US7192427B2 - Apparatus and method for assessing transmurality of a tissue ablation - Google Patents
Apparatus and method for assessing transmurality of a tissue ablation Download PDFInfo
- Publication number
- US7192427B2 US7192427B2 US10/369,887 US36988703A US7192427B2 US 7192427 B2 US7192427 B2 US 7192427B2 US 36988703 A US36988703 A US 36988703A US 7192427 B2 US7192427 B2 US 7192427B2
- Authority
- US
- United States
- Prior art keywords
- tissue
- ablation
- transmurality
- lesion
- instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
Definitions
- the present invention relates, generally, to tissue ablation instruments and lesion formation thereof, and more particularly, relates to apparatus and methodology for assessing tissue ablation transmurality.
- Atrial fibrillation either alone or as a consequence of other cardiac disease, continues to persist as the most common cardiac arrhythmia. According to recent estimates, more than two million people in the U.S. suffer from this common arrhythmia, roughly 0.15% to 1.0% of the population. Moreover, the prevalence of this cardiac disease increases with age, affecting nearly 8% to 17% of those over 60 years of age.
- Atrial arrhythmia may be treated using several methods.
- Pharmacological treatment of atrial fibrillation for example, is initially the preferred approach, first to maintain normal sinus rhythm, or secondly to decrease the ventricular response rate.
- Other forms of treatment include drug therapies, electrical cardioversion, and RF catheter ablation of selected areas determined by mapping.
- other surgical procedures have been developed for atrial fibrillation, including left atrial isolation, transvenous catheter or cryosurgical ablation of His bundle, and the Corridor procedure, which have effectively eliminated irregular ventricular rhythm.
- these procedures have for the most part failed to restore normal cardiac hemodynamics, or alleviate the patient's vulnerability to thromboembolism because the atria are allowed to continue to fibrillate. Accordingly, a more effective surgical treatment was required to cure medically refractory atrial fibrillation of the Heart.
- this procedure includes the excision of both atrial appendages, and the electrical isolation of the pulmonary veins. Further, strategically placed atrial incisions not only interrupt the conduction routes of the common reentrant circuits, but they also direct the sinus impulse from the sinoatrial node to the atrioventricular node along a specified route. In essence, the entire atrial myocardium, with the exception of the atrial appendages and the pulmonary veins, is electrically activated by providing for multiple blind alleys off the main conduction route between the sinoatrial node to the atrioventricular node.
- Atrial transport function is thus preserved postoperatively as generally set forth in the series of articles: Cox, Schuessler, Boineau, Canavan, Cain, Lindsay, Stone, Smith, Corr, Change, and D'Agostino, Jr., The Surgical Treatment Atrial Fibrillation (pts. 1–4), 101 T HORAC C ARDIOVASC S URG., 402–426, 569–592 (1991).
- Radio frequency (RF) energy As the ablating energy source. Accordingly, a variety of RF based catheters, medical instrument and power supplies are currently available to electrophysiologists.
- radio frequency energy has several limitations including the rapid dissipation of energy in surface tissues resulting in shallow “burns” and failure to access deeper arrhythmic tissues.
- Another limitation of RF ablation catheters is the risk of clot formation on the energy emitting electrodes. Such clots have an associated danger of causing potentially lethal strokes in the event that a clot is dislodged from the catheter. It is also very difficult to create continuous long lesions with RF ablation instruments.
- microwave frequency energy for example, has long been recognized as an effective energy source for heating biological tissues and has seen use in such hyperthermia applications as cancer treatment and preheating of blood prior to infusions. Accordingly, in view of the drawbacks of the traditional catheter ablation techniques, there has recently been a great deal of interest in using microwave energy as an ablation energy source.
- the advantage of microwave energy is that it is much easier to control and safer than direct current applications and it is capable of generating substantially larger and longer lesions than RF catheters, which greatly simplifies the actual ablation procedures.
- Such microwave ablation systems are described in the U.S. Pat. No.
- these strategically placed lesions must electrically sever the targeted conduction paths.
- the lesion not only must the lesion be properly placed and sufficiently long, it must also be sufficiently deep to prevent the electrical impulses from traversing the lesion.
- Ablation lesions of insufficient depth may enable currents to pass over or under the lesion, and thus be incapable of disrupting, or otherwise interrupting, the reentry circuits. In most cases, accordingly, it is desirable for the ablation lesion to be transmural.
- the tissue temperature should exceed this margin. This, however, is often difficult to perform and/or assess since the cardiac tissue thickness varies with location and, further, varies from one individual to another.
- tissue ablation instruments typically ablate tissue through the application of thermal energy directed toward a targeted biological tissue, in most cases the surface of the biological tissue.
- the targeted surface of the biological tissue heats, for example, the ablation lesion propagates from the targeted surface toward an opposed second surface of the tissue.
- Excessive thermal energy at the interface between the tissue and the ablation head is detrimental as well.
- temperatures above about 100° C. can cause coagulation at the RF tip.
- the tissue may adhere to the tip, resulting in tearing at the ablation site upon removal of the ablation instrument, or immediate or subsequent perforation may occur.
- Thin walled tissues are particularly susceptible.
- the lesion size and depth should be directly proportional to the interface temperature and the time of ablation.
- the lag in thermal conduction of the tissue is a function of the tissue composition, the tissue depth and the temperature differential. Since these variables may change constantly during the ablation procedure, and without overheating the tissues at the interface, it is often difficult to estimate the interface temperature and time of ablation to effect a proper transmural ablation, especially with deeper arrhythmic tissues.
- an apparatus and method to better assess the transmurality of an ablation lesion during an ablation procedure, for instance, by providing certain tissue characteristic measurements from one surface of a bodily organ or from two opposing surfaces or from one surface relative the blood pool. Furthermore, it would be advantageous to provide digital signal processing to the tissue measurement obtained in order to better assess the transmurality of a newly created ablation lesion.
- the present invention provides a measurement accessory or instrument useful for facilitating tissue ablation procedures of sensitive biological tissue such as those of internal organs.
- the present invention is suitable for assessing the transmurality of an ablation lesion formed from a first surface of cardiac tissue of the heart to an opposed second surface thereof to electrically isolate conduction paths thereof during treatment of arrhythmia.
- the measurement instrument may be part of an ablation system or an accessory thereto.
- the instrument or accessory includes at least a first sensor which is positioned proximate a first tissue surface, and at least a second sensor positioned proximate a second tissue surface.
- the first sensor is adapted to transmit a first signal.
- the second sensor is adapted to interpret a signal responsive to the first signal, the responsive signal being related to one or more tissue characteristics observed during the creation of an ablation lesion. These measurements can then be analyzed to determine the transmurality or effectiveness of the ablation procedure.
- the present invention is capable of conducting measurements through the means of very simple and straight forward purse string openings leading to the interior of the organ and placement of various sensors therein.
- the first and second sensors are electrodes to measure the electrical characteristics to measure at least one of conduction time, conduction velocity, phase angle, and impedance through at least a portion of the targeted tissue.
- audio or visual feedback may be provided to determine the ablation transmurality, or other lesion characteristic.
- the feedback information may be applied for automatic closed-loop control of the energy applied to the target tissue by a tissue ablation instrument.
- the second electrode is provided on the distal end of an elongated shaft placed within the interior of an organ, through a purse string opening for example.
- the second electrode while perhaps not in direct contact with a tissue surface opposed to the first electrode, electrically communicates a signal responsive to the transmitted signal from the first electrode.
- a tissue ablation assembly is provided that is adapted to ablate a targeted biological tissue from a first surface thereof to an opposed second surface thereof to form an ablation lesion.
- the ablation assembly includes an elongated transmission line having a proximal portion suitable for connection to an energy source.
- An antenna assembly is coupled to the transmission line, and is adapted to transmit energy therefrom sufficiently strong to cause tissue ablation at the first surface.
- a manipulating device may be included which cooperates with the ablation assembly for manipulative movement thereof.
- a first sensor is further included and positioned within at least a portion of the ablative zone of the antenna assembly. The first sensor cooperates with a second sensor located proximate to a second tissue surface opposed to the first tissue surface.
- the second sensor is operatively attached to a needle member adapted to pierce the outer surface of the organ and advance to a point interior to the organ, proximate to the second tissue surface opposed to the first tissue surface.
- a method for assessing the transmurality of an ablation lesion from a first surface of a targeted biological tissue to an opposed second surface thereof.
- the method includes placing a first sensor proximate a first surface of a target tissue and placing a second sensor proximate to a second opposing surface of the target tissue. Once the sensors are placed, a first signal is transmitted from the first sensor. The first signal propagates through at least a portion of the target tissue and a signal responsive to the first signal is received by the second sensor, the responsive signal being related to one or more of conduction time, conduction velocity, phase angle, and impedance through at least a portion of the targeted tissue, to determine the transmurality of the ablation lesion created or being created.
- the method further includes utilization of digital signal processing to better evaluate the measured responsive signal and, thus, better assess transmurality during or after the ablation lesion is being created.
- the method includes manipulating an antenna assembly of an ablation instrument into engagement with or substantially adjacent to the tissue first surface, and generating an electromagnetic field from the antenna assembly sufficiently strong to cause tissue ablation to the tissue first surface.
- the antenna assembly includes at least a first electrode.
- the method further includes piercing a needle member, having an elongated shaft, into the targeted biological tissue from the tissue first surface.
- the needle member includes at least a second electrode, the second electrode being placed proximate a second tissue surface opposed to the antenna assembly placement. Transmitting and receiving electrical signals by and between the first and second electrodes is performed to measure at least one of conduction time, conduction velocity, phase angle, and impedance through a portion of the biological tissue.
- the method includes engaging the second electrode with the tissue second surface.
- the piercing event includes driving the shaft into the organ, placing the second electrode in contact with the tissue second surface proximate to the ablation lesion during or after creation.
- the second electrode is placed with the bodily organ proximate to the tissue second surface.
- the piercing event includes driving the shaft into the organ, holding the second electrode suspended therein.
- the method includes measuring the at least one of conduction time, conduction velocity, phase angle, and impedance between the first and second electrodes.
- a method for treating medically refractory atrial fibrillation of the heart includes manipulating an antenna assembly of an ablation instrument into engagement with or substantially adjacent to a first surface of targeted cardiac tissue of the heart, and generating an electromagnetic field from the antenna assembly sufficiently strong to cause tissue ablation to the first surface to form an ablation lesion extending from the first surface toward an opposed second surface of the heart.
- the antenna assembly includes a first electrode attached thereto.
- the method before, during or after generating, the method next includes piercing a needle member having an elongated shaft into cardiac tissue from the heart epicardial surface.
- the needle member includes at least a second electrode which is placed proximate to an endocardial surface of the heart.
- the method includes transmitting and receiving electrical signals to measure at least one of conduction time, conduction velocity, phase angle, and impedance through at least a portion of the targeted cardiac to determine the transmurality of the ablation lesion.
- the manipulating, generating, piercing and measuring events are repeated to form a plurality of strategically positioned ablation lesions and/or to divide the left and/or right atria to substantially prevent reentry circuits.
- the ablation lesions are strategically formed to create a predetermined conduction pathway between a sinoatrial node and an atrioventricular node of the heart.
- the manipulating, generating, piercing and measuring are repeated in a manner isolating the pulmonary veins from the epicardium of the heart.
- FIG. 1 is a fragmentary side elevation view, in cross-section, of a transmurality assessment instrument for assessing the transmurality of an ablation lesion in accordance with one embodiment of the present invention.
- FIG. 2 is a fragmentary side elevation view, in cross-section, of an alternative embodiment of the transmurality assessment.
- FIG. 3 is a fragmentary, top perspective view of an ablation assembly of an ablation instrument in accordance with the invention.
- FIGS. 4A , 4 B are cross sectional views of alternative embodiments of sensors according to the present invention.
- FIG. 5 is a fragmentary, top perspective view, partially cut-away, of another alternative embodiment of the transmurality assessment instrument of FIG. 3 mounted to a guide assembly for a sliding ablation assembly of an ablation instrument.
- FIG. 6 is a top perspective view, in cross-section, of an ablation instrument with the transmurality assessment instrument of FIG. 1 engaged against cardiac tissue.
- FIG. 7A is a flow chart depicting the steps of transmurality assessment in accordance with the present invention.
- FIG. 7B is a flow chart depicting the steps of measurement evaluation in accordance with the present invention.
- FIG. 8 is an exemplary equivalent electrical circuit used in the methods of transmurality assessment in accordance with the present invention.
- a measurement or assessment instrument or device is provided to assess the transmurality of an ablation lesion 21 which extends from a first surface 22 of a targeted biological tissue 23 toward an opposed second surface 25 thereof.
- these lesions are generally formed during surgical tissue ablation procedures through the application of tissue ablation instruments 26 ( FIGS. 1–3 , 5 and 6 ).
- tissue ablation instruments 26 typically ablate tissue by directing ablative energy toward or into the target tissue 23 until a transmural ablation lesion is formed.
- the present invention evaluates the effectiveness, depth and completeness (i.e., the transmurality) of the ablation, an ablation made within cardiac tissue for example.
- the measurement or assessment instrument 20 includes at least a first sensor 31 a and at least a second sensor 31 b .
- Sensor 31 a is configured to engage the first surface 22 of the target tissue 23 and, while it can be place proximate or underneath a portion of the ablation instrument 26 , sensor 31 a is preferably operably attached to the ablation instrument 26 .
- Sensor 31 b is operably positioned proximate to the second surface 25 of tissue 23 and, more preferably, directly opposed to the ablation instrument 26 .
- the sensor 31 b may be placed anywhere within a hollow organ, if the sensor 31 b is placed in contact with the second tissue surface 25 , placement opposing the instrument 26 is preferable as such placement improves measurement and analysis of the acquired tissue characteristic.
- Sensor 31 b is mounted upon an elongated shaft 40 for placement.
- the sensor 31 b can be placed anywhere within a hollow organ, the left ventricle of a heart for example. If it is desirable to place the sensor 31 b in contact with the second tissue surface 25 , the elongated shaft may be made malleable to allow for actively forcing the sensor 31 b into contact with the tissue surface 25 , or otherwise encouraging such placement. Additionally, the distal end of shaft 40 may be pointed to allow for piercing and advancing through the tissue 23 .
- the shaft 40 is sized to allow the elastic and resilient epicardial surface to close the opening created when the shaft 40 is removed. Alternatively, the shaft may be placed into position through the use of a purse string opening, well known in the art.
- sensor 31 b may be an elongated electrode surrounding a distal portion of shaft 40 .
- sensor 31 b may alternatively comprise several sensors 31 b 1 – b n along the distal portion of shaft 40 (not shown), each sensor 31 b 1 – b n being selectively and operably attached to a data acquisition system, providing a more detailed analysis, as discussed in more detail below, of the propagation of the ablation lesion 21 through the tissue 23 .
- the sensor 31 b in contact with the second tissue surface 25 is advantageous since such placement displaces fluids or other materials which would interfere with creation of the lesion, cooling the tissue for example.
- Thermal isolation of the second tissue surface 25 may be enhanced by adapting shaft 40 to cover more tissue surface 25 area, isolating the tissue surface 25 from fluids such as blood flow, as generally depicted by arrow B.
- the cross-sectional geometry of the distal shaft 40 may be rectangular, engaging more tissue and, thus, thermally isolating more tissue from fluids, such as blood.
- the present invention is suitable for use in connection with tissue ablation instruments adapted to ablate the biological tissue walls of internal organs and the like.
- tissue walls typically have wall thickness from one surface of the tissue to an opposite surface of the tissue in the range of about 2 mm to about 10 mm.
- the formation of the ablation lesion generally propagates from the one surface toward the opposed second surface of the tissue. It will be understood, however, and as set forth below, that any modality of ablative energy may be applied.
- tissue ablation instruments 26 typically include a distal, ablation assembly 32 which emits ablative energy in a manner sufficient to cause tissue ablation.
- tissue ablation instruments 26 typically include a distal, ablation assembly 32 which emits ablative energy in a manner sufficient to cause tissue ablation.
- tissue ablation instruments 26 typically include a distal, ablation assembly 32 which emits ablative energy in a manner sufficient to cause tissue ablation.
- the ablation assembly 32 By manipulating and strategically placing the ablation assembly 32 adjacent to or in contact with the targeted biological tissue to be ablated, strategic lesion formation can occur.
- a series of strategically placed ablation lesions around heart collectively create a predetermined conduction pathway. More specifically, the conduction pathway is formed between a sinoatrial node and an atrioventricular node of the heart, such as required in the MAZE III procedure to treat arrthymias.
- Any source of ablative energy may be employed to achieve ablation. These include, but are not limited to, Radio Frequency (RF), laser, cryogenic, ultrasound, one or more resistive heating elements, microwave, or any other energy which can be controllably deployed to ablate tissue.
- the source of ablation can also be one or a family of chemical agents. For example, localized ethanol injection can be used to produce the ablation lines.
- RF probes that apply an RF conduction current in the range of about 450 kHz to about 550 kHz. Typical of these RF ablation instruments include ring electrodes, coiled electrodes or saline electrodes.
- Another source of ablative energy are laser based energy sources sufficient to ablate tissue.
- cryogenic energy examples include CO 2 or Nd: YAG lasers which are transmitted to the ablation assembly 32 through fiber optic cable or the like.
- cryogenic energy typically applies a cryogenic fluid, such as a pressurized gas (e.g., Freon), through an inflow lumen to a decompression chamber in the ablation assembly. Upon decompression or expansion of the pressurized gas, the temperature of the ablation assembly is sufficiently reduced to cause tissue ablation upon contact therewith.
- the ablative energy may also be ultrasonically based.
- one or a series of piezoelectric transducers may be provided as an ablative element which delivers acoustic waves sufficient to ablate tissue.
- Such transducers include piezoelectric materials such as quartz, barium oxides, etc. It should be noted that, in some cases, the sensors 31 may be an integral part of the ablating element itself, an RF electrode adapted to emit ablative energy there from for example.
- microwave energy which is emitted as an electromagnetic field by the ablation assembly.
- microwave energy is easier to control and safer than direct current applications.
- the microwave energy permeates the tissue to a depth proportional to the energy applied.
- the microwave probes are capable of generating substantially larger and longer lesions than RF catheters, which greatly simplifies the actual ablation procedures.
- recent advances in the antenna assembly designs enable even greater control of the field emission in predetermined directions for strategic lesion formation.
- ablation instrument 26 having an ablation assembly 32 adapted to ablate the targeted tissue. More specifically, the ablation assembly 32 generally includes an elongated antenna 33 coupled to a transmission line 35 for radially generating the electric field substantially along the longitudinal length thereof. To directionally control the radiation of ablative energy, a shield device 36 substantially shields a surrounding radial area of the antenna wire 33 from the electric field radially generated therefrom, while permitting a majority of the field to be directed generally in a predetermined direction. An insulator 37 is disposed between the shield device 36 and the antenna 33 , and enables the transmission of the directed electric field in the predetermined direction. Also depicted in FIG. 3 is an exemplary placement of sensor 31 a . As shown, sensor 31 a is placed proximate to antenna 33 , from which ablative energy is emitted.
- sensor electrodes 31 are provided by ring electrodes of various dimensions, as described herein.
- Such electrodes may be composed of a conductive or metallic material, such as silver, platinum or other biocompatible metals suitable for the purposes described herein.
- Nonmetallic conductive electrodes like Ag—AgCl, or saline electrodes could also be used.
- Each sensor 31 a is coupled to a respective transmission line 42 to electrically transmit from a signal source or generator.
- each sensor 31 b is coupled to a respective transmission line 42 to electrically transmit a signal from the second tissue surface 25 to a processing unit (not shown).
- the outer surface of ablation instrument 26 may be grooved or defined with a plurality of annular slots 44 formed and dimensioned for receipt of the one or more sensors 31 a therein.
- the width and depth of each slot 44 is substantially similar to that of the respective sensor 31 so that it may be seated generally flush with the exterior surface of the instrument 26 , and substantially free of gaps or spaces. This would facilitate placement of the ablation instrument 26 upon the tissue first surface 22 .
- FIGS. 4A–4B alternative configurations of the one or more sensors 31 a are shown. More specifically, while sensor 31 a is shown as substantially cylindrical in FIG. 3 , sensor 31 a can be any suitable geometric shape consistent with the methods described herein.
- FIGS. 4A–4B depicts alternative cross-sectional geometries of sensor 31 a . More specifically, FIG. 4A depicts the sensor 31 a imbedded within an emission surface in contact with tissue 23 .
- FIG. 4B alternatively depicts a cross-sectional geometry substantially surrounding the periphery 49 of the assembly 32 portion of instrument 26 .
- the configuration of FIG. 4B is advantageous since it ensures contact between the sensor 31 a and irregular tissue surfaces.
- the longitudinal length of the one or more sensors 31 a may be any suitable length for ensuring contact with the tissue, preferably between about 1 mm and about 5 mm.
- the ablation instrument 26 includes a manipulating device 38 which cooperates with the ablation assembly 32 to orient the antenna and shield device in position to perform the desired ablation.
- This manipulating device 38 may include a handle member or the like coupled to the ablation assembly, as shown in FIGS. 1–3 and 6 .
- Another example of the manipulating device 38 includes a guide assembly 39 of FIG. 5 , having a track system slideably receiving the ablation assembly 32 .
- Such microwave ablation systems are described in the U.S. Pat. Nos. 6,245,062; 6,312,427 and 6,287,302 to Berube et al.; U.S. patent application Ser. No. 09/484,548 to Gauthier et al., filed Jan.
- the power supply (not shown) will include a microwave generator which may take any conventional form.
- the optimal frequencies are generally in the neighborhood of the optimal frequency for heating water.
- frequencies in the range of approximately 800 MHz to 6 GHz work well.
- the frequencies that are approved by the Federal Communication Commission (FCC) for Industrial, Scientific and Medical work includes 915 MHz and 2.45 GHz and 5.8 GHz (ISM band). Therefore, a power supply having the capacity to generate microwave energy at frequencies in the neighborhood of 2.45 GHz may be chosen.
- a conventional magnetron of the type commonly used in microwave ovens is utilized as the generator.
- a solid-state amplifier could also be used.
- any other suitable microwave power source like a Klystron or a traveling-wave tube (TWT)
- TWT traveling-wave tube
- FIG. 7A depicts a flow chart of steps to assess the progression of an ablation lesion through targeted tissue, ultimately determining when the lesion is transmural.
- the ablation instrument 26 utilized for the ablation process is place proximate to or in contact with the first tissue surface 22 , as required by the modality in use.
- the sensors 31 a–b of the assessment instrument 20 are positioned relative to the target tissue, as described above.
- the ablation process is initiated with the application of ablative energy directed toward the targeted tissue 23 in a step 61 .
- the tissue characteristic is then measured and evaluated in steps 62 and 64 , respectively. These measured characteristics are related to at least one of the conduction time, the conduction velocity, the phase angle, and the impedance of the targeted tissue. Based upon these measurements a transmural assessment is made in a step 66 . If transmurality is not achieved, control is directed back to the tissue characteristic measurement step 62 . However, if transmurality is achieved, the ablation process is stopped in a step 68 .
- the steps of FIG. 7A may be performed by a User, a surgeon for example, or may be performed as part of a program executed by a central processing unit.
- transmural assessment procedure of FIG. 7A can be performed between sensor 31 a and any other sensor 31 n , various electrodes for example, as described herein.
- a plurality of electrodes 31 a may be operably attached to the ablation instrument 26 , each being able to be utilized, alone or in combination, with any other sensor 31 n to assess transmurality.
- FIG. 7B the step of evaluating the tissue characteristic measurement, in accordance with the present invention, will be discussed in greater detail.
- a tissue characteristic measurement is made in the step 62 , the information acquired being passed on for evaluation in step 64 .
- steps 64 a – 64 d are subset steps of the step 64 depicted in FIG. 7A .
- the acquired data is conditioned in a filtering step 64 c .
- the filtering acts to remove undesirable signals induced by transmitted signals, as discussed herein, by inconsistent contact between a sensor 31 and a tissue surface or by movements of sensors 31 within a chamber of a hollow organ related to physiological events, a heart beat for example. While the filtered signal resulting from the filtering step 64 c may be utilized to provide a transmurality assessment determination, the value obtained may be processed further to enhance the assessment determination in a step 64 d . As described herein, one parameter to observe is decreasing impedance during creation of an ablation lesion.
- the evaluation is used as a basis, as stated above, to determine transmurality in step 66 .
- the ablation process is stopped in step 68 .
- the ablation instrument 26 is moved to facilitate the creation of additional lesions.
- the assessment instrument 20 is placed as described herein and a new assessment is performed on the one or more additional lesions.
- FIG. 8 depicts an exemplary setup for the measurement of tissue impedance through a portion of biological tissue between sensors, 31 a and 31 b in this example.
- a source S is electrically connected to sensor 31 a .
- the source signal V s is applied to sensor 31 a through a known load impedance Z L .
- the source signal Vs propagates through a portion of target tissue between sensors 31 a and 31 b , the target tissue having an impedance Z T .
- the voltage difference V M between sensors 31 a and 31 b is measured.
- the tissue impedance Z T can be calculated from the measured voltage V M . Additionally, it should be noted that a phase angle related to the source signal and source current can also be calculated from this information, an increase in phase angle being indicative of increasing transmurality.
- the impedance Z T measurement is then evaluated in the step 64 . More specifically, as depicted in FIG. 1 , as the ablation 21 propagates through the tissue 23 , from sensor 31 a toward sensor 31 b , the impedance is observed to change with respect to previously obtained values, generally decreasing in value over time. Once the ablation propagates to the tissue second surface 25 of tissue 23 , the impedance measured in step 62 between sensors 31 a and sensor 31 b , as compared with previous measurements, is observed to be constant.
- the determination of the ‘constant measurement’ may be predetermined as being something other than equal, with respect to previous measurements. For example, when the impedance change is noted to be within a certain limit, the change in value may be deemed constant.
- the sampling time associated with the assessment loop steps 62 , 64 , and 66 may any suitable time, preferably to minimize the time in assessing transmurality.
- the assessment loop sampling time may be directly proportional to the acquired assessment value itself, the change in impedance for example. When a large change in value is observed, less sampling is required, and when there is a small change in value observed the sampling rate may be increased to better determine the exact time of transmurality.
- the transmitted signals are selected, or otherwise defined, based upon the desired tissue measurement.
- certain transmitted signals may be designed to passively interface with the tissue, while other signals may be designed to induce a response from the tissue itself.
- Passively, as used in the immediate discussion, means that the transmitted signals do not interfere with the normal rhythm of the heart.
- the two or more sensors 31 may be configured to passively measure the electrical impedance therebetween. This measurement can be made using any suitable method, simple utilization of a standard ohmmeter for example. However, as described in more detail above, the configuration of FIG. 8 is preferred.
- the source signal V S may be any suitable passive voltage at a frequency of at least 100 khz, preferably five volts ac at a frequency of at least 100 khz, more preferably, at a frequency from about 400 khz to about 450 khz. It is important to note that the source may be selected to also carry out the ablation process as well as provide excitation for the tissue characteristic measurement.
- the signal generating source or power source S may be any suitable source providing the desired voltages at the desired frequencies, such as a standard function generator readily available from Hewlett-Packard Company of Palo Alto, Calif., for example.
- FIG. 2 an alternative embodiment of the present invention will be discussed in greater detail.
- the embodiment of FIG. 2 is similar to the embodiment of FIG. 1 , however the one or more sensors 31 b mounted on a distal portion of shaft 40 a are located within a chamber of an organ, surrounded by fluid.
- a chamber of an organ surrounded by fluid.
- shaft 40 a may be advanced through tissue 23 through any suitable means, a purse string for example.
- the distal tip of shaft 40 a may be adapted to pierce and advance through tissue 23 , the elastic nature of the epicardial surface closing the opening once the shaft 40 a is removed.
- Shaft 40 a may be constructed from any suitable material consistent with the modality utilized during the ablation procedures and measurements made as part of the methods of transmurality assessment, as described herein. Shaft 40 a may be flexible, malleable or bendable, or rigid. Perturbations created by oscillatory movement of shaft 40 a relative the second tissue surface 25 may be filtered, as stated above.
- an ablation instrument 26 incorporating a guide assembly 39 is shown.
- the assembly 39 includes at least one lumen passing therethrough through which the antenna assembly 32 translates.
- the antenna assembly is advance to a first position at which time a first ablation lesion 21 is created.
- the antenna assembly 32 is translated to a second position at which time a second ablation lesion 21 ′ is created and, in a similar manner, lesion 21 ′′ is created, resulting in a continuous lesion encompassing lesions 21 , 21 ′ and 21 ′′.
- plurality of sensors 31 a are mounted to the external surface of assembly 39 using any suitable means discussed herein, such as crimping, imbedding or epoxy bonding.
- a corresponding sensor 31 a , 31 a ′, 31 a ′′ assists with the transmurality assessment related to that lesion. Therefore, as should be readily understood, the plurality of sensors 31 a , 31 a ′, 31 a ′′, may each be selectively connected to the signal source in order to assess transmurality for a particular lesion 21 , 21 ′, 21 ′′, in a manner as disclosed herein.
- an ablation instrument 26 can be manipulated to position the ablation assembly 32 into engagement with or substantially adjacent to the epicardium or endocardium of the targeted cardiac tissue 23 of the heart H.
- Ablation energy preferably an electromagnetic field, is generated from the ablation assembly 32 sufficiently strong to cause tissue ablation to form an elongated ablation lesion 21 extending from the first surface toward an opposed second surface 25 of the heart.
- the sensor 31 a is operably mounted to a distal portion of the instrument 26 , along at least a portion of the instrument 26 from which the ablative energy is emitted.
- the shaft 40 a having at least one sensor 31 b operably mounted thereon is place in contact with the tissue second surface 25 or within a chamber of the heart H.
- These electrodes are adapted to selectively transmit and receive electrical signals from one or more electrodes 31 to measure at least one of conduction time, conduction velocity, phase angle, and impedance through at least a portion of the targeted cardiac tissue. This data, of course, is applied to assess the progression and completeness of the created ablation lesion 21 .
- the procedures are repeated (i.e., the manipulating, generating and transmitting or receiving) to form a plurality of strategically positioned ablation lesions and/or to divide the left and/or right atria to substantially prevent reentry circuits.
- the pulmonary veins may be electrically isolated from other tissues of the heart.
- the strategic positioning of the ablation lesions cooperates to create a predetermined conduction pathway between a sinoatrial node and an atrioventricular node of the heart.
- this procedure may be performed during open or minimally invasive surgical procedures. In the latter procedure, the heart may be beating or arrested.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/369,887 US7192427B2 (en) | 2002-02-19 | 2003-02-19 | Apparatus and method for assessing transmurality of a tissue ablation |
PCT/US2004/005052 WO2004073503A2 (en) | 2003-02-19 | 2004-02-19 | Apparatus and method for assessing transmuarlity of a tissue ablation |
US11/682,744 US7497858B2 (en) | 2002-02-19 | 2007-03-06 | Apparatus and method for assessing transmurality of a tissue ablation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35821502P | 2002-02-19 | 2002-02-19 | |
US10/369,887 US7192427B2 (en) | 2002-02-19 | 2003-02-19 | Apparatus and method for assessing transmurality of a tissue ablation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/682,744 Continuation US7497858B2 (en) | 2002-02-19 | 2007-03-06 | Apparatus and method for assessing transmurality of a tissue ablation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030220639A1 US20030220639A1 (en) | 2003-11-27 |
US7192427B2 true US7192427B2 (en) | 2007-03-20 |
Family
ID=32907657
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/369,887 Expired - Fee Related US7192427B2 (en) | 2002-02-19 | 2003-02-19 | Apparatus and method for assessing transmurality of a tissue ablation |
US11/682,744 Expired - Fee Related US7497858B2 (en) | 2002-02-19 | 2007-03-06 | Apparatus and method for assessing transmurality of a tissue ablation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/682,744 Expired - Fee Related US7497858B2 (en) | 2002-02-19 | 2007-03-06 | Apparatus and method for assessing transmurality of a tissue ablation |
Country Status (2)
Country | Link |
---|---|
US (2) | US7192427B2 (en) |
WO (1) | WO2004073503A2 (en) |
Cited By (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050251130A1 (en) * | 2005-04-22 | 2005-11-10 | Boveja Birinder R | Method and system of stopping energy delivery of an ablation procedure with a computer based device for increasing safety of ablation procedures |
US20060224152A1 (en) * | 2005-03-31 | 2006-10-05 | Sherwood Services Ag | Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator |
US20060235286A1 (en) * | 2005-03-28 | 2006-10-19 | Minnow Medical, Llc | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US20070135812A1 (en) * | 2005-12-12 | 2007-06-14 | Sherwood Services Ag | Laparoscopic apparatus for performing electrosurgical procedures |
US20070173804A1 (en) * | 2006-01-24 | 2007-07-26 | Wham Robert H | System and method for tissue sealing |
US20070173806A1 (en) * | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US20080125772A1 (en) * | 2004-09-10 | 2008-05-29 | Minnow Medical, Inc | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US20080161801A1 (en) * | 2003-09-12 | 2008-07-03 | Minnow Medical, Inc. | Selectable Eccentric Remodeling and/or Ablation of Atherosclerotic Material |
US20080248685A1 (en) * | 2003-11-20 | 2008-10-09 | Joe Don Sartor | Connector Systems for Electrosurgical Generator |
US20080262489A1 (en) * | 2007-04-23 | 2008-10-23 | Minnow Medical, Llc | Thrombus removal |
US20080281315A1 (en) * | 1997-04-09 | 2008-11-13 | David Lee Gines | Electrosurgical Generator With Adaptive Power Control |
US20090153421A1 (en) * | 2007-12-12 | 2009-06-18 | Ahmadreza Rofougaran | Method and system for an integrated antenna and antenna management |
US20090227952A1 (en) * | 2008-03-10 | 2009-09-10 | Medtronic Vascular, Inc. | Guidewires and Delivery Catheters Having Fiber Optic Sensing Components and Related Systems and Methods |
US20090326527A1 (en) * | 2002-01-25 | 2009-12-31 | Ocel Jon M | Cardiac Mapping Instrument with Shapeable Electrode |
US7651492B2 (en) | 2006-04-24 | 2010-01-26 | Covidien Ag | Arc based adaptive control system for an electrosurgical unit |
US20100076299A1 (en) * | 2008-09-22 | 2010-03-25 | Minnow Medical, Inc. | Inducing Desirable Temperature Effects On Body Tissue Using Alternate Energy Sources |
US20100125239A1 (en) * | 2008-11-14 | 2010-05-20 | Minnow Medical, Inc. | Selective Drug Delivery In a Lumen |
US7834484B2 (en) | 2007-07-16 | 2010-11-16 | Tyco Healthcare Group Lp | Connection cable and method for activating a voltage-controlled generator |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
US7972332B2 (en) | 2006-03-03 | 2011-07-05 | Covidien Ag | System and method for controlling electrosurgical snares |
US8025660B2 (en) | 2004-10-13 | 2011-09-27 | Covidien Ag | Universal foot switch contact port |
US8080008B2 (en) | 2003-05-01 | 2011-12-20 | Covidien Ag | Method and system for programming and controlling an electrosurgical generator system |
US8096961B2 (en) | 2003-10-30 | 2012-01-17 | Covidien Ag | Switched resonant ultrasonic power amplifier system |
US8105323B2 (en) | 1998-10-23 | 2012-01-31 | Covidien Ag | Method and system for controlling output of RF medical generator |
US8147485B2 (en) | 2006-01-24 | 2012-04-03 | Covidien Ag | System and method for tissue sealing |
US8187262B2 (en) | 2006-01-24 | 2012-05-29 | Covidien Ag | Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling |
US8216223B2 (en) | 2006-01-24 | 2012-07-10 | Covidien Ag | System and method for tissue sealing |
US8216220B2 (en) | 2007-09-07 | 2012-07-10 | Tyco Healthcare Group Lp | System and method for transmission of combined data stream |
US8226639B2 (en) | 2008-06-10 | 2012-07-24 | Tyco Healthcare Group Lp | System and method for output control of electrosurgical generator |
US8231616B2 (en) | 2006-09-28 | 2012-07-31 | Covidien Ag | Transformer for RF voltage sensing |
US8287528B2 (en) | 1998-10-23 | 2012-10-16 | Covidien Ag | Vessel sealing system |
US20130041361A1 (en) * | 2011-08-09 | 2013-02-14 | Tyco Healthcare Group Lp | Microwave Sensing for Tissue Sealing |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8486061B2 (en) | 2009-01-12 | 2013-07-16 | Covidien Lp | Imaginary impedance process monitoring and intelligent shut-off |
US8512332B2 (en) | 2007-09-21 | 2013-08-20 | Covidien Lp | Real-time arc control in electrosurgical generators |
US8523855B2 (en) | 2002-12-10 | 2013-09-03 | Covidien Ag | Circuit for controlling arc energy from an electrosurgical generator |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US8647340B2 (en) | 2003-10-23 | 2014-02-11 | Covidien Ag | Thermocouple measurement system |
US8663214B2 (en) | 2006-01-24 | 2014-03-04 | Covidien Ag | Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm |
US8685016B2 (en) | 2006-01-24 | 2014-04-01 | Covidien Ag | System and method for tissue sealing |
US8734438B2 (en) | 2005-10-21 | 2014-05-27 | Covidien Ag | Circuit and method for reducing stored energy in an electrosurgical generator |
US8777941B2 (en) | 2007-05-10 | 2014-07-15 | Covidien Lp | Adjustable impedance electrosurgical electrodes |
US8880185B2 (en) | 2010-06-11 | 2014-11-04 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US20150101239A1 (en) * | 2012-02-17 | 2015-04-16 | Nathaniel L. Cohen | Apparatus for using microwave energy for insect and pest control and methods thereof |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9028472B2 (en) | 2011-12-23 | 2015-05-12 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9186200B2 (en) | 2006-01-24 | 2015-11-17 | Covidien Ag | System and method for tissue sealing |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9636173B2 (en) | 2010-10-21 | 2017-05-02 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation |
US9636165B2 (en) | 2013-07-29 | 2017-05-02 | Covidien Lp | Systems and methods for measuring tissue impedance through an electrosurgical cable |
US9649156B2 (en) | 2010-12-15 | 2017-05-16 | Boston Scientific Scimed, Inc. | Bipolar off-wall electrode device for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US9808300B2 (en) | 2006-05-02 | 2017-11-07 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9827039B2 (en) | 2013-03-15 | 2017-11-28 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US9872719B2 (en) | 2013-07-24 | 2018-01-23 | Covidien Lp | Systems and methods for generating electrosurgical energy using a multistage power converter |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US10076238B2 (en) | 2011-09-22 | 2018-09-18 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10085799B2 (en) | 2011-10-11 | 2018-10-02 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
US10166069B2 (en) | 2014-01-27 | 2019-01-01 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods |
US10182865B2 (en) | 2010-10-25 | 2019-01-22 | Medtronic Ardian Luxembourg S.A.R.L. | Microwave catheter apparatuses, systems, and methods for renal neuromodulation |
US10188829B2 (en) | 2012-10-22 | 2019-01-29 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10350423B2 (en) | 2016-02-04 | 2019-07-16 | Cardiac Pacemakers, Inc. | Delivery system with force sensor for leadless cardiac device |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10548663B2 (en) | 2013-05-18 | 2020-02-04 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods |
US10660698B2 (en) | 2013-07-11 | 2020-05-26 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US10722300B2 (en) | 2013-08-22 | 2020-07-28 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US10736512B2 (en) | 2011-09-22 | 2020-08-11 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10736690B2 (en) | 2014-04-24 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters and associated systems and methods |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US10835305B2 (en) | 2012-10-10 | 2020-11-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US10945786B2 (en) | 2013-10-18 | 2021-03-16 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
US10952790B2 (en) | 2013-09-13 | 2021-03-23 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US11457817B2 (en) | 2013-11-20 | 2022-10-04 | The George Washington University | Systems and methods for hyperspectral analysis of cardiac tissue |
US12076081B2 (en) | 2020-01-08 | 2024-09-03 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
US12226143B2 (en) | 2020-06-22 | 2025-02-18 | Covidien Lp | Universal surgical footswitch toggling |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003105662A2 (en) * | 2002-06-14 | 2003-12-24 | Kress, David, C. | Transmurality assessment apparatus and methods |
WO2004088233A2 (en) * | 2003-03-26 | 2004-10-14 | Regents Of The University Of Minnesota | Thermal surgical procedures and compositions |
US7238180B2 (en) | 2003-10-30 | 2007-07-03 | Medicalcv Inc. | Guided ablation with end-fire fiber |
US7238179B2 (en) | 2003-10-30 | 2007-07-03 | Medical Cv, Inc. | Apparatus and method for guided ablation treatment |
US7232437B2 (en) | 2003-10-30 | 2007-06-19 | Medical Cv, Inc. | Assessment of lesion transmurality |
EP1680039A1 (en) * | 2003-10-30 | 2006-07-19 | Medical Cv, Inc. | Apparatus and method for laser treatment |
US7828795B2 (en) * | 2005-01-18 | 2010-11-09 | Atricure, Inc. | Surgical ablation and pacing device |
US20060161149A1 (en) * | 2005-01-18 | 2006-07-20 | Salvatore Privitera | Surgical ablation device |
US20060161147A1 (en) * | 2005-01-18 | 2006-07-20 | Salvatore Privitera | Method and apparatus for controlling a surgical ablation device |
US20060216159A1 (en) * | 2005-03-22 | 2006-09-28 | Sridharan Raghavachari | Multiple compressor control system |
US8034051B2 (en) | 2005-07-15 | 2011-10-11 | Atricure, Inc. | Ablation device with sensor |
US20070073278A1 (en) * | 2005-09-16 | 2007-03-29 | Johnson Kevin C | Cardiac Ablation Dosing |
US20070073277A1 (en) * | 2005-09-16 | 2007-03-29 | Medicalcv, Inc. | Controlled guided ablation treatment |
US10362959B2 (en) * | 2005-12-06 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the proximity of an electrode to tissue in a body |
JP5162467B2 (en) | 2005-12-06 | 2013-03-13 | セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド | Evaluation of electrode coupling for tissue ablation |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US8406866B2 (en) * | 2005-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US8449535B2 (en) * | 2005-12-06 | 2013-05-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
WO2007070361A2 (en) | 2005-12-06 | 2007-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US20070185479A1 (en) * | 2006-02-06 | 2007-08-09 | Liming Lau | Methods and devices for performing ablation and assessing efficacy thereof |
US20100211059A1 (en) | 2007-04-19 | 2010-08-19 | Deem Mark E | Systems and methods for creating an effect using microwave energy to specified tissue |
EP2142128B1 (en) | 2007-04-19 | 2014-08-06 | Miramar Labs, Inc. | Systems for creating an effect using microwave energy to specified tissue |
EP2142125B1 (en) | 2007-04-19 | 2014-03-05 | Miramar Labs, Inc. | Devices, and systems for non-invasive delivery of microwave therapy |
US8290578B2 (en) | 2007-12-28 | 2012-10-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for complex impedance compensation |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
EP4169464A1 (en) * | 2008-03-31 | 2023-04-26 | Applied Medical Resources Corporation | Electrosurgical system |
EP2349167B8 (en) * | 2008-10-22 | 2015-09-30 | Miramar Labs, Inc. | Systems for the non-invasive treatment of tissue using microwave energy |
ES2537227T3 (en) | 2010-10-01 | 2015-06-03 | Applied Medical Resources Corporation | Electro-surgical instrument with jaws and with an electrode |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
US9615878B2 (en) * | 2012-12-21 | 2017-04-11 | Volcano Corporation | Device, system, and method for imaging and tissue characterization of ablated tissue |
DE102013000966A1 (en) * | 2013-01-22 | 2014-07-24 | Zimmer Medizinsysteme Gmbh | Method and apparatus for continuous non-invasive measurement of tissue temperatures at different tissue depths |
US10779885B2 (en) | 2013-07-24 | 2020-09-22 | Miradry. Inc. | Apparatus and methods for the treatment of tissue using microwave energy |
US10213248B2 (en) | 2013-08-21 | 2019-02-26 | Biosense Webster (Israel) Ltd. | Adaptive electrode for bi-polar ablation |
US9949664B2 (en) | 2013-08-27 | 2018-04-24 | Biosense Webster (Israel) Ltd. | Determining non-contact state for a catheter |
US9974608B2 (en) | 2013-08-27 | 2018-05-22 | Biosense Webster (Israel) Ltd. | Determining absence of contact for a catheter |
EP4197469A1 (en) | 2014-05-16 | 2023-06-21 | Applied Medical Resources Corporation | Electrosurgical system |
EP3369392B1 (en) | 2014-05-30 | 2024-05-22 | Applied Medical Resources Corporation | Electrosurgical seal and dissection systems |
US9743972B2 (en) * | 2014-07-18 | 2017-08-29 | Medtronic Cryocath Lp | Cardiac cryolipolysis for the treatment of cardiac arrhythmia |
KR102709390B1 (en) | 2014-12-23 | 2024-09-24 | 어플라이드 메디컬 리소시스 코포레이션 | Bipolar electrosurgical sealer and divider |
EP3400896B1 (en) * | 2016-01-07 | 2020-12-16 | Educational Foundation Kyorin Gakuen | Infrared denaturing device |
ES2998497T3 (en) | 2018-09-05 | 2025-02-20 | Applied Med Resources | Electrosurgical generator control system |
KR20210092263A (en) | 2018-11-16 | 2021-07-23 | 어플라이드 메디컬 리소시스 코포레이션 | electrosurgical system |
US20220378500A1 (en) * | 2019-11-01 | 2022-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | Devices and methods involving transmural-capable tissue procedures |
Citations (474)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1586645A (en) | 1925-07-06 | 1926-06-01 | Bierman William | Method of and means for treating animal tissue to coagulate the same |
US3598108A (en) | 1969-02-28 | 1971-08-10 | Khosrow Jamshidi | Biopsy technique and biopsy device |
US3827436A (en) | 1972-11-10 | 1974-08-06 | Frigitronics Of Conn Inc | Multipurpose cryosurgical probe |
US3831607A (en) | 1973-02-10 | 1974-08-27 | H Lindemann | Electrocoagulation grasping forceps for tube sterilization by means of bipolar high frequency heat radiation |
US3886944A (en) | 1973-11-19 | 1975-06-03 | Khosrow Jamshidi | Microcautery device |
US3976082A (en) | 1974-02-25 | 1976-08-24 | German Schmitt | Intracardial stimulation electrode |
US4011872A (en) | 1974-04-01 | 1977-03-15 | Olympus Optical Co., Ltd. | Electrical apparatus for treating affected part in a coeloma |
US4033357A (en) | 1975-02-07 | 1977-07-05 | Medtronic, Inc. | Non-fibrosing cardiac electrode |
US4045056A (en) | 1975-10-14 | 1977-08-30 | Gennady Petrovich Kandakov | Expansion compensator for pipelines |
US4073287A (en) | 1976-04-05 | 1978-02-14 | American Medical Systems, Inc. | Urethral profilometry catheter |
US4204549A (en) | 1977-12-12 | 1980-05-27 | Rca Corporation | Coaxial applicator for microwave hyperthermia |
US4244371A (en) | 1976-10-13 | 1981-01-13 | Erbe Elektromedizin Gmbh & Co. Kg | High-frequency surgical apparatus |
US4268937A (en) | 1978-05-25 | 1981-05-26 | The English Card Clothing Company Limited | Metallic wire type card-clothing |
US4312364A (en) | 1977-04-08 | 1982-01-26 | C.G.R. Mev | Apparatus for localized heating of a living tissue, using electromagnetic waves of ultra high frequency, for medical applications |
EP0048402A1 (en) | 1980-09-18 | 1982-03-31 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4409993A (en) | 1980-07-23 | 1983-10-18 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4416276A (en) | 1981-10-26 | 1983-11-22 | Valleylab, Inc. | Adaptive, return electrode monitoring system |
US4445892A (en) | 1982-05-06 | 1984-05-01 | Laserscope, Inc. | Dual balloon catheter device |
US4448198A (en) | 1979-06-19 | 1984-05-15 | Bsd Medical Corporation | Invasive hyperthermia apparatus and method |
US4462412A (en) | 1980-04-02 | 1984-07-31 | Bsd Medical Corporation | Annular electromagnetic radiation applicator for biological tissue, and method |
US4465079A (en) | 1982-10-13 | 1984-08-14 | Medtronic, Inc. | Biomedical lead with fibrosis-inducing anchoring strand |
US4476872A (en) | 1980-03-07 | 1984-10-16 | The Kendall Company | Esophageal probe with disposable cover |
US4494539A (en) | 1982-04-03 | 1985-01-22 | Toshio Zenitani | Method and apparatus for surgical operation using microwaves |
EP0139607A1 (en) | 1983-10-07 | 1985-05-02 | Yeda Research And Development Company, Ltd. | Hyperthermia apparatus |
US4522212A (en) | 1983-11-14 | 1985-06-11 | Mansfield Scientific, Inc. | Endocardial electrode |
US4564200A (en) | 1984-12-14 | 1986-01-14 | Loring Wolson J | Tethered ring game with hook configuration |
US4565200A (en) | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
US4573473A (en) | 1984-04-13 | 1986-03-04 | Cordis Corporation | Cardiac mapping probe |
US4583556A (en) | 1982-12-13 | 1986-04-22 | M/A-Com, Inc. | Microwave applicator/receiver apparatus |
US4611604A (en) | 1983-01-11 | 1986-09-16 | Siemens Aktiengesellschaft | Bipolar electrode for medical applications |
US4640983A (en) | 1984-04-09 | 1987-02-03 | Institut Straumann Ag | Conductor device, particularly for at least partial insertion in a human or animal body, comprising a spiral formed from at least one conductor |
US4641649A (en) | 1985-10-30 | 1987-02-10 | Rca Corporation | Method and apparatus for high frequency catheter ablation |
US4641646A (en) | 1985-04-05 | 1987-02-10 | Kenneth E. Schultz | Endotracheal tube/respirator tubing connecting lock mechanism and method of using same |
US4643186A (en) | 1985-10-30 | 1987-02-17 | Rca Corporation | Percutaneous transluminal microwave catheter angioplasty |
US4655219A (en) | 1983-07-22 | 1987-04-07 | American Hospital Supply Corporation | Multicomponent flexible grasping device |
US4657015A (en) | 1983-02-24 | 1987-04-14 | Werner Irnich | Control device for a high frequency surgical apparatus |
US4660571A (en) | 1985-07-18 | 1987-04-28 | Cordis Corporation | Percutaneous lead having radially adjustable electrode |
US4681122A (en) | 1985-09-23 | 1987-07-21 | Victory Engineering Corp. | Stereotaxic catheter for microwave thermotherapy |
US4685459A (en) | 1985-03-27 | 1987-08-11 | Fischer Met Gmbh | Device for bipolar high-frequency coagulation of biological tissue |
US4699147A (en) | 1985-09-25 | 1987-10-13 | Cordis Corporation | Intraventricular multielectrode cardial mapping probe and method for using same |
US4700716A (en) | 1986-02-27 | 1987-10-20 | Kasevich Associates, Inc. | Collinear antenna array applicator |
EP0248758A1 (en) | 1986-05-12 | 1987-12-09 | Biodan Medical Systems Ltd | Applicator for insertion into a body opening for medical purposes |
US4763668A (en) | 1985-10-28 | 1988-08-16 | Mill Rose Laboratories | Partible forceps instrument for endoscopy |
US4785815A (en) | 1985-10-23 | 1988-11-22 | Cordis Corporation | Apparatus for locating and ablating cardiac conduction pathways |
US4800899A (en) | 1984-10-22 | 1989-01-31 | Microthermia Technology, Inc. | Apparatus for destroying cells in tumors and the like |
US4825880A (en) | 1987-06-19 | 1989-05-02 | The Regents Of The University Of California | Implantable helical coil microwave antenna |
US4832048A (en) | 1987-10-29 | 1989-05-23 | Cordis Corporation | Suction ablation catheter |
US4841988A (en) | 1987-10-15 | 1989-06-27 | Marquette Electronics, Inc. | Microwave hyperthermia probe |
US4841990A (en) | 1985-06-29 | 1989-06-27 | Tokyo Keiki Co., Ltd. | Applicator for use in hyperthermia |
US4881543A (en) | 1988-06-28 | 1989-11-21 | Massachusetts Institute Of Technology | Combined microwave heating and surface cooling of the cornea |
US4891483A (en) | 1985-06-29 | 1990-01-02 | Tokyo Keiki Co. Ltd. | Heating apparatus for hyperthermia |
EP0358336A1 (en) | 1988-08-11 | 1990-03-14 | Edward George Charles Arthur Dr. Boyd | Apparatus for effecting controlled tissue destruction |
US4920978A (en) | 1988-08-31 | 1990-05-01 | Triangle Research And Development Corporation | Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia |
US4924864A (en) | 1985-11-15 | 1990-05-15 | Danzig Fred G | Apparatus and article for ligating blood vessels, nerves and other anatomical structures |
US4924863A (en) | 1988-05-04 | 1990-05-15 | Mmtc, Inc. | Angioplastic method for removing plaque from a vas |
US4932420A (en) | 1988-10-07 | 1990-06-12 | Clini-Therm Corporation | Non-invasive quarter wavelength microwave applicator for hyperthermia treatment |
US4938217A (en) | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Electronically-controlled variable focus ultrasound hyperthermia system |
US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
US4960134A (en) | 1988-11-18 | 1990-10-02 | Webster Wilton W Jr | Steerable catheter |
US4966597A (en) | 1988-11-04 | 1990-10-30 | Cosman Eric R | Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection |
US4976711A (en) | 1989-04-13 | 1990-12-11 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5007437A (en) | 1989-06-16 | 1991-04-16 | Mmtc, Inc. | Catheters for treating prostate disease |
USRE33590E (en) | 1983-12-14 | 1991-05-21 | Edap International, S.A. | Method for examining, localizing and treating with ultrasound |
US5019076A (en) | 1986-09-12 | 1991-05-28 | Yamanashi William S | Radio frequency surgical tool and method |
US5044375A (en) | 1989-12-08 | 1991-09-03 | Cardiac Pacemakers, Inc. | Unitary intravascular defibrillating catheter with separate bipolar sensing |
US5057106A (en) | 1986-02-27 | 1991-10-15 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
US5078713A (en) | 1988-12-01 | 1992-01-07 | Spembly Medical Limited | Cryosurgical probe |
US5080102A (en) | 1983-12-14 | 1992-01-14 | Edap International, S.A. | Examining, localizing and treatment with ultrasound |
US5085659A (en) | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
US5097845A (en) | 1987-10-15 | 1992-03-24 | Labthermics Technologies | Microwave hyperthermia probe |
US5100388A (en) | 1989-09-15 | 1992-03-31 | Interventional Thermodynamics, Inc. | Method and device for thermal ablation of hollow body organs |
US5104393A (en) | 1989-08-30 | 1992-04-14 | Angelase, Inc. | Catheter |
US5108390A (en) | 1988-11-14 | 1992-04-28 | Frigitronics, Inc. | Flexible cryoprobe |
US5114403A (en) | 1989-09-15 | 1992-05-19 | Eclipse Surgical Technologies, Inc. | Catheter torque mechanism |
US5129396A (en) | 1988-11-10 | 1992-07-14 | Arye Rosen | Microwave aided balloon angioplasty with lumen measurement |
US5139496A (en) | 1990-12-20 | 1992-08-18 | Hed Aharon Z | Ultrasonic freeze ablation catheters and probes |
US5147355A (en) | 1988-09-23 | 1992-09-15 | Brigham And Womens Hospital | Cryoablation catheter and method of performing cryoablation |
US5147357A (en) | 1991-03-18 | 1992-09-15 | Rose Anthony T | Medical instrument |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
US5158092A (en) | 1987-10-27 | 1992-10-27 | Christian Glace | Method and azimuthal probe for localizing the emergence point of ventricular tachycardias |
US5171255A (en) | 1990-11-21 | 1992-12-15 | Everest Medical Corporation | Biopsy device |
US5172699A (en) | 1990-10-19 | 1992-12-22 | Angelase, Inc. | Process of identification of a ventricular tachycardia (VT) active site and an ablation catheter system |
US5188122A (en) | 1989-06-20 | 1993-02-23 | Rocket Of London Limited | Electromagnetic energy generation method |
US5192278A (en) | 1985-03-22 | 1993-03-09 | Massachusetts Institute Of Technology | Multi-fiber plug for a laser catheter |
US5207672A (en) | 1989-05-03 | 1993-05-04 | Intra-Sonix, Inc. | Instrument and method for intraluminally relieving stenosis |
US5207674A (en) | 1991-05-13 | 1993-05-04 | Hamilton Archie C | Electronic cryogenic surgical probe apparatus and method |
WO1993008757A1 (en) | 1991-11-08 | 1993-05-13 | Ep Technologies, Inc. | Systems and methods for ablating tissue while monitoring tissue impedance |
US5222501A (en) | 1992-01-31 | 1993-06-29 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5230349A (en) | 1988-11-25 | 1993-07-27 | Sensor Electronics, Inc. | Electrical heating catheter |
US5230334A (en) | 1992-01-22 | 1993-07-27 | Summit Technology, Inc. | Method and apparatus for generating localized hyperthermia |
WO1993015664A1 (en) | 1992-02-06 | 1993-08-19 | American Medical Systems, Inc. | Apparatus and method for interstitial treatment |
US5242441A (en) | 1992-02-24 | 1993-09-07 | Boaz Avitall | Deflectable catheter with rotatable tip electrode |
US5248312A (en) | 1992-06-01 | 1993-09-28 | Sensor Electronics, Inc. | Liquid metal-filled balloon |
WO1993020886A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Articulated systems for cardiac ablation |
WO1993020767A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
WO1993020893A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Steerable coaxial antenna systems for cardiac ablation |
WO1993020768A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Steerable microwave antenna systems for cardiac ablation |
US5263493A (en) | 1992-02-24 | 1993-11-23 | Boaz Avitall | Deflectable loop electrode array mapping and ablation catheter for cardiac chambers |
US5281215A (en) | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Cryogenic catheter |
US5281217A (en) | 1992-04-13 | 1994-01-25 | Ep Technologies, Inc. | Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns |
US5281213A (en) | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Catheter for ice mapping and ablation |
WO1994002204A1 (en) | 1992-07-15 | 1994-02-03 | Microwave Engineering Designs Limited | Microwave treatment apparatus |
US5293869A (en) | 1992-09-25 | 1994-03-15 | Ep Technologies, Inc. | Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5295955A (en) | 1992-02-14 | 1994-03-22 | Amt, Inc. | Method and apparatus for microwave aided liposuction |
US5300099A (en) | 1992-03-06 | 1994-04-05 | Urologix, Inc. | Gamma matched, helical dipole microwave antenna |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5301687A (en) | 1991-06-06 | 1994-04-12 | Trustees Of Dartmouth College | Microwave applicator for transurethral hyperthermia |
US5304207A (en) | 1992-02-05 | 1994-04-19 | Merrill Stromer | Electrostimulator with light emitting device |
US5313943A (en) | 1992-09-25 | 1994-05-24 | Ep Technologies, Inc. | Catheters and methods for performing cardiac diagnosis and treatment |
US5318525A (en) | 1992-04-10 | 1994-06-07 | Medtronic Cardiorhythm | Steerable electrode catheter |
US5327889A (en) | 1992-12-01 | 1994-07-12 | Cardiac Pathways Corporation | Mapping and ablation catheter with individually deployable arms and method |
US5334168A (en) | 1993-06-11 | 1994-08-02 | Catheter Research, Inc. | Variable shape guide apparatus |
US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
US5344441A (en) | 1991-07-03 | 1994-09-06 | Volker Gronauer | Antenna arrangement with supply cable for medical applications |
US5344431A (en) | 1990-01-22 | 1994-09-06 | Medtronic, Inc. | Method and apparatus for determination of end-of-service for implantable devices |
US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5358515A (en) | 1989-08-16 | 1994-10-25 | Deutsches Krebsforschungzentrum Stiftung Des Offentlichen Rechts | Microwave hyperthermia applicator |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5364336A (en) | 1990-12-17 | 1994-11-15 | Microwave Medical Systems, Inc. | Therapeutic probe for radiating microwave and ionizing radiation |
US5364351A (en) | 1992-11-13 | 1994-11-15 | Ep Technologies, Inc. | Catheter steering mechanism |
US5364352A (en) | 1993-03-12 | 1994-11-15 | Heart Rhythm Technologies, Inc. | Catheter for electrophysiological procedures |
US5366490A (en) | 1992-08-12 | 1994-11-22 | Vidamed, Inc. | Medical probe device and method |
US5369251A (en) | 1992-09-14 | 1994-11-29 | Kdc Technology Corp. | Microwave interstitial hyperthermia probe |
US5370677A (en) | 1992-03-06 | 1994-12-06 | Urologix, Inc. | Gamma matched, helical dipole microwave antenna with tubular-shaped capacitor |
EP0628322A2 (en) | 1993-06-11 | 1994-12-14 | Cordis Europa N.V. | Flexible catheter with strip-like electrode |
US5374287A (en) | 1991-04-10 | 1994-12-20 | British Technology Group Usa Inc. | Defibrillator and demand pacer catheters and methods for using same |
US5376094A (en) | 1993-08-19 | 1994-12-27 | Boston Scientific Corporation | Improved actuating handle with pulley system for providing mechanical advantage to a surgical working element |
US5383876A (en) | 1992-11-13 | 1995-01-24 | American Cardiac Ablation Co., Inc. | Fluid cooled electrosurgical probe for cutting and cauterizing tissue |
US5383922A (en) | 1993-03-15 | 1995-01-24 | Medtronic, Inc. | RF lead fixation and implantable lead |
US5391147A (en) | 1992-12-01 | 1995-02-21 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location and/or radius and method |
US5397304A (en) | 1992-04-10 | 1995-03-14 | Medtronic Cardiorhythm | Shapable handle for steerable electrode catheter |
US5398683A (en) | 1991-05-24 | 1995-03-21 | Ep Technologies, Inc. | Combination monophasic action potential/ablation catheter and high-performance filter system |
WO1995005212A3 (en) | 1993-08-11 | 1995-03-30 | Electro Catheter Corp | Improved ablation electrode |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
US5402772A (en) | 1991-05-29 | 1995-04-04 | Origin Medsystems, Inc. | Endoscopic expandable retraction device |
US5405346A (en) | 1993-05-14 | 1995-04-11 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter |
US5405376A (en) | 1993-08-27 | 1995-04-11 | Medtronic, Inc. | Method and apparatus for ablation |
US5405375A (en) | 1994-01-21 | 1995-04-11 | Incontrol, Inc. | Combined mapping, pacing, and defibrillating catheter |
US5415656A (en) | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
US5417208A (en) | 1993-10-12 | 1995-05-23 | Arrow International Investment Corp. | Electrode-carrying catheter and method of making same |
US5423807A (en) | 1992-04-16 | 1995-06-13 | Implemed, Inc. | Cryogenic mapping and ablation catheter |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
WO1995018575A1 (en) | 1994-01-06 | 1995-07-13 | Vidamed, Inc. | Medical probe apparatus with enhanced rf, resistance heating, and microwave ablation capabilities |
US5437665A (en) | 1993-10-12 | 1995-08-01 | Munro; Malcolm G. | Electrosurgical loop electrode instrument for laparoscopic surgery |
US5439006A (en) | 1991-08-28 | 1995-08-08 | Medtronic, Inc. | Steerable stylet and manipulative handle assembly |
US5443489A (en) | 1993-07-20 | 1995-08-22 | Biosense, Inc. | Apparatus and method for ablation |
US5445193A (en) | 1992-04-01 | 1995-08-29 | Agfa-Gevaert Aktiengesellschaft | Apparatus for preparing and dispensing liquids for the treatment of photosensitive material |
US5450846A (en) | 1993-01-08 | 1995-09-19 | Goldreyer; Bruce N. | Method for spatially specific electrophysiological sensing for mapping, pacing and ablating human myocardium and a catheter for the same |
US5452733A (en) | 1993-02-22 | 1995-09-26 | Stanford Surgical Technologies, Inc. | Methods for performing thoracoscopic coronary artery bypass |
US5454807A (en) | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
US5454733A (en) | 1993-04-21 | 1995-10-03 | Yazaki Corporation | Divisional multi-pole connector |
US5454370A (en) | 1993-12-03 | 1995-10-03 | Avitall; Boaz | Mapping and ablation electrode configuration |
US5462544A (en) | 1993-05-05 | 1995-10-31 | Energy Life System Corporation | Continuous heart tissue mapping and lasing catheter |
US5462545A (en) | 1994-01-31 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Catheter electrodes |
US5464404A (en) | 1993-09-20 | 1995-11-07 | Abela Laser Systems, Inc. | Cardiac ablation catheters and method |
US5470308A (en) | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5482037A (en) | 1993-01-18 | 1996-01-09 | X-Trode S.R.L. | Electrode catheter for mapping and operating on cardiac cavities |
US5484433A (en) | 1993-12-30 | 1996-01-16 | The Spectranetics Corporation | Tissue ablating device having a deflectable ablation area and method of using same |
US5487757A (en) | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US5492126A (en) | 1994-05-02 | 1996-02-20 | Focal Surgery | Probe for medical imaging and therapy using ultrasound |
US5494039A (en) | 1993-07-16 | 1996-02-27 | Cryomedical Sciences, Inc. | Biopsy needle insertion guide and method of use in prostate cryosurgery |
US5496312A (en) | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5496271A (en) | 1990-09-14 | 1996-03-05 | American Medical Systems, Inc. | Combined hyperthermia and dilation catheter |
US5500012A (en) | 1992-07-15 | 1996-03-19 | Angeion Corporation | Ablation catheter system |
US5507743A (en) | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5514131A (en) | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5520188A (en) | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
US5529820A (en) | 1993-03-17 | 1996-06-25 | Japan Gore-Tex, Inc. | Flexible, non-porous tube and a method of making |
US5531677A (en) | 1992-08-12 | 1996-07-02 | Vidamed, Inc. | Steerable medical probe with stylets |
US5536247A (en) | 1993-06-10 | 1996-07-16 | Scimed Life Systems, Inc. | Method of treating cardiac conduction defects |
US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5540684A (en) | 1994-07-28 | 1996-07-30 | Hassler, Jr.; William L. | Method and apparatus for electrosurgically treating tissue |
US5545200A (en) | 1993-07-20 | 1996-08-13 | Medtronic Cardiorhythm | Steerable electrophysiology catheter |
US5545193A (en) | 1993-10-15 | 1996-08-13 | Ep Technologies, Inc. | Helically wound radio-frequency emitting electrodes for creating lesions in body tissue |
US5549644A (en) | 1992-08-12 | 1996-08-27 | Vidamed, Inc. | Transurethral needle ablation device with cystoscope and method for treatment of the prostate |
US5549638A (en) | 1994-05-17 | 1996-08-27 | Burdette; Everette C. | Ultrasound device for use in a thermotherapy apparatus |
US5549661A (en) | 1993-10-15 | 1996-08-27 | Ep Technologies, Inc. | Systems and methods for creating complex lesion patterns in body tissue |
WO1996026675A1 (en) | 1995-02-28 | 1996-09-06 | Boston Scientific Corporation | Deflectable catheter for ablating cardiac tissue |
US5569242A (en) | 1994-05-06 | 1996-10-29 | Lax; Ronald G. | Method and apparatus for controlled contraction of soft tissue |
US5571088A (en) | 1993-07-01 | 1996-11-05 | Boston Scientific Corporation | Ablation catheters |
US5571215A (en) | 1993-02-22 | 1996-11-05 | Heartport, Inc. | Devices and methods for intracardiac procedures |
WO1996035469A1 (en) | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | System for treating or diagnosing heart tissue |
WO1996035496A1 (en) | 1995-05-10 | 1996-11-14 | Jochelson Maria Alexander | Device for and method of separating solids from liquids |
US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US5575766A (en) | 1993-11-03 | 1996-11-19 | Daig Corporation | Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers |
WO1996036397A1 (en) | 1995-05-15 | 1996-11-21 | Arrow International Investment Corp. | Microwave antenna catheter |
US5578030A (en) | 1994-11-04 | 1996-11-26 | Levin; John M. | Biopsy needle with cauterization feature |
US5578067A (en) | 1994-04-14 | 1996-11-26 | Pacesetter Ab | Medical electrode system having a sleeve body and control element therefor for selectively positioning an exposed conductor area |
US5581905A (en) | 1995-09-18 | 1996-12-10 | Minnesota Mining And Manufacturing Company | Coated substrate drying system |
US5584830A (en) | 1994-03-30 | 1996-12-17 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US5590657A (en) | 1995-11-06 | 1997-01-07 | The Regents Of The University Of Michigan | Phased array ultrasound system and method for cardiac ablation |
US5593405A (en) | 1994-07-16 | 1997-01-14 | Osypka; Peter | Fiber optic endoscope |
US5593404A (en) | 1992-08-11 | 1997-01-14 | Myriadlase, Inc. | Method of treatment of prostate |
US5599346A (en) | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment system |
US5603697A (en) | 1995-02-14 | 1997-02-18 | Fidus Medical Technology Corporation | Steering mechanism for catheters and methods for making same |
US5606974A (en) | 1995-05-02 | 1997-03-04 | Heart Rhythm Technologies, Inc. | Catheter having ultrasonic device |
US5628771A (en) | 1993-05-12 | 1997-05-13 | Olympus Optical Co., Ltd. | Electromagnetic-wave thermatological device |
US5630837A (en) | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
US5640955A (en) | 1995-02-14 | 1997-06-24 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5643255A (en) | 1994-12-12 | 1997-07-01 | Hicor, Inc. | Steerable catheter with rotatable tip electrode and method of use |
US5658280A (en) | 1995-05-22 | 1997-08-19 | Issa; Muta M. | Resectoscope electrode assembly with simultaneous cutting and coagulation |
US5672172A (en) | 1994-06-23 | 1997-09-30 | Vros Corporation | Surgical instrument with ultrasound pulse generator |
US5672174A (en) | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5673694A (en) | 1995-08-08 | 1997-10-07 | Henry Ford Health System | Method and apparatus for continuous measurement of central venous oxygen saturation |
US5673695A (en) | 1995-08-02 | 1997-10-07 | Ep Technologies, Inc. | Methods for locating and ablating accessory pathways in the heart |
US5676693A (en) | 1992-11-13 | 1997-10-14 | Scimed Life Systems, Inc. | Electrophysiology device |
US5676692A (en) | 1996-03-28 | 1997-10-14 | Indianapolis Center For Advanced Research, Inc. | Focussed ultrasound tissue treatment method |
US5681308A (en) | 1994-06-24 | 1997-10-28 | Stuart D. Edwards | Ablation apparatus for cardiac chambers |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5688267A (en) | 1995-05-01 | 1997-11-18 | Ep Technologies, Inc. | Systems and methods for sensing multiple temperature conditions during tissue ablation |
US5687723A (en) | 1993-12-03 | 1997-11-18 | Avitall; Boaz | Mapping and ablation catheter system |
WO1997042893A1 (en) | 1996-05-11 | 1997-11-20 | John Mark Morgan | Ablation catheter |
US5693082A (en) | 1993-05-14 | 1997-12-02 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter system and method |
US5693078A (en) | 1991-07-05 | 1997-12-02 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
US5694701A (en) | 1996-09-04 | 1997-12-09 | Minnesota Mining And Manufacturing Company | Coated substrate drying system |
US5697928A (en) | 1996-09-23 | 1997-12-16 | Uab Research Foundation | Cardic electrode catheter |
US5707369A (en) | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5718241A (en) | 1995-06-07 | 1998-02-17 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias with no discrete target |
US5718226A (en) | 1996-08-06 | 1998-02-17 | University Of Central Florida | Photonically controlled ultrasonic probes |
WO1998006341A1 (en) | 1996-08-16 | 1998-02-19 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US5720775A (en) | 1996-07-31 | 1998-02-24 | Cordis Corporation | Percutaneous atrial line ablation catheter |
US5725523A (en) | 1996-03-29 | 1998-03-10 | Mueller; Richard L. | Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications |
US5730127A (en) | 1993-12-03 | 1998-03-24 | Avitall; Boaz | Mapping and ablation catheter system |
US5733281A (en) | 1996-03-19 | 1998-03-31 | American Ablation Co., Inc. | Ultrasound and impedance feedback system for use with electrosurgical instruments |
US5733280A (en) | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US5735280A (en) | 1995-05-02 | 1998-04-07 | Heart Rhythm Technologies, Inc. | Ultrasound energy delivery system and method |
US5737384A (en) | 1996-10-04 | 1998-04-07 | Massachusetts Institute Of Technology | X-ray needle providing heating with microwave energy |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5741249A (en) | 1996-10-16 | 1998-04-21 | Fidus Medical Technology Corporation | Anchoring tip assembly for microwave ablation catheter |
US5741225A (en) | 1992-08-12 | 1998-04-21 | Rita Medical Systems | Method for treating the prostate |
US5743239A (en) | 1996-06-07 | 1998-04-28 | Fuji Jukogyo Kabushiki Kaisha | Fuel pump control system for vehicle |
WO1998017185A1 (en) | 1996-10-24 | 1998-04-30 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
WO1998017187A1 (en) | 1996-10-22 | 1998-04-30 | Heartport, Inc. | Surgical system and procedure for treatment of medically refractory atrial fibrillation |
US5755760A (en) | 1996-03-11 | 1998-05-26 | Medtronic, Inc. | Deflectable catheter |
US5762066A (en) | 1992-02-21 | 1998-06-09 | Ths International, Inc. | Multifaceted ultrasound transducer probe system and methods for its use |
US5769790A (en) | 1996-10-25 | 1998-06-23 | General Electric Company | Focused ultrasound surgery system guided by ultrasound imaging |
US5782747A (en) | 1996-04-22 | 1998-07-21 | Zimmon Science Corporation | Spring based multi-purpose medical instrument |
US5782828A (en) | 1996-12-11 | 1998-07-21 | Irvine Biomedical, Inc. | Ablation catheter with multiple flexible curves |
US5785706A (en) | 1996-11-18 | 1998-07-28 | Daig Corporation | Nonsurgical mapping and treatment of cardiac arrhythmia using a catheter contained within a guiding introducer containing openings |
US5785707A (en) | 1995-04-24 | 1998-07-28 | Sdgi Holdings, Inc. | Template for positioning interbody fusion devices |
US5788692A (en) | 1995-06-30 | 1998-08-04 | Fidus Medical Technology Corporation | Mapping ablation catheter |
US5797905A (en) | 1994-08-08 | 1998-08-25 | E. P. Technologies Inc. | Flexible tissue ablation elements for making long lesions |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5800428A (en) | 1996-05-16 | 1998-09-01 | Angeion Corporation | Linear catheter ablation system |
US5800379A (en) | 1996-02-23 | 1998-09-01 | Sommus Medical Technologies, Inc. | Method for ablating interior sections of the tongue |
US5800482A (en) | 1996-03-06 | 1998-09-01 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
US5800413A (en) | 1993-11-03 | 1998-09-01 | Daig | Guiding introducer for use in the treatment of atrial flutter |
US5800494A (en) | 1996-08-20 | 1998-09-01 | Fidus Medical Technology Corporation | Microwave ablation catheters having antennas with distal fire capabilities |
US5807395A (en) | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
US5810803A (en) | 1996-10-16 | 1998-09-22 | Fidus Medical Technology Corporation | Conformal positioning assembly for microwave ablation catheter |
WO1998044857A1 (en) | 1997-04-09 | 1998-10-15 | Goldberg S Nahum | Method and system for performing trans-rectal radiofrequency urethral enlargement |
US5823955A (en) | 1995-11-20 | 1998-10-20 | Medtronic Cardiorhythm | Atrioventricular valve tissue ablation catheter and method |
US5823197A (en) | 1994-06-24 | 1998-10-20 | Somnus Medical Technologies, Inc. | Method for internal ablation of turbinates |
US5823962A (en) | 1996-09-02 | 1998-10-20 | Siemens Aktiengesellschaft | Ultrasound transducer for diagnostic and therapeutic use |
US5826576A (en) | 1996-08-08 | 1998-10-27 | Medtronic, Inc. | Electrophysiology catheter with multifunction wire and method for making |
US5827216A (en) | 1995-06-07 | 1998-10-27 | Cormedics Corp. | Method and apparatus for accessing the pericardial space |
US5836947A (en) | 1994-10-07 | 1998-11-17 | Ep Technologies, Inc. | Flexible structures having movable splines for supporting electrode elements |
US5836990A (en) | 1997-09-19 | 1998-11-17 | Medtronic, Inc. | Method and apparatus for determining electrode/tissue contact |
US5842037A (en) | 1995-03-20 | 1998-11-24 | Telefonaktiebolaget Lm Ericsson | Interference reduction in TDM-communication/computing devices |
US5840030A (en) | 1993-12-22 | 1998-11-24 | Sulzer Osypka Gmbh | Ultrasonic marked cardiac ablation catheter |
US5840027A (en) | 1993-11-03 | 1998-11-24 | Daig Corporation | Guiding introducer system for use in the right atrium |
US5843171A (en) | 1996-01-29 | 1998-12-01 | W. L. Gore & Associates, Inc. | Method of insitu bypass to hold open venous valves |
US5843075A (en) | 1995-06-09 | 1998-12-01 | Engineering & Research Associates, Inc. | Probe for thermal ablation |
US5843026A (en) | 1992-08-12 | 1998-12-01 | Vidamed, Inc. | BPH ablation method and apparatus |
US5846238A (en) | 1996-01-19 | 1998-12-08 | Ep Technologies, Inc. | Expandable-collapsible electrode structures with distal end steering or manipulation |
US5853368A (en) | 1996-12-23 | 1998-12-29 | Hewlett-Packard Company | Ultrasound imaging catheter having an independently-controllable treatment structure |
US5853366A (en) | 1996-07-08 | 1998-12-29 | Kelsey, Inc. | Marker element for interstitial treatment and localizing device and method using same |
US5852860A (en) | 1995-06-19 | 1998-12-29 | General Electric Company | Ultrasonic phased array transducer with an ultralow impedance backfill and a method for making |
US5861002A (en) | 1991-10-18 | 1999-01-19 | Desai; Ashvin H. | Endoscopic surgical instrument |
US5861021A (en) | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US5863290A (en) | 1995-08-15 | 1999-01-26 | Rita Medical Systems | Multiple antenna ablation apparatus and method |
WO1999004696A1 (en) | 1997-07-24 | 1999-02-04 | Cardiac Crc Nominees Pty. Ltd. | An intraoperative endocardial and epicardial ablation probe |
US5868737A (en) | 1995-06-09 | 1999-02-09 | Engineering Research & Associates, Inc. | Apparatus and method for determining ablation |
US5871481A (en) | 1997-04-11 | 1999-02-16 | Vidamed, Inc. | Tissue ablation apparatus and method |
US5873828A (en) | 1994-02-18 | 1999-02-23 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and treatment system |
US5873896A (en) | 1997-05-27 | 1999-02-23 | Uab Research Foundation | Cardiac device for reducing arrhythmia |
WO1999008613A1 (en) | 1997-08-15 | 1999-02-25 | Somnus Medical Technologies, Inc. | Apparatus and device for use therein and method for ablation of tissue |
US5882302A (en) | 1992-02-21 | 1999-03-16 | Ths International, Inc. | Methods and devices for providing acoustic hemostasis |
US5885278A (en) | 1994-10-07 | 1999-03-23 | E.P. Technologies, Inc. | Structures for deploying movable electrode elements |
US5895355A (en) | 1995-05-23 | 1999-04-20 | Cardima, Inc. | Over-the-wire EP catheter |
US5897554A (en) | 1997-03-01 | 1999-04-27 | Irvine Biomedical, Inc. | Steerable catheter having a loop electrode |
US5897553A (en) | 1995-11-02 | 1999-04-27 | Medtronic, Inc. | Ball point fluid-assisted electrocautery device |
US5899899A (en) | 1997-02-27 | 1999-05-04 | Cryocath Technologies Inc. | Cryosurgical linear ablation structure |
US5904709A (en) | 1996-04-17 | 1999-05-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Microwave treatment for cardiac arrhythmias |
US5906580A (en) | 1997-05-05 | 1999-05-25 | Creare Inc. | Ultrasound system and method of administering ultrasound including a plurality of multi-layer transducer elements |
US5910129A (en) | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5919188A (en) | 1997-02-04 | 1999-07-06 | Medtronic, Inc. | Linear ablation catheter |
US5921924A (en) | 1993-12-03 | 1999-07-13 | Avitall; Boaz | Mapping and ablation catheter system utilizing multiple control elements |
WO1999034860A1 (en) | 1998-01-09 | 1999-07-15 | Radionics, Inc. | Electrical probe with a bent tip |
US5931810A (en) | 1996-12-05 | 1999-08-03 | Comedicus Incorporated | Method for accessing the pericardial space |
US5938600A (en) | 1995-12-14 | 1999-08-17 | U.S. Philips Corporation | Method and device for heating by means of ultrasound |
US5938692A (en) | 1996-03-26 | 1999-08-17 | Urologix, Inc. | Voltage controlled variable tuning antenna |
US5938612A (en) | 1997-05-05 | 1999-08-17 | Creare Inc. | Multilayer ultrasonic transducer array including very thin layer of transducer elements |
US5954665A (en) | 1995-06-07 | 1999-09-21 | Biosense, Inc. | Cardiac ablation catheter using correlation measure |
US5954662A (en) | 1995-02-17 | 1999-09-21 | Ep Technologies, Inc. | Systems and methods for acquiring endocardially or epicardially paced electrocardiograms |
US5957842A (en) | 1994-01-27 | 1999-09-28 | Cardima, Inc. | High resolution intravascular signal detection |
US5964732A (en) | 1997-02-07 | 1999-10-12 | Abbeymoor Medical, Inc. | Urethral apparatus with position indicator and methods of use thereof |
US5964756A (en) | 1997-04-11 | 1999-10-12 | Vidamed, Inc. | Transurethral needle ablation device with replaceable stylet cartridge |
US5971983A (en) | 1997-05-09 | 1999-10-26 | The Regents Of The University Of California | Tissue ablation device and method of use |
US5978714A (en) | 1997-06-06 | 1999-11-02 | Zadini; Filiberto | Epicardial percutaneous device for electrical cardiac therapy |
US5980697A (en) | 1995-09-18 | 1999-11-09 | 3M Innovative Properties Company | Component separation system including condensing mechanism |
US5993445A (en) | 1995-05-22 | 1999-11-30 | Advanced Closure Systems, Inc. | Resectoscope electrode assembly with simultaneous cutting and coagulation |
US5995875A (en) | 1997-10-01 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US6002955A (en) | 1996-11-08 | 1999-12-14 | Medtronic, Inc. | Stabilized electrophysiology catheter and method for use |
US6004269A (en) | 1993-07-01 | 1999-12-21 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US6007499A (en) | 1997-10-31 | 1999-12-28 | University Of Washington | Method and apparatus for medical procedures using high-intensity focused ultrasound |
US6010516A (en) | 1998-03-20 | 2000-01-04 | Hulka; Jaroslav F. | Bipolar coaptation clamps |
US6012457A (en) | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6016848A (en) | 1996-07-16 | 2000-01-25 | W. L. Gore & Associates, Inc. | Fluoropolymer tubes and methods of making same |
US6016811A (en) | 1998-09-01 | 2000-01-25 | Fidus Medical Technology Corporation | Method of using a microwave ablation catheter with a loop configuration |
US6024740A (en) | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6027501A (en) | 1995-06-23 | 2000-02-22 | Gyrus Medical Limited | Electrosurgical instrument |
US6027497A (en) | 1996-03-29 | 2000-02-22 | Eclipse Surgical Technologies, Inc. | TMR energy delivery system |
US6032077A (en) | 1996-03-06 | 2000-02-29 | Cardiac Pathways Corporation | Ablation catheter with electrical coupling via foam drenched with a conductive fluid |
US6030382A (en) | 1994-08-08 | 2000-02-29 | Ep Technologies, Inc. | Flexible tissue ablatin elements for making long lesions |
EP0655225B1 (en) | 1993-10-26 | 2000-03-08 | Cordis Europa N.V. | Cryo-ablation catheter |
WO1999059486A3 (en) | 1998-05-20 | 2000-04-06 | New England Medical Center Inc | System for cardiac arrhythmias treatment by ablation, and tmr |
US6056735A (en) | 1996-04-04 | 2000-05-02 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US6059778A (en) | 1998-05-05 | 2000-05-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using unipolar and bipolar techniques |
US6063077A (en) | 1996-04-08 | 2000-05-16 | Cardima, Inc. | Linear ablation device and assembly |
US6064902A (en) | 1998-04-16 | 2000-05-16 | C.R. Bard, Inc. | Pulmonary vein ablation catheter |
US6063081A (en) | 1995-02-22 | 2000-05-16 | Medtronic, Inc. | Fluid-assisted electrocautery device |
EP0738501B1 (en) | 1994-11-02 | 2000-05-24 | Olympus Optical Co., Ltd. | Endoscope operative instrument |
US6068628A (en) | 1996-08-20 | 2000-05-30 | Oratec Interventions, Inc. | Apparatus for treating chondromalacia |
US6071281A (en) | 1998-05-05 | 2000-06-06 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same |
US6071274A (en) | 1996-12-19 | 2000-06-06 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
EP1005838A1 (en) | 1998-12-03 | 2000-06-07 | Cordis Webster, Inc. | Ablation system with a split tip catheter, switching and measuring capabilities |
US6076012A (en) | 1996-12-19 | 2000-06-13 | Ep Technologies, Inc. | Structures for supporting porous electrode elements |
WO2000035363A1 (en) | 1998-12-14 | 2000-06-22 | Ormsby Theodore C | Radio-frequency based catheter system and hollow co-axial cable for ablation of body tissues |
US6086583A (en) | 1997-06-05 | 2000-07-11 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electric cautery for endoscope |
US6090105A (en) | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US6090104A (en) | 1995-06-07 | 2000-07-18 | Cordis Webster, Inc. | Catheter with a spirally wound flat ribbon electrode |
US6097985A (en) | 1999-02-09 | 2000-08-01 | Kai Technologies, Inc. | Microwave systems for medical hyperthermia, thermotherapy and diagnosis |
US6106522A (en) | 1993-10-14 | 2000-08-22 | Ep Technologies, Inc. | Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements |
US6106524A (en) | 1995-03-03 | 2000-08-22 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US6106521A (en) | 1996-08-16 | 2000-08-22 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
WO2000056239A1 (en) | 1999-03-19 | 2000-09-28 | Endocare, Inc. | Placement guide for ablation devices |
WO2000024463A3 (en) | 1998-10-23 | 2000-09-28 | Fidus Med Tech Corp | Directional reflector shield assembly for a microwave ablation instrument |
EP1042990A1 (en) | 1999-04-05 | 2000-10-11 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
US6135971A (en) | 1995-11-09 | 2000-10-24 | Brigham And Women's Hospital | Apparatus for deposition of ultrasound energy in body tissue |
WO2000016850A9 (en) | 1998-09-21 | 2000-10-26 | Epicardia Inc | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6142994A (en) | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
US6146379A (en) | 1993-10-15 | 2000-11-14 | Ep Technologies, Inc. | Systems and methods for creating curvilinear lesions in body tissue |
US6152920A (en) | 1997-10-10 | 2000-11-28 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body |
US6162216A (en) | 1998-03-02 | 2000-12-19 | Guziak; Robert Andrew | Method for biopsy and ablation of tumor cells |
US6164283A (en) | 1997-07-08 | 2000-12-26 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6165174A (en) | 1996-05-03 | 2000-12-26 | Clemens Josephus Jacobs | Instrument for interrupting conduction paths within the heart |
US6171303B1 (en) | 1996-01-08 | 2001-01-09 | Biosense, Inc. | Methods and apparatus for myocardial revascularization |
US6174309B1 (en) | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
US6178354B1 (en) | 1998-12-02 | 2001-01-23 | C. R. Bard, Inc. | Internal mechanism for displacing a slidable electrode |
WO2001005306A1 (en) | 1999-07-19 | 2001-01-25 | Epicor, Inc. | Apparatus and method for ablating tissue |
US6182664B1 (en) | 1996-02-19 | 2001-02-06 | Edwards Lifesciences Corporation | Minimally invasive cardiac valve surgery procedure |
WO2001015616A1 (en) | 1999-09-01 | 2001-03-08 | Cardima, Inc. | Electrosurgical ablation tool |
US6200315B1 (en) | 1997-12-18 | 2001-03-13 | Medtronic, Inc. | Left atrium ablation catheter |
US6206831B1 (en) | 1999-01-06 | 2001-03-27 | Scimed Life Systems, Inc. | Ultrasound-guided ablation catheter and methods of use |
US6210356B1 (en) | 1998-08-05 | 2001-04-03 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6216027B1 (en) | 1997-08-01 | 2001-04-10 | Cardiac Pathways Corporation | System for electrode localization using ultrasound |
US6217530B1 (en) | 1999-05-14 | 2001-04-17 | University Of Washington | Ultrasonic applicator for medical applications |
US6224587B1 (en) | 1999-11-22 | 2001-05-01 | C.R. Bard, Inc. | Steerable catheter |
US6233490B1 (en) | 1999-02-09 | 2001-05-15 | Kai Technologies, Inc. | Microwave antennas for medical hyperthermia, thermotherapy and diagnosis |
US6231518B1 (en) | 1998-05-26 | 2001-05-15 | Comedicus Incorporated | Intrapericardial electrophysiological procedures |
US6235025B1 (en) | 1997-06-27 | 2001-05-22 | Daig Corporation | Process and device for the treatment of atrial arrhythmia |
US6235796B1 (en) | 2000-06-26 | 2001-05-22 | Sarfaraz K. Niazi | Use of fluorocarbons for the prevention of surgical adhesions |
US6241722B1 (en) | 1998-06-17 | 2001-06-05 | Cryogen, Inc. | Cryogenic device, system and method of using same |
US6251128B1 (en) | 1998-09-01 | 2001-06-26 | Fidus Medical Technology Corporation | Microwave ablation catheter with loop configuration |
EP1118310A1 (en) | 2000-01-18 | 2001-07-25 | AFX, Inc. | A microwave ablation instrument with flexible antenna assembly and method |
US6273887B1 (en) | 1998-01-23 | 2001-08-14 | Olympus Optical Co., Ltd. | High-frequency treatment tool |
WO2001058373A1 (en) | 2000-02-11 | 2001-08-16 | Iotek, Inc. | Surgical devices and methods for use in tissue ablation procedures |
US6277113B1 (en) | 1999-05-28 | 2001-08-21 | Afx, Inc. | Monopole tip for ablation catheter and methods for using same |
US6283955B1 (en) | 1996-05-13 | 2001-09-04 | Edwards Lifesciences Corp. | Laser ablation device |
US6287302B1 (en) | 1999-06-14 | 2001-09-11 | Fidus Medical Technology Corporation | End-firing microwave ablation instrument with horn reflection device |
US6289249B1 (en) | 1996-04-17 | 2001-09-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Transcatheter microwave antenna |
US6290699B1 (en) | 1999-07-07 | 2001-09-18 | Uab Research Foundation | Ablation tool for forming lesions in body tissue |
US6302880B1 (en) | 1996-04-08 | 2001-10-16 | Cardima, Inc. | Linear ablation assembly |
US20010031961A1 (en) | 2000-04-27 | 2001-10-18 | Hooven Michael D. | Method for transmural ablation |
US6306124B1 (en) | 1995-11-13 | 2001-10-23 | Micro Therapeutics, Inc. | Microcatheter |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US6309388B1 (en) | 1999-12-23 | 2001-10-30 | Mayo Foundation For Medical Education And Research | Symmetric conization electrocautery device |
WO2001080755A2 (en) | 2000-04-27 | 2001-11-01 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
US6311692B1 (en) | 1996-10-22 | 2001-11-06 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6312425B1 (en) | 1998-05-05 | 2001-11-06 | Cardiac Pacemakers, Inc. | RF ablation catheter tip electrode with multiple thermal sensors |
WO2001082814A2 (en) | 2000-05-03 | 2001-11-08 | C.R. Bard, Inc. | Apparatus and methods for mapping and ablation in electrophysiology procedures |
US6322558B1 (en) | 1995-06-09 | 2001-11-27 | Engineering & Research Associates, Inc. | Apparatus and method for predicting ablation depth |
US6325796B1 (en) | 1999-05-04 | 2001-12-04 | Afx, Inc. | Microwave ablation instrument with insertion probe |
WO2002001655A2 (en) | 2000-06-28 | 2002-01-03 | The Gillette Company | Hydrogen recombination catalyst |
US20020001655A1 (en) | 2000-03-10 | 2002-01-03 | The Pillsbury Company Inc. | Scoopable dough and products resulting therefrom |
WO2002005722A1 (en) | 2000-07-14 | 2002-01-24 | Cardiofocus, Inc. | Cardiac photoablation instruments |
US6346104B2 (en) | 1996-04-30 | 2002-02-12 | Western Sydney Area Health Service | System for simultaneous unipolar multi-electrode ablation |
US6361531B1 (en) | 2000-01-21 | 2002-03-26 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having malleable handle shafts and methods of using the same |
US20020042610A1 (en) | 1996-10-22 | 2002-04-11 | Epicor, Inc. | Methods and devices for ablation |
US6379348B1 (en) | 2000-03-15 | 2002-04-30 | Gary M. Onik | Combined electrosurgical-cryosurgical instrument |
WO2002038052A2 (en) | 2000-11-10 | 2002-05-16 | Boston Scientific Limited | Steerable loop structure |
US6402556B1 (en) | 2000-12-19 | 2002-06-11 | Molex Incorporated | Flexible circuit connector for circuit board applications |
US6413254B1 (en) | 2000-01-19 | 2002-07-02 | Medtronic Xomed, Inc. | Method of tongue reduction by thermal ablation using high intensity focused ultrasound |
US20020087151A1 (en) * | 2000-12-29 | 2002-07-04 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
US20020091384A1 (en) | 2000-04-27 | 2002-07-11 | Hooven Michael D. | Transmural ablation device with integral EKG sensor |
US20020091382A1 (en) | 2000-04-27 | 2002-07-11 | Hooven Michael D. | Transmural ablation device with curved jaws |
US20020095145A1 (en) | 2001-01-17 | 2002-07-18 | Scimed Life Systems, Inc. | Method and apparatus for limiting revascularization to viable tissue |
US6423059B1 (en) | 1999-11-16 | 2002-07-23 | Sulzer Medica Usa Inc. | Radio frequency ablation apparatus with remotely articulating and self-locking electrode wand |
US6423057B1 (en) | 1999-01-25 | 2002-07-23 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures |
US6428538B1 (en) | 1995-10-20 | 2002-08-06 | United States Surgical Corporation | Apparatus and method for thermal treatment of body tissue |
WO2002060523A2 (en) | 2000-12-15 | 2002-08-08 | Brown Tony R | Atrial fibrillation rf treatment device and method |
US6433464B2 (en) | 1998-11-20 | 2002-08-13 | Joie P. Jones | Apparatus for selectively dissolving and removing material using ultra-high frequency ultrasound |
US6432069B1 (en) | 1999-03-25 | 2002-08-13 | Technomed Medical Systems, S.A. | Coupling medium for high-power ultrasound |
US20020120267A1 (en) | 2000-03-24 | 2002-08-29 | Phan Huy D. | Clamp having at least one malleable clamp member and surgical method employing the same |
US6461314B1 (en) | 1999-02-02 | 2002-10-08 | Transurgical, Inc. | Intrabody hifu applicator |
US6464700B1 (en) | 1994-10-07 | 2002-10-15 | Scimed Life Systems, Inc. | Loop structures for positioning a diagnostic or therapeutic element on the epicardium or other organ surface |
US6467138B1 (en) | 2000-05-24 | 2002-10-22 | Vermon | Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same |
US6471696B1 (en) | 2000-04-12 | 2002-10-29 | Afx, Inc. | Microwave ablation instrument with a directional radiation pattern |
US6475179B1 (en) | 2000-11-10 | 2002-11-05 | New England Medical Center | Tissue folding device for tissue ablation, and method thereof |
US20020173784A1 (en) | 1996-10-22 | 2002-11-21 | Epicor, Inc. | Methods and devices for ablation |
US6488680B1 (en) | 2000-04-27 | 2002-12-03 | Medtronic, Inc. | Variable length electrodes for delivery of irrigated ablation |
US6488679B1 (en) | 1998-09-10 | 2002-12-03 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
US6488639B1 (en) | 1998-05-13 | 2002-12-03 | Technomed Medical Systems, S.A | Frequency adjustment in high intensity focused ultrasound treatment apparatus |
US20030004507A1 (en) * | 2001-04-26 | 2003-01-02 | Medtronic, Inc. | Ablation system and method of use |
US20030014046A1 (en) | 1998-01-14 | 2003-01-16 | Conway-Stuart Medical, Inc. | Sphincter treatment device |
US6508774B1 (en) | 1999-03-09 | 2003-01-21 | Transurgical, Inc. | Hifu applications with feedback control |
US6511478B1 (en) | 2000-06-30 | 2003-01-28 | Scimed Life Systems, Inc. | Medical probe with reduced number of temperature sensor wires |
US6514249B1 (en) | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
US6514246B1 (en) | 1993-10-14 | 2003-02-04 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US6517568B1 (en) | 1996-08-13 | 2003-02-11 | Oratec Interventions, Inc. | Method and apparatus for treating intervertebral discs |
US6526320B2 (en) | 1998-11-16 | 2003-02-25 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US6529756B1 (en) | 1999-11-22 | 2003-03-04 | Scimed Life Systems, Inc. | Apparatus for mapping and coagulating soft tissue in or around body orifices |
US6533780B1 (en) | 1997-08-13 | 2003-03-18 | Surx, Inc. | Ribbed electrodes and methods for their use |
US6537224B2 (en) | 2001-06-08 | 2003-03-25 | Vermon | Multi-purpose ultrasonic slotted array transducer |
US6542781B1 (en) | 1999-11-22 | 2003-04-01 | Scimed Life Systems, Inc. | Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue |
US20030065327A1 (en) | 2001-09-28 | 2003-04-03 | Ethicon, Inc. | Biopolar ablation electrodes and method of use |
US20030069572A1 (en) | 2001-09-28 | 2003-04-10 | Wellman Parris S. | Transmural ablation tool and method |
US20030073988A1 (en) | 1999-05-04 | 2003-04-17 | Afx Inc. | Microwave ablation instrument with insertion probe |
US20030083654A1 (en) | 2000-12-29 | 2003-05-01 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20030097126A1 (en) | 1993-05-10 | 2003-05-22 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
US6576875B1 (en) | 1998-10-27 | 2003-06-10 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V | Method and device for controlling a targeted thermal deposition into a material |
US6584360B2 (en) | 2000-04-27 | 2003-06-24 | Medtronic Inc. | System and method for assessing transmurality of ablation lesions |
US6586040B1 (en) | 1998-06-15 | 2003-07-01 | Lts Lohmann Therapie-Systeme Ag | Method for manufacturing a laminate consisting of individual layers |
US20030125725A1 (en) | 2002-01-03 | 2003-07-03 | Afx Inc. | Catheter having improved steering |
US20030125666A1 (en) | 2001-12-28 | 2003-07-03 | Olympus Optical Co., Ltd. | Operating trocar |
US20030136951A1 (en) | 2002-01-23 | 2003-07-24 | Shinn Fu Corporation | Hydraulic lifting device with a rapid mechanical lift to chassis of vehicle |
US20030158547A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Apparatus for converting a clamp into an electrophysiology device |
US20030158548A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device |
US6610055B1 (en) | 1997-10-10 | 2003-08-26 | Scimed Life Systems, Inc. | Surgical method for positioning a diagnostic or therapeutic element on the epicardium or other organ surface |
US20030163128A1 (en) | 2000-12-29 | 2003-08-28 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20030171745A1 (en) | 2001-04-26 | 2003-09-11 | Francischelli David E. | Ablation system and method of use |
US20030176764A1 (en) | 2000-11-17 | 2003-09-18 | Embro Corporation | Vein harvesting system and method |
EP0839547B1 (en) | 1996-10-28 | 2003-09-24 | C.R. Bard, Inc. | Steerable catheter with fixed curve |
US20030181907A1 (en) | 2002-03-19 | 2003-09-25 | Lindsay Erin Jessica | Integrated vein dissector and cauterizing apparatus for endoscopic harvesting of blood vessels |
US6645200B1 (en) | 1997-10-10 | 2003-11-11 | Scimed Life Systems, Inc. | Method and apparatus for positioning a diagnostic or therapeutic element within the body and tip electrode for use with same |
US6652513B2 (en) | 1995-06-07 | 2003-11-25 | Ep Technologies, Inc. | Tissue heating and ablation systems and methods which predict maximum tissue temperature |
US6663627B2 (en) | 2001-04-26 | 2003-12-16 | Medtronic, Inc. | Ablation system and method of use |
US20040002045A1 (en) | 2002-06-26 | 2004-01-01 | Wellman Parris S. | Training model for endoscopic vessel harvesting |
US6673068B1 (en) | 2000-04-12 | 2004-01-06 | Afx, Inc. | Electrode arrangement for use in a medical instrument |
US6685715B2 (en) | 2001-05-02 | 2004-02-03 | Novare Surgical Systems | Clamp having bendable shaft |
US6689062B1 (en) | 1999-11-23 | 2004-02-10 | Microaccess Medical Systems, Inc. | Method and apparatus for transesophageal cardiovascular procedures |
US6692491B1 (en) | 2000-03-24 | 2004-02-17 | Scimed Life Systems, Inc. | Surgical methods and apparatus for positioning a diagnostic or therapeutic element around one or more pulmonary veins or other body structures |
US6696844B2 (en) | 1999-06-04 | 2004-02-24 | Engineering & Research Associates, Inc. | Apparatus and method for real time determination of materials' electrical properties |
US6699240B2 (en) | 2001-04-26 | 2004-03-02 | Medtronic, Inc. | Method and apparatus for tissue ablation |
US20040049208A1 (en) | 2002-04-03 | 2004-03-11 | Thomas Fogarty, M.D. | Methods and systems for vein harvesting and fistula creation |
US6709431B2 (en) | 2001-12-18 | 2004-03-23 | Scimed Life Systems, Inc. | Cryo-temperature monitoring |
US20040068274A1 (en) | 2002-10-02 | 2004-04-08 | Hooven Michael D. | Articulated clamping member |
US20040092990A1 (en) | 2002-07-11 | 2004-05-13 | Opie John C. | Endovascular guide for use with a percutaneous device for harvesting tubular body members |
US6740080B2 (en) * | 2001-08-31 | 2004-05-25 | Cardiac Pacemakers, Inc. | Ablation system with selectable current path means |
US6743225B2 (en) * | 2001-03-27 | 2004-06-01 | Uab Research Foundation | Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates |
US6761716B2 (en) * | 2001-09-18 | 2004-07-13 | Cardiac Pacemakers, Inc. | System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
US6805709B1 (en) | 1999-10-26 | 2004-10-19 | Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Stent having discontinuous coating in the form of coating islands |
US6808483B1 (en) | 2000-10-03 | 2004-10-26 | Paul A. Spence | Implantable heart assist devices and methods |
US6808536B2 (en) | 1997-04-18 | 2004-10-26 | Carol Wright | Stent containing rapamycin or its analogs using a modified stent |
US6807968B2 (en) | 2001-04-26 | 2004-10-26 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US6808529B2 (en) | 2000-02-11 | 2004-10-26 | Edwards Lifesciences Corporation | Apparatus and methods for delivery of intraluminal prostheses |
US6808739B2 (en) | 2000-09-24 | 2004-10-26 | 3M Innovative Properties Company | Drying method for selectively removing volatile components from wet coatings |
US6808484B1 (en) | 1999-06-10 | 2004-10-26 | Sunshine Heart Company Pty Ltd | Heart assist devices, systems and methods |
US6869430B2 (en) | 2000-03-31 | 2005-03-22 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3245062A (en) * | 1960-11-15 | 1966-04-05 | Ibm | Magnetic annealing for information storage |
US5120704A (en) * | 1989-11-08 | 1992-06-09 | The United States Of America As Represented By The Secretary Of The Navy | Method of making Tl-Sr-Ca-Cu-oxide superconductors comprising heating at elevated pressures in a sealed container |
-
2003
- 2003-02-19 US US10/369,887 patent/US7192427B2/en not_active Expired - Fee Related
-
2004
- 2004-02-19 WO PCT/US2004/005052 patent/WO2004073503A2/en active Application Filing
-
2007
- 2007-03-06 US US11/682,744 patent/US7497858B2/en not_active Expired - Fee Related
Patent Citations (593)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1586645A (en) | 1925-07-06 | 1926-06-01 | Bierman William | Method of and means for treating animal tissue to coagulate the same |
US3598108A (en) | 1969-02-28 | 1971-08-10 | Khosrow Jamshidi | Biopsy technique and biopsy device |
US3827436A (en) | 1972-11-10 | 1974-08-06 | Frigitronics Of Conn Inc | Multipurpose cryosurgical probe |
US3831607A (en) | 1973-02-10 | 1974-08-27 | H Lindemann | Electrocoagulation grasping forceps for tube sterilization by means of bipolar high frequency heat radiation |
US3886944A (en) | 1973-11-19 | 1975-06-03 | Khosrow Jamshidi | Microcautery device |
US3976082A (en) | 1974-02-25 | 1976-08-24 | German Schmitt | Intracardial stimulation electrode |
US4011872A (en) | 1974-04-01 | 1977-03-15 | Olympus Optical Co., Ltd. | Electrical apparatus for treating affected part in a coeloma |
US4033357A (en) | 1975-02-07 | 1977-07-05 | Medtronic, Inc. | Non-fibrosing cardiac electrode |
US4045056A (en) | 1975-10-14 | 1977-08-30 | Gennady Petrovich Kandakov | Expansion compensator for pipelines |
US4073287A (en) | 1976-04-05 | 1978-02-14 | American Medical Systems, Inc. | Urethral profilometry catheter |
US4244371A (en) | 1976-10-13 | 1981-01-13 | Erbe Elektromedizin Gmbh & Co. Kg | High-frequency surgical apparatus |
US4312364A (en) | 1977-04-08 | 1982-01-26 | C.G.R. Mev | Apparatus for localized heating of a living tissue, using electromagnetic waves of ultra high frequency, for medical applications |
US4204549A (en) | 1977-12-12 | 1980-05-27 | Rca Corporation | Coaxial applicator for microwave hyperthermia |
US4268937A (en) | 1978-05-25 | 1981-05-26 | The English Card Clothing Company Limited | Metallic wire type card-clothing |
US4448198A (en) | 1979-06-19 | 1984-05-15 | Bsd Medical Corporation | Invasive hyperthermia apparatus and method |
US4476872A (en) | 1980-03-07 | 1984-10-16 | The Kendall Company | Esophageal probe with disposable cover |
US4462412A (en) | 1980-04-02 | 1984-07-31 | Bsd Medical Corporation | Annular electromagnetic radiation applicator for biological tissue, and method |
US4409993A (en) | 1980-07-23 | 1983-10-18 | Olympus Optical Co., Ltd. | Endoscope apparatus |
EP0048402A1 (en) | 1980-09-18 | 1982-03-31 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4565200A (en) | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
US4416276A (en) | 1981-10-26 | 1983-11-22 | Valleylab, Inc. | Adaptive, return electrode monitoring system |
US4494539A (en) | 1982-04-03 | 1985-01-22 | Toshio Zenitani | Method and apparatus for surgical operation using microwaves |
US4445892A (en) | 1982-05-06 | 1984-05-01 | Laserscope, Inc. | Dual balloon catheter device |
US4465079A (en) | 1982-10-13 | 1984-08-14 | Medtronic, Inc. | Biomedical lead with fibrosis-inducing anchoring strand |
US4583556A (en) | 1982-12-13 | 1986-04-22 | M/A-Com, Inc. | Microwave applicator/receiver apparatus |
US4611604A (en) | 1983-01-11 | 1986-09-16 | Siemens Aktiengesellschaft | Bipolar electrode for medical applications |
US4657015A (en) | 1983-02-24 | 1987-04-14 | Werner Irnich | Control device for a high frequency surgical apparatus |
US4655219A (en) | 1983-07-22 | 1987-04-07 | American Hospital Supply Corporation | Multicomponent flexible grasping device |
US4601296A (en) | 1983-10-07 | 1986-07-22 | Yeda Research And Development Co., Ltd. | Hyperthermia apparatus |
EP0139607A1 (en) | 1983-10-07 | 1985-05-02 | Yeda Research And Development Company, Ltd. | Hyperthermia apparatus |
US4522212A (en) | 1983-11-14 | 1985-06-11 | Mansfield Scientific, Inc. | Endocardial electrode |
US5111822A (en) | 1983-12-14 | 1992-05-12 | Edap International, S.A. | Piezoelectric article |
US5080101A (en) | 1983-12-14 | 1992-01-14 | Edap International, S.A. | Method for examining and aiming treatment with untrasound |
US5080102A (en) | 1983-12-14 | 1992-01-14 | Edap International, S.A. | Examining, localizing and treatment with ultrasound |
USRE33590E (en) | 1983-12-14 | 1991-05-21 | Edap International, S.A. | Method for examining, localizing and treating with ultrasound |
US4640983A (en) | 1984-04-09 | 1987-02-03 | Institut Straumann Ag | Conductor device, particularly for at least partial insertion in a human or animal body, comprising a spiral formed from at least one conductor |
US4573473A (en) | 1984-04-13 | 1986-03-04 | Cordis Corporation | Cardiac mapping probe |
US4800899A (en) | 1984-10-22 | 1989-01-31 | Microthermia Technology, Inc. | Apparatus for destroying cells in tumors and the like |
US4564200A (en) | 1984-12-14 | 1986-01-14 | Loring Wolson J | Tethered ring game with hook configuration |
US5192278A (en) | 1985-03-22 | 1993-03-09 | Massachusetts Institute Of Technology | Multi-fiber plug for a laser catheter |
US4685459A (en) | 1985-03-27 | 1987-08-11 | Fischer Met Gmbh | Device for bipolar high-frequency coagulation of biological tissue |
US4641646A (en) | 1985-04-05 | 1987-02-10 | Kenneth E. Schultz | Endotracheal tube/respirator tubing connecting lock mechanism and method of using same |
US4891483A (en) | 1985-06-29 | 1990-01-02 | Tokyo Keiki Co. Ltd. | Heating apparatus for hyperthermia |
US4841990A (en) | 1985-06-29 | 1989-06-27 | Tokyo Keiki Co., Ltd. | Applicator for use in hyperthermia |
US4660571A (en) | 1985-07-18 | 1987-04-28 | Cordis Corporation | Percutaneous lead having radially adjustable electrode |
US4681122A (en) | 1985-09-23 | 1987-07-21 | Victory Engineering Corp. | Stereotaxic catheter for microwave thermotherapy |
US4699147A (en) | 1985-09-25 | 1987-10-13 | Cordis Corporation | Intraventricular multielectrode cardial mapping probe and method for using same |
US4785815A (en) | 1985-10-23 | 1988-11-22 | Cordis Corporation | Apparatus for locating and ablating cardiac conduction pathways |
US4763668A (en) | 1985-10-28 | 1988-08-16 | Mill Rose Laboratories | Partible forceps instrument for endoscopy |
US4641649A (en) | 1985-10-30 | 1987-02-10 | Rca Corporation | Method and apparatus for high frequency catheter ablation |
US4643186A (en) | 1985-10-30 | 1987-02-17 | Rca Corporation | Percutaneous transluminal microwave catheter angioplasty |
US4924864A (en) | 1985-11-15 | 1990-05-15 | Danzig Fred G | Apparatus and article for ligating blood vessels, nerves and other anatomical structures |
US5057106A (en) | 1986-02-27 | 1991-10-15 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
US4700716A (en) | 1986-02-27 | 1987-10-20 | Kasevich Associates, Inc. | Collinear antenna array applicator |
US4823812A (en) | 1986-05-12 | 1989-04-25 | Biodan Medical Systems Ltd. | Applicator for insertion into a body opening for medical purposes |
EP0248758A1 (en) | 1986-05-12 | 1987-12-09 | Biodan Medical Systems Ltd | Applicator for insertion into a body opening for medical purposes |
US5019076A (en) | 1986-09-12 | 1991-05-28 | Yamanashi William S | Radio frequency surgical tool and method |
US4825880A (en) | 1987-06-19 | 1989-05-02 | The Regents Of The University Of California | Implantable helical coil microwave antenna |
US4841988A (en) | 1987-10-15 | 1989-06-27 | Marquette Electronics, Inc. | Microwave hyperthermia probe |
US5097845A (en) | 1987-10-15 | 1992-03-24 | Labthermics Technologies | Microwave hyperthermia probe |
US5190054A (en) | 1987-10-15 | 1993-03-02 | Labthermics Technologies, Inc. | Microwave hyperthermia probe |
US4841988B1 (en) | 1987-10-15 | 1990-08-14 | Marquette Electronics Inc | |
US5158092A (en) | 1987-10-27 | 1992-10-27 | Christian Glace | Method and azimuthal probe for localizing the emergence point of ventricular tachycardias |
US4832048A (en) | 1987-10-29 | 1989-05-23 | Cordis Corporation | Suction ablation catheter |
US4924863A (en) | 1988-05-04 | 1990-05-15 | Mmtc, Inc. | Angioplastic method for removing plaque from a vas |
US4938217A (en) | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Electronically-controlled variable focus ultrasound hyperthermia system |
US4881543A (en) | 1988-06-28 | 1989-11-21 | Massachusetts Institute Of Technology | Combined microwave heating and surface cooling of the cornea |
EP0358336A1 (en) | 1988-08-11 | 1990-03-14 | Edward George Charles Arthur Dr. Boyd | Apparatus for effecting controlled tissue destruction |
US4920978A (en) | 1988-08-31 | 1990-05-01 | Triangle Research And Development Corporation | Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia |
US5147355A (en) | 1988-09-23 | 1992-09-15 | Brigham And Womens Hospital | Cryoablation catheter and method of performing cryoablation |
US4932420A (en) | 1988-10-07 | 1990-06-12 | Clini-Therm Corporation | Non-invasive quarter wavelength microwave applicator for hyperthermia treatment |
US4966597A (en) | 1988-11-04 | 1990-10-30 | Cosman Eric R | Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection |
US5150717A (en) | 1988-11-10 | 1992-09-29 | Arye Rosen | Microwave aided balloon angioplasty with guide filament |
US5129396A (en) | 1988-11-10 | 1992-07-14 | Arye Rosen | Microwave aided balloon angioplasty with lumen measurement |
US5108390A (en) | 1988-11-14 | 1992-04-28 | Frigitronics, Inc. | Flexible cryoprobe |
US4960134A (en) | 1988-11-18 | 1990-10-02 | Webster Wilton W Jr | Steerable catheter |
US5370644A (en) | 1988-11-25 | 1994-12-06 | Sensor Electronics, Inc. | Radiofrequency ablation catheter |
US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
US5246438A (en) | 1988-11-25 | 1993-09-21 | Sensor Electronics, Inc. | Method of radiofrequency ablation |
US5230349A (en) | 1988-11-25 | 1993-07-27 | Sensor Electronics, Inc. | Electrical heating catheter |
US5078713A (en) | 1988-12-01 | 1992-01-07 | Spembly Medical Limited | Cryosurgical probe |
US4976711A (en) | 1989-04-13 | 1990-12-11 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5207672A (en) | 1989-05-03 | 1993-05-04 | Intra-Sonix, Inc. | Instrument and method for intraluminally relieving stenosis |
US5007437A (en) | 1989-06-16 | 1991-04-16 | Mmtc, Inc. | Catheters for treating prostate disease |
US5188122A (en) | 1989-06-20 | 1993-02-23 | Rocket Of London Limited | Electromagnetic energy generation method |
US5358515A (en) | 1989-08-16 | 1994-10-25 | Deutsches Krebsforschungzentrum Stiftung Des Offentlichen Rechts | Microwave hyperthermia applicator |
US5104393A (en) | 1989-08-30 | 1992-04-14 | Angelase, Inc. | Catheter |
US5114403A (en) | 1989-09-15 | 1992-05-19 | Eclipse Surgical Technologies, Inc. | Catheter torque mechanism |
US5100388A (en) | 1989-09-15 | 1992-03-31 | Interventional Thermodynamics, Inc. | Method and device for thermal ablation of hollow body organs |
US5044375A (en) | 1989-12-08 | 1991-09-03 | Cardiac Pacemakers, Inc. | Unitary intravascular defibrillating catheter with separate bipolar sensing |
US5344431A (en) | 1990-01-22 | 1994-09-06 | Medtronic, Inc. | Method and apparatus for determination of end-of-service for implantable devices |
US5496271A (en) | 1990-09-14 | 1996-03-05 | American Medical Systems, Inc. | Combined hyperthermia and dilation catheter |
US5172699A (en) | 1990-10-19 | 1992-12-22 | Angelase, Inc. | Process of identification of a ventricular tachycardia (VT) active site and an ablation catheter system |
US5171255A (en) | 1990-11-21 | 1992-12-15 | Everest Medical Corporation | Biopsy device |
US5085659A (en) | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
US5364336A (en) | 1990-12-17 | 1994-11-15 | Microwave Medical Systems, Inc. | Therapeutic probe for radiating microwave and ionizing radiation |
US5139496A (en) | 1990-12-20 | 1992-08-18 | Hed Aharon Z | Ultrasonic freeze ablation catheters and probes |
WO1993024065A1 (en) | 1990-12-20 | 1993-12-09 | Aharon Zeev Hed | Ultrasonic freeze ablation catheters and probes |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
US5147357A (en) | 1991-03-18 | 1992-09-15 | Rose Anthony T | Medical instrument |
US5374287A (en) | 1991-04-10 | 1994-12-20 | British Technology Group Usa Inc. | Defibrillator and demand pacer catheters and methods for using same |
US5207674A (en) | 1991-05-13 | 1993-05-04 | Hamilton Archie C | Electronic cryogenic surgical probe apparatus and method |
US5398683A (en) | 1991-05-24 | 1995-03-21 | Ep Technologies, Inc. | Combination monophasic action potential/ablation catheter and high-performance filter system |
US5402772A (en) | 1991-05-29 | 1995-04-04 | Origin Medsystems, Inc. | Endoscopic expandable retraction device |
US5301687A (en) | 1991-06-06 | 1994-04-12 | Trustees Of Dartmouth College | Microwave applicator for transurethral hyperthermia |
US5344441A (en) | 1991-07-03 | 1994-09-06 | Volker Gronauer | Antenna arrangement with supply cable for medical applications |
US5693078A (en) | 1991-07-05 | 1997-12-02 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
US5439006A (en) | 1991-08-28 | 1995-08-08 | Medtronic, Inc. | Steerable stylet and manipulative handle assembly |
US5861002A (en) | 1991-10-18 | 1999-01-19 | Desai; Ashvin H. | Endoscopic surgical instrument |
WO1993008757A1 (en) | 1991-11-08 | 1993-05-13 | Ep Technologies, Inc. | Systems and methods for ablating tissue while monitoring tissue impedance |
US5230334A (en) | 1992-01-22 | 1993-07-27 | Summit Technology, Inc. | Method and apparatus for generating localized hyperthermia |
US5222501A (en) | 1992-01-31 | 1993-06-29 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5323781A (en) | 1992-01-31 | 1994-06-28 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5304207A (en) | 1992-02-05 | 1994-04-19 | Merrill Stromer | Electrostimulator with light emitting device |
WO1993015664A1 (en) | 1992-02-06 | 1993-08-19 | American Medical Systems, Inc. | Apparatus and method for interstitial treatment |
US5295955A (en) | 1992-02-14 | 1994-03-22 | Amt, Inc. | Method and apparatus for microwave aided liposuction |
US5882302A (en) | 1992-02-21 | 1999-03-16 | Ths International, Inc. | Methods and devices for providing acoustic hemostasis |
US5762066A (en) | 1992-02-21 | 1998-06-09 | Ths International, Inc. | Multifaceted ultrasound transducer probe system and methods for its use |
US5242441A (en) | 1992-02-24 | 1993-09-07 | Boaz Avitall | Deflectable catheter with rotatable tip electrode |
US5263493A (en) | 1992-02-24 | 1993-11-23 | Boaz Avitall | Deflectable loop electrode array mapping and ablation catheter for cardiac chambers |
US5300099A (en) | 1992-03-06 | 1994-04-05 | Urologix, Inc. | Gamma matched, helical dipole microwave antenna |
US5370677A (en) | 1992-03-06 | 1994-12-06 | Urologix, Inc. | Gamma matched, helical dipole microwave antenna with tubular-shaped capacitor |
US5445193A (en) | 1992-04-01 | 1995-08-29 | Agfa-Gevaert Aktiengesellschaft | Apparatus for preparing and dispensing liquids for the treatment of photosensitive material |
US5397304A (en) | 1992-04-10 | 1995-03-14 | Medtronic Cardiorhythm | Shapable handle for steerable electrode catheter |
US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5318525A (en) | 1992-04-10 | 1994-06-07 | Medtronic Cardiorhythm | Steerable electrode catheter |
WO1993020767A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
US5368592A (en) | 1992-04-13 | 1994-11-29 | Ep Technologies, Inc. | Articulated systems for cardiac ablation |
US5370678A (en) | 1992-04-13 | 1994-12-06 | Ep Technologies, Inc. | Steerable microwave antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns |
US5314466A (en) | 1992-04-13 | 1994-05-24 | Ep Technologies, Inc. | Articulated unidirectional microwave antenna systems for cardiac ablation |
WO1993020893A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Steerable coaxial antenna systems for cardiac ablation |
WO1993020768A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Steerable microwave antenna systems for cardiac ablation |
US5281217A (en) | 1992-04-13 | 1994-01-25 | Ep Technologies, Inc. | Steerable antenna systems for cardiac ablation that minimize tissue damage and blood coagulation due to conductive heating patterns |
US5871525A (en) | 1992-04-13 | 1999-02-16 | Ep Technologies, Inc. | Steerable ablation catheter system |
WO1993020886A1 (en) | 1992-04-13 | 1993-10-28 | Ep Technologies, Inc. | Articulated systems for cardiac ablation |
US5281215A (en) | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Cryogenic catheter |
US5281213A (en) | 1992-04-16 | 1994-01-25 | Implemed, Inc. | Catheter for ice mapping and ablation |
US5423807A (en) | 1992-04-16 | 1995-06-13 | Implemed, Inc. | Cryogenic mapping and ablation catheter |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5248312A (en) | 1992-06-01 | 1993-09-28 | Sensor Electronics, Inc. | Liquid metal-filled balloon |
US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
US5500012A (en) | 1992-07-15 | 1996-03-19 | Angeion Corporation | Ablation catheter system |
WO1994002204A1 (en) | 1992-07-15 | 1994-02-03 | Microwave Engineering Designs Limited | Microwave treatment apparatus |
US5593404A (en) | 1992-08-11 | 1997-01-14 | Myriadlase, Inc. | Method of treatment of prostate |
US5720718A (en) | 1992-08-12 | 1998-02-24 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
US5843026A (en) | 1992-08-12 | 1998-12-01 | Vidamed, Inc. | BPH ablation method and apparatus |
US5514131A (en) | 1992-08-12 | 1996-05-07 | Stuart D. Edwards | Method for the ablation treatment of the uvula |
US5807309A (en) | 1992-08-12 | 1998-09-15 | Vidamed, Inc. | Transurethral needle ablation device and method for the treatment of the prostate |
US5599295A (en) | 1992-08-12 | 1997-02-04 | Vidamed, Inc. | Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities |
US5607389A (en) | 1992-08-12 | 1997-03-04 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5531677A (en) | 1992-08-12 | 1996-07-02 | Vidamed, Inc. | Steerable medical probe with stylets |
US6102886A (en) | 1992-08-12 | 2000-08-15 | Vidamed, Inc. | Steerable medical probe with stylets |
US5800378A (en) | 1992-08-12 | 1998-09-01 | Vidamed, Inc. | Medical probe device and method |
US5741225A (en) | 1992-08-12 | 1998-04-21 | Rita Medical Systems | Method for treating the prostate |
US5964727A (en) | 1992-08-12 | 1999-10-12 | Vidamed, Inc. | Medical probe device and method |
US5470308A (en) | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5762626A (en) | 1992-08-12 | 1998-06-09 | Vidamed, Inc. | Transurethral needle ablation device with cystoscope and method for treatment of the prostate |
US5366490A (en) | 1992-08-12 | 1994-11-22 | Vidamed, Inc. | Medical probe device and method |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US5549644A (en) | 1992-08-12 | 1996-08-27 | Vidamed, Inc. | Transurethral needle ablation device with cystoscope and method for treatment of the prostate |
US5369251A (en) | 1992-09-14 | 1994-11-29 | Kdc Technology Corp. | Microwave interstitial hyperthermia probe |
US5293869A (en) | 1992-09-25 | 1994-03-15 | Ep Technologies, Inc. | Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole |
US5313943A (en) | 1992-09-25 | 1994-05-24 | Ep Technologies, Inc. | Catheters and methods for performing cardiac diagnosis and treatment |
US5364351A (en) | 1992-11-13 | 1994-11-15 | Ep Technologies, Inc. | Catheter steering mechanism |
US5676693A (en) | 1992-11-13 | 1997-10-14 | Scimed Life Systems, Inc. | Electrophysiology device |
US5383876A (en) | 1992-11-13 | 1995-01-24 | American Cardiac Ablation Co., Inc. | Fluid cooled electrosurgical probe for cutting and cauterizing tissue |
US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
US5327889A (en) | 1992-12-01 | 1994-07-12 | Cardiac Pathways Corporation | Mapping and ablation catheter with individually deployable arms and method |
US5391147A (en) | 1992-12-01 | 1995-02-21 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location and/or radius and method |
US5450846A (en) | 1993-01-08 | 1995-09-19 | Goldreyer; Bruce N. | Method for spatially specific electrophysiological sensing for mapping, pacing and ablating human myocardium and a catheter for the same |
US5482037A (en) | 1993-01-18 | 1996-01-09 | X-Trode S.R.L. | Electrode catheter for mapping and operating on cardiac cavities |
US5571215A (en) | 1993-02-22 | 1996-11-05 | Heartport, Inc. | Devices and methods for intracardiac procedures |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5829447A (en) | 1993-02-22 | 1998-11-03 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5855614A (en) | 1993-02-22 | 1999-01-05 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5823956A (en) | 1993-02-22 | 1998-10-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5452733A (en) | 1993-02-22 | 1995-09-26 | Stanford Surgical Technologies, Inc. | Methods for performing thoracoscopic coronary artery bypass |
US5924424A (en) | 1993-02-22 | 1999-07-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US6161543A (en) | 1993-02-22 | 2000-12-19 | Epicor, Inc. | Methods of epicardial ablation for creating a lesion around the pulmonary veins |
US5364352A (en) | 1993-03-12 | 1994-11-15 | Heart Rhythm Technologies, Inc. | Catheter for electrophysiological procedures |
US5383922A (en) | 1993-03-15 | 1995-01-24 | Medtronic, Inc. | RF lead fixation and implantable lead |
US5529820A (en) | 1993-03-17 | 1996-06-25 | Japan Gore-Tex, Inc. | Flexible, non-porous tube and a method of making |
US5454733A (en) | 1993-04-21 | 1995-10-03 | Yazaki Corporation | Divisional multi-pole connector |
US5462544A (en) | 1993-05-05 | 1995-10-31 | Energy Life System Corporation | Continuous heart tissue mapping and lasing catheter |
US20030097126A1 (en) | 1993-05-10 | 2003-05-22 | Arthrocare Corporation | Bipolar electrosurgical clamp for removing and modifying tissue |
US5628771A (en) | 1993-05-12 | 1997-05-13 | Olympus Optical Co., Ltd. | Electromagnetic-wave thermatological device |
US5957969A (en) | 1993-05-14 | 1999-09-28 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter system and method |
US5454807A (en) | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
US5405346A (en) | 1993-05-14 | 1995-04-11 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5693082A (en) | 1993-05-14 | 1997-12-02 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter system and method |
US5536247A (en) | 1993-06-10 | 1996-07-16 | Scimed Life Systems, Inc. | Method of treating cardiac conduction defects |
US5334168A (en) | 1993-06-11 | 1994-08-02 | Catheter Research, Inc. | Variable shape guide apparatus |
EP0628322A2 (en) | 1993-06-11 | 1994-12-14 | Cordis Europa N.V. | Flexible catheter with strip-like electrode |
US6004269A (en) | 1993-07-01 | 1999-12-21 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5630837A (en) | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
US5571088A (en) | 1993-07-01 | 1996-11-05 | Boston Scientific Corporation | Ablation catheters |
US5494039A (en) | 1993-07-16 | 1996-02-27 | Cryomedical Sciences, Inc. | Biopsy needle insertion guide and method of use in prostate cryosurgery |
US5545200A (en) | 1993-07-20 | 1996-08-13 | Medtronic Cardiorhythm | Steerable electrophysiology catheter |
US6066094A (en) | 1993-07-20 | 2000-05-23 | Biosense, Inc. | Cardiac electromechanics |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5443489A (en) | 1993-07-20 | 1995-08-22 | Biosense, Inc. | Apparatus and method for ablation |
US5487757A (en) | 1993-07-20 | 1996-01-30 | Medtronic Cardiorhythm | Multicurve deflectable catheter |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
WO1995005212A3 (en) | 1993-08-11 | 1995-03-30 | Electro Catheter Corp | Improved ablation electrode |
US5376094A (en) | 1993-08-19 | 1994-12-27 | Boston Scientific Corporation | Improved actuating handle with pulley system for providing mechanical advantage to a surgical working element |
US5807395A (en) | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
US5405376A (en) | 1993-08-27 | 1995-04-11 | Medtronic, Inc. | Method and apparatus for ablation |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5464404A (en) | 1993-09-20 | 1995-11-07 | Abela Laser Systems, Inc. | Cardiac ablation catheters and method |
US5415656A (en) | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
US5496312A (en) | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5417208A (en) | 1993-10-12 | 1995-05-23 | Arrow International Investment Corp. | Electrode-carrying catheter and method of making same |
US5437665A (en) | 1993-10-12 | 1995-08-01 | Munro; Malcolm G. | Electrosurgical loop electrode instrument for laparoscopic surgery |
US6514246B1 (en) | 1993-10-14 | 2003-02-04 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US5860920A (en) | 1993-10-14 | 1999-01-19 | Ep Technologies, Inc. | Systems for locating and ablating accessory pathways in the heart |
US6106522A (en) | 1993-10-14 | 2000-08-22 | Ep Technologies, Inc. | Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements |
US5575810A (en) | 1993-10-15 | 1996-11-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US6146379A (en) | 1993-10-15 | 2000-11-14 | Ep Technologies, Inc. | Systems and methods for creating curvilinear lesions in body tissue |
US5545193A (en) | 1993-10-15 | 1996-08-13 | Ep Technologies, Inc. | Helically wound radio-frequency emitting electrodes for creating lesions in body tissue |
US5549661A (en) | 1993-10-15 | 1996-08-27 | Ep Technologies, Inc. | Systems and methods for creating complex lesion patterns in body tissue |
US6241754B1 (en) | 1993-10-15 | 2001-06-05 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
EP0655225B1 (en) | 1993-10-26 | 2000-03-08 | Cordis Europa N.V. | Cryo-ablation catheter |
US5840027A (en) | 1993-11-03 | 1998-11-24 | Daig Corporation | Guiding introducer system for use in the right atrium |
US5575766A (en) | 1993-11-03 | 1996-11-19 | Daig Corporation | Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers |
US5800413A (en) | 1993-11-03 | 1998-09-01 | Daig | Guiding introducer for use in the treatment of atrial flutter |
US5814028A (en) | 1993-11-03 | 1998-09-29 | Daig Corporation | Curved guiding introducers for cardiac access |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5507743A (en) | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5599346A (en) | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment system |
US5730127A (en) | 1993-12-03 | 1998-03-24 | Avitall; Boaz | Mapping and ablation catheter system |
US5454370A (en) | 1993-12-03 | 1995-10-03 | Avitall; Boaz | Mapping and ablation electrode configuration |
US6430426B2 (en) | 1993-12-03 | 2002-08-06 | Boaz Avitall | Mapping and ablation catheter system |
US5687723A (en) | 1993-12-03 | 1997-11-18 | Avitall; Boaz | Mapping and ablation catheter system |
US5921924A (en) | 1993-12-03 | 1999-07-13 | Avitall; Boaz | Mapping and ablation catheter system utilizing multiple control elements |
US5840030A (en) | 1993-12-22 | 1998-11-24 | Sulzer Osypka Gmbh | Ultrasonic marked cardiac ablation catheter |
US5484433A (en) | 1993-12-30 | 1996-01-16 | The Spectranetics Corporation | Tissue ablating device having a deflectable ablation area and method of using same |
WO1995018575A1 (en) | 1994-01-06 | 1995-07-13 | Vidamed, Inc. | Medical probe apparatus with enhanced rf, resistance heating, and microwave ablation capabilities |
US5405375A (en) | 1994-01-21 | 1995-04-11 | Incontrol, Inc. | Combined mapping, pacing, and defibrillating catheter |
US5957842A (en) | 1994-01-27 | 1999-09-28 | Cardima, Inc. | High resolution intravascular signal detection |
US5462545A (en) | 1994-01-31 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Catheter electrodes |
US5873828A (en) | 1994-02-18 | 1999-02-23 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and treatment system |
US5584830A (en) | 1994-03-30 | 1996-12-17 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US5578067A (en) | 1994-04-14 | 1996-11-26 | Pacesetter Ab | Medical electrode system having a sleeve body and control element therefor for selectively positioning an exposed conductor area |
US5492126A (en) | 1994-05-02 | 1996-02-20 | Focal Surgery | Probe for medical imaging and therapy using ultrasound |
US5569242A (en) | 1994-05-06 | 1996-10-29 | Lax; Ronald G. | Method and apparatus for controlled contraction of soft tissue |
US5549638A (en) | 1994-05-17 | 1996-08-27 | Burdette; Everette C. | Ultrasound device for use in a thermotherapy apparatus |
US6106517A (en) | 1994-06-23 | 2000-08-22 | Situs Corporation | Surgical instrument with ultrasound pulse generator |
US5672172A (en) | 1994-06-23 | 1997-09-30 | Vros Corporation | Surgical instrument with ultrasound pulse generator |
US5823197A (en) | 1994-06-24 | 1998-10-20 | Somnus Medical Technologies, Inc. | Method for internal ablation of turbinates |
US5681308A (en) | 1994-06-24 | 1997-10-28 | Stuart D. Edwards | Ablation apparatus for cardiac chambers |
US5769846A (en) | 1994-06-24 | 1998-06-23 | Stuart D. Edwards | Ablation apparatus for cardiac chambers |
US5593405A (en) | 1994-07-16 | 1997-01-14 | Osypka; Peter | Fiber optic endoscope |
US5540684A (en) | 1994-07-28 | 1996-07-30 | Hassler, Jr.; William L. | Method and apparatus for electrosurgically treating tissue |
US6030382A (en) | 1994-08-08 | 2000-02-29 | Ep Technologies, Inc. | Flexible tissue ablatin elements for making long lesions |
US5797905A (en) | 1994-08-08 | 1998-08-25 | E. P. Technologies Inc. | Flexible tissue ablation elements for making long lesions |
US6464700B1 (en) | 1994-10-07 | 2002-10-15 | Scimed Life Systems, Inc. | Loop structures for positioning a diagnostic or therapeutic element on the epicardium or other organ surface |
US6142994A (en) | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
US5836947A (en) | 1994-10-07 | 1998-11-17 | Ep Technologies, Inc. | Flexible structures having movable splines for supporting electrode elements |
US5885278A (en) | 1994-10-07 | 1999-03-23 | E.P. Technologies, Inc. | Structures for deploying movable electrode elements |
EP0738501B1 (en) | 1994-11-02 | 2000-05-24 | Olympus Optical Co., Ltd. | Endoscope operative instrument |
US5520188A (en) | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
US5578030A (en) | 1994-11-04 | 1996-11-26 | Levin; John M. | Biopsy needle with cauterization feature |
US5643255A (en) | 1994-12-12 | 1997-07-01 | Hicor, Inc. | Steerable catheter with rotatable tip electrode and method of use |
US5640955A (en) | 1995-02-14 | 1997-06-24 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5603697A (en) | 1995-02-14 | 1997-02-18 | Fidus Medical Technology Corporation | Steering mechanism for catheters and methods for making same |
US5954662A (en) | 1995-02-17 | 1999-09-21 | Ep Technologies, Inc. | Systems and methods for acquiring endocardially or epicardially paced electrocardiograms |
US6358248B1 (en) | 1995-02-22 | 2002-03-19 | Medtronic, Inc. | Ball point fluid-assisted electrocautery device |
US6063081A (en) | 1995-02-22 | 2000-05-16 | Medtronic, Inc. | Fluid-assisted electrocautery device |
WO1996026675A1 (en) | 1995-02-28 | 1996-09-06 | Boston Scientific Corporation | Deflectable catheter for ablating cardiac tissue |
US6106524A (en) | 1995-03-03 | 2000-08-22 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US5842037A (en) | 1995-03-20 | 1998-11-24 | Telefonaktiebolaget Lm Ericsson | Interference reduction in TDM-communication/computing devices |
US5707369A (en) | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5785707A (en) | 1995-04-24 | 1998-07-28 | Sdgi Holdings, Inc. | Template for positioning interbody fusion devices |
US5688267A (en) | 1995-05-01 | 1997-11-18 | Ep Technologies, Inc. | Systems and methods for sensing multiple temperature conditions during tissue ablation |
US5735280A (en) | 1995-05-02 | 1998-04-07 | Heart Rhythm Technologies, Inc. | Ultrasound energy delivery system and method |
US5606974A (en) | 1995-05-02 | 1997-03-04 | Heart Rhythm Technologies, Inc. | Catheter having ultrasonic device |
WO1996035469A1 (en) | 1995-05-10 | 1996-11-14 | Cardiogenesis Corporation | System for treating or diagnosing heart tissue |
WO1996035496A1 (en) | 1995-05-10 | 1996-11-14 | Jochelson Maria Alexander | Device for and method of separating solids from liquids |
WO1996036397A1 (en) | 1995-05-15 | 1996-11-21 | Arrow International Investment Corp. | Microwave antenna catheter |
US5683382A (en) | 1995-05-15 | 1997-11-04 | Arrow International Investment Corp. | Microwave antenna catheter |
US5658280A (en) | 1995-05-22 | 1997-08-19 | Issa; Muta M. | Resectoscope electrode assembly with simultaneous cutting and coagulation |
US5993389A (en) | 1995-05-22 | 1999-11-30 | Ths International, Inc. | Devices for providing acoustic hemostasis |
US5993445A (en) | 1995-05-22 | 1999-11-30 | Advanced Closure Systems, Inc. | Resectoscope electrode assembly with simultaneous cutting and coagulation |
US6083159A (en) | 1995-05-22 | 2000-07-04 | Ths International, Inc. | Methods and devices for providing acoustic hemostasis |
US5895355A (en) | 1995-05-23 | 1999-04-20 | Cardima, Inc. | Over-the-wire EP catheter |
US5954665A (en) | 1995-06-07 | 1999-09-21 | Biosense, Inc. | Cardiac ablation catheter using correlation measure |
US6090104A (en) | 1995-06-07 | 2000-07-18 | Cordis Webster, Inc. | Catheter with a spirally wound flat ribbon electrode |
US5827216A (en) | 1995-06-07 | 1998-10-27 | Cormedics Corp. | Method and apparatus for accessing the pericardial space |
US6652513B2 (en) | 1995-06-07 | 2003-11-25 | Ep Technologies, Inc. | Tissue heating and ablation systems and methods which predict maximum tissue temperature |
US5718241A (en) | 1995-06-07 | 1998-02-17 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias with no discrete target |
US5843075A (en) | 1995-06-09 | 1998-12-01 | Engineering & Research Associates, Inc. | Probe for thermal ablation |
US5868737A (en) | 1995-06-09 | 1999-02-09 | Engineering Research & Associates, Inc. | Apparatus and method for determining ablation |
US6322558B1 (en) | 1995-06-09 | 2001-11-27 | Engineering & Research Associates, Inc. | Apparatus and method for predicting ablation depth |
US5852860A (en) | 1995-06-19 | 1998-12-29 | General Electric Company | Ultrasonic phased array transducer with an ultralow impedance backfill and a method for making |
US6027501A (en) | 1995-06-23 | 2000-02-22 | Gyrus Medical Limited | Electrosurgical instrument |
US5788692A (en) | 1995-06-30 | 1998-08-04 | Fidus Medical Technology Corporation | Mapping ablation catheter |
US5673695A (en) | 1995-08-02 | 1997-10-07 | Ep Technologies, Inc. | Methods for locating and ablating accessory pathways in the heart |
US5673694A (en) | 1995-08-08 | 1997-10-07 | Henry Ford Health System | Method and apparatus for continuous measurement of central venous oxygen saturation |
US6090105A (en) | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US5863290A (en) | 1995-08-15 | 1999-01-26 | Rita Medical Systems | Multiple antenna ablation apparatus and method |
US5672174A (en) | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5581905A (en) | 1995-09-18 | 1996-12-10 | Minnesota Mining And Manufacturing Company | Coated substrate drying system |
US5980697A (en) | 1995-09-18 | 1999-11-09 | 3M Innovative Properties Company | Component separation system including condensing mechanism |
US6428538B1 (en) | 1995-10-20 | 2002-08-06 | United States Surgical Corporation | Apparatus and method for thermal treatment of body tissue |
US5897553A (en) | 1995-11-02 | 1999-04-27 | Medtronic, Inc. | Ball point fluid-assisted electrocautery device |
US5590657A (en) | 1995-11-06 | 1997-01-07 | The Regents Of The University Of Michigan | Phased array ultrasound system and method for cardiac ablation |
US6135971A (en) | 1995-11-09 | 2000-10-24 | Brigham And Women's Hospital | Apparatus for deposition of ultrasound energy in body tissue |
US6306124B1 (en) | 1995-11-13 | 2001-10-23 | Micro Therapeutics, Inc. | Microcatheter |
US5733280A (en) | 1995-11-15 | 1998-03-31 | Avitall; Boaz | Cryogenic epicardial mapping and ablation |
US5823955A (en) | 1995-11-20 | 1998-10-20 | Medtronic Cardiorhythm | Atrioventricular valve tissue ablation catheter and method |
US5938600A (en) | 1995-12-14 | 1999-08-17 | U.S. Philips Corporation | Method and device for heating by means of ultrasound |
US6171303B1 (en) | 1996-01-08 | 2001-01-09 | Biosense, Inc. | Methods and apparatus for myocardial revascularization |
US5846238A (en) | 1996-01-19 | 1998-12-08 | Ep Technologies, Inc. | Expandable-collapsible electrode structures with distal end steering or manipulation |
US5843171A (en) | 1996-01-29 | 1998-12-01 | W. L. Gore & Associates, Inc. | Method of insitu bypass to hold open venous valves |
US6182664B1 (en) | 1996-02-19 | 2001-02-06 | Edwards Lifesciences Corporation | Minimally invasive cardiac valve surgery procedure |
US5800379A (en) | 1996-02-23 | 1998-09-01 | Sommus Medical Technologies, Inc. | Method for ablating interior sections of the tongue |
US5800482A (en) | 1996-03-06 | 1998-09-01 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
US6032077A (en) | 1996-03-06 | 2000-02-29 | Cardiac Pathways Corporation | Ablation catheter with electrical coupling via foam drenched with a conductive fluid |
US6119041A (en) | 1996-03-06 | 2000-09-12 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
US6356790B1 (en) | 1996-03-11 | 2002-03-12 | Medtronic, Inc. | Apparatus for R-F ablation |
US5755760A (en) | 1996-03-11 | 1998-05-26 | Medtronic, Inc. | Deflectable catheter |
US5733281A (en) | 1996-03-19 | 1998-03-31 | American Ablation Co., Inc. | Ultrasound and impedance feedback system for use with electrosurgical instruments |
US5938692A (en) | 1996-03-26 | 1999-08-17 | Urologix, Inc. | Voltage controlled variable tuning antenna |
US5676692A (en) | 1996-03-28 | 1997-10-14 | Indianapolis Center For Advanced Research, Inc. | Focussed ultrasound tissue treatment method |
US5725523A (en) | 1996-03-29 | 1998-03-10 | Mueller; Richard L. | Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications |
US6027497A (en) | 1996-03-29 | 2000-02-22 | Eclipse Surgical Technologies, Inc. | TMR energy delivery system |
US6056735A (en) | 1996-04-04 | 2000-05-02 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US6063077A (en) | 1996-04-08 | 2000-05-16 | Cardima, Inc. | Linear ablation device and assembly |
US6302880B1 (en) | 1996-04-08 | 2001-10-16 | Cardima, Inc. | Linear ablation assembly |
US5904709A (en) | 1996-04-17 | 1999-05-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Microwave treatment for cardiac arrhythmias |
US6289249B1 (en) | 1996-04-17 | 2001-09-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Transcatheter microwave antenna |
US5782747A (en) | 1996-04-22 | 1998-07-21 | Zimmon Science Corporation | Spring based multi-purpose medical instrument |
US6346104B2 (en) | 1996-04-30 | 2002-02-12 | Western Sydney Area Health Service | System for simultaneous unipolar multi-electrode ablation |
US6165174A (en) | 1996-05-03 | 2000-12-26 | Clemens Josephus Jacobs | Instrument for interrupting conduction paths within the heart |
US6502575B1 (en) | 1996-05-03 | 2003-01-07 | Clemens J. Jacobs | Instrument for interrupting conduction paths within the heart |
WO1997042893A1 (en) | 1996-05-11 | 1997-11-20 | John Mark Morgan | Ablation catheter |
US6283955B1 (en) | 1996-05-13 | 2001-09-04 | Edwards Lifesciences Corp. | Laser ablation device |
US5800428A (en) | 1996-05-16 | 1998-09-01 | Angeion Corporation | Linear catheter ablation system |
US5743239A (en) | 1996-06-07 | 1998-04-28 | Fuji Jukogyo Kabushiki Kaisha | Fuel pump control system for vehicle |
US5861021A (en) | 1996-06-17 | 1999-01-19 | Urologix Inc | Microwave thermal therapy of cardiac tissue |
US5853366A (en) | 1996-07-08 | 1998-12-29 | Kelsey, Inc. | Marker element for interstitial treatment and localizing device and method using same |
US6016848A (en) | 1996-07-16 | 2000-01-25 | W. L. Gore & Associates, Inc. | Fluoropolymer tubes and methods of making same |
US5720775A (en) | 1996-07-31 | 1998-02-24 | Cordis Corporation | Percutaneous atrial line ablation catheter |
US5718226A (en) | 1996-08-06 | 1998-02-17 | University Of Central Florida | Photonically controlled ultrasonic probes |
US5826576A (en) | 1996-08-08 | 1998-10-27 | Medtronic, Inc. | Electrophysiology catheter with multifunction wire and method for making |
US6517568B1 (en) | 1996-08-13 | 2003-02-11 | Oratec Interventions, Inc. | Method and apparatus for treating intervertebral discs |
WO1998006341A1 (en) | 1996-08-16 | 1998-02-19 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US6106521A (en) | 1996-08-16 | 2000-08-22 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US5993447A (en) | 1996-08-16 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US5800494A (en) | 1996-08-20 | 1998-09-01 | Fidus Medical Technology Corporation | Microwave ablation catheters having antennas with distal fire capabilities |
US6068628A (en) | 1996-08-20 | 2000-05-30 | Oratec Interventions, Inc. | Apparatus for treating chondromalacia |
US5823962A (en) | 1996-09-02 | 1998-10-20 | Siemens Aktiengesellschaft | Ultrasound transducer for diagnostic and therapeutic use |
US5694701A (en) | 1996-09-04 | 1997-12-09 | Minnesota Mining And Manufacturing Company | Coated substrate drying system |
US5697928A (en) | 1996-09-23 | 1997-12-16 | Uab Research Foundation | Cardic electrode catheter |
US5737384A (en) | 1996-10-04 | 1998-04-07 | Massachusetts Institute Of Technology | X-ray needle providing heating with microwave energy |
US5810803A (en) | 1996-10-16 | 1998-09-22 | Fidus Medical Technology Corporation | Conformal positioning assembly for microwave ablation catheter |
US5741249A (en) | 1996-10-16 | 1998-04-21 | Fidus Medical Technology Corporation | Anchoring tip assembly for microwave ablation catheter |
US6719755B2 (en) | 1996-10-22 | 2004-04-13 | Epicor Medical, Inc. | Methods and devices for ablation |
US20030073992A1 (en) | 1996-10-22 | 2003-04-17 | Epicor, Inc. | Methods and devices for ablation |
US20020042610A1 (en) | 1996-10-22 | 2002-04-11 | Epicor, Inc. | Methods and devices for ablation |
US20020017306A1 (en) | 1996-10-22 | 2002-02-14 | Epicor, Inc. | Surgical system and procedure for treatment of medically refractory atrial fibrillation |
US6474340B1 (en) | 1996-10-22 | 2002-11-05 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US20030024537A1 (en) | 1996-10-22 | 2003-02-06 | Epicor, Inc. | Device and method for forming a lesion |
US20030028187A1 (en) | 1996-10-22 | 2003-02-06 | Epicor, Inc. | Device and method for forming a lesion |
US20040106918A1 (en) | 1996-10-22 | 2004-06-03 | Epicor, Inc. | Surgical system and procedure for treatment of medically refractory atrial fibrillation |
US6311692B1 (en) | 1996-10-22 | 2001-11-06 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US20030029462A1 (en) | 1996-10-22 | 2003-02-13 | Epicor, Inc. | Device and method for forming a lesion |
US6484727B1 (en) | 1996-10-22 | 2002-11-26 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6237605B1 (en) | 1996-10-22 | 2001-05-29 | Epicor, Inc. | Methods of epicardial ablation |
US20020173784A1 (en) | 1996-10-22 | 2002-11-21 | Epicor, Inc. | Methods and devices for ablation |
US20020042611A1 (en) | 1996-10-22 | 2002-04-11 | Epicor, Inc. | Methods and devices for ablation |
US20020087157A1 (en) | 1996-10-22 | 2002-07-04 | Epicor, Inc. | Methods and devices for ablation |
US20030079753A1 (en) | 1996-10-22 | 2003-05-01 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6314963B1 (en) | 1996-10-22 | 2001-11-13 | Epicor, Inc. | Method of ablating tissue from an epicardial location |
US20030078571A1 (en) | 1996-10-22 | 2003-04-24 | Epicor, Inc. | Methods and devices for ablation |
US20030069574A1 (en) | 1996-10-22 | 2003-04-10 | Epicor, Inc. | Methods and devices for ablation |
US20030069577A1 (en) | 1996-10-22 | 2003-04-10 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6701931B2 (en) | 1996-10-22 | 2004-03-09 | Epicor Medical, Inc. | Methods and devices for ablation |
US6689128B2 (en) | 1996-10-22 | 2004-02-10 | Epicor Medical, Inc. | Methods and devices for ablation |
US20020045895A1 (en) | 1996-10-22 | 2002-04-18 | Epicor, Inc. | Methods and devices for ablation |
US6314962B1 (en) | 1996-10-22 | 2001-11-13 | Epicor, Inc. | Method of ablating tissue around the pulmonary veins |
US6645202B1 (en) | 1996-10-22 | 2003-11-11 | Epicor Medical, Inc. | Apparatus and method for ablating tissue |
WO1998017187A1 (en) | 1996-10-22 | 1998-04-30 | Heartport, Inc. | Surgical system and procedure for treatment of medically refractory atrial fibrillation |
US20020128639A1 (en) | 1996-10-22 | 2002-09-12 | Epicor, Inc., A Delaware Corporation | Device and method for forming a lesion |
WO1998017185A1 (en) | 1996-10-24 | 1998-04-30 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US5769790A (en) | 1996-10-25 | 1998-06-23 | General Electric Company | Focused ultrasound surgery system guided by ultrasound imaging |
EP0839547B1 (en) | 1996-10-28 | 2003-09-24 | C.R. Bard, Inc. | Steerable catheter with fixed curve |
US6002955A (en) | 1996-11-08 | 1999-12-14 | Medtronic, Inc. | Stabilized electrophysiology catheter and method for use |
US5785706A (en) | 1996-11-18 | 1998-07-28 | Daig Corporation | Nonsurgical mapping and treatment of cardiac arrhythmia using a catheter contained within a guiding introducer containing openings |
US5931810A (en) | 1996-12-05 | 1999-08-03 | Comedicus Incorporated | Method for accessing the pericardial space |
US5782828A (en) | 1996-12-11 | 1998-07-21 | Irvine Biomedical, Inc. | Ablation catheter with multiple flexible curves |
US6454758B1 (en) | 1996-12-19 | 2002-09-24 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
US6071274A (en) | 1996-12-19 | 2000-06-06 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
US6076012A (en) | 1996-12-19 | 2000-06-13 | Ep Technologies, Inc. | Structures for supporting porous electrode elements |
US5910129A (en) | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US5853368A (en) | 1996-12-23 | 1998-12-29 | Hewlett-Packard Company | Ultrasound imaging catheter having an independently-controllable treatment structure |
US5919188A (en) | 1997-02-04 | 1999-07-06 | Medtronic, Inc. | Linear ablation catheter |
US6068629A (en) | 1997-02-04 | 2000-05-30 | Medtronic, Inc. | System and methods for tissue mapping and ablation |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5964732A (en) | 1997-02-07 | 1999-10-12 | Abbeymoor Medical, Inc. | Urethral apparatus with position indicator and methods of use thereof |
US5899899A (en) | 1997-02-27 | 1999-05-04 | Cryocath Technologies Inc. | Cryosurgical linear ablation structure |
US5897554A (en) | 1997-03-01 | 1999-04-27 | Irvine Biomedical, Inc. | Steerable catheter having a loop electrode |
WO1998044857A1 (en) | 1997-04-09 | 1998-10-15 | Goldberg S Nahum | Method and system for performing trans-rectal radiofrequency urethral enlargement |
US5871481A (en) | 1997-04-11 | 1999-02-16 | Vidamed, Inc. | Tissue ablation apparatus and method |
US5964756A (en) | 1997-04-11 | 1999-10-12 | Vidamed, Inc. | Transurethral needle ablation device with replaceable stylet cartridge |
US6808536B2 (en) | 1997-04-18 | 2004-10-26 | Carol Wright | Stent containing rapamycin or its analogs using a modified stent |
US5938612A (en) | 1997-05-05 | 1999-08-17 | Creare Inc. | Multilayer ultrasonic transducer array including very thin layer of transducer elements |
US5906580A (en) | 1997-05-05 | 1999-05-25 | Creare Inc. | Ultrasound system and method of administering ultrasound including a plurality of multi-layer transducer elements |
US5971983A (en) | 1997-05-09 | 1999-10-26 | The Regents Of The University Of California | Tissue ablation device and method of use |
US6471697B1 (en) | 1997-05-09 | 2002-10-29 | The Regents Of The University Of California | Tissue ablation device and method |
US5873896A (en) | 1997-05-27 | 1999-02-23 | Uab Research Foundation | Cardiac device for reducing arrhythmia |
US6086583A (en) | 1997-06-05 | 2000-07-11 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electric cautery for endoscope |
US5978714A (en) | 1997-06-06 | 1999-11-02 | Zadini; Filiberto | Epicardial percutaneous device for electrical cardiac therapy |
US6235025B1 (en) | 1997-06-27 | 2001-05-22 | Daig Corporation | Process and device for the treatment of atrial arrhythmia |
US6012457A (en) | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6024740A (en) | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6514249B1 (en) | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
US6164283A (en) | 1997-07-08 | 2000-12-26 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
WO1999004696A1 (en) | 1997-07-24 | 1999-02-04 | Cardiac Crc Nominees Pty. Ltd. | An intraoperative endocardial and epicardial ablation probe |
US6490474B1 (en) | 1997-08-01 | 2002-12-03 | Cardiac Pathways Corporation | System and method for electrode localization using ultrasound |
US6216027B1 (en) | 1997-08-01 | 2001-04-10 | Cardiac Pathways Corporation | System for electrode localization using ultrasound |
US6533780B1 (en) | 1997-08-13 | 2003-03-18 | Surx, Inc. | Ribbed electrodes and methods for their use |
WO1999008613A1 (en) | 1997-08-15 | 1999-02-25 | Somnus Medical Technologies, Inc. | Apparatus and device for use therein and method for ablation of tissue |
US5836990A (en) | 1997-09-19 | 1998-11-17 | Medtronic, Inc. | Method and apparatus for determining electrode/tissue contact |
US5995875A (en) | 1997-10-01 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US6645200B1 (en) | 1997-10-10 | 2003-11-11 | Scimed Life Systems, Inc. | Method and apparatus for positioning a diagnostic or therapeutic element within the body and tip electrode for use with same |
US6152920A (en) | 1997-10-10 | 2000-11-28 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body |
US6610055B1 (en) | 1997-10-10 | 2003-08-26 | Scimed Life Systems, Inc. | Surgical method for positioning a diagnostic or therapeutic element on the epicardium or other organ surface |
US6007499A (en) | 1997-10-31 | 1999-12-28 | University Of Washington | Method and apparatus for medical procedures using high-intensity focused ultrasound |
US6432067B1 (en) | 1997-10-31 | 2002-08-13 | University Of Washington | Method and apparatus for medical procedures using high-intensity focused ultrasound |
US6315741B1 (en) | 1997-10-31 | 2001-11-13 | Roy W. Martin | Method and apparatus for medical procedures using high-intensity focused ultrasound |
US6200315B1 (en) | 1997-12-18 | 2001-03-13 | Medtronic, Inc. | Left atrium ablation catheter |
US6241728B1 (en) | 1997-12-18 | 2001-06-05 | Medtronic, Inc. | Left atrium ablation catheter and method |
WO1999034860A1 (en) | 1998-01-09 | 1999-07-15 | Radionics, Inc. | Electrical probe with a bent tip |
US20030014046A1 (en) | 1998-01-14 | 2003-01-16 | Conway-Stuart Medical, Inc. | Sphincter treatment device |
US6273887B1 (en) | 1998-01-23 | 2001-08-14 | Olympus Optical Co., Ltd. | High-frequency treatment tool |
US6162216A (en) | 1998-03-02 | 2000-12-19 | Guziak; Robert Andrew | Method for biopsy and ablation of tumor cells |
US6010516A (en) | 1998-03-20 | 2000-01-04 | Hulka; Jaroslav F. | Bipolar coaptation clamps |
US6064902A (en) | 1998-04-16 | 2000-05-16 | C.R. Bard, Inc. | Pulmonary vein ablation catheter |
US6312425B1 (en) | 1998-05-05 | 2001-11-06 | Cardiac Pacemakers, Inc. | RF ablation catheter tip electrode with multiple thermal sensors |
US6071281A (en) | 1998-05-05 | 2000-06-06 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same |
US6059778A (en) | 1998-05-05 | 2000-05-09 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using unipolar and bipolar techniques |
US6488639B1 (en) | 1998-05-13 | 2002-12-03 | Technomed Medical Systems, S.A | Frequency adjustment in high intensity focused ultrasound treatment apparatus |
US6527767B2 (en) | 1998-05-20 | 2003-03-04 | New England Medical Center | Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization |
WO1999059486A3 (en) | 1998-05-20 | 2000-04-06 | New England Medical Center Inc | System for cardiac arrhythmias treatment by ablation, and tmr |
US6231518B1 (en) | 1998-05-26 | 2001-05-15 | Comedicus Incorporated | Intrapericardial electrophysiological procedures |
US6586040B1 (en) | 1998-06-15 | 2003-07-01 | Lts Lohmann Therapie-Systeme Ag | Method for manufacturing a laminate consisting of individual layers |
US6241722B1 (en) | 1998-06-17 | 2001-06-05 | Cryogen, Inc. | Cryogenic device, system and method of using same |
US6210356B1 (en) | 1998-08-05 | 2001-04-03 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6016811A (en) | 1998-09-01 | 2000-01-25 | Fidus Medical Technology Corporation | Method of using a microwave ablation catheter with a loop configuration |
US6251128B1 (en) | 1998-09-01 | 2001-06-26 | Fidus Medical Technology Corporation | Microwave ablation catheter with loop configuration |
US6488679B1 (en) | 1998-09-10 | 2002-12-03 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
WO2000016850A9 (en) | 1998-09-21 | 2000-10-26 | Epicardia Inc | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US20020193786A1 (en) | 1998-10-23 | 2002-12-19 | Dany Berube | Directional microwave ablation instrument with off-set energy delivery portion |
US6383182B1 (en) | 1998-10-23 | 2002-05-07 | Afx Inc. | Directional microwave ablation instrument with off-set energy delivery portion |
US6245062B1 (en) | 1998-10-23 | 2001-06-12 | Afx, Inc. | Directional reflector shield assembly for a microwave ablation instrument |
WO2000024463A3 (en) | 1998-10-23 | 2000-09-28 | Fidus Med Tech Corp | Directional reflector shield assembly for a microwave ablation instrument |
US20020128642A1 (en) | 1998-10-23 | 2002-09-12 | Afx, Inc. | Directional microwave ablation instrument with marking device |
US6312427B1 (en) | 1998-10-23 | 2001-11-06 | Afx, Inc. | Directional reflector shield assembly for a microwave ablation instrument |
US6364876B1 (en) | 1998-10-23 | 2002-04-02 | Afx, Inc. | Vacuum-assisted securing apparatus for a microwave ablation instrument |
US6576875B1 (en) | 1998-10-27 | 2003-06-10 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V | Method and device for controlling a targeted thermal deposition into a material |
US6526320B2 (en) | 1998-11-16 | 2003-02-25 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US6433464B2 (en) | 1998-11-20 | 2002-08-13 | Joie P. Jones | Apparatus for selectively dissolving and removing material using ultra-high frequency ultrasound |
US6178354B1 (en) | 1998-12-02 | 2001-01-23 | C. R. Bard, Inc. | Internal mechanism for displacing a slidable electrode |
EP1005838A1 (en) | 1998-12-03 | 2000-06-07 | Cordis Webster, Inc. | Ablation system with a split tip catheter, switching and measuring capabilities |
US6217573B1 (en) | 1998-12-03 | 2001-04-17 | Cordis Webster | System and method for measuring surface temperature of tissue during ablation |
WO2000035363A1 (en) | 1998-12-14 | 2000-06-22 | Ormsby Theodore C | Radio-frequency based catheter system and hollow co-axial cable for ablation of body tissues |
US6190382B1 (en) | 1998-12-14 | 2001-02-20 | Medwaves, Inc. | Radio-frequency based catheter system for ablation of body tissues |
US6206831B1 (en) | 1999-01-06 | 2001-03-27 | Scimed Life Systems, Inc. | Ultrasound-guided ablation catheter and methods of use |
US6423057B1 (en) | 1999-01-25 | 2002-07-23 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures |
US6461314B1 (en) | 1999-02-02 | 2002-10-08 | Transurgical, Inc. | Intrabody hifu applicator |
US6097985A (en) | 1999-02-09 | 2000-08-01 | Kai Technologies, Inc. | Microwave systems for medical hyperthermia, thermotherapy and diagnosis |
US6233490B1 (en) | 1999-02-09 | 2001-05-15 | Kai Technologies, Inc. | Microwave antennas for medical hyperthermia, thermotherapy and diagnosis |
US6174309B1 (en) | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
US6508774B1 (en) | 1999-03-09 | 2003-01-21 | Transurgical, Inc. | Hifu applications with feedback control |
WO2000056239A1 (en) | 1999-03-19 | 2000-09-28 | Endocare, Inc. | Placement guide for ablation devices |
US6146378A (en) | 1999-03-19 | 2000-11-14 | Endocare, Inc. | Placement guide for ablation devices |
US6432069B1 (en) | 1999-03-25 | 2002-08-13 | Technomed Medical Systems, S.A. | Coupling medium for high-power ultrasound |
US6325797B1 (en) | 1999-04-05 | 2001-12-04 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
EP1042990A1 (en) | 1999-04-05 | 2000-10-11 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
US6325796B1 (en) | 1999-05-04 | 2001-12-04 | Afx, Inc. | Microwave ablation instrument with insertion probe |
US20030073988A1 (en) | 1999-05-04 | 2003-04-17 | Afx Inc. | Microwave ablation instrument with insertion probe |
US6500133B2 (en) | 1999-05-14 | 2002-12-31 | University Of Washington | Apparatus and method for producing high intensity focused ultrasonic energy for medical applications |
US6217530B1 (en) | 1999-05-14 | 2001-04-17 | University Of Washington | Ultrasonic applicator for medical applications |
US6277113B1 (en) | 1999-05-28 | 2001-08-21 | Afx, Inc. | Monopole tip for ablation catheter and methods for using same |
US20020111613A1 (en) | 1999-05-28 | 2002-08-15 | Afx, Inc. | Monopole tip for ablation catheter and methods for using same |
US6696844B2 (en) | 1999-06-04 | 2004-02-24 | Engineering & Research Associates, Inc. | Apparatus and method for real time determination of materials' electrical properties |
US6808484B1 (en) | 1999-06-10 | 2004-10-26 | Sunshine Heart Company Pty Ltd | Heart assist devices, systems and methods |
US6527768B2 (en) | 1999-06-14 | 2003-03-04 | Afx Inc. | End-firing microwave ablation instrument with horn reflection device |
US6287302B1 (en) | 1999-06-14 | 2001-09-11 | Fidus Medical Technology Corporation | End-firing microwave ablation instrument with horn reflection device |
US20010039416A1 (en) | 1999-06-17 | 2001-11-08 | Vivant Medical | Needle kit and method for microwave ablation, track coagulation, and biopsy |
US6306132B1 (en) | 1999-06-17 | 2001-10-23 | Vivant Medical | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US6355033B1 (en) | 1999-06-17 | 2002-03-12 | Vivant Medical | Track ablation device and methods of use |
US20020058932A1 (en) | 1999-06-17 | 2002-05-16 | Vivant Medical, Inc. | Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use |
US6290699B1 (en) | 1999-07-07 | 2001-09-18 | Uab Research Foundation | Ablation tool for forming lesions in body tissue |
WO2001005306A1 (en) | 1999-07-19 | 2001-01-25 | Epicor, Inc. | Apparatus and method for ablating tissue |
US6332881B1 (en) | 1999-09-01 | 2001-12-25 | Cardima, Inc. | Surgical ablation tool |
WO2001015616A1 (en) | 1999-09-01 | 2001-03-08 | Cardima, Inc. | Electrosurgical ablation tool |
US6805709B1 (en) | 1999-10-26 | 2004-10-19 | Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Stent having discontinuous coating in the form of coating islands |
US6423059B1 (en) | 1999-11-16 | 2002-07-23 | Sulzer Medica Usa Inc. | Radio frequency ablation apparatus with remotely articulating and self-locking electrode wand |
US6542781B1 (en) | 1999-11-22 | 2003-04-01 | Scimed Life Systems, Inc. | Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue |
US6224587B1 (en) | 1999-11-22 | 2001-05-01 | C.R. Bard, Inc. | Steerable catheter |
US6529756B1 (en) | 1999-11-22 | 2003-03-04 | Scimed Life Systems, Inc. | Apparatus for mapping and coagulating soft tissue in or around body orifices |
US6689062B1 (en) | 1999-11-23 | 2004-02-10 | Microaccess Medical Systems, Inc. | Method and apparatus for transesophageal cardiovascular procedures |
US6309388B1 (en) | 1999-12-23 | 2001-10-30 | Mayo Foundation For Medical Education And Research | Symmetric conization electrocautery device |
US20020193783A1 (en) | 2000-01-18 | 2002-12-19 | Afx, Inc. | Microwave ablation instrument with flexible antenna assembly and method |
EP1118310A1 (en) | 2000-01-18 | 2001-07-25 | AFX, Inc. | A microwave ablation instrument with flexible antenna assembly and method |
US6413254B1 (en) | 2000-01-19 | 2002-07-02 | Medtronic Xomed, Inc. | Method of tongue reduction by thermal ablation using high intensity focused ultrasound |
US6361531B1 (en) | 2000-01-21 | 2002-03-26 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having malleable handle shafts and methods of using the same |
WO2001058373A1 (en) | 2000-02-11 | 2001-08-16 | Iotek, Inc. | Surgical devices and methods for use in tissue ablation procedures |
US6663622B1 (en) * | 2000-02-11 | 2003-12-16 | Iotek, Inc. | Surgical devices and methods for use in tissue ablation procedures |
US6808529B2 (en) | 2000-02-11 | 2004-10-26 | Edwards Lifesciences Corporation | Apparatus and methods for delivery of intraluminal prostheses |
US20020001655A1 (en) | 2000-03-10 | 2002-01-03 | The Pillsbury Company Inc. | Scoopable dough and products resulting therefrom |
US6379348B1 (en) | 2000-03-15 | 2002-04-30 | Gary M. Onik | Combined electrosurgical-cryosurgical instrument |
US20020120267A1 (en) | 2000-03-24 | 2002-08-29 | Phan Huy D. | Clamp having at least one malleable clamp member and surgical method employing the same |
US6692491B1 (en) | 2000-03-24 | 2004-02-17 | Scimed Life Systems, Inc. | Surgical methods and apparatus for positioning a diagnostic or therapeutic element around one or more pulmonary veins or other body structures |
US6869430B2 (en) | 2000-03-31 | 2005-03-22 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US6471696B1 (en) | 2000-04-12 | 2002-10-29 | Afx, Inc. | Microwave ablation instrument with a directional radiation pattern |
US6673068B1 (en) | 2000-04-12 | 2004-01-06 | Afx, Inc. | Electrode arrangement for use in a medical instrument |
US20020091384A1 (en) | 2000-04-27 | 2002-07-11 | Hooven Michael D. | Transmural ablation device with integral EKG sensor |
US6488680B1 (en) | 2000-04-27 | 2002-12-03 | Medtronic, Inc. | Variable length electrodes for delivery of irrigated ablation |
US20020107514A1 (en) | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with parallel jaws |
US20020107513A1 (en) | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with thin electrodes |
US20020103484A1 (en) | 2000-04-27 | 2002-08-01 | Hooven Michael D. | Transmural ablation device with thermocouple for measuring tissue temperature |
US20030032952A1 (en) | 2000-04-27 | 2003-02-13 | Hooven Michael D. | Sub-xyphoid method for ablating cardiac tissue |
US6517536B2 (en) * | 2000-04-27 | 2003-02-11 | Atricure, Inc. | Transmural ablation device and method |
US6706038B2 (en) | 2000-04-27 | 2004-03-16 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
US6546935B2 (en) * | 2000-04-27 | 2003-04-15 | Atricure, Inc. | Method for transmural ablation |
US20020115993A1 (en) | 2000-04-27 | 2002-08-22 | Hooven Michael D. | Transmural ablation device with gold-plated copper electrodes |
US20010031961A1 (en) | 2000-04-27 | 2001-10-18 | Hooven Michael D. | Method for transmural ablation |
US20020120316A1 (en) | 2000-04-27 | 2002-08-29 | Hooven Michael D. | Transmural ablation device with spring loaded jaws |
WO2001080755A2 (en) | 2000-04-27 | 2001-11-01 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
US20020091383A1 (en) | 2000-04-27 | 2002-07-11 | Hooven Michael D. | Combination ablation and visualization apparatus for ablating cardiac tissue |
US20030093068A1 (en) | 2000-04-27 | 2003-05-15 | Hooven Michael D. | Method for transmural ablation |
US20020091382A1 (en) | 2000-04-27 | 2002-07-11 | Hooven Michael D. | Transmural ablation device with curved jaws |
US20020032440A1 (en) | 2000-04-27 | 2002-03-14 | Hooven Michael D. | Transmural ablation device and method |
US20030125729A1 (en) | 2000-04-27 | 2003-07-03 | Hooven Michael D. | Transmural ablation device |
US6584360B2 (en) | 2000-04-27 | 2003-06-24 | Medtronic Inc. | System and method for assessing transmurality of ablation lesions |
WO2001082814A2 (en) | 2000-05-03 | 2001-11-08 | C.R. Bard, Inc. | Apparatus and methods for mapping and ablation in electrophysiology procedures |
US6467138B1 (en) | 2000-05-24 | 2002-10-22 | Vermon | Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same |
US6235796B1 (en) | 2000-06-26 | 2001-05-22 | Sarfaraz K. Niazi | Use of fluorocarbons for the prevention of surgical adhesions |
WO2002001655A2 (en) | 2000-06-28 | 2002-01-03 | The Gillette Company | Hydrogen recombination catalyst |
US6511478B1 (en) | 2000-06-30 | 2003-01-28 | Scimed Life Systems, Inc. | Medical probe with reduced number of temperature sensor wires |
WO2002005722A1 (en) | 2000-07-14 | 2002-01-24 | Cardiofocus, Inc. | Cardiac photoablation instruments |
US6808739B2 (en) | 2000-09-24 | 2004-10-26 | 3M Innovative Properties Company | Drying method for selectively removing volatile components from wet coatings |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
US6808483B1 (en) | 2000-10-03 | 2004-10-26 | Paul A. Spence | Implantable heart assist devices and methods |
WO2002038052A2 (en) | 2000-11-10 | 2002-05-16 | Boston Scientific Limited | Steerable loop structure |
US6475179B1 (en) | 2000-11-10 | 2002-11-05 | New England Medical Center | Tissue folding device for tissue ablation, and method thereof |
US20030176764A1 (en) | 2000-11-17 | 2003-09-18 | Embro Corporation | Vein harvesting system and method |
US6723092B2 (en) | 2000-12-15 | 2004-04-20 | Tony R. Brown | Atrial fibrillation RF treatment device and method |
WO2002060523A2 (en) | 2000-12-15 | 2002-08-08 | Brown Tony R | Atrial fibrillation rf treatment device and method |
US20020120263A1 (en) | 2000-12-15 | 2002-08-29 | Tony R. Brown | Atrial fibrillation RF treatment device and method |
US6402556B1 (en) | 2000-12-19 | 2002-06-11 | Molex Incorporated | Flexible circuit connector for circuit board applications |
US20030050631A1 (en) | 2000-12-29 | 2003-03-13 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
US20020087151A1 (en) * | 2000-12-29 | 2002-07-04 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
US20030163128A1 (en) | 2000-12-29 | 2003-08-28 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US6802840B2 (en) | 2000-12-29 | 2004-10-12 | Afx, Inc. | Medical instrument positioning tool and method |
US20030050630A1 (en) | 2000-12-29 | 2003-03-13 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
US20030069575A1 (en) | 2000-12-29 | 2003-04-10 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20030083654A1 (en) | 2000-12-29 | 2003-05-01 | Afx, Inc. | Tissue ablation system with a sliding ablating device and method |
US20030109868A1 (en) | 2000-12-29 | 2003-06-12 | Afx, Inc. | Medical instrument positioning tool and method |
US20020095145A1 (en) | 2001-01-17 | 2002-07-18 | Scimed Life Systems, Inc. | Method and apparatus for limiting revascularization to viable tissue |
US6743225B2 (en) * | 2001-03-27 | 2004-06-01 | Uab Research Foundation | Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates |
US6648883B2 (en) | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
US20040044340A1 (en) | 2001-04-26 | 2004-03-04 | Francischelli David E. | Ablation system and method of use |
US20040049179A1 (en) | 2001-04-26 | 2004-03-11 | Francischelli David E. | Ablation system |
US20030171745A1 (en) | 2001-04-26 | 2003-09-11 | Francischelli David E. | Ablation system and method of use |
US6807968B2 (en) | 2001-04-26 | 2004-10-26 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US6663627B2 (en) | 2001-04-26 | 2003-12-16 | Medtronic, Inc. | Ablation system and method of use |
US6699240B2 (en) | 2001-04-26 | 2004-03-02 | Medtronic, Inc. | Method and apparatus for tissue ablation |
US20030004507A1 (en) * | 2001-04-26 | 2003-01-02 | Medtronic, Inc. | Ablation system and method of use |
US6685715B2 (en) | 2001-05-02 | 2004-02-03 | Novare Surgical Systems | Clamp having bendable shaft |
US6537224B2 (en) | 2001-06-08 | 2003-03-25 | Vermon | Multi-purpose ultrasonic slotted array transducer |
US6740080B2 (en) * | 2001-08-31 | 2004-05-25 | Cardiac Pacemakers, Inc. | Ablation system with selectable current path means |
US6761716B2 (en) * | 2001-09-18 | 2004-07-13 | Cardiac Pacemakers, Inc. | System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time |
US6652518B2 (en) | 2001-09-28 | 2003-11-25 | Ethicon, Inc. | Transmural ablation tool and method |
US20030069572A1 (en) | 2001-09-28 | 2003-04-10 | Wellman Parris S. | Transmural ablation tool and method |
US20030065327A1 (en) | 2001-09-28 | 2003-04-03 | Ethicon, Inc. | Biopolar ablation electrodes and method of use |
US6709431B2 (en) | 2001-12-18 | 2004-03-23 | Scimed Life Systems, Inc. | Cryo-temperature monitoring |
US20030125666A1 (en) | 2001-12-28 | 2003-07-03 | Olympus Optical Co., Ltd. | Operating trocar |
US20030125725A1 (en) | 2002-01-03 | 2003-07-03 | Afx Inc. | Catheter having improved steering |
US20030136951A1 (en) | 2002-01-23 | 2003-07-24 | Shinn Fu Corporation | Hydraulic lifting device with a rapid mechanical lift to chassis of vehicle |
US20030158547A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Apparatus for converting a clamp into an electrophysiology device |
US20030158548A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device |
US20030181907A1 (en) | 2002-03-19 | 2003-09-25 | Lindsay Erin Jessica | Integrated vein dissector and cauterizing apparatus for endoscopic harvesting of blood vessels |
US20040049208A1 (en) | 2002-04-03 | 2004-03-11 | Thomas Fogarty, M.D. | Methods and systems for vein harvesting and fistula creation |
US20040002045A1 (en) | 2002-06-26 | 2004-01-01 | Wellman Parris S. | Training model for endoscopic vessel harvesting |
US20040092990A1 (en) | 2002-07-11 | 2004-05-13 | Opie John C. | Endovascular guide for use with a percutaneous device for harvesting tubular body members |
US20040068274A1 (en) | 2002-10-02 | 2004-04-08 | Hooven Michael D. | Articulated clamping member |
Non-Patent Citations (22)
Title |
---|
"Biopsy Needles Liver, Kidney and Soft Tissue Biopsy Menghini Technique Aspirating Needle Set," Popper & Sons, Inc., Biomedical Instrument Division. |
<URL:http://www.lisin.polito.it/english/annual<SUB>-</SUB>reports/ar2002<SUB>-</SUB>uk/19uk.htm. |
<URL:http://www.lisin.polito.it/english/annual—reports/ar2002—uk/19uk.htm. |
Andriole et al., "Biopsy Needle Characteristics Assessed in the Laboratory," Radiology, vol. 148, No. 3, Sep. 1983, pp. 659-662. |
Arendt-Nielsen et al., "Selectivity of Spatial Filters for Surface EMG Detection from the Tibialis Anterior Muscle," [online], (C) 2000 [retrieved Nov. 23, 2003], 2 pages, Retrieved from the Internet. |
Arendt-Nielsen et al., "Selectivity of Spatial Filters for Surface EMG Detection from the Tibialis Anterior Muscle," [online], © 2000 [retrieved Nov. 23, 2003], 2 pages, Retrieved from the Internet. |
Cheng, "Field and Wave Electromagnetics," 1989, Addison Wesley Publishing Co., Inc., pp. 485-509. |
Cox et al., "The Surgical Treatment of Atrial Fibrillation" Thorac Cardiovasc Surg., 402-426, 569-592 (1991). |
Durney et al., "Antennas for Medical Applications" Chapter 24, pp. 24-2, 24-27, 24-28, 24-29 and 24-58. |
Gauthier et al. "A Microwave Ablation Instrument With Flexible Antenna Assembly And Method" U.S. Appl. No. 09/484,548, filed Jan. 18, 2000. |
Gottlieb et al., "Interstitial Microwave Hyperthermia Applicators Having Submillimetre Diameters," Int. J. Hyperthermia, vol. 6, No. 3, 1990, pp. 707-714. |
Haines et al., "Tissue Heating During Radiofrequency Catheter Ablation: A Thermodynamic Model and Observations in Isolated Perfused and Superfused Canine Right Ventricular Free Wall" Pacint Clin Electrophysol, Jun. 1989, 12(6), pp. 962-976. |
International Search Report, PCT/US04/05052, Dec. 30, 2004. |
Knaut et al., "Interoperative Microwave Ablation for Curative Treatment of Atrial Fibrillation in Open Heart Surgery-The MICRO-STAF and MICRO-PASS Pilot Trial," Thorac.Cardiovasc.Surg. 47 (Supplement), 1999, pp. 379-384. |
Labonte et al., "Monopole Antennas for Microwave Catheter Ablation," IEEE Transactions on Microwave Theory and Techniques, vol. 44, No. 10, Oct. 1996, pp. 1832-1840. |
Langberg et al., "Catheter Ablation of the Atrioventricular Junction Using a Helical Microwave Antenna: A Novel Means of Coupling Energy to Endocardium," Pace, vol. 14, Dec. 1991, pp. 2105-2113. |
Liem et al., "Microwave Linear Ablation of the Isthmus Between the Inferior Vena Cava and Tricuspid Annulus," Pace, vol. 21, Nov. 1998, pp. 2079-2086. |
Matsukawa et al., "Percutaneous Microwave Coagulation Therapy In Liver Tumors: A 3-Year Experience," Acta Radiologica, vol. 38, 1997, pp. 410-415. |
Murakami et al., "Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation," American Journal of Roentgenology, vol. 164, No. 5, May 1995, pp. 1159-1164. |
Sato et al., "Microwave Coagulation Therapy for Hepatocellular Carcinoma," Gastroenterology, vol. 110, No. 5, May 1996, pp. 1507-1514. |
Sato et al., "Two Long-Term Survivors After Microwave Coagulation Therapy for Hepatocellular Carcinoma: A Case Report,", Hepatogastroenterology, vol. 43, No. 10, Jul. 1996, pp. 1035-1039. |
Seki et al., "Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma," Cancer, vol. 74, No. 3, Aug. 1, 1994, pp. 817-825. |
Cited By (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080281315A1 (en) * | 1997-04-09 | 2008-11-13 | David Lee Gines | Electrosurgical Generator With Adaptive Power Control |
US8105323B2 (en) | 1998-10-23 | 2012-01-31 | Covidien Ag | Method and system for controlling output of RF medical generator |
US8287528B2 (en) | 1998-10-23 | 2012-10-16 | Covidien Ag | Vessel sealing system |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
US9168089B2 (en) | 1998-10-23 | 2015-10-27 | Covidien Ag | Method and system for controlling output of RF medical generator |
US9113900B2 (en) | 1998-10-23 | 2015-08-25 | Covidien Ag | Method and system for controlling output of RF medical generator |
US20090326527A1 (en) * | 2002-01-25 | 2009-12-31 | Ocel Jon M | Cardiac Mapping Instrument with Shapeable Electrode |
US8623010B2 (en) * | 2002-01-25 | 2014-01-07 | Medtronic, Inc. | Cardiac mapping instrument with shapeable electrode |
US8523855B2 (en) | 2002-12-10 | 2013-09-03 | Covidien Ag | Circuit for controlling arc energy from an electrosurgical generator |
US8298223B2 (en) | 2003-05-01 | 2012-10-30 | Covidien Ag | Method and system for programming and controlling an electrosurgical generator system |
US8080008B2 (en) | 2003-05-01 | 2011-12-20 | Covidien Ag | Method and system for programming and controlling an electrosurgical generator system |
US8267929B2 (en) | 2003-05-01 | 2012-09-18 | Covidien Ag | Method and system for programming and controlling an electrosurgical generator system |
US8303580B2 (en) | 2003-05-01 | 2012-11-06 | Covidien Ag | Method and system for programming and controlling an electrosurgical generator system |
US20080161801A1 (en) * | 2003-09-12 | 2008-07-03 | Minnow Medical, Inc. | Selectable Eccentric Remodeling and/or Ablation of Atherosclerotic Material |
US10188457B2 (en) | 2003-09-12 | 2019-01-29 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9510901B2 (en) | 2003-09-12 | 2016-12-06 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US8647340B2 (en) | 2003-10-23 | 2014-02-11 | Covidien Ag | Thermocouple measurement system |
US8113057B2 (en) | 2003-10-30 | 2012-02-14 | Covidien Ag | Switched resonant ultrasonic power amplifier system |
US9768373B2 (en) | 2003-10-30 | 2017-09-19 | Covidien Ag | Switched resonant ultrasonic power amplifier system |
US8966981B2 (en) | 2003-10-30 | 2015-03-03 | Covidien Ag | Switched resonant ultrasonic power amplifier system |
US8485993B2 (en) | 2003-10-30 | 2013-07-16 | Covidien Ag | Switched resonant ultrasonic power amplifier system |
US8096961B2 (en) | 2003-10-30 | 2012-01-17 | Covidien Ag | Switched resonant ultrasonic power amplifier system |
US7766693B2 (en) | 2003-11-20 | 2010-08-03 | Covidien Ag | Connector systems for electrosurgical generator |
US20080248685A1 (en) * | 2003-11-20 | 2008-10-09 | Joe Don Sartor | Connector Systems for Electrosurgical Generator |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US20080125772A1 (en) * | 2004-09-10 | 2008-05-29 | Minnow Medical, Inc | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US8939970B2 (en) | 2004-09-10 | 2015-01-27 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8025660B2 (en) | 2004-10-13 | 2011-09-27 | Covidien Ag | Universal foot switch contact port |
US20060235286A1 (en) * | 2005-03-28 | 2006-10-19 | Minnow Medical, Llc | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US7742795B2 (en) * | 2005-03-28 | 2010-06-22 | Minnow Medical, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US9474564B2 (en) | 2005-03-31 | 2016-10-25 | Covidien Ag | Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator |
US11013548B2 (en) | 2005-03-31 | 2021-05-25 | Covidien Ag | Method and system for compensating for external impedance of energy carrying component when controlling electrosurgical generator |
US20060224152A1 (en) * | 2005-03-31 | 2006-10-05 | Sherwood Services Ag | Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator |
US20050251130A1 (en) * | 2005-04-22 | 2005-11-10 | Boveja Birinder R | Method and system of stopping energy delivery of an ablation procedure with a computer based device for increasing safety of ablation procedures |
US7588567B2 (en) * | 2005-04-22 | 2009-09-15 | Abl Technologies, Llc | Method and system of stopping energy delivery of an ablation procedure with a computer based device for increasing safety of ablation procedures |
US9486355B2 (en) | 2005-05-03 | 2016-11-08 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8734438B2 (en) | 2005-10-21 | 2014-05-27 | Covidien Ag | Circuit and method for reducing stored energy in an electrosurgical generator |
US9522032B2 (en) | 2005-10-21 | 2016-12-20 | Covidien Ag | Circuit and method for reducing stored energy in an electrosurgical generator |
US7947039B2 (en) | 2005-12-12 | 2011-05-24 | Covidien Ag | Laparoscopic apparatus for performing electrosurgical procedures |
US8241278B2 (en) | 2005-12-12 | 2012-08-14 | Covidien Ag | Laparoscopic apparatus for performing electrosurgical procedures |
US20070135812A1 (en) * | 2005-12-12 | 2007-06-14 | Sherwood Services Ag | Laparoscopic apparatus for performing electrosurgical procedures |
US8202271B2 (en) | 2006-01-24 | 2012-06-19 | Covidien Ag | Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling |
US7927328B2 (en) | 2006-01-24 | 2011-04-19 | Covidien Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US20070173804A1 (en) * | 2006-01-24 | 2007-07-26 | Wham Robert H | System and method for tissue sealing |
US8216223B2 (en) | 2006-01-24 | 2012-07-10 | Covidien Ag | System and method for tissue sealing |
US10582964B2 (en) | 2006-01-24 | 2020-03-10 | Covidien Lp | Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm |
US20070173806A1 (en) * | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US9186200B2 (en) | 2006-01-24 | 2015-11-17 | Covidien Ag | System and method for tissue sealing |
US8475447B2 (en) | 2006-01-24 | 2013-07-02 | Covidien Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US8267928B2 (en) | 2006-01-24 | 2012-09-18 | Covidien Ag | System and method for closed loop monitoring of monopolar electrosurgical apparatus |
US8187262B2 (en) | 2006-01-24 | 2012-05-29 | Covidien Ag | Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling |
US8685016B2 (en) | 2006-01-24 | 2014-04-01 | Covidien Ag | System and method for tissue sealing |
US8147485B2 (en) | 2006-01-24 | 2012-04-03 | Covidien Ag | System and method for tissue sealing |
US9642665B2 (en) | 2006-01-24 | 2017-05-09 | Covidien Ag | Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm |
US8663214B2 (en) | 2006-01-24 | 2014-03-04 | Covidien Ag | Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm |
US7972328B2 (en) | 2006-01-24 | 2011-07-05 | Covidien Ag | System and method for tissue sealing |
US7972332B2 (en) | 2006-03-03 | 2011-07-05 | Covidien Ag | System and method for controlling electrosurgical snares |
US8556890B2 (en) | 2006-04-24 | 2013-10-15 | Covidien Ag | Arc based adaptive control system for an electrosurgical unit |
US9119624B2 (en) | 2006-04-24 | 2015-09-01 | Covidien Ag | ARC based adaptive control system for an electrosurgical unit |
US7651492B2 (en) | 2006-04-24 | 2010-01-26 | Covidien Ag | Arc based adaptive control system for an electrosurgical unit |
US9808300B2 (en) | 2006-05-02 | 2017-11-07 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US8231616B2 (en) | 2006-09-28 | 2012-07-31 | Covidien Ag | Transformer for RF voltage sensing |
US10413356B2 (en) | 2006-10-18 | 2019-09-17 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10213252B2 (en) | 2006-10-18 | 2019-02-26 | Vessix, Inc. | Inducing desirable temperature effects on body tissue |
US12161392B2 (en) | 2006-10-18 | 2024-12-10 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US20080262489A1 (en) * | 2007-04-23 | 2008-10-23 | Minnow Medical, Llc | Thrombus removal |
US8777941B2 (en) | 2007-05-10 | 2014-07-15 | Covidien Lp | Adjustable impedance electrosurgical electrodes |
US8004121B2 (en) | 2007-07-16 | 2011-08-23 | Tyco Healthcare Group Lp | Connection cable and method for activating a voltage-controlled generator |
US7834484B2 (en) | 2007-07-16 | 2010-11-16 | Tyco Healthcare Group Lp | Connection cable and method for activating a voltage-controlled generator |
US20110028969A1 (en) * | 2007-07-16 | 2011-02-03 | Tyco Healthcare Group Lp | Connection Cable and Method for Activating a Voltage-Controlled Generator |
US8216220B2 (en) | 2007-09-07 | 2012-07-10 | Tyco Healthcare Group Lp | System and method for transmission of combined data stream |
US8353905B2 (en) | 2007-09-07 | 2013-01-15 | Covidien Lp | System and method for transmission of combined data stream |
US8512332B2 (en) | 2007-09-21 | 2013-08-20 | Covidien Lp | Real-time arc control in electrosurgical generators |
US9271790B2 (en) | 2007-09-21 | 2016-03-01 | Coviden Lp | Real-time arc control in electrosurgical generators |
US20090153421A1 (en) * | 2007-12-12 | 2009-06-18 | Ahmadreza Rofougaran | Method and system for an integrated antenna and antenna management |
US20090227952A1 (en) * | 2008-03-10 | 2009-09-10 | Medtronic Vascular, Inc. | Guidewires and Delivery Catheters Having Fiber Optic Sensing Components and Related Systems and Methods |
US8016814B2 (en) * | 2008-03-10 | 2011-09-13 | Medtronic Vascular, Inc. | Guidewires and delivery catheters having fiber optic sensing components and related systems and methods |
US8226639B2 (en) | 2008-06-10 | 2012-07-24 | Tyco Healthcare Group Lp | System and method for output control of electrosurgical generator |
US20100076299A1 (en) * | 2008-09-22 | 2010-03-25 | Minnow Medical, Inc. | Inducing Desirable Temperature Effects On Body Tissue Using Alternate Energy Sources |
US20100125239A1 (en) * | 2008-11-14 | 2010-05-20 | Minnow Medical, Inc. | Selective Drug Delivery In a Lumen |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US9327100B2 (en) | 2008-11-14 | 2016-05-03 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8486061B2 (en) | 2009-01-12 | 2013-07-16 | Covidien Lp | Imaginary impedance process monitoring and intelligent shut-off |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US8880185B2 (en) | 2010-06-11 | 2014-11-04 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9855097B2 (en) | 2010-10-21 | 2018-01-02 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses, systems, and methods for renal neuromodulation |
US9636173B2 (en) | 2010-10-21 | 2017-05-02 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation |
US10342612B2 (en) | 2010-10-21 | 2019-07-09 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses, systems, and methods for renal neuromodulation |
US10182865B2 (en) | 2010-10-25 | 2019-01-22 | Medtronic Ardian Luxembourg S.A.R.L. | Microwave catheter apparatuses, systems, and methods for renal neuromodulation |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US11129674B2 (en) | 2010-10-25 | 2021-09-28 | Medtronic Ardian Luxembourg S.A.R.L. | Microwave catheter apparatuses, systems, and methods for renal neuromodulation |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9848946B2 (en) | 2010-11-15 | 2017-12-26 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9649156B2 (en) | 2010-12-15 | 2017-05-16 | Boston Scientific Scimed, Inc. | Bipolar off-wall electrode device for renal nerve ablation |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
US8852186B2 (en) * | 2011-08-09 | 2014-10-07 | Covidien Lp | Microwave sensing for tissue sealing |
US9724157B2 (en) * | 2011-08-09 | 2017-08-08 | Covidien Lp | Microwave sensing for tissue sealing |
US20130041361A1 (en) * | 2011-08-09 | 2013-02-14 | Tyco Healthcare Group Lp | Microwave Sensing for Tissue Sealing |
US20150025519A1 (en) * | 2011-08-09 | 2015-01-22 | Covidien Lp | Microwave sensing for tissue sealing |
US10736512B2 (en) | 2011-09-22 | 2020-08-11 | The George Washington University | Systems and methods for visualizing ablated tissue |
US12075980B2 (en) | 2011-09-22 | 2024-09-03 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10716462B2 (en) | 2011-09-22 | 2020-07-21 | The George Washington University | Systems and methods for visualizing ablated tissue |
US11559192B2 (en) | 2011-09-22 | 2023-01-24 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10076238B2 (en) | 2011-09-22 | 2018-09-18 | The George Washington University | Systems and methods for visualizing ablated tissue |
US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US10085799B2 (en) | 2011-10-11 | 2018-10-02 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9028472B2 (en) | 2011-12-23 | 2015-05-12 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9592386B2 (en) | 2011-12-23 | 2017-03-14 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9402684B2 (en) | 2011-12-23 | 2016-08-02 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9037259B2 (en) | 2011-12-23 | 2015-05-19 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9174050B2 (en) | 2011-12-23 | 2015-11-03 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9186211B2 (en) | 2011-12-23 | 2015-11-17 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9072902B2 (en) | 2011-12-23 | 2015-07-07 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US20150101239A1 (en) * | 2012-02-17 | 2015-04-16 | Nathaniel L. Cohen | Apparatus for using microwave energy for insect and pest control and methods thereof |
US9629354B2 (en) * | 2012-02-17 | 2017-04-25 | Nathaniel L. Cohen | Apparatus for using microwave energy for insect and pest control and methods thereof |
US20170181420A1 (en) * | 2012-02-17 | 2017-06-29 | Nathaniel L. Cohen | Apparatus for using microwave energy for insect and pest control and methods thereof |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10835305B2 (en) | 2012-10-10 | 2020-11-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US11147948B2 (en) | 2012-10-22 | 2021-10-19 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US10188829B2 (en) | 2012-10-22 | 2019-01-29 | Medtronic Ardian Luxembourg S.A.R.L. | Catheters with enhanced flexibility and associated devices, systems, and methods |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US9827039B2 (en) | 2013-03-15 | 2017-11-28 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US10548663B2 (en) | 2013-05-18 | 2020-02-04 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10660698B2 (en) | 2013-07-11 | 2020-05-26 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US9872719B2 (en) | 2013-07-24 | 2018-01-23 | Covidien Lp | Systems and methods for generating electrosurgical energy using a multistage power converter |
US11135001B2 (en) | 2013-07-24 | 2021-10-05 | Covidien Lp | Systems and methods for generating electrosurgical energy using a multistage power converter |
US9636165B2 (en) | 2013-07-29 | 2017-05-02 | Covidien Lp | Systems and methods for measuring tissue impedance through an electrosurgical cable |
US9655670B2 (en) | 2013-07-29 | 2017-05-23 | Covidien Lp | Systems and methods for measuring tissue impedance through an electrosurgical cable |
US12167889B2 (en) | 2013-08-22 | 2024-12-17 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US10722300B2 (en) | 2013-08-22 | 2020-07-28 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
US10952790B2 (en) | 2013-09-13 | 2021-03-23 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US10945786B2 (en) | 2013-10-18 | 2021-03-16 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
US11457817B2 (en) | 2013-11-20 | 2022-10-04 | The George Washington University | Systems and methods for hyperspectral analysis of cardiac tissue |
US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
US11154353B2 (en) | 2014-01-27 | 2021-10-26 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods |
US10166069B2 (en) | 2014-01-27 | 2019-01-01 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US11464563B2 (en) | 2014-04-24 | 2022-10-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters and associated systems and methods |
US10736690B2 (en) | 2014-04-24 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters and associated systems and methods |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US11559352B2 (en) | 2014-11-03 | 2023-01-24 | The George Washington University | Systems and methods for lesion assessment |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
US11596472B2 (en) | 2014-11-03 | 2023-03-07 | 460Medical, Inc. | Systems and methods for assessment of contact quality |
US10682179B2 (en) | 2014-11-03 | 2020-06-16 | 460Medical, Inc. | Systems and methods for determining tissue type |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US12295795B2 (en) | 2015-07-19 | 2025-05-13 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US10350423B2 (en) | 2016-02-04 | 2019-07-16 | Cardiac Pacemakers, Inc. | Delivery system with force sensor for leadless cardiac device |
US12076081B2 (en) | 2020-01-08 | 2024-09-03 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
US12226143B2 (en) | 2020-06-22 | 2025-02-18 | Covidien Lp | Universal surgical footswitch toggling |
Also Published As
Publication number | Publication date |
---|---|
WO2004073503A2 (en) | 2004-09-02 |
US20030220639A1 (en) | 2003-11-27 |
WO2004073503A3 (en) | 2005-03-03 |
US20070149967A1 (en) | 2007-06-28 |
US7497858B2 (en) | 2009-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7192427B2 (en) | Apparatus and method for assessing transmurality of a tissue ablation | |
US20050075629A1 (en) | Apparatus and method for assessing tissue ablation transmurality | |
US7303560B2 (en) | Method of positioning a medical instrument | |
US10602938B2 (en) | Systems and methods for noncontact ablation | |
JP5306603B2 (en) | Destructive assessment by pacing | |
EP1608279B1 (en) | A tissue ablation system with a sliding ablating device | |
US8414508B2 (en) | System and method for delivery of energy to tissue while compensating for collateral tissue | |
US6932811B2 (en) | Transmural ablation device with integral EKG sensor | |
JP4245707B2 (en) | Ablation catheter | |
US20030083654A1 (en) | Tissue ablation system with a sliding ablating device and method | |
JP2001521774A (en) | Ring-shaped electrode structure for diagnostic and ablation catheters | |
US20090157068A1 (en) | Intraoperative electrical conduction mapping system | |
EP1301134A2 (en) | Transmural ablation device and method | |
CN104487011A (en) | Thermal ablation probe for a medical device | |
JP7210177B2 (en) | Tissue thickness using pulsed power | |
US20040106937A1 (en) | Clamp accessory and method for an ablation instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AFX INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAPELON, PIERRE-ANTOINE;BERUBE, DANY;REEL/FRAME:014103/0231 Effective date: 20030521 |
|
AS | Assignment |
Owner name: AFX INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAPELON, PIERRE-ANTOINE;BERUBE, DANY;REEL/FRAME:015510/0135 Effective date: 20030521 |
|
AS | Assignment |
Owner name: MAQUET CARDIOVASCULAR LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOSTON SCIENTIFIC LIMITED;BOSTON SCIENTIFIC SCIMED, INC.;CORVITA CORPORATION;AND OTHERS;REEL/FRAME:020462/0322 Effective date: 20080102 Owner name: MAQUET CARDIOVASCULAR LLC,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOSTON SCIENTIFIC LIMITED;BOSTON SCIENTIFIC SCIMED, INC.;CORVITA CORPORATION;AND OTHERS;REEL/FRAME:020462/0322 Effective date: 20080102 |
|
AS | Assignment |
Owner name: AFX, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:AFX, INC.;REEL/FRAME:022127/0810 Effective date: 20080103 Owner name: MAQUET CARDIOVASCULAR LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AFX, LLC;REEL/FRAME:022127/0542 Effective date: 20090115 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20110320 |