US7409879B2 - Construction machine comprising a joystick control - Google Patents
Construction machine comprising a joystick control Download PDFInfo
- Publication number
- US7409879B2 US7409879B2 US11/449,525 US44952506A US7409879B2 US 7409879 B2 US7409879 B2 US 7409879B2 US 44952506 A US44952506 A US 44952506A US 7409879 B2 US7409879 B2 US 7409879B2
- Authority
- US
- United States
- Prior art keywords
- construction machine
- actuation element
- control handle
- accordance
- actuation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2004—Control mechanisms, e.g. control levers
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G2009/04774—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks with additional switches or sensors on the handle
Definitions
- the present invention relates to a construction machine such as an excavator, a crawler-type vehicle, a wheeled loader or the like, comprising at least one interchangeable equipment item which is actuable by means of an electronic control, wherein the control has a control handle, preferably movable through multiple axes, in particular a joystick, for the generation of control commands for the interchangeable equipment item, wherein at least one actuation element is arranged at the control handle whose actuation is sensed by means of a sensor device and is converted into a control signal.
- the movement of the knurled wheel, expressed more precisely of a magnet fastened thereto, is sensed by means of a Hall sensor arranged in the joystick and is converted into corresponding control signals.
- the insufficient sensitivity of the actuation is, however, disadvantageous with this known control arrangement.
- the movement of the actuation switch and its sensing moreover requires a certain space which prevents a small constructional size of the joystick on the arrangement of a plurality of actuation switches.
- a force exerted onto the actuation element provided on the control handle or a torque exerted thereon is sensed as the actuation parameter.
- a dynamometer and/or a torque meter is provided as the sensor device and is connected to the actuation element and senses forces and/or torques exerted onto the actuation element by an operator.
- a very small construction size of the arrangement can be achieved by an electrical measurement of the mechanical parameter of force or torque since no larger travel distances of the actuation element are required.
- a movement sensing or travel distance sensing can be dispensed with.
- the dynamometer and/or torque meter can generally have different designs. It preferably consists of at least one measuring cell which converts a force introduced into it into a corresponding electrical signal. Piezoelements could generally be used here. In accordance with a preferred embodiment of the invention, however, a measuring cell with strain gages is provided which is provided for the absorption of a force exerted onto the actuation element and/or of a torque induced by it.
- the actuation element can be arranged fully immovably and can be connected substantially rigidly to the measuring cell.
- the force exerted onto the actuation element is introduced directly into the sensor.
- This arrangement is characterized by a minimal construction space and a minimal number of parts. It can be made completely free of mechanically movable parts.
- the actuation element can also have a certain movability and be connected to the force sensor or the torque sensor via a spring.
- the force or the torque resulting therefrom is not introduced directly into the measuring cell but indirectly via the spring.
- the slight movement of the actuation element taking place on the actuation permits a better dosage and is perceived as more pleasant than a purely static introduction of force in an ergonomic respect.
- the actuation element can in particular be arranged laterally or transversely displaceable so that the respective finger can rest on an adjacent surface and can be pushed to and fro on the surface for actuation, which is felt to be particularly pleasant.
- the measuring cell expediently senses the force introduced into it or the corresponding torque through multiple axes.
- Different control signals can hereby be generated in dependence on the direction and/or the magnitude of the actuation force, whereby a multidimensional control of the respective interchangeable equipment item is possible by only one actuation element.
- the corresponding attachment item can, for example, be moved backward and forward and to the left and right using the same actuation element.
- the actuation element is embedded into a wall of the joystick in a manner projecting slightly beyond it so that a tangential actuation of the actuation element, i.e. an actuation taking place in the surface, is possible, i.e. the actuation element can be pressed backward and forward to the side and to the left and right.
- the position of the actuation element on the control handle can vary.
- the actuation element is seated at the knob of the control handle to match the end of the thumb of a hand engaging around the control handle. It is, however, equally possible to arrange the actuation element to match another fingertip at the control handle.
- the measuring cell associated with the actuation element is arranged in the interior of the control handle so that it is protected, on the one hand, and is not in the way itself, on the other hand.
- a plurality of actuation elements formed in the said manner can naturally also be provided.
- the electrical sensing of the mechanical parameter of force or torque permits a particularly small construction size of the arrangement so that an ergonomically favorable design of the control handle is always possible even with a plurality of actuation elements.
- the functional assignment of the actuation element can be varied, e.g. by means of a suitable switch, so that a preferably used function can be placed at the knob of the control handle in dependence on the attachment item.
- FIG. 1 a perspective view of a joystick movable through multiple axes for the control of an attachment item of a construction machine in a schematic representation, with a button-shaped actuation element for the control of additional functions of the attachment item and/or of the construction machine being able to be seen on the knob of the joystick;
- FIG. 2 a plan view of the button-shaped actuation element and the measuring cell connected to it for the sensing of an actuation of the actuation element;
- FIG. 3 a plan view of the lower side of the measuring cell of FIG. 2 which shows the arrangement of the strain gages of the measuring cell.
- the joystick 1 shown in FIG. 1 is arranged at a suitable position in the handle region of the machine operator of the respective construction machine. As the arrows 2 indicate, the joystick or control stick 1 is movable through multiple axes, in particular tiltable to the front and to the rear and to the left and to the right, whereby different functions of the construction machine or of an attachment item attached thereto can be controlled in a manner known per se.
- an actuation element 4 is provided at the knob or head section 3 in the form of a button which is seated in a corresponding recess in the wall of the joystick 1 and projects slightly beyond it so that the actuation element can be actuated by a finger lying on the joystick 1 .
- the actuation element 4 is arranged such that the end of the thumb of the hand gripping the joystick 1 comes to lie on the actuation element 4 .
- the actuation element 4 is provided to be pressed to the side, i.e. in the plane of the joystick surface surrounding the actuation element 4 or tangentially thereto.
- the actuation element 4 is connected to a measuring cell 6 arranged at the interior of the joystick 1 , said measuring cell sensing an actuation force acting in each case on the actuation element 4 or an actuation torque resulting from it.
- the measuring cell 6 is made as a strain gage measuring cell.
- a plurality of sensor elements 8 are arranged on a measuring cell section 7 which is essentially cruciform due to corresponding cut-outs and sense, over multiple axes, a deformation of the measuring cell section 7 induced by the actuation forces and convert it into a corresponding measurement signal.
- the actuation element 4 is directly connected to the measuring cell section 7 of the measuring cell 6 .
- the spring not shown separately in the drawings, permits a certain movement of the actuation element 4 at the knob of the joystick 1 , which is perceived as particularly pleasant and permits an even more sensitive dosing.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mechanical Control Devices (AREA)
- Position Input By Displaying (AREA)
- Operation Control Of Excavators (AREA)
Abstract
The present invention relates to a construction machine such as an excavator, a crawler-type vehicle, a wheeled loader or the like, comprising at least one interchangeable equipment item which is actuable by means of an electronic control, wherein the control has a control handle, preferably movable through multiple axes, in particular a joystick, for the generation of control commands for the interchangeable equipment item, wherein at least one actuation element is arranged at the control handle whose actuation is sensed by means of a sensor device and is converted into a control signal. In accordance with the invention, the construction machine is characterized in that a dynamometer and/or torque meter is provided as the sensor device which is connected to the actuation element and senses actuation forces and/or actuation torques exerted onto the actuation element.
Description
The present invention relates to a construction machine such as an excavator, a crawler-type vehicle, a wheeled loader or the like, comprising at least one interchangeable equipment item which is actuable by means of an electronic control, wherein the control has a control handle, preferably movable through multiple axes, in particular a joystick, for the generation of control commands for the interchangeable equipment item, wherein at least one actuation element is arranged at the control handle whose actuation is sensed by means of a sensor device and is converted into a control signal.
With earthmovers such as excavators, crawler-type vehicles or wheeled loaders, operation facilitates the control of the interchangeable equipment items, which are often movable through multiple axes, by means of a joystick likewise movable through multiple axes. A movement of the joystick in different directions effects different movements of the interchangeable equipment item and/or of the construction machine itself. The movability of the joystick itself is, however, often not sufficient to give the control the plurality of required control commands. For this purpose, DE 20 2004 004 953 U1 proposes providing an additional actuation switch to the joystick in the form of a rotatable knurled wheel which can be actuated by a fingertip of a hand gripping around the joystick. The movement of the knurled wheel, expressed more precisely of a magnet fastened thereto, is sensed by means of a Hall sensor arranged in the joystick and is converted into corresponding control signals. The insufficient sensitivity of the actuation is, however, disadvantageous with this known control arrangement. The movement of the actuation switch and its sensing moreover requires a certain space which prevents a small constructional size of the joystick on the arrangement of a plurality of actuation switches.
It is therefore the underlying object of the present invention to provide an improved construction machine of the named type which avoids disadvantages of the prior art and further develops said prior art in an advantageous manner. A joystick control of sensitive operation and small constructional size should preferably be achieved.
This object is solved in accordance with the invention by a construction machine described herein. Preferred aspects of the present invention are also described herein.
In accordance with the invention, a force exerted onto the actuation element provided on the control handle or a torque exerted thereon is sensed as the actuation parameter. A dynamometer and/or a torque meter is provided as the sensor device and is connected to the actuation element and senses forces and/or torques exerted onto the actuation element by an operator. A very small construction size of the arrangement can be achieved by an electrical measurement of the mechanical parameter of force or torque since no larger travel distances of the actuation element are required. A movement sensing or travel distance sensing can be dispensed with.
The dynamometer and/or torque meter can generally have different designs. It preferably consists of at least one measuring cell which converts a force introduced into it into a corresponding electrical signal. Piezoelements could generally be used here. In accordance with a preferred embodiment of the invention, however, a measuring cell with strain gages is provided which is provided for the absorption of a force exerted onto the actuation element and/or of a torque induced by it.
In accordance with a first embodiment, the actuation element can be arranged fully immovably and can be connected substantially rigidly to the measuring cell. The force exerted onto the actuation element is introduced directly into the sensor. This arrangement is characterized by a minimal construction space and a minimal number of parts. It can be made completely free of mechanically movable parts.
In accordance with an alternative further development of the invention, the actuation element can also have a certain movability and be connected to the force sensor or the torque sensor via a spring. In this case, the force or the torque resulting therefrom is not introduced directly into the measuring cell but indirectly via the spring. The slight movement of the actuation element taking place on the actuation permits a better dosage and is perceived as more pleasant than a purely static introduction of force in an ergonomic respect. The actuation element can in particular be arranged laterally or transversely displaceable so that the respective finger can rest on an adjacent surface and can be pushed to and fro on the surface for actuation, which is felt to be particularly pleasant.
The measuring cell expediently senses the force introduced into it or the corresponding torque through multiple axes. Different control signals can hereby be generated in dependence on the direction and/or the magnitude of the actuation force, whereby a multidimensional control of the respective interchangeable equipment item is possible by only one actuation element. The corresponding attachment item can, for example, be moved backward and forward and to the left and right using the same actuation element.
In a further development of the invention, the actuation element is embedded into a wall of the joystick in a manner projecting slightly beyond it so that a tangential actuation of the actuation element, i.e. an actuation taking place in the surface, is possible, i.e. the actuation element can be pressed backward and forward to the side and to the left and right.
The position of the actuation element on the control handle can vary. In accordance with an advantageous embodiment of the invention, the actuation element is seated at the knob of the control handle to match the end of the thumb of a hand engaging around the control handle. It is, however, equally possible to arrange the actuation element to match another fingertip at the control handle.
Expediently, the measuring cell associated with the actuation element is arranged in the interior of the control handle so that it is protected, on the one hand, and is not in the way itself, on the other hand.
A plurality of actuation elements formed in the said manner can naturally also be provided. The electrical sensing of the mechanical parameter of force or torque permits a particularly small construction size of the arrangement so that an ergonomically favorable design of the control handle is always possible even with a plurality of actuation elements. Alternatively or additionally, the functional assignment of the actuation element can be varied, e.g. by means of a suitable switch, so that a preferably used function can be placed at the knob of the control handle in dependence on the attachment item.
The invention will be explained in more detail in the following with respect to a preferred embodiment and to associated drawings. There are shown in the drawings:
The joystick 1 shown in FIG. 1 is arranged at a suitable position in the handle region of the machine operator of the respective construction machine. As the arrows 2 indicate, the joystick or control stick 1 is movable through multiple axes, in particular tiltable to the front and to the rear and to the left and to the right, whereby different functions of the construction machine or of an attachment item attached thereto can be controlled in a manner known per se.
In the drawn embodiment, an actuation element 4 is provided at the knob or head section 3 in the form of a button which is seated in a corresponding recess in the wall of the joystick 1 and projects slightly beyond it so that the actuation element can be actuated by a finger lying on the joystick 1. In the embodiment drawn in FIG. 1 , the actuation element 4 is arranged such that the end of the thumb of the hand gripping the joystick 1 comes to lie on the actuation element 4.
As the arrows 5 indicate, the actuation element 4 is provided to be pressed to the side, i.e. in the plane of the joystick surface surrounding the actuation element 4 or tangentially thereto.
As FIG. 2 shows, the actuation element 4 is connected to a measuring cell 6 arranged at the interior of the joystick 1, said measuring cell sensing an actuation force acting in each case on the actuation element 4 or an actuation torque resulting from it. The measuring cell 6 is made as a strain gage measuring cell. As FIG. 3 shows, a plurality of sensor elements 8 are arranged on a measuring cell section 7 which is essentially cruciform due to corresponding cut-outs and sense, over multiple axes, a deformation of the measuring cell section 7 induced by the actuation forces and convert it into a corresponding measurement signal.
In the embodiment shown in FIG. 2 , the actuation element 4 is directly connected to the measuring cell section 7 of the measuring cell 6. Alternatively to this, provision can advantageously be made to introduce the actuation forces into the measuring cell section 7 via a spring. The spring, not shown separately in the drawings, permits a certain movement of the actuation element 4 at the knob of the joystick 1, which is perceived as particularly pleasant and permits an even more sensitive dosing.
Claims (24)
1. A construction machine such as an excavator, a crawler-type vehicle, a wheeled loader or the like, comprising at least one interchangeable equipment (9) item which is actuable by of an electronic control (10), wherein the control (10) has a joystick control handle (1), movable through multiple axes for the generation of control commands for the interchangeable equipment item (9), at least one actuation element (4) is arranged at the control handle (1) whose actuation is sensed by a sensor device (6) and is converted into a control signal, and a dynamometer and/or torque meter (6) is provided as the sensor device which is connected to the actuation element (4) and senses actuation forces and/or actuation torques exerted onto the actuation element, wherein the joystick control handle (1) is tiltably movable forward and backward and from side to side for controlling different functions of the construction machine, and wherein the at least one actuation element (4) has an upper surface and is responsive to pressure applied forward, backward, and from side to side on the upper surface.
2. A construction machine in accordance with claim 1 , wherein the dynamometer and/or torque meter is composed of at least one measuring cell, in particular a strain gage measuring cell (6).
3. A construction machine in accordance with claim 1 , wherein the actuation element (4) is arranged substantially immovably and rigidly connected to the dynamometer and/or the torque meter (16).
4. A construction machine in accordance with claim 1 , wherein the actuation element (4) is arranged movably, in particular transversely displaceably, and connected to the dynamometer and/or torque meter (6) via a spring.
5. A construction machine in accordance with claim 1 , wherein the dynamometer and/or torque meter (6) is made for a multiaxial sensing of force and/or torque.
6. A construction machine in accordance with claim 1 , wherein the dynamometer and/or torque meter (6) is made such that different control signals are generated in dependence on the direction and/or the magnitude of the actuation forces exerted onto the actuation element.
7. A construction machine in accordance with claim 1 , wherein the actuation element (4) and/or the sensor device (6) are made such that an actuation substantially along a control handle surface surrounding the actuation element (4) is converted into corresponding control signals.
8. A construction machine in accordance with claim 1 , wherein the actuation element (4) is arranged in the region of a head section (3) of the control handle (1) to match the thumb of a hand engaging around the control handle (1).
9. A construction machine in accordance with claim 1 , wherein both the actuation element (4) and the dynamometer and/or torque meter (6) are integrated in the control handle (1).
10. A construction machine in accordance with claim 2 , wherein the actuation element (4) is arranged substantially immovably and rigidly connected to the dynamometer and/or the torque meter (6).
11. A construction machine in accordance with claim 2 , wherein the actuation element (4) is arranged movably, in particular transversely displaceably, and connected to the dynamometer and/or torque meter (6) via a spring.
12. A construction machine in accordance with claim 11 , wherein the actuation element (4) is arranged in the region of a head section (3) of the control handle (1) to match the thumb of a hand engaging around the control handle (1).
13. A construction machine in accordance with claim 10 , wherein the actuation element (4) is arranged in the region of a head section (3) of the control handle (1) to match the thumb of a hand engaging around the control handle.
14. A construction machine in accordance with claim 7 , wherein the actuation element (4) is arranged in the region of a head section (3) of the control handle (1) to match the thumb of a hand engaging around the control handle (1).
15. A construction machine in accordance with claim 3 , wherein the actuation element (4) is arranged in the region of a head section (3) of the control handle (1) to match the thumb of a hand engaging around the control handle.
16. A construction machine in accordance with claim 4 , wherein the actuation element (4) is arranged in the region of a head section of the control handle (1) to match the thumb of a hand engaging around the control handle (1).
17. A construction machine in accordance with claim 16 , wherein both the actuation element (4) and the dynamometer and/or torque meter (6) are integrated in the control handle (1).
18. A construction machine in accordance with claim 13 , wherein both the actuation element (4) and the dynamometer and/or torque meter (6) are integrated in the control handle (1).
19. A construction machine in accordance with claim 15 , wherein both the actuation element (4) and the dynamometer and/or torque meter (6) are integrated in the control handle (1).
20. A construction machine in accordance with claim 14 , wherein both the actuation element (4) and the dynamometer and/or torque meter (6) are integrated in the control handle (1).
21. The construction machine of claim 1 wherein the actuation element (4) is positioned on a top surface of the joystick and the upper surface of the actuation element is parallel to the top surface of the joystick control handle (1).
22. The construction machine of claim 1 wherein the sensor device (6) includes a planar cell section (7) and a plurality of sensor elements (8) mounted in coplanar arrangement to cell section (7).
23. The construction machine of claim 22 wherein the cell section (7) is in a cruciform shape.
24. The construction machine of claim 23 wherein the cruciform shape is formed by cutouts.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202004018299U DE202004018299U1 (en) | 2004-11-25 | 2004-11-25 | Construction machine with joystick control |
DE202004018299 | 2004-11-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070062789A1 US20070062789A1 (en) | 2007-03-22 |
US7409879B2 true US7409879B2 (en) | 2008-08-12 |
Family
ID=35583375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/449,525 Active 2026-08-22 US7409879B2 (en) | 2004-11-25 | 2006-06-08 | Construction machine comprising a joystick control |
Country Status (3)
Country | Link |
---|---|
US (1) | US7409879B2 (en) |
EP (1) | EP1662053A3 (en) |
DE (1) | DE202004018299U1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110048162A1 (en) * | 2009-08-31 | 2011-03-03 | Kubota Corporation | Grip |
US20110088961A1 (en) * | 2009-10-19 | 2011-04-21 | Cnh America Llc | Electronic throttle on control handle |
US20130213179A1 (en) * | 2012-02-22 | 2013-08-22 | Denso Corporation | Vehicular input apparatus |
US9134187B1 (en) | 2013-10-21 | 2015-09-15 | Advanced Input Devices, Inc. | Force sensing multi-axis gimbaled device |
US10302027B2 (en) | 2016-04-01 | 2019-05-28 | Clark Equipment Company | Variable engine speed control |
EP4326949A4 (en) * | 2021-06-22 | 2025-03-26 | Hidromek Hidrolik Ve Mekanik Makina Imalat Sanayi Ve Ticaret Anonim Sirketi | CONTROL LEVER CONNECTION SYSTEM |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD589464S1 (en) * | 2007-07-27 | 2009-03-31 | Omron Corporation | Handy switch |
USD589465S1 (en) * | 2007-07-27 | 2009-03-31 | Omron Corporation | Handy switch |
CN103485384B (en) * | 2013-09-25 | 2015-09-16 | 于进策 | Excavator single handle control method and system |
DE102013019937A1 (en) | 2013-11-28 | 2015-05-28 | Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr | Control device for controlling a cantilever arm |
JP2022113563A (en) * | 2021-01-25 | 2022-08-04 | 新東工業株式会社 | Operation system, operation method and program using 6-axis force sensor |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4680577A (en) * | 1983-11-28 | 1987-07-14 | Tektronix, Inc. | Multipurpose cursor control keyswitch |
US5086870A (en) * | 1990-10-31 | 1992-02-11 | Division Driving Systems, Inc. | Joystick-operated driving system |
US5335743A (en) * | 1990-10-19 | 1994-08-09 | Saab Automobile Aktiebolag | Operation of servo devices for driving a motor vehicle - control, arrangement and method |
JPH0761354A (en) | 1993-08-25 | 1995-03-07 | Shin Caterpillar Mitsubishi Ltd | Operation lever |
US5541622A (en) * | 1990-07-24 | 1996-07-30 | Incontrol Solutions, Inc. | Miniature isometric joystick |
US5577417A (en) | 1993-11-08 | 1996-11-26 | Commissariat A L'energie Atomique | Tactile and/or kinesthetic manual information return control member |
US5640178A (en) | 1994-09-16 | 1997-06-17 | Fujitsu Limited | Pointing device |
GB2314607A (en) | 1996-06-26 | 1998-01-07 | Daimler Benz Ag | Steering control stick with a finger-actuable accelerator |
JPH1091263A (en) | 1996-09-13 | 1998-04-10 | Komatsu Forklift Co Ltd | Steering device for industrial vehicle |
FR2780547A1 (en) | 1998-06-29 | 1999-12-31 | Caterpillar Inc | Joystick command button force reduction member |
JP2000204599A (en) | 1999-01-14 | 2000-07-25 | Hitachi Constr Mach Co Ltd | Control lever device of construction machine |
DE19961532A1 (en) | 1999-01-25 | 2000-07-27 | Caterpillar Inc | Ergonomically optimised joystick input device for control of functions on a hydraulic earth moving machine |
DE10111609A1 (en) | 2001-03-10 | 2002-09-12 | Deere & Co | Operating element has operator handle on platform, connecting elements between platform, bracket, displacement and/or force sensors, unit for evaluating signals and providing drive signals |
WO2002090668A1 (en) | 2001-05-04 | 2002-11-14 | Volvo Motor Graders Limited | Joystick arrangement for motor graders |
US6693624B1 (en) * | 1999-07-02 | 2004-02-17 | Hosiden Corporation | Joystick operated positioning device for a computer |
JP2004278208A (en) | 2003-03-18 | 2004-10-07 | Shin Caterpillar Mitsubishi Ltd | Operating device for construction machine |
US7176891B2 (en) * | 2000-02-22 | 2007-02-13 | Brother Kogyo Kabushiki Kaisha | Pointing device, keyboard mounting the pointing device, and electronic device provided with the keyboard |
US7204338B2 (en) * | 2001-12-05 | 2007-04-17 | Kabushiki Kaisha Toyota Jidoshokki | Handle knob for industrial vehicle |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3404047A1 (en) * | 1984-02-06 | 1985-08-08 | Siemens AG, 1000 Berlin und 8000 München | CONTROL STAFF |
JPS6226532A (en) * | 1985-07-19 | 1987-02-04 | リチヤ−ド エル.ジエンキンス | Isometric controller |
US5264768A (en) * | 1992-10-06 | 1993-11-23 | Honeywell, Inc. | Active hand controller feedback loop |
US5859372A (en) * | 1994-04-11 | 1999-01-12 | Neltoft; Peter | Device for use in manual control of the movement of a real or imaginary object |
JP3664665B2 (en) * | 2001-06-01 | 2005-06-29 | 株式会社カワサキプレシジョンマシナリ | Joystick device |
DE10217039B3 (en) * | 2002-04-12 | 2004-02-26 | Fernsteuergeräte Kurt Oelsch GmbH | Control handle with operating units |
DE202004004953U1 (en) | 2004-03-26 | 2004-08-19 | F. Weyhausen Ag & Co. Kg | Earth working machine implement control has joystick with magnetic thumb wheel acting with Hall effect sensor to provide variable output control signal |
-
2004
- 2004-11-25 DE DE202004018299U patent/DE202004018299U1/en not_active Expired - Lifetime
-
2005
- 2005-10-11 EP EP05022160A patent/EP1662053A3/en not_active Withdrawn
-
2006
- 2006-06-08 US US11/449,525 patent/US7409879B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4680577A (en) * | 1983-11-28 | 1987-07-14 | Tektronix, Inc. | Multipurpose cursor control keyswitch |
US5541622A (en) * | 1990-07-24 | 1996-07-30 | Incontrol Solutions, Inc. | Miniature isometric joystick |
US5335743A (en) * | 1990-10-19 | 1994-08-09 | Saab Automobile Aktiebolag | Operation of servo devices for driving a motor vehicle - control, arrangement and method |
US5086870A (en) * | 1990-10-31 | 1992-02-11 | Division Driving Systems, Inc. | Joystick-operated driving system |
JPH0761354A (en) | 1993-08-25 | 1995-03-07 | Shin Caterpillar Mitsubishi Ltd | Operation lever |
US5577417A (en) | 1993-11-08 | 1996-11-26 | Commissariat A L'energie Atomique | Tactile and/or kinesthetic manual information return control member |
US5640178A (en) | 1994-09-16 | 1997-06-17 | Fujitsu Limited | Pointing device |
GB2314607A (en) | 1996-06-26 | 1998-01-07 | Daimler Benz Ag | Steering control stick with a finger-actuable accelerator |
US6006852A (en) * | 1996-06-26 | 1999-12-28 | Daimlerchrysler Ag | Operating element arrangement for controlling motor vehicle longitudinal and transverse movements |
JPH1091263A (en) | 1996-09-13 | 1998-04-10 | Komatsu Forklift Co Ltd | Steering device for industrial vehicle |
FR2780547A1 (en) | 1998-06-29 | 1999-12-31 | Caterpillar Inc | Joystick command button force reduction member |
JP2000204599A (en) | 1999-01-14 | 2000-07-25 | Hitachi Constr Mach Co Ltd | Control lever device of construction machine |
DE19961532A1 (en) | 1999-01-25 | 2000-07-27 | Caterpillar Inc | Ergonomically optimised joystick input device for control of functions on a hydraulic earth moving machine |
US6152239A (en) * | 1999-01-25 | 2000-11-28 | Caterpillar Inc. | Ergonomic electronic hand control for a motor grader |
US6693624B1 (en) * | 1999-07-02 | 2004-02-17 | Hosiden Corporation | Joystick operated positioning device for a computer |
US7176891B2 (en) * | 2000-02-22 | 2007-02-13 | Brother Kogyo Kabushiki Kaisha | Pointing device, keyboard mounting the pointing device, and electronic device provided with the keyboard |
DE10111609A1 (en) | 2001-03-10 | 2002-09-12 | Deere & Co | Operating element has operator handle on platform, connecting elements between platform, bracket, displacement and/or force sensors, unit for evaluating signals and providing drive signals |
WO2002090668A1 (en) | 2001-05-04 | 2002-11-14 | Volvo Motor Graders Limited | Joystick arrangement for motor graders |
US7204338B2 (en) * | 2001-12-05 | 2007-04-17 | Kabushiki Kaisha Toyota Jidoshokki | Handle knob for industrial vehicle |
JP2004278208A (en) | 2003-03-18 | 2004-10-07 | Shin Caterpillar Mitsubishi Ltd | Operating device for construction machine |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110048162A1 (en) * | 2009-08-31 | 2011-03-03 | Kubota Corporation | Grip |
US9058051B2 (en) * | 2009-08-31 | 2015-06-16 | Kubota Corporation | Grip |
US20110088961A1 (en) * | 2009-10-19 | 2011-04-21 | Cnh America Llc | Electronic throttle on control handle |
US8100218B2 (en) * | 2009-10-19 | 2012-01-24 | Cnh America Llc | Electronic throttle on control handle |
US20130213179A1 (en) * | 2012-02-22 | 2013-08-22 | Denso Corporation | Vehicular input apparatus |
US9162698B2 (en) * | 2012-02-22 | 2015-10-20 | Denso Corporation | Vehicular input apparatus |
US9134187B1 (en) | 2013-10-21 | 2015-09-15 | Advanced Input Devices, Inc. | Force sensing multi-axis gimbaled device |
US10302027B2 (en) | 2016-04-01 | 2019-05-28 | Clark Equipment Company | Variable engine speed control |
EP4326949A4 (en) * | 2021-06-22 | 2025-03-26 | Hidromek Hidrolik Ve Mekanik Makina Imalat Sanayi Ve Ticaret Anonim Sirketi | CONTROL LEVER CONNECTION SYSTEM |
Also Published As
Publication number | Publication date |
---|---|
DE202004018299U1 (en) | 2006-04-06 |
EP1662053A2 (en) | 2006-05-31 |
US20070062789A1 (en) | 2007-03-22 |
EP1662053A3 (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7409879B2 (en) | Construction machine comprising a joystick control | |
US6681880B2 (en) | Control lever | |
US6121954A (en) | Unified bodied z-axis sensing pointing stick | |
US5591924A (en) | Force and torque converter | |
US6937227B2 (en) | Hand-held pointing device | |
US7855715B1 (en) | Switch with depth and lateral articulation detection using optical beam | |
US6985138B2 (en) | Input writing device | |
US6888076B2 (en) | Substantially rigid capacitive joystick designs | |
AU2003246688B2 (en) | Operating device for triggering an apparatus | |
US20040051392A1 (en) | Operating device | |
US6239786B1 (en) | Pointing stick with top mounted z-axis sensor | |
US20010040550A1 (en) | Multiple pressure sensors per finger of glove for virtual full typing | |
US20050195156A1 (en) | Control and a control arrangement | |
US20150253806A1 (en) | Joystick | |
US10700727B2 (en) | Protective/control receptacle | |
US20080311993A1 (en) | Device for generating control signals that can be evaluated electrically | |
CN107070442A (en) | Use the button replacing vehicle lug-latch interface device close to sensing | |
US20250032902A1 (en) | Game controller | |
US20160109967A1 (en) | Stylus | |
JPWO2009044670A1 (en) | Input device and electronic device equipped with the same | |
US20060283280A1 (en) | Industrial truck with a multi-function lever | |
US11227484B2 (en) | Control unit for a remote control comprising an activation sensor with a variable effective sensor range | |
WO2005103869A3 (en) | Controller | |
US7356769B2 (en) | Method and apparatus for providing inputs to a communication or computing device | |
Wasserfall et al. | 3D-printed low-cost modular force sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LIEBHER-HYDRAULIKBAGGER GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLATZ, TOBIAS;REEL/FRAME:018331/0784 Effective date: 20060719 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |