to movements of a user as detected by said acoustic localizer, and wherein data acquired from said remote world by said remote data I/O device is transmitted to said user.
- said acoustic localizer comprises a plurality of microphones arrayed in three dimensions.
- At least a portion of said data acquired from said remote world is transmitted to said user through said user data I/O device.
- said user data I/O device comprises a video display and sound input and output systems.
- said user data I/O device is selected from a personal digital assistant, and a tablet computer.
- said video display is augmented with data received from said system controller.
- said system controller is in wireless communication with said user data I/O device.
- said remote data I/O device comprises a robotic camera.
- said robotic camera comprises a remote-controlled camera mounted on a robotic platform.
- said system controller is in wireless communication with said remote data I/O device.
- the orientation of said user is determined by the location of said user in relation to the location of said user data I/O device as detected by said acoustic localizer.
- one or more operations of said remote I/O device within said remote world are commanded by said user through voice commands.
- said system controller comprises an audio signal processing module adapted to control, and process information received from, said acoustic localizer, a speech recognition module adapted to translate voice commands from said user into data commands, a user data I/O device socket server adapted to receive data from said user data I/O device and passing them to other system devices, a media services control server adapted to receive said user commands from said user data I/O device socket server and adapted to manage the flow of data to said data user I/O device from said remote data I/O device, a remote data I/O device control module adapted to receive commands from said speech recognition module and from said media services control server and process said commands to control said remote data I/O device, and a media encoder/streamer adapted to stream data to said data user I/O device from said remote data I/O device under the control of said media services control server.
- a virtual environment system comprising acoustic localizing means for determining the location of sound sources in a local environment, user data I/O means for receiving data from and/or transmitting data to a user, remote data I/O means, disposed in a remote world, for receiving data from and/or transmitting data to said remote world, system controller means for controlling data flow among, and in data communication with, said acoustic localizing means, user data I/O means, and remote data I/O means, wherein control of said remote data I/O device within said remote world is commanded by said system controller in response to movements of a user as detected by said acoustic localizer, and wherein data acquired from said remote world by said remote data I/O device is transmitted to said user through said user data I/O device.
- a method of remotely experiencing a remote world from a local environment comprising providing a remote data I/O device in the remote world, providing an acoustic localizer in the local environment, said acoustic localizer adapted to detect the position of sound sources, providing a user data I/O device in the local environment, providing a system controller in data communication with said remote data I/O device, acoustic localizer, and user data I/O device, wherein said system controller is adapted to control said remote data I/O device in response to data received from said local environment.
- said remote data I/O device in said remote world is controlled by at least one of the detected position of a user in said local environment, voice commands from said user, and the orientation of said user.
- the spatial positioning of said remote data I/O device in said remote world is controlled by the detected position of said user in said local environment.
- data acquired from said remote world is transmitted to said user.
- At least a portion of said data acquired from said remote world is transmitted to said user through said user data I/O device.
- FIG. 1 is a diagram of an embodiment of a three-dimensional microphone array and coordinate system.
- FIG. 2 is a diagram of a user's and user data I/O device's position in the coordinate system of FIG. 1 .
- FIG. 3 is a diagram of an embodiment of the overall system design of the invention.
- FIG. 4 is a schematic of an embodiment of the software architecture of the invention.
- Visual output to the user will preferably come in the form of a conveniently carried user data I/O device with visual display and sound input and output systems, such as a personal digital assistant (PDA) or the like.
- PDA personal digital assistant
- the system may be used to interact with the user to enable him to move about in a remote world, which may be a virtual reality, or a true reality in which a robotic camera moves about in response to the user's movements and commands, a so called artificial reality.
- the system will operate entirely, or almost entirely on voice commands from the user, which will also be used to locate the user's position and orientation.
- the acoustically driven system is, in effect, an “acoustic periscope” by which the user may peek into and see around the remote world.
- x 1 ( t ) a 1 s ( t ⁇ 1 )+ ⁇ 1 ( t ) (1a)
- x 2 ( t ) a 2 s ( t ⁇ 2 )+ ⁇ 2 ( t ) (1b)
- s(t) is the source signal
- x 1 (t) and x 2 (t) are two microphone signals recording an attenuated source by amplitude factors a 1 and a 2
- ⁇ is a delay offset
- ⁇ 1 , ⁇ 2 are mutually independent noises, also independent of the source signal.
- the expected value would be derived by time averaging over a batch of samples, thereby smoothing it out.
- the geometric locus of points that induce a constant delay difference to two microphones is a hyperbolic surface.
- a point or a small physical volume around that point if estimation tolerance is introduced
- four microphones will be used in order to unambiguously estimate the source location in three dimensions.
- the relative delays in the arrival of sound to the microphones that is induced by the position of a sound source determines a system of equations, well known in the art, the solution of which yields the coordinates of the sound source.
- ⁇ 0.6 deg. This corresponds to an error in estimating the source position (in a plane) of about 0.7 cm. This implicitly considers that the source moves on a circle centered at the midpoint between microphones. Unfortunately, the resolution is nonlinear around the microphones. It is worse if the source has moved away from the two microphones, for example, by sliding away on the median of the two microphones. Nonetheless, more microphone pairs are there to help, and the precision estimation analysis tells us how to place microphones in the environment.
- FIG. 1 there is shown a preferred placement of four microphones 20 (one of which also serves as the coordinate origin O), such that the three pairs to be considered span the three coordinate axis (Ox, Oy, Oz) such as to form a microphone array, or system 10 .
- the geometric locus of points is defined as follows:
- ⁇ c ⁇ , ⁇ k ⁇ j; k, j 1, . . . , 4 (6)
- the largest error along the x-axis corresponding to an error of one sample in delay estimation is given by:
- the localization error is approximately several centimeters for a 5 ⁇ 4 ⁇ 3 meter room, which reveals that the acoustic localization method is perfectly suitable for the purposes of the invention.
- the induced delays can be calculated much more precisely by reference to the original signal. This means that localization accuracy is equally increased.
- orientation estimation relies on the estimation in position of both the user's head and the user data I/O device 105 .
- a frequency rich signal e.g., a speech reply
- the user would normally hold the user data I/O device 105 in front of herself, at a distance of about a half meter.
- the two source positions thereby give a reasonable estimate of the orientation of the user.
- There are a number of ways to distinguish the user voice from the user data I/O device such as by having the user data I/O device emit a code sequence, or by including one or more frequencies in the user data I/O device voice not normally found in human speech, or by the “voice signature” of the user data I/O device voice as determined by, for example, fast Fourier transform or cepstral vector analysis as is known in the art of speech identification.
- Source localization also may be used to distinguish between the sources, among other methods.
- the system comprises three main system components, namely the user's environment 100 , the host server 110 , and the remote world 120 , which is here depicted as a real world location in which a robotic remote data I/O device 125 , such as a camera mounted on a robotic platform, is placed.
- the remote world 120 can be a purely virtual world provided by software running on a computer, even the host server 110 itself, or a remote server 122 , in which case the remote data I/O device 125 is itself virtual.
- the host server may be any suitable server, such as a Windows 2000 Pentium-based personal computer, which may be configured as a media server as well.
- the user's environment 100 comprises a plurality of microphones 20 , preferably at least four for 3-D applications, and a user data I/O device 105 , such as a PDA or tablet computer or the like, (shown close-up in FIG. 3 b ) adapted to receive voice commands from the user, emit sounds to enable the microphones 20 to localize it, optionally emit sounds to communicate information to the user, and display to the user information retrieved from the remote world 120 .
- the user data I/O device may also receive touch commands from the user through buttons thereon.
- the microphone system 10 is preferably implemented with a data acquisition board (not shown), that amplifies the audio signals and converts them into digital format, and that may be plugged into the host server 120 , such as that sold under the Signalogic tradename as the model M44 Flexible DSP/Data Acquisition Board, which is equipped with a four-channel, 96 kHz maximum sampling frequency, 24-bit sigma-delta analog I/O.
- the host server 120 such as that sold under the Signalogic tradename as the model M44 Flexible DSP/Data Acquisition Board, which is equipped with a four-channel, 96 kHz maximum sampling frequency, 24-bit sigma-delta analog I/O.
- a microphone is plugged, such as a four-condenser phantom-powered microphones, known for their sensitivity to distant signals.
- the host server 110 comprises machine executable code tangibly embodied in a program storage device and a machine for executing the code.
- the host server 110 receives data from the microphones 20 and both receives and transmits data to and from the user data I/O device 105 .
- the host server also receives and transmits data to and from the remote world (or virtual world), which may be via a direct link to the remote data I/O device 125 or through a remote server 122 .
- the connection with the remote world 120 may be through the Internet 115 as shown, or other network or direct hookup.
- the user data I/O device 105 will be a handheld device that may communicate wirelessly with the host server through a local receiver/transmitter 112 .
- the I/O device 125 will also communicate wirelessly with a remote receiver/transmitter 118 .
- Both the host and remote servers will preferably run a local and remote wireless local area network (WLAN), respectively, that has sufficient throughput to handle the traffic.
- WLAN wireless local area network
- the hub will be 802.11b compliant.
- a good user data I/O device 105 in such a configuration is the iPAQ series of personal digital assistants sold by Compaq Computer Corp., such as the iPAQ 3600 PDA, which may be equipped with a WLAN card.
- a WLAN throughput of about 10 Mb/sec should be more than sufficient.
- the camera will then be mounted on a robotic platform, such as the Pioneer 2-CE mobile robot manufactured by ActivMedia Robotics, LLC of Peterborough, N.H.
- the main system components on the server side are assembled a system controller 200 , preferably comprising a multithreaded real-time application controlling the audio acquisition system, the remote video system (or the virtual “camera” in a virtual world) and the video-streaming component.
- a system controller 200 preferably comprising a multithreaded real-time application controlling the audio acquisition system, the remote video system (or the virtual “camera” in a virtual world) and the video-streaming component.
- An audio signal processing module 210 is itself multithreaded and is responsible for controlling the microphone system 10 in real-time, preferably by controlling a data acquisition board, and is adapted to process the audio data received from the microphones to localize sources and determine the orientation of the user, and will preferably also perform noise reduction and blind source separation in order to pass clean audio signals to a signal matching component and to the speech recognition module 220 .
- the software architecture is a part of the acoustic localizer.
- the acoustic localizer may be implemented in hardware and thereby exist entirely outside the software architecture, if desired.
- the audio signal processing module 210 audio signal processing module will also preferably have a source separation component to extract the user and user data I/O device 105 sound signals in cases where the user and the device emit sounds simultaneously.
- the module may also implement location estimation in order to rack the locations of the user and the user data I/O device. If the system controls the sounds emitted by the user data I/O device 105 then it is a simple matter to locate it and to deduce that a sound emitted from a different location must be the user.
- a speech recognition module 220 is responsible for parsing and understanding human free speech according to an application-dependent command interaction language and translate them into machine-readable commands. The commands are then passed on to a remote data I/O device control module 230 .
- the remote data I/O device control module 230 is responsible for controlling the robotic remote, such as the pan and tilt of a camera and the movements of a robotic platform. To insure a smooth visualization, the camera will preferably execute fast saccades in response to sudden and large movements of the user while providing a smooth pursuit when the user is quasi-stationary, such as is described in detail in D. W. Murray et al., Driving Saccade to Pursuit using Image Motion , Int. J. Comp. Vis., 16(3), pp. 204–228, 1995; and H.
- An arbiter additionally takes into account commands extracted by speech recognition and implements the overall control, preferably in a manner that resembles human movement.
- a fovea subimage region is preferably defined within which the target object are tracked smoothly. If the target exits the foveate region, tracking jumps, or saccades, to catch the moving target.
- the fovea subimage will generally occupy laterally about 6 deg. per 50 deg. of camera field of view, at zero zoom.
- a user data I/O device socket server module 240 is responsible for receiving commands and voice data from the user data I/O device 105 and passing them to the other system components. In noisy conditions, it may be preferable to interpret the user data I/O device audio signal for subsequent speech recognition, rather than the signal obtained after processing microphone sensor data.
- a media services control server 250 is adapted to send the user's spoken commands received from the socket server module 240 via the speech recognition module 220 to the camera control module 230 . It is also adapted to receive non-verbal commands directly from the socket server 240 , which would usually correspond to button or other non-verbal commands entered by the user into the user data I/O device 105 .
- the media services control server 250 also manages a media encoder/streamer server 260 . It also arbitrates the various commands extracted from speech or from the user data I/O device 105 .
- the media encoder/streamer server 260 is adapted to open and close sessions with the remote server 122 and to stream data from the remote data I/O device ( 125 in FIG. 3 ) to the user data I/O device 105 .
- the operation of the system may vary according to how the system is programmed, but generally, the user will stand in a room having the microphone array while holding the user data I/O device in his hand. If he rotates to the left or right, the remote camera rotates to the left or right. If he moves laterally, the remote camera moves laterally.
- the rotational and lateral movements may be relative to the room or relative to the user, preferably at the option of the user by control buttons on the user I/O device or by speech commands. Speech commands or buttons may also be used to control up and down movement of the device to determine whether the remote camera will tilt up and down or actually rise and fall vertically. Generally, it is preferable to favor speech commands over manual input so as to enhance the sensation of being in the virtual or artificial reality.
- Information regarding the remote world and the program settings may be superimposed over the image the user sees on his user data I/O device as an augmented reality.
- Sound in the remote world may be broadcast to the user through the user data I/O device or, if better quality sound is desired, through one or more speakers placed within the room. In the latter case, it will be necessary to program the system to distinguish between the wall speakers and the user or user data I/O device.
- An advantageous feature of the invention is the creation of a natural (intuitive), and transparent (effortless) interaction of the user with the remote, virtual world.
- the invention has many applications.
- the orientation information may be used to provide the user more degrees of freedom, for example to move up and down staircases by raising or lowering the device.
- the user could, for example, make the walls transparent to further evaluate plumbing and wiring.
- Another interesting application where natural user interaction is desirable is the use of large wall display systems for business presentations, and immersive, collaborative work, such as that described in Kai Li, Han Chen, et al., Early Experiences and challenges in Building and using a scalable display wall system , IEEE Computer graphics and applications, vol. 20(4), pp. 671–680, the disclosures of which are incorporated by reference herein in their entirety, wherein there is presented the construction of a scalable display where multiple cameras are used to track the user, recognize her gestures and detect the location of some novel input devices.
- the invention uses audio to track the user position and orientation and also recognize spoken commands.
- the invention can be programmed so that the user can zoom in and out by moving closer and further away from the display, several users can have control over the display without sharing any input devices, and speech recognition can be used to control the speed and other aspects of the presentation.
- the invention exploits an often neglected but very rich modality of our environment, namely sound.
- This invention discloses the “acoustic periscope” metaphor as described in Applicants' publication, J. Rosca et al., Mobile Interaction with Remote Worlds: The Acoustic Periscope , IJCAI [citation to be inserted after publication] (2001), the disclosures of which are incorporated by reference herein in their entirety, and an implementation approach that utilizes commercially available hardware at reasonable cost.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
x 1(t)=a 1 s(t−τ 1)+υ1(t) (1a)
x 2(t)=a 2 s(t−τ 2)+υ2(t) (1b)
where s(t) is the source signal, x1(t) and x2(t) are two microphone signals recording an attenuated source by amplitude factors a1 and a2, τ is a delay offset, and υ1, υ2 are mutually independent noises, also independent of the source signal.
where fs is the sampling frequency. Note that the cross-covariance between x1(•) and x2(•−δ) for a delay δ is:
R(δ)=E[x 1(•)x 2(•−δ)]=E[s(•)s(•−(δ−τ))]≦R(τ) (2)
where E[ ] denotes the expected value. Therefore, one simple method of estimating the direction of arrival is based on the computation of the cross-covariance between the two microphone signals:
{circumflex over (τ)}=arg maxδ {E[x 1(•)x 2(•−δ)]} (3)
|(d k −d j)−(d k 0 −d j 0)|<cτ, ∀k≠j; k, j=1, . . . , 4 (6)
-
- Presenting virtual/remote sensations to the user by means of none of the normally used virtual reality I/O devices, but rather with a much more simply to installed and utilized system of microphones.
- Audio source location estimation, localization, and orientation come for free, being entirely transparent to the other functions of the system, just from picking up the speech commands of the user and the sound output of the user data I/O device.
- A natural, intuitive, and transparent interaction with a remote, virtual world. Moving around achieves navigation as in other VR systems, but without carrying any cumbersome tracking devices.
- Audio signals from the human user (speech) and the user data I/O device (speech generated replies or special signals) are sufficient for determining source location and orientation of the user with sufficient precision (several centimeters for localization), at least for some applications. The acoustic model used in our formal derivations here is anechoic.
- The overall system philosophy and architecture allows a natural integration of virtual reality interaction and speech processing for transcending computers to a ubiquitous stage, wherein the focus is on one's actions and activities rather than the actual mode of interaction.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/916,918 US7149691B2 (en) | 2001-07-27 | 2001-07-27 | System and method for remotely experiencing a virtual environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/916,918 US7149691B2 (en) | 2001-07-27 | 2001-07-27 | System and method for remotely experiencing a virtual environment |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030033150A1 US20030033150A1 (en) | 2003-02-13 |
US7149691B2 true US7149691B2 (en) | 2006-12-12 |
Family
ID=25438077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/916,918 Expired - Lifetime US7149691B2 (en) | 2001-07-27 | 2001-07-27 | System and method for remotely experiencing a virtual environment |
Country Status (1)
Country | Link |
---|---|
US (1) | US7149691B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050196065A1 (en) * | 2004-03-05 | 2005-09-08 | Balan Radu V. | System and method for nonlinear signal enhancement that bypasses a noisy phase of a signal |
US20060074686A1 (en) * | 2002-10-23 | 2006-04-06 | Fabio Vignoli | Controlling an apparatus based on speech |
US20110216060A1 (en) * | 2010-03-05 | 2011-09-08 | Sony Computer Entertainment America Llc | Maintaining Multiple Views on a Shared Stable Virtual Space |
US20120215519A1 (en) * | 2011-02-23 | 2012-08-23 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for spatially selective audio augmentation |
US20140288930A1 (en) * | 2013-03-25 | 2014-09-25 | Panasonic Corporation | Voice recognition device and voice recognition method |
US20150072316A1 (en) * | 2004-05-27 | 2015-03-12 | Zedasoft, Inc. | System and method for streaming video into a container-based architecture simulation |
US9250703B2 (en) | 2006-03-06 | 2016-02-02 | Sony Computer Entertainment Inc. | Interface with gaze detection and voice input |
US9264799B2 (en) | 2012-10-04 | 2016-02-16 | Siemens Aktiengesellschaft | Method and apparatus for acoustic area monitoring by exploiting ultra large scale arrays of microphones |
US20160099009A1 (en) * | 2014-10-01 | 2016-04-07 | Samsung Electronics Co., Ltd. | Method for reproducing contents and electronic device thereof |
US20160198258A1 (en) * | 2015-01-05 | 2016-07-07 | Oki Electric Industry Co., Ltd. | Sound pickup device, program recorded medium, and method |
US10120438B2 (en) | 2011-05-25 | 2018-11-06 | Sony Interactive Entertainment Inc. | Eye gaze to alter device behavior |
US10620335B2 (en) | 2017-05-02 | 2020-04-14 | Ascension Technology Corporation | Rotating frequencies of transmitters |
US10629093B2 (en) | 2008-08-21 | 2020-04-21 | Lincoln Global Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US10916153B2 (en) | 2008-08-21 | 2021-02-09 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US11432097B2 (en) | 2019-07-03 | 2022-08-30 | Qualcomm Incorporated | User interface for controlling audio rendering for extended reality experiences |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7024666B1 (en) * | 2002-01-28 | 2006-04-04 | Roy-G-Biv Corporation | Motion control systems and methods |
US7137107B1 (en) | 2003-04-29 | 2006-11-14 | Roy-G-Biv Corporation | Motion control systems and methods |
US20010032278A1 (en) | 1997-10-07 | 2001-10-18 | Brown Stephen J. | Remote generation and distribution of command programs for programmable devices |
WO2002071241A1 (en) | 2001-02-09 | 2002-09-12 | Roy-G-Biv Corporation | Event management systems and methods for the distribution of motion control commands |
US7113618B2 (en) * | 2001-09-18 | 2006-09-26 | Intel Corporation | Portable virtual reality |
US6927757B2 (en) * | 2001-09-18 | 2005-08-09 | Intel Corporation | Camera driven virtual workspace management |
US7114555B2 (en) * | 2002-05-31 | 2006-10-03 | Hewlett-Packard Development Company, L.P. | Controlled cooling of a data center |
US7084801B2 (en) * | 2002-06-05 | 2006-08-01 | Siemens Corporate Research, Inc. | Apparatus and method for estimating the direction of arrival of a source signal using a microphone array |
US8458028B2 (en) | 2002-10-16 | 2013-06-04 | Barbaro Technologies | System and method for integrating business-related content into an electronic game |
US20060064503A1 (en) * | 2003-09-25 | 2006-03-23 | Brown David W | Data routing systems and methods |
US8027349B2 (en) | 2003-09-25 | 2011-09-27 | Roy-G-Biv Corporation | Database event driven motion systems |
JP4926400B2 (en) * | 2004-12-27 | 2012-05-09 | 京セラ株式会社 | Mobile camera system |
AT506618B1 (en) * | 2008-01-25 | 2013-02-15 | Stumpfl Reinhold | INTERACTIVE MULTIMEDIA PRESENTATION DEVICE |
US20090192785A1 (en) * | 2008-01-29 | 2009-07-30 | Anna Carpenter Cavender | System and method for optimizing natural language descriptions of objects in a virtual environment |
US8747116B2 (en) * | 2008-08-21 | 2014-06-10 | Lincoln Global, Inc. | System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback |
KR20100138725A (en) * | 2009-06-25 | 2010-12-31 | 삼성전자주식회사 | Virtual World Processing Unit and Methods |
MX2012010238A (en) * | 2010-03-05 | 2013-01-18 | Sony Comp Entertainment Us | Maintaining multiple views on a shared stable virtual space. |
US9194938B2 (en) * | 2011-06-24 | 2015-11-24 | Amazon Technologies, Inc. | Time difference of arrival determination with direct sound |
US9082214B2 (en) * | 2011-07-01 | 2015-07-14 | Disney Enterprises, Inc. | 3D drawing system for providing a real time, personalized, and immersive artistic experience |
JP2013104938A (en) * | 2011-11-11 | 2013-05-30 | Sony Corp | Information processing apparatus, information processing method, and program |
US8676579B2 (en) * | 2012-04-30 | 2014-03-18 | Blackberry Limited | Dual microphone voice authentication for mobile device |
US9881616B2 (en) * | 2012-06-06 | 2018-01-30 | Qualcomm Incorporated | Method and systems having improved speech recognition |
US9491033B1 (en) * | 2013-04-22 | 2016-11-08 | Amazon Technologies, Inc. | Automatic content transfer |
EP3343349B1 (en) | 2016-12-30 | 2022-06-15 | Nokia Technologies Oy | An apparatus and associated methods in the field of virtual reality |
WO2018173295A1 (en) * | 2017-03-24 | 2018-09-27 | ヤマハ株式会社 | User interface device, user interface method, and sound operation system |
CN109767774A (en) * | 2017-11-08 | 2019-05-17 | 阿里巴巴集团控股有限公司 | A kind of exchange method and equipment |
CN108399916A (en) * | 2018-01-08 | 2018-08-14 | 蔚来汽车有限公司 | Vehicle-mounted intelligent voice interaction system and method, processing device and storage device |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4596034A (en) * | 1981-01-02 | 1986-06-17 | Moncrieff J Peter | Sound reproduction system and method |
US5572591A (en) * | 1993-03-09 | 1996-11-05 | Matsushita Electric Industrial Co., Ltd. | Sound field controller |
US5587936A (en) * | 1990-11-30 | 1996-12-24 | Vpl Research, Inc. | Method and apparatus for creating sounds in a virtual world by simulating sound in specific locations in space and generating sounds as touch feedback |
US5795228A (en) * | 1996-07-03 | 1998-08-18 | Ridefilm Corporation | Interactive computer-based entertainment system |
US5822230A (en) * | 1994-09-22 | 1998-10-13 | Elonex Plc Ltd. | Personal digital assistant module having a broadcast pointer device |
US5917944A (en) * | 1995-11-15 | 1999-06-29 | Hitachi, Ltd. | Character recognizing and translating system and voice recognizing and translating system |
US6050822A (en) * | 1997-10-01 | 2000-04-18 | The United States Of America As Represented By The Secretary Of The Army | Electromagnetic locomotion platform for translation and total immersion of humans into virtual environments |
US6151027A (en) * | 1997-07-15 | 2000-11-21 | Samsung Electronics Co., Ltd. | Method of controlling users in multi-user virtual space and multi-user virtual space system |
US6219045B1 (en) * | 1995-11-13 | 2001-04-17 | Worlds, Inc. | Scalable virtual world chat client-server system |
US6334103B1 (en) * | 1998-05-01 | 2001-12-25 | General Magic, Inc. | Voice user interface with personality |
US6445798B1 (en) * | 1997-02-04 | 2002-09-03 | Richard Spikener | Method of generating three-dimensional sound |
US6584439B1 (en) * | 1999-05-21 | 2003-06-24 | Winbond Electronics Corporation | Method and apparatus for controlling voice controlled devices |
US6959095B2 (en) * | 2001-08-10 | 2005-10-25 | International Business Machines Corporation | Method and apparatus for providing multiple output channels in a microphone |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5408642A (en) * | 1991-05-24 | 1995-04-18 | Symantec Corporation | Method for recovery of a computer program infected by a computer virus |
US5684875A (en) * | 1994-10-21 | 1997-11-04 | Ellenberger; Hans | Method and apparatus for detecting a computer virus on a computer |
US5613002A (en) * | 1994-11-21 | 1997-03-18 | International Business Machines Corporation | Generic disinfection of programs infected with a computer virus |
-
2001
- 2001-07-27 US US09/916,918 patent/US7149691B2/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4596034A (en) * | 1981-01-02 | 1986-06-17 | Moncrieff J Peter | Sound reproduction system and method |
US5587936A (en) * | 1990-11-30 | 1996-12-24 | Vpl Research, Inc. | Method and apparatus for creating sounds in a virtual world by simulating sound in specific locations in space and generating sounds as touch feedback |
US5572591A (en) * | 1993-03-09 | 1996-11-05 | Matsushita Electric Industrial Co., Ltd. | Sound field controller |
US5822230A (en) * | 1994-09-22 | 1998-10-13 | Elonex Plc Ltd. | Personal digital assistant module having a broadcast pointer device |
US6219045B1 (en) * | 1995-11-13 | 2001-04-17 | Worlds, Inc. | Scalable virtual world chat client-server system |
US5917944A (en) * | 1995-11-15 | 1999-06-29 | Hitachi, Ltd. | Character recognizing and translating system and voice recognizing and translating system |
US5795228A (en) * | 1996-07-03 | 1998-08-18 | Ridefilm Corporation | Interactive computer-based entertainment system |
US6445798B1 (en) * | 1997-02-04 | 2002-09-03 | Richard Spikener | Method of generating three-dimensional sound |
US6151027A (en) * | 1997-07-15 | 2000-11-21 | Samsung Electronics Co., Ltd. | Method of controlling users in multi-user virtual space and multi-user virtual space system |
US6050822A (en) * | 1997-10-01 | 2000-04-18 | The United States Of America As Represented By The Secretary Of The Army | Electromagnetic locomotion platform for translation and total immersion of humans into virtual environments |
US6334103B1 (en) * | 1998-05-01 | 2001-12-25 | General Magic, Inc. | Voice user interface with personality |
US6584439B1 (en) * | 1999-05-21 | 2003-06-24 | Winbond Electronics Corporation | Method and apparatus for controlling voice controlled devices |
US6959095B2 (en) * | 2001-08-10 | 2005-10-25 | International Business Machines Corporation | Method and apparatus for providing multiple output channels in a microphone |
Non-Patent Citations (5)
Title |
---|
A microphone array system for speech recognition Kiyohara, K.; Kaneda, Y.; Takahashi, S.; Nomura, H.; Kijima, J.; Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on Vol. 1, Apr. 21-24, 1997 pp. 215-218 vol. 1. * |
MacIntyre et al., "Future Multimedia User Interfaces," Multimedia Systems, 1996, pp. 1-25. |
Mark Weiser, "The Computer for the 21<SUP>st </SUP>Century," Scientific American, Sep. 1991. |
Murray et al., "Driving Saccade to Pursuit Using Image Motion," pp. 1-26. |
Rotstein et al., "Optimal Servoing for Active Foveated Vision," Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition, IEEE, 1996, pp. 177-182. |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060074686A1 (en) * | 2002-10-23 | 2006-04-06 | Fabio Vignoli | Controlling an apparatus based on speech |
US7885818B2 (en) * | 2002-10-23 | 2011-02-08 | Koninklijke Philips Electronics N.V. | Controlling an apparatus based on speech |
US20050196065A1 (en) * | 2004-03-05 | 2005-09-08 | Balan Radu V. | System and method for nonlinear signal enhancement that bypasses a noisy phase of a signal |
US7392181B2 (en) * | 2004-03-05 | 2008-06-24 | Siemens Corporate Research, Inc. | System and method for nonlinear signal enhancement that bypasses a noisy phase of a signal |
US10083621B2 (en) * | 2004-05-27 | 2018-09-25 | Zedasoft, Inc. | System and method for streaming video into a container-based architecture simulation |
US20150072316A1 (en) * | 2004-05-27 | 2015-03-12 | Zedasoft, Inc. | System and method for streaming video into a container-based architecture simulation |
US9250703B2 (en) | 2006-03-06 | 2016-02-02 | Sony Computer Entertainment Inc. | Interface with gaze detection and voice input |
US10916153B2 (en) | 2008-08-21 | 2021-02-09 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US10629093B2 (en) | 2008-08-21 | 2020-04-21 | Lincoln Global Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US10643496B2 (en) | 2009-07-10 | 2020-05-05 | Lincoln Global Inc. | Virtual testing and inspection of a virtual weldment |
US9513700B2 (en) | 2009-12-24 | 2016-12-06 | Sony Interactive Entertainment America Llc | Calibration of portable devices in a shared virtual space |
US8730156B2 (en) * | 2010-03-05 | 2014-05-20 | Sony Computer Entertainment America Llc | Maintaining multiple views on a shared stable virtual space |
US20110216060A1 (en) * | 2010-03-05 | 2011-09-08 | Sony Computer Entertainment America Llc | Maintaining Multiple Views on a Shared Stable Virtual Space |
US9310883B2 (en) | 2010-03-05 | 2016-04-12 | Sony Computer Entertainment America Llc | Maintaining multiple views on a shared stable virtual space |
US20120215519A1 (en) * | 2011-02-23 | 2012-08-23 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for spatially selective audio augmentation |
US9037458B2 (en) * | 2011-02-23 | 2015-05-19 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for spatially selective audio augmentation |
US10120438B2 (en) | 2011-05-25 | 2018-11-06 | Sony Interactive Entertainment Inc. | Eye gaze to alter device behavior |
US9264799B2 (en) | 2012-10-04 | 2016-02-16 | Siemens Aktiengesellschaft | Method and apparatus for acoustic area monitoring by exploiting ultra large scale arrays of microphones |
US20140288930A1 (en) * | 2013-03-25 | 2014-09-25 | Panasonic Corporation | Voice recognition device and voice recognition method |
US9520132B2 (en) * | 2013-03-25 | 2016-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Voice recognition device and voice recognition method |
US20150356972A1 (en) * | 2013-03-25 | 2015-12-10 | Panasonic Intellectual Property Management Co., Ltd. | Voice recognition device and voice recognition method |
US9147396B2 (en) * | 2013-03-25 | 2015-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Voice recognition device and voice recognition method |
US10148242B2 (en) * | 2014-10-01 | 2018-12-04 | Samsung Electronics Co., Ltd | Method for reproducing contents and electronic device thereof |
US20160099009A1 (en) * | 2014-10-01 | 2016-04-07 | Samsung Electronics Co., Ltd. | Method for reproducing contents and electronic device thereof |
US9781508B2 (en) * | 2015-01-05 | 2017-10-03 | Oki Electric Industry Co., Ltd. | Sound pickup device, program recorded medium, and method |
US20160198258A1 (en) * | 2015-01-05 | 2016-07-07 | Oki Electric Industry Co., Ltd. | Sound pickup device, program recorded medium, and method |
US10620335B2 (en) | 2017-05-02 | 2020-04-14 | Ascension Technology Corporation | Rotating frequencies of transmitters |
US11432097B2 (en) | 2019-07-03 | 2022-08-30 | Qualcomm Incorporated | User interface for controlling audio rendering for extended reality experiences |
US11812252B2 (en) | 2019-07-03 | 2023-11-07 | Qualcomm Incorporated | User interface feedback for controlling audio rendering for extended reality experiences |
Also Published As
Publication number | Publication date |
---|---|
US20030033150A1 (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7149691B2 (en) | System and method for remotely experiencing a virtual environment | |
Foxlin et al. | Constellation: A wide-range wireless motion-tracking system for augmented reality and virtual set applications | |
Welch et al. | Motion tracking: No silver bullet, but a respectable arsenal | |
US20230392944A1 (en) | Navigation methods and apparatus for the visually impaired | |
CN102447697B (en) | Method and system of semi-private communication in open environments | |
Welch | History: The use of the kalman filter for human motion tracking in virtual reality | |
US7587053B1 (en) | Audio-based position tracking | |
JP4630146B2 (en) | Position management system and position management program | |
Kandalan et al. | Techniques for constructing indoor navigation systems for the visually impaired: A review | |
JP4852878B2 (en) | System, method, and program for confirming microphone position | |
CN103608741A (en) | Tracking and following of moving objects by a mobile robot | |
CN104106267A (en) | Signal-enhancing beamforming in augmented reality environment | |
WO1999053838A1 (en) | Motion tracking system | |
WO2010086321A1 (en) | Binaural audio guide | |
JP5013398B2 (en) | Mixed reality system and event input method | |
Milios et al. | Sonification of range information for 3-D space perception | |
Frey et al. | Off-the-shelf, real-time, human body motion capture for synthetic environments | |
WO2015056996A1 (en) | Location tracking system using sensors provided in smartphone and so forth | |
US11029385B2 (en) | Tracking system for head-mounted display apparatus and method of tracking | |
Rosca et al. | Mobile interaction with remote worlds: The acoustic periscope | |
WO2020116179A1 (en) | Information processing apparatus and method | |
Horiuchi et al. | A pointing system based on acoustic position estimation and gravity sensing | |
WO2020087041A1 (en) | Mixed reality device tracking | |
Matsuhira et al. | Research and Development for Life Support Robots that Coexist in Harmony with People | |
Packi et al. | Wireless acoustic tracking for extended range telepresence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS CORPORATE RESEARCH, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSCA, JUSTINIAN;SUDARSKY, SANDRA;BALAN, RADU VICTOR;AND OTHERS;REEL/FRAME:012258/0962 Effective date: 20010926 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: SIEMENS CORPORATION,NEW JERSEY Free format text: MERGER;ASSIGNOR:SIEMENS CORPORATE RESEARCH, INC.;REEL/FRAME:024185/0042 Effective date: 20090902 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |